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TRANSITION DENSITIES OF REFLECTING DIFFUSIONS

By S. RAMASUBRAMANIAN
Indian Statistical Institute

SUMMARY. Using a parametrix method, localization procedure and probabilistic arguments
we construct the transition density function for a nondegenerate diffusion process in a smooth
domain, with oblique reflection at the boundary and with “killing” terms in the interior and on
the boundary; (our method obtains the density also on the boundary). In the case of half space, a
Gaussian type upper bound and minimality are established for the transition density. We also prove
some auxiliary results concerning Green function and Poisson kernel for a second order parabolic
operator with mixed boundary conditions in certain domains. '

1. INTRODUCTION

The aim of this article is to construct the transition density function for a
nondegenerate diffusion process in a smooth domain with oblique reflection at
the boundary and with “killing” terms in the interior and on the boundary; our
method enables to get the density function also on the boundary.

When the direction of reflection is the conormal direction such densities
(equivalently, fundamental solutions for the corresponding parabolic equations
with Neumann boundary conditions) have been constructed by S. Ito (1957)
using the parametrix method; see his recent monograph (1992) for a lucid pre-
sentation. This has been used extensively by probabilists, especially in the
context of probabilistic approach to the Neumann problem (for the Laplacian);
(see Hsu (1985), Papanicolaou (1990), Ramasubramanian (1993) and the refer-
ences given therein). If in addition the domain is a half space or an orthant,
Bhattacharya and Waymire (1992) present an elementary way of getting the
densities by the method of images.

The situation seems to be far from clear in the case of oblique reflection (that
is, when the direction of reflection is not the conormal direction). For the half
space, when the diffusion coefficients are constants, the direction of reflection is
constant, and the “generator” does not have first order derivatives in the normal
direction, Keller (1981) has given a construction by generalising the method of .
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images; (in fact, this is the starting point of our analysis). Bismut (1985) has
briefly indicated a method of establishing the existence of a smooth density in
a half space by means of Malliavin calculus and excursion theory, when the
coefficients are infinitely differentiable, but again the “generator” not having
any first order derivatives in the normal direction. For a general smooth domain
Anderson and Orey (1976, p. 212) allude to the existence of a continuous density
in the interior of the domain; however, no references are given. Existence of a
fundamental solution in the generalised sense can perhaps be established by
functional analytic methods (and perhaps known to experts); but this would
not be adequate for many purposes.

In view of the above, it seems worth the effort to present an exposition on
the construction of transition densities of diffusions with boundary conditions.

Here’s a brief outline of the contents of the paper. In Section 2, starting
with Keller’s result, we use suitable transformations and parametrix method to
construct the fundamental solution in the closed half space. We also establish
that the fundamental solution is dominated by the transition probability den-
sity of a reflecting Brownian motion (in the half space) with normal reflection;
such a Gaussian type estimate may be of independent interest. Moreover a reg-
ularity result (needed for Section 3) is proved under stronger differentiability
assumptions on the coefficients.

In Section 3 we establish some auxiliary results concerning Green function
and Poisson kernel for “mixed problem” for the parabolic operator in certain
domains with oblique reflection on part of the boundary and Dirichlet condition
on rest of the boundary.

The general case of a bounded domain with smooth boundary is considered
in Section 4. A localization procedure and probabilistic arguments are used.

Finally in Section 5 we prove that the transition density constructed in
Section 2 is minimal.

2. TRANSITION DENSITIES IN THE HALF SPACE

Let D = {x € R?: z; > 0} with d > 2. The operators L and J respectively
on D and 8D are defined by

d
Lf(s,z) = E aij(s, @ )a f(“’ ”‘) + 3 b, x)@%i’—_‘ﬂ +c(s,2)f(s,7)
i=1 :

!,]"‘1
..(2.1)
for s > 0,z € D, and

Jf(s,z) = z'y,(s :z:) (.9 z) + p(s,z) (3, ), ...(2.2)

for s > 0,z € 8D, where the coefficients a, b, c, v, p satisfy the following :
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(A1) : For each s > 0,z € D,a(s,z) := ((ai(s,7))) is a d x d real symmet-
ric positive definite matrix; each a;; is bounded and uniformly Lipschitz
continuous. There exist 0 < A; < A3 < oo such that for any s,z any
eigenvalue of a(s,z) € [A1, Ag].

(A2) : For each s > 0,z € D, b(s, z) := (b1(s,z), ..., ba(8, z)); each b; is bounded
and uniformly Lipschitz continuous.

(A3) : cis a bounded uniformly Lipschitz continuous function on [0,00] x D.

(A4) : There exists By > 0 such that for each s > 0,z € 8D, < ¥(s, z),n(z) >>
Bo, where v(s,z) = (v1(s,z),...,74(s,z)) and n(z) is the inward unit
normal; each ; € CZ‘S([O, 00) x 8D).

(A5) : p is a bounded continuous function on [0,00) x 8D.

A word now about the notation. For x = (z1,z3,...,%4) We write T =
(%2,...,zq) and z* = (—x1, 23, ...,24) = (=21, ). For a matrix a = ((aij))1<ij<d
we write @ = ((ajj)2<ij<d. The subscript z in the operators D$,V,, L,, J;, etc.
denotes that differentiation is in the z-variables.

For z, z € D note that

|z —z| < |2* — x| ...(2.3)

In this section we construct the fundamental solution for (8/8s) + L in
[0,00) x D with reflecting boundary condition given by J, using a parametrix
method.

We shall denote by py the transition probability density function of Brow-
nian motion in D with mean zero, covariance matrix CoI (with C; being a
positive constant and I the (d x d) identity matrix) and normal reflection at
the boundary; the constant C; may differ in different contexts.

Theorem 2.1. Assume (A1) - (A5). Then there ezists a function p(s, z;t, z)
defined for 0 < s < t,x,z € D satisfying the following :

(i) for any fized t > 0,z € D the function (s,z) — p(s,z;t, 2) is in
C([0,t) x D)NC([0,t) x D); moreover, for any T > 0, there exist constants
Cy,C3 > 0 such that

Dep(s, z;t, z)| < Cit — )11 2py(s, z; ¢, 2 ...(2.4)
z

forallz € D,z€ D,0< s <t with (t — 8) £ T, a multiindez with |a| < 1,
where py i3 as described above;

(ii) for any bounded continuous function f on D, fired t > 0, define

u(s,x):/ﬁf(z)p(s,x;t,z)dz ...(2.5)
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for0< s<t,xzeD; then

((8/9s) + Lz)u(s,z) = 0, 0<s<t,z€D,
Jou(s, ) = 0, 0<s<t,z€dD, ...(2.6)
limyyy u(s, x) = f(z), z€D

Note. z +— p(s,z;t, z) is differentiable over D; however the derivative may
fail to be continuous at the boundary, but the estimate (2.4) nevertheless holds;
see the note following Lemma 2.5.

Proof. The proof is in several steps. Without loss of generality we may take
M= 1.

Step 1. Assume that b = 0,c = 0,p = 0, a;;,7; are constants; ay; = a;) =
0,2 > 2. Let I" denote the transition probability density function of the L-
diffusion (which is just the d-dimensional Brownian motion with constant co-
variance matrix a) in R%. Note that there exist constants C;, C; such that

gt
|D2T (s, x;t, 2)| < Ci(t — 5)~UelF D 2egp {——CH} .. (2.7)

for all z,z € R4, 0 < s < t and any multiindex a.
Define for 0 < s < t,z,z € D,

q(s,z;t, 2) =T(s,z;t,2) — (s, x;t, 2*) —252— / I'(s,z;t, 2" —ry)dr ...(2.8)
1 Jo

It has been proved by Keller (1981) that g is the transition probability density
function for the diffusion in D with generator L, and with oblique reflection at

the boundary given by 7.
Remark 2.2. Let T be the linear transformation on R¢ given by

T(z1,22,...,24) = (21,22, -+, 24) — 21(0, 72, - . ., Y4) ...(2.9

Clearly T is invertible, one-one on any {z; = constant}, and Ty = (1,0,...,0).
If z2; > 0,7 >0 (or if z; < 0,7 < 0) note that [(T2); +r]* > (T'z)? + r?. Hence
for any z € R such that z; > 0 and any r > 0 (or any z such that z; < 0 and
any r < 0) we have

—lz+rm < =TTz + )P )
= —ITI*{(T2) + 7 + Y (T2} -+ (2.10)
1=2
< =ITIIT2f + )

O
We continue with Step 1. By the estimate (2.7) and the above remark we

obtain
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ot 8 [™ .
*_6m,-6z,»a—x1/0 (s, z;t,2" —ry)dr

<.C(t — s)_(d+3)/2 fooo exp { ”T”_2 |T( )|2} .

(t—9)
ciT|? ,
exp{ (t—s) }dr ...(2.11)

< Ot — s)-(02 exp{ C“TlétﬂllT) - 2| :::Iz} _

From (2.7), (2.8), (2.11) it is clear that the estimate (2.4) holds for g in the case
|a| = 2, in fact for all , z € D; the other cases can be handled similarly.

Step 2 : We now drop the assumption a;; = ay; = 0,¢ > 2, but the other
assumptions of Step 1 are retained.

