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 We extend Echeverria's criterion for invariant measures for a Markov
 process characterized via martingale problems to the case where the state
 space of the Markov process is a complete separable metric space. Essen-
 tially, the only additional conditions required are a separability condition
 on the operator occurring in the martingale problem and the well-posed-
 ness of the martingale problem in the class of progressively measurable
 solutions (as opposed to well-posedness in the class of r.c.l.l. solutions, i.e.
 solutions with paths that are right continuous and have left limits, in the
 locally compact case). Uniqueness of the solution to the (measure valued)
 evolution equation for the distribution of the Markov process (as well as a
 perturbed equation) is also proved when the test functions are taken from
 the domain of the operator of the martingale problem.

 1. Introduction. Suppose A is the generator of a Markov process. Then

 a probability measure Au is an invariant measure for the Markov process if

 (1.1) f(Af) d = O V f E domain A.

 Also, for an initial distribution ,u0, if Aut is the law of the process at time t,
 then (At)t1 o is the unique solution to the measure valued evolution equation

 (1.2) ffdvt = ffdto + ft(fAfdvs) ds V fE domain A.

 However, typically, domain A is difficult to describe even for, say, finite
 dimensional diffusions arising as solutions to It6 stochastic differential equa-
 tions.

 On the other hand, if one starts with an operator A and if the martingale
 problem for A is well-posed, then under suitable conditions, it gives rise to a
 Markov process. Echeverria (1982) showed that when the state space is a
 locally compact metric space, then under suitable conditions on A, (1.1) still
 implies that Au is invariant. From this, one can deduce that (1.2) admits a
 unique solution as well. The advantage here is that one can choose domain A
 suitably.
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 INVARIANT MEASURES AND EVOLUTION EQUATIONS 2247

 In this article, we look at these questions when A is an operator on Cb(E),
 where E is a complete, separable metric space. We are able to prove that (1.1)

 implies that Au is an invariant measure, assuming that: (i) domain A is an
 algebra that separates points and vanishes nowhere; (ii) a separability condi-
 tion holds (Hypothesis I), and (iii) every progressively measurable solution to
 the martingale problem for A admits an r.c.l.l. modification. It may be noted
 that in the compact case, (i) is assumed, and (ii) and (iii) are consequences of
 compactness of E and (i). It is proved that for Hilbert space valued diffusions
 as in Yor (1974), these conditions are satisfied. The presentation here closely
 follows that in Ethier and Kurtz (1986). We first prove existence of a station-

 ary solution to the (A, Au) martingale problem if (1.1) holds and then deduce its
 consequences when the martingale problem is well-posed.

 Under the assumptions mentioned above, we also prove that the evolution
 equation (1.2) admits a unique solution. Uniqueness of solutions to a per-
 turbed form of the evolution equation is also proved.

 In Section 5, we consider time dependent operators (A,) which give rise to a
 time inhomogeneous Markov process. Uniqueness of solutions to the evolution
 equation for this process [see (5.5)] and its perturbed form is deduced from the
 time homogeneous case.

 It may be noted that the uniqueness of the solution to (5.5) is used to prove
 uniqueness of the solution to the Boltzman equation in the spatially homoge-
 neous noncutoff case [see Horowitz and Karandikar (1990)].

 In the last section we apply the results on uniqueness of solutions to the
 perturbed evolution equation to nonlinear filtering theory.

 2. Preliminaries. Throughout this article, (E, d) will denote a complete
 separable metric space, B(E) will denote the space of real-valued bounded
 measurable functions on E, Cb(E) will denote the space of bounded continu-
 ous real-valued functions on E, (E) will denote the Borel Afield on E,
 92>(E) will denote the space of probability measures on (E, 9(E)), X4(E) will
 denote the space of finite positive measures on (E, (E)), D([O, oo), E) will
 denote the set of all r.c.l.l. functions from [0, oc) into E and IB will denote the
 indicator function of the set B. For g E B(E), IIgII will denote its sup norm.

 For fk, f in B(E), we say that fk _>bp f (where bp stands for bounded
 pointwise) if II fkII < M and fk(x) -- f(x) for all x E E. A class of functions
 c:c B(E) is said to be bp-closed if fk C (,at fk _>bp f implies f c 2. For
 Y/ B(E), bp-closure (Y) is defined to be the smallest class of functions in
 B(E) which contains Y and is bp-closed. It may be noted that bp-closure is not
 closure in any topology.

 For a measurable process (X(t)), defined on some probability space
 (QYP),

 MIX := 0(X(s): S < t),

 *AX (X(s), ff(X(u)) du: s < t, f E Cb(E)).

 It can be shown that AtX and *AX differ only by P-null sets.
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 2248 A. G. BHATT AND R. L. KARANDIKAR

 In this article, A will stand for an operator on Cb(E) with domain 9(A).
 A measurable process X(t) adapted to (c0t) is said to be a solution to the

 martingale problem for (A, At) with respect to (J9t) if for all f E 9(A),

 M f(t) := f( X(t)) - tAf(X(s)) ds

 is a (St)-martingale and P o X`1 = bt. When St =*,t the o-fields are dropped
 from the statement.

 The martingale problem for (A, At) is said to be well-posed if there exists a
 solution X and for any two solutions X, X, the finite dimensional distribu-
 tions of X, X are the same.

 Let (0(t)) denote the coordinate mappings on D([O, oo), E). A measure P on

 D([O, oo), E) is said to be a solution to the martingale problem for (A, /u) if,
 under P, the coordinate process (0(t)) is a solution to the martingale problem
 for (A, A).

 The D([O, oo), E)-martingale problem for (A, At) is said to be well-posed if

 there is a unique measure PA on D([O, oo), E), which is a solution to the
 martingale problem for (A, A).

 When the martingale problem for (A, At) is well-posed, the solution X is a
 Markov. process, that is,

 E[ f(X(t))I$sx] = E[ f(X(t))Iu(X(s))]

 for all s < t, f c Cb(E). See Ethier and Kurtz (1986), page 184. Under some
 conditions it can be shown that this Markov process admits a transition

 function P(s, x, B). The next result gives one such set of conditions.

