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 Summary
 A review of the four basic process capability indices has been made. The interrelationship among

 these indices has been highlighted. Attention has been drawn to their drawbacks. The relation of
 these indices to the proportion nonconforming has been dwelt upon and the requirement of the
 adequate sample size has been emphasized. Cautionary remarks on the use of these indices in the
 case of nonnormal distributions, skewed distributions, and autocorrelated data are also presented.
 The effect of measurement error on process capability indices has been dealt with in great detail.
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 1 Introduction

 With the world becoming borderless, at least as far as business is concerned, there is intense
 national and international competition amongst business organisations. This competition is
 compelling business organisations to manufacture defect-free products. To achieve this objective,
 companies have started adopting different strategies like Total Quality Management (TQM)
 and Six Sigma throughout their organisations. A part of the philosophy of these strategies
 requires the monitoring of the performance of the individual processes. These results are
 then compared with those of industry leaders through competitive benchmarking. One metric
 popularly used is the Process Capability Index (PCI) (Spiring, 1995). Essentially a PCI measures
 the variability of a process relative to its specification limits. Being unitless, these indices permit
 comparisons amongst hundreds of processes emanating from a whole range of production
 processes, industries, and even countries. Many (large) companies have instituted programmes
 that inherently make use of these indices to promote and drive quality improvement programmes
 throughout their organisations (Barnett, 1990; Gill, 1990; McCoy, 1991).
 Moreover, the incorporation of capability analysis into a company's Six Sigma programme

 makes it a particularly important topic for management reporting. Briefly, Six Sigma is a quality
 and business improvement methodology that makes heavy use of statistical methods. It began in

 Motorola in the 1980s. While originating in manufacturing, it has expanded to financial services,
 health care, and even nonprofit organisations. The rapid spread of Six Sigma is due to the fact
 that it has delivered significant bottomline results. It is perhaps the largest and most important
 statistically based initiative in history. The Six Sigma methodology includes five steps, namely,
 definition of the measuring unit critical to quality (CTQ), measurement of the current process
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 performance, analysis of the root cause and identification of the solutions, the improvements of
 the process quality, and control of the process quality. Recently, a session (Invited Paper Meet
 74) was devoted to Six Sigma at the 56th session of the International Statistical Institute, held
 in Lisbon during August 22-29, 2007.
 Historically, Feigenbaum (1951) and Juran (1951) first proposed 6 as a measure of process

 capability. This represented process capability as a measure of the inherent variability of a
 process, but is divorced from customer specifications. Juran (1962) overcame this lacuna
 by comparing 6 to the tolerance width as a method of determining the need for process
 improvement activities. Nevertheless, capability itself was still interpreted separately from
 specifications. Finally, Juran & Gryna (1980) proposed the first metric that directly compared
 process variability to customer specifications. They proposed a capability ratio:

 Like the capability ratio, all PCIs explicitly link process variability to customer specifications.
 Thus, they emphasize the suppliers' responsibility to satisfy those specifications. However,
 capability indices also have advantages over the capability ratio. They (generally) increase in
 value as the process performance improves. Furthermore, they indicate the relative benefits of
 improvement in both process location and variability.
 However, it is also important to understand their limitations, especially because organisations

 are placing a greater emphasis on quality-related measures. One essential prerequisite for the
 process of improving quality via capability indices is that the process be in a state of statistical
 control. Further, these measures can themselves be distorted and may not accurately indicate
 the extent and type of improvements needed. A lack of understanding of process variability
 has caused a significant amount of controversy over the use of these indices (Kotz & Johnson,
 1993, pp. 1-2). At times, the underlying correlation in a process when coupled with outliers
 can mask out-of-control points, and thereby make it appear to be in a state of statistical control.
 Ignoring these interactions may make the process appear better or worse than it actually is. This,
 in turn, may lead a manager to divert resources to improving processes where the returns are

 minimal but ignore areas that can lead to large reductions in variability and significant quality
 improvements. In the long run, this lack of understanding will frustrate the managers and affect
 the overall profitability of the organisation.

 There is a large body of literature dealing with PCIs. Mention may be made of the books by
 Kotz & Johnson (1993), Kotz & Lovelace (1998), Wheeler (1999), Bothe (2001), and Pearn &
 Kotz (2006). Papers relating to PCI have appeared in journals of statistics, management science,
 industrial engineering, quality and TQM. Spiring et al (2003) give a bibliography, whereas

 Kotz & Johnson (2002) provide a largely theoretical overview. However, most of these works
 have a theoretical flavour directed towards researchers. There is a paucity of literature, which
 unmasks the intricacies of these indices. This paper endeavours to fill this gap. In this paper, an
 attempt has been made to study the effectiveness of the existing PCIs in relation to the decision
 making process of the users and advocate caution. It is hoped that this expository paper will be
 useful to the practicing engineer, the management personnel, and serious students of theoretical
 statistics.

 The rest of the paper is organised as follows. Section 2 briefly dwells on the need for indices.
 Section 3 introduces the indices and their motivation; develops the interrelationships among
 them and discusses their estimators. Section 4 reviews the basics regarding index interpretation
 and process improvements and attempts to highlight the drawbacks. Section 5 discusses the
 indices in relation to the number of nonconforming (NC) products produced and the sample size
 required for any scientifically meaningful study. Section 6 considers the effect of nonnormality,

 Capability ratio =
 6 variation

 (1) Total tolerance

 International Statistical Review (2008), 76, 3, 347-367
 ? 2008 The Author. Journal compilation ? 2008 International Statistical Institute



 Basic Process Capability Indices  349

 correlation, and asymmetry in the calculation of PCIs. Section 7 deals with the effect of
 measurement error. Section 8 concludes the paper with a discussion.

 2 The Need for an Index

 The behaviour of a process is often described by a probability distribution. In order to
 assess its adequacy, the hypothesised distribution has to be compared with the corresponding
 specifications. A PCI attempts to summarise the process performance and hence is a function
 of the process distribution and the corresponding specification.

