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CHARACTERIZATION OF STOCHASTIC PROCESSES
BY STOCHASTIC INTEGRALS
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Abetract

Let {X(1).t€T} be a continuous homogeneous stochastic process with
independent increments. A review of the recent work on the characterization
of Wiener and stable processes and connected results through stochastic

integrals is presented. No proofs are given but appropriste references are
mentioned.
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0. Introduction

Our aim in this paper is to review the recent work in the area of characteri-
zation of stochastic processes by stochastic integrals. We have stated only the
main theorems and indicated the references where the proofs of these results
can be found. For an earlier survey paper in this area, see Lukacs (1970b).

Section 1 contains some definitions. Stochastic integrals are discussed in
Section 2. Characterizations for Wiener process and stable processes through
identically distributed stochastic integrals are given in Section 3. Characteriza-
tion theorems for the Wiener process taking values in a Hilbert space are also
presented in this section. Section 4 contains characterization theorems for
Wiener processes through the property of independence of two stochastic
integrals. Characterizations through properties of the conditional distribution
of one stochastic integral with respect to another like symmetry of the
conditional distribution or linearity or constancy of the regression are studied
in Section 5. Here characterization theorems for Wiener and stable processes
are given. In Section 6, sufficient conditions for the determination of 3
stochastic process by stochastic integrals are developed.
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82 B. L. S. PRAKASA RAO

1. Definitions

Let T=[A, B]. A stochastic process {X(t), te T} is said to be a homogene-
ous process with independent increments if the distribution of the increment
X(+h)=X(1), t, t+heT depends only on h but not on ¢ and if the
increments over non-overlapping intervals are stochastically independent. The
process is said to be continuous if X(t) converges in probability to X(s) as t
tends to s for every se€ T. Unless otherwise stated we shall only consider
continuous homogeneous process with independent increments throughout this
paper. If 6(u; h) denotes the characteristic function of X(t+h)-X(1),t,t+he
T, it is well known that 8(u; h) is infinitely divisible. In fact 8(u; h)=[0(u; 1)}*
if 1, t+1€ T (cf. Lukacs (1975)).

2. Stochastic integrals

Let {X(1),te T} be a continuous homogeneous process with independent
increments. Suppose a(f) is a continuous function defined on [A, B]<T.
Stochastic integrals of the form

B
I a(t) dX(1)
A

can be defined either in the sense of convergence in probability or in the sense
of quadratic mean depending on the properties of the process {X(1), t € T}. For
details, see Lukacs (1975).

Let b(1) and w(t) be functions defined on [A, B]c T=[0,®) and w(t) be
non-negative. Let

D,:A=1,0<t,<<t,,=B, nz1
be a sequence of subdivisions of the interval [A, B] such that
lim max (f, —tyx-1)=0.

neew 18kSn

Select 1%, €[tyx-1, tx] and construct the sum

So= L bRNXw(t) = X (Wt )
=1
If the sequence S, converges in probability to a random variable § and if this

limit is independent of the choice of the subdivision and the points t,, then we
say that S exists in probability and it is denoted by

]
I b(¢) dX(w()).
A
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If the limit exists in quadratic mean, then the integral is said to exist in
quadratic mean.

These integrals were studied in Riedel (1980a). Ramachandran and_ R_ao
(1970) (cf. Kagan, Linnik and Rao (1973), Chapter 13) discussed similar
integrals under slightly different conditions. We follow Riedel (19898).

Suppose w(f) is non-decreasing, non-negative and left continuous on
[A, B]. Then it is known that there exists a finite Borel measure V on the real
line such that

0 f <A
VI(—=, 0]=¢ w(t)—w(A) if ASt<B
w(B)-w(A) if t>B.
Suppose further that b(t) is continuous on [A, B]. Define
wy ()= V[{s:b(s)=1}].

Then wy(t) is non-decreasing, non-negative and left continuous.
The following theorem is due to Riedel (1980a).

Theorem 2.1 (Riedel). Let b(r) be a continuous function on [A, B] and w(t)
be a non-decreasing, non-negative and left-continuous function on [A, B].
Define

c= Al:sl.ils‘n beo), D= Algg(s be).
Then the integrals

B D
Y= J b(t) dX(w(1)) and Z= L tdX(w,(1))
A

exist in the sense of convergence in probability and they are identically

distributed. Furthermore the characteristic function ¢ of the random variable
Y is given by

B D
log ¢(u)= L log Ylub(£)] dw(t) = L log Y(ut) dw,(t)

where Y(u) is the logarithm of the characteristic function of X(r+1)—
X(t),t,t+1€[A, B].