 THEOREM 2.1. Suppose the D([O, oo), E)-martingale problem for (A, ax) is
 well-posed for each x E E. Let Px denote the solution. Suppose further that A
 satisfies the following separability condition:

 HYPOTHESIS I. There exists a countable subset {gk} c 9(A) such that

 bp-closure({(gk, Agk): k ? 1)) D {(g, Ag): g E Y 9(A)}.

 Then

 (i) x | Px(C) is measurable for all Borel sets C in D([O, oo), E).
 (ii) For all At C? 91(E), the D([O, oo), E)-martingale problem for (A, At) is

 well-posed, with the solution P,, given by

 (2.1) PL(B) = fPx(B)At(dx).
 E

 (iii) Under P,., 0(t) is a Markov process with transition probability function
 P given by

 (2.2) P(s, x, B) = Px(0s E B).
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 PROOF. (i) is essentially Theorem IV.4.6 in Ethier and Kurtz (1986). See
 Remark 2.1 in Horowitz and Karandikar (1990). For part (ii), it is easy to see

 that P,, defined by (2.1) is a solution to the martingale problem for (A, A). To
 see that the martingale problem is well-posed, note that in view of Hypothesis

 I, (X(t)) is a solution to the martingale problem for (A, A) if and only if

 gk(X(t)) tAgk(X(s)) ds

 is a martingale for k 2 1. If Q is a solution to the D([O, oo), E) martingale

 problem for (A, A) and QO is the regular conditional probability of Q given
 0(0), it can be shown that QO is a solution to the martingale problem for A for
 Q-a.e. o [see Theorem 6.1.3 in Stroock and Varadhan (1978)]. Hence

 QWa = P0(o, age

 Thus it follows that Q(C) = fP,(C) dp(x) = P,,(C). Part (iii) follows easily,
 adapting arguments in the result cited above. LI

 REMARK 2.1. When A satisfies the conditions of the preceding theorem, we

 associate the following Markov semigroup (Tt) with A:

 (2.3) Tt f(x) = ff(y)P(t, x, dy)

 for fE B(E), where P(, *, * ) is given by (2.2).

 We will require the following lemma in the next section.

 LEMMA 2.2. Let {gk} C Cb(E) be a countable subset that separates points in
 E and vanishes nowhere. Let Un, U be E-valued random variables defined on
 (f0, $0, P0) such that PO ? Un` = PO o U1 for all n. Suppose gk(Un) -*g>(U)
 in probability as n -* oo V k. Then Un --> U in probability as n -* oo.

 PROOF. Note that gj(Un)g9(U) g/j(U)g9(U) in probability V j, k. Let

 =90 { h: E x E -- Rt; h(x1,X2)

 = gJ(xl)gk(x2) V x1, x2 for some j > 1, k > 1}

 and let 2 be the algebra generated by go. Since {gk} separates points in E, @
 separates points in E x E. Also for h E 2,

 h (Un UU) -h ( U, U) in probability.
 Also (Un, U) is relatively compact by hypothesis. Let E > O 5 > 0 be arbitrary

 but fixed. Choose a compact subset K5 of E x E with

 PO{(UnX U) E K j? 2 1 - V V n.
 Now the metric d restricted to K,5, which we continue to denote by d, is
 continuous and %' = L<IKE is an algebra that separates points and vanishes

 nowhere. Hence by the Stone-Weierstrass theorem @' is dense in C(K,) in
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 the uniform topology. Choose hk e %' such that IIhk - dlI -- 0 as k -> oo.
 Then remembering that d(U, U) = 0, we have

 Po{d(Un, U) > -} < Po{d(Un, U) > -, (Un, U) e K, + PO{(Un, U) 0 K,}

 < Po{Id(Un, U) - hk(Un, U)I > 8/3, (Un, U) E K8)

 + Po{Ihk(Un, U) - hk(U, U)I > E/3, (Un, U) E Kj}

 + Po{ld(U, U) - hk(U, U)l > E/3, (Un, U) c K8) + .

 Choosing k such that I1hk - dli < 8/3, we get

 Po{d(Un, U) > 4- < Po{Ihk(Un, U) - hk(U, U)I > 8/3, (Un, U) E K8) + S.
 Taking lim sup over n, we conclude lim sup PO(d(Un, U) > E) < 8. Hence

 Un ---U in probability as n -- oo. O

 The next result is a key step in the proof of our main result. This is a

 generalization of the Riesz representation theorem.

 THEOREM 2.3. Let E be a complete separable metric space and let A be a
 positive linear functional on Cb(E x E) with Al = 1. Suppose that there exist

 (countably additive) probability measures lu /2 on E such that

 A(Ff) = ff(x) d1tt(x),

 A(G9) = fg(y) dA2(Y)

 for f, g e Cb(E), where Ff(x, y) = f(x), G9(x, y) = g(y).
 Then there exists a countably additive probability measure v on E x E such

 that

 (2.4) A(F) = f Fdv.
 ExE

 PROOF. First, note that there exists a unique finitely additive measure v on
 the Borel field of E x E satisfying (2.4). [See Parthasarathy (1967), Theorem
 II.5.7.] Fix E > 0. Since E is a complete separable metric space, we can choose

 K, a compact subset of E with ,Aj(K) > 1 - 8, i = 1, 2. Then

 v((K x K)c) < v(KC x E) + v(E x Kc)
 = pAI(Kc) + A2(KC) < 2e.

 Let

 K K x K c E x E

 and WFm) C Cb(E x E) be decreasing to zero. Then IIFmII < I1F111. For 8 > 0, let
 B% be defined by B% = (Fm ? 8). Then B% is a decreasing sequence of closed

 sets and B% Il K is compact in E X E. Since fl=J{B% n K) = 0, 3 mo such
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 that B I n K = 0 whenever m ? m 0. Hence for m ? m 0, we have

 AFm f Fm dv
 EXE

 <EXEmI Fm dv + Fm d

 < 5 + 21IF11E.

 Since this holds for all 5 and 8, we get,

 AFm 0> as m -> oo.

 Hence by Daniell's theorem [see Neveu (1965), Proposition II.7.1] there exists
 a unique u-additive probability measure, again denoted by v, defined on the
 Borel Afield of E x E, satisfying (2.4). LI

 3. A criterion for invariant measures of a Markov process. The
 following is the main result of this article. This is an extension of Theorem
 IV.9.17 in Ethier and Kurtz (1986).

