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 SUMMARY. Using a parametrix method, localization procedure and probabilistic arguments

 we construct the transition density function for a nondegenerate diffusion process in a smooth

 domain, with oblique reflection at the boundary and with "killing" terms in the interior and on

 the boundary; (our method obtains the density also on the boundary). In the case of half space, a

 Gaussian type upper bound and minimality are established for the transition density. We also prove

 some auxiliary results concerning Green function and Poisson kernel for a second order parabolic

 operator with mixed boundary conditions in certain domains.

 1. Introduction

 The aim of this article is to construct the transition density function for a
 nondegenerate diffusion process in a smooth domain with oblique reflection at
 the boundary and with "killing" terms in the interior and on the boundary; our
 method enables to get the density function also on the boundary.

 When the direction of reflection is the conormal direction such densities

 (equivalently, fundamental solutions for the corresponding parabolic equations
 with Neumann boundary conditions) have been constructed by S. Ito (1957)
 using the parametrix method; see his recent monograph (1992) for a lucid pre
 sentation. This has been used extensively by probabilists, especially in the
 context of probabilistic approach to the Neumann problem (for the Laplacian);
 (see Hsu (1985), Papanicolaou (1990), Ramasubramanian (1993) and the refer
 ences given therein). If in addition the domain is a half space or an orthant,
 Bhattacharya and Waymire (1992) present an elementary way of getting the
 densities by the method of images.

 The situation seems to be far from clear in the case of oblique reflection (that
 is, when the direction of reflection is not the conormal direction). For the half
 space, when the diffusion coefficients are constants, the direction of reflection is
 constant, and the "generator" does not have first order derivatives in the normal
 direction, Keller (1981) has given a construction by generalising the method of

 Paper received. December 1994.

 AMS (1991) subject classifications. Primary 60J60, secondary 35K15, 35K20.
 Key words and phrases. Fundamental solution for parabolic equations, oblique reflection, parametric

 method, Green function, Poisson kernel, exit time, strong Markov property, boundary local time.



 348  S. RAMASUBRAMANIAN

 images; (in fact, this is the starting point of our analysis). Bismut (1985) has
 briefly indicated a method of establishing the existence of a smooth density in
 a half space by means of Malliavin calculus and excursion theory, when the
 coefficients are infinitely differentiable, but again the "generator" not having
 any first order derivatives in the normal direction. For a general smooth domain
 Anderson and Orey (1976, p. 212) allude to the existence of a continuous density
 in the interior of the domain; however, no references are given. Existence of a
 fundamental solution in the generalised sense can perhaps be established by
 functional analytic methods (and perhaps known to experts); but this would
 not be adequate for many purposes.

 In view of the above, it seems worth the effort to present an exposition on
 the construction of transition densities of diffusions with boundary conditions.

 Here's a brief outline of the contents of the paper. In Section 2, starting
 with Keller's result, we use suitable transformations and parametrix method to
 construct the fundamental solution in the closed half space. We also establish
 that the fundamental solution is dominated by the transition probability den
 sity of a reflecting Brownian motion (in the half space) with normal reflection;
 such a Gaussian type estimate may be of independent interest. Moreover a reg
 ularity result (needed for Section 3) is provec? under stronger differentiability
 assumptions on the coefficients.

 In Section 3 we establish some auxiliary results concerning Green function
 and Poisson kernel for "mixed problem" for the parabolic operator in certain
 domains with oblique reflection on part of the boundary and Dirichlet condition
 on rest of the boundary.

 The general case of a bounded domain with smooth boundary is considered
 in Section 4. A localization procedure and probabilistic arguments are used.

 Finally in Section 5 we prove that the transition density constructed in
 Section 2 is minimal.

 2. Transition densities in the half space

 Let D = {x G Rd : Xi > 0} with d > 2. The operators L and J respectively
 on D and dD are defined by

 Lf{s,x) = I ? oi^x)^^- + ?bi{s,x)?l^l+c(s>x)f(s,x)
 ...(2.1)

 for s > 0, x G D, and

 Jf(s,x) = ?7,(s,x)^-(s,x) + p{s,x)f{s,x), ... (2.2)

 for s > 0, x dD, where the coefficients a, b, c, 7, p satisfy the following :
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 (Al) : For each s > 0, x ? D,a(s,x) := ((ohj(s,x))) is a d x d real symmet
 ric positive definite matrix; each atJ is bounded and uniformly Lipschitz
 continuous. There exist 0 < Ai < A2 < oo such that for any s,x any
 eigenvalue of a(s,x) ? [Ai,?2].

 (A2) : For each s > 0, x ? D, b(s, x) := (b\(s, x),..., b?(s, x)); each 6? is bounded
 and uniformly Lipschitz continuous.

 (A3) : c is a bounded uniformly Lipschitz continuous function on [0,oo] x D.

 (A4) : There exists ?o > 0 such that for each ?>0,i? 3D, < 7(5,x),n(x) >>
 ?o, where 7(5, x) := (71 (s,x),... yid(s^x)) and n(x) is the inward unit
 normal; each 7? ? C*'3([0,oo) x dD).

 (A5) : p is a bounded continuous function on [0,oo) x dD.

 A word now about the notation. For x = (x\,x<i,... ,Xd) we write x =
 (x2,..., xd) and x* = (?a?i, x2, ...,a;?) = (??i, x). For a matrix a = ((o?y))i<tj'<?
 we write a = ((dij)2<tj<d? The subscript x in the operators ?)?, V^L^, Jx, etc.
 denotes that differentiation is in the x-variables.

 For x,z ? D note that

 \z~x\<\z*-x\ ...(2.3)
 In this section we construct the fundamental solution for (d/ds) 4- L in

 [0,00) x D with reflecting boundary condition given by J, using a parametrix
 method.

 We shall denote by po the transition probability density function of Brow
 nian motion in D with mean zero, covariance matrix C2I (with C2 being a
 positive constant and I the (d x d) identity matrix) and normal reflection at
 the boundary; the constant C2 may differ in different contexts.

 Theorem 2.1. Assume (Al) - (A 5). Then there exists a function p(s,x;t,z)
 defined for 0 < s <t,x,z ? D satisfying the following :

 (i) for any fixed t > 0, z ? D the function (s, x) 1-+ p(s,x;t, z) is in
 Cl'2([0,t) x D)C\C([0,t) xD); moreover, for any T > 0, there exist constants
 C\,C2 > 0 such that

 \D?p(s,x;t,z)\ < ?a(t-S)-l?l/2po0>,*;*,*) (2.4)

 for allx?D,z?D,0<s<t with (t ? s)<Tia a multiindex with \ot\ < 1,
 where po is as described above;

 (ii) for any bounded continuous function f on D, fixed t>0, define

 u(s, x) = / f(z)p(s, x; t, z)dz ... (2.5) Jd
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 for 0 < s < t) x D; then

 ((d/ds) + Lx)u(s, x) = 0, 0 < s < t, x D, ?
 Jxu(s,x) = 0, OKsK^xGoD, > ...(2.6)
 lims?t u(s, x) = /(x), a; .D J

 Afaie. x ?-? p(s,x;?,z) is differentiable over D; however the derivative may
 fail to be continuous at the boundary, but the estimate (2.4) nevertheless holds;
 see the note following Lemma 2.5.

 Proof. The proof is in several steps. Without loss of generality we may take
 7i = L

 Step 1. Assume that b = 0,c = 0,p = 0, o^, 7? are constants; an = an =
 0, z > 2. Let T denote the transition probability density function of the L
 diffusion (which is just the (?-dimensional Brownian motion with constant co
 variance matrix a) in Rd. Note that there exist constants Ci, C2 such that

 \D?xT(s,x;t,z)\ < dit - s)-??Wexp {-^Z")} " ' ^
 for 8lI\ xyz ?Rd,0 < s <t and any multiindex a.

 Define for 0 < s < t) x, z G D,

 d f??
 q(s,x',t,z)=T(s,x;t,z)-T(s,x;t,z*)-2-r? / T(s,x;t,z*-rrfdr ...(2.8) OXi J0

 It has been proved by Keller (1981) that q is the transition probability density
 function for the diffusion in D with generator L, and with oblique reflection at
 the boundary given by 7.

 Remark 2.2. Let T be the linear transformation on M.d given by

 T(zi,Z2,..., Zd) = (zi, z2)..., zd) - ^(0,72,..., 7rf) (2-9)

 Clearly T is invertible, one-one on any {zi = constant}, and T7 = (1,0,..., 0).
 If z\ > 0, r > 0 (or if z1 < 0, r < 0) note that [(T2O1 + r]2 > (Tz)\ + r2. Hence
 for any z M^ such that zi > 0 and any r > 0 (or any 2 such that 21 < 0 and
 any r < 0) we have

 _|z + r7|2 < _||Tr2|T(2 + r7)|2

 = -||T|r2{[(Tz)1+r]2 + ?(T^} ...(2.10)
 < -||T|r2{|T^|2 + r2}

 D
 We continue with Step 1. By the estimate (2.7) and the above remark we

 obtain
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 d2 d f??
 ^d^d^l r(-.*!'.**-nf)*-|

 < .C(t - ,)"(?)/?/- exp |-ffi?|T(^ - x)|2} .

 M-f?T*}* -(2-n)
 < C(t - 5)-(d+2>/2 exp |_^M_?D^|2* _ XA .

 From (2.7), (2.8), (2.11) it is clear that the estimate (2.4) holds for q in the case
 \a\ = 2, in fact for all x, z ? D\ the other cases can be handled similarly.

