
 Bootstrapping Lasso Estimators
 A. Chatterjee and S. N. Lahiri

 In this article, we consider bootstrapping the Lasso estimator of the regression parameter in a multiple linear regression model. It is known

 that the standard bootstrap method fails to be consistent. Here, we propose a modified bootstrap method, and show that it provides valid

 approximation to the distribution of the Lasso estimator, for all possible values of the unknown regression parameter vector, including
 the case where some of the components are zero. Further, we establish consistency of the modified bootstrap method for estimating the

 asymptotic bias and variance of the Lasso estimator. We also show that the residual bootstrap can be used to consistently estimate the
 distribution and variance of the adaptive Lasso estimator. Using the former result, we formulate a novel data-based method for choosing the

 optimal penalizing parameter for the Lasso using the modified bootstrap. A numerical study is performed to investigate the finite sample
 performance of the modified bootstrap. The methodology proposed in the article is illustrated with a real data example.
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 1. INTRODUCTION

 Consider the following regression model:

 yi=x'iß+€i, 1=1,..., Л, (1.1)

 where is the response, х/ = (x¡4 i , . . . , х^р)' is a p dimensional
 covariate vector, ß = (ß', . . . , ßp)f is the regression parame-
 ter, and {б/ : i = 1, . . . , n} are independent and identically dis-
 tributed errors. We assume that p is fixed. The Lasso estimator
 of ß is defined as the minimizer of the /i-norm penalized least-
 square criterion function,

 n P

 ßn = argmin V Су, - x-u)2 + kn V I uj | , (1.2)
 ueR" (=, j=l

 where Xn is a regularization parameter. The Lasso estimator was
 introduced by Tibshirani (1996) as an estimation and variable
 selection method. The Lasso estimator has two nice properties,

 namely, (i) the nature of regularization used in the Lasso leads
 to sparse solutions and (ii) it is also computationally feasible
 (see Osborne, Presnell, and Turlach 2000; Efron et al. 2004;
 Friedman et al. 2007). The sparse solutions obtained by us-
 ing the Lasso automatically leads to model selection. In the
 finite dimensional case, many authors have studied the model-
 consistency properties of the Lasso and investigated conditions
 under which the Lasso can recover the true sparsity pattern (see

 Wain wright 2006; Zhao and Yu 2006; and Zou 2006). Other
 than the linear model setup like (1.1), Yuan and Lin (2007) have
 studied the neighborhood selection properties of the Lasso in
 graphical models. Recently Bach (2009) considered using boot-
 strap samples in order to improve the model selection accuracy
 of the Lasso.

 An important problem in this context is the estimation con-
 sistency of the Lasso. This was first studied by Knight and Fu
 (2000) for the finite dimensional regression model (1.1). The
 asymptotic distribution was found and it was shown that the
 Lasso was weakly consistent. They also showed that if kn was
 sufficiently large, then some components of the Lasso estimate

 A. Chatterjee is Assistant Professor, Stat-Math Unit, Indian Statistical Insti-
 tute, New Delhi, Delhi 110016, India (E-mail: cha@isid.ac.iri). S. N. Lahiri is
 Professor, Department of Statistics, Texas A&M University, 3143 TAMU, Col-
 lege Station, TX 77843-3143 (E-mail: snlahiri@stat.tamu.edu ). The research
 was supported partially by National Science Foundation grant DMS 0707139.
 We are also thankful to the Editor and two anonymous referees for their helpful

 suggestions and comments.

 may be exactly zero. It was found that under appropriate regu-
 larity conditions, the limiting distribution of the Lasso estimator

 assigns positive mass at zero for the components where the true
 regression parameter has zero values. Since the limit distribu-
 tion of the Lasso estimator is complicated (cf. Knight and Fu
 2000), it is important to have alternative approximations to the
 distribution of the Lasso estimator that can be used in practice

 to set confidence regions and to carry out tests on the parameter

 vector. Knight and Fu (2000) considered using the bootstrap to
 generate alternative approximations. More specifically, Knight
 and Fu (2000) considered the residual-based bootstrap method
 (cf. Freedman 1981) for the Lasso estimator and sketched out
 its asymptotic behavior. Recently, it is further investigated rig-
 orously by Chatterjee and Lahiri (2010), who show that the
 asymptotic distribution of the bootstrapped Lasso estimator is
 a random measure on W and that the bootstrap is inconsistent

 whenever one or more components of the regression parame-
 ter is zero. Thus, in situations where the limit distribution of the

 Lasso estimator is most complicated and alternative approxima-
 tions are needed the most, the usual bootstrap fails drastically!
 In this article, we construct a suitable modification to the resid-

 ual based bootstrap method and show that under mild regular-

 ity conditions, the modified version of the bootstrap is indeed
 consistent in estimating the limiting distribution of the Lasso
 estimator, even when some components of ß are zero.

 Another important issue that has eluded a satisfactory solu-
 tion to date is the problem of attaching standard error estimates
 to the Lasso estimates. Initially, Tibshirani (1996) suggested an

 approximation that had the drawback of providing zero stan-
 dard error estimates when the estimated coefficient was zero.

 Osborne, Presnell, and Turlach (2000) suggested an improved
 alternative but as pointed out by Knight and Fu (2000), all these
 methods suffered from the drawback of considering the Lasso

 as an approximately linear transformation. Other related meth-
 ods (like the "sandwich formula") for variance estimation in pe-
 nalized regression setup were suggested by Fan and Li (2001)
 and Fan and Peng (2004) which only provided variance es-
 timates for the underlying non-zero components. One of the
 main contributions of this article is to show that the modified
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 bootstrap method, that we propose here, gives a consistent vari-

 ance estimator for the Lasso, for both zero and nonzero param-
 eter values. In particular, the bootstrap based variance estimate
 overcomes the drawbacks of some of the earlier variance esti-

 mation techniques, like producing zero variance estimates for
 estimated zero coefficients. As an application to this result, we
 provide bootstrap based confidence regions for the true param-
 eter vector.

 From Knight and Fu (2000)'s work, it is known that the
 asymptotic distribution of the Lasso estimator depends on the
 regularization parameter through ko where knn~ì/2 -> Ào. In

 particular, the accuracy of the Lasso estimator ßn critically de-
 pends on the choice of the regularization parameter kn. In this
 context, we formulate a new data-based method for selection

 of the regularization parameter. Since the modified bootstrap is
 consistent for the mean squared error (MSE) of the Lasso es-
 timator, we define a criterion function based on the modified

 bootstrap estimator of the MSE as a rescaled function of kn.
 In this context, recently Hall, Lee, and Park (2009) suggested
 using the the m-out-of-л bootstrap, to choose the optimal regu-
 larization parameter in the adaptive Lasso setup.

 We also study the properties of the bootstrapped version of
 the adaptive Lasso estimator (Zou 2006). We find that the resid-

 ual bootstrap based version of the adaptive Lasso estimator is
 consistent in estimating the asymptotic distribution and vari-
 ance of the adaptive Lasso estimator. Similar to Lasso estimator,

 the question about the validity of the bootstrap for the adaptive
 Lasso has been unresolved till now and our results show that

 the simple residual bootstrap can consistently estimate the dis-
 tribution and provide variance estimates for the adaptive Lasso
 estimator. This is unlike the case for the Lasso, where simple
 residual bootstrap fails.

 We conclude this section with a brief literature review.

 Knight and Fu (2000) derived the asymptotic distribution of
 the Lasso estimator under Model (1.1) in the case where the
 dimension p of the regression is fixed. Properties of the stan-
 dard bootstrap method have been investigated by Knight and
 Fu (2000) and Chatterjee and Lahiri (2010), in the same set
 up. In the finite dimensional case, Pötscher and coauthors have

 interesting results on the impossibility of estimating the distri-
 bution function of a Lasso estimator in a uniform sense. The
 relevance of their results in the context of our work is discussed

 in Section 3.1. In the high-dimensional case, where p is allowed
 to grow with n, work on estimation consistency of the Lasso is
 limited; among them Huang, Horowitz, and Ma (2008) consid-
 ered the asymptotic properties of iq norm penalized regression
 estimators (0 < q < 1) for high-dimensional regression models.
 There is a large amount of literature on the variable selection

 properties of the Lasso and we do not attempt to summarize
 all the work. We refer to the recent article by Zhang, Jeng, and
 Liu (2008), who describe a two-step procedure for variable se-
 lection using the Lasso in the high-dimensional setup, and also
 provide a clear picture of recent developments on variable se-
 lection in the high-dimensional setting.

 The rest of the article is organized as follows. In Section 2.1,
 we briefly review the residual based bootstrap and motivate the
 intuitive reasons behind its failure. We formulate the modified
 bootstrap method in Section 2.2. The main results on consis-
 tency of modified bootstrap are stated Section 3. In Section 4,

 the results on the consistency of the residual bootstrap for the
 adaptive Lasso estimator are presented. The data-based method
 for the selection of the (MSE-optimal) regularization parameter
 is presented in Section 5. The finite sample performance of the
 proposed modified bootstrapped Lasso estimator and the data-
 based methodology of choosing the optimal regularization pa-
 rameter is studied in Section 6 using a simulated dataset. A real
 data example is presented in Section 7. The proofs are provided
 in Section 8.