 THEOREM 3.1. Let ?9(A) be an algebra that separates points and vanishes
 nowhere. Suppose A satisfies Hypothesis I and that for all v E 9A(E), there
 exists a solution to the D([O, oo))-martingale problem for (A, /Lt). Suppose that
 u E? 97(E) satisfies

 (3.1) f Afdg, =0 V fE9(A).
 E

 Then on some probability space, there exists a C6t)-progressively measurable
 process X such that X is a stationary process and that X is a solution to the

 (A, pK)-martingale problem w.r.t. ('t).

 PROOF. For n ? 1 define An on W(I - n 1A) by

 Anf= n[(I - n-lA) - Ijf.

 Note that since the martingale problem for (A, Ax) admits a solution for all
 x E E, A is dissipative [see Ethier and Kurtz (1986), page 178] and hence An
 is well defined. Also for f E12 9(A), fn = (I - n-1A)f satisfy

 (3.2) An fn = Af V n; If-fII 0 as n -> oo.

 Note that for all g E D(An), we'-have

 (3.3) fAngdA yO.

 We divide the rest of the proof into steps.
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 2252 A. G. BHATT AND R. L. KARANDIKAR

 STEP 1. Construction of stationary solution to the martingale problem

 for An:
 Fix n. Let M c Cb(E x E) be the linear space of functions of the form

 m

 (3.4) F(x, y) = i Et(x) gi (y) + g (y)
 i=1

 fix ..X fm g E- Cb(E); gj).. gm E- W(I - n -'A); m >! l. Define A on M by

 (3.5) AF= fE fi(x)(I-n-1A) lgi(x) + g(x)j4(dx)

 for F as in (3.4). Then Al = 1. Using (3.1) and proceeding exactly as in

 Theorem 9.17 of Ethier and Kurtz (1986), we get that JAFI < JIF I V F E M
 and AF ? 0 whenever F ? 0. Using the Hahn-Banach theorem we extend A
 to a bounded, positive linear functional on Cb(E x E). From the construction
 it is clear that

 (3.6) A(Ff) = ff(x) d~i(x),

 (3.7) A(G9) = fg(y) dAu(y),

 where Ff(x, y) = f(x) and G (xy) = g(y). Using Theorem 2.3, we get a
 probability measure v on E X E satisfying

 (3.8) AF=f Fdv V F e M.
 EXE

 Since E is a complete separable metric space, there exists a transition proba-

 bility function [see e.g., Ethier and Kurtz (1986), Appendix] -q: E X 9(E)
 [0, 1] satisfying

 v(Bj X B2) = q(x, B2)Au(dx) V B1, B2 Et (E).
 B1

 Note that (3.6) and (3.7) give

 (3.9) f'7(x, B)4(dx) = v(E X B) = b4(B) V B E (E).

 Now, (3.5) and (3.8) imply that for all f E Cb(E), g E W(I - n 1A)

 f(x)g(y)v(dx,dy= f(x)(I - n1A) g(x)1u(dx). EXEE

 Hence we have

 (3M1O) fg(y)'q(x,dy) (I - n-A)lg(x) /.t-a.s.

 for all g e- ?(I - n1A).
 Let Y(0), Y(1), ... , Y(k), ... be an E-valued Markov chain with initial

 distribution ,u and transition function -q. Equation (3.9) implies that (Y(k)) is
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 stationary and (3.10) gives that

 k-1

 (3.11) g(Y(k)) - E n-1Ang(Y(i))
 i=O

 is a o-(Y(1), ... , Y(k))-martingale for all g E 4(I - n-'A).
 Let V be a Poisson process with parameter n, which is independent of Y.

 Define

 Xn(t) := Y(V(0))

 Then Xn is a stationary Markov process with initial distribution pt. Equation
 (3.11) implies that

 g(Xn(t)) fAng(Xn(s)) ds

 is a martingale for all g E -(An) Thus Xn is a stationary solution to the
 martingale problem for An. This completes Step 1.

 STEP 2. Convergence of finite dimensional distributions of (a subsequence
 of) Xn:

 For f E- 9(A), let fn be as in (3.2). Define

 6n(t) := fn(Xn(0)9

 On(t) :=An fn(Xn(t)) = Af (Xn(t))

 Then 6n and On satisfy the conditions of Theorem III.9.4 of Ethier and Kurtz
 (1986), and since 9(A) is an algebra, the same theorem applies and we get
 relative compactness of (f Ao Xn 9 f2 0 Xn ... X fi o Xn) in D([0, o), R), for
 fl9 f29X .. i E- g(A)g i 2 1.
 Let 2o = {gk}rk1 be the countable subset of Hypothesis I. Let 11g9kl = ak

 and E = Hi=j[-ak, ak]. Since 9(A) separates points and vanishes nowhere,
 so does go0I It now follows that (g1(Xn( )), g2(Xn( )), ... , gk(Xn( )) ... ) is
 relatively compact in D([Ooo), E). Thus we get a subsequence, which
 we relabel as Xn, such that (g1(Xn( ))g2(Xn( .)),... , gk(Xn( )) ...) con-
 verges weakly to a D([0, oo), E) valued random variable, say, Z( ) =
 (Z( -), . . ., Zk(. ).. ), that is,

 (3.12) (gl(Xn(.)) ... gk(Xn(Q)), **) - Z(.) as n -- >oo

 Define g: E .. E by

 (3.13) g(x) = (g1(X) . * gk(X) * . . .

 Then g is a one to one, continuous function. This implies that g(E) is a Borel
 subset of E. Also g-1 defined on g(E) is measurable. [See Parthasarathy
 (1967), Corollary I.3.3]. We extend the definition of g-1 to all of E by setting
 g- 1(z) = e for z 0 g(E), where e is a fixed point in E. We now use a Skorohod
 representation to get a probability space (Q, $, P) and D([O, oo), E) valued
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 random variables 6n and Z defined on it satisfying

 (3.14) (e ) = ( ( Xn) V n,

 (3.15) o(Z) = oz)

 (3.16) LUTZ a.s.asn-oo.

 Now,

 .{(g(Xn(t))) =Atog- 0 = V n, t.

