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CONNECTIONS WITH PRESCRIBED
FIRST PONTRJAGIN FORM

MAHUYA DATTA

ABSTRACT. Let P be a principal O(n) bundle over a C* manifold M of di-
mension m. If n > 5m + 4 + 4(m:1"1), then we prove that every differential
4-form representing the first Pontrjagin class of P is the Pontrjagin form of
some connection on P.

1. INTRODUCTION

Let P be a principal O(n) bundle over a C* manifold M of dimension m, and
let p; € H*(M) denote the i-dimensional Pontrjagin class of P. We address the
question whether a 4i-form representing the class p; is a Pontrjagin form of some
connection on P. In [1] we considered the top-dimensional Pontrjagin class pg of a
principal O(n) bundle P over a 4d-dimensional open manifold M for n > 2d, and
we gave a homotopy classification of connections a on P that satisfy ps(a) = w,
where w is a volume form on M. In this paper, we take up the case of the first
Pontrjagin form and prove the following result.

Theorem 1.1. Ifn > 5m + 4+ 4(™f"), then every differential 4-form represent-
ing the first Pontrjagin class p1 is the Pontrjagin form of some connection on P.
Moreover, when M is a closed manifold, the same is true for n > 5m+ 4(7;).

Here (') denotes the integer Eﬁ

We observe that when n > m, then P reduces to the direct sum P; & P> of
two principal bundles, where P; is an O(m) bundle and P, is the trivial O(n — m)
bundle on M. Since the Pontrjagin form is additive, the above observation reduces
the problem to finding a connection on a trivial principal bundle with a given exact
form as its Pontrjagin form.

Now, if an exact 4-form on M can be expressed as the sum of ¢ primary mono-
mials of the form df; A dfz A dfs A dfy, where the f;’s are smooth functions on M,
then we can explicitly construct a connection on the trivial principal O(2q)-bundle
over M by taking a 2 x 2 block

a=( 0 f1df2—f3df4)
—fidfs + fadfs 0

along the principal diagonal for each such monomial. It can be seen easily that the
Pontrjagin form of such a connection is the given exact form on M. Indeed, we can
prove the following result (compare ([2], 3.4.1 (B’))).
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Theorem 1.2. Every exact 4-form dw on M can be expressed as the sum of q
primary monomials for ¢ > 2(m + 1) + 2('"1'1). Furthermore, if M is a closed
manifold, then the same is true for ¢ > 2m + 2(7}).

In view of the above discussion it is easy to see that Theorem 1.1 follows from
Theorem 1.2.

We employ the sheaf-theoretic and analytic techniques of the theory of the h-
principle [2] to prove the above result. We observe that an exact 4-form dw can
be expressed as the sum of ¢ primary monomials if and only if there is a map
f: M — R such that

dw = Zq: flo,
i=1

where ¢ is the canonical volume form on R* and f; : M — R%,i=1,2,...,q, are
components of f. The maps characterized by the above equation are solutions to
a certain first-order partial differential equation. The associated partial differential
operator being infinitesimally invertible on an open subset, we apply Gromov’s
formulation of the Implicit Function Theorem in the infinite-dimensional setup to
make way for the sheaf techniques.

In Section 2, following Gromov [2], we briefly describe the notion of infinitesimal
inversion of partial differential operators and state some results relating to the solu-
tion sheaf of infinitesimally invertible operators. We shall assume that the reader is
familiar with the language of the h-principle, in particular with the terms: partial
differential relations, holonomic section, the h-principle, (micro)flexible sheaf and
sharply moving diffeotopy. For a brief review of terminology and sheaf techniques in
the h-principle we refer to the Appendix of [1]. In section 3 we consider immersions
in a manifold NV with a fixed k-form ¢ and prove the h-principle for “o-regular” im-
mersions that induce a given k-form on the source manifold. This has been shown
by observing that the relevant differential operator is infinitesimally invertible on
the space of “o-regular” immersions. In section 4 we prove that if (N,o) is the
g-fold product of the k-dimensional Euclidean space with canonical volume form,
then o-regular immersions are generic for g sufficiently large. Using genericity of
o-regular maps, we then prove the second part of Theorem 1.2. Finally, by applying
the h-principle of o-regular maps (Section 3), we prove the full form of Theorem 1.2
and the main result of this paper.