 Shewhart (1931), Juran (1951), and Gryna (1988) discussed the use of process capability
 information to determine specification limits. They recommended that the tolerance width
 should not be tighter than 6 . Feigenbaum (1951) and Juran (1951) referred to the use of process
 capability information to assign jobs to machines. Kane (1986) described six application areas
 for capability indices, which are as follows. The indices help in the prevention of NC products
 by establishing a benchmark capability. Being dimensionless, they facilitate communication
 between engineering and manufacturing departments and between manufacturers and suppliers.
 They aid in establishing the priority areas for process improvement and continuous improvement.
 The indices also provide information on the location and variability of a process and hence
 suggest the road map for process improvement. Finally, the indices can be used in audits to help
 establish the problem areas. Crain (1993), Chou (1994), and Schneider & Pruett (1995), among
 others, discussed the use of these indices in customer-supplier settings. Bulba & Ho (2006) used
 methods to obtain approximate confidence intervals for the variance of the output characteristic
 to make inference on capability indices when the variable of interest is not an observable one
 but is a function of a set of independent input variables. Bothe (2006) described a method for
 assessing the capability of a process to locate hole centres within a circular tolerance zone.
 These give a partial listing of the applications of a PCI.

 The important objectives of a PCI have already been discussed by Tsui (1997). Suffice it
 to say that a PCI should be informative enough to guide the users in their decision problems
 adequately and unambiguously. Another desirable feature of a PCI is that its numerical value
 should increase when the variability decreases.

 3 Process Capability Indices

 It is assumed that there is only one quality characteristic (say X) of interest. Let U and L be the
 upper and lower specification limits, and let be the "target value" and define M = (U + L)/2,
 and D = (U ? L)/2. Let the underlying process mean and standard deviation be denoted by
 and , respectively. Unless otherwise stated, we shall assume that the quality characteristic is
 normally distributed.

 Depending upon the situation, the specification forX can be one of the following types:

 (a) Unilateral (one-sided, with target not specified)

 (i) Only U
 (ii) Only I

 (b) Bilateral (two-sided, with target specified)

 (i) Centred target, that is, = M
 (ii) Off-centred target, that is, M
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 3.1 Definition of the Indices and Their Motivations

 Assuming the quality characteristic to be normally distributed with mean and variance 2,
 the process yield is, in general, given by

 % Yield = 100

 where denotes the standard normal cumulative distribution function. The index Cp measures
 only the distribution spread (process consistency/precision), which only reflects the consistency
 of the product quality characteristic. The yield-based index Cpk provides lower bounds on process
 yield by taking the process location into consideration, which offsets some of the weaknesses in
 Cp, but can fail to distinguish between on-target and off-target processes. The index Cpm takes
 the proximity of process mean from the target value into account, which is more sensitive to
 process departure than Cpk. The index Cpmk provides a greater level of quality assurance with
 respect to process yield and process loss to the customers than the Cpk and Cpm indices.

 3.1.1 The most basic indices

 We begin with the most basic index.

 (a) Unilateral with only U:

 provided that < U

 (b) Unilateral with only L:

 provided that L <

 (c) Bilateral with = M:

 C ? ^ pu ?
 U
 3 '  (2)

 Cpi =  3  (3)

 Cp =
 U-L
 6 '  (4)

 (d) Bilateral with M:

 C* = min
 U-T T-L

 3  3  (5)

 These indices are from Kane (1986). Cp is the most basic capability index and is said to be a
 first-generation index. The observant reader will immediately notice that Cp is the reciprocal of
 Juran & Gryna's capability ratio (defined in Section 1).
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 Figure 1. Distributions associated with five populations.

 Conceptually, Cp compares the allowable process spread to the actual process spread, and
 can be thought of as indicating the potential of the process to produce conforming material.
 Consider a process that has both an on-target mean and a high Cp value (C* value). By sufficiently
 shifting the process mean in the direction of any one of the specification limits, we can still
 obtain any proportion of items outside the specification limits and still maintain a high Cp
 value (C*p value). For example, in Figure 1, samples from any of the five normal distributions
 ( ( , 2), = 1,..., 5) will produce estimates of the Cp{C"p) index that are almost the same.
 This is due to the fact that these five distributions have the same variance. As the actual process
 spreads are smaller than the allowable process spread, the process capability index (C* ) will
 be greater than 1, suggesting that the processes are capable. Only processes from distribution
 1 are on target. It may be argued that processes from distributions 2 and 3 are still within the
 specification limits and hence should be judged capable, even though they are not centred at
 the target. However, the possibility of necessary adjustments could be costly. Finally, processes
 from distributions 4 and 5 are incapable of meeting the specifications required as both have
 substantial proportions of production beyond the specification limits. This example shows that

 the Cp and C*p indices simply relate the process spread to the specification limits and do not
 take into account the possible shifts of the process mean away from the target value.

 Next we shall consider indices that take into consideration both the process mean and the
 process dispersion.

 3.1.2 The Cpk index

 To deal with violations of the centring assumptions, the following pair of indices was developed
 for the case = M:

 U ? ? L
 Cpk = min  3 3 !  (6)

 ?-TO
 The index k represents a measure of the distance that the process lies off-centre, and Cpk shows
 the reduction in process capability caused by the lack of centring. Cpk is said to be a second
 generation index. Using the algebraic identity min{a, b} ? [(a + b) - \a - ft|]/2, the definition
 of the Cpk can alternatively be written as:

 -\ - \ Cpk =- -'
 where D = (U - L)/2.
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 It should be noted that both Sullivan (1984) and Kane (1986) describe k as an absolute value;
 however, Palmer & Tsui (1999) feel it is useful for k to retain its sign.
 When the target value for the process mean is not necessarily equal to the mid-point M of

 the specification limits, the analogous indices are defined by

 where

 CPL* =

 C;k = mm(CPL*, CPU*), (8)

 0 if \T - \ > -L

 L ( _ \?_?^ otherwise (9) 3 V

 if \ - \ > -
 cnr- - , \ -*\ ( )

 U ?  )
 ** =-?-. (11) min(T-L,U-T) J

 Interestingly Boyles (1991) shows that Cpk is essentially a measure of process yield only and
 can fail to distinguish between off-target and on-target process.

