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 Landscape classification of the well-known biodiversity hotspot, Western
 Ghats (mountains), on the west coast of India, is an important part of a world

 wide program of monitoring biodiversity. To this end, a massive vegetation
 data set, consisting of 51,834 4-variate observations has been clustered into
 different landscapes by Nagendra and Gadgil [Current Sci. 75 (1998) 264
 271]. But a study of such importance may be affected by nonuniqueness of
 cluster analysis and the lack of methods for quantifying uncertainty of the
 clusterings obtained.

 Motivated by this applied problem of much scientific importance, we pro
 pose a new methodology for obtaining the global, as well as the local modes
 of the posterior distribution of clustering, along with the desired credible and

 "highest posterior density" regions in a nonparametric Bayesian framework.
 To meet the need of an appropriate metric for computing the distance between

 any two clusterings, we adopt and provide a much simpler, but accurate mod
 ification of the metric proposed in [In Felicitation Volume in Honour of Prof.
 B. K. Kale (2009) MacMillan]. A very fast and efficient Bayesian methodol
 ogy, based on [Sankhya Ser. B 70 (2008) 133-155], has been utilized to solve
 the computational problems associated with the massive data and to obtain
 samples from the posterior distribution of clustering on which our proposed
 methods of summarization are illustrated.

 Clustering of the Western Ghats data using our methods yielded landscape
 types different from those obtained previously, and provided interesting in
 sights concerning the differences between the results obtained by Nagendra
 and Gadgil [Current Sci. 75 (1998) 264-271] and us. Statistical implications
 of the differences are also discussed in detail, providing interesting insights
 into methodological concerns of the traditional clustering methods.

 1. Introduction. Nagendra and Gadgil (1998) (henceforth, NG) consider a
 broad scale mapping of the Western Ghats of India, one of the biodiversity hotspots
 of the world, into different landscape types based on satellite imagery. This ex
 ercise is a part of a much bigger program related to monitoring and assessment
 of measures of conservation. Remote sensing-based identification of landscapes
 of different types in important biodiversities such as the Western Ghats is neces
 sary for constituting a basis for organized programs of field samplings (see NG,
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 page 270, for the detailed procedure of field sampling), and to create administrative
 divisions such as taluks and districts and bioclimatic zones. Formation of admin

 istrative divisions, unlike bioclimatic zones, need not be directly based on natural
 variation, but these reflect natural topographic and climatic variation to some ex
 tent. Using a massive vegetation data set based on satellite images, which consists
 of 51,834 4-variate observations, NG obtained a clustering of the data using a de
 terministic algorithm very similar to the K-means algorithm [see, e.g., Hartigan
 (1975)], and related the different clusters to landscape types of varying attributes.

 However, the existing clustering algorithms, including that used by NG, have
 some serious disadvantages, which we outline in Section 1.1. These are likely to
 severely affect the scientific results of important studies, such as that undertaken
 by NG. This motivated us to propose new methods of clustering; the results we
 obtained with our methods, apart from some broad similarities, differed nonnegli
 gibly in details from those obtained by NG, vindicating our purpose and efforts of
 methodological development.

 1.1. Disadvantages of existing clustering methods and the need for new meth
 ods. By clustering we mean partitioning the observed data into several different
 classes or clusters. Although the statistical community is very much aware of the
 definition, clustering of a particular data set is usually taken to mean a particular,
 perhaps unique, partitioning of the data into various clusters, the number of clus
 ters being known, or at least determined using statistical techniques or information

 based on scientific knowledge.

 1.1.1. Disadvantages of deterministic clustering algorithms. But well estab
 lished clustering algorithms, such as the K-means algorithm, may yield different
 clusterings under different starting points. This leads to nonunique clusterings of
 the same data set, which, in turn, begs the question of ascertaining the uncertain
 ties of the clusterings obtained. However, deterministic (nonprobabilistic) cluster
 ing algorithms provide no means of quantification of such uncertainty. Moreover,
 in these algorithms one must somehow fix the number of clusters, and the basis of
 such fixing is often not clear cut.

 1.1.2. Disadvantages of classical model-based clustering. Probabilistic mod
 el-based clustering methods within the classical framework provide an estimate of
 the data clustering, along with the parameter estimates, by maximizing the like
 lihood [see, e.g., Fraley and Raftery (1999) and Fraley and Raftery (2002)]. As
 before, the number of clusters is assumed known, and uncertainties about cluster

 ing estimation and the number of clusters are not taken into account even in this
 approach.
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 1.1.3. Disadvantages of Bayesian clustering. In contrast to the deterministic
 and classical model-based clustering methods, the Bayesian paradigm offers at
 tractive ways to assign probabilities to plausible clusterings, while allowing even
 for the number of clusters to be a random variable, using the Dirichlet process
 mixture [see, e.g., Ferguson (1973) and Antoniak (1974)] approach of Escobar and
 West (1995) (henceforth, EW) and the reversible jump Markov chain Monte Carlo
 approach (RJMCMC) of Richardson and Green (1997). But in spite of the promise
 held out by the Bayesian paradigm and these pioneering approaches, summariza
 tion and addressing the posterior uncertainty of clusterings seem to be somewhat
 neglected so far. The maximum a posteriori (MAP) estimate of clustering, often
 available for Bayesian mixture models [see, e.g., Dahl (2009) and the references
 therein], is not supplemented with appropriate quantification of uncertainty. A fur
 ther disadvantage of the aforementioned Bayesian methods is their inability to
 handle massive data sets. Indeed, implementation of these methods turned out to
 be infeasible in the case of the massive, multivariate, Western Ghats data.

 1.2. Overview of the new contributions of this paper.

 1.2.1. Methodological contributions. In this paper we attempt to address the
 important issue of summarizing and quantifying uncertainty of posterior distribu
 tions of clusterings. In particular, we propose a novel approach to determination
 of the global mode, as well as the local modes, of the posterior of clusterings in a
 Bayesian nonparametric setup, based on a Dirichlet process prior. We refer to such
 modes, thought of as summaries or representatives of the posterior, as "central
 clusterings." Much more importantly, we show that, using our approach to obtain
 ing central clusterings, any desired credible or highest posterior density (HPD)
 regions [see, e.g., Berger (1985)] are also available, completely quantifying un
 certainty of the posterior of clusterings. Necessary for these developments is an
 appropriate metric to compute the distance between any two clusterings. We adopt
 the metric proposed in Ghosh, Dihidar and Samanta (2009), but since it is com
 putationally expensive, we propose a simple, albeit accurate, approximation to the
 metric, which we use to compute summaries of the posterior distribution of clus
 terings. We illustrate our proposed methods with simulated data, and also apply
 these to the Western Ghats data set. Although implementation of the established
 Bayesian methods are rendered infeasible by the massiveness of the data, we solve
 this massive data analysis problem by employing a very fast and efficient Bayesian
 methodology, first proposed in Bhattacharya (2008) (henceforth, SB).

 1.2.2. Overview of statistical and ecological insights gained by analyzing the
 Western Ghats data. The results of our application to the Western Ghats data re
 vealed two modal clusterings, in contrast with the single clustering obtained by
 NG. Moreover, the AT-means clustering, which can be thought of as a proxy to
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 that obtained by NG, does not fall within our 95% HPD or credible regions, rais
 ing doubts about the validity of NG's adopted methodology and the results, even
 though their number of clusters matched ours with the highest posterior proba
 bility. However, the K-means clustering fell within our 95% HPD and credible
 regions when these are constructed conditional on the same number of clusters
 as the K-means clustering. These, which are discussed in detail in the paper, are
 consequences of the failure of the deterministic algorithm to take account of un
 certainty in the number of clusters. Detailed comparisons between the clusterings
 we obtained by our methods and the K-means clustering are made statistically, as
 well as with respect to the landscape types associated with each cluster of each
 clustering. In fact, the attributes of the landscape types obtained by our methods
 turned out to be generally different from those obtained by NG.

