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ABSTRACT

Among brain tumors, gliomas is the most aggressive and common, leading to a very short life
expectancy in their highest grade. MRI (Magnetic Resonance Imaging) is a widely used
imaging technique to access such tumors but the amount of data produced by MRI is huge
which prevents manual segmentation in a reasonable amount of time. So, automatic and
reliable methods are required, but the variation in the structure and location of such tumors
makes automatic segmentation a very challenging task. In this report, we have proposed four
different methods for extracting patches which can be used to train Convolution Neural
Networks (CNN) to do the automatic segmentation of tumor in the HGG (Higher Grade
Gliomas) and the LGG (Lower Grade Gliomas) patients. We have also proposed a
Convolution Neural Network (CNN) based on Transfer Learning which does automatic
segmentation in a reasonable amount of time with promising results for the LGG patients.
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Chapter 1 Introduction

A brain tumor or intracranial neoplasm occurs when abnormal cells form within the brain.
The symptoms may include headache, vomiting, problem with vision and mental changes.
More specific problems may include difficulty in walking, speaking and with sensation. As
the disease progresses unconsciousness may occur. The cause of brain tumor is not known.
An example of brain tumor is shown in the figure below.

Figure 1.1 Brain Image

Among the several brain tumors in human being, gliomas is the most common and
aggressive. Based on the nature of the tumor, gliomas can be classified into two broad
categories:

1. Higher Grade Gliomas (HGG)
2. Lower Grade Gliomas (LGG)

where LGG is less aggressive than HGG [14]. Presently, surgery, radiotherapy,
chemotherapy or a combination of them is used for the treatment of the patients. MRI
(Magnetic Resonance Imaging) is a widely used imaging technique for detecting such
tumors. The accurate segmentation of this tumor is very important for planning the treatment
and also for further evaluations. But, manual segmentation is very time consuming since the
data produced by MRI is huge. For this reason, generally physicians use rough measures to
evaluate such tumors [13]. Also, the segmentation of brain tumor done by different expert
raters using the MR images varies. There are variations in the intra-tumoral structure, shape
and sometimes in the location of the tumor reported by different expert physicians. So, we
need some automatic methods for doing the segmentation accurately in a small amount of
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time. But, since such tumors are highly variable in their shape, size, structure and locality, so
automatic segmentation of such tumors is not an easy task.

In the field of brain tumor segmentation, recent proposals also investigate the use of CNNs.
Zikic et al. [17] used a shallow CNN with two convolution layers separated by a max pooling
layer with stride 3, followed by a fully connected layer and a softmax layer. Urban et al. [18]
evaluated the use of 3D filters, although the majority of authors opted for 2D filters. 3D
filters can take the advantage of the 3D nature of the images, but it increases the
computational load. Some proposals evaluated two-pathway networks to allow one of the
branches to receive bigger patches and than the other, thus having a larger context view over
the image. In addition to their two-pathway network, Havaei et al. [19] built a cascade of two
networks and performed two-stage training, by training with balanced classes and then
refining it with proportions near the originals [11]. The deep learning models proposed by
Pereira et al. [11] are the only deep learning models for brain tumor segmentation to the best
of our knowledge. Pereira et al. have proposed two different CNN one for the HGG patients
and the other for the LGG patients. Their CNN for the HGG patients consists of 3
convolution layer followed by a max pooling layer which is again followed by 3 convolution
and a max pooling layer and finally 3 FC layers, while their CNN for LGG patients consists
of 2 convolution layer followed by a max pooling layer which is again followed by 2
convolution and a max pooling layer and finally 3 FC layers. Our work on HGG patients is
inspired from their model on HGG patients.

Also, training a deep convolution neural network (CNN) from scratch could be difficult as it
requires a large set of labelled data for training. An alternative to this problem is to fine-tune
a CNN which has been pre-trained using, for example, a large set of labelled natural images.
Although the difference between natural images and medical images may advice against such
fine-tuning or transfer. But, Nima Tajbakhsh et al. [16] by performing several experiments
have shown that a pre-trained CNN with adequate fine-tuning always outperforms or in the
worst case performs as well as a CNN trained from scratch.

1.1 Motivation

Since the amount of time required for manually segmenting the MRI is huge and since
gliomas is a type of tumor which requires treatment as soon as it is detected in the patients, so
automatic methods are required to do the segmentation in a very small amount of time. It is
also found that the segmentation of tumor using MRI’s by experts varies, so, some automatic
segmentation method is required to do the segmentation accurately. Also, an application such
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as brain tumor leaves no room for error. In a surgery it is important to remove as much as
tumor as possible without damaging any healthy tissues and for that we have to precisely
identify the location and shape of the tumor.

1.2 Contributions of the Thesis

In this thesis, we will present several different patch extracting algorithms proposed by us.
We will also present a CNN for the HGG patients which is inspired by the ground breaking
work of Pereira et al. [11]. Also, we will present the proposed CNN based on transfer
learning for the LGG patients, which can do the segmentation in a very small amount of time,
achieving high dice scores. We will also show how transfer learning has been used for
improving the results in case of LGG patients.

1.3 Organisation of the thesis

In chapter 2, we have talked about neural networks, CNN, MRI, deep learning and the
challenges in brain tumor segmentation. It also discusses about the digital representation of
tumor and the evaluation technique used for evaluating different brain tumor segmentation
algorithms along with the dataset that has been used for the project. The model designed for
automatic segmentation of brain tumor in HGG and LGG patients is presented in chapter 3.
The different proposed algorithms for patch extraction and the use of transfer learning for
segmentation of tumor in LGG patients are also explained in this chapter. The results of the
proposed model are presented in chapter 4 and finally, we conclude with chapter 5.