2. INFINITESIMAL INVERSION OF DIFFERENTIAL OPERATORS

Let X — M be a C fibration and G — M be a C'*° vector bundle over a
manifold M. We denote by X and G respectively the spaces of C'* sections of X
and G with the fine C* topology, for a = 1,2,...,00. Let D : X" — G° be a C*®
differential operator of order r, so that if z is a C**" section of X, then D(z) is a
C* section of G for a =1,2,...,00.

Let Tyert(X) C TX denote the subspace of vertical vectors (i.e., tangent to the
fibres of the fibration X — M) in the tangent bundle TX of X. For a section
z: M — X, we denote the induced vector bundle z*Ter+(X) by Y. When z
is C, this bundle is CP-smooth for 8 < a and we denote by J? the space of
CP sections of this induced bundle. The space Y2 can be realized as the infinite-
dimensional tangent space of X at z. We define the linearization L of the operator
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D at x as follows:
L,: y; — gO,

Ly(y) = £D(2¢)le=o,

where {z; : ¢ > 0} is a l-parameter family of sections of X with zg = z and
d—zt |t=0 = y. Clearly, L, is a linear differential operator of order r in y and L(z,y) =

(y) is a differential operator of order 7 in both z and y.

Let A € X@ be an open subset of the d-jet space of sections of X for some
d > r. Following Gromov, we shall call such a subset an open differentiai relation
of order d. A solution of A will also be referred to as an A-regular section of X.
Let A denote the space of solutions of the relation A. Clearly, A is contained in
X% and A>t% = AN Xt is an open subset of X% in the fine C**¢ topology.

D is said to be infinitesimally invertible over the subset A C X if for every
z € A there is a linear differential operator M, : G°® — yg of a certain order s
(independent of z) such that the following properties are satisfied:

(1) The global operator
M: A x G — T(X°)
is a differential operator that is given by a C®° map A®G®) — Tyert(X),
where T'(X?) denotes the tangent bundle of X°.
(2) L(z,M(z,g)) = g for all z € A" and g € G"**. In other words, M, is a
right inverse of L,.
The integer d is called the defect of the infinitesimal inversion M ([2], 2.3.1).
We now state an infinite-dimensional Implicit Function Theorem due to Gromov
which generalizes Nash’s theory in the context of differential operators.
Let D be a C° differential operator of order r. Suppose D admits an infinitesimal

inversion of order s and of defect d. Let us fix a Riemannian metric on M. Let
a > max(d, 2r + s).

Theorem 2.1 ([2], 2.3.2). For everyz € A™ there ezists a fine C*** neighbourhood
B, of the zero section in the space G>T¢ and an operator D;! : B, — A® such
that

(1) D7H(0) = z.

(2) (Inverszon property) D(D;1(g)) = D(z) +g.

(3) If g € B, is CP*s- smooth for B> a, then D;(g) is C#-smooth.

(4) (Locality) The value of D;'(g) at any point v € M does not depend on the

behaviour of x and g outszde the unit ball B, (1) in M with centre v relative
to the fized metric on M.
In particular, the operator D : A — G is an open map in the respective fine
C* topologies.

It is to be noted that the local inverse D! depends on the Riemannian metric
on M. If we choose an appropriate Riemannian metric on M, then applying the
locality property of the inverse in Theorem 2.1 we can prove

Proposition 2.2 ([2], 2.3.2). If D is infinitesimally invertible, then the sheaf of
A-regular solutions of the differential equation D(z) = g is microflexible.