 Hence

 (3.17) t((n(t)) =/ V n,t,

 which implies 6n(t) E g(E) a.s. Then defining

 (3.18) X'kt) = g _(6n(O) )
 it follows that Xn is a measurable process. Since (Xn(t)) is a stationary
 process, it follows that (6n(t)) is a stationary process and hence (Z(t)) is a E
 valued r.c.l.l. stationary process. Hence (Z(t)) does not have any fixed points of
 discontinuity, that is, P(Z(t) = Z(t - = 1 V t. Thus (t) -- Z(t) a.s. for all
 t. Since _.'(gJ(t)) = jt for all n, it follows that _./(Z(t)) = I. Hence

 P(Z(t) E g(E)) = 1 V t

 and defining

 (3.19) X(t) =-1(Z(0)

 we get a stationary (St)-progressively measurable process X, where St t=S
 Further,

 (3.20) g(Xn(t)) > g(X(t)) a.s. V t.
 This and Lemma 2.2 imply that Xn(t) converges to Xt) as n --> o in E in P
 probability for each t. This completes Step 2.

 To complete the proof, we will show that X is a solution to the martingale

 problem for (A, /u) w.r.t. (St). Recall that we have already proved that X is a
 stationary process and is (Sct) progressively measurable. Note that (Xn(t)) has
 the same finite dimensional distributions as (Xn(t)), and hence Xn is a
 solution to the martingale problem for An, that is, for all g E (A )

 (3.21) g(XA(t))- Ang(Xn(s)) ds

 is a P martingale. Now for g E Cb(E),

 (3.22) g(Xn(t)) -* g()(t)) -in P probability
 as n --> o. This holds for all t. An application of the dominated convergence
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 theorem gives for g E Cb(E),

 EIg(Xn(s)) - g(X(s))l -O o as n -- oo,
 and hence using Fubini's theorem we get

 Eft g(Xk(s)) - g(X(s))I ds -> 0 as n -o.

 As a consequence, we have

 (3.23) ftg(Xn(s)) ds | g(X(s)) ds
 in P probability for all t.

 Fix f E ?9 and let fn be given by (3.2). From (3.21) it follows that for
 ?<tl < t2 < ... < tm+l) hk E C()

 fn(Xn(tm + l) - fn(Xn(tm)) ft Af (Xn(s)) ds) riihk(Xn(tk))) | 0

 and recalling that II fn - f II -O 0 as n -> oc, we get

 E[( f(Xn(tm~i)) -f(Xn(tm)) - It Af(Xnf(s))d5) [lhk(2n(tk))] ?

 as n -o. Now (3.22), (3.23) and the dominated convergence theorem give

 (f ((tm + i)) f (X(tm)) -t m+lAf (X( s)) ds) I1 hk(X(tk))] = O-

 Since Stj and 3t = St differ only by null sets, it now follows that (X(t)) is a
 solution to the martingale problem for (A, /i) with respect to (t), completing
 the proof. R

 It should be noted that the stationary solution constructed above may not
 have r.c.l.l. paths. Thus even when the D([O, oc)) martingale problem for (A, v)
 is well-posed for all v E 09(E), in addition to the conditions in Theorem 3.1, it

 does not follow that At is a stationary initial distribution for the Markov
 process associated with 'A. This can be deduced if we assume that every
 solution to the (A, pt)-martingale problem admits an r.c.l.l. modification. This
 is our next result.

 THEOREM 3.2. Let A9(A) be an algebra that separates points and vanishes
 nowhere. Suppose A satisfies Hypothesis I. Suppose that the D([O, oo))-

 martingale problem for (A, x)< is well-posed for all x E E. Let (Tt) be the
 semigroup associated with the A-martingale problem in Theorem 2.1.

 Further suppose that:

 HYPOTHESIS II. Every progressively measurable solution to the martingale
 problem for (A, pu) admits an r.c.l.l. modification.
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 If /i E 9(E) satisfies

 fAfdi = O VfE 9(A),
 E

 then pi is an invariant measure for the semigroup (Ti).

 PROOF. Let X be the stationary solution constructed in Theorem 3.1. In
 view of Hypothesis II, we can assume that X is r.c.l.l. If Q is the law of X,
 then it follows that Q is a solution to the D([O, co), E)-martingale problem for
 (A, jLL) and that Q o ((t))1 = /ut for all t. Using (2.2) and (2.3) it now follows
 that

 f(T(t) f) di= fdA

 for all t and hence that ,t is an invariant measure for T(t). L

 REMARK 3.1. When E is a compact metric space, Hypothesis II always
 holds and when E is a locally compact metric space and A is an operator on
 C(E) (continuous functions vanishing at infinity), then also Hypothesis II
 holds if A is conservative, that is, (1, 0) is in the bp-closure of {( f, Af):
 f E 9(A)} [see, e.g., Ethier and Kurtz (1986), page 179). Note that when A is
 a second order differential operator on Rm with bounded coefficients, it is
 conservative and hence Hypothesis II is satisfied. It may be noted that
 Echeverria proved this result without assuming that A is conservative in the
 locally compact case.

 REMARK 3.2. Let E = H, a real, separable Hilbert space. Let A be the
 operator corresponding to a diffusion as in Yor (1974). More precisely, fix a

 complete orthonormal system {si} in H and let Pn be the orthogonal projec-
 tion onto the linear span of {t1,.... o. Let ?9(A) = {f o Pn: f E C2(R')} and

 n

 [A( f oPJ)](h) = 2 (J*(h)ia*(h)j)fij o Pn(h)
 i,j=1

 n

 + 5?(b(h), Oi) fi o Pn(h),
 i=1

 where fi = (d/dxi) f and fij = (d/dxj) fi. Here oa; H - A2(H, H) and b:
 H -- H are measurable functions, 42(H, H) being the space of
 Hilbert-Schmidt operators with norm 11 ' 112. It is assumed that I1b(h)II < C1
 and I1u(h)112 < C2. If (X(t)) is a progressively measurable process that is a
 solution to the martingale problem for (A, PI), then it can be shown that
 (Xi(t)) = (X(t), Xi) admits an r.c.l.l. modification, say (Xi(t)). This step is
 similar to the locally compact case referred to in Remark 3.1. Xi is then an It6
 process in the sense of Stroock-Varadhan and the r.c.l.l. version Xi is indeed
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 continuous a.s. [see Stroock and Varadhan (1979), page 111]. Let

 M1(t) = Xi(t) - Xi(0) - |(b( X(s)), Xi0) ds.

