
 SIAM J. AFPL. MATH.
 Vol. 70, No. 5, pp. 1567-1586

 (C) 2009 Society for Industrial and Applied Mathematics

 WATER-WAVE SCATTERING BY VAST FIELDS OF BODIES*
 MALTE A. PETERt AND MICHAEL H. MEYLAN*

 Abstract. A very efficient solution method to the determination of the linear water-wave
 scattering by a large number of bodies is presented. Several bodies are assembled in modules, which
 are grouped in periodic infinite line arrays. Then, using an iterative method, a finite number of
 these infinite arrays are stacked together. The method to calculate the scattering by the infinite line
 array of modules of bodies is algebraically exact, while a far-field (or wide-spacing) approximation
 is used in the calculation of the scattering of a finite stack of arrays. Bloch transmission through
 doubly periodic arrangements of bodies is discussed, and so are averaging techniques to suppress
 phenomena introduced by the periodicity assumption on the line arrays for the case of more or
 less randomly distributed bodies. While the method is general and can be used in a variety of
 situations, the principal application of the method is to calculate the scattering by vast fields of ice
 floes which occur in the Marginal Ice Zone. Preliminary numerical simulations for floating elastic
 plates, modeling ice floes, are presented and substantiate the applicability of the method.
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 1. Introduction. We present a computationally efficient method to calculate
 the reflection and transmission of water waves by vast fields of bodies within the
 framework of linear theory. The method is general in the sense that it is not restricted
 to certain types of bodies or body geometries. It is our aim to apply this method in the
 future to approximate the scattering characteristics of the Marginal Ice Zone (MIZ)
 (a region of broken ice which forms at the boundary of the frozen and open ocean)

 without having to assume the problem is two-dimensional. The method is general
 and is also potentially applicable in a variety of other situations, such as scattering by
 very large floating structures supported by many columns or by large off-shore wind
 farms.

 The idea is briefly summarized as follows: We calculate the scattering of a large
 field of bodies by first grouping several bodies into modules and then determining the
 scattering characteristics of an infinite periodic line array of such modules. The field
 of bodies is then assembled by placing many infinite line arrays behind one another
 in a stack. The solution for this stack is found using a wide-spacing approximation.

 A sketch of the geometry is given in Figure 1.1.
 Assuming that the scattering by single bodies can be calculated, an interaction

 theory [12, 31] provides an efficient exact algebraic method for calculating the scatter?
 ing by finitely many bodies. Grouping such an arrangement of bodies into a module,
 the scattering by an infinite periodic line array of modules is efficiently calculated
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 Fig. 1.1. Sketch of the geometry (plan view). Many periodic arrays of modules form the stack.

 using the method described in [35]. It is well known (see, e.g., [41, 35, 43]) that the
 scattered wavefield away from the array consists of plane waves propagating in a finite
 number of directions, the so-called scattering angles. Generally, such far-field approx?
 imations (also called wide-spacing or plane-wave approximations; see [9] for a detailed
 discussion in two spatial dimensions) require that the spacing is much larger than the
 incident wavelength and the size of the structure (see the monographs [18, 20] for
 discussions and, particularly, [36] on the related Rayleigh controversy of diffraction
 grating theory), but it was illustrated in [35] that this far-field approximation is ac?
 curate even near the array in most situations, and we will give some more evidence
 here. We then present an explicit iterative method allowing the scattering character?
 istics of a stack of many arrays placed one behind the other to be calculated. The
 idea of using the far-field approximation to couple multiple arrays was used by [8] for
 water-wave scattering by stacks of circular cylinders, and a linear system of equations
 for the total scattering was developed, the dimension of which depends linearly on
 the number of the arrays included. The same idea was used in the context of acoustic
 scattering in [29] and for electromagnetic scattering in [25, 24, 4], both of which give
 an iterative method for the coupling of the arrays. All of these works consider only
 scattering by circular cylinders, which leads to several simplifications not applicable
 in the general setting considered here, and it seems that they have been developed
 independently of each other. Similar methods have recently been developed in the
 context of electromagnetics theory [44].