 3.1.3 The Cpm index

 The Cp and Cpk indices are appropriate measures of progress for quality improvement in
 which reduction of variability is the guiding principle and process yield is the primary measure
 of success. Taguchi (1986) has suggested a different approach to quality improvement in which
 reduction of variation from the target value is the guiding principle. In fact, Taguchi (1988) was
 the first author to propound the concept that there is a loss to society associated with missing
 the target. This concept of societal loss is difficult, if not impossible, to quantify. However, to
 be useful from a business perspective, a tool must be well defined, must be easy to use, and
 must have a quantifiable financial impact so that results can be attributed to the success of the
 business. Taguchi realised that just being within specification is not sufficient, so he developed
 the concept of the quadratic loss function to address the deficiency of the "goal post" approach
 to specification limits.

 In this approach, any measured value of a product characteristic X entails a monetary loss
 L{x) to the customer as well as to the society in general. The loss function L is usually assumed
 to be well approximated by the symmetric squared error loss function,

 L{x) = k(x - Tf,

 for some positive constant k, so that L(T) = 0; and any deviation from the ideal value entails
 some positive loss to the consumer or to the society. The capability of the process is represented
 by the expected loss

 E(L) = kE{(x - )2}.
 This is a measure of process variation in terms of deviation of the characteristic X from the
 target T. The appeal of expected loss is that it expresses process capability in monetary units,
 and therefore enters naturally into management decision-making process.
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 Chan et al. (1988) introduced the so-called Taguchi capability index Cpm that is measurable
 and directly related to the quadratic loss of the measured feature. It is defined by

 U-L

 Cpm - Irruir  )2
 (12)

 assuming that the target value is equal to the mid-point M of the specification limits. The Cpm
 is another second-generation index.
 When M, the corresponding index is given by

 C*pm = min
 U-T

 3^( 2 + ( - )2' 37( 2 + ( - )2
 (13)

 Boyles (1991) presents the general statistical methodology for the capability index Cpm
 without the restrictive assumption = T. Johnson (1992) exploits the relationship between the
 capability index Cpm and the expected squared error loss to provide an intuitive interpretation
 of Cpm in terms of the percentage loss. He shows that it is related to the expected relative loss
 Le for the process, where the expected relative loss is defined as the ratio between the expected
 squared error loss and the value that the product is worth when the process mean is equal to
 its target T. In an interesting paper, Denniston (2006) provides the motivation for using Cpm.

 He shows that Cpm can indicate the probability of meeting the customer's product specification.
 It can be used to provide a better estimate of the cost of poor quality, and hence can be used to
 better manage product quality to the customer.

 3.1.4 The Cpmk index

 It is easy to observe that Cpk is derived from Cp by modifying the numerator, whereas Cpm
 is obtained by modifying the denominator. If the two modifications are combined, a new index

 Cpmk, first proposed by Pearn et al. (1992), is obtained. It is defined by

 Cpmk = min  U-? ?'L 1 (14)
 3 / 2 + ( - )2' 37 2 + ( - Tf

 Observe that a manufacturing process satisfying the capability requirement "Cpk > c" may not
 satisfy the capability condition "Cpm > c". On the other hand, a process satisfying the capability
 requirement "Cpm > c" may not satisfy the capability requirement "Cpk > c". However, a
 manufacturing process does satisfy both capability requirements "Cpk > c" and "Cpm > c" if the
 process satisfies the capability requirement "Cpmk > c" as Cpmk < Cpk and Cpmk < Cpm- Thus,
 the index Cpmk provides a greater level of quality assurance with respect to process yield and
 process loss to the customers than the other two indices. This is a desired property according to
 today's modern quality theory, as a reduction of process loss (variation from the target) is just
 as important as increasing process yield (meeting the specifications). Although Cpk remains
 the more popular and widely used index, Cpmk is arguably the most useful index to date for
 processes with two-sided specification limits. The index alerts the user if the process variance
 increases and/or the process mean deviates from its target and is designed to monitor normal and
 near-normal processes. For semiconductor and microelectronics manufacturing in particular,

 Cpmk is an appropriate index for capability measurement due to the high standard and stringent
 requirements on product quality and reliability.

 The Cpmk index has a value of 0 when is at either specification limits (like CPk)\ hence, it
 indicates closeness of to the specification limits. This is a desirable characteristic, which is
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 not shared by Cpm. When the target value is not the specification mid-point, the maximum value
 for Cpmk is not the same as the maximum for Cpk and Cpm (recall that this maximum value is
 the Cp value). We can observe that this index explicitly takes into account that the process mean

 may not be midway between the specification limits and incorporates a penalty when deviates
 from the target T. The index is constructed so that the larger the index, the more capable the
 process. The Cpmk index is said to be a third-generation index.

 In current practice, a process is called "inadequate" if Cpmk < 1.00, "marginally capable" if
 1.00 < Cpmk < 1.33, "satisfactory" if 1.33 < Cpmk < 1.50, "excellent" if 1.50 < Cpmk < 2.00,
 and "super" if 2.00 < Cpmk 2 .00 (Hsu et al, 2007).

 3.2 Relationship among the Indices

 We shall now show the relationship among the different indices and get the bounds for their
 values.