Chapter 2 Literature Review

In this chapter, we will discuss some of the concepts which are required for further
explanation of the work. The concepts of neural network such as multilayer perceptron and
Convolution Neural Network (CNN) are discussed in this chapter. The challenges involved in
brain tumor segmentation and the representation of tumor is also discussed in this chapter.
The concept of Dice score which is used for the evaluation of different brain tumor
segmentation algorithms, concept of MR images, Deep Learning, Imagenet and the dataset
used for training the model is also explained in this chapter.

2.1 Neural Network

Inputs — Z f I
w, Output
| |
, Sum Activation
w, Function

Figure 2.1 Simple Neural Network

The figure depicts a neuron connected with n other neurons and thus receives n inputs (X, X,
...., Xp). This configuration is called a Perceptron. The input (xi, X, ...., X,) and weights (wj,
W2, ...., Wy) are real numbers and can be positive or negative. All the inputs are individually,
added together and passes into the activation function. There are many different types of
activation functions such as sigmoid, relu, etc which are used in practice. Input vectors from a
training set are presented to the preceptron one after the other and weights are modified
according to the following equation, W(i) = W(i) + a*g’(sum of all inputs)*(T-A)*P(i), where
g’ is the derivative of the activation function and ‘a’ is the learning rate of the perceptron, W
is the weight vector, P is the input vector, T is the correct output that the perceptron should
have known and A is the output given by the perceptron. When an entire pass through all the
input training vectors is completed without an error, the perceptron has learnt. At this time, if
an input vector which is present in the training set is given to the perceptron, it will output the
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correct value. Whereas, if P is not in the training set, the network will give an output similar
to other training vectors close to P. The perceptron is adding all the inputs and separting then
into 2 categories, those that cause it to fire and those that don’t. That is, it is drawing the line
Ww1X; + WoX; = t, where t is the threshold. Points on one side of the line fall into one category
and the points on the other side fall into the other category. But, not every set of inputs can be
divided by a line. One example of such a problem is the Boolean XOR problem. This is
where multi-layered neural network come into picture.

Output Layer

t

Figure 2.2 Multilayer perceptron

Each input from the input layer is fed to each node in the hidden layer, and from there to each
node on the output layer. There can be any number of nodes per layer and there are usually
multiple hidden layers to pass through before ultimately reaching the output layer.

To tune weights between the hidden layer and the input layer, we need to know the error at
the hidden layer, but we know the error only at the output layer. So, to deal with this the
errors at the output layer is taken and proportionally propagated backwards to the hidden
layer. Below we have shown equations for a 2 layered network but the same concept will be
applicable for a network having any numbers of layers.
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W..

Figure 2.3 One segment of a 2 layered network

For a particular neuron, ‘i’ in the output layer weights will be adjusted as Wj; = Wj; + a*g’
(sum of all inputs)*(T-A)*P (j) for all j connected to ‘i’, where, g’ is the derivative of the
activation function and ‘a’ is the learning rate of the perceptron, W is the weight vector, P is
the input vector, T is the correct output that the perceptron should have known and A is the
output given by the perceptron. This equation tunes the weights between the output layer and
the hidden layer.

Now, for a particular neuron j’ in the hidden layer, we will propagate the error backwards
from the output layer such that, Error = Wj;xE; + WjpxE, + ... + W;xE,.. Therefore, for a
particular neuron ‘j” in the hidden layer Wy; = Wy; + a*g’ (sum of all inputs)*(T-A)*P (k) for
all k connected to ‘j°, where, g’ is the derivative of the activation function and ‘a’ is the
learning rate of the perceptron, W is the weight vector, P is the input vector, T is the correct
output that the perceptron should have known and A is the output given by the perceptron.
This equation tunes the weights between the hidden layer and the input layer.

2.2 CNN (Convolution Neural Network)

CNN (Convolution Neural Network) is a feed-forward neural network and is widely used for
image recognition. CNN, like neural networks, are made up of neurons with learnable
weights and biases. Each neuron receives several inputs, takes a weighted sum over them,
pass it through an activation function and responds with an output. CNN operates over
volumes, unlike neural networks, where the input is a vector but in case of CNN the input is a
multi-channelled image.

2.2.1 Convolution Layer

The convolution layer is the main building block of a convolution neural network. The
working of the convolution layer is explained below.

We define a filter (5x5x3 in this example) and slide it over the complete image and along the
way take dot product between the filter and chunks of the input image to generate a new
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image. For every dot product taken, the result is a scalar (Each dot product gives a pixel of
the new image). Filters always extend the full depth of the input volume.

32x32x3 image

5x5x3 filter w
32

™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

w' +b

Figure 2.4 Convolution

So, after convolving the complete image with the filter we will get an output image (also
called as the activation map) which is 28x28x1 for our considered example. The size of the
output image can we computed using the simple formula (N-F)/stride + 1, where N is the
length of the input, F is the length of the filter and stride is the sliding length. For the example
shown below, N=32, F=5 and stride=1, therefore output length = (32-5)/1+1 = 28 i.e. the
dimension of output image will be 28x28.

activation map
_— 32x32x3 image
5x5x3 filter

28

convolve (slide) over all
spatial locations

32 28

Figure 2.5 Convolution of an image

The convolution layer comprises a set of independent filters (6 in the example considered).
Each filter is independently convolved with the image. In the example shown below, we end
up with 6 feature maps of shape 28x28x1, which are then stacked to get a new image of size
28x28x6.
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Vi
y.

|

32

Convolution Layer

Figure 2.6 Convolution using 6 filters

activation maps

28

4

Now, suppose if there are several convolution layers in sequential order then the convolution
will happen as shown in the figure below.

-
y.

@l

CONV,

RelLU
eg.6
5x5x3
filters

A

(o]

28

CONV,

RelLU
eg. 10
5x5x6
filters

4

10

1L

24

CONV,
RelLU

Figure 2.7 Multiple convolution layers in sequence

All these filters are initialised either randomly or in some other ways which become our
parameters that are learned by the network subsequently.