Define the transformation T'(z1, Zs,. .., £4) = (T1, Tg, . - - ,Z4) on D by 7, =
T, T; = T; — (ay;/a11)z1,1 > 2. Note that T is invertible on D and is identity
on 8D. Put a = TaT*, N = T, note that @y = a; = 0,7 > 2. Set

~ o~ i . 8
Lf(s,x) = 1 a;; ———f(s,%), s> 0,z €D
2; =1 63:, :r]
,}f(s,.:i') = —f(s m)+z’)’,a~ (s,2), 8> 0,7 €8D.

By<Step 1 there is a transition probability density function ¢ for the (Z, })-
diffusion in D. As det T = 1, observe that ¢ given by

q(s,x;t,z):&(s,;:;t,;), 0<s<tzxz,z€D ...(2.12)

is the transition probability density function for the (L, J)-diffusion in D. It is
also clear that the estimate (2.4) holds even for |a| = 2,7,z € D.

Thus the theorem holds in the case b = 0,c = 0,p = 0, a;j,7i being con-
stants. In fact, from the proof it is clear that the transition density is infinitely
differentiable at any s < t,z,z € D. O

Remark2.3. Let a(-, ) satisfy (A1); assume v = (1,0,...0). Fort > 0,z € D
put
a1i(t, 2) i
an(t, 2)

Yi(t,z) = — ..(2.13)
define T{; ;) on D by

(nt,z)m)l = T, (T(t,z)a:)i =z + ;,'(t,Z)Z], 1>2 e (214)
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Put

a(tl Z) = Tv(t,z)a'(tv z)T(.t z)

Apsy = (A yhsisa = [a(t, )]
Observe that
;ll(t: 2) = a.u(t, Z); Eli(t, z) = E,‘l(t, Z) =0, 122
Hence
15 _ .

Ay = Ay =0 322

Define

77(3’ z;t, z) =< [T(t,z)z - T(t,z)z]v E(t) z)-l [T(t,z)z - 71(t,z)a:] >
C(s,z5t,2) =< [(T(t,z)z)‘ - T(t.z)x]a E(t, z)—I[(T(t',)z)' - T(!,z)"t] >

Y1(s, 58, 2) = (2n(t — 9))H(det 3(t, 2)) V2 exp {"——"(z?f_;t;; )}

als, 531, ) = (2m(t — 8))"2(det (1, ) exp {—“Tf_t—)’}

for 0 < s <t,xz,z € D. It is easily seen that

n(s,zt,z) = ZA(,,)(za ) (2 — ;)

i,j=1
d
+z —z1)? Z :z)7t(t 2)7j(t,2)
1,7=2
]d .. ~
+2(zl - zl) Z Az‘z)(zi - :D,')’Y,'(t, z)
ij=2

¢(s, x5, 2)

Z A(t 2)\% mi)(z;' - xj)

i,y=1

+(z1 — z1)? E A Vit 2)75(t, 2)

14—2

+2(21 — z) Z A(: N z)%i(t, 2)

1,)=2
If z € 8D, then (T ;)2)" = Ttz = 2z and hence

W (8, x;tg z) = 1/’2(3) z;t, 2)

..(2.15)

..(2.16)

..(217)

.. (2.18)

...(2.19)
... (2.20)

..(2.21)

..(2.22)

.. (2.23)

...(2.29)

..(2.25)
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for 0 < s,t,z € D,z € 8D. Similarly, when =z € 8D we have ((s,z;t,2) =
7(s, z;t,2) and hence
(8, z;t, 2) = (s, z;t, 2) ...(2.26)

for0<s<tzedD,z€D. 0O
Step 3. We now take a(,-) satisfying (A1) and ~(;,-) = (1,0,...,0). For
fixedt > 0,z € D set

9 _1¢ &
Lgt,)z) = 5 z a.,(t, Z)m e (2.27)
1,j=1

Note that Lg(:’)z) is an operator with constant coefficients. Let g(; ) denote the
transition probability density function of the (LE??I), a—%—)-diffusion in D.
For any 0 < s < t,x € D define

Q(sl z;t, z) = q(t,z)(syx;t) z) cer (228)
In this step we prove some results concerning Q. Observe first that

Q(S,CB;t,Z) = wl(s,m;t,z)—d)g(s,a:;t,z)

*® (nta+z) ) ...(2.29)
2/0 P T Tr 8)1/)2(3, (z+ ae);t, z)da
where e; = (1,0, ...,0). Also by (2.28) and Step 2
ID2Q(s, z;t, 2)| < Ci(t — 8) 71 2po(s, 23, 2) . (230)

for all 0 < s < t with (t —8) < T, z,z € D and any multindex o; because of the
hypothesis (A1) it is clear that Cy, C; can be taken to be independent of (¢, z).
Lemma 2.4. For any bounded continuous function f on [0,00) X D,

lim/_f(t, 2)Q(s,z;t, 2)dz = f(s, ) ...(2.31)
tis D
fors>0,z€D, and
lim/ f(s,2)Q(s,z;t,2)dz = f(t, ) ...(2.32)
st JD _

fort>0,z€D.
Proof. We will prove only (2.31); the proof of (2.32) is similar.
We first consider the case when = € D: that is ; > 0. Note that

<C ” exp(—£2)dgé — 0 ...(2.33)

l/_.f(t, 2)Pe(8, T; t, 2)dz
b z/Vi=s
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as (t—s)]0.
Next, as z € D, suitably extending a;;, f (by symmetry) to [0,00) x R? so
that continuity, same ellipticity constant and bounds hold, it can be seen that

Izigl/ﬁf(t’ 2)1(8,z;t, 2)dz = f(s,z) ...(2.34)

Also, as 1 > 0 we have

|/./ f(t )(21+a+zl) 1/"z(-9’(ac+ozel);t,z)dad*"l

= (ti)(t+ )) 1 (21 + a+z)?
z1 o+ I 21 TQa+ I
ooo ° (t—s)( +\/t—),‘;‘7 exp{— (t—s) }dad21
=CO e e
..(2.35)

as (t —s) | 0. From (2.29), (2.33) - (2.35) it follows that (2.31) holds when
z€D.
Now let z € 8D. Then by (2.26) for all s,t

-/Ef(t7 Z)[’(,b] (S,IE;t, z) - ¢2(57$;t: z)]dz =0 v (236)

To complete the proof we have to show that

. (z1+ ) = '+ Ndadz = ~f(s.z
lzllr?.// 1,2 )a 1(t, 2)(t — )wz(s,((o,m)+ae1),t, Jdod 2f( ’(2)37)

First change variables by 2’ = (z — z) / Vt — s; since z; = 0, note that 2’ varies
over D as z varies over D. Next put o = a/\/t — s and finally apply the (d—1)
dimensional transformation

T = (a5, )] ~ (3 + (s, 2,
keeping 2 fixed, where 7 is defined by (2.13). It is then easily seen that
Lh.s.of (2.37) 2
o0 00 ! al 2
- o [ 75 (o) Gt o { gl e
= Ef(s’ ).
(]

Lemma 2.5. Let t > 0 and f a continuous function on [0,t) x 8D such
that

2
|f(r,m)| 5K[1+(t—r)_d/zemp{—(%—)}] ...(2.38)
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for 0 <r <t,p €D, where k, K are positive constants. Set

wea) =3 [ [ antiofmQasinndondar ... (239

for 0 < s < t,x € D where do(-) denotes the (d — 1_)_ dimensional Lebesgue
measure on 8D. Then v i3 continuous on [0,t) x D, and

—6—1)(3,:1:) =—f(s,z), z€BD,s<t ...(2.40)
3.’1}1

Note. It can be shown that for 2 <i<d

5%1)(3, ) = %/ -/60 ar1(r,n) f(r, n)g%(s,a:; r,n)do (n)dr

for any x € D and that 8v/dz; is continuous over D. Hence by Lemma 2.5 it
follows that v is differentiable in = over D; however, as is clear from Lemma 2.5,
Ov/dz; is not continuous at the boundary.

Proof. By (2.30), (2.38), dominated convergence theorem and the Chapman-
Kolmogorov equation for Gaussian densities it is clear that v is well defined
and is continuous on [0,t) x D; (by putting v(t,-) = 0 it is also continuous
on [0,t x D). Differentiability at any z € D is also similarly dealt with; in
such a case one can differentiate under the integral, and in fact the derivative
is continuous at any = € D.

By (2.29), (2.25), (2.26), (2.39) for any = € 8D,h > 0 we have

%[v(s, z 4+ he;) —v(s, )]

// / f(r ;77) 11’2(3 (z + ae));r,n)dada(n)dr.  ...(2.41)

Introduce the variables o = a/h,n' = (n — z)/h,r' = (r — s)/h?; since z € 8D
note that 5’ varies over 8D as 7 varies over 8D. Take the limit in (_2_.41) ash |0,

and finally apply the (d — 1) dimensional transformation = 5(3,:1:)”%[1)' -
a”?(s,:c)] to get

hm [v(s x + hey) — v(s a:)]

D N

—fs E)/ / ' \/W\/ET(S—Q;— XP{ 2r'ay1 (s, x)
= —f(s,2) = / / €2 dgdo! = —f(s, ). 0
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Lemma 2.6. (i) Let t > 0,z € D be fized. Let ® be a continuous function
on [0,t) X D such that

|®(r,n)| < K[1+ (t — ) po(r, m;t, 2)] ... (242)

forr <t,neD. Set

V(s,z) = /57 fﬁ ®(r,n)Q(s, z; 7, n)dndr ...(2.43)

for0 < s<t,xe€D. ThenV is cc_)lztinuous on [0,t) x D and is once
continuously differentiable in x over D.
(ii) Let t,z,®,V be as above; in addition let ® satisfy

|®(r,n) —®(r,1')| < Kln—n'|"2(t—r)"4[po(r, m;t, 2) + po(r, 752, 2)] ... (2.44)

for any r <t,n,' € D. Then (s,x) — V(s,x) is in C¥2([0,t) x D).