We now consider some partial differential relations which have the same C*
solutions, namely the solutions to the equation D(z) = g. Let R* C X (atr)
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consist of (a 4 r)-jets of infinitesimal solutions of D = g of order « and let R°
be denoted as R. Recall that x is an infinitesimal solution of D = g of order « if
D(x) — g has zero a-jet. Define

Ra =R*N (p31T7)1(A),

where p3t" : X(@+7) — X(@ is the canonical projection map for a > d — r. The
relations R, have the same C solutions for all @ > d—r, namely the C* solutions
of the equation D(z) = g in A (such a solution, from now on, will be referred to as
an A-regular solution of the equation).

Let @ denote the sheaf of A-regular solutions of the equation D(z) = g with
the C*™ compact open toplogy and let ¥, be the sheaf of sections of R, with C°
compact open topology. It is a consequence of Theorem 2.1 that

Proposition 2.3 ([2], 2.3.2). If o > max(d + s,2r + 2s), then an infinitesimal
solution of R, can be deformed to a local solution. Furthermore, the map J :
® — U, defined by J(p) = j;+a, is a local weak homotopy equivalence. In other
words, R satisfies the local h-principle.

3. THE h-PRINCIPLE OF ISOMETRIC 0-REGULAR MAPS
We start with the following definition.

Definition 3.1 ([2], 3.4.1). Let (N, o) be a smooth manifold with a closed k-form
o. A smooth map f: M — N is said to be o-regular if for each x € M, the map

I : TyyN — AFY(T,M),
0 +— f*(0.0)

is surjective for all x € M.

A o-regular map is necessarily an immersion.

Let w be a given k-form on M for k > 2. We call a map f : (M,w) — (N, 0)
isometric if f*o = w. In this section we shall prove the h-principle for o-regular
isometric maps (M,w) — (N, o) in the following situation:

(1) both o and w are exact;
(2) M =My xR;
(3) wisinduced from a k-form on My by the projection map p : My xR — M.

Let D : C®°(M,N) — Q¥(M) denote the first-order differential operator on
the space of C*™ maps f : M — N with values in the space of k-forms QF(M)
defined by D(f) = f*o. Since o is a closed form, the sheaf of solutions of D = w
is not microflexible ([2], 3.4.1). Now, suppose that o = do; and w = dw; for some
(k — 1)-forms o1 and w; on N and M respectively. If f is a smooth immersion
such that f*o = w, then locally on any contractible set the above equation reduces
to f*o1 + d¢p = w; for some (k — 2)-form ¢ on M. Conversely, if (f,#) is a pair
satisfying f*oq + d¢ = wy, then f*o = w. Let

D:C®(M,N) x Q*"2(M) — QF~1 (M)
denote the differential operator defined by D(f, ¢) = f*o1+d¢, where f : M —s N
is a smooth map and ¢ is a differential (k — 2)-form on M. Note that the pairs

(f,¢) can be realized as sections of the fibre bundle (M x N) @ A*~2(M) over M
which will be denoted by E for future reference.



FIRST PONTRJAGIN FORM 3817

The linearization L(s4) of the operator D at (f,¢) can be obtained as fol-
lows: Consider a smooth 1-parameter family of sections {(f:, ¢+)} in E such that

(fO’ ¢0) = (f’ ¢) Then
~ d
L(,4)(0,9¢) = ED(ft,¢t)|t=0a
where 0 = %h:o and %’-h:o = ¢. Hence,

L(5,4)(8,9) = f*d(d.01) + f*(8.do1) + do,

where 9 is a vector field on N along f and ¢ is a (k — 2)-form on M. The equation
L(4,4) = w1 can be solved for (9, ¢) if the following system has a solution:

f*(é).dal) ? w1,
F*(d.01) +=0.

Now the above system of equations is solvable for (9, &) if f is a o-regular map.
Thus the operator D is infinitesimally invertible on all those (f, ¢) for which f is
o-regular ([2]). Since o-regularity is an open condition and depends only on the
first jet of a map, the space of pairs (f, ¢) for which f is o-regular corresponds to
the solution space of an open differential relation A C E(1), where E() is the 1-jet
bundle of sections of the fibre bundle E mentioned above. Hence the operator D
has the zeroth-order inversion (i.e., s = 0, where s is defined as in Section 2) with
defect d = 1.

