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 It is known that the joint limit distribution of independent Wigner ma
 trices satisfies a very special asymptotic independence, called freeness. We
 study the joint convergence of a few other patterned matrices, providing a
 framework to accommodate other joint laws. In particular, the matricial limits

 of symmetric circulants and reverse circulants satisfy, respectively, the classi
 cal independence and the half independence. The matricial limits of Toeplitz
 and Hankel matrices do not seem to submit to any easy or explicit indepen
 dence/dependence notions. Their limits are not independent, free or half in
 dependent.

 1. Introduction. Wigner [11] showed how the semicircular law arises as the
 limit of the empirical spectral distribution of a sequence of Wigner matrices. See,
 for example, [2] and [1] for such results and their variations. Then researchers
 studied the joint convergence of independent Wigner matrices and the limit is tied
 to the idea of free independence developed by Voiculescu [10].

 It appears that the study of joint distribution of random matrices has been mostly

 concentrated on Wigner type matrices. In [7], joint limits of random matrices were
 studied and it was shown that there are some circumstances where the limit may
 exist but may not be free. As one of the Referees pointed out, [8] considers the
 joint distribution of Vandermonde matrices and diagonal matrices and emphasizes
 the importance of studying joint distribution of other patterned matrices.

 We study the joint convergence of p independent symmetric matrices with iden
 tical pattern. In particular, we show that the tracial limit exists for any monomial
 when the patterned matrix is any one of, Toeplitz, Hankel, symmetric circulant or
 reverse circulant. The Wigner, symmetric circulant and reverse circulant limits are,

 respectively, free semicircular, classical independent normal and half independent
 Rayleigh. The Toeplitz and Hankel limits are not free, independent or half inde
 pendent.
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 In Section 2, we discuss some preliminaries on noncommutative probability
 spaces and recall the notions of independence, freeness and half independence. In
 Section 3, we introduce the notion of words and colored words and state our main

 result. In Proposition 1, we show that under a mild condition, if the marginal limit
 exists then the joint limit exists and can be expressed in terms of the marginals with

 the help of words and colored words. In Section 3.2, we discuss some examples.
 Finally, in Section 3.3, we give a proof of Proposition 1.

 2. Noncommutative probability spaces and independence. A noncommu
 tative probability space is a pair (A, 0) where A is a unital complex algebra (with
 unity 1) and (f>: A -* C is a linear functional satisfying 4> (1) = 1.

 Two important examples of such spaces are the following:

 (1) Let (X, B, p,) be a probability space. Let L(ju) = Hicpcoo be the
 algebra of random variables with finite moments of all orders. Then
 becomes a (commutative) probability space where </> is the expectation operator,
 that is, integration with respect to p..

 (2) Let (X, B, p) be a probability space and let A = Matn{L(p)) be the space
 of n x n complex random matrices with elements from L{p). Then </> equal to

 ^E/([Tr(-)] or ^[Tr(-)] both yield noncommutative probabilities.
 For any noncommuting variables x\,..., xn, let C(x\,x2,... ,xn) be the uni

 tal algebra of all complex polynomials in these variables. If a\,ai, ...,an € A,
 then their joint distribution /Z{a;} is defined canonically by their mixed moments

 • • • xim) = (p(ail ■ ■■aim). That is,

 ^{ai}(P) = 4>(P({ai})) for P eC{xux2,...,xn).

 Convergence in law. Let {An, <pn), n > 1, and (A. (p) be noncommutative
 probability spaces and let {a("},ey be a sequence of subsets of An where J is any
 finite subset of N. Then we say that {a"}, ey converges in law to {<3, }/ey C A if for
 all complex polynomials P,

 To verify convergence in the above definition, it is enough to verify the conver
 gence for all monomials q=Xjx •■■Xik,k> 1.

 Independence and free independence of algebras. Suppose [Aj }/ey C A
 are unital subalgebras. They are said to be independent if they commute and
 cp(ai • • -an) = (j){ai) • • ■ct>(an) for all a, e Ak(i) where i ^ j =$ k(i) ^ k{j).