 The only restriction of the method presented here is that it requires that the
 arrays have the same periodic spacing and that the spacing between the arrays is not
 too small so that the far-field approximation is valid. It does not require that the
 arrays are identical or aligned nor that the spacing between arrays is constant. If
 the incident wavelength is very large compared to the body spacing, homogenization
 techniques might be more appropriate, and we refer the reader to [11] as well as the
 review article [23] for more information in this direction in the water-wave context.

 It is well known that periodic structures may exhibit certain resonance phenom?
 ena. For periodic line arrays, scattering angles are aligned with the array axis in some
 situations, or Rayleigh-Bloch waves may travel up or down the array [37, 32] (the
 latter of which cannot be excited by an incident wave, however). Stacks of periodic
 structures can support Bragg resonance, where phases of reflected waves are the same
 so that reflected waves interfere constructively (cf. [15] for a recent contribution in
 the water-wave context), while doubly periodic structures (i.e., structures that ex?
 tend periodically in both horizontal dimensions) may admit so-called passing bands
 and stopping bands, for which waves propagate through the array without change of
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 amplitude or for which the wave amplitude increases or decays (cf. [22, 11] and the
 monograph [18], for example). Often, these phenomena have an implication for the
 corresponding semi-infinite or finite structure, but they require the otherwise periodic
 arrangement of the bodies. We briefly discuss the calculation of the Bloch transmis?
 sion coefficient, as this may be of interest for approximating the stopping and passing
 bands for regularly spaced structures, and we refer the reader to references from other
 fields for more details on regularly spaced structures (see section 6.1). However, since
 we are particularly interested in more or less random arrangements of bodies in order
 to apply this method to scattering in the Antarctic MIZ in the future, we do not
 investigate any other such phenomena in great detail but discuss averaging methods
 to suppress effects artificially introduced by the periodicity instead.

 The MIZ is an interfacial region which forms at the boundary of the open and
 frozen oceans. It consists of vast fields of ice floes, which scatter and attenuate the
 incoming ocean waves. It is of great importance to climate research to understand

 wave propagation and scattering and wave-induced break-up in the MIZ (see [40, 39]
 for more information). Models for wave propagation were developed by [42] based
 on two-dimensional approximation, and this model was developed further by [14] and
 shown to give reasonable agreement with measurements. Three-dimensional models
 based on the Boltzmann equation were developed by [21, 30, 28, 27], but these models
 have proved too complicated to extract geophysical data and so far have never been
 used to make comparisons with experiments. We aim to use the method presented
 here to create a hybrid two-three-dimensional model which will be sufficiently com?
 putationally efficient that we can determine the attenuation coefficients for a range
 of conditions and to compare this to two-dimensional theory [14] and to experimen?
 tal measurements [38]. We also note that the present method does not depend on
 the model used for the individual floe. We use here the ice-floe model developed by
 [26], which is based on an assumption of shallow draft. However, the generality of
 the method allows us to use other ice-floe models, for example, accounting for finite
 draught as modeled by [3].

 The paper is organized as follows: The problem is formulated in detail in section
 2, including the introduction of the required eigenfunction expansions and diffraction
 transfer operators. The solution method for a module of bodies is discussed in section 3
 and for an infinite periodic line array of such modules in section 4, which also contains
 a description of the far field and the definition of the reflection and transmission
 matrices of such an array. The iterative method of stacking up multiple arrays is given
 in section 5. In section 6, Bloch transmission in doubly periodic stacks is discussed
 as well as averaging strategies to suppress artifacts introduced by the periodicity
 assumption. Numerical experiments are conducted in section 7, including simulation
 results for bottom-mounted cylinders and ice floes. A summary of the results and
 discussion are given in section 8.

 We also note that a preliminary summary of this paper has appeared in [33].