Let ® be the sheaf of o-regular solutions of the equation D(f) = w and let ® be
the sheaf of pairs (f, ¢) satisfying the equation D = w; where f is o-regular. There
is a canonical map ® — ® that takes a pair (f, ¢) onto f. Furthermore, ®(x) has
the same homotopy type as the space ®(z).

Let R C E(@*1) consist of (a + 1)-jets of infinitesimal solutions of D = w; of
order o and let R = R*N(p$1)~1(A), where p¢t! : E(@+1) — E() is the canon-
ical projection. The following proposition is a direct consequence of Proposition 2.2
and Proposition 2.3.

Proposition 3.2. (i) The solution sheaf ® of D = w; is microflezible.

(i) The 3-jet map j° : ®(z) — ¥(z) is a weak homotopy equivalence for every
x € M, where U is the sheaf of sections of Ry. In particular, if (f,$) is an
infinitesimal solution of order 2 of D = w; where f is also o-regular, then (f,¢)
can be homotoped to a local solution of the equation.

Theorem 3.3. Let o be an ezact k-form on N as above and let M = My x R. If
the form w = dw; on M is induced from an ezact k-form on M, by the projection
map p : My x R — My, then every section of Ry is homotopic to a holonomic
section (in the space of continuous sections of Ry with C° compact open topology).

Proof. Let ¥ denote the sheaf of sections of the jet bundle E®) with images in Ro.
We shall prove that
j3 : <I)|Mo - ‘IllMO
is a weak homotopy equivalence.
First observe that the fibre-preserving diffeomorphisms of My x R act on the
sheaf ®. To see this take a smooth immersion f : My x R — N and a (k — 2)-form
¢ such that f*o; + d¢ = w;, where w; = p*wy for some (k — 1)-form on My. Let
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d: My x R — My x R be a fibre-preserving diffeomorphism so that po § = p.
Define the action of § by
5.(f,8) = (f 05,6°9).
Then,
(f 08) o1 +d(5°6) = 5°(*or + d) = 8"wr = 6" = p'wg = wr.
Also, if f is o-regular, then so is foo.

On the other hand, the fibre-preserving diffeotopies sharply move My in My x R
([2], [1]). Since the sheaf ® is microflexible (Proposition 3.2), we conclude that the
restriction of ® to M is flexible ([2], 2.3.2,[1]).

A standard argument proves that the sheaf ¥ is flexible ([2], 1.4.2 (A’)) and
Proposition 3.2 (ii) says that

3% ®(z) — ¥(x)

is a weak homotopy equivalence for every x € M. Then by the Sheaf Homomor-
phism Theorem ([2], 2.2.1 (B))

j3 : &)IMO - ‘illMo

is a weak homotopy equivalence.

Finally, the theorem follows from the observation that My x R can be deformed
into an arbitrary small neighbourhood of My by means of fibre-preserving diffeo-
morphisms of M. O

Let R; consist of 2-jets of o-regular infinitesimal solutions of order 1 of the
equation D = w and let I'(R;) denote the space of continuous sections of R; with
C? compact open topology. Then we have the following.

Corollary 3.4. An arbitrary section of Ry C J%(M,N) is homotopic to a holo-
nomic section in I'(R1). Hence, the o-regular isometric C™ immersions f : (Mg x
R, dw; = dwo ® 0) — (N,do1) satisfy the h-principle. Furthermore, if M is an
open manifold, then o-reqular isotropic immersions satisfy the h-principle.