Proof. (i) In view of (*.30), (2.42), Lemma 2.4, dominated convergence
theorem and the Chapman-Kolmogorov equation for po, the first assertion can
be proved easily.

(ii) This can be proved as in Theorems 4 and 5 of Chap. I, Sec. 3 of Friedman
(1983), pp. 9-13; note that integrability of the terms involved in the proof follow
from (2.44) and the Chapman-Kolmogorov equation for py. L

Step 4. We now consider a(:, -), b(:, -), ¢(:, -) satisfying the hypothesis (Al) -
(A3); assume ~(-,-) =(1,0,...,0) and p = 0.

Let Q be given by (2.28). For fixed t > 0,z € D we have

MQ(s,z;t,2) == (a% + Lz) Q(s, z;t, 2)
d

1 52
=5 i;(as‘j(s, ) — aij(t, z))—axi B 46 (s, z;t, 2) . (2.45)

d
8
+ zl: bi(sa z)a_miq(t,z)(sy z;t, z) + c(si m)q(t,z)(sy z;t, z)
1=

for 0 < s < t,x € D. By the estimate (2.30), Lipschitz continuity of a;; and
boundedness of b;, c we get

IMQ(s, z;t,2)| < C[1 + (t — 8)"?]po(s, z;t, 2) ...(2.46)

for 0 < s < t such that (t —s) <1 and all 2,z € D.
Now put (MQ):(s,z;t,z) = MQ(s,z;t,z) and define inductively for n =

2,3,...

| t

(MQu(s,2i2) = [ [ MQUs,im i)(MQutr it e .. (247
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Using the estimate (2.46), Chapman-Kolmogorov equation for py, and properties
of beta integrals, we get

[(MQ)n(s, 2;t,2)| < C™[T (g)]_lpo(s, z;t,72) ...(248)

for z,z € D,0 < (t — 8) < 1. Define

®(s,z;t,2) = Z(MQ)n(s,x;t, 2) ... (2.49)

n=1

for z,z € D,0 < (t — s) < 1. From (2.48) it is clear that the series in (2.49)
converges uniformly over z,z € D,0 < t — s < 1; consequently ® is continuous
and

|®(s, z; 8, 2)| < C(t — 8)"V2py(s, z;t, 2) ...(2.50)

for z,z € D,0 < t — s < 1. Moreover from (2.47), (2.49) it is easily seen that ®
satisfies the integral equation

t
Q(s,w;t,z):MQ(s,x;t,z)+/ /;MQ(s,m;r,n)CD(r,n;t, z)dndr ...(2.51)
s JD .

forz,2€ D,0<t—s<1.

Using arguments similar to those on pp. 16-17 (in the proof of Theorem 7,
Chap I, Sec. 4) of Friedman (1983), and the estimates (2.30), (2.46) and (2.3)
we can show that

IMQ(s, z;t, 2) — MQ(s, ', t, 2)| < K|z—2'|(t—3)"3/*[po(s, z;t, 2) +po(s, 7'; 1, 2)]
...(252)
and consequently by (2.51)

|®(s, z;t, 2) — B(s,2';t,2)| < K|z — ='|(t — 8)"*4[po(s, z; 8, 2) + po(s, 2'; 1, 2))]
... (2.53)
forz,' € D,0<t—s<1.
For 0 <t—s<1,z,z € D define

t
k(s,z;t, z) = Q(s, z;t, z)+/ /_Q(s,m; r,1)®(r,n;t, z)dndr ...(2.54)
s JD
By Lemma 2.6, Lemma 2.4 and (2.51) it is seen that
((%+L,) k(s,x;t,z) =0, z€D,z€D ...(2.55)

By (2.28), (2.54)

ik(s,x;t, 2)=0, z€dD,z€D ...(2.56)
3.'1:]
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Now let f be a bounded continuous function on D. Then by (2.50), (2.30) we
get

|/ﬁl /Bf(Z)Q(s,:v;T, n)®(r,n;t, z)dndrdz| < C(t — 3)1/2

Therefore by (2.32)
ligl/ﬁf(z)k(s, z;t, 2)dz = f(x) ...(2.57)

for t > 0,z € D. From (2.55) - (2.57) it follows that k given by (2.54) is the
fundamental solution for ((8/8s) + L) with the boundary condition 6%1 =0, in
any time interval of length < 1.

If (t —s) > 1, then k can be extended in an obvious manner using the
Chapman-Kolmogorov equation. It is also clear that k has the required reg-
ularity and satisfies (2.4). Thus the theorem has been proved for the case

=(1,0,...,0),p=0.

Step 5. Take a, b, ¢ satisfying the hypotheses (A1)-(A3); let v satisfy (A4)
and p=0.

Since p = 0, the fundamental solution for ((8/9s) + L,J) is also that for
((8/8s) + L,vJ) for any constant v. So without loss of generality we may
take |D?,m| < 1 < A1/(8d4%);), where a is a multi-index such that |a| < 3.
Consequently,

[v(s,Z) — (s, 2)|? < (d — 1)p?|z — ='|? ...(2.58)

for s > 0,Z,2' € 6D. Let 0 < @ < 1/(2du); let ¢ be a smooth function on
(—1,00) such that ¢ is non decreasing, |¢'| < 1,¢(r) =rifr < %0 and ¢(r) = 0
if r > 6. Define T : [0,00) x D — [0,00) x D by

(3,;1,52,...,:'5(1) =T(S,.’1:1,.’l:2,...,.’l)d)

= (s,11,%g, . ..,Ta) + $(x1)(0,0,72(s, T), . . ., Ya(8, T)) ...(2.59)

In view of (2.58) it can be shown that T is a C%-diffeomorphism.
Define (d + 1) x (d + 1) matrix A(:,-) by Au(s,z) = Ai(s,2) =0,0 < i <
d,A,'j(.S,(B) = aij('sax)) 1<4,5 <d. Put

AG,7) = (T3, 2) AT (5, ))5,(T7(5,)), ..(2.60)

where jr is the Jacobian of the transformation 7. Note that ;10:'(3 = ;iio(', )=
0,0 < i < d. Thus it is easily seen that the operator (a% + L) in the (s, z)-
variables is transformed to

K}
a3

+Z 0 + Za;](s x) ~6 +Zb’(3 $)—+C(5 .'E), (2-61)

z]l Tj
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with a, b, ¢ satisfying the hypotheses (A1) - (A3). It is also clear that the
boundary operator J is transformed to 8/ oz,. (The proof in Ramasubramanian
(1986, 1988) for the time homogeneous case can easily be extended to the present
case.)

In view of Step 4, the above transformation and as the first three derivatives
of Z-variables with respect to z-variables are bounded, it now follows that the
theorem holds in this case. a

Lemma 2.7. Let a,b,c,vy satisfy the hypotheses (A1) - (A4); let p = 0.
Let k be the fundamental solution in this case. Let f be a continuous
Junction on [0,t) x D satisfying (2.38). Set

v(s,z) = -;—/ /aD a11(r,n) f(r,n)k(s, z;r,n)do(n)dr ...(2.62)

for 0 < s <t,x € D. Then v is continuous on [0,t) x D and Ju(s,z) =
—f(s,z),0< s<t,x €8D.
Proof. In Step 5 note that au(s, z) = ay1(8,z) for any z € 8D. Therefore
it is enough to consider the case J = 3%‘; in such a case k is given by (2.54)
Now by (2.30), (2.38), (2.50) note that

[ [ Llanmsem g eia oo & nnlddadsmir
s JoDJs JD 1

< k[ [ [iea-ne B medirnastner .
< K [(t—3)1/2+po(s,(0,§);t,(0,0))] < oo

for all ' sufficiently close to z = (0,Z) € 8D; (in the above we have used
Chapman-Kolmogorov equations for the (d — 1) dimensional Brownian motion)
From (2.63), dominated convergence theorem and Lemma 2.5 the required con-
clusion now follows. , O
Note. Lemma 2.7 is a slight generalisation of Theorem 1, Chapter 5 (p. 137)
of Friedman (1983) concerning single layer potentials.
Step 6. We now consider the general situation in the half space. Let &

denote the fundamental solution for ( (% +L),Zv%(, ) 3—‘1—‘,). Note that (2.4)

holds for k; (that is, with p replaced by k).
Put (Nk)1(s,z;t, z) := Nk(s,z;t,2) = p(s,T)k(s,z;t, z), and inductively
forn=2,3,....