 Then it follows that M' is a continuous martingale and

 (Mi, Mi)t = ft(J*(X(s))>i, *r*(X(s))4j) ds.

 Now

 n ~~~2n
 F~~~~ Esup = Esup E (Mj(t))2

 t<T j=m t<Tj=m

 (3.24) < 4E E (Mj(T))

 = 4E E (o* (X(s)) Oo a*(X(s))pj) ds.
 j=m0

 Since

 E E f ( T* (X( s)),u*(X(s ))) ds = E ds

 < TC17

 it follows that the R.H.S. in (3.24) goes to zero. Thus E2_1Mj(t)01 converges
 uniformly in [0, T] a.s. to, say, (M(t)), and hence (M(t)) is continuous. It is
 easy to see that

 M(t) = X(t) - X(O) - ftb(X(s)) ds a.s.

 Hence, defining X(t) M(t) + X(O) + fJtb(X(s)) ds, one gets that X is a
 continuous modification of X. Thus Hypothesis II is satisfied.

 4. Evolution equation for Markov processes: uniqueness. We con-
 sider the measure valued equation

 (4.1) ffdvt ffdv + f(Afdvs) ds, f (E (A)

 where {vt}t, 0 c 4?(E) satisfy for every Borel set U in .E:

 (4.2) t -* v t(U) is measurable.
 Note that if X is a solution to the martingale problem for (A, v), then

 t= --'(X(t)) is a solution to (4.1). We will now show uniqueness under the
 conditions of Theorem 3.2. We require the following imbedding of the martin-
 gale problem for A on a compact space E. This imbedding was implicit in the
 proof of the main theorem.
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 As in Section 3, let {gk} c 9(A) be the countable set such that the bp-closure
 of {(gk, Agk)} contains {( f, Af ): fE E9(A)} and let I'gkII = ak. Let E =
 Hk~l[-ak, ak] and g: E E be defined by

 (4.3) g(x) = (gl(x),...,gk(X),. .)

 Define an operator v as follows. Let % be the algebra generated by

 [Uk EC() Uk((Zl... * Zk) *.**.) Zk)
 and

 (4.4) s/'(cu iui2 ... uik)(z) = {c[A(gilgi2 gik)](x), if Z = gt(X)
 O. otherwise.

 Note that

 Uk(g(X)) = g9(x) and JVuk(g(X)) = Agk(x).

 Let (X(t)) be a progressively measurable solution to the martingale problem
 for A and let

 Z(t) = g(X(t)) V t 2 0.

 (Z(t)) is a g(E) valued progressively measurable process. Also for u c % with
 u(g(x)) = g(x), we have that

 E[(u(Z(tm)) - u(Z(tm-)) - f Vu(Z(s)) ds) 1 hl(Z(tl))j

 = E[(g(X(tm)) -g(X(tm-)) - Ag(X(s)) H hI(X(t)]

 = 0,

 V O < t1 < t2 < <tm, h(e B(E), hI = hI o g. Hence Z is a solution to the
 martingale problem for (.

 Similarly it can be seen that if Z is a progressively measurable solution to
 the martingale problem for V with

 (4.6) P(Z(t) e g(E)) = 1 V t 2 0,

 then

 X(t) =g-1(Z(t))

 defines a progressively measurable solution to the martingale problem for A.
 The advantage of going to the martingale problem for V is that compact-

 ness of E and denseness of f`? implies that any measurable solution to the
 martingale problem for -V admits an r.c.l.l. version. The preceding discussion
 implies that if the D([O, oo))-martingale problem for (A, 5x) is well-posed for all
 x E E and if every progressively measurable solution to the martingale prob-
 lem for (A, ,u) admits an r.c.l.l. modification, then the law of any solution Z to

 the martingale problem for (.a-, A) satisfying (4.6) is uniquely determined.
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 Let us note here that g is not a homeomorphism in general. However, if

 {gk} separates points and closed sets, then g is a homeomorphism and then E
 is a compactification of E, similar to the one point compactification of a locally
 compact space.

 Let E0 = E x {-1, 1}, A > 0, v E (E) and B be the operator on Cb(Eo)
 with domain 9(B) which is the linear span of

 If, f2: f, =-9(A)) f2 E=C( - 1, 1})
 and

 (4.7) Bf1f2(x, v) = f2(v)Af1(x) + A( f2( -v) fdv -fl(x) f2(v)).

 THEOREM 4.1. Suppose that the operator A on Cb(E) satisfies the condi-

 tions of Theorem 3.2. If {Vt}t >0 c 9P(E) and {1tatsto c 632(E) satisfy (4.1) and
 (4.2), then vt = lit for all t ? 0.

 PROOF. By definition of B, it is clear that 92(B) is an algebra that
 separates points in E0 and that B satisfies Hypothesis I.

 Existence of D([O, oo), EO) valued solutions to the martingale problem for
 (B, ,t), for every L E A(EO), follows from Proposition IV.10.2 of Ethier and
 Kurtz (1986). We will prove that the martingale problem for (B, /1) is well-posed
 (in the class of progressively measurable solutions). Once this is proved, it

 would follow that the D([O, oo))-martingale problem for (B, Au) is well-posed and
 that every measurable solution to the martingale problem admits a r.c.l.l.
 modification.

 Let (Y, V) be a measurable solution to the martingale problem for (B, /i).
 Let

 (4.8) Z(t) = g(Y(t)) V t 2 0

 and 6 be an operator defined on

 (4.9) ?9(6) = {Uf2: U E (, f2 E C{ -1, 1,1)
 by

 (4.10) guf2(z, v) = f2(v),/u(z) + A( f2( -v)f udvi - f2(v)u(z)

 where

 (4.11) v(F) = v(g-l(v n g(E)))

 Then arguing as in (4.5), it follows that (Z, V) is a solution to the martingale
 problem for A. Since 9(gC) is an algebra that separates points in g(E) X

 {- 1, 1}, it is a measure determining set. Further, since g( E) X { - 1, 1} is a

 compact, separable space, (Z, V) has a r.c.l.l. modification, say (Z, V), in
 g(E) x {-1, 1}. [See, e.g., Theorem IV.3.6 of Ethier and Kurtz (1986).]