Proof. Let (f,¢) be a second-order infinitesimal solution at x of the equation D =
w1. Then j(2f"¢71—d¢) = j2 at z. There is a bundle map Aj_; : (A1 (M) —
A*(M)M) associated to the exterior differential operator d such that Ag_;(j2) =
Jdr- Then applying Ag_1 on the preceding equation we get j}.,(z) = jb(z). Thus
f is an infinitesimal solution of order 1 of the equation D = w. Hence we have the
canonical map p : R, — R that maps (j3(z), j3(z)) onto j?(z). We shall prove
that this map is surjective and that fibres of p are affine subspaces. This would
imply that p has a section, and then the first part of the corollary would follow
from the above theorem.

To prove that p is surjective, consider the following sequence of vector bundles:

o (AR2(a)) ) 2a (aRr ) @ 2t (k)Y —
where the bundle maps Ay are induced by the exterior differential operator d as
Agoji= jf;l. By the formal Poincaré Lemma this sequence is exact.
Let f be a first-order infinitesimal solution of D = w at x € M, which is also
o-regular, so that j3(z) € R1. Then j}.,(z) = ji(z) and consequently 5., (z) —
j2,(z) is in ker Ag_1. Hence there exists a 3-jet jg (z) such that

JFe0r (&) = 53, (2) = Dk—2(3(2)) = jly ().
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Therefore, (73(z), j3(x)) € R2 and p is surjective.

Now let j7(z) € Ry. Then p~'(j}(z)) consists of all pairs (33(x), j3(x)) € E®
such that j2(z) = ]?(1‘) and ji,(z) = j2., (z) — j2 (z), equivalently, i3(x) €
AL, (52, (z) — j2,(z)). This shows that the fibres of p are affine subspaces and
that p: Ry — R, is an affine bundle. This proves the first part of the corollary.

To prove the second part, one has to note, in addition, that the zero form is
invariant under any diffeomorphism of M, and M can be deformed into an arbitrary
small neighbourhood of its (m — 1)-skeleton by an isotopy. a

4. EXISTENCE OF 0-REGULAR IMMERSIONS INDUCING w

Let o¢ be a closed k-form on a manifold Ny, and let N be the g-fold Cartesian
product of Ny with the k-form o = !  n¥oo, where m; : N — Ny is the
projection onto the i-th factor. We first determine when the o-regular maps exist
generically and then prove the existence of isometric maps, applying the results
obtained in the previous sections.

Definition 4.1. An immersion f = (fi, f2,...,f;) : M — N is said to be o¢-

large if f{oo,..., f;00 span the k-th exterior bundle AF(M); this means, for every
k-form w on M, there exist continuous functions 8; : M — R, i = 1,...,q, such
that

q
w = Z ﬁi fi*O'().
i=1

Let
A={(ts,...,8y) € J;(M,N) : £;00,...,L;00 span A¥(T, M),z € M}.

If f=(f1,...,fq) is a solution of A, then fioo(z),..., fyoo(z) span A¥(T, M) for
each x € M. Moreover, it follows from the lemma below that the op-large maps
are precisely the solutions of the relation .A.

Lemma 4.2. Letwi,...,w, be k-forms on M such that for eachx € M, wy(x),...,
wq(z) span A¥(T,M). Then w,...,w, span the space of k-forms Q¥(M) over the
ring of continuous functions on M.

Since A is an open relation, the op-large immersions form an open set in the fine
C* topology. Next we observe that

Proposition 4.3. If f = (f1,...,fq) : M — N is a og-large immersion, then f
is o-reqular.

Proof. Let f = (f1,..., fq) be a op-large immersion of M into the g-fold product
of Ny. If 01,05, ...0q are vector fields on M, then we have the relation

q q
Y 0uffoo=7_ f7(Bi00) = f*((By,.-.,y).0),
=1 i=1

where 0; = (f;).0; is a vector field on N along f;. The proposition now follows
from the following simple observation.
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Lemma 4.4. If wi,...,w, are linear k-forms on R™ spanning A¥(R™), then the
linear map
R™x-.-x R™ — A¥R™Y),
81,...,6q g Z:-Izl 6i.w,~

18 surjective.