 These subalgebras are called freely independent or simply free if cp(aj) = 0,
 aj e Aij and ij ± ij+i for all j implies <p(a\ ■ ■ ■ an) = 0. The random variables (or
 elements of an algebra) {a\,ai,...) will be called independent (resp., free) if the
 subalgebras generated by them are independent (resp., free).
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 Half independence of elements of an algebra. Half independence arises in
 classification results for easy quantum groups and some quantum analogue of de
 Finetti's theorem. We closely follow the developments in [3], We shall see later
 how this half independence arises in the context of convergence of random ma
 trices. To describe this, we need the concepts of half commuting elements and
 symmetric monomials.

 Half commuting elements. Let {a;}, ey C A. We say that they half commute if

 atajak = atajai, for all i, j,k e J. Observe that if {a, }/6j half commute then af

 commutes with aj and aj for all i, j e J.

 Symmetric monomials. Suppose {a,- }/ey C A. For any k > 1, and any {ij} C J,
 let a = a(1a,-2 • • • aik be an element of A. For any i e J, let Et (a ) and <9, (a) be,
 respectively, the number of times a,- has occurred in the even positions and in
 the odd positions in a. The monomial a is said to be symmetric (with respect to
 {ai}iSj) if Ei(a) = O, (a) for all i e J. Else it is said to be nonsymmetric.

 Half independent elements. Let {a,- },-e./ in (A. </>) be half commuting. They are

 said to be half independent if (i) {af}i&j are independent and (ii) whenever a is
 nonsymmetric with respect to {«/}/gy, we have (p(a) = 0.

 Remark 1. The above definition is equivalent to that given in [3], although
 there is no notion of symmetric monomials there. As pointed out in [9], the concept

 of half independence does not extend to subalgebras.

 Example 1. This is Example 2.4 of [3]. Let (£2, B, p) be a probability space
 and let {t]i} be a family of independent complex Gaussian random variables. Define
 at € (M2(L(p)), E[Tr(-)]) by

 These {a/} are half independent.

 Remark 2. Let X, Y and Z be three self-adjoint elements of (A, <p) such that
 (p(X) = 0(F) = 0(Z) =0 but (p(X2),(f)(Y2),(p(Z2) ^0. Following Remark 5.3.2
 of [1]:

 (i) If X, Y commute and are independent, then cp(XY) = 0 and 4>{XYXY) =
 <MX2W2)^o.

 (ii) If X, Y and Z are half independent, then cp(XYZZXY) = 0. This happens
 since X appears two times in odd positions but zero times in even positions.

 (iii) If X, Y, Z are free, then (p(XYZXYZ) = 0. If they are half independent
 then 4>{XYZXYZ) = 0(X2)0(F2)0(Z2) ^ 0.
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 3. Joint convergence of patterned matrices.

 3.1. Some preliminaries and the main result. It is well known that the joint
 limit of independent Wigner matrices yields the freely independent semicircu
 lar law. At the same time, there are a host of results on the limiting spectrum
 of other matrices. Important examples include the sample variance-covariance,
 the Toeplitz and the Hankel matrices. The joint convergence of several sample
 variance-covariance matrices has also been investigated in the literature. How
 ever, joint convergence does not seem to have been addressed in any generality. In
 particular, it is not clear what other notions of independence are possible when we
 consider the joint limit of (independent) matrices.

 Patterned matrices offer a general framework for which this question may be
 worth investigating. A general pattern matrix may be defined through a link func
 tion. Let d be a positive integer. Let Z be the set of all integers and let N be the
 set of all natural numbers. Let Ln : {1, 2,..., n}2 —> Zd, n > 1, be a sequence of
 functions such that Ln+\(i, j) = Ln(i, j) whenever 1 < i,j <n. We shall write
 Ln = L and call it the link function and by abuse of notation we write N2 as the
 common domain of {Ln}. For our examples later, the value of d is either 1 or 2.

 A typical patterned matrix is then of the form An = (x(L(i,j))) where
 {x(0; i > 0} or {x(i, j); i, j > 1} is a sequence of variables. In what follows, we
 only consider real symmetric matrices. Here are some well-known matrices and
 their link functions:

 (i) Wigner matrix Wn. L : N2 -» Z2 where L(i, j) = (min(i, j), max(j, j)).
 (ii) Symmetric Toeplitz matrix Tn. L :N2 —> Z where L(i, j) = |i — j\.
 (iii) Symmetric Hankel matrix Hn. L: N2 —>■ Z where L(i, j) = i + j.
 (iv) Reverse circulant matrix RCn. L : N2 —> Z where L(i, j) = (/' + j) mod«.
 (v) Symmetric circulant matrix SCn. L : N2 -» Z where L(i,j) = n/2 —

 \n/2-\i-j\\.

