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THE MATHEMATICS OF BIOLOGY

By Professor J. B. S. HALDANE, F.R.S.

A Lecture delivered before a Joint Meeting of the Society with the
Mathematical and Physical Society, on Tuesday, the 6th of November,
1951, the PRESIDENT being in the Chair.

MucH of the mathematics which biologists use falls into.one of two
categories. Some of it is concerned with physical or chemical processes
occurring in the instruments we use or the living systems which we
study. For example, Swann and Mitchison: are now working on the
design of the polarizing microscope, which has, till lately, been neglected
as a tool for investigating cell structure. About 25 years ago Briggs and
I produced a differential equation concerning enzyme action, which we
solved in the trivial case of the steady state. Chance was able to study
the first few milliseconds of an enzyme action, and much to my surprise,
found that the equation described them reasonably well. But he had to
use a machine of the analogical type to comnpute its solution. The other
.kind of mathematics which we use on a large scale are those of statistics.
The distributions of measurements in a thausand men and a thousand
gastings are probably not very unlike, though the human measurements
doubtless have the larger coeflicient of variation. Many of the statistical
methods used in industry are based on methods invented by Pearson and
others for use on biological data. '

1 am going to deal with problems whieh have no exact analogies (so
far as I know) in physics, chemistry, or engineering. Let us consider
the growth of-a population. Clearly the simplest case is when the
probabilities of dying or of producing offspring depend on the age of
the individual only, and not on the epoch or the population -density
for example. We can approximate to such cases in a laboratory with
mice or insects kept under standard conditions.

Let ¢ be the epoch (e.g. 1951-853), x the age of an individual (e.g.
4 days or 40 years). Let P(¢) be the number of females in the population
at time . We neglect the males, because ex hypothesi there are enough
to fertilize the females. Let R be the mean number of female progeny
produced by a female in a lifetime. We count every female born or
hatched as a potential mother. The actual number 7 of which R is the
mean may thus be 0 in 99%, of cases, and about 100 in the other 1%,
Let ¢=InR. Then if R>1, ¢>>0, the population will ultimately
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increase exponentially until our initial assumptions cease to hold.
we ‘are dealing with insects or plants with one generation per year,
clearly

P(t) = P R = Pyt

Next let us suppose that, if we consider a group of females, f(x)3x is
the probability that one of their daughtets will be born between maternal
ages x and x-+8x. Then if B(#)8¢ is the number born beiween times £
and ¢3¢, :

B(t) = R|® B(t—x) f (x) dx e

For at time £ there are B(t—x)3x mothers aged x to x+3x. Also if
(x) is the probability of living to age x or over ~
- Pty = [7 B(t—x) I (x)dx (2)

Now f(x) is a distribution function,
50 o f(x)dx = 1. To solve (1) put B(z) = A e¥. Then
\ [ e f(x)dx = R

But the left-hand side is the moment-generating function of the
maternal age distribution (or if A=—iz, the characteristic function).
Taking logarithms we have

. K K.
— ¢ 2mmi = K(—X) = — ;A + 7’{ A2 — _3_‘;‘ A3 4 (3)
«y is the r-th cumulant of the distribution, that is to say «, is its
mean, «, its variance, x, its gkewness, &, its kurtosis, and so on.

This equation, which is due to Lotka, can easily be solved numerically
in three cases. One is when the distribution of.maternal ages is nearly
normal. 'The human distribution, though s¥.w, is near enough to
make the corrections relatively small. The second is when it is nearly
represented by a curve rising steeply from zero at puberty, and falling
exponentially. This applies to some insects. The third is when it is
concentrated in a number of short breeding seasons. If the number is
finite this gives an algebraic equation for ei, but its real root is most
easily obtained from (3) if breeding can go on for 10 or 20 years. (3)
has only one real root, representing an exponential increase or decrease,

and in’ general an infinity of complex roots representing oscillations
round it, so that

B(t) = ZAm et

m=0
¢ Ky 3k, — Ky &
A —_ 1 27 2 1 "3 2
Tk o ’y 2 + 3yt o+

15x,3 — 100 rearcy + 12y
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A, = A — 2mey2 [Kz n (Bxg? — Kqxg)

m K12 H—-Klz—'(ﬁ
Sics® — 10k, :
n Ky K12:<;;+ Klrﬁ'gl? (32 — 2m27 2y . .. .]
1

2mmi K 2 — kK 2 24min?y 4 ...
+ [1 ety Gl — ) _(39§_.,Z,imit_] )
Ky Ky : 6x,

So the neriod of the slowest and least damped oscillation is about a
generation. Clearly P(#) is given by a similar series.