 The rest of our paper has been arranged as follows. In Section 2 we describe
 the Bayesian model based on SB used to analyze the Western Ghats data. Meth
 ods for summarizing general posterior distributions of clustering are introduced in
 Section 3. In Section 4 we provide an overview of the clustering metric of Ghosh,
 Dihidar and Samanta (2009), propose an accurate and computationally simple ap
 proximation to the clustering metric, and study its properties. Applications of our
 methods to the Western Ghats data are illustrated in Section 5. Detailed inter

 pretation of the clustering results in terms of different landscape types are pre
 sented in Section 6. Finally, we conclude in Section 7. Additional derivations and
 further details on experiments and data analyses are provided in the supplement
 Mukhopadhyay, Bhattacharya and Dihidar (2011), whose sections, figures and ta
 bles have the prefix "S-" when referred to in this paper.

 2. Mixture model of SB. Following SB, we model the d(> l)-variate obser
 vation yi of the complete data set Y = {yi,..., yn} as a mixture of normals with
 maximum number of components M, as follows:

 1 M IA -I1/2 f 1 l

 (1) [y, | O^] = — ^ _Z_^-exp{__(yi-^yAjiyt-Vj)].

 Here = {6\, — Om], with 6y = (/ty, Ay), where Ay = EJ1, are samples
 drawn from a Dirichlet process [see, e.g., Ferguson (1973), EW]:

 Oj ' G,
 G ~ DP(aGo).

 We assume that under Go,

 (2) [Ay] ~ WishartdQ, |Y
 (3) [fij I Ay] ~ Nd(no, My1)
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 Due to the discreteness of the prior distribution G, the parameters 0( are coincident
 with positive probability. This discreteness property of Dirichlet processes ensures
 that (1) reduces to the form

 p |A*| ' f 1 l

 [y« I = -n)YA*j(yi -#cpj
 7=1

 where {#[,..., 6p) are p distinct components of with 0* occuring Mj times,
 and 7Tj — Mj/M. Thus, our model is also variable dimensional but avoids com
 plexities as in RJMCMC.
 Introducing the allocation variables Z

 follows:

 For i = 1,..., n and j = 1,..., M,

 IA -I1/2

 (5) [y, I Zi = j, 0M] = ^2n)d/2 exp

 (6) fo = n = ~
 M

 (z\, ...,znY, we can represent (1) as

 1 .

 -^(y/ -^j) Aj(yi -v-j) >

 We note here that the number of components is not the same as the number of
 clusters in the case of SB's model, although the maximum number of components
 and the maximum number of clusters are the same. This is because there may be
 empty components, to which no data may be allocated. This is unlike the case
 of EW's model, where empty components can not exist, so that the number of
 components is the same as the number of clusters. This can be seen by letting
 M — n and Zi = i for i = 1,..., n in SB's model, which then reduces to EW's
 model, where Zi = i rules out the existence of empty components. In SB's model
 we say that the ith data point belongs to the j'th cluster if 0Zi = 0*, where 0* is the
 7 th distinct component in 0 a/.

 Letting [ox,6 k] denote the distinct components in , let us define the
 configuration vector c — {c\,...,cm}, where, for j — 1,..., M and t — 1,...,k,
 cj — i if and only if 0j = 0*. With this setup, given the hyperparameters
 fi0 and two versions of Gibbs sampling are possible: one version updates
 (Z, C, k, 9*,..., 6*k, a) in succession, while another marginalizes the model with
 respect to {0*,..., 6*k] and updates in succession the reduced set of random vari
 ables (Z, C, k,a). These two versions of Gibbs sampling are provided in Sec
 tions S-l and S-2, respectively. Details on the priors are provided in Section 5.2.

 It is to be noted that the K-means algorithm of NG is a special case of
 SB's nonparametric Bayesian model. It corresponds to taking M = n, Zi = i for
 i = 1,..., n, "Zj = a21; 7 = 1,..., M{— n) in the above-described model, where
 I is the identity matrix and a2 is assumed to be known; moreover, it assumes Go,

 the base measure for Hj to be noninformative and that the Bayesian model is con
 ditioned on k clusters, where k is assumed to be known. See Section S-3 for a
 proof of the result.
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 3. Summarization of the posterior distribution of clustering. It is evident
 from the previous section that the clustering and the number of clusters vary in
 each iteration of the Gibbs sampling algorithm. In fact, even if the number of
 clusters are the same in any two iterations, the corresponding clusterings are still
 different. The statistician is faced with the question of obtaining a summary of all
 the clusterings obtained from the Gibbs sampling algorithm, since a representative
 of all the clusterings produced (the posterior distribution of clustering) is usually
 of scientific interest. Observe that this problem is much more difficult as com
 pared to summarization of posterior distribution of a parameter. In the case of a
 parameter, the posterior distribution (even sampling-based) can be summarized by
 its posterior mean or mode (analytical or sample-based). Similarly, desired credi
 ble regions are readily available. On the other hand, it is just not possible to take
 means of clusterings produced; the mean will give rise to an M-component clus
 tering, even if all the clusterings consist of less than M clusters. Moreover, the
 clusterings are permutation-invariant, a fact that simple means or modes fail to
 take account of. Construction of credible regions of such an abstract concept poses
 even more difficulties. We propose a methodology to usefully interpret posterior
 distributions of clusterings. For this we need to introduce the concept of "central
 clustering," which we do below.

 3.1. Definition of central clustering. Motivated by the definition of mode in
 the case of parametric distributions, we define that clustering C* as "central," for
 a given small e > 0, satisfies the following equation:

 P({C: d(C*, C) < e}) = sup P({C: d(C', C)
 c

 Note that C* is the global mode of the posterior distribution of clustering as e -*
 Thus, for a sufficiently small s > 0, the probability of an £-neighborhood of
 arbitrary clustering C', of the form {C :d(C', C) < e}, is highest when C' = C
 the central clustering.

 The above definition will hold for all positive e if the distribution of cluster
 ing is unimodal. However, for multimodal distributions of clustering, the central
 clustering will not remain the same for all such s. For instance, due to discrete
 ness of the distribution of clusterings, for some e, the neighborhood of the global
 mode may contain just a few clusterings (other than the global mode), while for the
 same e, the neighborhood of some local mode may contain many more clusterings.
 This would yield the local mode as another central clustering. Thus, by allowing
 £ to vary uniformly over (0, 1), all the modes of the posterior of clustering can be
 detected, including the global mode, the latter obtained by letting s —» 0.

 In (7), d is a suitably chosen metric that is capable of measuring distances be
 tween any two clusterings, appropriately taking account of the different number
 of clusters in each clustering and invariance of a clustering with respect to permu
 tation of its components. We note that, with two different sets of mean parameter
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 vectors, {/i\ ,fil, 1) and {fi\ ,/ih'}, the simple Euclidean distance be
 tween two corresponding clusterings C(A) and C(t\ defined by

 d(C(k\ C(£)) =  EE(^-4})2
 i=i y=i

 is an easily computable option, but it does not take account of the features dis
 cussed. It is thus important to introduce a more specialized metric that is capable
 of addressing the problems, and yet remains computationally inexpensive. We dis
 cuss one such choice, illustrated in detail in Section 4.

 It is important to observe that, even with a suitable metric d and any choice of e,

 it is not possible to obtain the central clustering C* without resorting to empirical
 methods. Indeed, it is not possible to evaluate either side of (7) analytically. We
 thus consider an alternative, empirical definition conditional upon availability of
 MCMC samples of clusterings {C(1\ C(2\ , C^}, following which one can
 determine an approximate central clustering C*.

 3.2. Empirical definition of central clustering. We define that clustering CJ)
 as "approximately central," for a given small s > 0, satisfies the following equa
 tion:

 (9) C(j) =aigimax— #{C(k); 1 <k <N \d{C(i), C(*}) <£}.

 The central clustering is easily computable, given e > 0 and a suitable met
 ric d. Also, by the ergodic theorem, as N -> oo the empirical central clustering

 converges almost surely to the exact central clustering C*.