 In general, we assume that the link function L satisfies Property B.

 Property B. A(L) = sup„ supteId sup^^,, #{/: 1 < I < n, L(k, I) = t] <
 oo.

 In particular, A(L) = 2 for Tn, SCn, and A(L) = 1 for Wn, Hn and RCn.

 Now let (£2, B, fi) be a probability space and let Xi n : £2 ->• Mn for 1 < i <
 p be symmetric patterned random matrices of order n. We shall refer to the p
 indices as p distinct colors. The (j, k)th entry of the matrix Xi n will be denoted
 by Xj n(L(j, k)).

 ASSUMPTION I. Let the input sequence of each matrix in the collection
 {Xi n}\<i<p be independent with mean zero and variance 1 and assume they are
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 also independent across i. Suppose the matrices have a common link function L
 which satisfies Property B and

 sup sup sup E[\Xitn(L(mJ))\k]<Ck<oo.
 neN 1 <i<p l<m<l<n

 Suppressing the dependence on n, we shall simply write Xj for X^n. We view

 {-j^Xi)\<i<p as elements of (An = Matn(L([i)), (pn) where </>„ = n_1E[Tr], De

 note the joint distribution of {-j^Xi}\<i<p by "jln. Then {-^Xj}\<i<p converges
 in law if

 £«(<?) = <t>n{q)
 (1)

 = ^ET2E^(Xn---Xik)]

 (2) X] Wh{L{hJ2))Xi2{LU2,h))---Xik{L{jk,jx))l
 " h jk

 converges for all monomials q of the form q({Xj}i<j<p) = X-l{ ■ ■ ■ Xik.

 To upgrade to almost sure convergence, we also define

 frn(q) = -^m7r[Xix---Xik\ n1

 1

 X] Xh (L(ju j2))Xi2(L(j2,73)) • • • Xik(L(Jk, 7i)). „l+k/2
 J l Jk

 All developments below are with respect to one fixed monomial q at a time.

 Circuit. Any n : {0, 1, 2,..., h} —► {1,2,...,«} with 7r(0) = n(h) is a circuit
 of length I{n) := h. The dependence of a circuit on h and n will be suppressed.
 A typical element in (2) can be now written as

 - k

 (3) E P] Xij(L(jr(j - l),7t(j)))
 -7=1

 If all L-values L(n(j — are repeated more than once in (3), then the
 circuit is matched. If L values are repeated exactly twice, then it is called pair
 matched. If the L values are repeated within the same color, then it is color
 matched.

 For q = Xjl X[2 ■ ■ ■ Xik, let for convenience, the corresponding sequence of col
 ors be denoted by {c\,c2,... ,Ck). Also let H = {jt : n is a color matched circuit}.
 Define an equivalence relation on H by defining n\ ~c n2 if and only if, q = cj
 and

 XCi(L(jt\(i - 1), TTi(0)) = XCj(L(n\(j - 1),tti(7)))

 <=> XCi(L(n2(i - 1), ^2(0)) = Xc.(L(n2(j - 1), n2(j))).
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 Colored, words. An equivalence class induces a partition of {1, 2,..., &} and
 each block of the partition is associated with a color. Any such class can be ex
 pressed as a (colored) word w where letters appear in alphabetic order of their
 first occurrence and with a subscript to distinguish the color. For example, the
 partition ({{1, 3}, 1}, {{2, 4}, 2}, {{5, 7}, 1}, {{6, 8}, 3}) is identified with the word
 a\b2a\b2C\dT,cidT,. A typical position in a colored word would be referred to as

 Let the class of all (colored) circuits corresponding to a color matched word w
 and the class of all pair matched colored words be denoted, respectively, by

 nc,(if) = {7r : wCi [/] = wCj[j] XCi(L(n(i - 1),7r(/)))
 (4)

 = XCj (L(n(j - 1),tt0')))},
 CWk(2) = {all paired matched (within same color) words w of length A'}

 (5)
 (k is even).