 2. FORMULATION OF THE MODIFIED
 BOOTSTRAP METHOD

 2.1 Background and Motivation

 In a regression setup like (1.1), there are two approaches to
 bootstrapping depending on whether the x/'s are assumed to be
 random or not. In the case where xř are random, it is of interest

 to study the joint distribution of the covariates and the response
 and hence pairwise bootstrap is a relevant choice. In contrast,
 here we assume that the x,-' s are nonrandom. In this situation,

 the standard approach to bootstrapping is the residual bootstrap
 (cf. Efron 1979 and Freedman 1981), which was considered by
 Knight and Fu (2000) in the context of the Lasso estimator. To

 motivate the modified bootstrap method, we first give a brief
 description of the residual bootstrap. Let ßn denote the Lasso
 estimator of ß given by (1.2). Define the residuals

 Consider the set of centered residuals {et - en : i = 1, . . . , «},
 where en = n~l e¡. For the residual bootstrap, one selects
 a with replacement sample of size n, {e* : / = 1 , . . . , л}, from the

 set of centered residuals and formulates the bootstrap version
 of (1.1) as

 У* =x'ißn + e*> « = 1

 Next, based on the bootstrap dataset {(j*, x,-) : i = 1, ...,«}, the
 bootstrap version of the Lasso estimator is defined as

 n p

 ßn = argmin Y)(y* - x-u)2 + X„ V 'Uj'. (2.1)
 u6RP pí

 The bootstrap version of T„ = nx/2(ßn - ß) is T* = n^2(ß* -
 ßn). The residual bootstrap estimator of the unknown distribu-

 tion G„ (say) of T„ is the (conditional) distribution Gn(-) (say)
 of T* given the observations {>>,•:/= 1, , n), that is,

 G„ (fi) = P*(T* e fi), В € (2.2)

 where P* denotes conditional probability given the error vari-
 ables {£,:;= 1 .... . n) and В(ШР) denotes the Borei a -field on
 R".

 Forthe bootstrap approximation to be useful, one would ex-
 pect G„( ) to be close to G„( ). However, this is not the case;
 Chatterjeejmd Lahiri (2010) show that the residual bootstrap
 estimator G„( ), instead of converging to the deterministic limit

 of G„ given by Knight and Fu (2000), converges weakly to a
 random probability measure and therefore, it fails to provide
 a valid approximation to G„( ). To appreciate why the resid-
 ual bootstrap approximation have a random limit and why it
 is inconsistent, first observe that the Lasso estimators of the

 nonzero components of ß estimate their signs correctly with
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 high probability but the estimators of the zero components take

 both positive and negative values with positive probabilities,
 thereby erring to capture the target sign value (which is zero for

 such components) closely. A close examination of the proof of
 the main result (cf. theorem 3.1 in Chatterjee and Lahiri 2010),
 shows that although the formulation of the residual bootstrap
 mimics the main features of the regression model closely, it
 fails to reproduce the sign of the zero components of ß with
 sufficient accuracy in the formulation of the bootstrap Lasso
 estimation criterion (2.1), leading to the random limit.

 2.2 A Modified Bootstrap Method

 Based on the discussion of the last paragraph, we now pro-
 pose a modified version of the bootstrapped Lasso estimator
 that more closely reproduces the sign vector corresponding to
 the unknown parameter ß. As seen in Chatterjee and Lahiri
 (2010), the inconsistency of the standard residual bootstrap
 arises when some components of ß are zero. The key idea be-
 hind the modified bootstrap is to force components of the Lasso

 estimator ßn to be exactly zero whenever they are close to zero.
 Since the original Lasso estimator is root-w consistent, its fluc-
 tuations are of the order л~1/2 around the true value. This sug-

 gests a neighborhood of order larger than n~x I1 around the true
 value will contain the values of the Lasso estimator with high

 probability. To that end, let {an} be a sequence of real numbers
 such that

 an + (n~l/2'ogn)a~{ 0 SLsn-+oo. (2.3)

 For example, an = cn~ 8 satisfies (2.3) for all с e (0, oo) and 8 e
 (0, 2-1). We threshold the components of the Lasso estimator

 ßn at an and define the modified Lasso estimator as

 ßn = (ßn,l,---,ßntp)', with
 ~ ^ ^ (2.4)
 ßn,j = ßnjl('ßn,j' - an)i j - 1 »•••»/*»

 where ßn is the usual Lasso estimate defined in (1.2) and 1( )
 denotes the indicator function. Note that for a nonzero compo-

 nent ßj,

 I ß I

 'ßn,j' = 'ßj' + Op(n-^)>*-f>an

 for n large, with high probability and therefore, ßnj = ßnj, for n

 large and with probability tending to 1. Thus, this shrinkage
 does not have any significant effect on the nonzero components.

 However, for a zero component, ßj = 0,

 'ßnj' = 'ßj' + Op(n-l/2) = Op(n-x'2) e [-On, On],

 with probability tending to 1 as n oo, and thus

 ßnj = ßnJl('ßnj' >an) = 0 for large л,

 with probability tending to 1 . In particular, the shrinkage by an

 accomplishes our main objective: namely, to capture the signs
 of the zero components precisely with probability tending to 1,
 as the sample size n goes to infinity.

 Next, we define the modified residuals {n:i = 1
 based on this estimator ßn by

 ri=yi-xři] Зп, /=1,...,л. (2.5)

 Let rn=n~x Yll= i ri • We select a random sample {e**, . . . , e**}
 of size n with replacement from the centered residuals {r, -
 řn'i= 1 and set

 у?=1$я + еГ, ;=i,...,n.
 Then, the modified bootstrap Lasso estimator is

 n P

 ß** := argmin Y (y** - x»2 + Xn Y 'Uj'. - (2.6)
 чбЕ" i=t j=1

 Let

 T**=nl/2(ß**-ß„), n> 1,
 and let Gn( ) denote the conditional distribution of T** given
 the observations (or the error variables {б, :i= 1, . . . , w}), that
 is, Gn(B) = P*(T** e В), В e B(W). Thus, G„(-) is the modi-
 fied bootstrap approximation to the unknown distribution Gn( •)
 of T„. The modified bootstrap estimator of a population pa-
 rameter 0n = (p(Gn ), defined through a functional <p( ) of Gn ,
 is (p(Gn ). For example, the modified bootstrap estimator of
 E(T„) = the scaled bias of is E*(T**) and similarly, that
 of Var(T„) is Var*(T**), where E* and Var* denote the ex-
 pectation and variance under P*.

 Remark 1. It should be noted that centering the residuals
 {r; : i = 1 , . . . , n) is a must for the validity of the residual boot-

 strap in general, as it ensures that the bootstrap analogue of
 the model condition E(6i) = 0. Note that this is a sufficient
 condition to ensure E *(ЦО!=' x¿6**) = ®- For centered x/'s, the
 "centering of residuals" step can be bypassed, as the conditional

 mean of the sum YH=' x*€f * wil1 sti11 be zera For real datasets'
 where the the responses and covariates are already known to be
 centered, the centering of residuals is not a required step.

 On the other hand, scaling the residuals is not as critical
 a condition: the residual bootstrap is known to be consistent
 for the OLS (and also for the Lasso, as shown here) with-
 out any scale adjustments. In the literature, the rescaling factor
 (1 - p/n)~x/2 is sometimes used (see Efron 1982) to improve
 finite sample accuracy, but asymptotically this has negligible
 effect as p is fixed in this case.

 Remark 2. In (2.4), the thresholded version of the Lasso esti-

 mator ßn has been constructed by thresholding the usual Lasso
 estimator It is possible to replace ßn by any other in-
 consistent estimator of ß , and this fact follows from the proof
 of Theorem 1. For example, the usual least-squares estimator of
 ß can be used. In such a situation, ßn can be similarly defined
 by thresholding each component of the selected ^/«-consistent
 estimator of ß. In the context of computational efficiency, the
 choice of an alternative estimator, like the usual least-squares

 estimator, does provide some computational advantage over us-
 ing the Lasso estimator But, in practical situations, with the
 existence of extremely fast computational algorithms (Efron et
 al. 2004; Friedman et al. 2007), that can be used for comput-

 ing Lasso estimators, the extra effort in computing the Lasso
 estimator ßn becomes a minor issue.

 In the next section we show that under some mild conditions,

 the modified bootstrap estimators of the distribution function of
 T„ and of its bias and variance functionals are consistent.
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 3. BOOTSTRAPPING THE LASSO ESTIMATOR

 3.1 Consistency of the Distributional Approximation

 The first result shows that the modified bootstrap gives a valid
 approximation to the distribution of Tn :

 Theorem 1 (Consistency of Modified Bootstrap). Suppose
 that the following assumptions hold:

 (C.l) n~l X]?=i x*x; C, where С is positive definite. Fur-
 ther, n~x YZ=i l|x/||3 = 0(1).

 (C.2) Xnn - > Xq > 0.
 (C.3) The errors {б/ : i= 1 are independent and iden-

 tically distributed with E(ei) = 0 and Var(ei) = a2 e (0, oo).

 Then

 g(Gn(-), Gn(-)) - ► 0 as n -> oo, with probability 1,

 where £>(•, •) denotes the Prohorov metric on the set of all prob-
 ability measures on (R*' В (MP)).

 Theorem 1 asserts strong consistency of the modified boot-
 strap distribution function estimator under Assumptions (C.l)-
 (C.3). In contrast, for the standard version of the residual boot-

 strap, Chatterjee and Lahiri (2010), shows that under the same
 set of regularity assumptions, if Ào > 0 in Assumption (C.2)
 and if ß has at least one zero component, then

 g(Gn('), Gn(-)) -/> 0 in probability, as n -» oo,

 where Gn is the residual bootstrap estimate of Gn [cf. (2.2)].
 Thus, while the standard residual bootstrap has limited suc-
 cess in presence of zero components, the modified bootstrap
 removes the limitation of the residual bootstrap, and provides
 a valid approximation to the distribution of the centered and
 scaled Lasso estimator for all values of the regression parame-
 ter ß.

 Next let Goo(0 denote the limit distribution of Tn (cf. Knight
 and Fu 2000). Then, from Theorem 1, it follows that for any
 Borei set В с MP with Goo(dB) = 0,

 Р*(Т**<ЕЯ)-Р(Т„еД)^0 as n - ► oo,

 with probability 1, where dB is the boundary of B. As a re-
 sult, one can use the modified bootstrap method to approximate
 the distribution of the centered and scaled Lasso estimator Tn
 for any ß e MP, even when some of the components of ß are
 zero. Since the limit distribution of T„ is rather complicated
 in such cases, the standard approach of using the quantiles of
 the limit distribution to construct confidence sets for ß and its
 components is not very easy to apply in practice. In contrast,
 the modified bootstrap method gives a viable and unified way
 to construct valid large sample confidence set estimators of ß
 for all values of the unknown regression parameters ß e MP,
 including the cases where one or more components of ß are
 zero. More specifically, let^(a) denote the a quantile of the
 bootstrap distribution of ||T**||, a 6 (0, 1). Then, the set

 In,a = {telR^Ht - H <rCx/2tn(a)' (3.1)
 is an approximate confidence set for ß of level a , as shown
 by the following result. To state it, let denote the limiting
 random vector such that Tn -> in distribution (cf. Knight
 and Fu 2000), that is, has distribution Goo- Also, let t(a)
 denote the a quantile of ЦТооЦ, a € (0, 1).

