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ABSTRACT. We determine conditions for a G-CW-complex to be a Hopfian or
a co-Hopfian object in the G-homotopy category of G-path-connected G-CW-
complexes with base points.

1. INTRODUCTION

The notion of a Hopfian and a co-Hopfian object of a category is fairly well
known. An object X of a category C is called Hopfian (respectively, co-Hopfian)
if every self-epimorphism (respectively, self-monomorphism) f : X — X is an
equivalence; this notion plainly makes sense in any category, since epimorphisms
and monomorphisms are categorically defined. It is interesting to recognize Hopfian
and co-Hopfian objects in a specific category. Several results are known in this
direction, [1], [5], [6], [7], [8], [9], [10], [11]. In [5] and [9], the authors studied
Hopfian and co-Hopfian objects of H, the homotopy category of pointed path-
connected CW-complexes.

Let G be a discrete group and GH denote the G-homotopy category of G-path-
connected G-CW-complexes with base points (base points are G-fixed). In this
paper we determine conditions for an object of GH to be a Hopfian or co-Hopfian
object of GH. Our results extend the results of [9] to the category GH. Since G is
discrete, every object of GH is also an object of H. We provide examples to show
that the Hopficity and the co-Hopficity of an object X of GH are independent of
the Hopficity and the co-Hopficity of X when considered as an object of H.

I would like to thank Dr. P. Sankaran for his help in improving some of the
results. I would also like to thank the referee for several suggestions.

2. HOPFIAN OBJECTS

Let Og denote the category of canonical orbits. More precisely, objects of Og are
homogeneous spaces G/H, H a subgroup of G, and a morphism § : G/H — G/K
of Og¢ is given by a subconjugacy relation g7'H g C K (cf. [2]).

An abelian Og-group is a contravariant functor from the category Og to the
category Ab of abelian groups. Such objects, along with obvious morphisms (nat-
ural transformations) between them form an abelian category Cg. We shall denote
the zero object in the abelian category Cg by 0 : Og — Ab, G/H — 0, the trivial
group.
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If X is an object of GH, then for every ¢ > 0, we have an abelian Og-group
H,X : Og — Ab, defined by H;X(G/H) = H;(X), the i-th integral homology
group of X# XH being the H-fixed point set of X, for every object G/H of Og,
and H,; X (§) = Hi(g) : Hi(X¥) — H;(X*) for every morphism § : G/H — G/K
of Og, where g : X¥ — X# is induced by the action of G on X. Similarly, we
have Og-groups m; X, m; X need not be abelian. A morphism f: X — Y of GH
induces a natural transformation f. : H,,X — H, Y, where f.(G/H) = H,(ff):
H,(X¥) — H,(YH),n>0.

We have the following easy lemma.

Lemma 2.1. A morphism n : T — S in Cg is an epimorphism (respectively,
monomorphism) in Cq if and only if n(G/H) : T(G/H) — S(G/H) is an epimor-
phism (respectively, monomorphism) in Ab for every object G/H of Og. O
Remark 2.2. If C(; is the category of Og-groups, then a morphism 7 : T — S in
C(, is a monomorphism if and only if (G/H) is a monomorphism in the category G

of groups. If a morphism 1 : T — S satisfies that n(G/H) is onto for every object
G/H of Og, then 7 is an epimorphism in C,.

It follows immediately from the above discussion that :

Proposition 2.3. If an object T in Cq satisfies the condition that T(G/H) is Hop-
fian (respectively, co-Hopfian) in Ab for every object G/H of Og, then T is a
Hopfian (respectively, co-Hopfian) object in Cq. O
Since the Hopfian and co-Hopfian objects in Ab are by now well studied (cf. [1]),
the above result gives an idea about the Hopfian and co-Hopfian objects in Cg.

Definition 2.4. A morphism f: X — Y in G'H is a weak G-homology equivalence
if f« : H,X — H,Y is an isomorphism for every n > 0.