 Step 2 : We now drop the assumption a,i = an = 0,z > 2, but the other
 assumptions of Step 1 are retained.

 Define the transformation T(x\, x2,..., x?) = (xa, x2,..., xd) on D by x^ =
 xi, Xi = Xi ? (an/an)xi,i > 2. Note that T is invertible on D and is identity
 on 3D. Put a = TaT\ 7 = T7, note that alt = an = 0,i > 2. Set

 1 d d2
 Lf(s,x) = TzYl^i'^r^rf^x), s>0,x^D ? ij=i oxidxj

 Jf(s,x) = ?/(*,?) + ?%-=-(*,?), s>0,xedD. dx\ i=2 dXi

 By'Step 1 there is a transition probability density function q for the (L, J)
 diffusion in D. As det T = 1, observe that q given by

 q(s, x; t, z) = q(s, x;t,z), 0<s<t,x,z?D ... (2.12)

 is the transition probability density function for the (L, J)-diffusion in D. It is
 also clear that the estimate (2.4) holds even for |a| = 2,x,z ? D.

 Thus the theorem holds in the case b = 0,c = 0,p = 0,a?;,72 being con
 stants. In fact, from the proof it is clear that the transition density is infinitely
 differentiable at any s <t,x,z ? D. rj

 Remark2.3. Let a(-, ) satisfy (Al); assume7 = (1,0,.. .0). Fort > 0,z ? D
 put

 Mt,z) = -%&?, i>2; ...(2.13) an(t,z)
 define T(( ^ on D by

 (V)i=Ii. (2(M)?)< = a:i + 7i(t,*)xll i>2 ...(2.14)
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 Put
 S(i,z) = rMa(t, *)!?,, ...(2.15)

 ?(M) = ((4,)))i<?<</ = R?. zT1 (2-16)
 Observe that

 2ii(t,*) = aii(t,*); a1?(M)sfl,-i(M)sO, ?>2 ...(2.17)
 Hence

 Define

 t)(s,x;t,z) =< [T(M)z - T(tii)x],S(i,z)-1^)* - T^)*] > ... (2.19)

 C(?, x; ?,*)=< [(T(M)?)* - T(t>i)x], S(i, z)"1 [(T(M)z)* - TM*] > ... (2.20)

 *(,,s; t, *) = (2*(* - 5))-"/2(det S(t,z))"1/?exp {-^7^} (2-21)

 lfe(-f *;*,*) = (2?r(?-S))-??/2(de? 2(tlZ))-V>exp{-^^} ...(2.22)
 for 0 < s < t, x, z D. It is easily seen that

 d

 +(?1 - *i)2 ? ?M***' *&(*?*) (2*23)

 +2(zi - xi) ? AJ^fo - xt)7t(t, z)
 tJ=2

 C(5, z; t, z) = ]T A^}(af - x?)(*? - *?)
 J=i

 +(* - X!)2 ? ?^(t, *)7y(t, *) ... (2.24) ?J=2

 +2(zi - xi) ]T A?(2)(z* - s<)7,(t, z)
 ?=2

 If z ftD, then (T(M)z)* = T(t>z)Z = z and hence

 tpi(3, x;t, z) = x?)2(s, x;t,z) ... (2.25)
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 for 0 < s,t,x ? D,z ? dD. Similarly, when x ? dD we have ?(s,x;t, z) =
 Tf(s, x; t, z) and hence

 fa(s,x\t,z) = fa(s,x;t,z) ...(2.26)
 for 0 < s < t, x ? dD, z?D.

 Step 3. We_now take a(-, ) satisfying (Al) and 7(-, ) = (1,0,... ,0). For
 fixed t > 0, z ? D set

 Note that L|A is an operator with constant coefficients. Let q^z) denote the

 transition probability density function of the f L#t \, g~ J -diffusion in D.
 For any 0 < s <t,x ? D define

 Q(s,x;t, z) = q^z)(s,x]t, z) ... (2.28)
 In this step we prove some results concerning Q. Observe first that

 Q(s, x; t, z) = fa(s, x; t, z) - fa(s, x] t, z)

 ?rj>L+-+aLM.,(.+?l)!M)*, <? ? Jo a>n(t,z)(t-s)

 where ei = (1,0,..., 0). Also by (2.28) and Step 2

 \D^Q(s,x]t,z)\ <d(t^ sp^po^x^z) ...(2.30)
 for all 0 < s < t with (t ? s) <T,x,z ? D and any mult index a; because of the
 hypothesis (Al) it is clear that C\, C2 can be taken to be independent of (t,z).

 Lemma 2.4. For any bounded continuous function f on [0, oo) x D,

 Urn [ f(t, z)Q(s, x; t, z)dz = f(s, x) ... (2.31) *1? Jd

 for s > 0,x ? D, and

 Urn f f(s, z)Q(s, x; t, z)dz = f(t, x) ... (2.32) s?* Jd

 fort >0,x?~D.
 Proof. We will prove only (2.31); the proof of (2.32) is similar.
 We first consider the case when x ? D: that is x\ > 0. Note that

 I f I f??
 \ _f(t,z)fa(s,x;t,z)dz\<C / exp(-?2)(i? ? 0 ...(2.33)

 \Jd I Jxi/y/t^S
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 as (t - s) l 0.
 Next, as a; G D, suitably extending a,?, / (by symmetry) to [0,oo) x Rd so

 that continuity, same ellipticity constant and bounds hold, it can be seen that

 lim/ f(t,z)i?>i(s,x]t,z)dz ? f(s,x) ...(2.34) *1? Jd

 Also, as xi > 0 we have

 I f f?? (zl +Oi + Xi) I / / f(t,z)? --r^(?,(a;-|-aei);t,z)dadz

 = cf * exPU^U-,0
 ...(2.35)

 as (t - 5) | 0. From (2.29), (2.33) - (2.35) it follows that (2.31) holds when
 x?D.

 Now let x G dD. Then by (2.26) for all s, t

 ff(tfz)\ih{8,x;t,z) -ih(8,x;t,z)]dz = 0 ...(2.36) Jd

 To complete the proof we have to show that

 lim/ / f(t, z) 7 *'"' xj)i{s, ((0, x) + aei); t, z)rfa(fe = -f{s, x ?Is JdJo an{t,z){t-s) 2  )
 ... (2.37)

 First change variables by z' = (z ? x)/y/t ? s; since xi = 0, note that z' varies
 over D as z varies over D. Next put a' = a/^/t ? s and finally apply the (d? 1)
 dimensional transformation

 w=[Z(S,x)rl^-(z[ + a')l(S>x)},

 keeping z\ fixed, where 7 is defined by (2.13). It is then easily seen that

 l.h.s.of (2.37)

 = /(*,*) H H 4= (?T-^)3/2 (*! + ?')exP i" y +f ?*K ) dzid<*' Jo Jo V2^\an(s,x)J V1 K\ 2a? (*,*)]
 = ^?{s,x).

 D

 Lemma 2.5. 2>e? ? > 0 and / a continuous function on [0,?) x dD such
 that

 \f(r,V)\ < K\\ + (t - r)"^ {-( y}] (2-38)
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 for 0 < r < ?,77 ? dD, where k,K are positive constants. Set

 v(s,x) = - / / au(r,v)f(r)n)Q(s,x\r,'n)da('n)dr ...(2.39) ? Js JdD

 for 0 < s < t,x ? D where da(-) denotes the (d ? 1) dimensional Lebesgue
 measure on dD. Then v is continuous on [0,t) x D, and

 -^?v(s, x) = -f(s, x), x?dD,s <t ... (2.40) OXi

 Note. It can be shown that for 2 < i < d

 d_
 dx.

 1 fl f dQ
 -v(s,x) =2 a\\(r,n)f(r,n)?(s,x\r)n)dxj(n)dr

 for any x ? D and that dv/dxi is continuous over D. Hence by Lemma 2.5 it
 follows that v is differentiable in x over D; however, as is clear from Lemma 2.5,
 dv/dxi is not continuous at the boundary.

 Proof. By (2.30), (2.38), dominated convergence theorem and the Chapman
 Kolmogorov equation for Gaussian densities it is clear that v is well defined
 and is continuous on [0,t) x D; (by putting v(t, -) = 0 it is also continuous
 on [0,? x D). Differentiability at any x ? D is also similarly dealt with; in
 such a case one can differentiate under the integral, and in fact the derivative
 is continuous at any x ? D.

 By (2.29), (2.25), (2.26), (2.39) for any x ? dD,h > 0 we have

 T[v(s,x-{-hei) -v(s)x)\ n

 = ~T / /(r,77)7-^T'02(5,(x-r-ae1);r,77)dad(j(?7)dr. ...(2.41) hjs JdD Jo \r-3)

 Introduce the variables ol = a/h, r? = (rj ? x)/h) r' = (r ? s)/h2; since x ? dD
 note that 7/ varies over dD as 77 varies over dD. Take the limit in (2.41) as h J 0,

 and finally apply the (d ? 1) dimensional transformation 77" = a(s,x)~*[T)' ?

 a'7(s, x)] to get

 lim? \v(s,x 4- he\) ? v(s,x)\
 /40 ft

 roo r\ _/ -, -, r f^i\2

 K 'Jo Jo r' s/w jan{s,x) \ 2r'a?(5,x) J

 = -/(*,x)4= f HCV2e-*dtda' = -f(s,x). V7r Jo Jo
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 Lemma 2.6. (i) Let t > 0, z Z? fce fixed. Let $ be a continuous function
 on [0, t) xD such that

 |<D(r,77)| < K[l + (t-r)-V^0(r,7?;t,z)] ...(2.42)

 forr <t,7] D- Set

 V(s,x) = J [_<P(r,i1)Q(s,x;r,V)dr)dr ... (2.43)
 for 0 < s < t,x D. Then V is continuous on [0,?) x D and is once
 continuously differentiate in x over D.