 Corollary 1 (Modified Bootstrap Confidence Interval). Sup-
 pose the assumptions of Theorem 1 hold.

 (i) If a G (0, 1) is such that P(||Too II < t(a) + rf) > a for all
 rj > 0. Then,

 P <ßeln% a) -> ot as n -» oo, (3.2)

 for all ß eMP .

 (ii) Suppose that {j:ßj ф 0} is nonempty. Then, (3.2) holds
 for all a e (0, 1).

 Part (i) of Corollary 1 requires a mild condition on the a, as
 the limiting distribution Too is partly discrete, with a nontriv-
 ial mass at zero (cf. Knight and Fu 2000) for the zero com-
 ponents. It rules out at most a countable set of values of a
 when the distribution of ||Too || is partly discrete. Part (ii) re-
 moves this under the condition that at least one component of
 ß is nonzero. The latter condition is satisfied in most applica-
 tions, and is tantamount to justifying the use of the regression
 model (1.1). The main implication of Corollary 1 is that under
 some mild regularity conditions, the modified bootstrap method
 can be used to construct valid large sample confidence region
 for ß , including in the cases where one or more components of
 ß are zero. By exploiting the relationship between confidence
 regions and tests, it can also be used to test the null hypothesis
 Ho : ßj = 0 for all jeJ for a given J с {1, ... ,/?}, which plays
 an important role in model selection.

 Remark 3. In context to the consistency result presented in
 Theorem 1, it is important to mention the interesting work done
 by Pötscher and coauthors (Leeb and Pötscher 2006; Leeb and
 Pötscher 2008; and Pötscher and Schneider 2009), who have
 studied the (uniform) consistency of estimates of distributions
 functions of the Lasso, adaptive Lasso, and hard-thresholding-
 based estimators. Particularly, in context of the Lasso, they have
 shown that it is impossible to consistently estimate the distribu-
 tion function of the Lasso estimator in a uniform sense: unifor-

 mity with respect to the underlying regression parameter ß in
 a shrinking neighborhood of the origin. And in particular, any
 resampling based estimator of the distribution function would

 also fail to be uniformly consistent. These results are of great
 interest, but uniform consistency of distribution function esti-
 mators is more relevant when many of the coefficients of the

 true regression parameter are very close to zero, but not exactly
 zero. And, such scenarios commonly arise in cases where the
 underlying regression parameter is allowed to depend on the
 sample size n , and changes with n.

 On the other hand, in a classical linear regression set up,
 which is of interest in many applications (e.g., see Draper and
 Smith 1998), the underlying regression parameter is considered
 to be a fixed parameter, and the nonzero coefficients lie outside

 any given collection of shrinking neighborhoods of the origin,
 for large n. In such situations, estimating the distribution func-
 tion of the Lasso estimator is still an important issue. In fact,
 the presence of some zero components in the true ß makes the
 usual bootstrap based estimator useless, because the presence
 of any zero component in the underlying ß will make the usual
 bootstrap estimator of ß (with appropriate scaling and center-
 ing) converge weakly to a random probability measure (cf. the-
 orem 3.1 in Chatterjee and Lahiri 2010), instead of the actual
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 target of interest (which is the asymptotic distribution of the
 Lasso estimator), thereby making the usual bootstrap inconsis-
 tent. In this context, we wish to emphasize that the issue of con-

 sidering the underlying regression parameter ß as a fixed quan-
 tity is subjective and depends on a given situation, and in some
 cases, modeling the underlying regression parameter as func-
 tions of the sample size may be a smarter choice. Nevertheless,
 the result in Theorem 1 provides a method to obtain a consis-
 tent estimator in case the underlying regression parameter ß is
 fixed. This makes the modified bootstrap based estimator per-
 fectly applicable in any linear regression set up, where the un-
 derlying true parameter can be considered as a fixed parameter.
 We stress that in our results, we do not claim to prove uniform
 consistency of the modified bootstrap-based distribution func-
 tion estimator, and hence our results are not in contradiction to

 the work of Pötscher and coauthors. Also, as noted by Andrews
 and Guggenberger (2009), the existence of a uniform consis-
 tent estimator of the sampling distribution is not necessary to
 achieve the goal of producing a uniformly valid confidence in-
 terval. Corollary 1 asserts that the modified bootstrap method is
 able to control the asymptotic size of a confidence interval. At
 this point, it is not clear if the resulting confidence intervals are
 valid uniformly in the parameter values.

 Remark 4. The m-out-of-rc bootstrap technique has been re-
 cently used by Hall, Lee, and Park (2009) in context of esti-
 mating the optimal penalty parameter for the Adaptive Lasso.
 We expect the m-out-of-n bootstrap with m <šC n to be a valid
 procedure in the context of our results. However, as it is well
 documented in the literature (cf. Bickel, Götze, and van Zwet
 1997), the accuracy of m-out-of-л bootstrap is typically much
 less than the standard bootstrap method (with m = n). This is
 also supported in our case by the simulation results on variance
 estimation reported in Section 6.3.

 3.2 Bootstrap Bias and Variance Estimation

 In this section, we show that not only does the modified
 bootstrap method give a valid distributional approximation with
 probability one, it also produces strongly consistent estimators
 of the asymptotic bias and variance of Tn. From the work of
 Knight and Fu (2000), it follows that the limit distribution of Tn
 has a nontrivial asymptotic bias when the the penalty parameter
 Xn satisfies Assumption (C.2) with a Ào ф 0. Also, as pointed
 out earlier, existing methods of estimating the variance matrix
 of the Lasso estimator have limitations when one or more com-

 ponents of the regression parameter ß are zero. However, as
 the following result shows, the modified bootstrap method pro-
 duces a consistent estimator of the bias and the variance matrix

 for all values of ß.

 Theorem 2 (Bias and Variance Consistency). Under the as-
 sumptions of Theorem 1,

 E*(T**) E(Too) and
 (3.3)

 (Var*(T**))px/7 (Var(Too))pXp,

 with probability 1 .

 Note that for Ào = 0 in Assumption (C.2), the centered and
 scaled Lasso estimator has the same limit distribution as the

 centered and scaled least squares estimator, and therefore, in

 this case, the Lasso estimator is asymptotically unbiased. How-
 ever, for Ào Ф 0 in Assumption (C.2), Tn is no longer guar-
 anteed to be asymptotically unbiased. Thus, estimation of the
 asymptotic bias is an important problem in the context of pe-
 nalized regression. Since the modified bootstrap produces con-
 sistent estimators of the bias and variance of Tw, Theorem 2 al-

 lows one to attach an mean squared error estimate to the Lasso
 estimate and quantify the associated uncertainty, for all possible
 values of ß , and thereby removes the limitations of the existing

 methods of mean squared error estimation.

 4. BOOTSTRAPPING THE ADAPTIVE
 LASSO ESTIMATOR

 Zou (2006) introduced the adaptive Lasso method in the lit-
 erature on penalized regression for simultaneous variable selec-
 tion and estimation of the nonzero parameters in the regression

 model (1.1). Let ßn denote a generic preliminary estimator of ß ,
 such as the ordinary least-squares (OLS) estimator of ß , given
 by

 n "1 - 1 n

 ßn= J2XiX'i
 i J i=i

 Then the adaptive Lasso estimator (or ALASSO) estimator of
 ß is defined as

 ti p li

 ßn = argmin (У/ - Х/Ч)2 + kn 7 тЧу ' (4'
 ueRP -=1 j=i 'Pj,n'

 where ßn - ( ß',„ , ßp,„ ), К > 0 is the penalty and у > 0.
 Let ßjj, denote the /th component of ßn and let Bn = {/' : 1 <

 j < P . ßj,n - 0} and assume wig (/': ßj - 0} = {/?o + 1, • • • ,pi-
 Under some mild regularity conditions, Zou (2006) established
 the oracle property of the ALASSO method:

 P(B„ = {po+ l,...,p}) ->• 1, as л - >■ oo,

 V^(j š(1)-^(1))-íí.N(0,ff2Cii);

 where Ci i is аро x /?o-submatrix of С corresponding to the first

 po rows and po columns and where ß ^ and ß ^ is the vector
 of the first po -components of ßn and ß respectively. Thus, the
 ALASSO estimator correctly identifies the zero components of
 ß with probability tending to 1 and has the same limit distribu-
 tion as the OLS estimator of the nonzero components of ß. We

 now study properties of a suitable residual bootstrap method for
 the ALASSO estimator.

 4.1 A Residual Bootstrap Method for the Adaptive Lasso

 Let ßn denote the ALASSO estimator defined by (4.1). De-
 fine the ALASSO "residuals" and their centered versions as

 n

 ¿',i=yi-x'ißn 311,1 ěf = ěiiť-n_1^ěij (4.2)
 j= i

 for all 1 < i < п. Let {ej1", be a random sample of
 size n drawn with replacement from {бь . . . , €n}. Define the
 ALASSO-based residual bootstrap (ARB) variables

 yt=i^ißn + 4' !<'<"•
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 Thus, the ARB confidence sets attain the nominal coverage
 probability, asymptotically. A similar argument shows that un-
 der the assumptions of Theorem 3, for any linear combination

 o! ß , с = (ci, . . . , Cp)' с ф 0, the ARB confidence interval for
 в = c'ß, is given by

 /«,«*(0) s {x e R: |x - c'ßn' < п"1^«)}, (4.7)
 attains the target level a for any a e (0, 1), provided po > 1
 and Cj ф 0 for some I <j < po- Here, ïn(a) is the a-quantile
 of the bootstrap variable |c/rT+|. Note that the ARB confidence

 interval In,a(ö) in (4.7) does not require the explicit estimation

 of the standard error of the ALASSO estimator cfßn.
 We briefly investigate the accuracy of ARB confidence in-

 tervals in finite samples in Section 6.4. As in the case of the
 LASSO, estimation of the mean squared error of the ALASSO
 estimator is a nontrivial problem, particularly for the estima-
 tors of the zero components (cf. Zou 2006). The next result
 shows that the ARB provides a consistent estimator of the mean

 squared error matrix of the scaled ALASSO estimator ßn , given

 by MSE(Ť„) ее nE(ßn - ß)Cßn - ß )'•

 Corollary 3. Suppose that the assumptions of Theorem 3
 hold. Then

 MSE*(T+) - MSE(Ť„) 4-0, as n -* oo.