2.2.2 Pooling Layer

A pooling layer is another building block of a CNN. It is common to periodically insert
pooling layer in between successive convolution layers. Its function is to progressively
reduce the spatial size of the representation to reduce the amount of parameters and
computation in the network and hence to also control overfitting.

Overfitting: One of the problems that occur during neural network training is overfitting.
When the error on the training data is driven to a very small value, but the error of the
network when presented with new data is large, such a situation is known as overfitting. In
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overfitting, the network basically memorizes the training examples, but it does not learn to
generalize to new situations.

In pooling layer, we slide the filter over the complete image and generate an array of scalars
according to the type of the filter. Every scalar represents a pixel of the output/new image.

Pooling layer operates on each map independently. The most common approach used in
pooling is max pooling. In the figure below, we have shown a max pool with 2x2 filters and
stride 2 being applied to an image. The dimension of the output image of the max pooling
layer can be computed using the formula (N-F)/stride + 1, where N is the length of the input,
F is the length of the filter and stride is the sliding length. For the example shown below,
N=4, F=2 and stride=2, therefore output length = (4-2)/2+1 = 2 i.e. the dimension of output
image will be 2x2.

Single depth slice

X AN 2 | 4
max pool with 2x2 filters
ONIRON =7 (|48 and stride 2 6 | 8
3 | 2 [HNIEO 3| 4
1 | 2 [RSHIES:
y

Figure 2.8 Max-pooling
2.2.3 FC Layer

A CNN also consists of fully connected layer/layers of neuron at the end. Neurons in fully
connected layer have full connections to all activations in the previous layer, as seen in
regular neural networks and work in a similar way.

2.3 Why are we using CNN?

The number of parameters to train a fully connected network is much larger as compared to a
CNN. Also, in most images the nearby pixels are generally related but a fully connected
neural network doesn’t take this into account, while a CNN takes into account our
understanding of the relationship between space and pixels within an image.
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2.4 MRI (Magnetic Resonance Imaging)

MRI (Magnetic Resonance Imaging) provides good contrast for soft tissues as compared to
the other imaging techniques available. Also, there are no known health hazards from
temporary exposure to the MR environment. So, MRI is a good technique for accessing brain
tumor in human beings. Different imaging modalities can be used for mapping tumor-induced
changes, including T1, Tlc, T2, and Flair MRI [10]. These MRI modalities are sensitive to
the inflammatory and demyelinating changes directly associated with the underlying
pathology. T1 is the most commonly used modality for structural analysis and distinguishing
healthy tissues. In Tlc the borders of the glioblastoma are enhanced. This modality is most
useful for distinguishing the active part of the glioblastoma from the necrotic parts. In T2, the
edema region appears bright. Using Flair we can identify the whole tumor structure. In the
dataset, for each patient, images from four different sequences namely: T1, T1-contrasted, T2
and FLAIR (Fluid Attenuated Inversion Recovery) are acquired. Each of these sequences
exploits the distinct characteristics of the tissues as explained above which results in contrast
among the images. We can observe the same from the figures given below:

Figure 2.9 MR images

Notice, the difference in the intensities among the four images, all of which are images of the
same brain slice taken with different MRI sequences.
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2.4.1 Tumor structure and representation

The sub-regions of a brain tumor are: necrosis (dead part of the tumor), edema (swelling
caused by tumor), enhancing (refers to the part of the tumor which is enhanced in Tlc
modality), non-enhancing (refers to the part of the tumor which isnot enhanced in Tlc
modality).

Brain tumors are represented (digitally) using 5 levels (as shown in the figure below). The red
part (represented as level 1) is the necrosis, the green part (represented as level 2) is the
edema, the blue part (represented as level 3) is the non-enhancing tumor, the yellow part
(represented as level 4) is the enhancing tumor and the remaining part of the brain i.e. the
normal tissues and the black surrounding area is represented by level 0.

Complete tumor: The necrosis, edema, non-enhancing and enhancing part of the tumor as a
whole is known as the complete tumor i.e. (Level 1 + Level 2 + Level 3 + Level 4)

Core tumor: The necrosis, non-enhancing and the enhancing part of the tumor as a whole is
known as the core tumor i.e. (Level 1 + Level 3 + Level 4)

Red - Level 1
Blue - Level 3

Others - Level 0

10 cm

Figure 2.10 Tumor representation
2.4.2 MRI sequences

Different MRI sequences exploit distinct characteristics of the tissues which result in contrast
between the images, which help for better segmentation. As, we can see in the figure below
that the whole tumor is visible clearly in the sequence Flair (i.e. figure A) while the core of
the tumor is visible in the sequence T2 (i.e. figure B) and the enhancing tumor structure is
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visible in the sequence Tlc (i.e. figure C). This is why; we need MR images from different
sequences so that we can identify/classify the intra-tumoral structure precisely.

Figure 2.11 Different MRI sequences helping to identify intra-tumoral structure

2.5 Imagenet challenge and Deep learning

In, deep learning a hierarchy of increasingly complex features is directly learned from the
data. So, the focus is on designing architectures instead of developing hand-crafted features,
which may require specialised knowledge. This is one of the major reasons for using deep
learning for solving problems as feature extraction may be complicated in some cases.

In Imagenet challenge, for a given image, the task is to produce 5 class labels in decreasing
order of confidence and 5 bounding boxes, one for each class label. There are 1000 categories
in this challenge. The quality of localisation labelling will be evaluated based on the label that
best matches the ground truth label for the image and also the bounding box that overlaps
with the ground truth. A training dataset of 1.2 million images along with their ground truth is
provided. Testing and validation data consists of 1,50,000 images [20].