Now let us see what happens if, in+the trivial case of annual gener-
ations, R depends on the population density. Let y, be the logarithm
of the density in year n, and let R, be a function of y,. Then

Ynt1 = Yn + bn = Yu + $(3n)

-$(y,) passes through a positive maximum value as y, increases.
That is to say the population increases when it lies between certain
limits. We assume that ¢"(y,,) is always negative. ’

At high densities the population diminishes owing to competition
for space, or more rarely for food, and especially to disease due to
overcrowding. It also falls off at low densities, owing to the difficulty of
finding mates, to the lack of various forms of mutual aid, and so on.
Thus ¢ = 0 for two values of y,, giving two equilibria, of which the
Jower 1s certainly unstable, the upper may or may not be stable. If
we measure density so that y = 0 at the upper equilibrium, then it is
easily shown that it will be approached directly after small displace-
ments in either direction if

0>¢'(0)> — 1. U —1>4'(0)> — 2 it will be approached by a
series of oscillations. If ¢ 70) <2, small oscillations round it will be
unstable.  With a graph of the form shown the density will never
exceed the upper equilibrium density in two consecutive years, but
may fall below it for a number of consecutive years. If we put
Vot $(Vm) = ¥(y,), then there will be periodic oscillations of period k&
years if Y& (y,) — yn = 0, where ¥* denotes the k—fold iteration of the
function ¥. It is easy to find a criterion for the stability of such periodic
oscillations. We see that too sharp a regulation of population density

will lead to instability, and this is true in general. However, if generations
overlap, not only R but f(x) will be a function of the density, and the
analysis would be extremely comiplicated. '

We see then that even the one-species case, which corresponds to
the physical case of a body moving in a defined field, can be very
difficult. The case of two or three interacting species has been deait
with extensively by Volterra, and his results are, of course, fundamental
for the theory of integral equations. But they are, in fact, an over-
simplification of the biological facts almost as gross as my equations
(1) and (2). Nicholson and Bailey (1) gave what seems to me a more
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realistic account of one type of two-species relationship, that between
an insect host and an insect parasite. The host has adequate food.
The parasite lays eggs in its larvae, which always kill them, and not
more than one parasite emerges from a host. Both species have an
annual generation. Let x be the density of adult hosts, y that of parasites
(adult females only). Let R be the rate of increase of hosts in the
absence of parasites, and a the mean area searched by a host female in
her lifetime. In a case investigated by Varley a was about 025 square
metre. Now, if there are y parasites per square kilometre, a given host
larva has a probability 1 —a of escaping any given one of them, and
(1—a)” or nearly e~ of escaping them all. Thus e~ of the larvae
escape parasitism, and 1—e~% of'those which mature hatch out parasites.
So if x', y” are the frequencies next.year

%' = Rxe~w }

¥ = Rx(l—e) ©®)

Note that if the parasites were co-operative and moderately intelligent
their areas would be chosen not to overlap, so the whole ground would
be covered, and we should have x’ = 3" = 0; so both species would
become extinct. If they were somewhat more intelligent than-our own
species they would adopt a system of “ egg control ” calculated to give
a stable and probably maximal value of y. The system is in equilibrium
if # = x = X,y = y = Y, whence

_ InR ]
CaR—1)
In R

a

(6)
Y =

Now suppose that, as a result of natural selection (say for a better
sense of smell) the parasite manages to increase @, the area effectively
searched, then both X and Y will diminish. Similarly, if the host
becomes more efficient at laying eggs or hiding from other enemies,
so that R is increased, then its adult, though not its larval, numbers at
equilibrium will be diminished, while those of the parasite will be
slightly increased. Natural selection'does not always lead to survival !

The equilibrium is unstable. For if we take @ as our unit of area, and
putx = X 4 £ y = Y + », we have, when £ and 7 are small

. InR
§—§—R__1n
7=(R—1)é+7

approximately. So small oscillations are of the form £ = A,e-% +
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In R
Aqe~22 where A; and A, are therootsof | R—-11_9
R-—1 1—2

or A=1++/—InR. That is to say in successive years
x = X4 A(l +In R)#* sin (B + 6f)

1 —1nR
1+ InR’ )
y have undamped oscillations of a period longer than 4 years, and less
than 8 years if R>e. In fact R may exceed 10. The maxima of y lag
about a quarter of a period behind those of x.