(VOhw(s,it.2) =5 [ [ WkCo,aimman( ) (VO it 0o ()
...(2.64)
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For a,8 > 0,0 < s <t note that

o {5 w5ty e
Observe that

po(s, 358, 2) = p (s, 758, 2 )P0 (3,31, %) ...(2.66)

where psl) is the transition probability density of the reflecting Brownian motion

in [0, 00), and p((,z) is that of the (d — 1)-dimensional Brownian motion. Conse-
quently using (2.65), (2.66) and the estimate (2.4) for k, one can prove that for
0<(t—s8)<1,

I(Nk)2(31x; t, z)l < C(t - 8)1/2})0(3,.’1:;)5, z)'

Proceeding inductively one can show that

-1
(NK)n(s,25t, 2)| < C* [T(3)] " pols, mit, 2) ...(2.67)
Put
W(s,x;t,2) = Z(Nk)n(s,z;t, z), 0<s<tz,2€D ...(2.68)
n=1

Note that ¥ is well defined and that by (2.64)

t
V(s,z;t,2) = Nk(s,z;t,2) + % / / Nk(s,z;7,m)an(r,n)¥(r,n;t, z)do(n)dr
s JAD

- ...(2.69)
Now define for 0 <t—s<1,z,2 € D,

t
po2it,2) = K(oait, )+ 5 [ [ ko, zinman(rn) ¥t don)dr
T or ...(2.70)
By (2.69) and Lemma 2.7 it is clear that J;p(s,z;t,2) = 0,z € OD. Using the
estimate (2.4) for k and proceeding as in Step 4, the proof can be completed.
Thus Theorem 2.1 is now proved.
Our next objective is to prove a regularity theorem; for this we need a few

lemmas.
Lemma 2.8. Let T,y be defined by (2.13), (2.14) as in Remark 2.3

Suppose
d
Z a1i(t, 2)
~|an(t 2)

2
— ...(2n
<% (271)

for allt>0,z,z€ D. Then

. 1 . 2
|(T‘(t,z)z) - nt,z)xlz > ’2' IT'(t,z)(z - x)l s (272)
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forallt >0,z,z€ D.
Proof. Observe that
* 2 1 * 2 z
|(T‘(t,z)z) - T'(t,z)zl = 5 lT(t,z)(z - :t)l + f(&l)E;z)
where 51 = (Z] +zl))£i = (zi _xi),i 2 21‘E= (£2a oo a&d) and

_ 1 1o 1.%= = _ = = _
f(&1,¢2) = §§¥+§|€|2+'2'€¥|'7|2+51 <7,€ > +[422 + 4247 +421 <71, €>

with 7 = ’;(t, z). To prove the lemma, it is enough to show that f(¢,&;z) >0
for all z; > 0, (zy,...,z4) € ]13‘1‘1, for any fixed z; > 0, (23,...,24) € Rt > 0.

Fix z € D,t > 0. Then ’7(«‘,, 2) can be taken to be a fixed vector ¥ € R%!
with |72 < 2.
If <7, >> 0, there is nothing to prove. Set

o 1y 1=, 1 _ =
9(61,8) = S& + el + SPE + 56 < 7,6 >
Observe that

f(ﬁl)E) = 9(51,2) + [42’? + 47'151”7'2 —4z < T)E >

If < 7, >< 0, then it is enough to prove g(ﬁl,E) > 0 for any & > 0,€ € R¥1,
1

Under the assumption [J|* < g; it is easy to see that £ = 0 is the only
stationary point of g, that the matrix of the second derivatives of g is positive
definite. And since g(0) = 0, the conclusion follows.

We will make the following assumption for the remainder of this section.
It may be mentioned that our hypothesis is stronger than necessary, especially
concerning smoothness of b, c, p.
(A6) : a;j, b;, c, 1, p are Cg-functions on their respective domains.

Lemma 2.9. Let a(-,-) satisfy (A1), (A6), (2.71). Let Q be given by
(2.28). Then for any to > 0 there exist constants Cy,Cs such that

ID:D?Q(s,x;t, z)‘ = |DED:Q(3’$;t’z)I (2 73)

< Gyt — )1t 2py (s, 25, 2) T
for 0 < s <t with (t —s) < to,x,z € D, any multiindez a and multiindez
with || < 2.

Proof. Without loss of generality take to = 1. Let 7,(,%1,%2 be as in
Remark 2.3. Note that

(Te.9?)* = T = 2 — 3+ (31 — :)(t, 2) .. (274)
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Using (2.3), (2.24), (2.74) it is easily seen that

5 .
I—-C—(s,:c;t,z) < K(]2* — x|+ |2* —z|?) ...(2.75)
Ozk
02
—_— . < - (2.
6m¢62k4(3’x’t’ 2)| K KQ+|2* —z|) (2.76)
o°
—((s, x; < (2,77
amiaijZkC(q’x’t’Z) —_— K (2 )

for 0 < s<t,2,z€D,1<i,j,k<d. Also DI2( =0 for [a] >3.
By the preceding lemma, (2.22), (2.75) - (2.77) it follows that

.2
|2 (s, z;t,2)| < Cy(t — s)_‘i/2 exp (——q‘%;_—;;—l-) ...(2.78)

15} o
D;’Ed)z(s,m; t,z)] = lb—z;D:ng(s,a:; t,z)

, Co|z* — z|?
< _ \—(la]+d+1)/2 _2
> Cl (t 3) exp (t _ S)
... (2.79)
for 0 < s < t, multiindex o, z,z € D,k =1,2,...,d.
In a similar fashion we get
Cylz — z|?
238, < ot o) #exp (- 22T ) - (280)
0 ]
D‘,’a—zkwl(s,w; t,z)| = ggDiwl(s,x;t, z) 2
v lr o =(al+d1)2 G|z — g
< (’1 (t S) exp { (t — S)
. (2.81)

with the same notation as before.
As z; > 0,21 > 0,7 > 0 using (2.78), (2.79) it can be proved that

D° 9 /w (o1 +7+31)
0

2 ol 3t 2)d
* Oz an(t’z)(t__S)¢2(‘7,(1:+rel), z)dr

Cng' - .’II|2
(t—s) }
with the usual notation. From (2.29), (2.79), (2.81), (2.82) it is clear that (2.73)
holds when |3| = 1. The case |8] = 2 is treated similarly.
Theorem 2.10. Let (A1) - (A6) hold. (i) Then p(s, z;t, z) is continuously
differentiable in z-variables over D, and for any T > 0 and any compact
set H in D there is a constant C such that

|D2DPp(s, x;t,2)| < C(t — 8)~ (el 2p (5, 2 ¢, 2) ...(2.83)

< Gyt — s)~Uel+dtD2 exp {— (2.82)
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for 0 < s <t witht—s < T,z €D (resp. = € D),z € H,a a multiindez
with |a| < 2 (resp. |a| < 1),8 a multiindez with |8] < 1.

(ii) Moreover p(s,z;t,z) 1is thrice continuously differentiable in
z-variables over D, and for T > 0 and compact set H in D there is a
constant C such that

|D2p(s, z;t, z)| < C(t — )~ py(s, z;t, 2) ...(2.84)

for s,t as before, x € H,z € D and any multiinder a with |a| = 3.

Note. The variance parameter C; of py does not depend on H,s,t,z, z.

Proof. (i) Without loss of generality we may assume (2.71) holds; for oth-
erwise transform the variables (z1, zg, ..., z4) — (K1, (z2/K),. .., (x4/K)) for
a suitable constant K.

Therefore by the preceding lemma, (2.3), (2.45), Lipschitz continuity of a;;
we get

.-;——MQ(S, z;t,2)| < C(t — 8) 'py(s, z;t, 2) ...(2.85)
2k

for0<t—s<1l,ze€D,z€D.
We first consider the case v = (1,0, ...,0),p = 0. Observe that

t
//MQ(S,J:;r,n)—-a—MQ(r,n;t,z)dndr
Js JD Ozx

(t+s)/2
= / / MQ(s,z;, 77) MQ(T n;t, z)dndr

+ MQ(s,x;r, n)c(r 1)) (r,n, , 2)dndr
w92/

+Z/Hs)/2/ MQ(s,:c;r,n)b.'(r,n). ,an(T,ﬂ;t,z)d'r)dr

.._1. s oai; ? d
3 /(t+s)/2/ MQ(s, x; 7‘77)[ (t, )] oo, Q(r,m; t, z)dndr

1,7=1
1 d
+-2- / / MQ(s, z; v, n)|ai;(r,n) — ai;(t, 2))
ij=1 (t+s)/2
83
T ;t, z)dnd.
3ni5njasz(r,n, , 2)dndr
= h+hL+L+1Li+1s
..(2.86)
By (2.46), (2.73), (2.85) it is easily seen that
|| < C(t—s) po(s,z5t, 2) ... (2.87)

|| < Cpo(s,zit, 2) (2.88)
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Let H be a compact subset of D. Note that
|D3D2Q(r, n;t, 2)| < Cpo(r,m;t, 2) ... (2.89)

for 0 < r < t,z € H,n € 8D any multiindices a, 8.
By (2.73), (2.85), (2.89) and the divergence theorem

|I3' / / Z a [b ('I‘, TI)MQ(-? x; 7',77)]‘ '—Q(T, ﬂ,t 7') dﬂdf'
(t+s)/2
+3 /( et zn e [t t,2)| dotarer
t+s
< Cpo(s z;t, z)
..(2.90)
In a similar fashion it can be shown that