Now that we have understood about the Imagenet [5] challenge, let us discuss more about it.
For this challenge, deep learning was first used in the year 2012. The error rate of the best
method of 2011 was 26%. But, in 2012 a method based on deep learning ranked no.1 in the
Imagenet challenge and its error rate was just 16%. The best method of 2012 used 4 GPU’s
for solving the problem. In 2013, another deep learning method ranked no.1 and the error rate
was decreased to 12% which was further decreased to 7% by another deep learning method
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proposed in 2014. Thus, we can see (refer figure) that the error rate has significantly
decreased with deep learning since 2012. So, inspired by this, we are also trying to explore
deep learning in the field of medical image processing.

IMAGENET

Top 5 Error Rate
# of entries using GPUs

4
|

2010 2011 2012 2013 2014

0

Figure 2.12 Imagenet challenge results

2.6 Challenges in tumor classification

Identification of tumor is a very challenging task. The location, shape and the structure of
tumor varies significantly from patient to patient which makes the segmentation a very
challenging task. In the figure shown below, we have shown some images of the same brain
slice from different patients, which clearly reflect the variation of tumor. We can clearly see
that the location of tumor is different in all the 8 images/patients shown below. To make it
worse, the shape and the intra-tumoral structure is also different for all the 8 patients/images.
In fact, there can be more than one region of tumor as can be seen from the images below.
This indeed reflects the complexity of automatic segmentation.
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Figure 2.13 Tumor in different patients of the same brain slice

2.7 Dice score

The evaluation of the segmentation technique/algorithm is done by calculating the DSC i.e.
Dice Similarity Coefficient. The DSC measures the overlap between the manual and the
automatic segmentation. DSC is defined as follows [6]:

27TP
FP + 2TP + FN

DSC =

Here, TP represents true positive, FP represents false positive and FN represents false
negative. For comparing different algorithms (segmentation techniques) we measure the dice
score in the following cases:

1. Complete tumor (Level 1 + Level 2 + Level 3 + Level 4)
2. Core tumor (Level 1 + Level 3 + Level 4)
3. Enhancing tumor (Level 4)
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2.8 Dataset

All MRI data are provided by BraTS Challenge 2015 [7], which consists of data for 220 high-
grade glioma patients and 54 low-grade glioma patients. Images of four different MRI
sequence namely. T1, Tl-c, T2 and Flair are provided for each patient along with the
professional segmentation as ground truth labels for each case. Each brain scan consists of
155 slices of size 240x240. Each pixel in the MR images represents a 1mm” voxel. MRI’s are
stored as a 3d array of size 155x240x240. This array is generated by scanning the brain from
top to bottom. In the ground truth images, necrosis is represented by integer value 1, edema
by 2, non-enhancing tumor by 3, enhancing tumor by 4 and others are represented as 0.



Chapter 3 Model Design

In this chapter we will discuss about the pre-processing of MR images and the importance of
patch extraction. We will also present four different patch extraction methods proposed by us
and using the best method we will build a CNN for the HGG patients which will further be
used to build another CNN for the LGG patients via transfer learning. Concepts such as
balancing classes and real time data augmentation which has helped in improving the
accuracies are also discussed here. Finally, we conclude the chapter by showing how
segmentation is done for HGG and LGG patients and some post-processing measures.

We have approached the problem of brain tumor segmentation using CNN. We train the
CNN on patches, a patch is a sub-image of the original image. The purpose of training the
model on patches is due to the fact that the class of any given voxel is highly dependent on
the class of its surrounding voxels. The class of the centre pixel of a patch is considered as
the class of the patch. Through testing it has been found that the model gives best results
when the patch size is taken as 33x33 [11].

3.1 Pre-processing

One of the challenging task in dealing with the MRI data is dealing with the artifacts
produced either by in homogeneity in the magnetic field or small movements made by the
patient during scan time [4]. Often a bias is present across the patients which make the
segmentation difficult for an automatic segmenting model.

Since Bias field distortion alters the MR images, therefore the intensity of the same tissue
may vary in an image/slice. So, we have applied the N4ITK method [2] to correct this error.
However this is not enough for making the intensity of the same type of tissues similar across
multiple patients. As a matter of fact, the same tissue of the same patient can be in different
intensity when taking the images/MRI at different times. So to make the intensity of the same
tissue type more similar we have used the method proposed by Nyul et al. [1] [3].

3.1.1 Intensity Normalisation

Nyul et al. [1] [3] has proposed a two step method for normalising the images across multiple
patients. The first step is the training step which is executed only once for a given dataset and
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the second step is the transformation step which is executed for each image in the dataset.
The main idea underlying the methods is to deform the image histograms so that they match a
mean histogram determined through training. The actual matching is based on certain
landmarks identified on the histograms.

3.1.1.1 Training

In the training phase, the landmarks (pij, p2j, Hij, H2js--., Loj) 1S obtained from each image and
is mapped to the standard scale by mapping the intensities from [p;;j, p»;] onto [si, sz] linearly.
Then for each k, 1 < k <9, the mean pys of the mapped pjs over the training images is
computed.

Algorithm: Training step

Input: A set of images that is a subset of the training dataset, histogram parameters pc;, pca
and sy, S

Output: {uys 1<k <9}

begin

1: For each image

2: Compute the histogram H; for the image

3: Determine the intensity values pi; and p,; corresponding to pc; and pc; and the landmark
locations pij, pj, ....., Hojon Hj

4: Map [pij, p2j] of H; onto [sy, s7] linearly

5: Find the new mapped landmark locations p’yj, p’sj, ....., 1o

6: end for

7: Calculate the rounded means s, Lo, -..... , Mos of W15, 1 2j, -...., Woj respectively overj =1,
2, N

end
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3.1.1.2 Transformation

In this phase, for any given image, the actual landmark locations y; obtained from its
histogram are matched to ps by doing several separate linear mappings: the first from [pi;,
wii] to [s1, ptis); the second from [, Moi] to [Wis, Mas],..., and the last from [poi, p2i] to [Kos, S2].