It is well known (cf. Lukacs (1970a)) that a characteristic function g is an

infinitely divisible characteristic function if and only if it can be written in the
form

2 0—- o0
tog 8(u) =iau~ ut+ L (4, %) dM(x)+L (u, %) dN(x)
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where a is a real constant, &0, M and N are non-decreasing in the intervals
(~, 0) and (0, w) respectively with
M(—)=N(=}=0,

Iu_x’dM(x)<m and L. x2dN(x)<e forevery e>0,

and
fux

1+x%°
Riedel (1980a) obtained the above Lévy-Khintchin canonical representation
for the characteristic function of the stochastic integral

r(u, x)=e"*—1-

B
I tdX(w(t)).
A

Theorem 2.2 (Riedel). Let w(t) be as in Theorem 2.1. Let the canonical
representation for the characteristic function of X(1+1)— X(t) be given by g,
o, M and N as defined above. Then the Lévy—Khintchin canonical representa-
tion for the characteristic function of the stochastic integral

B
_[ tdX(w(1))
A
is given by a,, o,, M, and N, where
B - x:!
a, = L {ta+ t(1— IZ)L W d(M(—x)+N(x))} dw(t),

B
ot= azl 2 dw(t),

A

M, (x)= e -~ N(f) dw(t)+ E:l(a‘m M(f) dw(t), x<0,

(A0) (A.0)

No(x)= m'"(m—l\,f(%‘) dw(:)+_[:."m) N(f) dw(), x>0,

{A.0) (A.0)
Wang (1975) obtained sufficient conditions for the existence of double

stochastic integrals of the form
B B
J J &(s, DX (ds)X (dr)
A A

in the sense of convergence in quadratic mean. We shall briefly discuss his
result. For i=1, 2, let

Di:A=4<t<---<t, =B
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be a subdivision of [A, B] and define

St n)= 3 X g, )X (Any, Atyy)

i1=1ig=1

where t,, 1 Sth=t, and
X(At;, Atay,) =i_IZIl [X () = X (t5-0)-
Suppose that ny — © and n, — % such that
{600

and S(n;, m2) converges in probability (or in quadratic mean) to a limiting
random variable S independent of the sequence of subdivisions D,, i =1,2 and
the intermediate points {t}}. Then the limit S is called a double stochastic
integral and it is denoted by

.[,B J;Bg(‘n 1) dX(zy) dX(t)).

The integral is said to exist in probability or in quadratic mean depending upon
the type of convergence to S.

A function y{(t;,- - -, 4;), =1 is said to be of bounded variation on [A, B)if
there exists 0<M < independent of the subdivisions Dy, -- -, D, of [A, B]
but possibly depending on [A, B] such that

n !
YooY Ay, L t)<M

=1 =1
where
Ayt -+, t) =TT vt - 8=yt =5 80l
and the product is taken over all (iy, - - *, i) such that exactly one coordinate
of (iy, - -+, i) is equal to the corresponding one of (i;—1,* "+, i—1) and the
other -1 are equal to those of (iy, - -, it).
Theorem 2.3 (Wang). Suppose g is continuous on [A, B]X[A, B] and the

function ¥(ty, t5; 5y, $5) = E[X(t,)X(t,)X(s,)X(s2)] is of bounded variation on
[A, B]. Then the stochastic integral

J: J.: g(ty, 1) dX(1)) dX(t2)

exists in quadratic mean.
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In fact, if E |X(1)|* <o, then under the conditions stated in Theorem 2.3, the
double stochastic integral exists if and only if the Riemann-Stieltjes integral

B rB
L J; g{ty, t)g(sy, s)v(dty, d1y, ds,, ds?)

exists. The reader is referred to Wang (1975) for the proof of Theorem 2.3,
Wang (1975) proved the theorem for the k-dimensional stochastic integral,
k 2 2. Itis not known whether the double stochastic integral exists under weaker
conditions in the sense of convergence in probability.

Before we conclude this section, we introduce another stochastic integral
where the integrand is also a random process.