[Is] < Cpo(s, z;t, 2) ...(2.91)

By an analogous argument, but with divergence theorem applied twice and using
Lipschitz continuity of a;;, we get

|Is] < C(t — 5)Ppo(s, z;t, 2) ...(2.92)

From (2.86) - (2.92) it follows that (MQ); is continuously differentiable in z
and that

A0zt )| = | [ [ M00szinn) - MQ(r ., inar

< Ct—s)"Vpy(s, z;t, z)

..(2.93)

forany 0 <t—s < 1,r € D,z € H. By (2.93) and iterating it is easily seen
that (M @), is continuously differentiable in z and that

<cm (I‘ (g))_lpo(s, z;t, 2) ...(2.94)

%(MQ».@, zit,2)

for s,t,z,z as before and n > 3. Consequently by (2.49), (2.85), (2.93), (2.94)

g%(s,m;t, z)
= Bél;IkQ(s’ z;t,z) + 6(MQ)2( s, z;t, z)+§ (MQ)n(s, z;t, 2)
B S W

..(2.95)
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Next, observe that by an argument similar to the derivation of (2.93) it can be
shown that

[

Therefore by (2.30), (2.54), (2.95), (2.96) it follows that

dﬁdr < C@t—s)"Vpy(s,z;t,z) ...(2.96)

Q(s,z;, n)%MQ(r, 7;t,2)

'%(s, z;t, z)

" 00
- ia—Z:Q(s,w;t,zH [ Lt irm 3 Bg 2t 2yinde

< C(t- s)‘lnpo(s, z;t, 2)

...(2.97)
for0<t—s<l,zeD,z€ H. ’
Because of our hypothesis (A6) a tedious but routine argument gives
: o
DSwi(s, it 2) = D2Wi(s, zit, 2) + 3 Do (s, mit,2) ... (298)

where ’
(s, 8, 2)] < K1+ (2 = ) pos, 258, 2),
©)
,Z indicates summation over multiindices o/ which are subsets of o with |o/| <
|| =1, forl =1,2,z € D,z € D,0 < s < t and multiindex a with 1 < |a| < 4.

Therefore
(2)

DZMyy(s,z;t,z) = Z ngfi,b,(ﬂ)(s,a:;t, z) ...(2.99)

(@
where Z indicates summation over multiindices 3 such that |8| < |a| + 2, f35
and their appropriate derivatives are bounded functions and

[P (s, z;t,2)| < K[1 + (¢ — 8)"2|po(s, %3¢, 2)

for s,t,z, 2,1 as above, and |a| = 1, 2.
It is also easily seen that

a . =(lal+1)/2 .
y Ly by = 0\ Ly by A
|D2 My (s, z;t, 2)| < K(t — ) po(s, T, 2) (2.100)

for s,t,z,2,l,a as above. (For proving (2.100) one does not need (2.98) or
(2.99); also twice differentiability of a;j, b; would do.)

Using (2.98) - (2.100), divergence theorem and arguments similar to the
derivation of (2.95) - (2.97) we get

|D2DPk(s, z;t, z)| < C(t — 8)~1eHBN 2y (5, 2;t, 2) ...(2.101)
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for 0 <t—s <1,z €D (resp. D),z € H,a, 3 multiindices with |3| < 1,|a] < 2
(resp. |of <1).

We now assume that vy = (1,0, ...,0) but p is no longer zero. Define (Nk),
by (2.64).

Asz € H C D,n € 8D, using (2.97) and arguments similar to the derivation
of (2.93) - (2.95) it can be shown that

lgaz—_\l'(s,m;t,z) < Kpo(s, z;t, z) ...(2.102)

and consequently

< K(t—s) (s, z;t,2) ...(2.103)

0
’5;:1)(8) z; t) z)

for0<t—s<1l,zeD,z€H.

Now suppose € D. If D? involves only tangential derivatives, then D2Nk(s, z;7,n)
can be expressed as a sum of terms of the type D¢ (@ with la| < 2, Dy involving
only tangential derivatives,

€@ (s, z;7,m)| < K[1+ (r — 8)"2]po(s, @; 7, m)
Applying divergence theorem in D = R?"! and arguing as before we get

62

Waiz,cp(s, z;t,z)| < K(t —8)"?po(s, z;t, 2) ...(2.104)
0T

Suppose D2 involves 8/0z; or 8%/022, then again argue as before, applying the
divergence theorem in D; once again the estimate (2.104) is obtained.
For x € 8D, by Lemma 2.7

o 1 o
8_:1;1 [5'/5‘ /(;D Nk(.s,.’L', Ty ﬂ)an(", ﬂ)a;Nk(T,nat,z)dU(ﬂ)dr

= —p(s,'a?)ééz;p(s,?v')k(s, z;t, 2) ...(2.105)

To estimate the tangential derivatives the procedure given in the preceding
paragraph can be used. It is now not difficult (but tedious) to see that arguments
as given in the earlier paragraphs would lead to the required estimate (2.83);
the details are omitted.

The general case can be reduced to the case of v = (1,0,...,0) as in Step 5
by a suitable sufficiently smooth diffeomorphism.

Proof of (ii) is similar.

Remark 2.11. Nonnegativity of p can be proved as in Section 8 of Ito (1992),
with the obvious modifications needed for considering the backward parabolic
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equations. Strict positivity can be established using the maximum principles on
pp. 173-174 of Protter and Weinberger (1984).

Proceeding as in the proof of Theorem 16, Chap I, Section 9 of Friedman
(1983) it can be shown that a unique solution exists for problem (2.6) in the
class of functions satisfying

T
/0 /B|u(3,x)|exp(—K|xl2)dxds < o0

for some K > 0. Using this uniqueness property it can be proved that p satisfies
the Chapman-Kolmogorov equation. We omit the details.

3. ON MIXED PROBLEM

In this section we obtain some auxiliary results concerning Green function
and Poisson kernel for (8/8s) + L with mixed boundary conditions in certain
bounded domains in the half space.

Fix T > 0. We consider the mixed problem in [0,T] x G where G = B(0 :
R)ND, or G is'the diffeomorphic image of B(0 : R)N D under a diffeomorphism
as in Step 5 of previous section, with R > 0 and D denoting the half space. Let
0,G = 8GN 8D, 8,G = 8G\8D. (Such a diffeomorphism maps D onto D and
is identity on BD ) We make the following assumption.

(A7) : The coefficients of L (resp. .J) are restrictions to [0,T] x G (resp.
[0,T] x 8,G) of a,b,c (resp. v,p) defined on [0,00) x D (resp. [0,00) x 8D)
satisfying (Al) - (A6).

Remark 3.1. For applications in Section 4, the coefficients a, b,c may be
taken to be defined on [0,T + €] x B(0 : R + ¢) satisfying (A1) - (AS).
such a case one can define @,b,¢ on [0,00) x D so that a,b,¢ agree with a, b c
respectively on [0, T]x B(0 : R) and satisfy (A1) - (A6) on [0, 00) x D; this can be
done using the procedure given on p. 81 of Friedman (1983). Similar comments
apply to v, p. Thus (A7) is not a restrictive hypothesis for our purposes.

Lemma 3.2. Let G be a diffeomorphic image of B(0: R)ND as described
above. Let T > 0 be fized. Let v(-,-) = (1,0,...,0). Assume (A1) - (A7).
Let f be a bounded continuous function. For s < T,z' € G\(3G) define

T
w(s,z') = / / f@t,2)Dyyp(s, z';t, 2)do(2)dt ...(3.1)
s &G
where do(-) is the surface area measure on 8,G, and
Du(z)p(sy zl;ta Z) =< a’(tv z)n(z)7 VZP(S, xl;ta z) > s (32)

is the derivative in the inward conormal direction (at z € G) in z-
variables. Let ¢ € 8,G be such that x; > 0. Then forz' — z withz' € G
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we have
T 1
limw(s,z') = / / @, 2)Dyyp(s, z; t, 2)do(z)dt — - f(s,z) ... (3.3)
'z s azc 2

Proof. For z' € G\(8,G) note that d(z',8,G) > 0 and hence (3.1) is well
defined.