 3.3. Construction of desired credible regions of clusterings. Given a central
 clustering C('\ one can then obtain, say, an approximate 95% posterior density
 credible region as the set \ <k < N : d(C^k\ C(y)) < £*}, where £* is such
 that

 (10) — #{CW; 1 < k < N : d(C{k), CU)) < e*} ^ 0.95.

 In (10) e* can be chosen adaptively by starting with s* = 0 and then slightly in
 creasing £* by a quantity £ until (10) is satisfied. For our Western Ghats example
 we chose £ = 10_1°. Approximate highest posterior density (HPD) regions can be
 constructed by taking the union of the highest density regions. We next discuss an
 adaptive methodology for constructing HPD regions.
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 3.4. Construction of desired HPD regions of clusterings. Assume that there
 are k modes, {C*,..., C£}, obtained by varying s of the neighborhoods {C :d(C :
 C(i)) < £}; i = 1,..., N, uniformly over the interval (0, 1), and following the
 principle described in Section 3.1. Also consider k e*'s, {£*, ...,e£}. Consider
 the regions Sj = {C :d(C*, C) < e*}',j — 1,.k. Set, initially, £* = = • • • =
 4 = o.

 (i) For i = 1,..., iV, if the z th MCMC realization C<1) does not fall in Sj for
 some j, then increase s* by a small quantity, say, f. As before, in our example, we

 chose f = 10-10.
 (ii) Calculate the probability of U"=i Sj as P = #{U

 (in) Repeat steps (1) and (ii) until P ~ 0.95 or any desired probability.

 Step (i) implicitly assumes that, since C(,) ^ Sj, Sj must be a region with low
 probability, so its expansion is necessary to increase the probability. This expan
 sion is achieved by increasing s* by £. This step also ensures that the sets Sj are
 selected adaptively, by adaptively increasing s*. The final union of the Sj's is the
 desired approximate HPD region.

 4. Nonumqueness of clusterings and a suitable metric for comparison.
 When we have two clusterings it is not very easy to compare them, as the clus
 ter labels of one clustering may be quite unrelated to the cluster labels of the other.
 One way to compare them is to find a measure of divergence between them after
 permuting the arbitrary indices to make the two clusterings as close to each other
 as possible.

 Ghosh, Dihidar and Samanta (2009) propose a simple way of capturing the
 similarity or dissimilarity of two Clusterings I and II by setting up a two-way
 table, where the frequency in the (i, j)th cell is the number of units belonging
 to the ?th cluster in I and the 7th cluster in II [denoted henceforth by C, (/) and
 Cj (II), resp.]. If two clusterings are very similar, the two-way table will appear like
 a permutation of rows and columns of a diagonal matrix with small perturbations.
 For simplicity, we consider the case where the number of clusters is the same for
 the two clusterings, although the method can be extended easily to the case with
 an unequal number of clusters. Suppose that we fix the cluster numbers of / and
 rename the clusters of II so as to make it most similar to I. This means we try
 to rearrange the columns of the two-way table so as to maximize the diagonal
 elements of the table. We suggest that the larger the diagonal elements (and hence
 the smaller the off-diagonal ones), the closer the clusterings. Thus, a measure of
 divergence may be based on the number of units corresponding to the off-diagonal
 cells of the table.

 Ghosh, Dihidar and Samanta (2009) define the distance d(I, II) between I and
 II as follows:

 (11) d(l, II) = mm [/loo - (n\n + n2j2 H h nkjk)]/n00
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 cardinality k, and total number of units hqq, is given by 1 — where m = [-# ]. "00 k

 over all permutations (j\, j2, ■ ■ ■, jk) of (1, 2,, k), where k
 of clusters and n0o = £ £ is the total number of units.
 An upper bound for the metric d(I, II) for two Clusterings I and II, each with

 This upper bound is attained when riij s in the two-way table are equal.
 An alternative way to define the same distance is as follows. For each unit, say,

 the i'th unit, define 5, (7, 77) = 0 if the /th unit falls into Cj(I) and C/(77) for the
 same j; otherwise set 5, (7, 77) = 1. Then <7(7, 77) defined earlier is the minimum

 v"W S (I II)
 value of 'rco'o '— over all possible numbering of the clusters of Clustering 77.
 If the number of clusters is not the same for the two partitions, one may pro
 ceed as above with 77 representing the partition with bigger cardinality. We would
 get the same measure if we take the infimum over all permutations of rows and
 columns. Ghosh, Dihidar and Samanta (2009) show that d(I, II) satisfies the prop
 erties of a metric.

 4.1 .A simple approximation of the metric calculation. It is, however, impor
 tant to appreciate the fact that calculation of the metric requires taking the minima
 over all possible permutations of the clusters, and for an even moderate number of
 clusters this strategy leads to enormous computational burden. For MCMC sam
 ples, one needs to compute the metric for a very large number of iterations, and
 since each iteration may yield at least a moderate number of clusters, the calcu
 lation very quickly becomes infeasible. To rid the method of the computational
 difficulty, we propose a simple heuristic approximation.

 For any two reasonably close clusterings, after rearrangement, the diagonal is
 likely to contain the largest element. This suggests that, for such clusterings, in any
 given column (or in any given row), there is likely to be a single large element. Or,
 in other words, the proportion of more than one large element occurring in a single
 column (row) is negligible. Formally, in such situations,

 d(I, II) = min[rc0o ~ 0*1 ji + n2j2 H H "*«)]/«00
 k

 (12) ^ X!{n'° ~ max^nfyj/n00
 =1

 = rf(/,/7).

 In the above, /i,o = H*=i nij- Equation (12) can be rewritten as

 (13) d(/,//) = jnoo-E I ! = 1
 max «, /
 1 <j<k

 /»00

 _ J _ E*=lmaxl</<*WQ (14)
 "00
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 Thus, (14) holds when the number of equalities among the permutations (j\, 72,
 ..., jk) is negligible. Note, however, that (14) is not symmetric, that is, d(I, II) 7^
 d(II, /); as a result, we symmetrize the approximation by using

 d(I, II) = max{J(7, II), d(II, /)}

 The reason for taking maximum, rather than other symmetrizing transformations,
 such as average, is that, if one of the two quantities d(I, II) or d(II, I) is high, it
 indicates that the actual distance between the two clusterings cannot be small. Ob
 viously, the aforementioned approximation is valid even when the two Clusterings
 I and II consist of a different number of clusters. It is also worth noting that d sat
 isfies the first three properties of a metric, that is, d(I, II) > 0, d is symmetric, and
 d(/,//) = 0 if and only if I and II are equivalent in the sense that any one of / and
 II can be obtained from the other by just a renumbering of the clusters. We prove
 these in Section S-3. Although we have not been able to prove the fourth property,
 that is, the triangular inequality is satisfied by d in general, we have not been able
 to find a counterexample to this effect, and, in fact, in all the examples we have
 come across the triangular inequality has been satisfied. Moreover, we prove in
 Section S-4 that the triangular inequality holds when the clusterings are indepen

 dent in the sense that riij = nionoj/woo, where w,o = J2 j nij > noj — Hi n,j ■ Hence,

 we conjecture that d is also a metric. Also, the same upper bound 1 — ^ as in
 the case of the metric d is attained by d as well when ntJ 's in the two-way layout
 are equal. We demonstrate below with examples that the approximate metric (15)
 agrees closely with the exact metric (11).

 4.2. Illustration of the performance of the clustering metric with simulated and
 real data. In each of the examples illustrated below, we cluster the data into the
 desired number of partitions using the K-means algorithm, using two different
 starting points or data sets with different sets of features. This yields two cluster
 ings in each case, which we generically denote as Clustering / and Clustering II.

 4.2.1. Example 1: Performance of the cluster metric in the case of simulated
 nonoverlapping clusters. We generate 5,000 observations from a mixture of five
 normal distributions N(i, a2), i = 1,..., 5, with equal weights for specified values
 of or. This set of data is then partitioned into 5 clusters with two different starting
 points under the K-means algorithm, yielding Clusterings / and II. The two clus
 terings, corresponding to the data generated with a = 0.25, completely agree with
 each other, and both d and d = max{0, 0} correctly yield the value 0.