 (ii) Let t, z, $,V be as above; in addition let $ satisfy

 |<I>M)-*(r,^ ...(2.44)
 for any r < t, 77,77' D. Then (s,x) \-> V(s,x) is in Ch2([0,t) x D).
 Proof, (i) In view of H.30), (2.42), Lemma 2.4, dominated convergence

 theorem and the Chapman-Kolmogorov equation for po, the first assertion can
 be proved easily.

 (ii) This can be proved as in Theorems 4 and 5 of Chap. I, Sec. 3 of Friedman
 (1983), pp. 9-13; note that integrability of the terms involved in the proof follow
 from (2.44) and the Chapman-Kolmogorov equation for po- [_
 Step 4. We now consider a(-, ), fc(-, ), c(-, ) satisfying the hypothesis (Al) -

 (A3); assume 7(-, ) = (1,0,..., 0) and p = 0.
 Let Q be given by (2.28). For fixed t > 0, z D we have

 MQ(s, x;i, z) := ( ? + Lx j Q(s, x;t, z)
 1 d d2

 = 2 ?fa(s>x) " **(*'z^dxdxq(t^S)x; *' ^ (2-45)
 d q

 + ?L 6*(5'x) ??9(m)(?i ^i*> *) + c(5> ^)9(m)(5, a;; t, z)

 for 0 < s < t,x ? D. By the estimate (2.30), Lipschitz continuity of a\j and
 boundedness of fc,-, c we get

 \MQ(s,x]t,z)\ < C[\ + (t - s)-l'2]po(s,x;t, z) ... (2.46)

 for 0 < s < t such that (t ? s) < 1 and all x,z ? D.
 Now put (MQ)i(s,x;t,z) = MQ(s,x;t, z) and define inductively for n =

 2,3,...

 (MQ)n+1(5, x; t, *) = ^ ?mQ(s, x; r, V)(MQ)n(r, m *, ^)^dr ... (2.47)
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 Using the estimate (2.46), Chapman-Kolmogorov equation for po> and properties
 of beta integrals, we get

 \(MQ)n(s,x;t,z)\ < Cn[T (?)]-W*.*;M) ... (2.48)
 for x, z ? D, 0 < (t - s) < 1. Define

 OO

 $(s, x; t, z) = ]T(MQ)n(s, x; t, z) ... (2.49)
 n=l

 for x, z ? D,0 < (t - s) < 1. From (2.48) it is clear that the series in (2.49)
 converges uniformly over x,z ? D,0 <t ? s < 1; consequently 3> is continuous
 and

 \$(s,x;t, z)\ < C(t - s)~1/2po(s,x;t,z) ... (2.50)
 for x, z ? D, 0 < t ? s < 1. Moreover from (2.47), (2.49) it is easily seen that $
 satisfies the integral equation

 $(s, x; i, 2) = MQ(s, x; t, 2) + / l_MQ(s, x; r, 77)$(r, 77; t, z)drjdr ... (2.51) Js Jd

 for x,z ?D,0 <t-s < 1.
 Using arguments similar to those on pp. 16-17 (in the proof of Theorem 7,

 Chap I, Sec. 4) of Friedman (1983), and the estimates (2.30), (2.46) and (2.3)
 we can show that

 \MQ(s,x;t,z)-MQ(s,x',t,z)\ < K\x-x,\(t-s)-:i/A\po(s,x;t,z)-rpo(s,xf;t,z)]
 ... (2.52)

 and consequently by (2.51)

 \$(s,x;t,z) -$(s,x';t,z)\ < K\x - x'\(t - s)~3/4\po(s, x;t, z) +po(s,x'\t,z)}
 _ ... (2.53)

 for x, x' ? D, 0 < t - s < 1.
 Yor? <t-s<\,x,z?D define

 ?(5,x;t, z) := Q(5,x\t,z)+ I Q(s,x;r, 77)4>(r,77;t, z)dndr ... (2.54)

 By Lemma 2.6, Lemma 2.4 and (2.51) it is seen that

 ? ? +LX) k(s,x;t,z) = 0, x ?D,z?D ...(2.55)

 By (2.28), (2.54)

 -? k(s,x;t,z) = 0, x?dD,z?D ...(2.56) OX\

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Tue, 02 May 2017 11:33:48 UTC



 358  S. RAMASUBRAMANIAN

 Now let / be a bounded continuous function on D. Then by (2.50), (2.30) we
 get

 mf(z)Q(s, x; r, V)$(r, m t, z)dVdrdz\ < C(t - a)1'2 J

 Therefore by (2.32)

 lim / f(z)k(s, x; t, z)dz = f(x) ... (2.57) sil Jd

 for t > 0,x G D. From (2.55) - (2.57) it follows that k given by (2.54) is the
 fundamental solution for ((d/ds) + L) with the boundary condition g|- = 0, in
 any time interval of length < 1.

 If (t ? s) > 1, then k can be extended in an obvious manner using the
 Chapman-Kolmogorov equation. It is also clear that & has the required reg
 ularity and satisfies (2.4). Thus the theorem has been proved for the case
 7 = (l,0,...,0),p = 0. D

 Step 5. Take a,byc satisfying the hypotheses (A1)-(A3); let 7 satisfy (A4),
 and p = 0.

 Since p = 0, the fundamental solution for ((d/ds) + L, J) is also that for
 ((d/ds) -r L,vJ) for any constant v. So without loss of generality we may
 take |?)?z7t| < // < Ai/(8d3A2), where a is a multi-index such that \a\ < 3.
 Consequently,

 |7(S)5)-7(5,^)|2<(d-l)/i2|x-x'|2 ...(2.58)
 for s > 0,x, x' G dD. Let 0 < 6 < l/(2d//); let <?> be a smooth function on
 (?l,oo) such that (j) is non decreasing, \<f>'\ < 1, (?>(r) ? r\ir<\9 and <j>(r) = 0
 if r > 0. Define T:[0,oo)xo-* [0,00) x D by

 (s, xi, x2,..., xd) = T(s, xi, x2,..., xd)

 = (5, xi, x2,..., x?) 4- 0(xi)(0,0, 72(.s, x),..., 7?(s, x)) ... (2.59)

 In view of (2.58) it can be shown that T is a C2-diffeomorphism.
 Define (d+ 1) x (d+ 1) matrix A(-, ) by j4o?(s,x) = Ai0(s,x) = 0,0 < i <

 d, ^4i;(cS,x) = Oy(s,x), 1 < ?, j < d. Put

 ?(?,?) = jf (r-^?.??^r-^?.??w^r-^?.?)), ... (2.60)

 where jr is the Jacobian of the transformation T. Note that Aoi(') ) = A'o(v)
 0)0 ? ? ? d- Thus it is easily seen that the operator (? 4- L) in the (s,x)
 variables is transformed to

 d - d 1^.^, s2 A~,~ ~% d
 ? + L= ? + -V %(*, x)-^-^- + V bi(s,x)? + c(?,i), ... (2.61) 95 95 ij=i dxidxj i=l dxi
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 with a)0)e satisfying the hypotheses (Al) - (A3). It is also clear that the
 boundary operator J is transformed to djdx\. (The proof in Ramasubramanian
 (1986, 1988) for the time homogeneous case can easily be extended to the present
 case.)

 In view of Step 4, the above transformation and as the first three derivatives
 of x-variables with respect to x-variables are bounded, it now follows that the
 theorem holds in this case. rj

 Lemma 2.7. Let a, 6, c, 7 satisfy the hypotheses (Al) - (A4)i let p = 0.
 Let k be the fundamental solution in this case. Let f be a continuous
 function on [0,?) x dD satisfying (2.38). Set

 v(s>x) = ? / / an(r,r))f(r,n)k(s,x\r,n)d(T(n)dr ...(2.62) ? Js JdD

 for 0 < s < t, x ? D. Then v is continuous on [0,t) x D and Jv(s,x) =
 -f(s)x),0< s <t,x ? dD.

 Proof. In Step 5 note that au(s,x) = a\\(s,x) for any x ? dD. Therefore
 it is enough to consider the case J = ?j?-; in such a case k is given by (2.54)

 Now by (2.30), (2.38), (2.50) note that

 < K f i [l + (i-r)-?/V^ Js JdD L

 < ?'[(t-5)1/2+?,(5,(0,x);t>(0,0))

 po(s,x']r,n)dxj(r?)dr
 ... (2.63)

 <oo

 for all x' sufficiently close to x = (0,x) ? dD] (in the above we have used
 Chapman-Kolmogorov equations for the (d? 1) dimensional Brownian motion)
 FVom (2.63), dominated convergence theorem and Lemma 2.5 the required con
 clusion now follows.

 Note. Lemma 2.7 is a slight generalisation of Theorem 1, Chapter 5 (p. 137)
 of Friedman (1983) concerning single layer potentials.

 Step 6. We now consider the general situation in the half space. Let A;

 denote the fundamental solution for I (^ + L) ,X?7?(-, )^:)- Note that (2.4)
 holds for k; (that is, with p replaced by k).