Let = € 6,G with z; > 0 be fixed and z' — z with ' € D. We can assume
that there is a compact neighbourhood H of z such that o,z € ,H C D. Let
H=HnN8G and H® = (02G)\H. Then

w(s, ') = / / f, z)D,,(z)p(s z';t,z)do(2)dt
/ / f(t,2)D,»p(s,z';t, 2)do (2)dt - (34)
= wo(s,z') + we(s,z)
As sup {|D,yp(s,2';t,2)]: 0 < s < t,z € H} < 00, we get
T
lim w,(s,z") =/ / f(t,2)Dyyp(s, z; t, z)do(z)dt ...(3.5)
Tz s JHe

Now by (2.29), (2.54), (2.70) we have
wo(s, ')
//f(t, 2) Dy 1 (s, 2'5t, 2)do(2)dt

/f(t,z)D,,(,)mpg(s,x';t,z)da(z)dt
+2//f(t, 2)Dy () {/000 M%(s, (z' + aer);t, z)da} do(z)dt

an(t, z)(t — )
+_//f(t,z)DV(,) /8/%Fg(s,x';‘a,f;t,z)d{da}do(z)dt

//f(t z)Dy(z) ft/ F3(s, m"r,n;t,z)da(n)dr} do(z)dt

//f(t 2)D,z {/ \/BD/ / Fy(s,z';a,&;m,m5t, z)d{dada(n)dr} do(z)dt
= Ji(@) - K@)+ K(2) + L(z") + I(z") + 1(a')

... (3.6)
where
Fy(s, 25,65, 2) = Q(s,2';0,6)®(e, &3, 2),
F3(51$I;T’77;tv Z) = —Q(sam';r’n)all(r’n)‘l’(ryn;t9 Z),

F4(s,a:';a,£;r,1);t,z) = EQ(S,-'B’;Q,E)Q(Q,E;T, Tl)all(rl ﬂ)-q’(r,ﬂitaz),
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and [ [ denotes integration over [s,T] x H w.r.t. dtdo(z).
Note that by taking local coordinates at =

/ po(s,z';t, 2)do(z) < C[1+ (t —s)"V%
e

for all z' sufficiently close to z, where py is as in Theorem 2.1.
By (2.65), (2.102), (3.7) we get

///t ./aD |f(t, 2) Dy Fs(s, z'; 7, m; t, 2)|do (n)drdo(z)dt

369

..(37)

<kff] ' [ wolossmndmut it 2o (i da i

< k[ [0 )

RGO
4(r—s) 4@t-r)

< K[(T -8+ (T - )]

exp

} drdo(z)dt

where [ [ denotes integration over [s,T] x H w.r.t. dtdo(z). Consequently

i’i_rg]a(a:')z.///s /B‘Df(t,z)D,,(z)F:;(s,a:;r,n;t,z)da(n)drdo(z)dt ...(3.8)

Observe that we may write

L(z")

i=2

/ST/H / /Ef (t,2)Q(s, 7', €) Dty [fj(MQ),(a, &5t,7)

] dédo.do(2)dt

T (s+t)/2
* / f / [_f(t, 'Z)Q(S, ml; a, &)DV(I)MQ(a) E; t’ Z)dﬁdado(z)dt
S H s, D
* -/s /H ,/(‘S_H) 2 jﬁf(t’ Z)Q(S, Tia, E)D"(I)MQ(av E,t, z)d»{dadU(z)#

In(z') + Ip(x') + Ips(x)

...(3.9)

Using (2.93), (2.94), (3.7) in the case of Iy, and using (2.85), (3.7) in the case

of I, it can be seen that

lllm Igl(:l,") + Izz(wl)

T t 00
= / /H / /5 F(t,2)Q(s,z;0,6) Dy [Z(MQ),-(a,E;t,z)] d¢dado(z)dt
s s =
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T (t+s)/2
+/s /H/ ) /Bf (t,2)Q(s, 75, §) Dy () MQ(v, €38, 2)dédardo (2)dt

..(3.10)
Using (2.99), divergence theorem and estimates for derivatives of Q we get

lim I (=)

T t
=/ / / /—f (t,2)Q(s,z; 2, §) D5y MQ(ev, €5 t, 2)df dardo (2)dt
s JHJ(s+t)2JD

..(3.11)
In an analogous manner it can be shown that
lim I,(')
T t r
~[ [ [ [ [ [ 16200k a6mmt,2)dedado(rydrda z)ae
s HJs JoDJs JD
...(3.12)

Next, observe that

T
/ /H £, 2)D,aytnls, o' t, 2)|do (2)de

<K / ' /H (t —s)~4D/2exp { e fs) |€(z) — :1:'|2} do(z)dt

where £(2) varies over a compact set contained in D¢ as z varies over H. Hence
the integrand in the above is bounded (as a function of (t, 2)) uniformly over 2
varying over a neighbourhood of z. Therefore

lim Jy(a) / / 7, 2) Duteyn(s, 351, 2)do(2) ...(3.13)
In & similar manner
lim Jy(')
/ / / f(t, 2)Dys { ("1(::)‘ (th “”‘)) AT XTI (s, (a:-l-ae]);t,z)J dado(z)dt

..(3.14)
It is also clear that the r.h.s. of (3.8) - (3.14) are well defined
As v = (1,0,...,0) note that

1 42 1 < (2—¢&),a(t,2) Y (z—€) >
2m(t — s)) \/mexp {— 2(t — 3) }

Yi(s,€t,2) = (
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Since a(t,z)~! has bounded derivatives, an argument as in p. 396 of Ladyzen-
skaja, Solonnikov and Uralceva (1968) give that for £ € G, z € G,

|Dyyin (s, z;t, 2)| < K(t — s)(6"%)_po(s, z;t,2) ...(3.15)

for any sufficiently small § > 0. As z € D, by the jump relation for single layer
potential (see Sections 15 and 16, Chap. IV of Ladyzenskaja et al. (1968)) it
now follows that

T 1
Illl_lg L(Z) = / Lf(t, 2)Dyy¥1(s, z;t, z)do (2)dt — -Z—f(s,:z:) ...(3.16)

Note that (3.7), (3.15) imply well definedness of r.h.s. of (3.16). Now well
definedness and validity of (3.3) follow from (3.4) - (3.16). 0

Lemma 3.3. Assume (A1) - (A7); let G,~ be as in the preceeding lemma.
For x € 805G with 1 > 0 and z € 8,G

|Dyyp(s, z5t, 2)| < Kq(t — 3)(6_%);)0(3, z;t,z) + K, ... (317)

for any sufficiently small 6 > 0.
Proof. Follows from (3.15) and the arguments of the preceding lemma.

Let G, be as in the preceding lemmas. Let t > 0,z € G\(%G) be fixed.
Put

“1(533;;7'97’) = —2])(5,.’13;1‘, 77) x,n € E
Define inductively for n =2,3,...,0 < s <t,z € 5,G,

t
tn1(8, 25t 2) = —/ /(-),G [D,,(,,)ul(s,m; T, 71)] un(r,m;t, z)do(n)dr ...(3.18)

As z ¢ 8,G, note that sup{po(r,;t,2) : s <7 < t, ) € 3G} < oo. Consequently
by Lemma 3.3 and (3.7) it follows that |uy(s, z;t,2)| < K(t — s) for all z €
0,G, s < t. Proceeding inductively it can be shown that

C"(t—s)n6
S, T; < = 4 ...(3.19
|u,.(¢,a:,t,z)| — I‘(né—i—l) ( )
for all z € 8,G, s < t. Define
(s, z;t, z) = Zun(s,z;t,z), s<t,x € G ...(3.20)

n=1

By (3.18), (3.20) it is clear that yu satisfies the integral equation

t
u(s,zit, z) = —2p(s, z;t, z) +2/ / [Dumyp(s, ;m,m)] u(r,m;t, z)do (n)dr
s JRG
...(3.21)
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forall 0 < s<t,z€bG.

We are now in a position to prove the following result concerning a mixed
boundary value problem.

Theorem 3.4. Assume (A1) - (A7); let G = B(0: R)N D. Then there
erists a function pg(s,z;t,z) defined for 0 < s < t,z € G,z € G\(8,G)
satisfying the following :

(i) pc is jointly continuous in its arguments;

(1) (s,x) = pg(s,x;t, 2) is in CY2((0,t) x G) for fized t, z;

. (i) pc is continuously differentiable at any x € 8,G, for s < t,z €
o\@.0);

(iv) for any bounded continuous function f whose support is contained

in G\(8G) let

u(s,a:)=/%f(z)pg(s,:c;t,z)dz; ...(3.22)

then u € C12((0,t) x G) N Cy([0,t] x G) and is the unique classical solution
to the problem

(2 +L)u(s,7) = 0,z€G,s<t
Jou(s, x) = 0,z€0,G,s<1t
u(s, ) = 0,z€8:G,s<t - (3.23)

f(z),z€G

i
gtn u(s, )

Moreover such a function pg is unique.
Proof. Let G denote a diffeomorphic image of B(0 : R) N D as in Lemma
3.2;let vy =(1,0,...,0). For 0 < s < t,z,z € G\(82G) define

t
woaits) = | /82 [Dagple.zir] ur it do(rdr .. (320
s

where p is given by (3.18), (3.20). For fixed t > 0,z ¢ (8:G), by (3.19) note
that sup {u(r,m;t,2) : s <r <t,n € 8,G} < 0o. Hence by (3.21) and Lemma
3.2 it follows that
lim (s, z;t, 2) = p(s, zo;t, 2) ...(3.25)
z—20,26G
for 0 < s <t,zy € 8,G.
It is not difficult to verify that

(;-&—L) v(s,z;t,2) =0,z € G,s <t ...(3.26)
s
Jv(s, T;t,2) =0, £ € 8,G,s <t ...(3.27)

ligl v(s,z;t,z) =0,z € G ...(3.28)
s



TRANSITION DENSITIES OF REFLECTING DIFFUSIONS 373

Now define pg by
pG(s,x;t, z) = p(s, z;t, z) — v(s,z;t, 2) ..(3.29)

for 0 < s < t,x € G,z € G\(8,G). It is clear that p¢ satisfies (i) and (ii); also
u defined by (3.22) satisfies (3.23). As the domain G is bounded, by appropri-
ate maximum principle (see Protter and Weinberger (1984)) uniqueness of the
solution to (3.23), and consequently uniqueness of pg follow.