 4.2.2. Example 2: Performance of the clustering metric in the case of simulated
 overlapping clusters. We now give an example where the two clusterings are not
 exactly equal. In this case we repeat Example 1, but with a = 1 instead of a =
 0.25. Table 1 compares the two resulting clusterings. In this case the clusterings
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 Table 1

 Two-way table showing number of observations in C{ (I) fl Cj (II), i, j = 1,..., 5 for 5,000

 observations drawn from the normal mixture 5^(1, 1)

 „ Clusters of Clustering II
 Clusters of

 Clustering / 1 2 3 4 5 Row sum

 1  0  0  0  60  639  699

 2  0  229  1,086  0  0  1,315
 3  639  0  0  0  0  639

 4  0  0  143  1,103  0  1,246
 5  166  935  0  0  0  1,101

 Col. sum  805  1,164  1,229  1,163  639  5,000

 Clusterings I and II are obtained by -means clustering with two different starting points.

 are not equivalent, although there is a one-to-one correspondence between the two
 sets of clusters. For example, C\(II) corresponds to C?,(I), but the 805 units of
 C\(//) are split into two parts—639 of them constitute the whole of C3 (I) and the
 remaining 166 falls in Cs(I). Here the distance d between the two clusterings is
 given by 0.12, while the approximate metric d = max{0.12,0.1196} yields also
 exactly the same distance 0.12. Thus, in spite of the fact that the clusterings are
 not perfectly equivalent, the approximate metric d yields the exact answer.

 4.2.3. Example 3: Performance of the clustering metric in the case of real data.
 We now consider the real data obtained from the Western Ghats. The data consist

 of multivariate (4-variate) observations related to vegetation indices for 51,834
 "super pixels" throughout the Western Ghats region obtained from the imagery
 generated by Indian remote sensing satellites. We do the clustering with a number
 of clusters fixed at 11 as finally obtained in NG. Table 2 provides a comparison
 between Clusterings / and II (obtained from two different sets of initial values
 of the AT-means clustering algorithm). There is no obvious one-to-one correspon
 dence between the clusters of the two clusterings. For example, cluster C$(I) is
 split into three large parts of sizes 6,859, 4,630 and 3,683 which correspond to
 C3,(11), C\(II) and C$(II), respectively. The distance d between the two cluster
 ings in this case turns out to be 0.432, whereas d = max{0.42169, 0.22248} yields
 0.422. This difference is obviously due to the lack of one-to-one correspondence
 between the clusters; however, the approximation is still quite accurate.

 4.2.4. Example 4: Performance of clustering metric and the effect of addition
 or deletion of a variable in the multivariate case. The Western Ghats data consist

 of 4-variate observations for 51,834 cases (units). We wish to study the change
 in the clusterings if a variable is added or deleted. Table 3 provides a comparison



 BAYESIAN CENTRAL CLUSTERING  1959

 Table 2

 Two-way table showing number of units in c, (I) fl Cj (II), i, j = \ \ for the Western
 Ghats data

 Clusters of
 Clusters of Clustering II

 Row

 Clustering /  1  2  3  4  5  6  7  8  9  10  11  sum

 1  0  0  0  0  0  0  0  0  0  0  2  2

 2  0  0  0  0  0  0  0  0  886  57  0  943

 3  0  2  0  0  0  0  711  1,432  1,940  15  0  4,100
 4  0  0  0  0  0  0  0  0  0  0  48  48

 5  0  3  0  1,781  0  0  86  0  2  0  0  1,872
 6  0  0  0  0  0  0  0  0  2  0  0  2

 7  0  198  1,076  86  77  0  6,053  1,877  0  0  0  9,367
 8  0  516  6,859  4,630  3,683  0  2  0  0  0  0  15,690
 9  182  5  0  0  0  102  0  474  0  1,920  0  2,683

 10  502  317  0  0  5,686  10,271  0  127  0  0  0  16,903
 11  214  2  0  1  0  0  .0  0  0  0  7  224

 Col. sum  898  1,043  7,935  6,498  9,446  10,373  6,852  3,910  2,830  1,992  57  51,834

 Row-wise clusters correspond to Clustering / and column-wise clusters correspond to Clustering II.
 Clusterings I and II are obtained by A'-means clustering with two different starting points.

 between Clustering I obtained using the K -means algorithm and three of the vari
 ables, while Clustering II is obtained using the K-means algorithm and all the four
 variables. It is expected that a cluster in Clustering I will be split into more than
 one cluster of Clustering II where the additional information on the 4th variable
 is used. On the other hand, some of the clusters in Clustering II are expected to
 coalesce when the 4th variable is dropped. In Table 3, however, we observe split
 in both the directions. This is because we are fixing the same number of clusters
 in both Clustering I (with three variables) and Clustering II (with four variables).
 In this case, however, the value of the exact distance metric d is 0.283, while the
 approximated value obtained using d = max{0.10837, 0.28211} is 0.282, again
 exhibiting quite accurate approximation.

 5. Application to the Western Ghats data.

 5.1. Data description. NG [see also Nagendra and Gadgil (1999)] consider a
 broad scale mapping of the Western Ghats into different landscape types based on
 satellite imagery, using the Normalized Difference Vegetation Index (NDVI). The
 index is believed to be correlated to vegetation biomass, vigour, photosynthetic ac
 tivity and leaf area index, and is known to be potentially useful for classifying dif
 ferent types of vegetation. Another important advantage of NDVI is that it reduces
 problems of scene-to-scene radiometric variability of the remotely sensed satellite
 images. For each 50 x 50 pixel unit (the resolution being 36.5 x 36.5 m for each of
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 Table 3

 Two-way table showing number of units in Cf(I) o Cj(II), i, j = 1,..., 11 for the Western
 Ghats data

 Clusters of
 Clusters of Clustering II

 Row

 Clustering /  1  2  3  4  5  6  7  8  9  10  11  sum

 1  0  0  0  0  0  2  0  0  0  0  0  2

 2  0  929  158  0  2  0  0  0  1  0  0  1,090
 3  0  0  3,814  0  6  0  252  0  0  0  0  4,072
 4  0  0  0  39  1,796  0  78  1,085  0  0  1  2,999
 5  0  0  0  0  23  0  8,663  3  0  0  1  8,690
 6  0  0  0  0  0  0  0  0  197  4,067  45  4,309
 7  0  0  0  0  41  0  44  9,622  0  0  1  9,708
 8  0  14  128  0  0  0  49  0  2,451  30  7  2,679
 9  0  0  0  0  0  0  0  0  1  9,737  0  9,738

 10  2  0  0  9  0  0  0  0  33  13  156  213
 11  0  0  0  0  4  0  281  4,980  0  3,056  13  8,334

 Col. sum  2  943  4,100  48  1,872  2  9,367  15,690  2,683  16,903  224  51,834

 Row-wise clusters correspond to Clustering I with three variables and column-wise clusters corre
 spond to Clustering II with four variables. Clusterings I and II are obtained by K -means clustering.

 the 2,500 pixels) constituting a "superpixel," the four moments of distribution—
 mean, standard deviation, skewness and kurtosis, were calculated. These super
 pixels were then clustered using unsupervised classification; NG report the final
 number of clusters to be 11. The distribution of the clusters are to be interpreted
 in terms of topography, climate, population, agriculture and vegetation cover. For
 further details regarding the data and the methodology, we refer the reader to NG.

 The pairwise scatterplots of the four variables used for clustering the Western
 Ghats data is shown in Figure 1. Only for this plotting purpose, the data set is
 thinned to include 1 four-variate observation in every 50 such observations. The
 data points within the scatterplots are colored differently to show 11 different clus
 ters, obtained using K-means clustering, a proxy for the method used by NG for
 their clustering. The K-means clustering, which has been analyzed in detail in
 subsequent subsections, is displayed in Figure 2. Each point in the latter figure
 corresponds to a 4-variate observation indexed by its position of the form (i, j),
 where i and j represent the spatial coordinates, namely, row and column numbers,
 respectively, on a relevant spatial grid.