 Put (Nk)i(s,x;t,z) := Nk(s,x;t,z) \? p(s,x)k(s)x;t) z), and inductively
 for n = 2,3, ?

 (Nk)n^(s,x\t,z) = - I l Nk(s,x]r)n)an(r,n)(Nk)n(r)n\t,z)da(r])dr ? Js JdD
 ...(2.64)
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 For a,? > 0,0 < s < t note that

 exp

 Observe that

 [fa2 ?2 \] ^ [ (a
 tiw^)+w^n^xprT{

 -?) 21
 2(*-*)J  ... (2.65)

 Po(s, x; t, z) = p{q\s, xi; t, zi)p^\s, x\t,z) ... (2.66)
 where p0 ' is the transition probability density of the reflecting Brownian motion

 in [0, oo), and p\ ' is that of the (d? l)-dimensional Brownian motion. Conse
 quently using (2.65), (2.66) and the estimate (2.4) for k, one can prove that for
 0 <(t-s) < 1,

 \(Nk)2(s, x;t, z)\ < C(t - sfl2po(s,x;t, z).

 Proceeding inductively one can show that

 \(Nk)n(s,x;t,z)\<Cn[T(^)y1p0(s,x]t,z) ...(2.67)
 Put

 oo

 V(s,x',t,z) = ^(iVfc)n(5,x;t,z), 0<s<t,x,zGD ...(2.68)
 n=l

 Note that # is well defined and that by (2.64)

 V(s,x',t,z) = Nk(s,x;t,z) + - / / Nk(s,x;r,n)aii(r,7])^(r,mt,z)da(7j)dr ? Js JdD
 __ ... (2.69)

 Now define for 0 < t ? s < 1, x, z G D,

 p(s,x;t,z) = k(s,x;t,z) + - / / k(s,x]r,v)aii(r,n)V(r,mt,z)dxT(ri)dr ? Js JdD
 ... (2.70)

 By (2.69) and Lemma 2.7 it is clear that Jxp(s,x;t,z) = 0, x G dD. Using the
 estimate (2.4) for k and proceeding as in Step 4, the proof can be completed.
 Thus Theorem 2.1 is now proved.

 Our next objective is to prove a regularity theorem; for this we need a few
 lemmas.

 Lemma 2.8. Let T(M) fce defined by (2.13), (2.14) as in Remark 2.3
 Suppose

 i=2

 au(t,z)
 an(t,z)

 1
 <2i  ...(2.71)

 for all t > 0, x, z G D. Then

 |(T(M)2r-T(M)x|2>-|T(M)(^-x)|2  .. (2.72)
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 for all t > 0, x, z ? D.

 Proof. Observe that

 |(rM*)* - rMx|2 = 1 |r(M)fa - x)|2 + /( ,,?*)

 where & = fa + xj), ? = fa - x<), t > 2, f = (6.&) and

 /(?i.I?*) = ^i+?|?|2 + ^2?2 + 6 <7,I> +[42l2 + 42l6]|7|2 + 42l <7,!>
 with 7 = 7(t,z). To prove the lemma, it is enough to show that /(&,?;2) > 0
 for all X! > 0, (x2,..., xd) ? Rd_1, for any fixed z\ > 0, (z*?,..., zd) ? Rd_1,t > 0.

 Fix z ? D,t > 0. Then 7(t, z) can be taken to be a fixed vector 7 ? Rd_1

 with |7|2_< ?.
 If < ^y,^ >> 0, there is nothing to prove. Set

 fltti.D = 5?? + \\W + ?ItI2*2 + % < 7,1 >
 Observe that

 /(?l,*) = 0(6,0 + [4?? + filil?2 - 4x! < 7,C >

 If < 7,? >< 0, then it is enough to prove g(?i,l;) > 0 for any & > 0,? Rd~l.
 Under the assumption |7|2 < ? it is easy to see that ? = 0 is the only

 stationary point of g, that the matrix of the second derivatives of g is positive
 definite. And since g(0) = 0, the conclusion follows.

 We will make the following assumption for the remainder of this section.
 It may be mentioned that our hypothesis is stronger than necessary, especially
 concerning smoothness of 6, c, p.
 (A6) : a{j, 6j, c, 7,, p are Cy-functions on their respective domains.

 Lemma 2.9. Let a(-, ) satisfy (Al), (A6), (2.71). Let Q be given by
 (2.28). Then for any to > 0 there exist constants C\,C2 such that

 \D^Q(siX;t,z)\ = \D?zDtQ(s,x;t,z)\ . .
 < c,(t-s)-^w/>po(s,xrt,z) (2J3)

 for 0 < s < t with (t ? s) < to,x,z ? D, any multiindex a and multiindex ?
 with \?\ < 2.

 Proof. Without loss of generality take ?0 = 1. Let rjj^fa^fa be as in
 Remark 2.3. Note that

 (T(M)z)* - TM* = z*-x + (z1- x07(t, z) ... (2.74)
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 Using (2.3), (2.24), (2.74) it is easily seen that

 9C
 dzk (s,x;t,z)  < K(\z*-x\ + \z*-x\?)

 d2
 dxidzk C(5,x;t,z)  <K(\ + \z*-x\)

 93
 -C(5,x;i,z) <K

 ...(2.75)

 ... (2.76)

 ... (2.77)
 | dxtdxjdzk

 for 0< 5 <t,x,z ?D,l <i,j,k<d. Also DJ ^C = 0 for \a\ > 3.
 By the preceding lemma, (2.22), (2.75) - (2.77) it follows that

 \M*> *',t,z)\ < Ci(t - s)-d>/2exp (-Cy_"g)X|2) - - - (2.78)
 D^?^2(s,x;t,z)  dzk Daxi>2{s,x;t,z)\

 < C^t-sT^Wexp^y^Zf}
 _ ... (2.79)

 for 0 < s < t, multiindex a, x, z ? D, k = 1,2,..., d.
 In a similar fashion we get

 |Vi(5,.T;i,2)|<C1(t-S)-d/2exp  \ (t-s) )  ... (2.80)

 ???^i(s,x;i,2)  ?-D^(s,x;t,z)\ ozk '

 < Cl(t_?)-(W+rfM)/2exp|_Cfc??J
 ...(2.81)

 with the same notation as before.

 As zi > 0,xi > 0,r > 0 using (2.78), (2.79) it can be proved that

 z9zfcy0
 -i?j2(s)(x-rrei)]t,z)dr lo an(t,z)(t-s)

 < Cl(? - 5)-W+^)/2exp |-C2'f_" X|2 } (2.82)
 with the usual notation. From (2.29), (2.79), (2.81), (2.82) it is clear that (2.73)
 holds when |/3| = 1. The case \?\ = 2 is treated similarly.

 Theorem 2.10. Let (Al) - (A6) hold, (i) Thenp(s)x;t)z) is continuously
 differentiable in z-variables over D, and for any T > 0 and any compact
 set H in D there is a constant C such that

 \DaxD?zP{s,x;t,z)\ < C(?-5)-(W+W/2po(.s,x;t,2)  . (2.83)
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 for 0 < s < t with t ? s < T, x ? D (resp. x ? D),z ? H,a a multiindex
 with \a\ < 2 (resp. \a\ < l),/3 a multiindex with \?\ < 1.

 (ii) Moreover p(s,x;t,z) is thrice continuously differentiate in
 x-variables over D, and for T > 0 and compact set H in D there is a
 constant C such that

 \DZp(s,x;t,z)\ < C(t-?)-3/2po(?,a;;t,z)  , (2.84)

 for s,t as before, x ? H,z ? D and any multiindex a with \a\ = 3.
 Note. The variance parameter C2 of po does not depend on H,s^t,x,z.
 Proof, (i) Without loss of generality we may assume (2.71) holds; for oth

 erwise transform the variables (xi, x2,..., x?) ^ (Kx\, (x2/K),..., (x?/K)) for
 a suitable constant K.

 Therefore by the preceding lemma, (2.3), (2.45), Lipschitz continuity of a,y
 we get

 <C(t-s)~^p0(s ,x\t,z) dzk MQ(s,x]t,z)  , (2.85)

 for 0 <t-s < \,x?D,z ? D.
 We first consider the case 7 = (1,0,..., 0),p = 0. Observe that

 / _MQ(s,x;r,v)?MQ(r,ri]t,z)dridr

 = / lMQ(s, x; r, 77)?MQ(r, 77; ?, z)di]dr

 fl ? dQ
 + / _MQ(s,x]r)r))c(r)r])-?-(r)ri;t,z)dridr

 J{t+s)l2 JD ?zk

 JT{J^s)l2JD
 MQ(s)x\r,n)bl(r,r?) drjidzt

 Q(r,r)',t,z)dqdr

 >"  d2

 + ? Yl / LMQ(S, x\ r, ri)[aij{r, 77) - atj(t, z)]
 2 ij?i J(t+*)/2 Jd

 Q(r,n\t,z)dndr

 d6
 Q(r,7)\t,z)dqdr

 drjidrjjdzk
 = h + I2 4-/3 + h + h

 By (2.46), (2.73), (2.85) it is easily seen that

 VA^c?-syWtoiwuz)
 \h\<Cp0(s,x;t,z)

 , (2.86;

 , (2.87)

 (2.88)
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 Let H be a compact subset of D. Note that

 \D?DfiQ(r,V;t,z)\<Cpo(r,V;t,z)

 for 0 < r < t, z G H, 77 G dD any multiindices a, ?.
 By (2.73), (2.85), (2.89) and the divergence theorem

 ... (2.89)