 5. DATA-BASED CHOICE OF THE REGULARIZATION
 PARAMETER FOR THE LASSO ESTIMATOR

 5.1 The Optimal Regularizaron Parameter

 Here, we consider the problem of choosing the optimal
 penalty parameter Ào for the Lasso estimator, in a data-
 dependent manner. Firstly, we formalize the notion of the op-
 timal parameter through a natural reparametrization and sub-
 sequently, we describe a data-based method for choosing the
 optimal regularization parameter based on the modified boot-
 strap method. Let

 V(u) = - 2u'W + uCu
 p

 + 10 £{«,■ sgn(#)K/3/ ¿0) + 'uj'l(ßj = 0)}, (5.1)
 y=l

 where W ~ N(0, ст2С), С = linv^ n~l , x/xj and where
 Ao e [0, oo). Here and in the following, we write sgn(jt) to de-
 note the sign of X e Ш and 1( ) to denote the indicator func-

 tion. Under Assumptions (C.1)-(C.3), the work of Knight and
 Fu (2000) implies that Tn - > in distribution, where =
 argminu V(u). Thus, the limit distribution of Tn depends on
 kn only through À0. We now reparametrize kn e [0, oo) and
 write it as Xn = Л0л1/2, Л0 G [0, oo). Note that MSE of ßn
 for estimating can be expressed as MSE(ßn) = E''ßn - ß''2 =
 п_1Е||Тл||2. Since the effect of the penalization by Xn on the
 overall accuracy^of /9„ is reflected by its MSE-function and
 since n X MSE(ßn) converges to the MSE of the limiting ran-
 dom variable T^, we define the optimal penalization parameter
 XqPÎ as

 X°pt = argmin 0(A.O), (5.2)
 where ф(к о) = ЕЦТооН2, the MSE of the limit distribution of

 Tn with Xn = Xq n1/2, Ào 6 [0, oo). Thus, choosing A.o = X^pt in

 The ARB version of the ALASSO estimator is now defined

 as

 ßn = argmin Ž (yt - x>)2 + J2 7S+T7 ' <43)
 ueRp

 where ß+ = (ß*n, . • • , ß^n) and ß+ is defined by replacing
 {jb . • • , У ni in the definition of ßn with {yf, . . . , y+}.

 Remark 5. In contrast to the LASSO, the ARB does not
 required an additional truncation, that is, hard-thresholding)
 step. This is due to the form of the penalty term in the defini-
 tion of the ALASSO that already incorporates a built-in soft-
 thresholding for the zero components. Thus, using the hard-
 thresholding step for the ALASSO does not change its asymp-
 totic validity, but it may affect the finite sample performance.

 4.2 Main Results

 Next we study consistency of the ARB for the ALASSO. For

 concreteness, we shall suppose that ßn is the OLS of ß and
 therefore

 ßt= ¿x,xí ¿x'%+-
 -/=1 J i=i

 Let #„(•) denote the conditional cdf of the ARB version T+ =

 y/nCßn ~ ßn) °f the centered and scaled ALASSO estimator

 T n = y/n(ßn ~ ß)> Then we have the following result:

 Theorem 3. Suppose that Assumptions (C. 1) and (C.3) hold.
 Also suppose that

 - P -> 0 and Хпп^у~1^2 -» oo. (4.4)
 Y П

 Then,

 g(Hn,Hn) 0, asn-*oo, (4.5)

 where Hn(x ) = P(Tn <x),xe R, and q is as in Theorem 1.

 A proof of Theorem 3 is given in Section 8. Thus, it follows

 that under the conditions of Theorem 1, the ARB provides a
 valid approximation to the distribution of the ALASSO estima-

 tor. The in-probability convergence in (4.5) can be strengthened
 to almost-sure convergence under a stronger version of (4.4),
 which we do not pursue here. Indeed, (4.5) is adequate for con-
 structing valid confidence intervals for ß based on the ALASSO

 estimator ßn , as shown below. Let tn(a ) denote the a-quantile
 of the bootstrap distribution of ||T+||, a e (0, 1). Define

 in,a = {t e RP-. lit - ßn'' < n-^Xia)],

 the level-a ARB confidence set for ß. Then, we have the fol-
 lowing result:

 Corollary 2 (ARB Confidence Set). Suppose that the as-
 sumptions of Theorem 3 hold. Let a e (0, 1) be such that
 Pdltooll < ř(af) -I- г}) > a for all r¡ > 0. Then,

 P(/* e /„,„) a, as n - » oo. (4.6)

 Further, (4.6) holds for all a e (0, 1), if pç, > 1.
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 where

 Ij= {b: ' <b<B,
 [e'*b, . . . , e**b] does not contain the residual rj - rn',

 with residuals rj as defined in (2.5) and 'A' denoting the car-
 dinality of a set A. The EMSE of the bootstrap estimator фп ,
 based on the JAB replicates will be

 EMSE(<MA.0 ,fl))

 1 n - - "|2
 =  n - 1 '
 L j=' J

 1 n
 + -

 n(n - 1) ^

 The best choice of thresholding value is

 a = argmin EMSE(0„(Ào, a)). (5.8)
 Xo,a

 It is to be noted that the above best choice of a is evaluated over

 all possible choices of ко and a values, and aims to minimize
 a completely different optimization criterion compared to the
 previously defined bootstrap based optimal values Àq n and a*
 [cf. (5.4) and (5.6)]. We can also assess the performance of ¿í
 in a simulation setup in terms of how closely it approximates
 the overall minimum value of фп , realized at the coordinates

 (Àq л, a*). Thus, an accuracy measure (AM) for a can be de-
 fined as

 I МК.п'<)-ФпКп'Ъ'
 AM (2) =

 Ф№ о )

 with scaling done by the value at the true minimum. Such a
 measure of accuracy is obviously not unique, and other accu-
 racy criterion can be constructed for this purpose. Other alter-
 natives can be the (average) distance | a* - a' or its square.

 Remark 6. The JAB -based choice of the optimum threshold-

 ing value, a defined in (5.8) aims to optimize the MSE of the
 bootstrap estimator фп. On the other hand, a*, defined inJ5.6)
 aims to optimize the value of the bootstrap estimator фп as
 a function of a. These two choices: ¿z and a *, offer indepen-

 dent ways to choose a thresholding parameter for any specific
 dataset.

 6. NUMERICAL RESULTS

 6.1 Modified Bootstrap Based Choice of Optimal
 Penalization and JAB Based Choice of
 Thresholding Value

 In this numerical study we explore the performance of the
 modified bootstrap based method of choosing the optimal Ào
 and also the JAB based method of choosing a thresholding
 value, as described in the Section 5.

 For our simulation study we considered a fixed-design matrix
 with elements of the design matrix selected independently from
 the standard normal distribution. The errors were independent
 standard normal. Three different cases, with different choices

 of the true ß [cf. (1.1)] were considered:

 the reparametrization yields a Lasso estimator that minimizes
 the MSE in large samples. Our goal is to estimate the target

 parameter к°^1 .

 5.2 Data-Based Selection of the Optimal
 Regularization Parameter

 We now describe a data-based method for estimating k^pt
 of (5.2) using the modified bootstrap. For any choice of penal-
 ization parameter ко and thresholding value a , rewrite T** =
 T**(ko, a). The modified bootstrap based estimator of ф(ко) is

 фп(Х о, a) s E* ||T**(À0, a) ||2, ко e [0, oo), a e (0, oo),

 (5.3)

 where a denotes the thresholding value used in defining (2.4).
 Note that by Theorem 1, фп(ко, an) is a strongly consistent esti-
 mator of ф (ко), for an appropriate choice of thresholding values

 {an} satisfying (2.3). Therefore, we replace ф(ко) in (5.2) by its
 bootstrap estimator фп(ко, a) and define the bootstrap estimator

 of the target penalization parameter k^pt by

 Àq n = argmin фп(к0, a ). (5.4)
 ко, a

 If we fix the value of the thresholding parameter a , we can mini-

 mize over Ào and define the optimal penalty parameter at a fixed
 choice of a :

 Xq n(a) = argmin 0„(ÀO, a). (5.5)
 A.0

 Similarly, we can define

 a* - argmin фп (À0 , a) , (5.6)
 ко, a

 which provides the value of a where фп is minimized. Since the
 modified bootstrap provides a consistent approximation to the
 MSE of the Lasso estimator (cf. Theorem 2), (5.4) defines an

 accurate estimator of the optimal penalization parameter k[ ]pt
 in large samples. However, the performance of this estimator in
 finite samples depends on various factors, including the number

 of zero components of the true parameter value ß and the sizes
 of its nonzero components and quite importantly, on the choice
 of the thresholding value an in (2.4). We now suggest a data-
 based method of selecting a thresholding value.