 All the above notions have the corresponding noncolored versions. For instance,
 if we drop the colors from a colored word, then we obtain a noncolored word. For
 any monomial q, dropping the color amounts to dealing with only one matrix or in
 other words with the marginal distribution.

 Let w[i] denote the ;th entry of a noncolored word w. The equivalence class
 corresponding to w and the set of pair matched noncolored words will be denoted,
 respectively, by

 (6) n(w) = [it : w[i] = w[j] ^ L(n(i - 1 ),n(i)) = L(n(j - l),7r(;))},
 (7) Wyt(2) = {all paired matched words w of length k} (k is even).

 For any word w e CW^(2), consider the noncolored word w' obtained by dropping
 the color. Then w' e W/d2). Since we are dealing with one fixed monomial at a
 time, this yields a bijective mapping say

 (8) %:CWk{2)-+Wk{2).
 For any w e CWk(2), define

 PcAw)= lim in.i-i inc,(m)l if the limit exists. q n-+oo yi I ' H

 PROPOSITION 1. Let {X,}\<i<p be patterned matrices satisfying Assump
 tion I. Fix any monomial q = Xl} Xj2 ■ ■ ■ Xjk. Assume that, whenever k is even,

 (9) p(w) = lim , n . |n(w)| exists for all w e Wk( 2).
 n—>OO ft"■/^-r 1

 (a) Then pcq(w) = p{^/q{w)) and for any k,

 lim j2n(q)= J2 Pcq{w)=a(xix---xik) {say)
 weCWk(2)
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 with

 k\A(L)k/2

 |a(xix • ■ • Xik)| < ^j2y2k/2 ^'s even a"d eac'h color
 appear even number of times

 = 0 if k is odd or a color appears odd number of times.

 (b) E[|/x„(q) - j2n(q)I4] = 0(n~2) and hence lim„^oo jln(q) = •••*/*)
 almost surely.

 REMARK 3. It is known from [4] that (9) holds true for Wigner, Toeplitz,

 Hankel, reverse circulant and symmetric circulant matrices. The quantity (kpy2k^
 above is the total number of noncolored pair matched words of length k (k even).
 Often not all pair matched words contribute to the limit and in such cases, this
 bound can be improved.

 Consider the polynomial algebra C{a\, • • •, ap) in noncommutative indeter
 minates {a;}i<;<p and define a linear functional <j> on it by

 4>(air--aik)= lim j2n(Xir ■ ■ Xik). 1 n—^oo

 Then Proposition 1 implies we have convergence in law of ({^^i}l<i<p, 4>n)

 to {{ai}\<i<p, <j>) where <p„ equals ^E[Tr(-)l or ^[Tr(-)]. In the latter case, the
 convergence is almost sure.

 Remark 4. Proposition I shows that the joint moments of pattern matrices
 can be expressed as functions of pair matched words or, in other words, pair parti
 tions. [5] consider bosonic, fermionic and g-Brownian motions and show that the
 joint distribution of certain operators (in some appropriate sense) can be expressed
 as functions on the set of pair partitions. It would be interesting to investigate if
 there are connections between the two types of models.

 3.2. Some examples. From the above result, lim jln{q) = 0 when k is odd or
 when there is a color which appears an odd number of times in the monomial q.
 Henceforth, we thus assume that the order of the monomial is even and each color

 appears an even number of times.

 Example 2 (Wigner matrices). Joint convergence of the Wigner matrices
 was first studied in [10] and later many authors extended it. For details of the
 classical proof and further extensions, we refer the readers to [1], Here we give
 a quick partial proof essentially translating the concept of noncrossing partitions
 that is used in the standard proof into words.
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 Colored Catalan words. Fix k > 2. If for a w e CWk(2), sequentially deleting
 all double letters of the same color leads to the empty word then we call w a
 colored Catalan word. For example, the monomial X\X2X2X\X\X\ has exactly
 two colored Catalan words a\b2b2a\c\c\ and a\b2b2C\c\a\. A colored Catalan
 word associated with X1X2X2X1X1X1X2X2 is a\b2b2a\c\c\d2d2 which is not
 even a valid colored word for the monomial X1X1X1X1X2X2X2X2.