In the rest of this article, M and (N, o) will be as follows:

(1) M will denote a manifold of dimension m;

(2) N will denote the g-fold Cartesian product of the Euclidean space R¥;

(3) o will denote the k-form obtained by summing the g canonical volume forms
ok := dy1 A- - -Adyy on each R* factor, where y1, ¥z, . .., yx are the canonical
coordinates on R*.

Proposition 4.5. If ¢ > m + (), then fiok,...,f;or span the k-th exterior
bundle of M for generic (f1,...,fq) : M — N. Consequently, if ¢ > 2m + 2(',':),
there ezists a oi-large immersion f: M — (N, o) such that f*(o) = 0.

Proof. Here N = R% and ¢ = 7, 0k. Fix a basis ey, es,..., e, for R™. Let L
be a linear map from R™ to R?. Then L can be expressed as L = (L1, Lo, . . ., Ly),
where L; is the projection of L onto the i-th copy of R¥.

If L is oy-large, then the forms Ljok, L0k, ..., L0k span the bundle AF(R™).
Note that the k x k cofactors of L; correspond to the values of Lo on the k-
tuples of basis vectors (e;,,...,e€; ), where {i1,a,...,ix} is an ordered subset of
{1,2,...,m}. If L; denotes the column vector formed by the k x k cofactors of the
matrix L;, then by a o-large condition on L is meant that L = (L1,..., L,) has the
maximum rank. Let ¥’ consist of all linear maps L = (L1,...,L,) : R™ — R
such that rank L is strictly less than ! = ('); in other words, any ! x I cofactor of
L is zero. Therefore, ¥’ is semialgebraic and hence stratified ([2], 1.3.1). Moreover,
the codimension of ¥’ in L(R™,R%) is ¢ — () + 1.

Let ¥ be the subset of the 1-jet space J'(M, N) consisting of all 1-jets j}(x) such
that {ffor: i =1,2,...,q} do not span A¥(M). Hence a map f: M — N is
or-large if its 1-jet map misses the set . Since o has global symmetry, the singular
set X in the 1-jet space fibres over M and therefore it is stratified with codimension
q— (',':) + 1. Hence by the Thom Transversality Theorem, a generic map is ox-large
if g — (',’:) >m.

Now, let f = (f1,...,f;) : M — R be a oy-large immersion; then define
f=(f1,-..,f,) as follows:

fi = (fias firs iy -+ fik)s
where f; = (fi1, fi2, fizy- -+, fik) : M — RF. Note that f{‘ak = —froy, for every i.

Hence (f, f) : M — R x R is a oy-large immersion of M into R2% that pulls
back o @ o onto the zero form on M. O

Theorem 4.6. Let M be a closed manifold. If ¢ > 2m—+2 (',':), then every exact form
on M can be induced from o by a o-regular immersion f : M — N. Consequently,
every exact k-form on a closed m-dimensional manifold is expressible as the sum
of q primary monomials for ¢ > 2m + 2(7).
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Proof. Let 7 = yydya A --- A dyg so that o = dr. It follows from Section 3 and
Proposition 4.5 that the operator

q
D:(fi,far- s 0 ®) > Y fiT+do
i=1
is infinitesimally invertible on ox-large immersions which exist generically for ¢ >
m+ (',':) Hence by Theorem 2.1, the image of oy-large immersions under D is a
nonempty open set in the fine C*° topology for ¢ > m + (',':) Moreover, when
q > 2m+ 2(',?), there exists a ox-large immersion f = (f1,...,f;) : M — R¥
such that Y7_, ffor = 0, which implies that Y7 , f*7 is a closed form. As a
consequence, Image D contains a closed (k — 1)-form c.
Let M now be closed and let w = da be exact. Then for sufficiently small A > 0,

c+Aa € ImageD. In other words, there exists a oj-large immersion (g, g, . . -, 9q)
and a (k — 2)-form ¢ such that

q
c+)\a=2g;“'r+d¢,

i=1

and therefore

Zk\/_g‘

i=1

q
Clearly, (#Xgl, ﬁgz, . gq) is o-regular and this completes the proof of
the theorem. O

The next result is an immediate consequence of the above theorem.