 It is easy to see that

 and

 Clearly,

 and

 Cpk = (l- \k\)Cp, (15)

 Cpm = , Cp (16)
 7"! + ^

 Cpmk < Cpk < Cp, (17)

 Cpmk S Cpm < Cp. (18)

 The relationship between Cpk and Cpm is less obvious. Using equations (15) and (16), we

 have Cpk = (1 ? \k\)Cpm^\ + ^ ~ 2 ? In the special case when = M, it can be shown that
 Cpk < Cpm, if |^| < 9?2, where

 U-L
 D = ? (19)

 Moreover, Parlar & Wesolowsky (1999) have observed that if T= M, then

 c^ = cp-^I\7^) - (2?)
 or equivalently

 C
 Cpm = p -. (21)

 pm yf\+%Cp-Cpkf
 lfT=M, we can also write

 ?

 where
 Cpt = -1 + {J\+?2) Cpm, (22)

 ? = (23)
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 Boyles (1991) studied both Cpk and Cpm extensively, including the comparison of Cpk and
 Cpm as functions of and , without assuming = T. He used a graphical technique to show
 that Cpk fails to address adequately the problem of process centring.

 From the definition of Cpmk, it follows that

 Cpmk ? / ? (24)

 or equivalently

 We note that

 Cpmk = Cpm* Cpk (using equation (16)). (25)

 ( \ - \\
 :C

 ^ + {^fPk' (26)
 :Cp

 If ? ? , then clearly Cp = Cpk = Cpm = Cpmk> They differ in behaviour when T.
 By plotting the four indices as surfaces, we can get a feeling for the sensitivity with regard to
 departures of the process mean from the target value T, assuming that = M. It is easy to
 see that, for fixed , when moves away from , then Cp does not change; Cpk changes, but
 slowly; Cpm changes somewhat more rapidly than Cpk\ but Cpmk is the one that changes most
 rapidly.

 Proofs of some of these relationships, together with the conditions under which Cpm is greater
 than or less than Cpk, can be found in Kotz & Johnson (1999).

 3.3 Estimates of the Indices

 For using these indices meaningfully, they have to be estimated based on sample data. The
 estimate will depend upon how the statistics and are estimated. We shall assume that we
 have a random sample of size n, given as {X\ ,X2,...,Xn} from a stable process. On the basis of
 this assumption, we shall obtain a point estimate and confidence interval for these indices using
 the natural estimators for and .

 However, for applications where routine-based data collection plans are in usage, the
 parameters and may be estimated using control charts. Again, from a practical perspective,
 manufacturing characteristics information about the process may be obtained by estimating the
 process capability using the past in-control data that includes multiple samples rather than a
 single sample. In such cases, the distribution of the estimated process capability index based on
 subsamples ought to be available. For brevity, we shall not discuss these two cases and refer the
 reader to Pearn & Kotz (2006) and the references therein.

 Because of the sampling variation introduced by estimation, it is important and relevant to
 construct a confidence interval providing a range of values that includes the true index with a
 high probability.
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 3.3.1 Estimate of Cp Index

 A natural estimator of Cp is given by

 Cp =
 U-L
 6S '

 where S = E?=i ^ ? X)2/(n ? A)]1/2 is the usual estimator of the process standard deviation
 , obtained on the basis of a random sample of size from a stable process.
 A 100(1 ? a)% confidence internal for Cp may be expressed as

 f y?
 A/1-1,1-a/2 A  ' Xn-l,ot/2

 1

 where 2_1a/2 and ^_ !_a/2 are the upper a/2 and 1 ? a/2 quantit?s of a chi-squared
 distribution with ? 1 degrees of freedom, respectively.

 It should be noted that if the standard deviation is estimated based on control charts, then
 the appropriate sampling distribution should be used to get the confidence interval. For details,
 see Pearn & Kotz (2006).

 3.3.2 Estimate of Cpk Index

 The natural estimator Cpk is obtained by replacing the process mean and process standard
 deviation by their estimators X and S, respectively. Thus,

 =-M| = I 1 - J- " \ CP'

 The construction of the exact confidence intervals for Cpk is difficult because the distribution
 of Cpk involves the joint distribution of two noncentral ^-distributed random variables.

 Nagata & Nagahata (1992) proposed the following two-sided confidence interval for Cpk'.

 Nagata & Nagahata (1994) provide a thorough treatment of the construction of approximate
 confidence intervals for Cpk.

 3.3.3 Estimate of Cpm Index

 The index Cpm involves the unknown parameters and , which needs to be estimated from
 a sample. Boyles (1991) proposed the following estimator of Cpm:

 d
 C ?

 3Js? + (X-t/
 where X = "= X?/n; S2 = "= (x? ~ ?/ - Note that and S2n are the maximum

 ^ pm likelihood estimations (MLEs) of and 2, respectively. Hence, the estimator Cpm is also
 theMLE of Cpm.

 Several authors have suggested approaches for constructing approximate lower confidence
 bounds for Cpm. Marcucci & Beazley (1988) propose using the ordinary chi-squared distribution
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 to approximate the noncentral chi-squared distribution, resulting in the following approximate
 lower confidence bound:

 cPm]?^, 0<?<1,
 where 2 x_a is the (1 ? a)-th percentile of the ordinary central chi-squared variable with
 degrees of freedom. When the process is on target, that is, = , this provides an exact bound;
 otherwise the bound is conservative.

 3.3.4 Estimate of Cpmk Index

 For a normally distributed process under statistical control, Pearn et al. (1992) suggested
 using the natural estimator of Cpmk given by

 Cpmk = min
 U-X  X-L

 ^S2n+{X-T)2 ^S2 + {X-T)2
 D ? \X ? T\

 + (X-T)2
 where X = "= Xi I and S2 = __^=i (X? ? X)2/n are the MLEs of and 2, respectively.
 Chen & Hsu (1995) have shown that Cpmk is consistent and asymptotically unbiased. They
 have also proved that if E(X4) < oo, then Cpmk is asymptotically normal. They have derived an
 asymptotic 100(1 ? a)% confidence interval for Cpmk as

 Cpmk ~F za/2
 ?~pmk

 where

 pmk
 1

 +
 28

 9(1 + ?52) 3(l+?52)3/2j
 Cpmk "T"

 72 2 + ( - 1)
 72(1 + 2)2

 2
 ^pmk'

 where a2mk is the asymptotic estimator of Var^C^); za? is the upper a/2 quantile of
 the standard normal distribution; and m4 = __^=1 (Xi ? X)4/n, = (X ? T)/Sn, and S2 =
 Y?i=l{Xi-X?/n.