Note that if a morphism f : X — Y of GH is such that f.(G/H) : m,(X) —
7,(YH) is an isomorphism for every n > 0, then f is a G-homotopy equivalence
[3].

Proposition 2.5. Let f : X — Y be an epimorphism in GH. Then f, : H X —
H,Y is an epimorphism in Cg for all k > 0.

Proof. We may without loss of generality assume (by replacing Y by the equivariant
mapping cylinder of f) that f is an inclusion. Then consider the maps 7 : Y —
Y/X and ¢: Y — Y/X, where 7 is the quotient and c¢ is the constant G-map.
Then mo f = co f. Since f is an epimophism, it follows that 7 is G-homotopic to
c. Now for every H C G, it follows from the exact homology sequence

v Hi(XT) — He(YH) — Ho((Y/X)) = Hp(Y /X)) — -

that f7 : Hy(XH) — Hy(YH) is an epimorphisn in .Ab for every k > 1. The
result follows from Lemma 2.1. O

Remark 2.6. Note that for any morphism f: X — Y in GH, f.: HyX — H,Y
is an isomorphism. This follows from the fact that Ho(X %) is generated by the
homology class of the base point z° € X in Hy(X ), and f being a morphism in
GH, (f). maps the generator of Ho(X ) onto the generator of Hy(Y ).

Theorem 2.7. Let f: X — X be a self-epimorphism in GH. If H, X, n > 1 are
Hopfian objects in Cq, then f is a weak G-homology equivalence.
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Proof. By the Remark 2.6 f, : HyX — HX is an isomorphism. Since f is an
epimorphism, Proposition 2.5 implies that f. : H,X — H,X is an epimorphism
for every n > 1. The result now follows as H,, X, n > 1 are Hopfian objects in
Ca. O

Recall from [4] the following definition.

Definition 2.8. A G-space X is nilpotent if each 7, X, n > 1 is nilpotent as an
Og-module over m; X, that is, there are Og-submodules

{Q} = En,OX - En,lx c---C En,rnX = EnX

such that the subquotients A, ; = m, ;41 X/m, ;X are abelian with trivial m; X-
action.

This is equivalent to saying each X¥ is nilpotent in the usual sense with a
uniform bound on the order of nilpotence in each dimension (of course, this last
condition is vacuous if G is finite).

Corollory 2.9. Let an object X of GH be nilpotent as a G-space, and H, X, n >1
are Hopfian in Cg, then X is Hopfian in GH.

Proof. Let f : X — X be a self-epimorphism in GH. Then by Theorem 2.7 f
is a weak G-homology equivalence. But X being nilpotent for every H C G, it
follows that f¥ : X# — XH is a homotopy equivalence and hence f : X — X
is a G~homotopy equivalence. This completes the proof. O

It may be noted that Corollary 1.1 of [9] follows from Corollary 2.9 by taking G
to be the trivial group.

Let X : O¢ — G be an Og-group, and K (A, 1) denote the equivariant Eilenberg-
Mac Lane complex of the type (), 1) [4]. It may be remarked that for any Og-group
A Og — Ab, K(\,n) is the classifying space for the Bredon cohomology with
coefficient A [2].

Proposition 2.10. For any object X of GH and Og-group A : Og — G there is
an adjunction equivalence (X, K(\,1)]g « Hom(m X, N).

Proof. If f: X — K(\, 1) represents an element of [X, K (),1)]g, then the corre-
sponding natural transformation in Hom(m, X, A) is given by f. : m; X — X (note
that 7, K (A, 1) = A). Conversely, a natural transformation 7" : 7; X — X induces
a Gmap T, : K(m;X,1) — K(\1) (cf. [4]). Note that X can be regarded as
a G-subcomplex of K (m;X,1), for we may obtain K (m; X, 1) from X by attaching
suitable equivariant cells to X to kill the higher homotopy groups of the fixed point
sets of X. The class represented by T./X in [X,K(A,1)]g is then the element
which corresponds to T'. O

It follows immediately from Proposition 2.10 that :

Proposition 2.11. If f : X — Y is an epimorphism in GH, then f, : m; X —
m,Y is an epimorphism in Cg,.