Corollary 4.7. If M is arbitrary, then every compactly supported ezact k-form on
M can be induced by a o-regular immersion f : M — (N, o) for ¢ > 2m +2(7).

Corollary 4.8. If P is a principal O(n) bundle over a closed manifold M, then
every compactly supported 4-form on M representing the first Pontrjagin class of
P is the Pontrjagin form of some connection on P, for n > bm + 4(T).

The proof of the above corollary will be similar to that of Corollary 4.10 and we
omit it here.

Theorem 4.9 ([2], 3.4.1 (B')). Let (N,o) be the g-fold product of (R¥,ay) for
k>2 Ifg>2m+1)+ 2("',’:1), then an arbitrary exact k-form on M can be
induced by a o-regqular immersion f : M — N. Therefore, every ezact k-form on
an m-dimensional manifold is expressible as the sum of q primary monomials for

q>2(m+1)+2(™H).

Proof. Let x1,x2,...,Ty denote a local coordinate system on M. Then a k-form
w on M can be represented locally as:

w = E wIde,
I

where I runs over all multi-indices (i1, %2,...,ik) for 1 <43 < ig < -+ < <M,
W = Wiy is,....ix. are smooth functions defined locally on M, and dx; = dx;, Adz;, A
ERWAN diCik .
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Recall that ¢ = @le ok, where o is the canonical volume form on R¥. If
f=nfg) : M — R% is a smooth map, then f*o = w defines for each

multi-index I = (i1, 1g,...,%) with 1 <41 < iy < --- < i < m an equation Er:
. af; of of
D det (5-1—5 B —Laxik)
i=1
YTyt Ve,
s 0zr;, Oz, 0z, ’
where a represents an element of the symmetry group Sk on k letters {1,2,...,k},

and {fjo} denote the components of f;.
Differentiating E; with respect to z,, p € {1,2,...,m}, we get an equation E¥:

Zq:Z(__l)sgna a2fjax afjaz 8fj0uc _?i‘)_l_

ji=1ma ax?axiw(l) 0%i, ) %1, k) Oz’
where 7 is an element of the symmetry group Sk on k letters {1,2,...,k}.
2
The collection { fJ(a: B i (z), ggﬁ%(w)} defines the 2-jet of the function f :

M — R at z. If f satisfies the equation f*o = w, then its 2-jet map satisfies
the above system of equations.
Replacing the partial derivatives in the above equations by ordinary variables,
namely substituting
afja Jo 82fja _ . Ja

= ; =7
1 ) ip)
ox; 0z;0zp P

we obtain a system of equations {E7, E¥}, where I runs over all multi-indices
(31,%2,...,%) with 1 < 4; < 42 < -+ < 4 < m. It can be verified that this
system of equations is independent of coordinate transformation and defines the
relation R} in the 2-jet space.

Note that {E7} is a system of m(7) equations that are linear in the variables
v}, the total number of which is kgm(m + 1)/2. Let A denote the coefficient

matrix of the vector {v];'} in the system {E7}. The system of equations {£7} has
a solution if the matrix A has the maximum rank everywhere. Since k£ > 2, the
condition “rank A < maximum” defines a stratified subset ¥ in the 1-jet space
JY(M,R%*). If ¢ is such that kg(m+1)/2 > (7) +1, then codim ¥ > m and hence
by the Thom Transversality Theorem, j} misses X for generic f. In other words,

we get a map f for which the following system of equations has a solution for each
x € M:

q
(1) ZZ(_I)Sgna afjaz afjak vjoq _ Q‘fl

j=1ma Oiny ~ OBingy T Ozp

Moreover, the space of solutions is an affine subspace in R? of codimension m(7),
where d = kgm(m + 1)/2. Therefore, if ¢ > (m+1) + m + 1, then there exists
amap f : M xR — (N,o0) that is a oy-large 1mmers1on and for which the
system of equations (1) has a solution, say vf = 0}, Since f is oy-large, there
exist continuous real-valued functions 3; on M such that w = Z i—1 BiL; ok, where
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L; denotes the derivative map df;. Define for each 1 = 1,2,...,¢q, a bundle map
L, : TM — TR* by

dfi(x) if Bi(z) < 1,

where f; is obtained from f; by interchanging the first two component functions.
Take T = (Ly,...,Lq, B1Ly, ..., B,L,), where B; = |3; — 1|*. Note that T} extends
continuously over all of M if we define it to be identically zero on the set 5;(1).
Thus we get a o-regular bundle map T : TM — TR?% such that T"0 = w. We
extend this (locally) to a section of R by taking vf: =1}, for j < gand v} =0
for j > q. These local solutions finally define a global section of R if we patch them
together by a partition of unity. (Note that the system of equations (1) is linear in
vf: .) We now conclude the existence of an isometric immersion by Theorem 3.3. 0

Li(z) = {dficv) if Bi(z) > 1,

Theorems 4.9 and 4.6 prove Theorem 1.2.

Corollary 4.10. Let P be a principal O(n) bundle over a manifold M of dimension
m, and let n > 5m + 4 + 4(™f'). Then every 4-form on M representing the first
Pontrjagin class of P is the Pontrjagin form of some connection on P.

Proof. If n > dim M, then P can be reduced to P; @ P, where P; is a principal
O(m) bundle and P; is the trivial O(n — m) bundle over M. This may be seen
easily if we view a principal O(n) bundle as a frame bundle associated to some vector

bundle of rank n. Moreover, we have a canonical inclusion Q = P, @ P, — P
that takes the fibres of P; @ P, canonically into the fibres of P. Now we prove that
the Pontrjagin forms of the bundles P and () are the same. It is a standard fact
that a connection ag on () can be extended uniquely to a connection ap on P such
that i*ap = ag. We shall show that p;(ag) = pi(ap). We recall that the first
Pontrjagin form p;(aq) is uniquely determined by the equation

2 w5 p1(ag) = trace (Dag A Dag),
Q Q Q Q

where D stands for the covariant differentiation and 7o denotes the projection map
Q — M. Similarly, 75 p1(ap) = trace (Dap A Dap) ([3]). Taking pull-back by
i we get i*1p p1(ap) = trace(Dag A Dag). Since mp o4 = mg, the left-hand
side is equal to 7, p1(ap). Hence by equation (2) and the uniqueness property,
p1(ap) = p1(ag). Moreover, the Pontrjagin form is additive, so that if ; and as
are connections on P; and P,, respectively, then pi(a1 & a2) = p1(a1) + pi(az).
In view of the above observation it is enough to show that every exact form on M
is the Pontrjagin form of some connection on the trivial principal O(n) bundle for
n>4(m+1) +4(™).

Let dw be an exact 4-form on M. We have proved in Theorem 4.9 that an exact
4-form on a manifold of dimension m can be expressed as the sum of ¢ primary
monomials for ¢ > 2(m + 1) + 2('"1'1). Let dw = 237 | dfi1 A dfia A dfis A dfia,
where f;; are smooth functions on M and where g satisfies the above relation. Now
consider an 0(2q)-valued 1-form « on M such that corresponding to each monomial
dfii Ndfia N dfiz N df;4 there exists a 2 x 2 block

o = ( 0 firdfia — fisdfia )
’ —fidfia + fizsdfia 0
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along the principal diagonal, all other elements being zero. Clearly « is a connection
on the trivial principal O(2¢)-bundle over M and its first Pontrjagin form is

pi(e) = Zm(ai)

trace (Da; A Da;)

o

i=1

trace (da; A do;) = dw.

I
-M"’

=1

This completes the proof. a
Corollaries 4.8 and 4.10 prove Theorem 1.2.
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