 \h\ < f I J(t+s)/2 Jd

 9
 S -^ lbi(^v)MQ(s,x;r,n)] 977,

 + ? / / |MQ(5,x;r,77)fc?(r,77)|. i J(t+s)/2 JdD /(t+5)/2

 < Cpo(s,x',t,z)

 In a similar fashion it can be shown that

 |/4| < Cp0(s)x]t,z)

 ^Q(r,77;i,z)

 dzk Q(r,mt,z)

 dndr

 da(rj)dr

 ... (2.90)

 ...(2.91)

 By an analogous argument, but with divergence theorem applied twice and using
 Lipschitz continuity of at;, we get

 IhlZCit-syWpofaxittz)  . (2.92)

 From (2.86) - (2.92) it follows that (MQ)2 is continuously differentiable in z
 and that

 ^(MQ)2(5,x;*,z)| = \J J_MQ(s,x]r)V)-^MQ(r,V,t,z)dr1dr
 < C(t-s)~ll2po(s,x]t,z)

 __ ... (2.93)
 for any 0 < t ? s < l,x ? D, z ? H. By (2.93) and iterating it is easily seen
 that (MQ)n is continuously differentiable in z and that

 _9_
 dzk (MQ)n(s,x;t,z)  <Cn[r{^)y1p0(six;t,z) ...(2.94)

 for s,t,x,z as before and n > 3. Consequently by (2.49), (2.85), (2.93), (2.94)

 19$
 9zjb (s,x;t,z)

 9MQ(s,x;t,z) + d(M?> dzk  dzk  (s,x]t,z) + ^?(MQ)n(s,x',t,z)
 n=3

 < C [(? - s)'1 + (t- s)'1'2 4-1] p0(s) x; t, z)
 ... (2.95)
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 Next, observe that by an argument similar to the derivation of (2.93) it can be
 shown that

 rt r I a

 / ./ |Q(^;r,77)?-MQ(r,mt,z) Js JD I VZk  drjdr < C(t - s)~i/2po(s,x;t,z) ... (2.96)

 Therefore by (2.30), (2.54), (2.95), (2.96) it follows that

 dk .

 )-Q(s,x]t,z) + J J^Q(5,x;r,77)?^^^(r,77it,z)d77dr
 d_
 dzi

 < C(t-s)-l'2po(8,x;t,z)
 _ ... (2.97)

 for 0 < t - s < 1, x ? D, z ? H.
 Because of our hypothesis (A6) a tedious but routine argument gives

 (i)

 Dlfaia, x; t, z) = ?D^(s, x; M) + ? ^'^ (*> *',*,*) (2-98)
 where

 \^Q'\s,x;t,z)\<K[l + (t-s)-1>2]po(s,x;t,z),
 (i)

 ,y^ indicates summation over multiindices a' which are subsets of a with |a'| <
 |a| ? 1, for ? = 1,2, x ? D, z ? D, 0 < s < t and multiindex a with 1 < |a| < 4.

 Therefore
 (2)

 D?Mfa(s, x;t,z) = Y, f?D?M?)(s,x;t,z) ... (2.99)
 (2)

 where ?J indicates summation over multiindices ? such that \?\ < \a\ + 2, fp
 and their appropriate derivatives are bounded functions and

 \^\s, x; t, z)| < K[\ + (t - s)-1'2]p0(s, x; t, z)

 for s,t,x,z,l as above, and |a| = 1,2.
 It is also easily seen that

 \D?Mfa(s, x; t, z)| < K(t - ?)"(|a|+1)/2pb(?, *? M) (2-100)

 for s,t,x,z,l,a as above. (For proving (2.100) one does not need (2.98) or
 (2.99); also twice differentiability of o^, 6, would do.)

 Using (2.98) - (2.100), divergence theorem and arguments similar to the
 derivation of (2.95) - (2.97) we get

 \D?xD?k(s,x;t,z)\< C(t- s)-^+W'2po(s,x;t,z) ... (2.101)
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 for 0 < t - s < 1,x G D (resp. D), z?H,a,? multiindices with \?\ < 1, |a| < 2
 (resp. \a\ < 1).

 We now assume that 7 = (1,0,..., 0) but p is no longer zero. Define (Nk)n
 by (2.64).

 As z G H C D,rj G 9?), using (2.97) and arguments similar to the derivation
 of (2.93) - (2.95) it can be shown that

 dzi ^(s,x;t,z) < Kpo(s,x]t,z)

 and consequently

 _9_
 dzi p(s,x;t,z)  <K(t-s)-1/2pQ(s,x;t;z)

 ,.. (2.102)

 ...(2.103)

 for 0 < t - s < 1, x G D, z G H.
 Now suppose x ? D. If D2 involves only tangential derivatives, then D%Nk(s, x; r, 77)

 can be expressed as a sum of terms of the type D^^ with |a| < 2, D? involving
 only tangential derivatives,

 |C(a)(5,x;r,77)| < K[\ + (r - s^po^x;^?)

 Applying divergence theorem in dD = Rd_1 and arguing as before we get

 92 9
 dxidxj dzk

 p(s,x]t,z) <K(t-s)-^2p0(s,x]t,z)  ... (2.104)

 Suppose D2 involves d/dxi or d2/dx2, then again argue as before, applying the
 divergence theorem in D; once again the estimate (2.104) is obtained.

 For x G dD, by Lemma 2.7

 ? - / / Nk(s,x]r)7})an(r,n)?Nk(r)mt,z)dcr('n)dr

 = -p(s,x)?p(s,x)k(s,x;t,z)  ... (2.105)

 To estimate the tangential derivatives the procedure given in the preceding
 paragraph can be used. It is now not difficult (but tedious) to see that arguments
 as given in the earlier paragraphs would lead to the required estimate (2.83);
 the details are omitted.

 The general case can be reduced to the case of 7 = (1,0,..., 0) as in Step 5
 by a suitable sufficiently smooth diffeomorphism.

 Proof of (ii) is similar.
 Remark 2.11. Nonnegativity of p can be proved as in Section 8 of Ito (1992),

 with the obvious modifications needed for considering the backward parabolic
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 equations. Strict positivity can be established using the maximum principles on
 pp. 173-174 of Protter and Weinberger (1984).

 Proceeding as in the proof of Theorem 16, Chap I, Section 9 of Friedman
 (1983) it can be shown that a unique solution exists for problem (2.6) in the
 class of functions satisfying

 / /_\u(six)\ exp(?K\x\2)dxds < oo Jo Jd

 for some K > 0. Using this uniqueness property it can be proved that p satisfies
 the Chapman-Kolmogorov equation. We omit the details.

 3. On mixed problem

 In this section we obtain some auxiliary results concerning Green function
 and Poisson kernel for (d/ds) + L with mixed boundary conditions in certain
 bounded domains in the half space.

 Fix T > 0. We consider the mixed problem in [0, T] x G where G = B(0 :
 R)C)D,ot G is#the diffeomorphic image of B(0 : R)f\D under a diffeomorphism
 as in Step 5 of previous section, with R > 0 and D denoting the half space. Let
 diG = dG H dD, c\G = dG\dD. (Such a diffeomorphism maps D onto D and
 is identity on dD.) We make the following assumption.

 (A7) : The coefficients of L (resp. J) are restrictions to [0, T] x G (resp.
 [0,T] x diG) of a,b,c (resp. 7,p) defined on [0, oo) x D (resp. [0,oo) x dD)
 satisfying (Al) - (A6).

 Remark 3.1. For applications in Section 4, the coefficients a,b,c may be
 taken to be defined on [0,T + e] x B(0 : R + e) satisfying (Al) - (A6). In
 such a case one can define a, 6, c on [0, oo) x D so that a, b, c agree with a, 6, c
 respectively on [0, T]xB(0 : R) and satisfy (Al) - (A6) on [0, oo)xD\ this can be
 done using the procedure given on p. 81 of Friedman (1983). Similar comments
 apply to 7, p. Thus (A7) is not a restrictive hypothesis for our purposes.

 Lemma 3.2. Let G be a diffeomorphic image of B(0 : R)f)D as described
 above. Let T > 0 be fixed. Let 7(-, ) == (1,0,... ,0). Assume (Al) - (Al).
 Let f be a bounded continuous function. For s < T, x' ? G\(b\G) define

 w(s,x')= [ I f(t,z)Du{z)p(s,x']t,z)da(z)dt ...(3.1) Js JfyG

 where da(-) is the surface area measure on t\G, and

 Du(z)p(s,x';t,z) =<a(t,z)n(z), V'zp(s,x';t,z) > ...(3.2)
 is the derivative in the inward conormal direction (at z ? t\G) in z
 variables. Let x ? t\G be such that Xj > 0. Then for x' ? x with x' ? G
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 we have

 limw(s, x')= ? / f(t, z)Dviz)p(s, x\ t, z)da(z)dt - -f(s, x) ... (3.3) x^x Js JhG ?

 Proof. For x' G G\(d2G) note that d(xf,d2G) > 0 and hence (3.1) is well
 defined.