Corollory 2.12. If A : O¢ — G is Hopfian in Cg, then K(A,1) is a Hopfian
object in GH. O

Corollory 2.13. If X is G-(n— 1)-connected, n > 1, (that is, each X is (n—1)-
connected) and f : X — X is an epimorphism in GH, then f.: 7, X — m,X is
an eptmorphism.
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Proof. Note that since X is G-(n — 1)-connected, the natural transformation m,, X
— H X given by the Hurewicz homomorphism is actually an isomorphism. The
result now follows from Proposition 2.5. O

Thus in view of Remark 2.2, it follows that if A : Og — G is such that \(G/H)
is a Hopfian group for every H C G, then K(\,1) is a Hopfian object in GH. In
fact, if A : Og — Ab is a Hopfian object in Cg, then K(\,n) is Hopfian for every
integer n > 1. To see this, we first need to prove the following result.

Proposition 2.14. If X is G-(n—1)-connected, n > 1, then there is an adjunction
equivalence [ X, K(\,n)]g « Hom(x, X, ), for any A : Og — Ab.

Proof. Recall from [2] that there exists a spectral sequence whose E, term is
ES? = ExtP(H,X,)\) = HE'(X;)), here H5'9(X; ) is the Bredon cohomol-
ogy group of X with coefficient A. There is an edge homomorphism H%(X;\) —
Hom(H,,X;\) of the above spectral sequence, which is an isomorphism if H, X is
projective for ¢ < n. Now, since X is G-(n — 1)-connected, H,X=0for0<g<n
and H,X = n, X, where 0 : Og — Ab is the zero object in the category Cg.
Moreover, since X is G-path-connected, H, X (G/H) = Z{z°), where z° is the base
point and (z°) is the homology class of z° and H,X(§) = id. The result now
follows from the fact that if B is projective in .Ab, then B is projective in Cq, where
B is defined by B(G/H) = B for every H C G and B(§) = id, for every morphism

§:G/H — G/K of Og. d
Corollory 2.15. If A : Og — Ab is Hopfian in Cg, then K.()\,n) is Hopfian in
GH. O

Example 2.16. Let X be a G-connected finite G-CW-complex (that is, X has
a finite number of equivariant cells) which has one G-fixed 0-cell and no 1-cell.
Since H;(X*H) is finitely generated abelian for every H C G, by Lemma 2.1 H,X
is Hopfian. Moreover it is clear that X is G-simply-connected and hence nilpotent.
Thus by Corollary 2.9, X is Hopfian in GH.

Example 2.17. Consider the real 4k-dimensional Euclidean space R** as the
quaternion k-space HF. Let. T be a quaternion of norm one and order p, an odd
prime. We can take T = ¢2"/P. Define an action of Z, on R* = HF* by

T ((11,(12,‘ o aak) = (TalT_l,T(LzT_l, te aTakT_l),

for any k-tuple of quaternions (a1, az,- - ,ax). Since this action is norm preserv-
ing, there results a Z,-action on the (4k — 1)-sphere S**~1. The fixed point sets
are S%*~1 and (§*~1)Z». To determine (S**~1)Z» we proceed as follows. Let
(a1,a2, -+ ,ax) € (S*1)Zr, where a, = a} + aZi + a2j + atk = Al + A%j, and
Al = al +a%,A?2 = a® + a%i, r = 1,2,--- ,k. We must have Ta, = a,7. Now
Tar = TAL + TA2j, whereas a,7 = (Al + A2j)r = Alr + A%7j. Thus we must
have TA2 = 7A2 or (1 — 7)A2 = 0. Therefore, A2 = 0, as 7 # 7. Therefore
(a1,a2,--- ,ax) € CF, with ||(a1,a2, -+ ,ax)|| = 1. Thus (§*~1)Z» = §%~1 Now
§4=1 s a smooth compact Z,-manifold, it admits a structure of a finite Z,-CW-
complex which is Z,-path-connected and has a base point. Moreover, note that the
fixed point sets S**~! and S?*~! being simply-connected, are nilpotent. It is now
easy to check that all the conditions of Corollary 2.9 are satisfied and hence it is a
Hopfian object in GH where G = Z,,.