Algorithm: Transformation step

Input: Image to transform, pc;, pc, and sy, Sz, tis, Hasy -veeoe , Hos
Output: The transformed Image

begin

1: Compute the histogram H; of the image

2: Determine intensity values p;; and p; corresponding to pc; and pc, and the landmark
locations pyj, Wi, -..... , Hoi on Hj

3: Map sections of the scale of H; linearly to the standard scale

4: Map the intensity value of every voxel according to the mapping obtained from step 3 to
get the output image

end

Before After

5! ‘ @
A o A

)

J/

Figure 3.1 Before and after pre-processing
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3.2 Patch extraction

A patch is a sub-image of the original image. In the figure show below, we have shown an
example of a patch of size 33x33 taken from a brain slice image of size 240x240.

240

240

Figure 3.2 Showing a Patch
3.2.1 Importance of using patches

Since the size of each slice is 240x240, therefore if we train the CNN on the whole
image/slice then the number of parameters to train will be very large and thus we will need a
very large amount of data. But, since the dataset is not very large, so, we train our model
using patches. Also, the class of any given voxel is highly dependent on the class of its
surrounding voxels. So, we are training our model using patches. And by testing different
patch sizes we have found that 33x33 works the best for the dataset that we are using.

3.2.2 Importance of patch extraction

The segmentation accuracy is greatly influenced by the patches being used for training the
model. We have proposed four different algorithms for patch extraction and the segmentation
results were significantly different for different algorithms. A comparison of the four
methods is shown in the figure below.
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Figure 3.3 Segmentation results using different patch extraction methods

So, we can clearly see that the segmentation of tumor is best using method 3. Based on the
segmentation results the algorithms could be ranked in the order (best to worst) as: method 3,
method 4, method 2, and methodl. So, patch extraction is a very important problem as it
greatly influences the results.

3.2.3 Proposed Patch extraction methods

The importance of patch extraction has been clearly explained. We have proposed 4 different
algorithms for patch extraction which took different time to run and which also gave quite
different segmentation accuracies.

After several testing we have found that for extracting background patches the threshold
should be 75 percent non zero intensity pixels (i.e. the patch should contain at least 75
percent non zero values) otherwise most of the healthy tissue patches are classified as tumor.
Also, when those 75 percent non zero intensity pixels were only from healthy tissue pixels
the misclassification error for tumor was found to be maximum. And when we allowed a
maximum of 25 percent tumor pixels in the patches for healthy tissues then the accuracy was
found to be maximum. And for the tumor patches, the threshold is 75 percent non zero
intensity pixels. In case of tumor patches those 75 percent non zero pixels can also include
healthy tissue pixels, otherwise the boundary of the tumor region will not be correctly
identified/segmented.
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This observation has been kept in mind/used while coming up with all the four
algorithms/methods. Patches for all the methods are extracted along the plane perpendicular
to the axial axis until and unless stated otherwise. Another thing that we kept in mind while
proposing these methods was to balance the patches from all the classes as the training will
not be good otherwise.

3.2.3.1 Method 1

In this method, we generate patch for each of the voxel (not belonging to the black
surrounding area) and the similar patches of the same class are removed.

Patch extraction: Method 1

Input: The training dataset
Output: A patch library

begin

1: for each voxel, v in the image

2: extract patch of size 33x33 with v at the centre of the patch from each MRI sequence and
append them to get the desired patch of size 4x33x33

3: find the class of the patch
4: check if the no. of non zero intensity pixel is > threshold,,
where, threshold, is the threshold for class ¢

5: check if the patch is matching with any of the previously extracted patches of the same
class

6: if no, add the patch to the patch library along with the class

end

Since, the number of patches extracted from this method was huge. So, we incorporated
another condition which was to select only the highest entropy patches.

Algorithm: selecting only the best patches
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begin

1: put all the patches of a class in a list

2: find the entropy of all the patches

3: sort the lists

4: select only the required no. of patches from the sorted lists

end

The time required for finding patches for HGG and LGG patients was approximately 300 hrs
i.e. 12.5 days using this method. Overfitting occured when training the HGG and LGG
models using the patches extracted from this method. Also, the segmentation accuracy for the
complete tumor was only about 62% in the HGG patients using this method.

3.2.3.2 Method 2

In this method, we generate patch for each of the voxel (not belonging to the black
surrounding area) and if the patch is similar to the previously extracted patch of the same
class then it is not included in the patch library.

Patch extraction: Method 2

Input: The training dataset
Output: A patch library

begin

1: for each voxel, v in the image

2: extract patch of size 33x33 with v at the centre of the patch from each MRI sequence and
append them to get the desired patch of size 4x33x33

3: find the class of the patch
4: check if the no. of non zero intensity pixel is > threshold,,
where, threshold, is the threshold for class ¢

5: check if the patch is matching with the previously extracted patch of the same class
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6: if no, add the patch to the patch library along with the class

end

Since, the number of patches extracted from this method was again huge. So, we incorporated
the same condition as in method 1 of selecting the highest entropy patches.

Algorithm: selecting only the best patches

begin

1: put all the patches of a class in a list

2: find the entropy of all the patches

3: sort the lists

4: select only the required no. of patches from the sorted lists

end

The time required for finding patches for HGG and LGG patients was approximately 60 hrs
i.e. 2.5 days using this method. Overfitting occured when training the HGG and LGG models
using the patches extracted from this method. Also, the segmentation accuracy for the
complete tumor was only about 67% in the HGG patients using this method.

3.2.3.3 Method 3

In this method, once a patch is extracted for a voxel of a slice, a box of size (NxN) is created
at that pixel and patches of the same class are not extracted from that box. This helps to
prevent overfitting.