That is to say the regulation of population size has a considerable
lag. In actual fact the logarithms of the densities of insect populations
which are believed to be regulated in this way show somewhat irregular
oscillations which_are more or less sinusoidal with periods which are
often of the order of 6 years. They are not, of course, undamped,
presumably because when x becomes very large, other limiting factors
come into play. (Graphs were shown by the lecturer).

This is a two-species case at the level of simplicity corresponding to
P(t) = Rt in the one-species case. A good deal of calculations have been
done on interaction between three or more species, but they seem to be
rather far removed from adequate numerical data. Graphs based on
actual numbers of pupae picked up were shown demonstrating that the
density of an insect species may be at least 10,000 times greater in one
year than in another. But no one except Varley (2) has made a serious
attempt to classify all the causes of death of an insect in the course of its
lifé cycle, together with at least some of the causes which affect its
fertility. 'The study of fluctuations in natural animal populations is
almost confined to Canadian fur-bearers and German insect pests of
pine-woods. When the subject has been thoroughly studied I have no
.doubt that the theories here put forward will appear completely trivial;
but they may indicate the kind of mathematical problems requiring
solution.

I have devoted much more time to the study of changes within a
population all of whose members can breed together. I shall confine
myself this evening to the differences defined by a single pair of what
are called allelomorphic genes 4 and a. There are three sorts of
individuals, A4, Aa and aa. AA and aa, which are called homozygotes,
give an A or a gene as the case may be to each child. Aa, which are
called heterozygotes, are equally likely to contribute 4 or a. So we
can write down the expectations from 4ll possible matings, e.g. 44 X
44 —~ AA, Aa X aa > } Aa + laa, Aa X Aa —~ 144 + } Aa +
}aa. Here AA might be white, Aa roan, and aa fully coloured cattle,
or AA and Aa might both be hgrnle t were horned.

where cos 20 = and a similar equation for y. Thus x and
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Suppose we can classify a large popul’ationl into m classes, then we
have m frequenc1es Xpy Vo Ry e - + - <iN"the n-th generation. We ask,
given the mating system, the selectlve values of the different classes,
the amount of immigration, mutation (that is to say change from 4
to a or conversely), and so on, what will be the values of %,4,, Y541,
Zy+1, €tc. We may be able to write down m equations (m— lmdependent)~

xn+1-f—J’1 (x,,,y,,,‘z,, o)
=f2 (xm Vs By - . ) (7}
zﬂ"'l f3 (xn’ ym noe - )

If they are all hnear We can thlnk of [x,,, Yuy By - . ] as
a vector converted into another vector by a matrix, and our problem,
if we want to predict what will happen after # generations, is to iterate
this matrix. If they are not linear we have a-much harder problem
unl'ess the changes from one generation to another are so small that we

can treat (7) as a set of simultaneous differential equations. These
may be soluble by standard methods. I shall only discuss non-linear
recurrence relations involvisg one or two variables here. When gener-
‘ations overlap, each of our equatiéns becomes 4n integral equation of
the general type of (1). A set of such equations is not intractable pro-
vided they-are linear. When they are non-linear, approximate solutions
can sometimies be found by fairly stralghtforward methods, but the full-
treatment (Norton, (3)) of even the simplest is very dlfﬁoult

If, however, the population is not so large that the numbeér in each
group can be regarded as infinite, the problem becomes a stochastic
one. A point in an (m—1) dimensional simplex in one generatlon is
represented not by a point, but by a cloud, in the next generation. The.
problems -arising in this case have occasxonally been solved fairly com--
pletely, but I cannot deal with them here. A further group of problems.
arises if the composition of the pepulation differs in different parts of an
area, and migration between them is possible. Local races adapted to’
thelr environments may of may not be able to persist. Here we have at
best partial differential equations like those involved in the theory of
heat flow or diffusion, but distressingly non-linear where one would
wish the opposite. Again a few have been solved. Most have not even’
been stated.

To come back to actual problems, suppose we have AA Aa, and aa
individual plants with frequencies «,, v, and 2, in the n-th generation,
and arrange that they should be self-fertilized, then

Xpt1 = Xy -}_\ Vn
N %yn (8)
Rt iy n + *n

i
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Clearly x, = x, + §(1 — 27)y,, and so on, but we can regard this
trivial result in two ways which are 111ummatmg [%ps s 2l 18 derived
from [%,, y,, %,] by the n-fold iteration of the matrix

1 30 '
0 4 0| And we have solved a trivial stochastic problem.
0 31

We have effectively divided our original population up into populations
of 1, each plant beipg so far from any other that it cannot cross with it.
We have found what will be the probable “ composition-” of a population
of one after n generations.