 Let x G d2G with xi > 0 be fixed and x' ? x with x' G 2?. We can assume
 that there is a compact neighbourhood H of x such that x',x If,H C D. Let

 H = HC\c\G and J?c = (d2G)\H. Then

 w(?, x;) = / / f(t)z)D?(z)p(s,x,]t,z)da(z)dt
 Js J^

 + f(tyz)Du{z)p(s,x,;t,z)da(z)dt Js Jw
 = wo(^ z') 4- wc(s, x')

 ...(3.4)

 As sup {|A,(*)p(s,x'; t, z)| : 0 < 5 < t, z G i/c} < oo, we get

 lim wc(s, x') = / /(i, zJA^pfa, x; t, z)do(z)dt ... (3.5) *'-* Js Jh<
 Now by (2.29), (2.54), (2.70) we have

 Wq(s,x')

 = / f(t,z)Du{z)tpi(s,x,;t)z)da(z)dt

 - f(t,z)Dv{z)i)2(8,x',t,z)d<j(z)dt

 +2 J Jf(t,z)Du{z) U?? ^(tz]a^2^{x'+ ??O;*?*)**} ^W*
 -rJJf(t,z)DHz) ?J ?F2(s,x,]a,^t)z)d^da\Mz)dt

 = Ji(x') - J2(x') 4- J3(/) +?(s') //six') + /4(x)
 ...(3.6)

 where

 F2(s,x';a,?;t,z) = Q(*, x'; a, ?)$(?, ?;?,z),
 F3(s, x'; r, 77; t, z) = -Q(s, x'; r, 77)011 (r, 7i)*(r, 77;i, z),

 ?
 F4 (s, x'; a, ?;r, 77; t,z) = -Q(s, x'; a, O$0*ifr r? ^nfa r?).^(r,m t,z),
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 and J J denotes integration over [s,T] x H w.r.t. dtda(z).
 Note that by taking local coordinates at x

 / po(s,x'-t,z)d(j(z)<C[\ + (t-syll2) ...(3.7)

 for all x' sufficiently close to x, where po is as in Theorem 2.1.
 By (2.65), (2.102), (3.7) we get

 < K / / / / po(s,x,]r,rj)po(r)mt)z)(kT(n)drda(z)dt J J Js JdD

 < KJ Jp02\s,x-';t,z)j\r - s)-V\t - r)~^
 exp  /_ J?$_ _ _?!_} drda(z)dt \ 4(r - s) 4(t - r) J W . . ?) 4(t

 < #[(T - 5)3/2 + (T - 5)]

 where // denotes integration over [s,T] x H w.r.t. dtda{z). Consequently

 UmJ3(x') = I j j j f{t,z)Dv(z)F3{s,x;r,r?\t,z)da{r,)drda{z)dt ...(3.8)
 Observe that we may write

 h{x')

 Y,{MQ)M^z)  d?da.dcr(z)dt III [f(t1z)Q(s,x,;a,ODJ<z) Js JhJs Jd
 fT p r(s+t)/2 f

 + / / / //(^^(?^^.O^wMQia^jt^JdedaArWift Js^jhJs Jd
 rT ? r(s+t)/2

 ~TJHJit

 + I I ? Lf(^z)Q(s,x,]a^)Du{z)MQ(a^;t)z)d^daM^ Js JH J(s+t)/2 JD /(s+t)/2
 I2l(x')-rl22(x')-rl23(x')

 ...(3.9)
 Using (2.93), (2.94), (3.7) in the case of Jfei, and using (2.85), (3.7) in the case
 of I22 it can be seen that

 lim/21(x')+/22(x')

 = / / / l?{t,z)Q(s,x]a)i)Dv{z) Js JhJs Jd  Y,(MQ)j(a^t,z) U=2
 d?dada(z)dt
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 ?T ( r(t+?)/2 f
 + / / / _f(t,z)Q(s,x;a,0Du{z)MQ(a,^t)z)d^dad<7(z)dt Js JhJs Jd

 ...(3.10)
 Using (2.99), divergence theorem and estimates for derivatives of Q we get

 liml2s(x') x'~>x

 = / / / i_f(t,z)Q(s,x;a,t)D,/MMQ(a,t-,t,z)d4daMz)dt Js Jh J(s+t)/2 Jd
 ...(3.11)

 In an analogous manner it can be shown that

 /?m/4(x/) x'--*x

 = / / / / / /_/(M)A,(z)/U5>z;a,?^^ Js JhJs JdDJs JD
 ...(3.12)

 Next, observe that
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 Since a(t, z) 1 has bounded derivatives, an argument as in p. 396 of Ladyzen
 skaja, Solonnikov and Uralceva (1968) give that for x ? t\G,z ? t\G,

 \Dv{z)fa(s,x;t,z)\ < K(t - sf-^po^x^z) ... (3.15)
 for any sufficiently small 6 > 0. As x ? D) by the jump relation for single layer
 potential (see Sections 15 and 16, Chap. IV of Ladyzenskaja et al. (1968)) it
 now follows that

 Hm Ja(x') = J J f(t,z)Du{z)fa(s}x]t)z)da(z)dt-^f(s)x) ...(3.16)
 Note that (3.7), (3.15) imply well definedness of r.h.s. of (3.16). Now well
 definedness and validity of (3.3) follow from (3.4) - (3.16). rj

 Lemma 3.3. Assume (Al) - (Al); let G,7 be as in the preceeding lemma.
 For x ? t\G with x\ > 0 and z ? d2G

 \Dv{z)p(s,x',t,z)\ < K,(t - 3)V-?po{3,xit,z)+K2 ... (3.17)

 for any sufficiently small 6 > 0.
 Proof. Follows from (3.15) and the arguments of the preceding lemma, rj
 Let G, 7 be as in the preceding lemmas. Let t > 0, z ? G\(c\G) be fixed.

 Put _
 //i(s,x;r,77) = -2p(s,x;r,77) x,n ?G.

 Define inductively for n = 2, 3,..., 0 < s < t, x ? d2G,

 Lin+<l(s,x;t)z) = - / / [Du{r])pl(s)x]r)7])]^n(r)7]]t)z)da(r])dr ...(3.18) Js Jd2G

 As z $l t\G, note that sup{p0(r, n\t,z) \ s <r <t,n ? c\G} < oo. Consequently
 by Lemma 3.3 and (3.7) it follows that \p2(s, x\t,z)\ < K(t ? s)6 for all x ?
 d2G, s <t. Proceeding inductively it can be shown that

 i'^'^^T?briy (3-19)
 for all x ? t\G, s < t. Define

 CO

 p,(s,x\t,z) = 2j/in(s,x;?,z), s <t,x ? t\G ... (3.20)

 By (3.18), (3.20) it is clear that p satisfies the integral equation

 ?(s, x; t, z) = -2p(s, x]t)z)+2 / [A^pfa, x; r, 77)] p(r, 77; t, z)dxj(n)dr Js JdiG
 ...(3.21)
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 for ail 0 < s < t, x G 92*3.
 We are now in a position to prove the following result concerning a mixed

 boundary value problem.
 Theorem 3.4. Assume (Al) - (A7); let G = B(0 : R) f)D. Then there

 exists a function pc(s,x;t,z) defined for 0 < s < t,x ? G,z ? G\(c\G)
 satisfying the following :

 (i) pe is jointly continuous in its arguments;
 (ii) (s,x) i~* pa(s,x;t^z) is in C1,2((0,t) x G) for fixed t,z;
 (Hi) pe is continuously differentiate at any x ? c\G, for s < t,z ?

 (iv) for any bounded continuous function f whose support is contained
 in G\(c\G) let

 u(s,x)= _f(z)pG(s,x;t,z)dz; ...(3.22) Jg

 then u ? C1,2((0,t) x G) flC?,([0,?] x G) and is the unique classical solution
 to the problem

 (?-s-rL)u(s,x) = 0,x?G,s<t
 Jxu(syx) = 0, x G diG,s < t
 u(s,x) = 0,x ? c\G,s <t
 Urn u(s,x) = f(x),x?G

 S"f?

 ... (3.23)

 Moreover such a function pg is unique.
 Proof., Let G denote a diffeomorphic image of B(Q : R) D D as in Lemma

 3.2; let 7 = (1,0,...,0). For 0 < s <t,x,z ?G\(c\G) define

 v(s,x;i,z) = / / [Du(rj)p(s)x')r,T])]fi(r,mt)z)da(Ti)dr ...(3.24) Js Jd2G

 where p, is given by (3.18), (3.20). For fixed t > 0,z g (d2G), by (3.19) note
 that sup {//(r,rj;t,z) : s < r < t,n ? d2G} < 00. Hence by (3.21) and Lemma
 3.2 it follows that

 lim ?(s,x;?, z) =p(s,x0;t,z) ... (3.25) x?*x0,xGG

 for 0 < ? <t,x0 ?d2G.
 It is not difficult to verify that

 (j- + Lj v(s,x;t, z) = 0,x?G,s<t ... (3.26)
 Jxv(s, x; t, z) = 0, x G diG% s <t ... (3.27)

 lim v(s, x; t, z) = 0, x G G ... (3.28)
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 Now define pc by

 pG(s, x; ?, z) = p(s, x; t, z) - v(s} x; t,z) ... (3.29)

 for 0 < s < ?, x G G, 2 ? G\(t\G). It is clear that pc satisfies (i) and (ii); also
 u defined by (3.22) satisfies (3.23). As the domain G is bounded, by appropri
 ate maximum principle (see Protter and Weinberger (1984)) uniqueness of the
 solution to (3.23), and consequently uniqueness of pc follow.