HOPFIAN AND CO-HOPFIAN G-CW-COMPLEXES 1233

3. Co-HOPFIAN OBJECTS

In this section we obtain conditions for an object X of GH to be a co-Hopfian
object. The following proposition is a straightforward consequence of Proposition
2.10.

Proposition 3.1. f: S — T is a monomorphism in Cg, if and only if the induced
map fi : K(S,1) — K(T,1) is a monomorphism in GH. O

Corollory 3.2. For an object A : Og — G in Cy, K(A,1) is co-Hopfian if and
only if A is co-Hopfian. O

As before, we may obtain from Proposition 2.14 that :

Corollory 3.3. For A: Og — Ab in Cg and n > 1, K(\,n) is co-Hopfian in GH
if and only if A is co-Hopfian in Cg. O

Definition 3.4. For an object X of GH, we say m;X is finitely generated if
m,X(G/H) = m;(XH) is finitely generated for every H C G. X will be called
G-homotopically finite type if m; X is finitely generated for all ¢ > 2.

Theorem 3.5. Suppose an object X of GH is G-homotopically finite type and such
that my (XH) is a co-Hopfian group and the inclusion X C X is a monomorphism
in H for every H C G. Then X is a co-Hopfian object in GH.

Proof. Let f: X — X be a self-monomorphism in GH. We show that under the
given hypothesis f7 : X# — XH is a monomorphism in H for every H C G.
Since m;(XH) is finitely generated for all 4 > 2 and m1(X*) is co-Hopfian, it will
follow from Theorem 7 and Corollary 2 of [5] that f¥ : X# — X is a homotopy
equivalence. Hence f is a G-homotopy equivalence.

First we show that f = f{e} : X = X{e} — X{e&} = X is a monomorphism
in H. We assume that the base point 20 € X© is a G-fixed O-cell in X. Let
a, 8:Y — X be morphisms in H such that foa ~ foB3. Let F: Y xI — X be
the homotopy foa ~ foB3. Consider Y x G as a G-space, where the action of G is
given by g(y,h) = (y,gh), forall g € G, h € G, y € Y. Clearly, the above action is
free. Let y° be the base point of Y, which is a O-cell of Y. Definea: Y x G — X
by @(y, e) = a(y) and @(y, g) = ga(y). Then @ is a G-map. Note that @(y°, g) = z°
for all g € G. Let Yo be the space obtained from Y x G by identifying all points
(¥°,9), g € G. Then Yg is a G-complex having a natural base point, which is
a G-fixed O-cell and is clearly an object of GH. The map @ induces a G-map
& : Yo — X which is base point preserving. Similarly, we have B:Ye — X.
The homotopy F : Y x I — X gives rise to a G-homotopy F : Y x G x [ — X,
between f o@ and f o 3, by setting F(y,e,t) = F(y,t) and F(y, g,t) = gF(y, ) for
all g € G, t € I. Since the homotopy F is base point preserving, F induces a G-
homotopy F : Yo x I — X, such that F is a G-homotopy between fo& and fof.
Since f is a monomorphism in GH, & is G-homotopic to B. Let Fy :YgxI — X
be a G-homotopy between them. Let i : Y — Y5 be the imbedding y — [y, €].
Let F; : Y x I — X be the composition of i X id : Y x I — Y5 x I and F,. Then
it is easy to see that F; : @ ~ 8. Thus f{¢} : X{e} — X{¢} is a monomorphism in
H.