 5.3 Jackknife-After-Bootstrap Based Choice of
 Thresholding Parameter

 We suggest using the Jackknife-after-bootstrap (JAB) method
 (see Efron 1992 for details on the JAB method) for select-
 ing an appropriate thresholding value. The main idea is to
 construct an estimate of the error of the bootstrap estima-

 tor фп(ко,а) using the JAB method and select a threshold-
 ing value a that minimizes this error. For any fixed choice of
 the pair (Ào, a ), once we have obtained the bootstrap samples
 {7** (b : Ào, a) : b = 1 , . . . , B], we can construct delete- 1 JAB
 replicates of фп(ко , a):

 Фп,](ко,а) = ^^2''T**(b:ko,a)''2, j= 1
 W belj
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 (i) ß = (2, 5, 0, -1, 6, 0, 0, 0, -3, 10)'. This corresponds
 to the case where there are no "small" nonzero coefficients.

 (ii) ß = (4, -0.25, 0, 0.35, 1, 0, 0, 0, -2, 0.65)'. This case
 represents a situation where the are some small nonzero coeffi-
 cients.

 (iii) ß = (n"1/2, -3/Г1/2, 0, 0.75,4, 0, 0, 0, 5/Г1/2, -1.5)'.
 This represents a case where the underlying regression coeffi-
 cient is no longer "fixed" and depends on the sample size n.

 In all cases the dimension of the regression coefficient p (= 10),
 is kept fixed. In all cases the sample size was fixed at n = 250.
 The errors were selected independently from the standard nor-
 mal distribution.

 For any choice of a design matrix, true regression parame-
 ter and error distribution, the true optimal Xo defined in (5.2) is

 intractable and hence is replaced by a Monte Carlo-based ap-
 proximation. We decided to compare the performances of the
 modified bootstrap based choice of optimal Xo [cf. (5.4)], an
 analogous estimate based on the usual (naive) residual boot-
 strap and also an estimate based on the cross-validation (CV)
 technique. It should be noted that, a CV based choice of opti-
 mal Xo tries to minimize the prediction error, while the crite-
 rion function used in (5.2) minimizes the MSE. It can be shown

 that, except under very special situations, the optimal Xo values
 under these two different criterion are incomparable. We also

 looked at the behavior of Xq n(a) [cf. (5.5)], which is the mod-
 ified bootstrap-based optimum choice of A.o, at a fixed value of
 the thresholding parameter a .

 Figures 1-2 show the relative behavior of the modified boot-
 strap based optimal Ào, the corresponding naive residual boot-
 strap based optimal Xq and the CV based optimal Xo for the

 models in Cases (i) and (ii), respectively. The vertical solid
 line in each figure shows the true optimal Xo value [cf. (5.2)].
 In all the these cases, the CV-based choices are nowhere near

 the true optimal Xo, as is to be expected. In Case (i), when ß
 does not have any "small" components, the modified bootstrap-
 based choice of optimal Xo is far better than the naive boot-
 strap. On the other hand, in Case (ii) the naive bootstrap appar-

 ently performs better than modified bootstrap. This is despite
 the fact that the naive bootstrap based estimator of ß (appropri-

 ately scaled and centered) fails to converge to any fixed distri-

 bution. If we investigate the behavior of the modified bootstrap-

 based estimate Xq n(a) [cf. (5.5)] at certain fixed choices of a,
 we find that a different picture emerges. At certain choices of

 a , the modified bootstrap performs far better than what is sug-

 gested by Figure 2. In fact, for the models in Cases (ii) and
 (iii), and as shown in Figures 3 and 4, at certain choices of a,

 the estimator ХЩ п(а) actually approximates the true underly-
 ing optimal Xo value very accurately, better than naive boot-

 strap and also better than Xq n. This apparent anomaly arises
 because of the choice of a values, over which the optimum Àq n
 value [cf. (5.4)] is computed, specifically the larger values of a

 contributing to the failure of Xq n. Specifically for the choices
 of ß in Cases (ii) and (iii), we find that using a = 0.25 and
 a = 0.005, provide us a much better approximation to the true
 optimal Xo.

 Next consider the impact of choosing the thresholding pa-
 rameter a in finite samples. In all the three cases, we had se-
 lected a grid of six a values, over which the optimum values a*
 and a were computed. In all three cases, over a set of 500 sim-

 Figure 1. Histogram showing the performance of CV-based (at left), naive bootstrap (at center) and modified bootstrap-based (at right)
 choices of optimal X0. The vertical dotted line shows the true optimal value XqPí. The true ß corresponds to Case (i) and n = 250. The online
 version of this figure is in color.
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 Figure 2. Histogram showing the performance of CV based (at left), naive bootstrap (at center) and modified bootstrap (at right) based choices

 of optimal ÀQ. The vertical dotted line shows the true optimal value XqPí. The true ß corresponds to Case (ii) and n = 250. The online version of
 this figure is in color.

 ulations, we found the average absolute and squared distances
 between these two values.

 The results in Table 1 show that the accuracy of the JAB
 based estimate of a is very good for the model used in Case (i)
 and deteriorates marginally for the other models. In finite sam-

 ples, the choice of the grid of thresholding values over which
 the optimum a is computed is very important. The simulation
 results in Table 1 suggest that the JAB method is usable, at least

 in a situation where the underlying ß has distinct (and large)
 nonzero and zero coefficients.

 Figure 3. Histogram showing the performance of modified bootstrap-based choices of optimal Xq at two fixed thresholding values: a = 0.0125

 and 0.25. The vertical dotted line shows the true optimal value XqPí. The true ß corresponds to Case (ii) and n = 250. The online version of this
 figure is in color.
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 Figure 4. Histogram showing the performance of modified bootstrap-based choices of optimal Xq at two fixed thresholding values: a = 0.005
 and 0.05. The vertical dotted line shows the true optimal value . The true ß corresponds to Case (iii) and n = 250. The online version of this
 figure is in color.

 6.2 Coverage Accuracy of Confidence Regions

 In this numerical study, we compare the finite sample per-
 formance of the confidence regions for ß obtained by using
 the modified bootstrap procedure and the naive (usual) resid-
 ual bootstrap procedure. Table 2 shows the empirical coverage
 probabilities for the modified bootstrap based confidence region

 defined in (3.1) for a = 0.9 and also for an analogous naive
 bootstrap based confidence set (constructed similarly, but with-
 out the thresholding step).

 Tables 2-4 shows that both the modified bootstrap and
 naive bootstrap methods performs exceedingly well in terms
 of achieving the desired nominal coverage rate, for all the three
 models in Cases (i)-(iii). Although, as the threshold value a in-
 creases, the modified bootstrap confidence regions show much
 higher than nominal coverage [except for Case (iii)], suggest-
 ing that these choices of a are not suitable. Apparently, the
 inconsistency of the naive bootstrap does not have any effect
 on the coverage accuracy of the confidence regions. The re-
 sults in Tables 2-4 represent the pointwise coverage accuracy
 of the confidence intervals (3.1), and there is no assurance that
 there will be a similar level of accuracy in an uniform sense
 (see Remark 3). Although the naive bootstrap works well in
 all the above cases, the inherent inconsistency property of the
 naive residual bootstrap-based Lasso estimator makes the use

 Table 1. Accuracy of the JAB-based choice a

 Case dAverage squared dAverage absolute
 distance (a - a* )2 distance 'a - a* '

 (i) 0.0034 0.0975
 (ii) 0.0371 0.1539
 (iii) 0.1052 0.2376

 dOver 500 simulations.

 of naive bootstrap based confidence intervals a very doubtful
 choice.

 6.3 Variance Estimation

 The next numerical study focuses on the aspect of comput-
 ing variance estimates for Lasso estimators. We study three
 approaches, the naive (residual) bootstrap, the modified boot-
 strap and also the m-out-of-n bootstrap (see Hall, Lee, and Park
 2009). For each of three cases under consideration, we picked
 particular sets of covariate pairs and compared the accuracy of
 covariance estimates obtained by these three methods. The true
 covariances for every selected covariate pair was approximated
 by Monte Carlo simulations. For simplicity of presentation, we
 only present the covariance estimates and their MSE's only at a
 single value of Xo.

 Tables 5-7 show the results: for each selected choice of ß, the
 covariate pairs were carefully chosen to represent cases where
 the underlying ßj is nonzero and "large," nonzero and "small,"
 exactly zero, and combinations of such pairs. The Monte Carlo

 Table 2. Empirical coverage probabilities for 90% confidence regions
 based on the modified and naive bootstrap procedures for the model

 in Case (i), with n = 250

 Modified bootstrap

 a

 Ao Naive bootstrap 0.125 0.25 0.75 1.25

 0.1975 0.880 0.880 0.877 0.877 0.997
 0.2975 0.880 0.870 0.870 0.870 0.997
 0.3475* 0.877 0.867 0.867 0.867 0.996
 0.3975 0.877 0.867 0.863 0.863 0.996
 0.4975 0.883 0.870 0.870 0.870 0.997

 "True optimal àq.
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 Table 3. Empirical coverage probabilities for 90% confidence regions
 based on the modified and naive bootstrap procedures for the model

 in Case (ii), with n = 250

 Modified bootstrap

 a

 Xq Naive bootstrap 0.0125 0.05 0.25 0.75

 0.1916 0.860 0.860 0.860 0.867 0.977
 0.2916 0.867 0.860 0.860 0.863 0.980
 0.3416* 0.863 0.863 0.863 0.860 0.977

 0.3916 0.870 0.870 0.867 0.860 0.970
 0.4916 0.880 0.873 0.873 0.860 0.967

 True optimal àq.

 estimate of the true covariance between these covariate pairs
 is shown in the second column of these tables. We used four

 different choices of the thresholding parameter a for the modi-

 fied bootstrap (MB) and three different choices of the bootstrap

 sample size m, for the m-out-of-л bootstrap sample size. The
 sample size used is n - 250.
 From Table 5 we see that for the choice of ß in Case (i), the

 naive bootstrap (NB) and modified bootstrap (MB) have very
 comparable performances, except for the choice of a = 1.25,
 where the performance of the MB deteriorates. The m-out-of-л
 bootstrap method has very poor performance when m is small,
 and gradually improves as m increases, although remains worse
 than the other two methods. Though NB and MB have compa-

 Table 4. Empirical coverage probabilities for 90% confidence regions
 based on the modified and naive bootstrap procedures for the model

 in Case (iii), with n = 250

 Modified bootstrap

 a

 Xq Naive bootstrap 0.005 0.0125 0.05 0.25

 0.2481 0.890 0.887 0.887 0.887 0.890
 0.3481 0.893 0.893 0.893 0.893 0.877
 0.3981* 0.890 0.893 0.893 0.890 0.873
 0.4481 0.887 0.893 0.893 0.887 0.867
 0.5481 0.893 0.893 0.893 0.890 0.850

 *True optimal àq.

 rabie performances, the MB clearly outperforms the NB for the

 pair (3, 3), where ßi = 0. It shows that the MB has some ad-
 vantage over the NB, when the true underlying value of a com-
 ponent is zero. For the m-out-of-n bootstrap case, the sample
 sizes m were chosen arbitrarily and there is always the option

 of selecting the optimum sample size for fine-tuning the perfor-
 mance.