 We will now prove (iii); it is enough to show that v defined by (3.24), (3.25)
 is continuously differentiable at any x ? d2G) for s < t, z ? G\(c\G). Set

 vQ(s,x) = v(s,x\t,z), x ? dG\(c\G),s < t, ($$$)
 = p(s)x;t,z), x ?dGn(c\G),s <t

 By (3.25) - (3.28) note that v is the solution for the first boundary value problem

 for (Jj 4- L) with boundary data vq. By Theorem 2.10 note that vq is thrice
 continously different iable at any x ? 92G; (such an x will have x\ > 0). Also
 observe that the proof of smoothness at a boundary point in Theorem 7, Chap.
 4 (pp. 127-128) of Friedman (1983) involves only a neighbourhood ofthat point.
 Consequently from the proofs of Theorem 7, Chap. 4 and Theorem 7, Chap. 3
 of FViedman (1983), it now follows that v is continuously differentiable at any
 x?b\G.

 Thus the theorem is proved in this case. The general case can be reduced to
 this case by an appropriate diffeomorphism as in Step 5 of the proof of Theorem
 2.1. D
 Lemma 3.5. Assume (Al) - (Al); let G be as in the preceding theorem.
 Then Pg(s} x\t,z) can be defined for z ? G, 0 < s <t,x ? G^c^G); moreover
 (t,z) ?-+ pG(s,x\t,z) is inC1'2((s,oo)xG) for fixed s > 0, x ? G\(d2G), andpg
 is continuously differentiable at any z ? t\G for fixed s <t,x ? G\(c\G)
 Proof. Observe that the formal adjoint of L is given by

 1 d d2
 ?j=i l 3
 d d  .(3.31)

 J2 ;r-(M?, z)g(t? z)) -r c(?, z)g(t) z) dzi
 Set

 t=i

 d

 b*(t,z) = MM)-^0?ai?(*>*)i -i = l,2,...,d, 3=1 Zj
 h)u \ <a(t,z)n(z),n(z)> 1
 aW(M) = 2<n(,),7(M)> =2a?{t>z)>

 where n(z) is the unit inward normal; (we assume without loss of generality
 that 7i = 1). Put

 a(t,z) = --a(t,z)n(z)-raM(t,zh(t}z).
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 Clearly ai = 0; putting a(t, z) = Ya=2 ?"a?(^ z) we see tnat

 / < a(t, z), V/(z) > da(z) = - / /(z)S(i, *)<**(*) JaD Jar
 for all smooth functions / with compact support; (remember that by (A7) all
 the quantities concerned are defined on D or dD). Define

 J*g(t, z) = < a(t, z)n(z), Vzg(t, z) > - < aM(t, z)y(t, z), Vzg(t, z) >
 4 a^(t,z)p(t,z)- <b*(t,z),n(z) > -a(t,z)\ g(t,z)

 ... (3.32)
 Note that the coefficients of (?(d/dt) 4- /,*) and J* satisfy the hypotheses of
 Section 2; hence there exists a fundamental solution p* for (?(d/dt) + L*,J*).
 Consequently by Theorem 3.4 a unique Green function p*G for (?(d/dt) 4- L*),
 with reflecting boundary condition on 9aG specified by J* and Dirichlet bound
 ary condition on c\G, exists; also (t, z) i-> p*G(t, z; s, x) is in Clt2([s, co) x G) and
 Pq is continuously differentiable at any z G d2G, for any s > 0, x G G\(b\G).

 Now by an argument using Green's formula it can be shown (as in Theorem
 17 on p.84 of Friedman (1983)) that p*G(t, z; s, x) = pg(s, x; t, z) for s <t,x,z ?

 G. By continuity the same is true for s < t, x ? G\(d2G), z ?G. This completes
 the proof.

 Our next result is

 Theorem 3.6. Assume (Al) - (A7);let G be as in Theorem 3.4. Let t > 0
 fce fixed; let f be a C^2-function on [0, t] x 92G such that limrjt D^Dzf(r, z) =
 0 for ?< l,|a| <2. Define

 u(s, x) = / / f(r, z)Du(z)pG(s, x; r, z)da(z)dr ... (3.33) Js Jd*G

 where Dv^ denotes derivative in the conormal direction at z ? c\G. Then
 u is the solution for the mixed problem :

 ((d/ds) + L)u(s, x) = 0, x ?G, s <t,
 = 0,xGG limu(s, x) sit

 Jxu(s,x)
 Urn u(s,x)

 x?>xo,x$d2G

 = 0,x ?diG,s <t
 = /(s>zo), x0 ? d2G,s <t

 (3.34)

 Proof. By the proof of the preceding lemma we have

 (-(d/dr) + L*z)pG(s,x-r,z) = 0, z G G,r > s,
 J*pG(s,x;r,z)
 pG(s,x;r,z)

 = 0, z G 9iG,r > s,
 = 0, z G 92G,r > s

 . (3.35)

 for x G G\(c\G). Note also that

 lim / /(r, z)pG(s, x; r, z)dz = /(s, x), x ? 92G. r\s Jg
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 Therefore (as dG is piecewise smooth) by Green's formula we get for x ?
 G\(c\G),

 .. (3.36)

 u(s,x) = f(r,z)Du{z)pG(s,x',r,z)da(z)dr Js JfyG

 + / / f(r, z)JztpG(s,x\r) z)da(z)dr Js JdiG

 = / / Pg(s, x; r, z) f ? + Lz J /(r, *)dzdr
 + / / pG(s,x\r,z)Jzf(r,z)d<j(z)dr + f(s,x) Js JdiG

 It is now clear that u is well defined, bounded and satisfies (3.34). q

 4. General case

 We now consider the general case. Let D be a bounded domain with a G4
 boundary. We assume that the coefficients a, 6, c, 7, p satisfy (Al) - (A6). Define
 the generator LQ and the boundary operator J0 by

 d

 I?/(v)4E^^ + EMv)^ ...(4.1) 1

 for s > 0, x G D, and

 2 4-, ^v ' ' dxidxj ^ ?~> ",v"' ' dxi

 Jof(s, x) = V 7?(s, x)?/(s, x) ... (4.2) t? dx<
 for s > 0,x G 9jD. Let {Psz : 5 > 0,x G D} denote the reflecting diffusion
 process corresponding to Lo, Jo; we will call it the (Lo> Jo)-diffusion. Let X(t)
 denote the t-th coordinate projection on il := C([0,oo) : D); let Bt := a{X(r) :
 0 < r < t} be the usual filtration. For any stopping time r relative to Bt, let
 BT denote the associated a-algebra. Let {?(?) : t > 0} denote the boundary
 local time of the (Lo, Jo)-diffusion. (See Friedlin (1985) or Ikeda and Watanabe
 (1981) for details). ESyX[g : A] shall denote the integral of g w.r.t. the probability

 measure PStX over the set A. Put

 e(t;s) = expi / c(r,X(r))dr\ ,
 .(4.3)

 e(t;s) = exp^p(r,X(r)K(r))).
 Define the evolution

 Tts/(x) = E^\e{t; s)?(t; ?)/(*(*))] (4.4)
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 forO<s<?,xGJD and bounded measurable function /. Observe that the
 required fundamental solution is just the integral kernel for the evolution {Tts}.

 For Zo?dD there exist r, 6 > 0 such that B := B(zq : r)f)D and Bi := B(zo :
 r + 6) n Z) are respectively G4 diffeomorphic to G := {y : y\ > 0, |y| < R} and
 G\ := {y : 2/1 > 0, |i/| < R+e} for some i? > 0, e > 0. Under this diffeomorphism
 the diffusioncoefficients are transformed to a, 6, c, 7, p, which satisfy (Al) - (A 7)
 on [0,T] x G (or [0,T] x ?jG as the case may be). Put d^B = dBndD and
 c^B = dB\dD\ note that fl,-B is diffeomorphic to diG,i = 1,2. Let pG be
 the Green function (corresponding to a, b, c, 7, p), guaranteed by Theorem 3.4.
 Define

 pB(s,x;t,z)=pG(s,x]t)z) ...(4.5)
 for 5 < t, x ? B, z ? B\(t\B) or x G B\(c\B), z ? B, where x, z axe the images
 of x,z under the above diffeomorphism. Then pb has the appropriate smooth
 ness properties; that is, analogues of Theorem 3.4, Lemma 3.5 and Theorem 3.6
 hold for p?. It is the Green function for the problem

 ((d/ds)+L)pB(s,x;t,z) = 6(t-s)6(z-x), ] JxV?(s,x]t,z) = 0,x?c\B, \ ...(4.6)
 Pb($, x; t,z) = 0, x G t\B J

 for any fixed t > 0,z ? B\(c\B). Also Du{z)pB(s,x;t,z),x ? B\(c\B),z ?
 c\B,s < t is the Poisson kernel for the mixed problem for ((d/ds) -h L) in B
 with Dirichlet boundary condition on t\B and reflecting boundary condition
 (given by J) on d\B. _

 For zq ? D, there is r > 0 such that B := B(zq : r) C D. In such a
 case, let pB denote the Green function for ((d/ds) -h L) in B with Dirichlet
 boundary condition on dB(= c\B; in this case d\B = <j>)\ pB has the required
 smoothness properties and the conormal derivative of pB is the Poisson kernel
 for ((d/ds) + L) in B with Dirichlet boundary condition on dB.

 In view of the above the following can be proved using stochastic calculus.
 Lemma 4.1. Let (Al) - (A6) hold. Let B,pB be as above. Let r denote

 the exit time from B for the (Lo, Jo)-diffusion; that is, f is the time of
 hitting t\B.