 4 Index Interpretation and Drawbacks

 It must be noted that a state of statistical control is required of the process for the capability
 index to have any long-term meaningful interpretation.

 The index Cp only indicates the potential proportion conforming. A minimum value of Cp ?
 1.33 is generally used for an ongoing process (Montgomery, 2001, p. 361). If the Cp value is 1,
 and the process characteristic X is normally distributed and properly centred at the mid-point,
 that is, = M = then the proportion (p) of NC items produced is rather small (0.27%).
 In spite of a high value (>1) of Cp, can be more than 0.27% if the process is not properly
 centred.

 This drawback of the Cp value index is taken care of by the Cpk index. Recall from
 equation (15) that Cpk = (1 ? \k\)Cp. This shows that Cpk is bounded above by Cp. The
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 Cpk index will achieve its maximum value (equal to the Cp value) when the process mean is at
 the specification mid-point. As the process mean drifts away from the specification mid-point,

 the Cpk value decreases linearly until it reaches a value of 0, when the process mean is equal to
 one of the specification limits.

 The indices Cp, Cpk, and k can be used for process improvement. Adapting from Palmer &
 Tsui (1999), the steps for process improvement can take the following direction:

 Step I: Obtain the estimates of Cp and Cpk.
 Step II: If Cpk < Cp and Cp > 1, then evaluate k.

 (a) If k > 0, then adjust the process location to decrease the process mean until Cpk = Cp.
 (b) If k < 0, then adjust the location to increase the process mean until Cpk = Cp.

 Step III: If Cp < 1.0, then identify and remove sources of variability and go to Step II.

 It is also interesting to note that the two indices Cp and Cpk can be associated with the stepwise
 loss function. Gunter (1989) has advocated caution in the use of the Cpk index.
 The third index Cpm attains its maximum value when = T, and decreases in value

 symmetrically, in a bell-shaped pattern, as the process mean shifts away from the target value.
 If the process mean is at the target value, that is, = , then from equation (16), we have
 Cpm = Cp. Unlike Cpk, the value of Cpm does not decrease to 0 as the process mean approaches
 the specification limits. The value of the Cpm index is independent of the closeness of process

 mean to the specification limits. Only the distance between and the target is considered.
 The entire curve for Cpm shifts with the target value, regardless of the actual locations of the
 specification limits. It should be noted that the target value is not necessarily the specification
 mid-point value.

 As Cpm indicates the reduction in process capability due to shifts in the process mean away
 from the target, the pair of indices Cp and Cpm can be used to direct process improvement
 activities. Palmer & Tsui (1999) suggest one such road map. It is worth noting that Cpm was the
 first index to be developed that explicitly used a quadratic loss function. In view of the fact that
 Cpm is bounded above by Cp, it is clear that Cp index enjoys membership in both categories.

 The term ( ? )2 in the denominator of Cpmk in equation (14) may be viewed as an additional
 penalty to the process quality for the departure of the process mean from the target. This penalty
 ensures that Cpmk will be more sensitive to departure than Cpk, and therefore, is better able to
 distinguish between off-target and on-target processes.

 It should be clearly understood that process capability cannot be adequately characterised
 by a single index. Bothe (2002) has shown that Cpk can be misleading, and is inappropriate
 for product features with asymmetric tolerances. He advises the reporting of Cp, Cpk, Plsl
 (percentage nonconforming below the LSL), and pusL (percentage nonconforming above the
 USL) to have a very good idea of what is happening regarding the process output and what
 actions are necessary to improve it.
 Deleryd & Vannman (1999) and Vannman (2001, 2005) have introduced the concept of

 process capability plots as powerful tools to monitor and improve the capability of industrial
 processes. An advantage of process capability plots is that they instantly provide information
 about the location and spread of the characteristic under study. When the process is noncapable,
 the plots are helpful in trying to understand if it is the variability, the deviation from the target,
 or both that need to be reduced to improve the capability.

 Daniels et al. (2005) address the problem of comparing two capability indices (they consider
 Cp, Cpk, and Cpm ) for two different processes or the same process before and after an adjustment.
 They provide recommendations for selecting an appropriate method based on power and test size
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 computations, whereas Melloy & Chandra (1992) demonstrate that the casual estimation of the
 proportion of NC items using the Cpk index can be very misleading when items are screened.

 5 Indices, NCs, and Sample Size

 In this section, we shall comment on the relationship of the indices to the number of the NC
 products and the sample size required for scientifically valid comparisons.

 5.1 Indices and NC

 Capability indices are popular because they provide single-number summaries to managers
 responsible for many processes running simultaneously. However, it should be noted that it
 is very difficult, if not altogether impossible, for a single index to capture the dynamics of a
 process.

 If the process is normally distributed and centred at the mid-point, then a Cp value of 1
 indicates that the proportion of NC products is 0.27%. It is easy to show that the probability of
 obtaining an NC value is

 where (.) denotes the standard normal cumulative distribution function.
 The index Cpk alone does not determine the proportion (p) of NCs; but provides an upper

 bound, given by

 If the expected proportion NC is regarded as the most important criterion, then Cpm is
 unreliable, because the same value of Cpm can be associated with a wide range of values of
 the expected proportion NC. However, it should be noted that the motivation for Cpm does not
 arise from examining the number of NC products in a process but rather from requiring the
 ability of the process to be in the neighbourhood of the target. This motivation has little to do
 with the number of NC parts. However, the index provides an upper bound to the proportion
 of NC products, < 2 (?3Cpm). Moreover, it can be shown that | ? T\ < D/(3Cpm). This
 inequality can be interpreted as a Cpm?value of 1 implies that the process mean lies within
 the middle-third of the specification range. As the design of Cpm is based on the average process
 loss relative to the manufacturing tolerance, the index Cpm provides an upper bound on the
 average process loss.