The next problem can be regarded either as the problem of what will
-almost certainly happen in a very large population in which brother-
sister mating is made compulsory after a certairi time, or as the problem
of what will probably happen to mice confined in a cage so small that
in each generation there is Just room for one breeding pair. In this case
if we classify together various types of mating, with frequencies :—

w,,{AA X AA, x, {AA X Aa, y, Aa X Aa, 2, AA X aa,

aa X aa aa X Aa
then [, %, Y 2, ] is converted into [@,i;, %11, Yut1, Zut1 | DY the
matrix 1 1 % 0
0o 3 3 0
o 1+ 1 11
0 0 i 0

. This has three latent roots A;, Ay, and A;, of which the largest is
A = 8090, so w;, = 1 — BJA™ — Bydy™ — Bgdy",

and so on, where B, B,, B; depend on the initial conditions. In fact,
however, if we consider the possible mating types-when each parent
can contribute any of four allelomorphic genes, and we do not lump
together A4 X Aa with aa X Aa, and so forth, we have to deal with a
55 X 55 matrix, which has 11 latent foots. The corresponding problem
for a population of 4 in which incest is avoided by marriage with a double
first cousin presents us with a 222,111 x 222,111 matrix! I do not
know how many latent roots it has but anht (4, 5) by a remarkably
ingenious and powerful method, managed to short-circuit the problem
and find the numerically largest of the latent roots, which is what matters
in the long run. He also solved the problem of what happens with
random mating in a cage (or on an island) where there is just room for
N breeders. The leading term in the solution of the corresponding
integral equation can also be calculated. But if anyone wishes to
solve these problems by matrix methods I shall be glad to show him or
her how to construct the matrices if he or she will pay for the necessary
paper and ink. Other.similar problems involvetmatrices with algebraical
coefficients. A few have been solved.
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The simplest non-linear case arises as follows. Suppose 44 and Aa
are equally viable, but that the survival before maturity of ae individuals
is 1 — k (1> k> —o0) of that of the others. So a population of x
AA:y Aa: z aa at birth is represented by x A4:y Aa:- (l—k)z aa
at maturity. Their fertilities are supposed equal, and mating is at
random. This can be shown to be very nearly true in man for many
characters. This does not mean that we are promiscuous, but that, for
example, the probability that your wife will belong to a given blood
group is roughly the frequency of that group in England, and does not
depend on the group to which you belong yourself. Random mating
can be shown to be-equivalent to a pooling of genes in each generation.
So if the ratio of 4 to a is u,, the n-th generation consists of

u,2 AA:2u, Aa: 1 aa
and the breeders, after selection, of -
u,? AA: 2u, Aa : (1 —k)aa
It follows at orice that
Ty (uy + 1)

e 9
Uyt = U, + 1 — k ( )
This equation is immediately $Olll’ble in three cases. If kb = — 0, u,,,
=0. f k=1, upy =it -+ 1, or u,=u,~+ n. And if % is very small, we
du, kun L
can write it as a differential equation P T whence
Fn =, —u, + In ( ) (10)
In other cases we have to iterate. The problem can be solved in two
ways. Consider the equation
Xy = B(%y) (11)

We will transform x,, if necessary, so that ¢(0) = 0, that is to say,
0 is an equilibrium, stable, unstable or mixed. There are four types of
solution in the nelghbourhood of such a point. For simplicity I shall
suppose that ¢” (0) 7% 0. If ¢’(0) = 0, then

n‘—i—len[—lnx,,—Z'a,x,,’]—j—ln2 | (12)
If 0< | $/(0) | <1, then -
n-+ P = alnx, + > a,x,’ (13)
It |$(0) | = 1, then =
’ n+P~_a_1x -1 +a,lnx, +Zax (14)

If ] ¢ (0) | > 1, then (13) holds again.
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Each of these equations can be written in several different ways,
x, being given in terms of #. The values of the coefficients a, can be
found by substitution; and equating coefficients of appropriate powers of
x,. In the first two cases the equilibrium is stable, in the last unstable,
In the third (so long as we confine ourselves to a real variable), it is
usually stable on one side and unstable on the other, that is to say
effectively stable or unstable if x, cannot-change sign. P is an arbitrary
periodic of unit period, that is to say a constant if z is an integer. (12)
and (13) have a radius of convergence, (14) is’ often an asymptotic
expansion. These expressions are to be found in the literature, but
I know of nowhere where they are collected, and no systematic dlscuss1on
of them. The only really awkward case is when |¢’(0)] = 1 and
¢’ (0) is complex but not a root of unity. In this case x, takes the bit
between its teeth.