Suppose {R(1), te T} is a random process with continuous sample paths and
the process is independent of the process {X(t), t € T}. One can define stochas-
tic integrals of the form

]

S= J R(1) dX(1)
‘A

in the sense of convergence in probability through approximating sums as

described above. It can be shown that the characteristic function of § when it is

well defined is given by

E[e™]= E[exp {LB log Y(uR(e)) d(]]

for u real, where ¢(u) is the characteristic function of X(t+1)—X(1),t,t+1e
T. For details, see Prakasa Rao (1982).

3. Characterization through identical distribution of two stochastic integrals

Let {X(r), t€ T} be a continuous homogeneous process with independent
increments. The process is called a Wiener process if the increments X (1) — X(s)
are normally distributed with variance proportional to |t—s|. The process is
called a stable process with exponent vy if the increments of the process have
stable distribution with exponent y (cf. Lukacs (1970a)). It is said to be
symmetric stable if the incr have sy tric stable distributions.

Characterization of the Wiener process

Theorem 3.1 (Laha and Lukacs). Let T=[A, B]. Suppose the process
{X(1), te T} has moments of all orders and let a(t) and b(1) be two continuous
functions on [A, B] such that

32, lal# o, 16O
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Characterization of stochastic processes by stochastic integrals

Let a a
Y= L a(t)dX(t) and Z= L b(1) dX (1)
be two stochastic integrals defined as limits in quadratic mean. Then Y and Z
are identically distributed if and only if (i) the process {X((), t € T} is a Wiener
process with linear mean [unclion (ii) ei(her 18 a(t) dt=1% b(t) dt or the mean
function is 0 and (iii) {3 a?(1) di = {8 b*(r) dt.

The following theorem can be proved relaxing the assumption on the exis-
tence of moments of the process {X(t), te T}.

Theorem 3.2 (Laha and Lukacs). Let T=[A, B) and a(r) be continuous but
not constant on [A, B). Let a# 0 be real such that either

(a) maxaz,spla(l<lal and B-A>1 or

(b) maxaz.sslalt)|>la| and B—A <1 holds. Let

B
Y= J a{t) dX(1)
A

be defined in the sense of convergence in probability. Then {X(f),te T} is
a Wiener process with linear mean function if and only if

(i) Y is identically distributed as a[X(r+1)—-X(1)],

(ii) either {8 -a(1) dt = or the mean function is 0, and

(i) 18 a*(1) dt=

Proofs of Theorem 3.1 and 3.2 are given in Lukacs (1975). Other characteri-
zations of the Wiener process through identically distributed stochastic integrals
have been studied by Laha and Lukacs (cf. Lukacs (1975), Chapter 7),
Ramachandran and Rao (1970) (cf. Kagan, Linnik and Rao (1973), Chapter
13) under slightly different conditions.

Theorem 3.3 (Ramachandran and Rao). Let T=[A, B]. Let w{t) be a
non-constant, non-decreasing, right-continuous function defined on a compact
interval [a, b] with w{a)=A and w(b)=B. Let g(t) be continuous on [a, b]
such that either (i) |g(1)|<1 for all t in [a, b] and g has a finite number of zeros
on [a, b} or (i) [g(r)| =1 for all 1 in [a, b]. Suppose

b
= [(s0 axtwin

(defined in the sense of convergence in probability) has the same distribution as
the sum of n independent random variables each distributed as X(t+(1/n))—
X(t), ASt<1+(1/n)= B for some n=1/(B- A). Then {X(1), te[A, Bl} is a
Wiener process with linear mean function if and only if

b
J g*(1) dw(t)=1.
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Further, in thet case,
b
J gty dw(n =1

or the mean function is 0.

Theorem 3.4 (Ramachandran and Rao). Let T=[A,B] and w(t) be a
defined in Theorem 3.3 and g and h be continuous functions on [a, b] such that
max |g(1)] # max [h(0)f in [a, b]. Suppose the process {X(1) 1< T} has moment
of all orders. Let

= rg(g) dx(w(r)) and Z =L h{1) dX(w(t))

be defined as limits in quadratic mean. Then Y and Z are identically distri-
buted if and only if
(i) the process {X(t),1e[A, Bl is a Wiener process with linear mean

function

(ii) 1 g(0) dw(r)=f5h(r) dw(r) or the mean function is 0, and

(i) 12g%(0) dw(e)= 2 h*(t) dw().

For proofs of Theorems 3.3 and 3.4, see Ramachandran and Rao (1970) and
Kagan, Linnik and Rao (1973), Chapter 13.

Recently Riedel (1980b) obtained the following characterization theorems
for the Wiener process as special cases of his general results for stable
processes.