 Let {Wj}i<i<p be an independent sequence of n x n Wigner matrices satisfying
 Assumption I. Then from Proposition 1 and Remark 3, {«_1^2VV, }i<, <p converges
 in law to {a,} i<i<p. We show that {a, }i<,<p are free and the marginals are distrib
 uted according to the semicircular law.

 From Table 1 of [4], for noncolored words, p(w) equals 1 if w is a Catalan word
 and otherwise p(w) = 0. As a consequence, the marginals are semicircular. Now
 fix any monomial q = xnxi2 ■ ■ ■ Xj2k where each color appears an even number of
 times in the monomial.

 Let w be a colored Catalan word. It remains Catalan when we ignore the colors.

 Hence from above, pcq(vu) = p(^q(w)) = 1. Likewise, if w is not colored Cata
 lan then the word \/rq(w) cannot be Catalan and hence pcq{u>) = p(^q(w)) = 0.
 Hence, if CAT? denotes the set of colored Catalan words corresponding to a mono
 mial q then from the above discussion,

 lim /2„(<?) = |CAT9|. n->oo ^

 Any double letter corresponds to a pair partition (within the same color) by the
 equivalence relation ~c- It is known that the number of Catalan words of length
 2k is same as the number of noncrossing pair partitions [denoted by NC2k{2)] of
 length 2k. See [4] and Chapter 1 of [1] for proofs.
 Since the elements of the same pair partition must belong to the same color, we

 have

 |CAT,|= £ n h=cr
 TteNC2k(2) O'JOejr

 This is precisely the free joint semicircular law corresponding to q (see Theo
 rem 5.4.2 of [1]).

 Incidentally, since the number of noncolored Catalan words of length 2k is

 kKl+l y, we have \a(xil ■ ■ -xi2k)\ < Corollary 5.2.16 of [1] can hence be
 applied to claim the existence of a C*-probability space with a state (p and free
 semicircular random variables {a, } in it.

 Example 3 (Symmetric circulants). The case of symmetric circulant is rather
 easy. These matrices are commutative and so the limit is also commutative.

 Let {SC; }i<i</> be an independent sequence of n x n symmetric circulant matri

 ces satisfying Assumption I. Then {n_1^25C, }i<,<p converges in law to {a; }i<,<p
 which are independent and the marginals are distributed according to the standard
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 Gaussian law. To see this, first recall that the total number of (noncolored) pair

 matched words of length 2k equals j—j: = Q (say). Further (see [4]), for any pair
 matched word w e Wik(2),

 p(w) = lim-^-r|n(w;)| = 1.

 Now consider an order 2k monomial where each color appears an even number of
 times. Hence, from Proposition 1, for any fixed monomial q,

 lim jln(q)= Pcq(w) = \CW2k(2)\. n->-oc *—' q
 weCWlk(2)

 Let / be the total number of distinct colors (distinct matrices) in the monomial

 q = XixXi2 ■ ■ ■ Xi2k. Let 2 x nt be the number of matrices of the /th color. Then the
 set of all pair matched colored words of length 2k is obtained by forming pair
 matched subwords of color i of lengths 21 < i < I. Hence,

 i

 (10) (t>(ail---ai2k) = Y[C„i.
 i=l

 Thus if {a\,...,ap} denotes i.i.d. standard normal random variables, then the

 above is the mixed moment E[]~[/=i «/]•

 Example 4 (Reverse circulant). It can be easily observed using the link func
 tion that the reverse circulant matrices are half commuting. This motivates the next
 theorem.

 THEOREM 1. Let \RC,\\<i<p be an independent sequence of n x n reverse
 circulant matrices satisfying Assumption I. Then {n~l^2RCi}\<i<p converges in

 law to half independent {(2; }i<;<p 6 (M2(L(p)), E[Tr(-)]) where at = [? % ] and
 r]i are i.i.d. complex Gaussian.

 To prove the result, we need the following notion.

 Colored symmetric words. Fix k > 2. A word w e CW^d) is called colored
 symmetric if each letter occurs once each in an odd and an even position within the
 same color. Clearly, every colored Catalan word is a colored symmetric word.