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Wed, 05 Apr 2017 11:09:16 UTC



 2260 A. G. BHATT AND R. L. KARANDIKAR

 Now arguments as in Theorem IV.10.3 in Ethier and Kurtz (1986) imply
 that the law of (Z. V) is determined by the law of the r.c.l.l. solution to the
 martingale problem for a satisfying (4.6), which in turn is determined by

 {PJ' the solution to the martingale problem for A and v. Thus, the law of Z
 and hence that of Y is determined by {PJ} and v. It is easy to see that the law
 of V depends only on A. This shows that the martingale problem for B is
 well-posed. Thus B satisfies all the conditions of Theorem 3.2.

 The rest of the argument is the same as that in the locally compact case,
 given in the proof of Proposition IV.9.19 in Ethier and Kurtz (1986). R

 We now consider the question of uniqueness for solutions to an evolution
 equation for perturbations of the operator A.

 Let A c Cb(E). If (X(t)) is a solution to the D([O, oo), E)-martingale problem

 for (A, v), then vt(B) = E(IB(X(t))exp{ - f tA(X(s)) ds}) is a solution to the
 equation

 (4.12) ffdvt= fdv + f((AffA( )f)dvs)ds, fe9(A).

 The next result gives conditions under which {V(}t 2 o is the only solution.

 THEOREM 4.2. Suppose A satisfies the conditions of Theorem 3.2 and that

 the constant function 1 belongs to ?9(A) with Al = 0. If {, t~ ?o c X4(E) and
 (pt~t ,c 14(E) satisfy (4.2) and (4.12), then /it = vt for all t 2 0.

 PROOF. Let a = infXEE A(x). Then if {V(}t 2 0 satisfy (4.12), then vP = vteat
 satisfy

 (4.13) ffdvi= fdv + f((Af-A(.)f+af)dv) ds, f E 9(A)

 and conversely if {v}t 2> 0 c X(E) satisfy (4.13), then vt = v4e-t satisfy (4.12).
 Hence it suffices to prove uniqueness when A 2 0.

 Without loss of generality we can assume that 1 e 9(A) with Al = 0. Let
 A be a discrete point outside E and

 (4.14) EA= E U {A}.
 Extend A to EA by defining

 (4.15) A(A) = 0.

 Define operators AA and C on Cb(EA) by

 (4.16) .9(AA) = {fE Cb(EA): fIE E .( A)}
 and for f E 9(A'),

 (4.17) A'f(x) = A(( f(x) - f(A))) Vx c E,
 AAf(A) = 0.
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 For f E Cb(EA), x E E^,

 (4.18) Cf(x) = A(x)( f(A) -f(x)).

 We will first show that the martingale problem for AA + C is well-posed. Let

 A E 9?(EA) be defined by p(U) = pt(E rn U) for U Borel in EA. Existence of a
 solution to the D([O, oo), E)-martingale problem for (AA + C, i) follows from
 Theorem IV.10.2 in Ethier and Kurtz (1986).

 Note that since the martingale problem for A is well-posed, so is the
 martingale problem for A'. Existence of a D([O, oo), EA) solution for the
 martingale problem for (AA, 1-) for any v- E ,(E') follows easily. Let {TA(t)}
 be the associated semigroup.

 Let X be a measurable solution to the martingale problem for AA + C.
 Since IE E _T(AA + C) and (AA + C)IE = -AIE = -A, we get that

 (4.19) M(t) = IE(X(t)) + ftA(X(s)) ds

 is a martingale. Nonnegativity of A implies that IE(X(t)) is a supermartingale.
 The filtration may not be right continuous. Hence to get an r.c.l.l. modification
 of IE(X(t)) we proceed as follows.

 Using (IE(X(t)))2 = IE(X(t)), a simple calculation gives that

 (M(t))2 - At(X(s)) ds

 is a martingale. [See, e.g., Ethier and Kurtz (1986), Exercise II.29.] Similarly

 (M(t) M(S))2 _ftA(X(u)) du, t S

 is a martingale. This implies that the map t --> M(t) is continuous in probabil-
 ity. Hence t -- IE(X(t)) is continuous in probability and thus has an r.c.l.l.
 modification, say (N(t)). N can be taken to be {0, 1}-valued. Further N is a
 positive supermartingale. Let

 (4.20) r = inf{t > 0: N(t) = 0).

 Then N(u) = 0 for u 2 r a.s. [see, e.g., Ethier and Kurtz (1986), page 62).

 Thus N(t) It, > t and

 (4.21) IE(X(t)) = I,,'t} a.s.

 Hence using (4.19) and integration by parts we get that

 (4.22) If> exp(JA(X(s)) ds}

 is a martingale. Let {g9} -=1 be the countable set satisfying Hypothesis I with
 I IkII = a k* We will continue to denote by the same symbol gk the extension of
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 gk with g9(A) = ak + 1. Then {gk}r=l separates points in EA. Let
 00

 E= H[-ak - 1, ak + 1]
 k = 1

 and g: EA E be defined by

 (4.23) g(x) = (g1(x),. *,gk(X), ...)
 Define, for z - g(EA), g-1(z) = e for some fixed point e in EA. Let

 A E B(E) be defined by A = A o g1. Then

 (4.24) A(g(x ) = A(x) Vx E EA.