 It is important to note that NG has ignored the spatial structure of the superpix
 els while analyzing the data. It was perhaps anticipated by NG that the clustering
 would not change nonnegligibly by incorporating the spatial locations because of
 the huge and quite informative data. The computational difficulties associated with
 spatial methods with data sets as huge as this may be another quite pragmatic rea
 son. But whatever the reasons of NG, it is perhaps worth investigating statistically,
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 Western Ghats Data: K-means clustering

 FIG. 1. Pairwise scatterplots of the ^-variables used for clustering the Western Ghats data. Differ
 ent colours denote different clusters corresponding to the K-means clustering shown in Figure 2.

 whether or not omission of the spatial structure is inconsequential. To this end, we
 carried out a simple, informal test, reported in Section S-5. Since the test indicated
 insignificance of the spatial structure, we proceeded with the same data set used
 by NG.

 5.2. Choice of prior. We chose /i0 and S to be the mean and the covariance
 matrix of the data, respectively, s = 4, the minimum degrees of freedom required
 to make Go well-defined, and \j/ = 1. These choices are natural, and in this West
 ern Ghats example, with massive data, robustness of the priors is ensured. But
 appropriate choices of M and the prior of a are important, and here we have been
 guided by the results obtained by NG. For instance, the final clustering obtained
 by NG, with their method that uses the K-means method and a subjective merging
 procedure, consists of 11 clusters. However, they initially started with 20 clusters,
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 • Mean = 60.50, SD = 1.85
 • Mean = 61.80, SD = 1.70
 . Mean = 63.23. SD = 2.17
 • Mean = 67.06. SD = 2.75
 • Mean = 74.54. SD = 2.67
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 . Mean = 85.97, SD = 1.68

 Mean = 90.06, SD = 3.25
 . Mean = 90.36, SD = 2.24
 • Mean = 92.96, SD = 0.87

 Mean = 97.41, SD = 3.37

 Fig. 2. K-means clustering; different colours denote 11 different clusters. Cluster averages of
 mean {Mean) and standard deviation (SD) are shown in the legend.

 obtaining 11 clusters finally. In our model, we set M = 30 to account for some
 extra uncertainty. In fact, a maximum of 30 components has also been used by
 Richardson and Green (1997) and SB. For the scale parameter a we considered the
 prior a ~ Gamma(0.1,0.1), that is, a Gamma distribution with mean 1 and vari
 ance 10. This prior is reasonably close to noninformative, and, importantly, with
 these prior choices, 11 clusters get the maximum posterior mass, matching the
 number of clusters obtained by NG. A detailed study of sensitivity of the posterior
 inference with respect to other choices of the priors is reported in Section S-6.

 5.3. Gibbs sampling for computing the posterior distribution of clustering.
 Apparently, for our purpose, the marginalized version of SB's model described
 in Section 2 seems preferable since here we are only interested in the posterior
 distribution of clustering, and hence retaining the parameters 0 m seems to serve
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 no purpose. However, the expressions in Sections S-l and S-2 show that calcula
 tion of the full conditional probabilities of n in the marginalized version involves
 much more computational complexity compared to the nonmarginalized version.
 Since these computational complexities are multiplied n times while updating the
 complete Z vector, with n = 51,834, the marginalized version tends to be infeasi
 ble for massive data. Indeed, for the marginalized version, it took about 30 hours
 to complete just 10 iterations. We remark that implementation of EW's model us
 ing the marginalized algorithm proposed in MacEachern (1994) took more than
 39 hours to generate just 10 MCMC realizations. On the other hand, for the non
 marginalized version of SB's model, generation of 30,000 MCMC samples, which
 includes a burn-in of 10,000, took just around 14 hours. In Section S-7 we pro
 vide a thorough account of the computational superiority of SB's model compared
 to that of EW. Section S-8 provides a new method based on clusterings to as
 sess convergence of our Gibbs sampler. Excellent convergence is indicated by this
 methodology.

 5.4. Posterior distribution of the number of clusters. The posterior proba
 bilities of the number of components being {6,..., 18} are {0.00025,0.00395,
 0.02955, 0.10600, 0.20815, 0.25135, 0.20715, 0.12190, 0.05205, 0.01555,
 0.00345,0.00055, 0.00010}, respectively, while the other values have zero poste
 rior probabilities. Thus, 11 components have the maximum posterior probability,
 0.25135. The components in this example all turned out to be nonempty, which is
 to be expected since the data set is so large. Even with other experiments with this
 data set, using SB's model, this same fact was observed. Hence, we will use the
 terms "clusters" and "components" interchangeably from this point on. It is strik
 ing to note that NG also obtained 11 clusters with their analysis of the Western
 Ghats data.

 5.5. Bayesian central clustering of the Western Ghats data. We obtained
 two central clusterings: the one obtained in the 759th iteration, corresponding to
 s = 0.65, which consists of 14 clusters, and another obtained in the 412th iteration,
 corresponding to e = 0.70, consisting of 10 clusters. It is worth noting that the
 empirical probabilities ^#{C®; 1 < k < N :d(C^l\ C(k)) < e} for i = 1,..., N,
 turned out to be zero for s < 0.65. For e > 0.70 both clusterings corresponding to
 the 412th and the 759th iterations maximized the aforementioned empirical prob
 abilities. Hence, the clustering corresponding to the 759th iteration is an estimate
 of the global mode of the posterior of clustering as it corresponds to the smaller s.
 Figure 3 shows the clustering of the modal clustering, C(4,2>. The other clustering,
 C(759), is displayed in Figure 4.

 The two modal clusterings are close to each other, the distance being 0.649, even
 though the number of their clusters differ. Although one might suspect, because of
 the relative closeness of the two modes, that some clusters of the 10-cluster mode

 C(412) are simply split up to give rise to the 14-cluster mode C(759), this is not the



 1964  S. MUKHOPADHYAY, S. BHATTACHARYA AND K. DIHIDAR

 o
 o
 in

 o
 o

 O
 o
 CNJ

 o
 o

 • Mean = 68.14. SD = 5.82
 • Mean = 73.71. SD = 6.37
 • Mean = 73.81. SD = 2.49
 • Mean = 74.15, SD = 4.52
 • Mean = 74.54. SD = 0.40
 • Mean = 75.05. SD = 1.79
 « Mean = 75.35. SD = 2.27

 Mean = 77.97, var = 3.98
 • Mean = 78.29. SD = 1.68
 • Mean = 79.58. SD = 2.60

 Rows

 Fig. 3. Modal central clustering C^ '\ different colours denote 10 different clusters. Cluster
 averages of mean (Mean) and standard deviation (SD) are shown in the legend.

 case, as is also evident from the average means and average standard deviations
 reported in the legends of Figures 3 and 4. The average means and the average
 standard deviations of at least some clusterings would have been the same across
 the two figures had this been the case.

 It is not surprising that the two central clusterings consist of 14 and 10 clusters,

 although 11 clusters have the maximum posterior probability. This is because the
 Bayesian central clustering has been obtained unconditionally, marginalizing over
 the number of components, without fixing the number of components at 11. This
 issue, concerning conditional and unconditional clusterings, will be discussed in
 detail in Section 5.8. Here we only note that the distance between two clusterings
 need not be small even if the number of clusters are the same (see the examples
 in Section 4.2); had this been the case, conditional and unconditional clusterings
 would be the same.
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 Fig. 4. Modal central clustering c'759'; different colours denote 14 different clusters. Cluster
 averages of mean (Mean) and standard deviation (SD) are shown in the legend.

 5.6. Bayesian 95% credible and HPD regions. Furthermore, with e* = 0.707
 and e* = 0.746, we obtained approximately 95% credible regions corresponding to
 the central clusterings C<4>2) and C(759), respectively. In both cases the probability
 of the credible region turned out to be 0.951. Since the distance between C(412)
 and C<759) is 0.649, each falls within the 95% credible region of the other. We also
 constructed the 95% HPD region using the two central clusterings. Employing
 the adaptive algorithm provided in Section 3.4, we obtained e* — 0.688 and e| =
 0.710 corresponding to C(4,2) and C(759), respectively. The probability of the HPD
 region is 0.952.