 (i) Let f be a bounded continuous function whose support is contained
 in B\(l\B). Then for s<t,x? B,

 ESiX[e(t'1s)e(t;s)f(X(t)) : {r > t}) = [f(z)pB(s,x]t,z)dz ...(4.7) Jb

 (ii) Let g be a smooth function on [0, t] x t\B such that limr|t D^Dzg(r, z)
 = 0,/?< l,|a| <2. Then

 E8iX[e(T]s)?(r;s)g(T,X(r)) : {r < t}] = / / g(r,z)Du{z)pB(s,x',r,z)(h(z)dr Js JfyB
 ...(4.8)
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 Remark 4.2. If c = 0, p = 0 then

 Dv(z)Vb(s, x;t, z)da(z)dt, t> s,z ? t\B

 gives the exit distribution Psx(t,X(t))~a, for fixed s > 0,x G B\(b\B). (As
 dD fi (92-B) is a (d ? 2) dimensional submanifold note that the probability of
 hitting dDD (d2B) is zero; see Ramasubramanian (1988)). See Hsu (1986) for
 an analogue of the above result when L = ^A,diB = <\>; that is, reflecting
 boundary condition is absent. q

 We will now use a probabilistic method for obtaining the integral kernel for
 {Tt5} from Green functions described above.

 Let 0<s<t,z?Dbe fixed. We can find 0 < ri < r2 such that Pa,Vb
 (described as above) exist where A = B(z : ri) D D, B = B(z : r2) fl D. Set

 t2j+i = inf{r>r2j :X(r)?~L\A}, ? = 0,1,2,...
 r2j = inf{r>r2>_1:X(r)G925},j = l,2,...

 As 92^4 fl c\B = <j> note that Tj | oo a.s. PSiX for any x ? D. Define for
 0 < 8 < t, x ? D,

 p(s,x;t,z) = Ij(x)pA(s,x;t,z) oo

 4- ]T Es,x[e(r2j_i;s)e(r2j_i;s)pB(r2j_i, X{r2j-i)\t, z) : H,]

 ...(4.9)
 where Hj = {r2j_! < t < r2j}. __

 Lemma 4.3. For any bounded measurable function f on D,

 Ttsf(x) = [f(z)p(s,x;t,z)dz ... (4.10) Jd

 Proof. It is enough to prove (4.10) for f = Iy where V is a Borel set such
 that V C A C A C B with A, B being as above; this will also show that p
 defined by (4.9) is independent of A,B.

 By Lemma 4.1 and the strong Markov property of the (Lo, Jo)-diffusion note
 that

 Tt?Iv(x) = EtJIC[e(t;s)?(t;s)Iv(X(t)) : fa > t}]
 OO

 -rJ2EsA<^^?(t;s)Iv(X(t)) : {r2j_i < t < r2j}}

 = llv(z)Ij(x)pA(s, x; t, z)dz Jd oo .
 + y\Es^x[ejej ? Iv(z)pB(r2j-i,X(r2j^i),t,z)dz:H*] U Jb

 = ?Iv(z)p(s)x]t,z)dz, Jd
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 where e;- = e(r2j-i ; s), ?; = ?(r2j_i ; 5), H* = {r2j-i <t}.
 Here is our main result.

 Theorem 4.4. Let D be a bounded domain with C4-boundary; let a, 6, c, 7, p
 satisfy (Al) - (A6). Define {T/} by (4-4)- Then there exists a strictly
 positive function p(s, x; ?, z), 0 < s <t,x,z ? D such that

 (i)Ttsf(x)=J-Bf(z)p(s,x;t,z)dz) s<t,x?D; __
 (ii) (s, x) 1-* p(s, x; t, z) is in C^2((0, t) x D) n G([0, t) x D);
 (in) Jxp(s, x; t,z) = 0, x ? dD, s < t\
 (iv) limsltTtsf(x) = /(x), x G D.

 Proof. Let p be defined by (4.9); the first assertion is proved in the preceding
 lemma.

 Let s < t,x,z ? D be fixed. Choose a bounded neighbourhood E (in D) of
 x such that z ? (c\E) and pE exists. We claim that (r,77) ?- p(r, 77; t,z) is a
 bounded measurable function on [s,t] x c^E1. From (3.25) - (3.28), Theorem 3.6
 and Lemma 4.1 (ii) it follows that v in the proof of Theorem 3.4 is nonnegative.
 Consequently by (3.29) it follows that the Gaussian type bound (2.4) holds for
 pG\ hence (4.5), (4.9) now yield the claim; (recall that the symbol p is used in
 different contexts in (3.29) and (4.9); as it is unlikely to cause confusion, we
 persist with this !)

 By Lemma 4.1 (i), (ii) and strong Markov property it follows that

 p(s,x\t,z)

 = Ve(s, x; t, z)Ie(z) + Es,x[e(TE] s)?(rE\ s)p(te,X(te)] t, z) : {rE < t}]

 = PE(s,x]t,z)IE(z)+ / / p(rimt,z)DuMpE(s)x;r,rj)(kT('n)dr Js JdiE
 _ ...(4.11)

 As x,z ? (&iE) required smoothness in (s,x) follows by (4.11). Assertion (iii)
 also follows similarly; (iv) is clear from (4.11) and the first equation in (4.6).
 Strict positivity of p can be proved using the maximum principles on pp. 173-174
 of Protter and Weinberger (1984). This completes the proof.

 Remark 4.5. For a bounded domain D it can be shown that the fundamental

 solution given in the preceding theorem is unique. This can be done as in
 Theorem 8.1 of Ito (1992) with appropriate modifications; or using uniqueness
 of solution to initial - boundary value problem for (d/ds) -f L with boundary
 condition given by J (which in turn can be proved by stochastic representation
 of a solution or using maximum principles); we omit the details. rj
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 5. Minimality

 We conclude with a result concerning minimality of fundamental solution in
 the half space.

 Theorem 5.1. Let D denote the half space; assume (Al) - (A6). Let
 p be as in Theorem 2.10. Then p is the minimal fundamental solution
 in the sense that, if q(s,x\t,z) is a continuous nonnegative fundamental
 solution for ((d/ds) 4- L, J) then

 p(s,x;t,z) < q(s,x]t,z), VO < s < t,x,z G D ... (5.1)

 Proof. Forn = 1,2,... let JB? = DC\B(0 : n) andpn(s,x;t,z) =p?n(s,x',t,z).
 By (3.25) - (3.29), Step 5 of the proof of Theorem 2.1, Theorem 3.6 and Lemma
 4.1 (ii) we have

 pn(s,x;t,z) = p(s,x]t,z) - Es^[e(rn;s)?(Tn;s)p(rn,X(rn)',t)z) : {rn < t}]
 ...(5.2)

 where rn is the time of hitting 92^n (for the (Lq, Jo)-diffusion) and Es^x denotes
 expectation w.r.t. the (Lo, Jo)-diffusion in D starting at (s,x). See Port and
 Stone (1978) for a similar expression in the context of Brownian motion with
 absorbing boundary.

 As the coefficients are bounded note that (Loj/o)-diffusion is conservative;
 (that is, the measures Ps%x a^e supported on G([0,oo) : D)). Hence rn ?> oo a.s.

 PSfX. For any k note that

 sup{|/(Tn<i}p(rn,X(rn);t,z)| : \z\ < k,n > k+ 1} < oo

 Also exp (a?(t)) is integrable for any constant a > 0 and t > 0. Therefore by
 (5.2) it follows that

 pn(s, x;t, z) ?> p(s,x;t, z), n ? oo .. .(5.3)

 uniformly over (s, (x, z)) varying on compact sets.
 Let q be another continuous nonnegative fundamental solution. Fix n and

 let / be a nonnegative continuous function with compact support in Bn. Put

 vn(s,x)= ?f(z)q(s,x\t)z)dz ...(5.4)
 JBn

 Let g(s,x) = vn(s,x),0 < s < t,x ? d2Bn] observe that g is a nonnegative
 function on [0,/j) x d2Bn. Clearly, vn solves the problem

 ((d/ds) + L)vn(s, x) = 0, x G Bn, s < t,
 Jxvn(s,x) = 0, x G diBn)s < t,
 vn(s,x) = g(s,x), x ? d2Bn)s <t,
 \[ms^tvn(s,x) = f(x), x ? Bn

 ...(5.5)
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 As pn is the unique nonnegative fundamental solution in the bounded domain
 Bn, by Theorems 3.4 and 3.6 it can be shown that

 vn(s,x)= / f(z)pn(s,x]t,z)dz-r / / g(r, z)Du(z)pn(s, x;r, z)da(z)dr J?n Js JdiBn
 ...(5.6)

 By maximum principle, Du(z)pn > 0 on d2Bn; hence the second term on the r.h.s.
 of (5.6) is nonnegative. (One can use Lemma 4.1 (ii) for another derivation of
 this fact.) And as / is arbitrary, by (5.4) and (5.6) it now follows that

 pn(s,x;t,z) < q(s,x;t,z) ... (5.7)
 for 0 < s < t,x,z ? Bn. FVom (5.3), (5.7), the required conclusion (5.1) now
 follows.

 Remark. For unbounded domains with sufficiently smooth boundary, our
 analysis of Sections 4 and 5 can be carried through. rj

 Remark. It would be interesting to prove the results of Sections 4 and 5 just
 under the hypotheses (Al) - (A5) as in Theorem 2.1. The additional hypotheses
 are needed for considering the adjoint problem, and to ensure that p has the
 necessary smoothness so that Green function and Poisson kernel can be defined
 in Section 3. It may be noted that such a situation arises even in the case of
 the conormal reflection; see Ito (1957), especially the last paragraph of ?3 on p.
 66. D
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