 PROOF OF Theorem 1. Consider a monomial q of length 2k where each
 color appears an even number of times. From the single matrix case, it follows
 that p(w) = 0 if w is not a symmetric word (see Table 1 of [4]). If w is not a
 colored symmetric word, then \frq (w) is not a symmetric word and hence for such

 w, pcq(w) = pWqiw)) = 0. Hence, we may restrict to colored symmetric words
 and then we have by Proposition 1 (a) that

 lim pn(q) = \CSq(w)\, n—>oo ^
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 where CSq(w) is the collection of all colored symmetric words of length 2k.
 The number of symmetric words of length 2k is k\. Let, as before, / be the

 number of distinct colors in the monomial and 2m be the number of matrices of
 the j'th color. All symmetric words are obtained by arranging the 2w; letters of the
 i th color in a symmetric way for i = 1,2,...,/.

 It is then easy to see that these arguments imply that

 (11) \CSq(w)\ = n\\x n2\ x • • • x «/!.

 First, observe that if the monomial a/,a/2 • • • e (A/2(L(/x)), E[Tr(')]) is non
 symmetric, then

 E(Tr[aixai2 ■ ••%.]) = 0.

 If instead q ({a;-}) = a,-, a,-2 • • • ailk is symmetric, then we have by half independence
 (Example 1),

 E(Tr[a,-. • • -a,-,,.]) — n\! x n2\ x • ■ • x m! = lim u,,(o).
 n—>oo

 So it follows from (II) that the joint limit is asymptotically half independent. In
 cidentally the moments {kl,k > 1} are the (2/c)th moments of the symmetrized
 Rayleigh distribution. □

 Example 5 (Toeplitz and Hankel). Consider first the Toeplitz matrix. Since
 p(w) exists, from Proposition 1, we have the joint convergence for Toeplitz matri

 ces. For any fixed monomial q, let SNCq be the colored symmetric words which
 are not Catalan. Then we obtain the following:

 4>{ai{ ■■■alk)= Pcq(w)
 weCWk(2)

 = J2 Pcq(™)+ X! Pc?(u>)
 iweCAT^ weSNCq

 + Pcq (w)
 other pair matched colored words

 = |CAT(?|+ ^ pCq(w)
 weSCNq

 + PCq{w).
 other pair matched colored words

 Consider q(X\, X2, X3) = X1X2X3X1X2X3 where X\, X2 and X3 are scaled in
 dependent Toeplitz matrices. From Table 4 of [4],

 Pcq(aib2C3a\b2C3) = p(^q(a\b2C3aib2C3)) = p{abcabc) =

 For this monomial, the only pair matched colored word possible is a\b2C->,a\&2C3
 and hence (j)(a\a2aT,a\a2a3) = |^0. Thus, the limit is not free.
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 Now let q(X\,X2,X?,) = X] X2X3X2X3X1. Then the only pair of matched
 colored word is a\b2CT,b2C?,a\ and (p{a\a2a3a2a?,a\) = pcq(01^2^3^2^301) =
 p(abcbca) = On the other hand we have already seen that 0(aifl2«3aia2fl3) =

 j. Since the two contributions are not equal, the Toeplitz limit is not independent.

 If they had been half independent, then cj)(a\a2ciT,a\02^3) = (p(a^)4)(a|) x
 4>{a\) = 1, but that is not the case. Thus, the Toeplitz limit is not free, independent
 or half independent.

 For Hankel matrices, the colored nonsymmetric words do not contribute to the
 limit. So for any fixed monomial q we have

 <f>(air--aik) = |CAT9| + J2 Pcq(w)
 weSNCq

 That the Hankel limit is also not free, half independent or independent can be
 checked along the above lines by considering appropriate monomials and their
 contributions. It is interesting to note that Hankel matrices do not half commute
 and that is why even though the limits vanish on nonsymmetric words they are not

 half independent.

 3.3. Proof of Proposition 1. (a) Fix a monomial q = q({Xj}\<i<p) = X/, • • •
 Xjk. Since is a bijection,

 nc,(uO = n(^(u;)) for w e CWk(2).