 Figure 5 shows the probabilities around each of the two modal clusterings (ex
 cluding the probabilities of the overlapping regions) for different levels of HPD.
 The probabilities of the overlapping regions for different levels of HPD are also
 shown in the same figure. Initially, that is, when the HPD levels were less than 0.3,
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 FIG. 5. Plots of probabilities around each of the two modes C*-'' and C' ' against the cor
 responding HPD levels. These probabilities exclude the probabilities of the intersection of the two
 modal regions given by Pr({C C) < ei} fl [C :<i(C'759', C) < £2}), the values of which
 are plotted separately against the corresponding HPD levels for appropriate values of s\ and 62

 the probabilities around C( ^ were greater than those around C' \ but from
 that point on the modal probabilities of C(4I2> were greater. This is not surprising,
 since Cn59> is the global mode (see Section 5.5) implying that for smaller HPD
 levels most probability mass will be concentrated around its modal region. But
 since its modal region must be smaller compared to that of C(412), which is the lo
 cal mode, for higher HPD levels the former can accommodate only a small portion
 of the entire HPD level. The remaining, larger portion of the HPD level must be
 associated with the modal region of the local mode. Also, as to be expected, the
 probabilities of the overlapping regions increased steadily with the HPD levels.

 The distribution of the number of clusters of the clusterings falling within
 the 95% HPD regions are as follows: the number of clusters getting nonzero
 probabilities are {7,..., 16}, and their respective probabilities are {0.004201681,
 0.024159664, 0.101890756, 0.198529412, 0.255252101, 0.222689076,
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 0.122899160,0.056722689,0.009453782,0.004201681}, showing that 11 clus
 ters again receives the maximum probability.

 5.7. Method ofNG. NG essentially used a A-means clustering algorithm [see,
 e.g., Hartigan (1975)], fixing the number of clusters to be 20. Next, 14 clusters
 were obtained by merging some of the final 20 clusters. These were further re
 duced to 11 clusters, the merging operation justified on ecological grounds, rather
 than classical statistical theory of clustering. We interpret this "ecological justifi
 cation of merging" as implicit use of subjective prior information. Since the nu
 merical results or the exact methodological steps of NG are not available to us,
 we used the K-means algorithm with the number of clusters set equal to 11, as
 a proxy for the methodology of NG. Figure 2 displays the K-means clustering
 of the Western Ghats data set. We, however, found that the distance from the K -

 means clustering to C(759) and C(412) are 0.832 and 0.848, respectively, signifying
 that the K-means clustering does not fall within the 95% credible or HPD regions
 corresponding to our Bayesian methodologies. The reasons for this discrepancy
 between our Bayesian central clustering and the A'-means clustering are discussed
 in detail in Section 5.8.

 5.8. Bayesian conditional and unconditional central clusterings and compari
 son with K-means clustering. The issue of conditioning of our Bayesian central
 clustering on k clusters is the key to understanding the discrepancy between central
 clustering and K-means clustering, which we now discuss.

 Our Bayesian method obtains central clustering by taking account of uncer
 tainties about the number of clusters, while the K-means algorithm keeps the
 number of clusters fixed, thus failing, while clustering the data, to take account
 of the uncertainty involved in clustering. To vindicate this, we obtained Bayesian
 central clustering conditional on 11 components. The clustering in the very first
 iteration, denoted by C "', now turned out to be the central clustering, and it re
 mained so for all e > 0.75. For s < 0.75 for any i e {1,..., ./V}, the empirical
 probabilities 4r#{C(^; 1 < k < N : d{C^l\ C®) < e} turned out to be zero, sug
 gesting that C( ' is the global mode, conditional on 11 clusters. The conditional
 central clustering C(l) is shown in Figure 6. The conditional 95% credible region,
 which is also the conditional 95% HPD region because of unimodality, is given by
 {C : d(C(1\ C) < 0.827}, for those C having 11 clusters. The empirical probability
 of this set is 0.95, indicating very good approximation to the true credible region.
 Importantly, the K -means clustering now falls within this 95% credible region,
 the distance between C(1) and A'-means clustering being 0.729. We remark in this
 context that the distance between the central clustering conditional on k clusters
 and the A'-means clustering with 11 clusters is minimized when k = 11. That the
 unconditional 95% Bayesian credible region does not include the A'-means clus
 tering but this conditional 95% Bayesian credible region does shows that A'-means
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 FIG. 6. Modal conditional central clustering C'1); different colours denote 11 different clusters.

 The first component of each of the distinct mean values {n*j; j = 1 11}, associated with the
 clusters, are shown in the legend.

 clustering fails to account for the uncertainty in the number of clusters, even if one
 fixes the number of clusters very accurately in the K -means algorithm.

 Hence, although the results of NG are not available to us, we can conclude,
 based on our analyses, that the clustering they obtained is unlikely to fall within
 our unconditional 95% credible or HPD regions, even though broadly their clus
 tering, plotted as Figure 1 in NG, looks similar to our Figure 4. Their results are
 rather comparable with our conditional clustering, shown in Figure 6. Detailed
 interpretation of the results and their comparisons are provided in Section 6.

 6. Detailed interpretation of the results of the Western Ghats data analy
 sis. Following NG, we order the landscape types of Western Ghats in ascending
 order of the means (the first component of the 4-variate data vectors) within each
 cluster. Since the clusterings obtained by us need not match that obtained by NG,
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 our ordering of the landscape types need not agree with that of NG. But in spite
 of this, the similarities between the clustering obtained by NG and our K-means
 clustering seem to be substantial. Details of landscape types and their comparisons
 with respect to different clusterings are presented below.

 6.1. Landscape type-1.

 6.1.1. Distribution in K -means clustering. Landscape type-1 of our K-means
 clustering (Figure 2) is distributed mainly in the south-east, and toward the middle
 part of Western Ghats. Comparatively small parts of landscape 1 are also distrib
 uted in the south-west region, and are almost absent in the northern region. Fair
 amount of heterogeneity in this landscape type is indicated by the average standard
 deviation associated with this cluster. This shows that this landscape comprises a
 mixture of several ecosystems. From the description provided by NG about this
 part of Western Ghats (the location of landscape 1 of K -means clustering seems
 to correspond to the locations of landscapes 1 and 2 of NG), we can infer that the
 natural vegetation of the south-east part of this landscape area is tropical dry de
 ciduous forest, where rice, millets and oilseeds are grown. The middle part of the
 Ghats where this landscape is also found comprises tropical moist deciduous for
 est. Large parts of this landscape have been converted to open areas with palmyra
 trees planted in between. The small south-western parts of this landscape consist
 of moist deciduous vegetation.

 6.1.2. Distribution in conditional clustering. Landscape 1 of conditional clus
 tering (Figure 6) is distributed all over Western Ghats (corresponding to either of
 the similar landscape types 4, 5, 6 of NG), and the high standard deviation indi
 cates the very substantial number of ecosystems it comprises. Natural vegetation
 is mostly dry deciduous in the north and moist deciduous in the south. The forests
 of the north have been replaced by tree savanna, shrub savanna and open land
 complexes. The south consists of open lands and palmyra trees. Rice, millets and
 oilseeds are planted in some parts of this landscape. The eastern parts are of the
 montane wet evergreen forest type.

 6.1.3. Distribution in clustering C{412\ In the case of C(412) (Figure 3), land
 scape type 1 is distributed over the north-west part of the Ghats, and is absent else
 where. High average standard deviation suggests that this landscape is a mixture of
 many individual landscape elements. This part is characterized by dry deciduous
 vegetation. As opposed to the previous clusterings, in this case landscape 1 does
 not seem to be consistent with any of the landscapes of NG.