Next, let H C G. Let a, 3:Y — X! be any two morphisms in H such that
fHoa ~ fHop. Let i denote the inclusion X C X. Then, io fH oa ~io fH op.
This implies foioa ~ foio 3, since f being a G-map i o f# = f o4. Since f{e}
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is a monomorphism in H, we conclude i0a ~ i0 3. Now sincei: X¥ C X is a
monomorphism, it follows that o ~ 3. Therefore, f is a monomorphism in H.
This completes the proof of the theorem. O

As an immediate corollary we get

Corollory 3.6. Suppose X is an object of GH such that the action of G is semifree
and X = {z°}, 20 is the G-fized 0-cell. Moreover, suppose that m;(X) is finitely
generated for i > 2 and m1(X) is a co-Hopfian group. Then X is a co-Hopfian
object in GH. O

Example 3.7. Let n > 2 and X = S™V S™. Then X has a Zy-CW-complex struc-
ture as described below. It has one 0O-cell of the type Zy/Z, and one equivariant
n-cell of the type Zy/{e}, where e denotes the identity element of Z;. This action is
given by “switching coordinates”, regarding the wedge as a subspace of the Carte-
sian product S™ x S™. Since X is a 1-connected finite complex, 74(X) is finitely
generated. Moreover, m1(X) = {0}. Hence it follows from Corollary 3.6 that X is
co-Hopfian in GH where G = Zs.

4. G'H VERSUS H

Recall that if G is discrete and X a G-CW-complex, then X is in a canonical
way a CW-complex (cf. [3], p. 102). Thus if X is an object of GH, then X can
also be regarded as an object of H. We shall show by the following examples that
an object X of GH can be Hopfian (respectively, co-Hopfian) in GH without being
Hopfian (respectively, co-Hopfian) in H, and vice versa.

Example 4.1. Let G = Z;. Define an Og-group A : Og —> Ab as follows.
MG/G) = Z,\(G/{e}) = {0}, the trivial group, and A(G/{e} — G/G) : Z —
{0} is the obvious homomorphism. Let X = K(A,1). Then X is co-Hopfian in H,
but not co-Hopfian in G'H.

To see this, note that X = X{¢} = K(\(G/{e}),1). Hence X is contractible.
Therefore X is co-Hopfian in H. Next, note that X is not co-Hopfian in Cg. For,
n: A — X defined by n(G/G) : x — 2z, n(G/{e}) = id(o} is a monomorphism,
but not an isomorphism in Cg by Lemma 2.1. It follows from Corollary 3.2 that X
is not co-Hopfian in GH.

Let G = Z, and H, denote the subgroup 2"Z, n > 0. If H is a subgroup
of G, H # H, for all n, then H = kZ, where k = 2™/, ¢ odd , ¢ is not 1 or
—1 and n; > 0. Clearly kZ C H,, and there is no subconjugacy relation of the
type H,, C kZ. Also note that H,,1 C H, for all n. We define an Og-group
A : Og — Ab as follows. Let Q> denote the direct sum €, Qe; of countable
copies of @ with basis {e1,e2, - ,en, -+ }. Thus Q is a vector space over Q.
Clearly, Q@ is neither Hopfian nor co-Hopfian in A4b. Let Q™ = @, Qe;. Note
that every group homomorphism Q™ — Q" is actually a @-linear homomorphism
Q™ — Q™. Then it is easy to see that Q™ is both Hopfian and co-Hopfian in .4b.
Set \(G/{e}) = Q*,\(G/H,) = Q" for all n > 0. If H = kZ,k = 2™, £ odd and
not equal to 1 or —1, n; > 0, then we set A\(G/kZ) = Q™. Here, Q° = {0}, the
trivial group. For every subconjugacy relation Hy, 1 C H,, let

MNG/Hps1 — G/Hy) : Q" — Q"1

be the standard inclusion. For kZ C H,,,k = 2™¢, ¢ odd and not equal to 1 or
-1, n; >0, let \(G/kZ — G/H,,) : Q™ — Q™ be the identity. Again, for the
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inclusions {e} C H, and {e} C kZ, k = 2™{, £ odd and not equal to 1 or —1, n; > 0,
we set A(G/{e} — G/H,): Q" — Q> and \(G/{e} — G/kZ): Q™ — Q%
to be the obvious inclusions. Then it is easy to see that A is a contravariant functor
from Og to Ab.