Patch extraction: Method 3

Input: The training dataset
Output: A patch library
begin

1: for each voxel, v in the image
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2: extract patch of size 33x33 with v at the centre of the patch from each MRI sequence and
append them to get the desired patch of size 4x33x33

3: find the class of the patch

4: check if the no. of non zero intensity pixel is > threshold,,

where, threshold. is the threshold for class ¢

5: if yes, add that patch to the patch library along with the class and create a box (N xN,) at v,
where N, is the box size for class ¢

6: don’t extract any patch of the corresponding class (c¢) from the box

7: end for

end

Since the number of parameters that we have to train is huge, so our target was to extract
maximum number of patches so that the training is better. An important concept to keep in
mind is that we have to balance the patches from all the classes otherwise the training will not
be good. So, 40% of the patches in the patch library for the HGG patients represent normal
tissue and the rest is equally divided among the other classes. While for the LGG patch
library 50% of the patches represent normal tissue and the rest if equally divided among the
other classes.

We started with box size=2 for class 1 and found out the dice score for level 1, but it resulted
in an overfitted CNN. So, we increased the box size to 3, 4, etc for class 1 and kept on doing
that until we were able to generate sufficient number of patches to train the CNN. After doing
this, we found that when box size was taken as 4 the dice score for necrosis (class 1) was
maximum and the model does not overfits. Similarly, we found out the optimal box sizes for
other classes. Thus, we finally end up with the following box sizes (Ng, N, N2, N3, Nys) = (32,
4,10, 8, 8) as the optimal box sizes. Both the HGG and LGG model when trained using this
method and box sizes gave promising results and the problem of overfitting was also
resolved.

Note that, since 98% of the voxels belong either to the healthy tissue or the black surrounding
area, so the box size for class 0 was maximum and since the number of voxels belonging to
class 1 i.e. necrosis region is very low (minimum), so the box size for class 1 was minimum.
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From the table below, we can clearly see that the segmentation accuracy varies when we
change the box size for the algorithm discussed above which is why finding the optimal box
size was also a very challenging task.

Table 3.1 Results using different box size for patch extraction

(32,4,8,8,8) (32,4, 10, 8, 8) (32,4, 12,8, 8)

Dice score (in %) for | 56 70 63
level 2 only

The time required for finding patches for HGG and LGG patients was approximately 40 hrs
i.e. 1.6 days using this method. Overfitting does not occured when training the HGG and
LGG models using the patches extracted from this method. Also, the segmentation accuracy
for the complete tumor in the HGG patients was about 79% using this method.

3.2.34 Method 4

This method is same as the previous method. We just included patches from the other planes
as well in this method i.e. from the planes perpendicular to the coronal and the sagittal axis.
But, Method 3 has better results as compared to this method.

Patch extraction: Method 4

Input: The training dataset
Output: A patch library

begin

1: for each voxel, v in the image

2: extract patch of size 33x33 with v at the centre of the patch from each MRI sequence and
append them to get the desired patch of size 4x33x33

3: find the class of the patch
4: check if the no. of non zero intensity pixel is > threshold,,

where, threshold, is the threshold for class ¢
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5: if yes, add that patch to the patch library along with the class and create a box (N xN,) at v,
where N, 1s the box size for class ¢

6: don’t extract any patch of the corresponding class (c¢) from the box
7: repeat step 1-6 for the other two planes as well.
8: end for

end

The time required for finding patches for HGG and LGG patients was approximately 120 hrs
i.e. 5 days using this method. Overfitting does not occured when training the HGG and LGG
models using the patches extracted from this method. Also, the segmentation accuracy for the
complete tumor in the HGG patients was about 74% using this method.

3.3 CNN for HGG

In the figure below, we have shown the CNN designed for the segmentation of tumor in HGG
patients [11]. The filter size is 3x3 for all the layers with a stride of 1x1 for the convolution
layer and a stride of 2x2 for the max pooling layers. The first 3 layers of the model are
convolution layer followed by a max pooling layer which are followed by another set of 3
convolution and a max pooling layer. Finally, we have 3 fully connected layers at the end of
the model.

Table 3.2 CNN model for HGG patients

Type Filter size | Stride # filters FC units Input

Layer 1 Conv. 3x3 1x1 64 - 4x33x33
Layer 2 Conv. 3x3 1x1 64 - 64x33x33
Layer 3 Conv. 3x3 1x1 64 - 64x33x33
Layer 4 Max-pool. | 3x3 2x2 - - 64x33x33
Layer 5 Conv. 3x3 1x1 128 - 64x16x16
Layer 6 Conv. 3x3 1x1 128 - 128x16x16
Layer 7 Conv. 3x3 1x1 128 - 128x16x16
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Layer 8 Max-pool. | 3x3 2x2 - - 128x16x16
Layer 9 FC - - - 256 6272
Layer 10 FC - - - 256 256
Layer 11 FC - - - 5 256
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Figure 3.4 CNN for HGG patients

3.3.1 Balancing classes and data augmentation

Balancing classes: Another important factor in patch selection is to make sure that the
classes of the input data are balanced. But, since approximately 98% of the voxels belongs to
the tumor classes, therefore classes of the input data is not balanced for any of the algorithm
discussed above. So, we have selected all the patches from the underrepresented classes and
have randomly selected from the others.

Since, the number of parametes that we have to train for the HGG model is 21,18,213 for the
classification of 89,28,000 voxels, therefore, we have to increase the size of the training
dataset for better classification. For this, we have done run time augmentation.
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Augmentation: Data augmentation is a common procedure in the context of CNN, when the
training data set is small and the number of parameters to train is significantly large.
Augmentation is basically, a technique to get around a lack of data in the dataset. Data
augmentation can increase the size of training set by 10-fold or more. If the dataset is already
very large then this technique may not be ineffective

We are doing rotation and flipping randomly in the training dataset at run time to generate
new dataset. We randomly select some samples (t) from the batch (size=128) and randomly
apply one of the three operations (rotation, horizontal flip and vertical flip) or a random
combination of the three operations to get ‘t’ modified samples which are then merged with
the remaining (128-t) samples to get a new batch of 128 samples which is used to train the
model. Also, the class of the samples (t) which are processed is kept the same as it was before
applying any operation.