 Similarly, the Cpmk index provides an upper bound to the proportion of NC products, <
 2<&(?3Cpmk). However, Cpmk is much more sensitive than other capability indices to movement
 in the process average relative to M. Further, Cpmk reveals the maximum information about
 the location of the process average. It can be shown that the distance between and M is less
 than D/(l + 3Cpmk). This can be interpreted as a Cpmk?value of 1 implies that the process

 mean lies within the middle-fourth of the specification range. This is appreciably a very small
 interval.

 Ranking the four common indices in an increasing order of sensitivity to departures of the
 process mean from the target value, we obtain (1) Cp (2) Cpk (3) Cpm (4) Cpmk. If the proportion

 20(-3C/?).  (27)

 < 2d>(-3CM).

 However, Cp and Cpk together determine by the equation

 <b(-3(2Cp-Cpk)) + <S>(-3Cpk).

 (28)

 (29)
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 of NC units ( ) is of primary importance, then Cp and Cpk should be used as they are more
 closely concerned with the percentage of NC products.

 5.2 Sample Size

 Kane (1986) proposed the use of Operating Characteristic (OC) curve to analyse the sampling
 variation of Cp. He tests the hypothesis:

 Hq . Cp < co (process is not capable)

 versus

 H\\Cp> co (process is capable)

 as a test for process capability (Cp >co). He has given a table for critical value determination
 for testing Cp for different sample sizes. Using this table, Kane (1986) points out that past
 automotive industry machine qualification practices that use sample size of = 30 were,
 for the most part, inadequate. He points out that even though current automotive industry
 machine qualification use a Cp value of 1.33, accounting for nonsampling problems that make
 qualification runs different from production runs, these practices may not adequately account
 for sampling variability. Though both Charbonneau & Webster (1978, p. 112) and Montgomery
 (2001, p. 361) recommend that new equipment qualifications should use Cp = 1.5, neither of
 them recommends a sample size.
 Chan et al. (1988) proposed an analogous approach to analyse the sampling variation of

 Cpm. They also present a table for determining sample size and critical values for testing Cpm.
 However, the same criticisms presented above are applicable to the OC curve approach for
 analysing the stochastic properties of Cpm.

 Chou et al. (1990) show that fairly large sample sizes are needed to determine Cpk precisely.
 For example, to be 95% certain that the true Cpk is not more than 10% below the measured
 sample estimated Cpk when the sample estimated Cpk is 1.33 (a fairly used target), one must
 have a sample size of about 350, assuming that the underlying quality characteristic has a normal
 distribution.

 Shore (1997) has studied the effect of autocorrelation on process capability analysis. As
 correlated observations contain less information than noncorrelated ones, the sample size needed
 to arrive at an accurate estimate of the capability index is larger. In fact, Zhang (1998) has shown
 that for < 100, the estimated values Cp and Cpk are quite variable, whereas the variations in
 Cp and Cpk decrease slowly when is greater than 100. Hence, he recommends using a sample
 size > 100 to avoid large variations in Cp and Cpk.

 6 Effect of Nonnormality, Asymmetry, and Autocorrelation

 The theory of PCIs discussed so far is based on the assumption that the distribution of the
 underlying process characteristic is normally distributed and the observations are independent.
 However, there are situations when such assumptions are violated. The distribution of taper,
 ovality, concentricity, run-out, etc., are essentially nonnormal and skewed. The examples of
 nonnormality include impurity content in chemicals, measures of acidity/alkalinity, particle size
 powder, and measures of squareness, parallelism, and flatness in machined components. In Very
 Large Scale Integration (VLSI) processing technology, the distributions of boron-implanted
 atomic concentration in silicon are more and more negatively skewed from normality as
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 implantation energy increases (Sze, 1988). Such a process displays natural nonnormal behaviour.
 Distributions of most measured critical features sizes of photomasks deviate significantly from
 normality. Nonnormality can also arise from truncation of data out of specification. As pointed
 out by Ryan (2000) and illustrated therein, normal distributions do not exist in practice. Gunter
 (1989) has expressed the view that in most real industrial processes, nonnormality is the norm.
 Similarly, in process industries, it is very common to expect and encounter autocorrelated data.

 We shall now consider how the PCIs are affected in such cases.

 6.1 Nonnormal Data

 Much work on these four popular indices has been done on the assumption that the
 measured quality characteristic is normally distributed (at least approximately). However, it
 is difficult to believe that a good industrial process must result in a normal distribution for
 every measured characteristic (Pyzdek, 1995). Munechika (1992) details several examples of

 machining processes that are inherently nonnormal. If the normality-based PCIs are used to
 deal with nonnormal processes, the results are generally incorrect, as expected. Somerville &

 Montgomery (1996-97) have observed that normality-based PCI cannot calculate the process
 fallout accurately when the underlying distribution is nonnormal. Gunter (1989) has shown three
 different distributions with identical values of Cp and Cpk but different proportions of NC parts.
 Kokcherlakota et al. (1992) give additional information on the effects of nonnormality on PCIs.
 A large body of literature has appeared on dealing with nonnormal data. The available methods
 include the empirical percentile method (Clements, 1989; McCormark et al, 2000), and Monte
 Carlo simulation (English & Taylor, 1993). Chou et al. (1998) and Polansky et al. (1998) have
 suggested using Johnson's system of distribution curves to transform the nonnormal data into
 normality. Tang & Than (1999) review seven methods for performance comparison in their
 ability to handle nonnormal data. They also suggest applicable methods for each defined range
 of skewness and kurtosis under mild and severe departures from normality. In a recent paper, Wu
 & Swain (2001) proposed a method based on weighted variance to deal with nonnormal data.
 On the basis of simulation, they conclude that the weighted variance-based estimators perform
 best in both accuracy and efficiency and the recommended sample size for better estimating the
 nominal values would be at least 100. Ding (2004) presents a method to evaluate the PCI for
 a set of nonnormal data from its first four moments. Compared with some existing methods,
 his method gives a more accurate PCI estimation and shows less sensitivity to sample size. Pal
 (2005) suggests using the generalised lambda distribution (GLD) to evaluate nonnormal process
 capability indices as the GLD has an edge over the other family of distributions while modelling
 a process data.