 Define the operator v as in (4.4) with A replaced by AA in the definition.
 Now, on 9() define the operator 4 by

 (4.25) u(z) = Vu(z) + A(z)(u(g(A)) -u(z))

 Note that Z(t) = g(X(t)) is a solution to the martingale problem for W. Let Z
 be the r.c.l.l. modification of Z. Arguing as in (4.5) and using (4.22), we get
 that

 (4.26) I{, t} exp (A(Z( s)) ds}

 is a nonnegative mean one martingale.
 Fix T > 0. Define Q on D([O, oo), E) by

 Q(o(tl) E Fj, ..., O(tm) E Fm)

 (4.27) -= E [I A(( ti ))I > tm)exp A(Z(s))ds)

 for all 0 < t1 < .. < t_ < T and all choices of Borel sets F . m. Here 0
 is the coordinate process on D([O, oo), E). Equation (4.27) defines a probability
 measure on D([O, oo), E), since Z is an r.c.l.l. process. Since X is a solution to
 the martingale problem for AA + C, we get, for f E- 9(AA + C) with f(A) = 0,
 that

 f (X(t)) - t(Af (X(s)) - A(X(s)) f (X(s))) ds
 0

 is a martingale and hence using integration by parts, we get that

 f(X(t))exp(fA(X(s)) ds - Af(X(s))exp(f A(X(u)) du} ds

 is a martingale. Since f(A) = 0, using (4.21), we get that

 f(X(t))I{T>t exp(f A(X(s)) ds}

 ftA du d7
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 is a martingale. Or, arguing as in (4.5), for u E -9(e),

 (4.28 Af(t))IJ, t((fA((((S)) dsd

 OVU (Z( s >)IS, s expt A AZ( r )) dr) ds

 is a martingale. Hence for 0 < tj < ... < <tm < T, hl,..., hm e C(E),

 EQ[(U(O(tm+i)) - U(0(tm)) - /1m u(0(s)) ds) ft hk(0(tk))]

 = EP[(UZ(tm+i))I{T>tM+1 exp(f AZ((r)) dr}

 (4.29) >( (tM)),( tM~eP( A(Z A )r

 - V f 1 (zo )I > exp{J Z(r)) dr) dsn hhk((tk))j

 = 0.

 It follows that under Q, 0 is a solution to the martingale problem for ,Qf
 satisfying

 (4.30) Q(0(t) e g(EA)) = 1 V t.

 Hence, X'(t) g- 1(0(t)) is a solution to the martingale problem for A". This
 step is similar to the arguments given at the beginning of this section. Thus we
 get for u E B(E

 EQ[ u(0(t))] = EQ[ u o g(X'(t))]

 = EQ [[TA(t)(u o g)] (X'(0))

 = EP[[TA(t)(u o g) (X(O))J

 This can be rephrased as

 (4.31) E P[u((t))exp fA(Z(r))dr}I, I> = EP [TA(t)(uog)(X(0))]

 for all 0 < t < T. Similarly, if for s > 0, fixed, we define Q on D([0, oo), E) by

 Q(6(tj)) E= Fj, . . ., (tje E= FM)

 (4.32) E[1li-IT (Z(s + ti))I{s+tj}exp{JSS+tmA(z(r))dr}]
 P(r > s)

 for all 0 < t1 < ... < tM < T, for all choices of Borel sets F1, ... . Fm, then Q
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 is a solution to the martingale problem for qf and we get

 (4.33) EP[U(Z(t))exP( A(Z(r)) dr Ihtj
 = EP[[TA(t - s)(u og)](X(s))J

 for all s < t < s + T. Since T > 0 was arbitrary, (4.31) and (4.33) hold for all
 t ? 0 and t ? s, respectively. Let f E B(EA) with f(A) 0 and u f O g
 Then note that u(g(x)) = f(x) for all x E EA. Then using u(Z(t)) 0 if < t,
 we get

 EP[ u(Z(t))] -EP[TA(t) f (X(O))]

 = EP[u (Z(t)) (1 - exp fA(Z((r)) dr}I{ >t})]

 = EP[ u (Z(t)) (1 - exp tA(Z((r)) dr) I{ >t}]

 ( - EP[ (Z( t))A(Z( s))exP A(Z(r)) dr I(T t ds]

 = EP[ 'EP [ Uz( t) )exp( A(Z( r) )dr) I{7,rt)IF- A(Z( s)) ds]

 --EP[fTA(t-s) f (fX(s))A(Z(s)) dsj

 or

 E[ f ( X(t))] - EP[TA(t) f (X(O))]

 (4.35) - ~-EP[f TT(t-s) f(X(s))A(X(s)) dsj

 - ftEP[CT(t - s) f(X(s))] ds.

 Hence iterating, we get

 E[ f ( X(t))] = EP[TA(t) f (X(O))]

 + tEP[TA(s)CTA(t - s) f (X(O))] ds

 +f t EP[CTA(s - r)CTA(t'- s))f(X(r))] drds

 and so on. Thus the distribution of X(t) is determined by C, {T(s)}s2 0 and
 X(O). Hence the distribution of X(t) is determined for every t 2 0. But this
 implies that the finite dimensional distributions of X are determined. [See,
 e.g., Theorem IV.4.2 in Ethier and Kurtz (1986).] Hence we have well-posed-
 ness of the martingale problem for AA + C.
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 It now follows that AA + C satisfies all the conditions of Theorem 3.2.
 Hence, applying Theorem 4.1 for the operator AA + C, we get uniqueness of
 solutions to the measure valued equation

 (4.36) hE pt JEA + t (AA + C) fdp) ds.

 Let {vt} be a solution to (4.12) [satisfying (4.2)]. Since 1 e -9(A) with
 Al = 0, we get

 vt(E) = v(E) - tA dvs ds

 and hence vt(E) < 1. Set vit(U) = vt(U n E) + (1 - vt(E))Iu(A) for U Borel
 in EA. Then it can be checked that vt is a solution to (4.36). Thus, uniqueness
 of solutions to (4.36) implies the required uniqueness of solutions to (4.12). 0

 5. Evolution equation for time inhomogeneous Markov processes.
 The results of Section 4 can easily be extended to the case where the operator
 A depends on time. We define the time dependent martingale problem as
 follows.

 Let (E, d) be a complete, separable metric space. For t> 02 let At be linear
 operators on Cb(E) with a common domain g c Cb(E).

 A measurable process X defined on some probability space (Q, A, P) is said
 to be a solution to the martingale problem for (At)t ?0 with respect to a
 filtration (St)t 2 0 if for any f E 9,

 (5.1) f (X(t)) - tAs f (X(s)) ds

 is a (%t)-martingale.
 For p. E 9(E), we say that the martingale problem for ((At), kt) is well-posed

 if, whenever, X and Y are two solutions to the martingale problem for (At),
 defined, respectively, on (Qt, I) and (1, a, Q) with respect to some filtra-
 tions and satisfying P o X(O)-1 = Q o Y(O)-1 = ,L, we have

 P(X(t) E U) = Q(Y(t) E U) V t > 0; V U, Borel in E.