We will now prove (iii); it is enough to show that v defined by (3.24), (3.25)
is continuously differentiable at any z € &G, for s < t,z € G\(%G). Set

vo(s, ) = w(s,z;t,z), =€ dG\(3:G),s <t,
p(s,z;t,z), T€IGN(HG),s<t

By (3.25) - (3.28) note that v is the solution for the first boundary value problem
for (a% + L) with boundary data vy. By Theorem 2.10 note that vy is thrice
continously differentiable at any z € 8,G; (such an z will have z; > 0). Also
observe that the proof of smoothness at a boundary point in Theorem 7, Chap.
4 (pp. 127-128) of Friedman (1983) involves only a neighbourhood of that point.
Consequently from the proofs of Theorem 7, Chap. 4 and Theorem 7, Chap. 3
of Friedman (1983), it now follows that v is continuously differentiable at any
x € OG.

Thus the theorem is proved in this case. The general case can be reduced to
this case by an appropriate diffeomorphism as in Step 5 of the proof of Theorem
2.1.
Lemma 3.5. Assume (A1) - (A7); let G be as in the preceding theoren‘L]
Then pg(s,x;t, z) can be defined forz € G,0< s < t,x € G'\(BgG! moreover
(t,z) = pg(s, z;t, 2) is in C*((s,00)xG) for fized s > 0,z € G\(8,G), and pg
is continuously differentiable at any z € 8,G for fized s < t,x € G\(8,G)

Proof. Observe that the formal adjoint of L is given by

..(3.30)

Lg(t,s) = —Z o (0, )a(t,2)
..(3.31)

—Z 57 (it 2)g(t,2)) + e(t, 2)g ¢, 2)
Set
. d E)
b:(t,z) = b,-(t,z)—zb—-a,-j(t,z), fi=1,2,...,d,
—1 9%

= .
< a(t, 2)n(z),n(z) > la (b 2),
2 < n(z),7(t,2) > 2
where n(z) is the unit inward normal; (we assume without loss of generality
that v; = 1). Put

aM(t, z)

a(t, z) = —%a(t, z)n(z) + a(t, 2)(t, 2).
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Clearly a; = 0; putting a(t,z) = .2, %a,—(t, z) we see that

/ < aft,2), Vf(z) > do(z) = — / f(2)a(t, )do(z)
oD oD

for all smooth functions f with compact support; (remember that by (A7) all
the quantities concerned are defined on D or D). Define

J'g(t, 7’) = < a'(t1 z)n(z)’ V,g(t, z) >-=-< a(‘Y)(t, 2)7(t’ z), Vzg(ta Z) >
+ [0t 20t 2)- < (8,2, m(2) > ~@(t, 2)] 9(t,2)
...(3.32)

Note that the coefficients of (—(8/8t) + L*) and J* satisfy the hypotheses of
Section 2; hence there exists a fundamental solution p* for (—(8/8t) + L*,J*).
Consequently by Theorem 3.4 a unique Green function pg; for (—(8/8t) + L*),
with reflecting boundary condition on 8;G specified by J* and Dirichlet bound-
ary condition on &G, exists; also (t, 2) — p(t, 2; 3, z) is in C1?([s, 00) x G) and
p}, is continuously differentiable at any z € 8,G, for any s > 0,z € G\(8:G).

Now by an argument using Green’s formula it can be shown (as in Theorem
17 on p.84 of Friedman (1983)) that p§ (¢, z; 3,z) = pe(s, ;t, 2) for s < t,z,2z €
G. By continuity the same is true for s < t,z € G\(8;G), z € G. This completes
the proof. 0

Our next result is

Theorem 3.6. Assume (A1) - (A7);let G be as in Theorem 3.4. Lett >0
be fized; let f be a C;’z-function on [0,t]x 3G such that lim,;; DPD2f(r, z) =
0 for 8 < 1,|a| < 2. Define

u(s, ) =/s /a,c f(r,2)D,;ypc(s, z; 7, 2)do(z)dr ...(3.33)

where D,(;) denotes derivative in the conormal direction at z € 8,G. Then
u i3 the solution for the mized problem :

((8/83) + L)u(s, )

limu(s
mzu(s, z)

0, z €G,s <t,
0,z€G

i

Jeu(s, ) = 0,r€8,G,s<t --(3.39)
li = s,Tp), G,s<t
z—az:,Zéa;Gu(s’w) f(s,x0), o € 3G, 8 <
Proof. By the proof of the preceding lemma we have
(—(3/61‘) + L:)pc;(s,:z:;r, z) = 0, z€ G) r>s
Jipe(s,z;r, 2) = 0, z€ HG,r > 3, ...(3.35)
pe(s,z;r, 2) = 0, 2€ G, r>3s

for z € G\(8,G). Note also that

]im/ f(r,2)pc(s,z;7, 2)dz = f(s,x), z ¢ 5G.
rls Jg
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Therefore (as dG is piecewise smooth) by Green’s formula we get for = €

G\(&,0),

wor) = [ / £, 2)Dygpo(o 7, do(z)dr
f f f(r,2) T, pe(s, z; 7, z)do(2)dr
' ...(3.36)
- ] / pole,zin3) (32 + L ) £ 2dsdr
+[ /aleG(sa Ty T, Z)sz(’l', z)da(z)dr + f(-?, .’B)
It is now clear that u is well defined, bounded and satisfies (3.34). 0

4. GENERAL CASE

We now consider the general case. Let D be a bounded domain with a C*-
boundary. We assume that the coefficients a, b, c, v, p satisfy (A1) - (A6). Define
the generator Ly and the boundary operator J; by

d
Lof(0,2) = 1 3 (e, ) 2000) o2+ oha L2t )
=1 !

|,]—l
for s > 0,z € D, and

Jof(s,z) = E'y,(s a:) (s x) ...(42)

for s > 0,z € 8D. Let {P,; : s > 0,z € D} denote the reflecting diffusion
process corresponding to Ly, Jo; we will call it the (Lo, Jy)-diffusion. Let X (t)
denote the t-th coordinate projection on Q := C([0,00) : D); let B; := o{X(r) :
0 < r < t} be the usual filtration. For any stopping time T relative to By, let
B, denote the associated o-algebra. Let {£(t) : t > 0} denote the boundary
local time of the (Lo, Jo)-diffusion. (See Friedlin (1985) or Ikeda and Watanabe
(1981) for details). F;[g : A] shall denote the integral of g w.r.t. the probability
measure P; ; over the set A. Put

e(t;s) = exp (/st c(r,X(r))dr) )

o) = e[ ol X()de(r). 4

Define the evolution

T; f(z) = E.z[e(t; s)elt; ) (X (2))] .- (4.4)
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for 0 < s < t,z € D and bounded measurable function f. Observe that the
required fundamental solution is just the integral kernel for the evolution {T}}.
For z € 8D there exist 7,6 > 0 such that B := B(z : r)ND and B; := B(2 :
r + 6) N D are respectively C* diffeomorphic to G := {y : y1 > 0, |y| < R} and
Gy :={y:y1 > 0,|y| < R+¢} for some R > 0,¢ > 0. Under this diffeomorphism
the diffusion coefficients are transformed to &, b, &, 4, , which satisfy (A1) - (A7)
on [0,T] x G (or [0,T] x &G as the case may be). Put ;B = 8B N 8D and
6B = 0B\8D; note that §;B is diffeomorphic to 8;G,i = 1,2. Let pg be
the Green function (corresponding to &, b,é,4, p), guaranteed by Theorem 3.4.
Define
pB(s,T;t, 2) = Pa(s, £;t, 2) ...(4.5)
for s <t,z € B,z € B\(8B) or = € B\(&;B), z € B, where &, £ are the images
of z, z under the above diffeomorphism. Then pp has the appropriate smooth-
ness properties; that is, analogues of Theorem 3.4, Lemma 3.5 and Theorem 3.6
hold for pg. It is the Green function for the problem

((8/0s) + L)pa(s, x;t, 2)

= 6(t—38)é(z—z),
Jzpe(s,z;t, 2) = 0,z € 3B, ...(4.6)
pa(s, 7it, 2) = 0,z €&B

for any fixed t > 0,z € B\(&B). Also D,,ps(s,x;t,z),z € B\(&B),z €
8;B,s < t is the Poisson kernel for the mixed problem for ((8/8s) + L) in B
with Dirichlet boundary condition on 8B and reflecting boundary condition
(given by J) on 8, B.

For z € D, there is 7 > 0 such that B := B(z:7) C D. In such a
case, let pp denote the Green function for ((8/8s) + L) in B with Dirichlet
boundary condition on dB(= 8 B; in this case ;B = ¢); pp has the required
smoothness properties and the conormal derivative of pg is the Poisson kernel
for ((8/8s) + L) in B with Dirichlet boundary condition on 8B.

In view of the above the following can be proved using stochastic calculus.

Lemma 4.1. Let (A1) - (A6) hold. Let B,pp be as above. Let T denote
the exit time from B for the (Lo, Jy)-diffusion; that is, 7 is the time of
hitting 6, B.