 We also computed a sandwich formula-based (cf. Zou 2006
 and Fan and Peng 2004) variance estimate for the Lasso esti-
 mate of ßi- We found that the (mean) variance estimate is 5.150
 and the estimated MSE is 349.83. Although this suggests that
 the sandwich formula performs very badly, but a closer inspec-
 tion revealed that due to the presence of very few extreme val-

 Table 5. Comparison of variance estimates and the MSE's of the estimates for the model in Case (i) with ß = (2, 5, 0, - 1, 6, 0, 0, 0, -3, 10) :
 obtained by the naive (residual) bootstrap (NB), the modified bootstrap (MB), and the /и-out-of-n bootstrap techniques,

 at Xo = 'q* and n = 250

 NB MB m-out-of-л

 Pair: ( i , j) True value Estimate MSE a* Estimate MSE m** Estimate MSE
 (1,5) 0.0238 -0.0394 0.0261 0.125 -0.0369 0.0247 50 -1.350 2.460

 0.250 -0.0372 0.0247 125 -0.207 0.148
 0.750 -0.0372 0.0247 200 0.195 0.0635
 1.250 -0.0579 0.0940

 (2 2)a 4.1800 3.8600 0.280 3.91 0.239 20.40 267.00
 3.92 0.238 7.55 12.00
 3.92 0.238 4.62 0.446
 8.11 16.00

 (3, 3) 2.4800 2.6200 0.3770 2.39 0.219 5.25 10.20
 2.35 0.140 4.42 5.05
 2.35 0.140 3.22 1.13
 5.94 12.50

 (3 7) 0.0109 0.0364 0.0091 0.0269 0.00825 -0.00276 0.0319
 0.0256 0.00797 -0.06650 0.0321
 0.0256 0.00797 0.04240 0.0145
 0.1030 0.05100

 (8 10) 0.4140 0.3080 0.0280 0.297 0.0281 1.710 2.20
 0.295 0.0276 0.305 0.0622
 0.295 0.0276 0.310 0.0350
 0.720 0.1600

 *Same set of a values are used for each covariate pair.

 **Same set of m values are used for each covariate pair.

 a Variance estimate based on the sandwich formula has been obtained for this pair.
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 Table 6. Comparison of variance estimates and the MSE's of the estimates for the model in Case (ii) with

 ß = (4, -0.25, 0, 0.35, 1 , 0, 0, 0, -2, 0.65)': obtained by the naive (residual) bootstrap (NB), the modified
 bootstrap (MB) and the m-out-of-n bootstrap techniques, at Xq = and n = 250

 NB MB m-out-of-и

 Pair: ii.j) True value Estimate MSE a* Estimate MSE m** Estimate MSE

 (1, l)a 4.33 4.11 0.248 0.0125 4.11 0.236 50 25.80 470.0
 0.05 4.13 0.232 125 9.46 27.4
 0.25 4.13 0.225 200 5.33 1.3
 0.75 6.82 6.730

 (2.2) 4.10 3.84 0.246 3.84 0.252 14.20 112.0
 3.85 0.248 7.22 10.6
 2.92 2.120 4.58 0.506
 4.08 0.0284

 (3.3) 2.28 2.67 0.488 2.68 0.510 5.66 14.50
 2.62 0.492 4.55 6.51
 2.50 0.178 3.21 1.67
 4.48 5.180

 (2,3) -0.136 -0.139 0.0126 -0.127 0.0151 0.0924 0.162
 -0.124 0.0148 0.1530 0.130
 -0.078 0.0148 -0.220 0.0293
 -0.133 0.0246

 (6,10) 0.00951 -0.00894 0.0130 -0.00446 0.0112 -0.0096 0.316
 -0.00418 0.0110 0.0407 0.0449
 -0.00565 0.0115 -0.0717 0.0255
 -0.00851 0.0212

 *Same set of a values are used for each covariate pair.

 **Same set of m values are used for each covariate pair.

 a Variance estimate based on the sandwich formula has been obtained for this pair.

 Table 7. Comparison of variance estimates and the MSE's of the estimates for the model in Case (iii) with

 ß = ("_1/2, - 3/j-1/2, 0, 0.75, 4, 0, 0, 0, 5n-1/2, -1.5)': obtained by the naive (residual) bootstrap (NB),
 the modified bootstrap (MB), and the m-out-of-и bootstrap techniques, at Xq = and n = 250

 Pair: (ij) True value Estimate MSE

 (1> 1) 2.87 2.60 0.558 0.005 2.61 0.559 50 5.14 9.95
 0.0125 2.61 0.560 125 3.97 2.92
 0.05 2.55 0.640 200 3.040 0.827
 0.25 2.21 0.555

 (2.4) 0.164 0.295 0.0388 0.310 0.0417 1.45 2.21
 0.310 0.0417 0.76 0.44
 0.311 0.0419 0.478 0.13
 0.198 0.0168

 (2. 6) -0.107 -0.0918 0.0107 -0.0880 0.0110 -0.320 0.129
 -0.0879 0.0110 -0.381 0.120
 -0.0856 0.0108 -0.172 0.0207
 -0.0446 0.0104

 (3, 3) 2.20 2.43 0.420 2.43 0.395 3.77 4.08
 2.43 0.395 3.79 3.71
 2.38 0.391 2.94 1.15

 2.31 0.127

 (5. 5)a 3.980 3.71 0.220 3.72 0.213 16.10 150.0
 3.72 0.213 7.73 14.8
 3.74 0.205 4.55 0.541

 *Same set of a values are used for each covariate pair.

 **Same set of m values are used for each covariate pair.

 a Variance estimates and their MSE's for different covariate pairs.
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 ues, the MSE became inflated. In fact, when three extremely
 large values (out of a set of 500) are removed, the (mean) vari-
 ance estimates becomes 4.05 and the estimated MSE is 0.044,
 which is much better than all of the other bootstrap-based vari-
 ance estimates as shown in Table 5.

 Table 6 corresponds to the ß in Case (ii). Once again, the NB
 method performs as well as the MB method, except for the last
 choice of the thresholding value a , where the performance of
 the MB deteriorates. The /n-out-of-л bootstrap method is worse
 than the other two methods, with marginally better performance
 with increasing bootstrap sample size m. The interesting result
 aspect for this case arises for the pair (2, 2), where ßi= - 0.25.
 In this case, with a = 0.25, the MB method fails drastically
 compared to other choices of a and also the NB. For the pair
 (6, 10), the true covariance is very small, and the estimated val-
 ues fail to have the correct sign, but the MB -based estimates
 have relatively lower bias than the NB estimates.

 As earlier, we computed the sandwich formula based vari-
 ance estimate for the Lasso estimate of ß' . The (mean) variance
 estimate based on the sandwich method is 4.30 and the MSE is

 0.090. Once again the sandwich estimate for the variance per-
 forms exceedingly well, compared to any of the bootstrap vari-
 ance estimates for the the pair (1,1).

 Table 7 shows the result for the choice of ß in Case (iii).
 There is very little to choose from among the NB and MB
 methods, although the MB method shows slightly better MSE' s
 for some covariate pairs. The m-out-of-n bootstrap method still
 ranks behind the other two.

 In this case, we looked at ß$ and the sandwich formula-based
 variance estimator. The (mean) variance estimate is 3.85 and
 the MSE is 0.26, which is comparable to the NB and MB boot-
 strap estimates. In this case only, the sandwich formula-based
 variance estimate is unable to outperform the bootstrap-based
 competitors. Although the sandwich formula has very good per-
 formance, it does not provide us any answers for the case when

 ßj = 0.

 6.4 Numerical Results With the Bootstrapped
 Adaptive Lasso Estimator

 In this section we conduct a small simulation to study the

 performance of the adaptive Lasso residual bootstrap estimator
 (ARB) in context of variance estimation and interval estima-
 tion. We only consider the ß described in Case (i). We study the
 accuracy of ARB based variance estimates of ALASSO compo-
 nents and also ARB based confidence intervals for some under-

 lying nonzero ßj* s. From Table 8 we find that the ARB based
 variance estimator performs exceedingly well in estimating the
 true variance of the ALASSO estimator. The coverage accuracy
 of ARB based intervals is very close to the nominal coverage
 probability.