Theorem 3.5 (Rledc\) Let T=[0,). Let by(t) be coptinuous on A, B;]and

w)(t) be non-d non-negative and lelt continvous on [A, Bl T,
j=1,2. Suppose E[X(l)]’<°° Then

1 .I
] by(n) dX(wy(1)) and L batt) dX (w1 +q

are identically distributed for some real q if and only if {X(¢), ¢ =0} is a Wiener
process with linear mean functine

Let by(r) and w(1), j=1,2 be as defined above. For Re ()20, define

. B, B,
s(z)=f [by(0)* dwl(r)—I [ba(e)|* dwa(t)
and Ay 'Aq
B, B,
9(2)=I 151 (0)*=* by(2) dwl(r)—_[ [b2(0)2="ba(t) dw (1)
Ay Ay

where [A, B]c T, j=1,2. Then S(z) and §(2) are anslytic in Re(z)>0 and
continuous in Re(z)&0.
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Theorem 3.6 (Riedel). Define S(z) and $(z) as given above. Suppose that
z =0 is not an accumulation point of zeros of S(-)$(-) and
lim sup x log|S(x)$(x)| =0
x—s0+

where z =x+iy. Then the properties (i) {X(1), te T} is a Wiener process with
linear mean function m(t) and

B, B,
(i) L b,(t) dX(w\(1)) and J by(1) dX(wy(1))
1 Az

are identically distributed are equivalent if and only if
(a) S(2)=0,
(b) S(z)#0 for 0<Rez<2, Imz=0,
{¢) $(1)=0 or m(1)=0.

Characterization of stable processes

Theorem 3.7 (Lukacs). Let T =[0, ). Suppose the increments of the process
have a symmetric distribution and X(0) =0. Then the process {X(¢), t=0} is a
symmetric stable process if and only if there exists a function t(y) such that (i)
t(y)>0 for y>0 and (ii) the stochastic integral

Y
L (y—1dX(@)
has the same distribution as the random variable X((y)) for each y>0. (Here

the stochastic integral is defined in the sense of convergence in probability.)

The above theorem has been extended to stable processes in general in
Lukacs (1969) and this characterization is given below.

Theorem 3.8 (Lukacs). Let T=[0, ). Suppose the distribution of X(t) is
non-degenerate for every ¢ >0 and X(0) =0. Then the process {X(t), t= 0} is a
stable process if and only if there exist two function t(y) and s(y) such that (i)
t(y)>0 for all y>0 and (ii) the stochastic integral

y
[[-0axa
0
(defined in the sense of convergence in probability) has the same distribution as
X(t(y))+s(y) for all y>0.
The following theorem is due to Riedel (1980b).

Theorem 3.9 (Riedel). Let T =[0, »). Define S(-) and $() as given earlier.
Suppose z =0 is not an accumulation point of zeros of S(-)$(-) and

lim sup x log |S(x)$(x)|=0
x—0+
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where z=x+iy. Then the properties (i) {X(r), te T} is a stable process with
exponent a and

B, B,
(i [" b0 axon@) and L ba) dX(wolt) + q

are identically distributed for some real q are equivalent if and only if

(a) there exists a unique real zero a of $(-), 0<a=2; in case a<2, its
multiplicity is not higher than 2;

(b) S(ea)2-a)=0;

(c) if a<2, then $(z)§(z)#0 for Rez=a, z# a.

For a proof of this theorem and related results, see Riedel (1980b). This
theorem generalizes Theorem 3.8.

Theorem 3.10 (Prakasa Rao). Let T=[0, 1]. Suppose {X(t), te T} is a sym-
metric stable process with exponent «. Then

s=L'R(«)axu) and  X(1)-X(0)

are identically distributed for every random process {R(r),0=t=1} with
non-negative continuous sample paths independent of {X(1),0=¢=1} such
that f
L R(1)*dt=1as.