 6.1.4. Distribution in clustering C( Consistent with the case of C(412\
 here also landscape 1 is distributed mainly over the north-western part of Western
 Ghats, and here also the average standard deviation is quite high. Once again, this
 landscape is not consistent with any landscape obtained by NG.
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 6.2. Landscape type-2.

 6.2.1. Distribution in K-means clustering. The distribution of landscape
 type 2 for A'-means clustering is similar to that of landscape type 1. The aver
 age standard deviation is also comparable, and is only slightly less.

 6.2.2. Distribution in conditional clustering. The distribution in this case is
 comparable to that of landscape 1 of conditional clustering, only the variability is
 much less, suggesting that fewer ecosystems have comprised this landscape.

 6.2.3. Distribution in clustering O' In the case of C(412\ landscape 2 is
 distributed mainly along the north-western part, stretching along the mid-western
 part of the Ghats, and also comprising some part of the south-eastern part. The
 large variability suggests abundance of individual landscape elements. The natural
 vegetation here is dry deciduous forests in the north and moist deciduous forests
 toward the south.

 6.2.4. Distribution in clustering C . Landscape 2 for C( ) stretches
 mainly from the middle part of the Western Ghats extending till south, where it
 is more prominent. Here also the variability is significant, although smaller com
 pared to that of C(4,2>. The vegetation here is mainly tropical and moist deciduous
 forests.

 6.3. Landscape type-3.

 6.3.1. Distribution in K-means clustering. Landscape type 3, as also in the
 case of landscape type 3 of NG, is present mainly along the eastern sides of West
 ern Ghats. The natural vegetation is of the montane wet evergreen and moist de
 ciduous forest type, and rice, millets and oilseeds are grown.

 6.3.2. Distribution in conditional clustering. With respect to the conditional
 clustering, landscape type 3 is distributed along the entire length of the Western
 Ghats, not mainly toward the eastern part as in the case of K -means clustering.

 6.3.3. Distribution in clustering C(412). With respect to C(4I2\ this landscape
 is distributed mainly toward the eastern part of the Ghats, but also generally along
 the entire region.

 6.3.4. Distribution in clustering C(759\ As in the previous clusterings, land
 scape 3 is distributed mainly along the eastern side of the Ghats with respect to
 £(759) xhe variability in this case is a little less than in the case of other cluster
 ings.
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 6.4. Landscape type-4.

 6.4.1. Distribution in K -means clustering. As in the case of corresponding
 landscape 3, landscape 4 for K-means is also distributed mainly toward the eastern
 region, and in the northern part it is distributed in both eastern and western parts,
 showing similarity with the distribution of landscape 4 of NG. The variability is
 large enough to suggest prevalence of a number of different ecosystems.

 6.4.2. Distribution in conditional clustering. Landscape 4 of the conditional
 clustering has a distribution similar to that of the corresponding landscape 3. The
 variability is higher than in the case of landscape 3 of this clustering.

 6.4.3. Distribution in clustering C''This landscape is present mainly
 along the north-western and the mid-eastern region of the Western Ghats, with
 variability higher than that of landscape 3 of K-means and the conditional cluster
 ing. The vegetation is mainly dry deciduous in the north-west and wet evergreen
 in the mid-east.

 6.4.4. Distribution in clustering C(759). The distribution of landscape 4 of
 C(159) is very similar to that of landscape 4 of C(412), but the variability is higher.

 6.5. Landscape type-5.

 6.5.1. Distribution in K-means clustering. As in the case of landscape 5 of
 NG, here also landscape 5 is distributed along the entire length of the Western
 Ghats, but more toward the western side, rather than the eastern side as found by
 NG in their landscape 5. A number of individual landscape elements are indicated
 by the mean standard deviation.

 6.5.2. Distribution in conditional clustering. Landscape 5 associated with
 the conditional clustering is distributed along the entire Western Ghats, and has
 smaller variability than landscape 5 of the K-means clustering.

 6.5.3. Distribution in clustering O'K For C( ) landscape 5 is present
 mainly in the eastern parts and in the southern foothills. The mean standard de
 viation is even smaller than landscape 5 of the conditional clustering. The natural
 vegetation is wet evergreen and moist deciduous forests.

 6.5.4. Distribution in clustering C( \ The distribution of landscape 5 of
 C(759> resembles that of landscape 5 of C'412-1, although the distribution of the
 former is less prominent in the eastern side and the southern foothills. The mean
 standard deviation is not that significant, although it is higher than in landscape 5
 of C(412).
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 6.6. Landscape type-6.

 6.6.1. Distribution in K-means clustering. The distribution of landscape 6 of
 the K -means clustering is over the entire Western Ghats, similar to the distribution
 of landscape 6 of NG, but toward the south it is distributed more in the west, rather
 than in the east, as in NG. In the north, the distribution is more toward the east,
 rather than toward the west coast, as in NG. The mean standard deviation being
 1.48 is not that significant.

 6.6.2. Distribution in conditional clustering. Landscape 6 of the conditional
 clustering is distributed along the entire length of the Western Ghats, with higher
 mean standard deviation compared to landscape 6 of the /T-means clustering.

 6.6.3. Distribution in clustering C(412). Here the distribution is again over the
 entire Ghats, but with larger mean standard deviation compared to landscape 6 of
 the conditional clustering.

 6.6.4. Distribution in clustering C( \ The distribution of landscape 6 of
 C<759) is mainly in the northern, north-western and mid-western region of the
 Western Ghats, with significantly high mean standard deviation, suggesting a large
 number of individual landscape elements. The natural vegetation is dry deciduous
 and evergreen.

 6.7. Landscape type-1.

 6.7.1. Distribution in K-means clustering. Very closely resembling land
 scape 7 of NG, landscape type 7 of the K-means clustering is distributed both
 to the east and west of the entire Western Ghats. Here the natural vegetation is
 of the wet evergreen type, extending to moist deciduous in the southern part of
 the Western Ghats. It is this landscape within which, according to NG, most ever
 green forests of the Western Ghats fall. The natural vegetation has been replaced
 to a large extent by woodland to savanna-woodland, tree savanna to grass savanna,
 thickets and scattered shrubs. As for the crops, millets, cotton and rice are grown
 in the north while millets and oilseeds are grown in the south. Arecanut, coconut,
 coffee, etc. are also grown in this landscape. The mean standard deviation being
 1.68 does not indicate a large number of ecosystems.

 6.7.2. Distribution in conditional clustering. Landscape 7 of the conditional
 clustering is again distributed all over Western Ghats. The mean standard deviation
 is somewhat large, suggesting quite a few individual landscape elements.

 6.7.3. Distribution in clustering C( \ The distribution of landscape 7 of
 C(412) resembles that of landscape 7 of the conditional clustering. The mean stan
 dard deviations are also similar.
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 6.7.4. Distribution in clustering C( '. Landscape type 7 of C ' resembles
 landscape type 7 of the conditional clustering and C(4I2), but it is distributed more
 prominently toward the north-east and the southern parts of the Ghats. The natural

 vegetation is mainly dry deciduous and evergreen, extending to moist deciduous
 in the south. The mean standard deviation being small does not indicate too many
 ecosystems.

 0.8. Landscape type-a.

 6.5.1. Distribution in K -means clustering. Landscape 8 with respect to the K
 means clustering is mainly present in the western part of the northern regions and

 both eastern and western parts of the middle and southern regions. This is unlike
 the distribution of landscape 8 of NG, which is present mostly in the western part
 and absent in the north. Rather, the distribution of landscape 8 of the K-means
 clustering resembles landscape 7 of the K-means clustering and that of NG. The
 mean standard deviation is, however, higher in this case.

 (t.X.2. Distribution in conditional clustering. The distribution of landscape 8
 of the conditional clustering closely resembles the distributions of the previous
 landscapes of the same clustering. The mean standard deviation does not indicate
 too many ecosystems.

 6.8.3. Distribution in clustering C(412\ Landscape type 8 of C(412) is present
 most in the northern and north-western regions of the Western Ghats. The vegeta
 tion is mostly dry deciduous. The variability is significant, indicating many ecosys
 tems.