 6.2 Skewed Population

 For many quality characteristics, such as circularity, cylindricity, straightness, and flatness,
 positive skewness in the inspection data is the norm and in fact is desirable. To deal with such
 data, Wright (1995) proposed an index C5, which is basically an adaptation of the Cpmk, proposed
 by Pearn et al. (1992). Wright included a skewness term in the denomination to define

 ^ . / U - -L Cs = min ?. ?=============
 \3 / 2 + ( - )2 + | 3/ | 3>2 + ( - )2 + \ 3/ \

 The absolute value of the skewness parameter, added to the denominator, has the effect of
 reducing the value of the index when asymmetry exists. This index extends the Cpmk index to
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 handle situations where worsening capability is characterised not only by an increase in variance
 and/or deviation of the mean from the target but also an increase in skewness. He advocates
 the use of the Cs index for monitoring near-normal processes where loss of capability leads to
 asymmetry.

 Nahar et al. (2001) modified Wright's index by simply omitting the absolute value sign in the
 denominator and subtracting the skeweness value. Thus, they propose

 n ? I U - -L Csm = min ? -, ? =
 \3^ 2 + ( - -( 3/ ) 3 / 2 + ( - )2-( 3/ )

 Hence, a positive skewness value (in which "skewness is goodness" and a desirable
 characteristic) would cause the index to increase and a negative skewness value, an undesirable
 characteristic, would have the effect of decreasing the value of the index.
 Chang et al. (2002) proposed a new method of constructing process capability index for

 skewed population based on a weighted standard deviation method, which decomposes the
 standard deviation of a quality characteristic into upper and lower deviations using different
 factors in computing the deviation above and below the process mean and adjusts the value of
 the index using decomposed deviations in accordance with skewness estimated from sample
 data. For symmetric populations, the proposed PCIs reduce to standard PCIs.

 6.3 Autocorrelated Data

 Traditionally, a process must be considered free from variation due to assignable causes before
 its capability can be determined. However, there are situations in which assignable causes are
 inherently present and it is very difficult, if not altogether impossible, to eliminate them; for
 example, the degradation of a cutting tool. This essentially means the presence of autocorrelation
 in the data. During the last decade, the determination of PCIs in the presence of autocorrelation
 has been discussed by a few authors. We shall attempt to provide an insight into their works.
 In those situations where a variation due to an assignable cause occurs and is tolerated,

 traditional process capability measures cannot be meaningfully used. By allowing the process
 capability to be considered dynamic, Spiring (1991) proposed a procedure for assessing the
 process capability in such situations. That is, for process exhibiting variation due to a systematic
 assignable cause, the capability of the process is considered to be constantly changing as the
 process ages. The changing ability of the process can be monitored using a process capability
 index that considers both process variation and proximity to the target value. Though both Cpk
 and Cpm are appropriate indices, which take both the target and the spread into consideration, the
 author has developed the theory for the Cpm index (because the estimator of Cpm as suggested
 by Chan et al, 1988 has a pdf that can be used to derive statistically based inferences from
 the sampling results). The total variation 2 is decomposed into two parts, namely, variation
 due to assignable causes ( 2) and variation due to random cause ( 2), that is, 2 = 2 +
 2. In assessing process capability, 2 is only considered. It should be noted that assessing

 a constantly changing capability essentially requires that an instantaneous capability measure
 be made by examining the process capability over small time intervals. The advantage of the
 proposed capability measure is that it can be used to monitor and manage processes under the
 influence of systematic assignable cause. A similar exercise for Cpmk has been done by Pearn &
 Hsu (2007), whereas the present author is investigating for the Cpk index.
 Jagadeesh & Babu (1994) have investigated the problem of process capability assessment

 in the presence of tool wear. They have used four different methods of estimating the process
 variability 2, and concluded that the results based on the different methods are not consistent.
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 In an influential paper, Shore (1997) dealt with the problem of process capability analysis
 when data are autocorrelated. He showed that autocorrelation affects the variance of the sample
 mean and hence the confidence interval associated with the sample mean. The author studied
 four approaches of estimating capability for autocorrelated data and concluded that when
 both performance and convenience in application are important, the model-free approach is
 superior.

 Zhang et al. (1990) have shown that the sample variations in estimates of capability indices
 cannot be ignored and hence interval estimation should be considered. Assuming {Xt} is a
 discrete Gaussian process, Zhang (1998) has shown that the variance of Cp(Cpk)are functions
 of Cp(Cpk), the sample size and the process autocorrelation p? (from a lag of 1 to n).

 Scholz & Vangel (1998) are concerned with the construction of tolerance bounds for Cpk
 when samples come in batches and the intrabatch correlation reduces the amount of independent
 information. They reduce the problem to the independent and identically distributed case by the
 simple device of effective sample size.
 Noorossana (2002) has shown the variance estimate obtained from the original data is no

 longer an appropriate estimate to consider for process capability studies when observations
 are autocorrelated. He suggests using a combined procedure based on multiple regression and
 time-series modelling to remove the autocorrelation patterns that may be present in the data and
 also estimate model parameters effectively.