 Hence using (9),

 1 1

 hm W2+1 lnc,0)l lim -j-^-r\U(\lrq(w))\ =p(fq(w)) = pcq(w). n—>00 1 n-+oo yi ! '

 For simplicity, denote

 Tj = E[Xh (L(j], j2))Xi2(L(j2, 73)) • • • Xik(L(Jk, 7l))] for j = (ji,..., jk).

 Then

 02) Un(q) = -^2+r J2 TJ
 71. -Jk

 In the monomial, if any color appears once, then by independence and mean zero

 condition, Tj = 0 for every j. Hence, jX„(q) = 0.
 So henceforth, assume that each color appearing in the monomial, appears at

 least twice. Now again, if j belongs to a circuit which is not color matched, then

 Tj=0.
 Now form the following matrix M:

 M(L{i, j)) = |Xfl (L(i, j))\ + |Xi2(L(i, ;))! + ••• + |Xik(L(i, j))\.
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 Observe that

 |Tj|<E [M(L{juh)-.-M{L{jk,h)l

 From Lemma 1 of [4], it is known that the total contribution of all circuits which
 have at least one three match, is zero in the limit.

 As a consequence of the above discussion, if k is odd, then jln(q) —>■ 0. So
 assume k is even. In that case, we need to consider only circuits which are pair
 matched. Further this pair matching must occur within the same color. If j belongs
 to any such circuit, then by independence, mean zero and variance one condition,

 Tj = l.
 Then using all the facts established so far,

 lim j2n(q) = lim —ttttt £ E[X„ (L(tt(0), tt(1))) • • • n—too n—► oo nK/i+i ^L 1
 7r :tt pair matched

 within colors

 X X,l:\L\nlk-I),.Tit)))]

 = „!lmoo 35TT £ S E[X„(L(»(0)^(1)))...
 w€CWk(2) 7teUCq(w)

 X Xik(L(jr(k- 1), ?r(&)))]

 £
 weCWk( 2)

 Pcq{w).

 The last claim in part (a) follows since

 X! Pcq(w)= P(w">
 weCW2k( 2) weCW2k( 2) weW2k( 2)

 (2k)\A{L)k
 k\2k

 The last inequality above is shown in [4].
 (b) For part (b), the following notions will be useful: / circuits n\, 7T2,..., tt/ are

 said to be jointly matched if each L-value occurs at least twice across all circuits.
 They are said to be cross matched if each circuit has at least one L-value which
 occurs in at least one of the other circuits. We can write

 (13)

 where

 4 1
 E[\nn(q) - ixn(q)\ ] = E

 7T\ ,7r2,7r3,7T4

 n<x
 ./=!

 7Tl  EX;,-,)

 Xjr = Xh (L(n(P), 7T(1))) • • ■ Xik (L{n(k - 1), 7T(k))).

 If (jti, TC2,7t3, ^4) are not jointly matched, then one of the circuits, say ttj, has an

 L value which does not occur anywhere else. Also note that EX^ = 0. Hence,
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 using independence

 (14)

 - 4

 - ex^/)
 j=i

 = EXnj (XW;-EXW,) =0.
 L i=i,i& J

 If (7Ti, 7T2,7T3,7T4) is jointly matched but is not cross matched then one of the cir

 cuits, say tcj is only self-matched, that is, none of the L-values is shared by the
 other circuits. Then by independence,

 (15) E  n^-Ex,,)
 L/=l

 = E  (X^-EX*,) n (X^/
 1=1,

 EXji, )  = 0.

 Since {Xj,n}i<i<n satisfy Assumption I, E[nf=i(XW/ — EX^)] is uniformly
 bounded over all {tz\,712,713,714).

 The arguments given in [6] for Toeplitz and Hankel matrices can be extended
 to our set up easily to yield the following: let Qk,4 be the number of quadruples
 of circuits (n\, 7x2, ttj, 7x4) of length k such that they are jointly matched and cross

 matched with respect to L. If L satisfy Property B, then there exists a constant K
 such that Qk 4 < Kn2k+2. Using this, and (13)—(15),

 „2<t+2

 E[| fin(q)-fi„(q)n<K  ,2k+4  = <?(/!

 Now by an easy application of Borel-Cantelli lemma ]ln{q) converges almost
 surely.
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