 6.8.4. Distribution in clustering C(/3y). Landscape type 8 of C(759) is dis
 tributed mainly along the northern, north-western and mid-western regions of the

 3hats. The vegetation is mainly dry deciduous, extending to evergreen. The vari
 ability is high, suggesting many ecosystems.

 6.9. Landscape type-9.

 6.9.1. Distribution in K-means clustering. Agreeing very closely with NG,
 landscape type 9 of AT-means clustering is nearly absent in the northern stretches
 and is present in the central and southern parts in patches toward the west. Here
 the natural vegetation is evergreen and semi-evergreen. Disturbed semi-evergreen
 forests along with moist deciduous forests, woodlands and savanna-woodlands are

 also present. Crops like rice, tapioca, coconut, millets and oilseeds are grown. Rel
 atively high mean standard deviation suggests a mixture of several ecosystems.
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 6.9.2. Distribution in conditional clustering. The distribution of landscape 9
 of the conditional clustering is all over the Ghats, but in the mid-western regions
 the distribution is more prominent. The vegetation in this region is evergreen. The
 variability suggests several individual landscape elements.

 6.9.3. Distribution in clustering C( '. Landscape 9 of C -1 is distributed
 all over the Ghats but is present more prominently toward the eastern parts. Not
 many individual landscape types are indicated by the mean standard deviation.

 6.9.4. Distribution in clustering C(/iy). Landscape 9 of C(759' is distributed
 all over the Ghats but is present more prominently toward the western parts. Quite
 a few individual landscape types are indicated by the mean standard deviation.

 6.10. Landscape type-W.

 6.10.1. Distribution in K -means clustering. Landscape type 10 is present in a
 few patches toward the northern and in the central parts of the Ghats. The vegeta
 tion is evergreen. The low mean standard deviation does not suggest much hetero
 geneity.

 6.10.2. Distribution in conditional clustering. In the conditional clustering,
 landscape type 10 is found mainly in the north-western, mid-western and in the
 southern parts of Western Ghats. The vegetation ranges between dry deciduous,
 evergreen and moist deciduous. Here also relative homogeneity is indicated by the
 low mean standard deviation.

 6.10.3. Distribution in clustering C(412^. In C(412) landscape type 10 is
 present mainly in the western part along the entire length of the Ghats. The nat
 ural vegetation is deciduous as well as evergreen. Among crops, rice, tapioca and
 coconut are planted. The variability suggests nonnegligible heterogeneity.

 6.10.4. Distribution in clustering O Landscape type 10 with respect to
 Ct759) is mostly present in the mid-eastern regions and the southern part of the
 Western Ghats. The natural vegetation is wet evergreen and moist deciduous. Not
 much heterogeneity is indicated by the mean standard deviation.

 6.11. Landscape type-11.

 6.11.1. Distribution in K -means clustering. In contrast with landscape type 11
 of NG, which is present in a single patch, here it is present in the northern stretches,

 and in the eastern stretches of the central and the southern parts of Western Ghats.
 The vegetation varies from dry deciduous to moist deciduous forests, with wet
 evergreen forests in the mid-eastern parts. A fair amount of heterogeneity is indi
 cated by the mean standard deviation.

All use subject to http://about.jstor.org/terms
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 6.11.2. Distribution in conditional clustering. Landscape type 11 associated
 with the conditional clustering is present mainly in the mid-eastern and the south
 ern parts of the Ghats. The vegetation here is mostly wet evergreen and moist
 deciduous. A fair amount of homogeneity is indicated by the mean standard devi
 ation.

 6.11.3. Distribution in clustering C(759\ Landscape 11 of C( ) is present all
 over Western Ghats but is more prominent toward the mid-eastern and the southern

 parts, as in the case of landscape 11 of the conditional clustering. A fair amount of
 individual landscape types are indicated by the variability.

 6.12. Landscape type-12 o/C(759). Landscape type 12 of Cn >, in spite of its
 presence all over the Ghats, is more prominent in the mid-western and the south
 western stretches. The natural vegetation is mainly evergreen and moist deciduous.
 Again, a fair amount of individual landscape types are suggested by the variability.

 6.13. Landscape type-\3 of C( ). This landscape is present mainly in the
 central and the southern parts of the Ghats, with mostly evergreen and moist de
 ciduous vegetation. A very low mean standard deviation indicates homogeneity.

 6.14. Landscape type-14 of Ct7 >. This landscape is present all over West
 ern Ghats, but mainly along the western stretches and in the southern foothills.
 The vegetation is dry deciduous in the north, evergreen in the center and moist
 deciduous in the south. The mean standard deviation indicates some amount of

 heterogeneity.

 7. Conclusion. We have highlighted the importance of acknowledging clus
 tering uncertainty, and have introduced methodologies for summarizing posterior
 distributions of clusterings. We have demonstrated how central clusterings can be
 obtained from posterior samples drawn using MCMC methodologies. In the heart
 of our proposed methods for summarizing posterior distributions of clusterings is
 a clustering metric introduced to compare any two clusterings. Although computa
 tion of the exact distance between two clusterings can be expensive, we have intro
 duced a computationally cheap, and perhaps, more importantly, accurate, approxi
 mation to the exact metric. We remark that although we have confined our attention
 to the modes of the posterior distribution of clusterings in this paper, it is also pos
 sible to obtain the median of the posterior distribution of clusterings. For instance,

 the median C^med) may be defined as C(med^ = argminc ZifLi d{C(l\ C). Also,
 considering any "reference clustering" C(0\ acting as the origin, a partial ordering

 with respect to the origin can be defined on the set of the clusterings obtained

 from MCMC sampling as C^ if and only if d(C^°\ C(l)) < J(C(0\ C(^),
 for any i, j. Using this partial ordering, any quantile with respect to the origin can
 be calculated.
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 Analysis of the Western Ghats data based on our proposed methodologies re
 vealed broad similarities with the results obtained by NG, which includes the num
 ber of clusters obtained by them is the one which gets the highest posterior prob
 ability corresponding to our Bayesian model. However, we have also pointed out
 that the clustering obtained by NG is unlikely to fall within our unconditional 95%
 credible or HPD regions, although it is likely to fall within our conditional 95%
 credible or HPD regions, conditioned on the number of clusters, fixed in their de
 terministic algorithm. Such a drawback, as we have shown, is due to the failure
 of the deterministic algorithm to take account of the uncertainty involved with
 the number of clusters. The detailed results of our application to the biodiversity
 hotspot Western Ghats reveal dissimilarities of the landscape types obtained by
 our clustering methodology with that obtained by a proxy to NG's clustering algo
 rithm. As to be expected, some similarity is exhibited between the landscape types
 obtained by these methods, when we conditioned on the same number of clusters
 fixed by NG. These new and interesting facts indicate that ecologists may need to
 update their methodologies for studying biodiversity. The methodologies we pro
 posed in this paper are not expected to be immediately accessible to ecologists
 because of the technical gap between ecological and statistical communities, but
 collaborative efforts may yield fruit in the future, benefitting both communities.
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 SUPPLEMENTARY MATERIAL

 Supplement to "On Bayesian "central clustering": Application to land
 scape classification of Western Ghats (DOI: 10.1214/11 -AOAS454SUPP; .pdf).
 Sections S-1 and S-2 contain, respectively, the full conditional distributions of the
 random variables with respect to the nonmarginalized and marginalized version
 of SB's model. That the /T-means clustering algorithm is a special case of the
 clustering method based on SB's model is shown in Section S-3. Properties of the
 approximate distance measure d are explored in Section S-4. Section S-5 contains
 reports of our investigation on whether or not the spatial structure of the super
 pixels should be incorporated in our model. Detailed analysis of sensitivity of the
 results with respect to changes in the values of the hyperparameters of our model
 is provided in Section S-6. Thorough explanation of the computational superiority
 of SB's model over that associated with efficient implementation of EW's model
 is presented in Section S-7. Finally, a new method for MCMC convergence diag
 nostics in clustering models is proposed in Section S-8, which we apply in our
 situation for studying convergence of our Markov chain.
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