Batch size = 128 Real time data augmentation

(128-t) samples
t samplesl

rotation_angle_max = x
horizontal_flip —>
vertical_flip

Final batch
(Size = 128)

Figure 3.5 Real time data augmentation

3.4 Transfer learning

Transfer learning is the improvement of learning in a new task through the transfer of
knowledge from a related task that has already been learned. For example, knowledge gained
while learning to recognize cars could apply when trying to recognize trucks. It is basically,
machine learning with an additional source of information (from one or more related tasks)
apart from the standard training data (refer the figure shown below).
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Figure 3.6 Transfer learning

3.4.1 Benefits of Transfer learning

Let us try to understand this with the help of an example. Most related objects are similar
when viewed at a low resolution. E.g. low resolution images of most 4 legged farm animals
have the same general shape. Thus, knowledge learned at low resolution may apply to all
these animals. At higher resolution, details begin to emerge that differentiate them. [15]

In case of tumor also, at low resolution both the higher grade and lower grade tumors are
similar. Also, since the data available for LGG patients is very less i.e. data of only 54
patients. So, we are using transfer learning for the segmentation of tumor in LGG patients.

3.4.2 LGG model based on Transfer Learning

The CNN model for the LGG patients is trained in the following way. Firstly, the last 5 layers
of the HGG model are removed and the 6" layer of the HGG model is made as the new
output layer. Then the best learned weights that have already been learned for the
segmentation of tumor in HGG patients are loaded. All the training patches from the LGG
patients are passed through the model explained above and a vector of size (128, 16, 16) is
generated and stored for each patch. Once we have extracted vectors for all the training
patches of the LGG patients, we will then train the CNN for the LGG patients using those
vectors.
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Figure 3.7 Model for LGG using Transfer learning

Table 3.3 CNN model for LGG patients

Type Filter size | Stride # filters FC units Input
Layer 1 Conv. 3x3 Ix1 128 - 128x16x16
Layer 2 Max-pool. | 3x3 2x2 - - 128x16x16
Layer 3 FC - - - 256 6272
Layer 4 FC - - - 256 256
Layer 5 FC - - - 5 256
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3.4.3 CNN parameters

We have tried training the CNN for both HGG and LGG with different optimizers such as
Adam, Adadelta, RMSprop, Nadam, SGD but the best result was given by SGD (Stochastic
Grdient Descent). We have trained both the HGG and the LGG model for 20 epochs with
initial learning rate as 0.003 and final learning rate as 0.00003. The learning rate has been
linearly reduced. A momentum of 0.9 is being used. The batch size that we have used for
training the is 128 in both HGG and LGG model. A dropout of 0.1 is used in case of HGG
and 0.5 is used in case of LGG model. LeakyRelu (f(x) = max(0, x) + a min(0, x)) has been
used as the activation function with alpha=0.333 in all the layers in both HGG and LGG
model, but in the last fully connected layer we have used softmax activation function. The
parameters of the CNN have been initialised with Xavier uniform initialisation [12]. In the
convolution layers the feature maps are padded before convolution for both HGG and LGG
model so that the resulting feature map could maintain the same dimension.

3.5 Segmentation

Segmentation is the process of partitioning an image into multiple regions or segments. It is
used to simplify the image representation and thus helps to locate the object of interest within
the image. Precisely, segmentation is the process of assigning a label to each pixel/voxel in
an image such that pixels/voxels of the same label share certain characteristics.

In the output of our models i.e. in the segmented image, necrosis is represented by integer
value 1, edema by 2, non-enhancing tumor by 3, enhancing tumor by 4 and others are
represented as 0.

For doing brain tumor segmentation, first of all the input image is pre-processed in the
similar way as the training data was pre-processed and then the patch for each voxel is
extracted and their classes are predicted through the model to get the segmented image.

3.5.1 Segmentation in HGG

Tumor segmentation in the HGG patients is done in the following way. For each voxel in the
MRI of the HGG patients, patch of size 33x33 is extracted from all the 4 sequences i.e. T1,
Tlc, T2 and Flair and are appended to get a new patch. Then, this new patch is passed
through the HGG model to get the prediction of the class of the patch which is then stored in
a 3d vector of size 155x240x240 at the corresponding location of the voxel.
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Segmentation algorithm for HGG model

Input: MRI of a patient

Output: Segmented image (of size155x240x240)

begin

1: pre-process the input image in the same way as the training data was pre-processed
2: for each voxel (v) in the image

3: extract patch of size 33x33 with v at the centre of the patch from each MRI sequence and
append them to get the desired patch of size 4x33x33

4: predict the class of the patch using the model (CNN) constructed for the HGG patients
5: store the class of the patch at the location of v in the segmented image

6: end for

end

Segmentation (HGG)

conv conv conv pool conv conv conv pool fc fc fc

4x33x33
patches

= Dm=< >
NaOm=<>»>r
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vuam=<»r
amm<>r
NAmMm=< >
om<»r
=om=<»r
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=

4 33x33 Patches for each voxel

Figure 3.8 Segmentation for HGG patients
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3.5.2 Segmentation in LGG

The segmentation of tumor in the LGG patients is done in the following way. Firstly, the last
5 layers of the HGG model are removed and the 6™ layer of the HGG model is made as the
new output layer. Then the best learned weights that have already been learned for the
segmentation of tumor in HGG patients are loaded. Now, for each voxel in the MRI of the
LGG patients, patch of size 33x33 is extracted from all the 4 sequences i.e. T1, Tlc, T2 and
Flair and are appended to get a new patch. Then this new patch is passed through the model
explained above to get an output vector of size 128x16x16 which is again passed through the
five layers of the LGG model and the level of the patch is generated and stored in a 3d array
of size 155x240x240 at the corresponding location of the voxel.