Conversely, suppose the increments of process {X(t),0=t¢s 1} have symmetric
non-degenerate distributions. Then {X(t), 0=t=1} is a symmetric stable pro-
cess with exponent « if and only if

[ (20" ax ()
0

and X(1)—X(0) are identically distributed.
For a proof of this theorem, see Prakasa Rao (1982).
Characterization of a Wiener process taking values in a Hilbert space

Let A be the interval [0, 1] and & denote the o-algebra of Borel subsets of
[0, 1]. For each A€ B, let ¢(A) be a random element taking values in a real
separable Hilbert space H. Suppose ¢(A) satisfies the following properties; (i) if
A and A’ are disjoint Borel subsets of [0, 1], then ¢(A) and ¢(4") are indepen-
dent and $(AUA") = ¢(A)+d(A") (ii) #(A) has stationary increments i.e., ¢(A)
and ¢(A’) are identically distributed if A and A’ have the same Lebesgue
measure (iii) if p, denotes the probability measure of @([0, 1]), then u,
converges weakly to the distribution degenerate at the origin as ( — 0.
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A process ¢ on A with properties (i), (ii) and (ii) as stated above is said to be
a homogeneous process with independent increments.

A homogeneous process ¢ on A with independent increments is said to be a
Wiener process with mean 0 if the characteristic functional {4,(y) of ¢([0, ¢]) has
the representation

(y) =exp {—4(Sy, y)}

where S is an S-operator.

For more details on probability measures on a Hilbert space, the reader is
referred to Parthasarathy (1967).

Let ¢ be a homogeneous process with independent increments on A with
mean 0 and with E, [||X][]> <c where w is the distribution of X = ([0, 1]). Let
S denote the S-operator associated with ¢. For any bounded linear operator
A, define

n(A)=[Tr(ASA)E+[Tr(A'SA)}.

Then the set {A:n(A)=0} is a linear semigroup in the linear group of all
bounded linear operators A. The function n is a norm in the corresponding
factor group. We shall not distinguish between a coset and the individual
operator in the coset. In this sense, n is a norm in the linear set of all bounded
linear operators. Let sfs denote the completion of this set in the norm n.
Consider the space L,= L,(A, B, m, os) of functions A(-) with values in &g
which are strongly measurable and such that

|Af= L n*(A()) dm<w

where m is the Lebesgue measure on A. Vakhaniya and Kandelski (1967) have
defined stochastic integrals of the form

1={ Awsi@n)
A

for functions A(-) in L,. Under this setup, the following characterization
theorem for the Wiener process taking values in a real separable Hilbert space H is
proved in Prakasa Rao (1971).

Theorem 3.11 (Prakasa Rao). Suppose ¢ is a homogeneous process with
independent increments on A with mean 0 and finite associated S-operator S.
Let A(-) and B(-) be functions in L, satisfying the following properties:

(i) @ =sup, JA)|<e; b=sup, [BA)<os;

(ii) H{=H2=H for all A € A where H{ denotes the subspace spanned by
the operator A(A) etc.:

(i) G [IA Q)2 -1B)x] dA
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is either strictly greater than O or strictly less than 0 for all xe H—{0}. Then
[ amo@) and [ Bvaan

A A

are identically distributed if and only if ¢ is a Wiener process and A(-) and
B(-) satisfy the relation

[ amsawa=[ Bwsa
A A

Analogous results characterizing a Wiener process taking values in a Hilbert
space are derived in Kannan (1972b) using the operator-valued stochastic
integrals developed by Kannan and Bharucha-Reid (1971). We shall not
discuss them here.

4. Characterization through independence

Let {X(1),1e T} be a continuous homogeneous process with independent
increments. The following theorem gives a characterization of the Wiener process
through independence of stochastic integrals.

Theorem 4.1 (Skitovich). Let T={A, B]. Suppose a(t) and b(t) are continu-
ous functions defined in [A, B] which are not identically 0 in [A, B] such that
for each ¢ either a(t) or b(t) does not vanish in [A, B). Let

B B
Y=J a(t) dX(t) and Z=J b(1) dX(1)
A A
be stochastic integrals defined in the sense of convergence in probability. Then
{X(t), te T} is a Wiener process with linear mean function if and only if
(1) Y and Z are stochastically independent, and
(i) §8 a(0)b(r) dt=0.

This theorem is a modified version of a theorem due to Skitovich (1956). For
an indication of the proof of this theorem, see Lukacs (1975). A generalization
of this theorem is given in Ramachandran and Rao (1970) (cf. Kagan, Linnik
and Rao (1973), Chapter 13). We now state their result.