 7. PROSTATE CANCER DATA EXAMPLE

 In this section we study the performance of the modi-
 fied Lasso estimator on the prostate cancer data originally
 from Stamey et al. (1989), which has been used in Tibshirani
 (1996) and is also available at http://www-stat.stanford.edu/
 -tibs/ElemStatLearn/ dataseis/ prostate.data. In this clinical
 study, the variable of interest was log(prostate specific antigen)
 (Ipsa) and eight different predictors were used to study the be-
 havior of this quantity. The predictors were log(cancer volume)
 (lcavol), log(prostate weight) (lweight), age, log(benign
 prostratic hyperplasia amount) (lbph), seminal vesicle inva-
 sion (svi), log(capsular penetration) (lcp), Gleason score
 (gleason), and percentage Gleason scores 4 or 5 (pgg45).
 Numerical calculations suggested that we apply a standard nor-
 mal quantile transformation on the set of values for each pre-
 dictor. For the jth predictor with observations {x' j, . . . ,xnj}t we

 computed the empirical distribution function F„( ). For any dis-

 tinct predictor value, jc/j, the corresponding observation from
 the standard normal distribution will be 0_1(F^(x/j)). Once
 Fn is known, we can easily revert back to the original values
 from the corresponding standard normal observations. In ad-
 dition to this, we scaled the response to have mean zero and
 unit norm. Further, the transformed predictors were also stan-
 dardized. The whole dataset comprising of n = 97 observations
 were used to fit a linear model to the responses. Initially we

 applied the modified bootstrap method to select an optimum
 ko value [cf. (5.4)]. Figure 5 shows the фп(Хо,а) values for
 the prostate cancer dataset, at different choices of a. We used
 a e {0.016,0.064,0.16,0.255,0.32,0.38,0.50}. The plots for
 the last three choices were omitted as they were identical with

 the plot for a = 0.255. It can be seen from Figure 5 that the
 minimum value of фп(Хо,а) occurs at Àq w = 0.0081 and at
 a* = 0.255. Although it was found that фп(ко,а) is very in-
 sensitive to changes in values of a , Figure 5 helps us clearly
 determine the optimum A.o for this dataset.

 Figure 6 shows the scaled EMSE(0n(A.o, a)) values [cf.
 (5.7)]. As the figure shows, there is little difference in the
 curves as a changes, and it can be said that the EMSE is
 largely insensitive to changes in a , with exactly same behavior
 at a - 0.255, 0.32, 0.38, and 0.50. But, all choices of a show
 a clear point of minima. Among them, the overall minimum
 is obtained for a = 0.016 and is shown by the vertical line
 in the figure. Hence, the best choice of thresholding value is
 a = 0.016. Smaller values of a do not make any improvements
 in the value of the EMSE. Figures 5 and 6 show the applica-
 bility of methodology described in Sections 5.2 and 5.3 to real
 dataseis.

 Table 8. Variance estimates and MSE's based on the ARB and coverage accuracy of ARB based (90%) confidence intervals for some nonzero

 components of the underlying ß. The results are for the model in Case (i) with ß = (2, 5, 0, - 1 , 6, 0, 0, 0, -3, 10)'. Here n = 250 and
 Xn = л1/3 and y - 1 [cf. (4.1)]

 Variance estimation

 Componente/) Var(^j) x 103 Var*0Š+.) x IO3 MSE(xl0~7)

 ßx 4.38 4.15 2.69 0.86
 ß2 3.02 3.89 9.41 0.93
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 Figure 5. Plot showing фп(к о, a) values [cf. (5.3), scaled by л 1 ] for the prostate cancer data, at four different choices of a: a = 0.016 (solid

 line), a = 0.064 (small dashes), a = 0.16 (dots), and a = 0.255 (dash-dot-dash). The vertical solid line indicates the position of Xq n.

 At these selected values of A.q n and a, we construct modified
 bootstrap based confidence intervals of the form

 Injta = { w : | w - ßnj' < n ^/^Tnj(a) } , j = 1 , . . . , p,

 for each ßj, with^j(a) = a-quantile of |T**.| and ßnj being the
 Lasso estimate for the jth component. Using the equivalence be-
 tween confidence sets and tests, we also conduct a bootstrap test

 for the hypothesis Ho : ßj = 0, separately for the jth predictor.
 From the results in Table 9, it appears that the covariates

 lcavol, lweight, svi, and gleason have nontrivial ef-
 fect on the response variable Ipsa, the rest of the variables
 were judged insignificant at level 1 - a = 0.1. The results in
 Table 9 also show that indeed nonzero variance estimates can

 be obtained using the modified bootstrap method, even for pre-
 dictors with ßnj = 0.

 Remark 7. The lower confidence interval values for the co-

 variates gleason and svi are both zero, and are something
 of interest. It was found that for the covariate svi, the 90%

 quantile of |T**5| is approximately same as ßn,5, and this oc-
 curs particularly for a = 0.9. For other confidence levels, we
 would have different lower endpoint. For the covariate svi,
 the situation is slightly different. It was found that the distribu-

 tion of |T**7| /у/ñ has a large point mass (with probability close
 to 0.5) at the value 0.071, and that is also precisely same as
 ßnj •> which leads to a lower confidence endpoint value of zero.
 It should be noted that the bootstrap distributions of |T** | are
 not smooth, and there are values where there are large jumps
 in the empirical distributions, which can lead to same interval
 endpoint values for a large range of values of a .

 Overall, we find the the modified bootstrap-based method can
 be applied on real datasets and the optimum choices of ко and

 Figure 6. Plot showing EMSE(0n(Xo, a)) values [cf. (5.7), scaled by 103] for the prostate cancer data, at four different choices of a: a = 0.016

 (solid line), a = 0.064 (small dashes), a = 0. 16 (dots) and a = 0.255 (dash-dot-dash). The vertical solid line indicates the position of minima.
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 Table 9. Analysis of prostate cancer data from Tibshirani (1996). Table showing componentwise Lasso estimates, modified bootstrap-based

 variance estimates, 90% confidence intervals, and tests for Hq :ßj = 0.n = 97 observations were used with âq = Лц n and a = a

 90% confidence interval

 Predictor ßnj Variance estimate (x IO2) Lower Upper Ho:ßj = 0
 lcavol 0.493 0.590 0.352 0.635 Reject
 1 weight 0.182 0.409 0.014 0.351 Reject
 age 0 0.061 -0.039 0.039 Accept
 lbph 0 0.034 -0.315 0.315 Accept
 svi 0.1564 0.560 0 0.313 Reject
 lcp 0 0.253 -0.097 0.097 Accept
 gleason 0.071 0.201 0 0.142 Reject
 pgg4 5 0 0.098 -0.064 0.064 Accept

 NOTE: Data obtained from http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data.

 thresholding value a can be obtained in practice and provide
 satisfactory performance.

 8. PROOFS

 Let C, C(-) denote generic positive constants that depend on

 their arguments, but not on n. Also, recall that we write 1( ) to
 denote the indicator function and

 1, ifx>0

 sgn(jt) = - 1, if x < 0
 . 0, o.w.

 Let (Œ, T , P) denote the underlying probability space and let
 £ = a(€i'.i > 1) denote the sub-a -field of T generated by
 к/ : i > 1}. For a random vector Z and a a -field C, write C( Z)
 and £(Z| C) to denote the probability distribution of Z and the
 conditional distribution of Z given C, respectively. For any ran-
 dom vector Y, set £(Z|<r(Y)) = £(Z|Y), for notational sim-
 plicity. Write Xn for the n x p matrix with rows x-, i = 1 , . . . , я,

 and let Cn = n-1X^Xrt. Unless otherwise indicated, limits in
 the order symbols are taken by letting n -> oo. Recall that P*
 denotes conditional probability given £ and E* = E(- | 8).

 Lemma 1. Let si = n~l ( rj ~ ř « )2 and mXn = "-1 x

 J2'j= i I r¡ - rn 1 3 . Assume that

 1 "
 -£||x;||2 = 0(l)
 nU

 and Assumption (C.3) holds. Then

 I s2n - о2 1 + п~1/2тз,п -> 0, with probability 1,

 where recall that o2 = Var(€i).

 Proof. First consider 's2 - a2 1. Define o2 - n~l x
 Y!j=' (*j - fn)2. where €„ = и"1 Yl¡=' €j- ВУ lemma 4.2 of
 Chatterjee and Lahiri (2010),

 y T„ II = 0(log n) , with probability 1 . (8.1)

 Hence, using (8.1) and the definition of ßn , we have

 ''ßn - ß'' = 0(n~l/2'ogn) with probability 1. (8.2)

 By (8.2)

 1 n
 (sn - On)2 < - У2 i(0 - rn) - (€j - €n)}2

 7=1

 sito»-«/
 j= 1

 = o( 1 ) , with probability 1 .

 Since о2 - > o2 with probability 1, it follows that 's2 - a2' =
 o( 1) with probability 1. Next consider тз,„. Using the assump-
 tions on the x/'s, we get

 / n ' 1/2
 max "x," < ^^llxi"2j =0(n1/2). (8.3)

 Hence, by the Marcinkiewicz-Zygmund Strong Law of Large
 Numbers, (8.2), and (8.3), we have

 n

 |п_1/2тз,„| < 8 и_3/2 ^ I €i - Xi(ßn - ß)'3
 i= 1

 <32 i_3/2¿ kíl3
 1=1

 + ^n_3/2 ¿ llx¿l|3^ Wßn - ß''3
 = o( 1 ) , with probability 1 .

 This completes the proof of the lemma.

 Lemma 2. Suppose that Assumptions (C.l) and (C.3) hold.
 Then:

 (i)

 С (n-"2 ^ -Д- N(0, a2C) with probability 1 .
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 (ii)

 d. о
 - > N(0, а С), as n - ► oo, in probability. (8.4)

 Proof. By Lemma 1, there exists a set A e T be such that
 P(A) = 1 and for every co e A,

 |E*«*)2 - + n"1/2E*kf*|3 ^0 as и ^ oo.

 Fix čt) € A. For this со, we will use the Cramer-Wold device

 to prove the result. Accordingly, consider a a = (a' , . . . , ap)f e
 Мр, а ф 0. Let ^(a) = Var*(«_1/2 Note that by
 the definition of A, s2{ a) -> a'Caa2 € (0, oo). By the Berry-
 Esseen Theorem for independent (but possibly nonidentically
 distributed random variables) (cf. chapter 12, Bhattacharya and
 Ranga Rao 1986),

 sup Р*(и~1/2 VVx/é?** <jc) - Ф^'Ча))
 xeR ' )

 < (2 ?5) ELiE,|n-'/Vx,eri3
 (E"=i E*|n-1/2a'x,ef*|2)3/2

 ^c,||a||3n-3/2Etillxlll3E*kn3
 s2n{ a)

 = o(l).

 This completes the proof of part (i).