Segmentation algorithm for LGG model

Input: MRI of a patient

Output: Segmented image (of sizel155x240x240)

begin

1: pre-process the input image in the same way as the training data was pre-processed
2: for each voxel (v) in the image

3: extract patch of size 33x33 with v at the centre of the patch from each MRI sequence and
append them to get the desired patch of size 4x33x33

4: pass the patch through the first 6 layers of the HGG model to get a vector of size
128x16x16

5: pass this vector through the 5 layers of the LGG model to get the class of the patch
5: store the class of the patch at the location of v in the segmented image
6: end for

end
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Figure 3.9 Segmentation for LGG patients

3.6 Post processing

Some small clusters may be erroneously classified as tumor. So, to deal with that we have
used volumetric constraints to remove such errors. The Ty, for HGG patients is 10,000 while
the Ty, for the LGG patients is 3,000. We have tried using erosion as a post-processing
measure to get better boundary for the tumor but it has been found to be ineffective. In fact,
the segmentation accuracies decreased after applying erosion over the segmented images.
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In this chapter, we will be showing segmentation accuracies of some of the benchmark
algorithms. We will also compare our results with the deep learning method proposed by
Pereira et al. [11] which is the present best algorithm in brain tumor segmentation to the best
of our knowledge.

The model has been implemented in python with Theano [8][9] as the backend. Dell
precision Tower 7810 has been used for running the code of all the algorithms discussed in
this report.

4.1 Ground truth vs. Automatic Segmentation

Below are some images showing the difference between automatic segmentation and the
actual ground truth values. From the images shown below we can clearly see that the
proposed model for LGG patients could detect the location, shape, size and the intra-tumoral
structure quite precisely. Although, the segmentation of tumor in LGG patients is considered
as a very difficult task due to the lack of data, but our model for LGG patients based on
transfer learning is performing quite well as can be seen from the images below.
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Figure 4.2 Ground truth vs. Automatic segmentation for LGG patients

4.2 Comparative study with existing literature

Results of some benchmark methods on BraTS 2013 dataset is shown below. From the figure
below it can be clearly seen that no single algorithm performed the best in all the three cases
of evaluation i.e. whole, core and the active tumor. The algorithm proposed by Zhao (I)
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performed the best in “whole tumor segmentation” whereas “core tumor segmentation” was

best performed by the algorithm proposed by Subbanna and the algorithm proposed by Festa
outperformed all the algorithms in “active tumor segmentation”.

whole core active

Dice in (%) LG/HG LG/HG

Bauer 68 49/74 48 30/54 57
Buendia 57 19/71 42 8/54 45
Cordier 68 60/71 51 41/55 39
Doyle 74 63/78 44 41/45 42
Festa 62 24/77 50 33/56 61
Geremia 62 55/65 32 34/31 42
Guo 74 71/75 65 59/67 49
Hamamci 72 55/78 57 40/63 59
Meier 69 46/77 50 36/55 57
Menze (D) 78 81/76 58 58/59 54
Menze (G) 69 48/77 33 9/42 53
Reza 70 52/77 47 39/50 55
Riklin Raviv 74 na/74 50 na/50 58
Shin 30 28/31 17 22/15 5
Subbanna 75 55/82 70 54/75 59
Taylor 44 24/51 28 11/34 41
Tustison 75 68/78 55 42/60 52
Zhao (I) 82 78/84 66 60/68 49
Zhao (II) 76 67/79 51 42/55 52
Zikic 75 62/80 47 33/52 56

Figure 4.3 BraTS 2013 results [10]

A comparison of the proposed model with the deep learning method of Pereira et al. [11] is

shown in the table below.

Table 4.1 Comparison of results

whole core active parameters parameters
Dice in (%) LG/HG LG/HG HG (HGG) (LGG)
Pereiraetal. | 84 65/88 | 72 53/76 73 | 21,18,213 19,33,701
Proposed 77 74/79 | 74 62/80 751 21,18,213 18,20,549
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We can clearly see (from the table above) that the number of parameters in the method
proposed by Pereira et al. [11] is larger as compared to that of us. Also, the number of
patches used by them for training the model for LGG patients is around 3,35,000 whereas we
have used around 1,60,000 patches for training the CNN for LGG patients. Thus, the training
time of our algorithm is significantly less as compared to them. Also, we are getting better
results in all the cases in LGG patients as compared to them. In case of HGG patients, our
segmentation results in core and active tumor is a little better as compared to them but we are
significantly lacking behind in complete tumor segmentation.



Chapter S Conclusion and Future Work

In this Project, we have looked at the problem of automatically segmenting tumor from the
MR images and we have come up with four different algorithms for extracting patches which
can be used to train CNN’s to do the automatic segmentation. We also came up with two
different CNN’s, one for the HGG and the other for the LGG patients to do the automatic
segmentation in a reasonable amount of time with high accuracy. We have also shown how
transfer learning has helped in increasing the segmentation accuracy in case of LGG patients.

While the proposed model yields promising results, an application such as brain tumor
segmentation leaves no room for errors. In a surgical setting it is essential to remove as much
of the tumor mass as possible without damaging the surrounding healthy tissues. So, in the
future, the work could be extended by developing more advanced patch extraction algorithms
which will help in increasing the segmentation accuracy. Till now we have looked into
extracting and training using 2D patches, the work could also be extended by designing
models which could be trained on 3D patches and thus trying to come up with good
algorithms for extracting 3D patches.
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