Solutions of equation (9) are, near u, = 0, if k<0
u,?

(n+ P)ln(l — k) = Inu, —u, +k[2(2~k)
(3 — 5k 4 k2u,?3 L. ]

32— k) (3 —3k+ kY

and when u, is large and & positive

(15)

k(n+ P)=u, + (1 — k) [(1 + 1k)inu, — kln(u, + 1)

4+ k? {1+i(1-k) +(§‘_‘Mﬁ)+”}] (16)

3(u, + 1)2 Hu, + 1) 80(u, + 1)2
"To find an expression which holds over the whole range of u, we
u, + 1

expand 7 in ascending powers of k. If x, =

Consider the very general expression
dx, = k¥ (x,) (17)
, dx, . -
Then e =dx, — 4%, + 4 3, . ..
n

Son+ P= [(4 x, — 4%, —}— 3d3x, + .. ) tdx,
=k [P@)] 2 [1+ 327 (x) — 22 {[P'(x) ]
PO+ .. d (18)
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I have worked out the first six terms ot this series, which was, in
fact, derived by a more rigorous method, but still needs much investi-
gation. The solution of (9) by means of (18) takes the form

n+P="Fku,+ (1 —kn(u,+ 1))+ (1 +4,Y/In (1 — k)

‘ — (Tu, + 3YR/12 (u, + )%+ . .. (19)

The first two terms are a very good fit.. When £ lies between } and
—1 the error is under 29%,. o ’ ,

But if we have even two.parameters x, and y, in each generation,
the corresponding problem is much harder and the solutions obtained
are only valid asymptotically. i

I have spent much of my life in trying to develop a mathematical
theory of natural selection. ' Equation (9) is a quite artificially simple
case, though occasionally a good approximation to the facts. Its solution
takes us about as near to an adequate mathematical theory of evolution

. d2x ‘
as the solut1or'1 of e us 0
Nevertheless, it may suggest the lines on whichsuch a theory would
have to be developed. We have, in fact, got alittle further; and perhaps
we shall not get much further yet till we have better observations on
natural and experimental populations. This will be a slow job for a very
simple reason. It is usually very easy to measure a length, angle, weight,
or time, with an error of less than 19,. To estimate a frequency of
less than 4 with this precision entails the counting of at least 40,000
individuals if we are to have 959, confidence that our frequency is
correct within 19/, of its deduced value. '

There is, unfortundtely, no satisfactory book on the subject. The
best is probably Malécot’s Les Mathématiques de I'Hérédité, which
deals with a number of elegantly soluble problems, but is apt to ignore.
those which so far defy complete solution. I have only skimmed the
subject, saying nothing about statistical methods, or about what happens’
when % of equation (9) changes in time or space. In the former case we
can use Bessel functions when & changes slowly enough. In the latter
we should, I think, need a computing machine unless it changes very
abruptly. But I hope that I have shown you that biology raises its own
mathematical problems. I think that for a long time the central theme
may be sampling theory, because not only do we observe samples of
populations, but any population is a sample of the possible progeny of
its parents. But if I am right, iteration theory will be almost equally
important, and it is perhaps here that mathematicians could be of the
greatest help to us. So I end with a challenge. Horns are a recessive
character in cattle. If, in a large random mating population, horned
bulls are not bred from, but there is no selection in cows, then if x,

and y, are the frequencies of the gene for horns in females and males of
the #-th generation

= g takes us to an adequate stellar mechanics.



THE MATHEMATICS OF BIOLOGY 11

Xnty = A (%0 + 30

Xy + Yn — anyr_t
2(1 - xnyn)

Tt is not very hard to show that in the long run

(20)

Vut1 =

n 4+ P=2x,"! — log,x, — §x, — %x,% — 2% %,® + 0(x,%).

but where is the second arbitrary constant, which arises because both
%, and y, can have any values between 0 and 1? Its coefficient tends to

zero quicker than any power of #,, but that is as far as I can get. Any
takers ?
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