Example 4.2. Let A be as above and X = K(\,1). Then X is co-Hopfian in GH,
but not co-Hopfian in H.

Since X = X{e} = K(A\(G/{e}),1) and Q> is not co-Hopfian, it follows that X
is not co-Hopfian in H. To show that X is co-Hopfian in GH, by Corollary 3.2, it is
enough to show that A is co-Hopfian. Let  : A — X be a monomorphism. Then, by
Lemma 2.1, n(G/H) : A\(G/H) — X(G/H) is a monomorphism for every subgroup
H of G. By construction of ), it is clear that n(G/H) is an isomorphism for every
subgroup H # {e}. We shall show that 7(G/{e}) is also an isomorphism. Let
x € Q. Then we can find n such that x € Q™. Since n(G/H,) is an isomorphism,
z lies in the image of 7(G/H,). By naturality of  we have

n(G/{eHMG/{e} — G/Hy) = A(G/{e} — G/Hn)n(G/Hn).
It follows from Lemma 2.1 that 7 is an isomorphism. Thus A is co-Hopfian.

Example 4.3. Let G = Z, and A : Og — Ab be as in Example 4.2. Let X =
K(),1). Then X is Hopfian in GH, but not Hopfian in H.

By an argument similar to the previous case, one can show that every epimor-
phism 7 : A — ) is an isomorphism. Thus A is Hopfian. It follows from Corollary
2.12 that X is Hopfian in GH. To show that X is not Hopfian in H, it is enough
to produce a self-epimorphism of X which is not an equivalence. Since Q*° is not
Hopfian, we have an epimorphism f : @*° — Q°° which is not an isomorphism.
Let F: X = K(Q*,1) — K(Q%,1) = X be the map induced by f. Clearly,
F is not an equivalence as 7 (F) = f is not an isomorphism. We claim that F'
is an epimorphism. Let a, 3 : X — Y be base point preserving maps such that
aoF ~ fBoF. Since f: Q®° — Q> is surjective, there exists a homomorphism
$: Q% — Q* such that fos =1id. Let S: X — X be the map induced by s.
Then F oS ~ idx. This implies a ~ 3. Thus F is an epimorphism. Hence X is
not Hopfian in H.

Example 4.4. Let G = Z,, and A : Og — Ab be the Og-group defined as
follows: A(G/G) = Q*°,A\(G/{e}) = {0}, and A\(G/{e} — G/G) : Q> — {0} is
the obvious homomorphism. Then X = K(\,1) is Hopfian in H, but not Hopfian
in GH.

Clearly X is Hopfian in H, as X is contractible. To see that X is not Hopfian in
G'H, it is enough to find an epimorphism in GH which is not an equivalence. Let
a : A — X be the natural transformation defined as follows: a(G/{e}) = id{o)
and a(G/G) : @ — Q> any epimorphism which is not an isomorphism. Let
B : Q® — Q> be a homomorphism such that a(G/G) o § = id. This defines
a right inverse § : A — X of a, where 3(G/G) = @ and §(G/{e}) = id(o). Let
T,S: X — X be the G-maps induced by a and 3 respectively. Then T'0 S is
G-homotopic to idx. Clearly, T is not a G-equivalence, as 71 (T¢) = a(G/G) is not
an isomorphism. Now proceeding as in Example 4.3 one shows that T : X — X
is an epimorphism in GH.
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