 7 Measurement Error and PCIs

 In spite of the large volume of work done on various aspects of process capability indices, the
 effects of measurement errors on these indices has received comparatively very little attention.
 McNeese & Klein (1991-92) were perhaps the first one to point out that the variability

 inherent in the measurement systems and sampling techniques adds variability to the output
 from a process and hence affects the process capability. Hence it is necessary to have a capable

 measurement system, which they define as a system in statistical control with respect to the
 average and variation, whose average value is equal to the true value, and which is responsible
 for less than 10% of the total process variance. To decrease the total variability, it is necessary to
 determine where the greatest opportunity for improvement exists. This can be done by examining
 the components of variation. Usually, the components of variation are due to sampling, variation
 due to measurement system (gauge R & R), and error due to manufacturing process. Porter &
 Oakland (1991) also emphasize that process capability assessment is dependent upon the test
 or measurement method. They suggest that the capability of the test method should be at least
 two-and-a-half times the observed capability.

 Persijn & Nuland (1996-97) also dwell upon the relationship between measurement system
 capability and process capability. They argue that process capability analysis is meaningful
 only if the measurement system is capable. For this purpose, they introduce the concept of
 measurement index (MI) and define it as the ratio of the process standard deviation ( )
 to the standard deviation (am) of the measurement method. Thus, MI = ap/om. A capable

 measurement system has MI > 3, that is, the characteristics of the process can be measured
 and hence production can be assessed. In fact, the greater is the MI, the less important is the
 measurement error.

 In a significant work, Mittag (1997) discusses the effects of measurement error on the
 performance of the four most basic process capability indices. When the error is a constant
 measurement error, the Cp index is unaffected, whereas the other three indices (Cpk, Cpm, and
 Cpmk) may be affected in either direction.
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 When the measurement error is random, instead of the true variable X, we observe the
 empirical variable Xe, where Xe = X + V, with V being the random error component. It is
 further assumed that the random variablesX and V are stochastically independent mdE(V) = 0.
 Clearly, the process variance is increased. Mittag (1997) has shown that stochastic measurement
 error always implies a decrease in the indices. For the indices Cp and Cpk, the extent of downward
 distortion only depends on the value of the error contamination degree = / . In contrast,
 for the indices Cpm and Cpmk-> the effect of a random measurement error is determined by as
 well as by = ( ? )/ . Whereas for Cp and Cpk the measurement error effects remains
 unchanged at M, the distortion of the Cpm and Cpmk weakens (up to being negligible) with
 increasing departure from the target. This implies that the index Cpk is inferior to the indices
 Cpm and Cpmk with respect to the robustness against normally distributed measurement errors.

 Mittag 's work is important as it shows that random and constant measurement errors can
 considerably falsify the results of process capability analyses. They emphasize that the accuracy
 of a capability analysis could be significantly influenced by the accuracy of the gauges. This
 fact underlines the importance of ensuring gauge capability before evaluating process capability
 and, consequently, measurement errors should receive greater attention.
 However, although the analysis of Mittag (1997) is confined to considering the effects of

 measurement errors only on the behaviour of theoretical capability indices, such effects are not
 taken into account when PCIs are estimated for sample data. Bordignon & Scagliarini (2002)
 extend the analysis of Mittag (1997) to the inferential properties of the estimators of Cp and
 Cpk by considering the effects of measurement errors on the properties of capability indices
 estimated from sample data. They have shown that the Cp estimator obtained, from the sample
 data contaminated by random measurement errors, is biased, tending towards steady negative
 value as the sample size -> oo, and increases with the contamination degree r. In contrast,
 the usual estimator of Cp in the measurement error-free case always has a positive bias going to

 zero as ?> oo. They have also shown that Var(Cp is never greater than Va^C^). Therefore,
 when comparing the mean squared errors (MSEs) of the two estimators, the bias component
 plays a more important role. Similar results have been obtained for Cpk index. Scagliarini (2002)
 has analysed the properties of the estimator of Cp for autocorrelated data in the presence of
 measurement error. Later, Bordignon & Scagliarini (2006) study the behaviour of the estimator
 of Cpm in the presence of measurement error.

 Pearn & Liao (2006) consider the estimation and testing of Cpu and CpL in the presence
 of measurement error to obtain adjusted lower confidence bounds and critical values for true
 process capability. These can be used to determine whether the factory processes meet the
 capability requirement when the measurement errors are unavoidable.

 Hsu et al. (2007) conduct a sensitivity study for the Cpmk index in the presence of gauge
 measurement errors. They consider the use of capability testing of Cpmk as a method for
 obtaining lower confidence bounds and critical values for true process capability when gauge
 measurement errors are unavoidable. Their research shows that using the estimator with sample
 data contaminated by measurement errors severely underestimates the true capability, resulting
 in an imperceptibly smaller test power.

 8 Conclusion

 This paper attempts to survey the four most popular process capability indices. In addition to
 introducing the indices, an attempt has been made to provide interpretation and point out the
 drawbacks of these indices. The popular misunderstanding with respect to the requisite sample
 size has been pointed out. The neglected aspects of nonnormal distribution, skewed distribution,
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 and autocorrelated data have been studied. The impact of measurement error on the PCI has
 been highlighted. It is hoped that this paper will help in the correct and proper understanding and
 appreciation of the process capability indices and their correct applications. Incorrectly applied
 and/or interpreted, these indices can generate an abundance of misinformation that will confuse
 the shop floor personnel and the management alike, waste resources, and lead to incorrect
 decision making.
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 R?sum?

 Une revue des quatre index de capacit? de proc?d? fondamentaux a ?t? faite. L'inter-relation entre ces index a ?t?
 soulign?e. L'attention a ?t? dessin?e ? leurs inconv?nients. La relation de ces index au nonconformer de proportion a
 ?t? demeur?e sur et la condition de la taille d'?chantillon suffisante a ?t? soulign?e. Les remarques d'avertissement
 sur l'usage de ces index dans le cas de distributions nonnormaux, les distributions d?form?s et les donn?es d'auto
 correspondu sont aussi pr?sent?s. L'effet d'erreur de mesure sur les index de capacit? de proc?d? a ?t? trait? dans les
 moindres d?tails.
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