 For part (ii): by a subsequence argument and by retracing the
 arguments in the proof of part (i), it is enough to show that

 n~l a2, and
 i= 1 i=l

 n-3/2Elčul3-0.
 1=1

 Since,

 max{|€itI- - 6/1 : 1 < i < n] < max{||x,-|| : 1 < i < n] • ''ßn - ß''

 = op(»-"2).

 the above follows the Marcinkiewicz-Zygmund SLLN.

 Proof of Theorem 1. Let u = (u' , . . . , up)' e W. Define

 o»>=Í>r-»;(žU""-1/2))2
 1=1

 P

 + n ElÃj + Ujn~l/2'.
 j= 1

 Also define V**(u) = U**( u) - t/**(0). Note that T** =
 argmin(V**). Define

 Wr = n-1/2¿x*?*.
 1= 1

 Then we can write V** as

 Vn**(u) = u/C„u-2u,W**
 p

 + E(|Ä.J + щп42 1 - I ßnj'). (8.5)
 7=1

 Let A e J7 be such that P (A) = 1 and for every co e A, (8.1),
 (8.2) hold and

 £(W**| £){co) - > N(0, a2 C), in distribution. (8.6)

 Now fix co e A. Then, there exists N = N(co) g [1, oo) such
 that for all n>N ,

 sgn (ßnj) = sgn (ßj) and ßnJ = ßnJ for all 1 <j < p0,

 and ßn j = 0 forall^oH- 1 <j <p.

 Hence, for all n > N,

 Ои)=иЧ:„и--2и^**

 (po ;=i E Sgn (ßnj)Uj+ ^ y'=po+i J2 P 'Uj' ' / I
 E Sgn (ßnj)Uj+ ^ J2 'Uj' I
 ;=i y'=po+i /

 for all и e MP with 'uj' < nl/2ßnj for j = 1, . . . ,/?o. Now us-
 ing (8.6) and the arguments as in the unbootstrapped case (cf.
 Knight and Fu 2000), one can establish the weak convergence

 £(V**( .)'£)(co) - ► AVO), in distribution,

 on the space of all functions on W that are uniformly bounded
 on compact subsets of Rp. This, in turn, implies that
 C{Tf'£)(a>) - ► C{ T oo) in distribution, as random vectors.
 Since this is true for all co e A and P(A) = 1, the theorem is
 proved.

 Proof of Corollary 1. Part (a) follows from Theorem 1, by
 using the fact that if Fn - ► F weakly and F( ) is strictly in-
 creasing to the right of its a-quantile then, F~l (a) ->
 F~l(a) as n oo. For the second, use the fact that ||Too|| has
 a continuous distribution on R when ßj ф 0 for at least one j.

 Proof of Theorem 2. Firstly we show that {||T**|| 2 :n > 1} is
 uniformly integrable with probability 1, that is,

 lim supE*||T**||2l(||T**|| > a) = 0, with probability 1.

 Consider any fixed w0 e (0, oo) such that ||W**|| < wo. Now,
 we can write

 vr (u) = u'C„u - 2u'W** + kn ¿(13;,, + ujn-1'2 1 - 'ßnJ')
 7=1

 > Hull [m,n Hull - 2||wr ii -a„(w-V)1/2}

 > Hull [»Я.» Hull - {2w0 + À„(«-V)1/2}]

 - 2r>l!n{2w0 + ^n("_1/')1/2}2

 > 0)

 for all ||u|| > 2í?^{2wo + X„(n~lp)1^2}. But note that
 lim||w||_>o V**( u) = 0, and that implies

 ТГ e [и: Hull < 2^i{2wo + À„(n-V)1/2}].
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 This leads to the observation that

 {||W**H < wo} => [ЦТ**|| <2^'{2wo + *n(n-1/>)1/2}].

 For any fixed to = 2>/^';{2w'o + 'n(n~lpý^2}, we obtain

 1 Í tori I, n . , -1 л 1/2 Ì
 w0= 2 1 - 2 I,

 And using the above relation we can write

 {irCii >f0}=» [liwn > -^»(«_1p)1/2}]-
 (8.7)

 Using the Assumptions (C.l) and (C.2) we can say, гц,п-> rj'
 (>0) and kn(n~lp)]/2 - > Хор1/2, which is finite. Using (8.7),
 we can write

 E*||T**||21(||T**|| >a)

 < ja2P*(||T**|| > a) + jí°° řP*(||T**|| > t)dt^
 POO

 <4/ íP*(l|T**|| >i)A
 Ja/ 2

 < 4 j Г íP* { ||W** II > i } dt

 ~ 4 la/2 tP* (" W"* " ~ ^4") dt (8'8)
 for n and a large enough. Let Woo be a random vector fol-
 lowing the N(0, cr2C) distribution. Note that using (8.6) and
 the continuous mapping theorem, we can say that for any fixed
 с e (0, oo) ' A where D is a countable set,

 l|W**||2l(||W**|| >c)

 ->■ IIWoofKIIWooll >c), in distribution,

 with probability 1 and using Lemma 1 we have

 E#||W**||2 =5^tr(C„) -*■ E||Wool|2

 = tr(a2C), with probability 1.

 Combining the above two results along with the Dominated
 Convergence Theorem, we obtain

 E*||W**||21(||W**|| >c)

 -> E||Wooll2l(l|Wooll > c) with probability 1, (8.9)

 for every с e (0, oo) ' D. Further, the right-hand side of (8.9)
 is finite for any с > 0 and goes to zero as с -> oo. Hence
 {||W**||2:h > 1} is uniformly integrable with probability 1.
 This implies that the integral on the right-hand side of (8.8)
 is finite as a > 0 and it tends to zero as a f oo. Hence,
 {||T**||2:n > 1} is uniformly integrable with probability 1.
 Since ||x||2 is continuous function on MP, by Theorem 1 and
 the uniform integrability of {||T**||2 :n >1},

 E*||T**||2 -*■ E||Too||2, with probability 1 .

 Now note that for any fixed j e {1, . . . ,/?} and any a > 0, we
 have

 E*|T*j|2l(|T**-| >a) < E*||T**||21(||T**|| >o).

 Since {||T**||2:n > 1} is uniformly integrable, this implies
 {|T**| 2 :n > 1} is uniformly integrable, with probability 1 for " ij

 ally € { 1 , . . . , p] . Also note that the projection mapping gj : x »->>

 Xj is continuous on MP and P(Too € MP) = 1. This implies
 T **• - ► Too / in distribution, with probability 1 . Thus n,J v

 E*|T**-|2 -> E|Too,y|2, with probability 1. (8.10)

 Since L2 convergence implies L' convergence, E*(T**) -►
 E(Tooj), with probability 1. Hence, for ally e {1, . . . ,/?},

 Var*(T**) -> Var (Too j) with probability 1. (8.11)

 For the off-diagonal elements, using similar arguments, we can
 write

 TnjTn*k - ^ТооДоо,ь in distribution,

 with probability 1 for any j ф к. Also note that

 /irp** i2 i rp** i 2ч
 i nj' п,к ^ л t«** il 2

 I ln,jln,k' - 2 - ^ 11 " 11 '
 and {||T**||2 :n > 1} is uniformly integrable. Hence, for all

 j, к e {1, . . . ,/?}, (j Ф к), {Т*уТ**к:п > 1} is uniformly inte-
 grable and

 E*(T**T**¿) -* EfToojW), with probability 1. (8.12)

 Combining (8.1 1) and (8.12), we have the proof for the strong
 consistency of the modified bootstrap variance matrix estima-
 tor. The proof for the bias part is similar, in view of (8.10).

 Proof of Theorem 3. Let An denote the event that the
 ALASSO correctly identifies the set of all zero components
 of ß, that is, An is the set of all co e £2 such that

 {/' : 1 <j < P , ßnj(o)) = 0} = {/?o + 1, • • • ,P)-

 Also, let

 V+(u) = u'C„u - 2u'W+

 + К ^ 'ßnj' v I - lÄjl) -
 where W+ = и~1/2 ]Г"=| x<e,+' n > 1. Then it is easy to check
 that

 ßn = argmin V+ (u).
 ueR P

 Since P(An) 1, there exists a subsequence { } such that

 P(A^i.o.) = 0. (8.13)
 Let í2q € T be the union of the set limsup^^A^ and the

 set where (8.4) fails to hold. Then P(£2o) = 1. Fix, a> € Œo-
 Then, there exists пш > 1 such that for all n > n^, Bn = {po +
 1 Using arguments similar to those in the proof of The-
 orem 1 and Zou (2006) it is easy to show that, on

 £(V+( )|£) -» C(V oo(0), in distribution

 on the space of all functions on that are uniformly bounded
 on compact subsets of MP , where

 Vœ(u) 00 = i U'CU ~ 2U W Íf Upo+l = ' ' ' = "P = 0
 00 1 0 o.w.
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 On n0, weak convergence of £(^/n(ß+k - ßn)'£) to ¿(Too)
 now follows from the argmax theorem (cf. Knight and Fu
 2000). This, together with theorem 2 of Zou (2006) implies the
 assertion of Theorem 3.

 Proof of Corollary 2. The proof is similar to the proof of
 Corollary 1. Routine details are omitted.

 Proof of Corollary 3. As in the proof of Theorem 3, it is
 enough to show that along a subsequence {n¿},

 ^Hm^ sup E* II T+ J 2 1 ( I T+ I > a) = 0, with probability 1 .

 (8.14)

 Using arguments similar to those leading to (8.7), one can show
 that for any n > 1, on the set

 {ßnj = 0, for j = Pq + 1, . . . ,/?},

 for any to > 0,

 {»Till > toi с I I IIW+II >''^- 2 L 2 I 2 L 2 y/n

 mm{'ßhn'yl2: = Я ' <j </?o}JJ

 Next, (i) restricting attention to the set По (from the proof of
 Theorem 3), (ii) using the facts that

 min{| ßj,nk'y/2:l<j<p0} = O(l), onň0>

 and п~1!2к„ - ► 0 as n -> oo, and (iii) using arguments similar
 to (8.8) and (8.9), one can prove (8.14). This proves Corollary 3.

 [Received March 2010. Revised January 2011.]
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