Theorem 4.2 (Ramachandran and Rao). Let T=[A, B]. Let w{t) be a
non-constant, non-decreasing, right-continuous function defined on a compact
interval [a, b] with w(a)=A and w(b)=B. Let g and h be continuous
functions on [a, b], at least one of them non-vanishing and the other non-
vanishing on a set of positive w-measure (the measure induced by w(-) on
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[a, b]. Then the stochastic integrals
b b
Y=I g(t) dX(w(1)) and z=J h(t) dX(w(t))

exist in the sense of convergence in probability and Y and Z are independent if
and only if

(i) {X(1),te T} is a Wiener process with linear mean function, and

(i) §& g(Dh(t) dw(t)=0 if X(t) is a non-degenerate process.

5. Characterization through properties of conditional distribution of one
stochastic integral with respect to another stochastic integral

In this section we shall study characterizations of the Wiener process and
stable processes in general either through regression of one stochastic integral
with respect to another or through the symmetry of the conditional distribution
of one stochastic integral with respect to the other.

Characterization of the Wiener process

Theorem 5.1 (Laha and Lukacs). Let T=[A, B]. Suppose {X(f),te T} is a
second-order process and that its mean function and covariance function are of
bounded variation in [A, B]. Suppose a(r) and b(¢) are two continuous func-
tions defined in [A, B] such that a()b(t) #0 for te[A,, B,] where A A, <
B, =B and a(t) is not proportional to b(¢). Let

B B

Y=I a(t) dX(t) and Z=J‘ b(t) dX(1)
A A

be two stochastic integrals defined as limits in quadratic mean. Then the

process {X(t), t € T} is a Wiener process with linear mean function if and only if

Y has linear regression and constant scatter on Z (i.e. the regression of Y on Z

is linear and homoscedastic).

For a proof of this theorem, see Lukacs (1975). Lukacs (1977) studied the
stability of the above characterization of the Wiener process. A slight generali-
zation of Theorem 5.1 is due to Ramachandran and Rao (1970). We omit their
result. The next theorem gives another characterization by constant regression
of one stochastic integral on another stochastic integral.

Theorem 5.2 (Prakasa Rao). Let T=[A, B]l. Suppose the process
{X(1), 1€ T} possesses moments of all orders, its mean function and covariance
function are of bounded variation in [A, B) and the increments of the process
have non-degenerate distributions. Let g(t) and h(t) be continuous functions
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defined on [A, B] with the property that

B
I g(Dh() dt=0
A
implies that .
I g(O[A(NT* dt#0
A
for all k>1. Let
B B
Y=I g(t) dX(1) and Z=I h(1) dX(1)
A A

be stochastic integrals defined in quadratic mean. Then Y has constant regres-
sion Z, that is E(Y|Z)=E(Z)a.. if and only if the process {X(t), te T} is a
Wiener process with linear mean function and

B
I g(Oh(1) dt=0.
A

For a proof of this theorem, see Prakasa Rao (1970).

The next theorem gives a characterization of the Wiener process based on
the symmetry of the conditional distribution of one stochastic integral with
respect to another stochastic integral.

Theorem 5.3 (Prakasa Rao). Let T=[A, B]. Suppose the increments of the
process {X(t), te T} have non-degenerate distributions, Let g(t) and h(t) be
continuous functions defined on [A, B] with the property that

J B h3(1) h3(1)

|, g 470 and L )

dt <o,

B B
Y=I g() dX(1) and Z=I h(t) dX(1)
A A

be stochastic integrals defined in the sense of convergence in probability. Then
the conditional distribution of Y given Z is symmetric if and only if the process
{X(1), 1€ T} is a Wiener process with linear mean function m(r)=At and g(t)
and h(t) satisfy the relation

B B
AJ- g(t)dt=0 and I g(Oh() dt=0.
A A

Proof of Theorem 5.3 can be found in Prakasa Rao (1972). The following
result gives a characterization of the Wiener process and it is based on the

regression properties of one double stochastic integral on another stochastic
integral.
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Theorem 5.4 (Wang). Let T=[A, B] and {X(1),1€ T} be a second-order
process with independent increments. Suppose the stochastic integrals

B B B
Y, = J h(e) dX(1), Y= L J gls, 1) dX(s) dX (1)

A A

exist in the sense of convergence in quadratic mean. Then
E(Y,|Y))=Bae.

for some real 8 if and only if the process {X(1), 1 € T} is a Wiener process with
linear mean function.

See Wang (1975) for a proof of Theorem 5.4. For related results, see Wang
(1974).