 Most of the results on martingale problems can be extended to the time

 dependent case by considering the space-time process

 (5.2) XO(t) = (t, X(t)) .

 Let E0 = [0, oo) x E. We state the following theorem. For its proof see, for
 example, Ethier and Kurtz (1986), page 221.

 THEOREM 5.1. Let 9' C Cb(E0) consist of functions of the form

 k

 (5.3) g(t,x)= Ehi(t)fi(x) hi-E C1([0,oo)), fi E.
 i==1
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 Define an operator A' on Cb(E0) with domain .9' by

 k a

 (5.4) A~g(t, x) = ? (x) - hi(t) + hi(t) At fi(x)].

 Then X is a solution to the martingale problem for (At) if and only if X0 is a
 solution to the martingale problem for AO.

 We have the following version of Theorem 4.1 in the time inhomogeneous
 case. This can be deduced from Theorem 4.1. See, for example, Horowitz and
 Karandikar (1990), where this is done for the locally compact case.

 THEOREM 5.2. Suppose that the operator AO defined by (5.4) with domain

 9' satisfies the conditions of Theorem 3.2. If {vt}t o C c E) and {fLLtt}t ?o c
 9(E) satisfy (4.2) and the equation

 (5.5) f dvt fdv + ft(fAfd ) ds, f E ,

 then vt = lit for all t ? 0.

 Now we consider the time dependent version of Theorem 4.2.

 THEOREM 5.3. Suppose that the operator AO defined by (5.4) with domain

 9' satisfies the conditions of Theorem 4.2. Let (s, x) -> AS(x) be a bounded
 continuous function on ([O, T] x E). If {vtlto C YI(E) and {tlt c Y CI(E)
 satisfy (4.2) and the equation

 (5.6) ffdvt ffdv + ft(f(As f + As( )f)dv)ds f E 9

 then vt = lit for all t ? 0.

 PROOF. Define EA as in (4.14), At e Cb(EA) and operators A' and Ct for
 each t ? 0 by (4.15)-(4.18), using At and At in place of A and A, respectively.
 On 9' define operators CO and A0 as in (5.4). We can verify that A0 satisfies
 the conditions of Theorem 4.2. The result now follows from Theorem 4.2. E

 6. Application to filtering theory. In this section, we will give an
 application of the results in the previous section to filtering theory. We recall
 here briefly the white noise model of filtering.

 Suppose that the signal process (i.e., the process of interest) (X(t)) is a
 Markov process and that (X(t)) is not directly observable. Instead, one can

 observe a function ht(X(t)) of the signal corrupted by additive noise (et)-
 assumed to be white noise. In other words the observation process yt is

 (6.1) Yt = ht(X(t)) + et,

 where , is a separable Hilbert space, h: [0, T] x E -* A, is a measurable
 function such that f T11hS(X(s))112 ds < oo and (et) is ?, valued white noise.
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 The norm in A, is denoted by 11 11, and the inner product by (, )1. In the
 framework of countably additive probability theory, white noise (et) does not
 exist as a process and to formalize this model one has to proceed differently.
 [See Kallianpur and Karandikar (1988), Appendix and references therein.]

 However on a finitely additive probability space, one can construct white

 noise (et) and then the model (6.1) can be given a formal meaning. The sample
 space for (et) and (Yt) is L2([O, T ], A',). The quantity of interest in the filtering
 theory is the conditional distribution Ft(y) of (X(t)) given (ye: 0 < s < t):

 Ft(y)(B) = E[IB(X(t))IyS: 0 < t]
 for B Borel in E. We now state a result from Kallianpur and Karandikar
 [(1988), page 363-366]. For the meaning of conditional expectation in this
 setup and related matters, we refer the reader to Chapter 6 in the reference
 cited above. This result is also given in Kallianpur and Karandikar (1985).

 Let cSy(x) := (h (x),ys), - 1/211hJ(x)I1i. Then

 Ft(y)(B) = Ft(y)(B) * [.t(y)(E)]
 where

 (6.2) Ft(y)(B) =E[IB(X(t))exp( tcy(X(s)) ds)

 Ft(y) is called the unnormalized conditional distribution of (X(t)) given (ys:
 0 < s < t). We can now deduce the following result from Theorem 5.3.

 THEOREM 6.1. Suppose that the signal process (X(t)) is the unique solution

 to the martingale problem for ((At), v) where (At) is as in Section 5. Suppose
 that the operator AO defined by (5.5) with domain 3' satisfies the conditions of
 Theorem 4.2.

 Also suppose that h is a continuous function with Jjh.( )IIj < C for some
 constant C. Then for all y E C([0, F], A') the unnormalized conditional distri-
 bution rt(y) is the unique solution to the equation

 (6.3) (gFs(y)) = <g~v) + fT(Asg + cyg, F(y))ds, g E 3.

 We can equivalently state the above conclusion as: Ft(y) is the unique
 solution to the equation

 (f(t) .))rt(y))= f (0),v

 (6.4) +JTK(AOf)(s,.) + cy( )f(s, ),Fs(y)) ds,

 f E 9

 It may be noted that in Kallianpur and' Karandikar (1988), Ft(y) has been
 characterized as the unique solution to (6.4), with AO replaced by the genera-
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 tor L of the Markov process (t, X(t)) and 9' replaced by the domain -AL of L.
 In that case, h is not required to be bounded.

 Though Theorem 6.1 requires h to be bounded, for y E C([O, T], A'), it

 yields Ft(y) as the unique solution to (6.3) or equivalently (6.4). This is a
 significant improvement, since AL can be very large and we have no control
 over it, whereas we can choose 9' and in most cases we can choose it to be

 much smaller. When the signal process is an infinite dimensional diffusion (as
 in Remark 3.2), 9 can be taken to consist of cylinder functions, that is,
 functions depending upon finitely many coordinates, but -AL will contain
 functions which are not cylinder functions.

 Even though Theorem 6.1 gives a characterization of Ft(y) for y E
 C([O, T], k'), it is enough because it is known that y -> Ft(y) is Lipschitz
 continuous [see Kallianpur and Karandikar (1988), page 479] and C([O, T], c'1)

 is dense in L2([O, T], 1).
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