(i) Let f be a bounded continuous function whose support is contained
in B\(8;,B). Then for s <t,z € B,

E,[e(t; 5)é(t; o) f(X (D)) : {7 > t}] = /Ef(z)pa(s,w;t, z)dz - (47)

(ii) Let g be a smooth function on [0,t]x 8B such that lim,; DP D2g(r, 2)
=0,8<1,|a|<2. Then

E, ;[e(r; 8)é(r; 8)g(r, X (7)) : {7 < t}] =/ /818 g(r, z2) Dy(;)pB(8, z; 7, 2)do(2)dr
...(4.8)
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Remark 4.2. If c=0,p = 0 then
D,(;pB(s, z;t, z)do(z)dt, t> s,z € 3B

gives the exit distribution P, .(7,X(7))"}, for fixed s > 0,z € B\(8,B). (As
0D N (8;B) is a (d — 2) dimensional submanifold note that the probability of
hitting 8D N (8, B) is zero; see Ramasubramanian (1988)). See Hsu (1986) for
an analogue of the above result when L = %A,(?]B = ¢; that is, reflecting
boundary condition is absent.

We will now use a probabilistic method for obtaining the integral kernel for
{T¢} from Green functions described above.

Let 0 < s < t,z € D be fixed. We can find 0 < r; < ry such that ps,pg
(described as above) exist where A = B(z:11)ND,B = B(z:713) N D. Set

Tyjiy1 = inf{rZng:X(r)E@ j=0,1,2,...
Taj = inf{r > ;-1 :X(r) € ,B},j=1,2,...

As AN 62_B_= ¢ note that 7; T oo a.s. P, for any z € D. Define for
0<s<tzeD,

p(sax;ta Z) = I;(-'B)p,;(s,x;t,z)
[e ¢
+ Z E, zle(72j-1; 8)é(72j-1; 8)PB(T2j-1, X (T25-1);t, 2) + Hj]
j=1
...(4.9)
where H; = {1y;_; <t < 7;}. .
Lemma 4.3. For any bounded measurable function f on D,
11@) = [ fG)pto,aiti)ds .. (4.10)
D

Proof. 1t is enough to prove (4.10) for f = Iy where V is a Borel set such
that V. C A C A C B with A, B being as above; this will also show that p
defined by (4.9) is independent of A, B.

By Lemma 4.1 and the strong Markov property of the (Lo, Jo)-diffusion note
that

Tilv(z) = Es.gc[e(t;S)é(t;S)IV(X(t))={Tl>t}]

+ZES,,[e(t; 8)é(t; 8) Iy (X (1)) : {mj—1 <t < 735}]
j=1

/_ Iv(2)5(@)pa(s, 71, 2)dz
D

+ZEs,,[ejéjLIv(z)pB(sz_l,X(sz_l),t,z)dz:H;]
j=1

= LIv(z)p(s, z;t, z)dz,
D
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where €; = C(ng_l;s),éj = é(sz_l;s),H; = {TZj—l < t}. O
Here is our main result.
Theorem 4.4. Let D be a bounded domain with C*-boundary; let a,b,c,v,p
satisfy (A1) - (A6). Define {TF} by (4.4). Then there exists a strictly
positive function p(s,z;t,2),0 < s < t,x,z € D such that

(1) T f(z) = [5 f(2)p(s,z;t, 2)dz, s <t,xz€D;

(1) (s,z) — p(s,z;t,2) is in C¥2((0,t) x D) N C([0,t) x D);
(iii) Jzp(s,z;t,2) =0, z € 0D, s < t;

(iv) img T7 f(2) = f(z), z € D.

Proof. Let p be defined by (4.9); the first assertion is proved in the preceding
lemma.

Let s < t,z,z € D be fixed. Choose a bounded neighbourhood E (in D) of
z such that z ¢ (0,F) and pg exists. We claim that (r,n) — p(r,n;t,2) is a
bounded measurable function on [s,t] x 8, E. From (3.25) - (3.28), Theorem 3.6
and Lemma 4.1 (ii) it follows that v in the proof of Theorem 3.4 is nonnegative.
Consequently by (3.29) it follows that the Gaussian type bound (2.4) holds for
pg; hence (4.5), (4.9) now yield the claim; (recall that the symbol p is used in
different contexts in (3.29) and (4.9); as it is unlikely to cause confusion, we
persist with this !)

By Lemma 4.1 (i), (ii) and strong Markov property it follows that

p(s, 73, 2)
= pE(s,:z:; t, Z)IE(Z) + Es,z[e(TE; 3)6(75; s)p(TE’ X(TE);t’ Z) : {TE < t}]

t
= pa(s,z5t, 2)s(s) + / A (07t )Dygpe(e, zim)da(n)dr

...(4.11)

As z,z ¢ (8, F) required smoothness in (s,z) follows by (4.11). Assertion (iii)
also follows similarly; (iv) is clear from (4.11) and the first equation in (4.6).
Strict positivity of p can be proved using the maximum principles on pp. 173-174
of Protter and Weinberger (1984). This completes the proof. 0
Remark 4.5. For a bounded domain D it can be shown that the fundamental
solution given in the preceding theorem is unique. This can be done as in
Theorem 8.1 of Ito (1992) with appropriate modifications; or using uniqueness
of solution to initial - boundary value problem for (3/8s) + L with boundary
condition given by J (which in turn can be proved by stochastic representation
of a solution or using maximum principles); we omit the details. O
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5.  MINIMALITY

We conclude with a result concerning minimality of fundamental solution in
the half space.

Theorem 5.1. Let D denote the half space; assume (A1) - (A6). Let
p be as in Theorem 2.10. Then p is the minimal fundamental solution
in the sense that, if q(s,z;t,z) i3 a continuous nonnegative fundamental
solution for ((8/8s) + L,J) then

p(s,z;t, 2) < q(s,x;t,2), VO<s<t,xz,z€D ...(5.1)

Proof. Forn =1,2,...let B, = DNB(0 : n) and p,(s, z;t,2) = pg, (s, z; t, 2).
By (3.25) - (3.29), Step 5 of the proof of Theorem 2.1, Theorem 3.6 and Lemma
4.1 (ii) we have

Pn(8,Z;t, 2) = p(8,T;t, 2) — Esz[e(Tn; 3)€(Tn; 8)P(Tn, X (Tn); 8, 2) : {Tn < t:(}] )
...(5.2
where 7, is the time of hitting 8, B,, (for the (Lo, Jp)-diffusion) and E,, denotes
expectation w.r.t. the (Lo, Jy)-diffusion in D starting at (s,z). See Port and
Stone (1978) for a similar expression in the context of Brownian motion with
absorbing boundary.
As the coefficients are bounded note that (Lo, Jy)-diffusion is conservative;
(that is, the measures P; . ar< supported on C([0,00) : D)). Hence 7, — 0o a.s.
P; ;. For any k note that

sup{|Lr, <typ(7n, X (10); t,2)| 1 |2| < kyn 2 k+ 1} <00

Also exp (a£(t)) is integrable for any constant o > 0 and ¢ > 0. Therefore by
(5.2) it follows that

pe(8,z;t,2) — p(s,z;t,2), n— o0 ...(5.3)

uniformly over (s, (z,z)) varying on compact sets.
Let ¢ be another continuous nonnegative fundamental solution. Fix n and
let f be a nonnegative continuous function with compact support in B,. Put

vp(8, ) = /_E_f(z)q(s, z;t, z)dz ...(5.4)

Let g(s,z) = vn(s,2),0 < s < t,x € 8yBy; observe that g is a nonnegative
function on [0,t) x 83B,. Clearly, v, solves the problem

((8/08) + L)va(3,2) = 0,z € By, s <t,
Jz'v,,(s,:l:) 0,z € 01Bn,s <t,

v, (8, T) 9(8,z), T € 03By,s < t,
limgps va (8, ) f(z), z € By

...(5.5)
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As p, is the unique nonnegative fundamental solution in the bounded domain
B, by Theorems 3.4 and 3.6 it can be shown that

v,.(s,:z:):/B f(z)p,,(s,a:;t,z)dz_'_/t LB 9(r, 2) Dy (;)pn(8, T; T, 2)do(2)dr

...(5.6)
By maximum principle, D,(;)p, > 0 on 8; B,,; hence the second term on ther.h.s.
of (5.6) is nonnegative. (One can use Lemma 4.1 (ii) for another derivation of
this fact.) And as f is arbitrary, by (5.4) and (5.6) it now follows that

Pa(s, Tty 2) < q(s, 3, 2) (8.7

for 0 < s < t,x,z € B,. From (5.3), (5.7), the required conclusion (5.1) now
follows.

Remark. For unbounded domains with sufficiently smooth boundary, our
analysis of Sections 4 and 5 can be carried through.

Remark. It would be interesting to prove the results of Sections 4 and 5 just
under the hypotheses (A1) - (A5) as in Theorem 2.1. The additional hypotheses
are needed for considering the adjoint problem, and to ensure that p has the
necessary smoothness so that Green function and Poisson kernel can be defined
in Section 3. It may be noted that such a situation arises even in the case of
the conormal reflection; see Ito (1957), especially the last paragraph of §3 on p.
66. 0
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