Characterization of stable processes

Theorem 5.5 (Prakasa Rao). Let T=[0, 1], X(0)=0, E[X()]=0 for all ¢
and the increments of the process {X(t), t € T} have non-degenerate symmetric
distributions. Let

1
Y, = L * dX(1)

for any A>0. Then Y, is defined in the sense of convergence in probability
and the process {X(t), t € T} is a symmetric stable process with exponent y>1
if and only if for some positive numbers A and u, A# u,

E(Y,|Y,)=BY,a.e.

for some real constant 8 depending on A and w. Furthermore +, A, p and B are
connected by the relation

py+1=BA-p+py+1).
For the proof of Theorem 5.5, see Prakasa Rao (1968).

6. Determination of a stochastic process by stochastic integrals

Let {X(t), t=0} be a continuous homogeneous process with independent
increments as before. We now obtain conditions under which the stochastic
integrals formed by the process {X(t), t € T} completely determine the process.
It is clear that the process {X(1), t€ T} is uniquely determined by the charac-
teristic function of X(0) and the characteristic function of X(¢r+1)— X(¢). We
say that process {X(t), te T} is determined up to shift if {Y(t), t€ T} is another
stochastic process satisfying the same properties as the process {X(1), te T},
then X(r) = Y(#)+ ct a.s for some constant ¢ independent of ¢ and for all . Such
a process is said to be completely determined if ¢ =0.
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The following theorem is due to Prakasa Rao (1975).

Theorem 6.1 (Prakasa Rao). Let {X(1), 1€ T}, T=[A, D] be a continuous
homogeneous process with independent increments. Suppose the process has
moments of all orders and its mean function and covariance function are of
bounded variation. Suppose a(t) and b(t) are continuous functions on [A, B]<
T and [C, D)< T such that A <C<B<D. Further suppose that either

B
J ak(t) dt#0
A
for all k=2 or

o
J- b (1) dt#0
o

for all k2. Let

8 o
Y=I a(tydX(t) and Z=L b(t) dX(t)
A

be stochastic integrals defined in the sense of convergence in quadratic mean.
Then, the joint distribution of (Y, Z) determines the process {X(1), 1€ T} up to
shift provided the characteristic function of X(t+1)—X(1), ¢, t+1€ T is entire.
In such an event either

8 D
I a(t) dz=L b(t)dt=0
A

or there is no shift.

This theorem has been generalized recently by Riedel (1980c).

Let b(1) be continuous and w(t) be a non-negative, non-decreasing and
left-continuous function on [A, B], as defined in Section 2. For Re(z)z0,
define

B
5= biok aweo
‘A
and
B
$(z)=J [6()I* b(t) dw(1)
A
as in Section 3.

Theorem 6.2 (Riedel). Suppose X(0)=0 and that E|X(1)* < for some
0<A<2. Then the stochastic integral

)
YEJ. b(1) dX(w(1)
A
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defined in the sense of convergence in probability determines the process
{X(1), t € T} completely if and only if the following conditions are satisfied:
(a) S(z)#0, A=SRez<2,
() $(2)#0, A=Rez<2,
© S(1)#0.

Theorem 6.3 (Riedel). Suppose EX(1)><e, Then the stochastic integral Y
given above determines the process {X(t), t€ T} completely if and only if

n B
S(1)= I b(r) dw(1) #0.
A

For other versions of Theorems 6.2 and 6.3, see Riedel (1980c).

7. Open problems

Zinger and Linnik (1970) have extended the characterization theorems for
the normal distribution through independent linear forms to linear forms with
random coefficients. It would be interesting to find whether the Wiener process
can be characterized by the independence of stochastic integrals having random
processes as integrands and integrators. Such stochastic integrals can be defined
under some conditions {for instance, see Section 2). In general, it seems to be
hard to obtain the characteristic function of such a stochastic integral in a
closed form. Theorem 5.5 gives a characterization of symmetric stable proces-
ses. It is reasonable to ask whether this theorem can be extended to stochastic
integrals of the type

1 1
Y=L a(t) dX(1) and Z=J; b(r) dX (1),

where a(t) and b(t) are functions other than powers of ¢, using the recent work
of Riedel (1980a). Recently several people have studied stable distributions on
Hilbert spaces. It would be nice to obtain results generalizing the work of
Lukacs (1969) and Prakasa Rao (1968), (1982) for stable processes taking
values in a Hilbert space as was done for the Wiener process taking values in a
Hilbert space by Prakasa Rao (1971) and Kannan (1972b). Stability of the
characterization results discussed in this paper is of extreme interest. The only
result in this direction is on a characterization for the Wiener process due to
Lukacs (1977).
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