 2. Statement of the problem and mathematical formulation. We con?
 sider the water-wave scattering of a plane wave by vertically nonoverlapping bodies.
 The ambient plane wave is assumed to travel in the given direction \ ? (~~7r?7r)>
 where \ is measured with respect to the x-axis. Let [r3,Q3,z] be the local cylindrical
 coordinates of the jth body, Aj. The global coordinates, centered at the origin, are
 denoted by (x,y,z) (Cartesian) or (r,6,z) (cylindrical). A sketch of the geometry is
 given in Figure 1.1.

 The equations of motion for the water are derived from the linearized inviscid
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 theory. Under the assumption of irrotational motion, the velocity-vector field of the
 water can be written as the gradient field of a scalar velocity potential <?. Assuming
 that the motion is time-harmonic with radian frequency w, the velocity potential can
 be expressed as the real part of a complex quantity,

 (2.1) $(y,*)=Re{0(y)e-iwt}.

 To simplify notation, y = {x,y,z) always denotes a point in the water, which is
 assumed to be of constant finite depth d, while x always denotes a point of the
 undisturbed water surface assumed at z = 0.

 Writing a ? u2 jg, where g is the gravitational acceleration, the potential (p has
 to satisfy the standard boundary-value problem

 (2.2a) V20 - 0, yeA
 (2.2b) dz(j) = a<?, x e Tf,
 (2.2c) dz<j> = 0, y G D, z = -d,

 where D ? (R2 x (?d,0))\\}3-A3 is the domain occupied by the water and Tf is
 the free water surface. At the immersed body surface Y3 of Aj, the water velocity
 potential has to equal the normal velocity of the body v^,

 (2.2d) 0n^ = vj, yery
 A further relationship between the potential and its normal derivative on the body
 surface is required if Vj depends on <f>, and this comes from the equation of motion for
 the body. Moreover, a radiation condition is imposed, ensuring that there are only
 outgoing waves from each scatterer, and we denote the ambient incident potential by
 0In. The positive wavenumber k is related to a by the dispersion relation

 (2.3) Q = fctanhfcd,

 and the values of km, m > 0, are given as positive real roots of the dispersion relation

 (2.4) a + km tan kmd ? 0.

 For ease of notation, we write ko = ?ik. Note that ko is a (purely imaginary) root of
 (2.4).

 2.1. Eigenfunction expansion of the potential. The scattered potential of
 a body Aj can be expanded in singular cylindrical eigenfunctions,

 oo

 (2.5) 4>S(rj,0j,z)= ?/m(z) ? A^K^kmr^',
 m=0 /x= ?oc

 with discrete coefficients AJm?, where

 The incident potential upon body Aj can also be expanded in regular cylindrical
 eigenfunctions,

 (2.7) c?)(rJ,?j,z) = 2Zfn(z) DLlAknrj)e'
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 with discrete coefficients D3nu. In these expansions, Iy and Kv denote the modified
 Bessel functions of the first and second kind, respectively, both of order v as defined
 in [1]. Note that in (2.5) (and (2.7)) the term for m = 0 (n = 0) corresponds to the
 propagating modes while the terms for m > 1 (n > 1) correspond to the evanescent
 modes.

 In what follows, it is necessary to represent the ambient wavefield in the eigenfunc?
 tion expansion (2.7). This can be accomplished as follows. In Cartesian coordinates
 centered at the origin, the ambient wavefield is given by

 (2.8) (j)ln{x,y,z) = ^f0(z)eik(xco*x+v*inx\

 where A is the amplitude (in displacement) and \ e (?7r,7r) is the angle between
 the x-axis and the direction in which the wavefield travels (also cf. Figure 1.1). This
 expression can be written in the eigenfunction expansion centered at the origin as

 (2.9) J>ln(r,8,z) = -?-f0(z) T e[^-^I?(k0r)e UJ ?'
 v= ? oc

 so that the ambient incident wavefield has coefficients

 f) f^?(-ire--*, n = 0,
 nV ~ \0, n > 0,

 in the expansion (2.7). Note that the evanescent coefficients are all zero due to the
 propagating nature of the ambient wave.

 2.2. Diffraction transfer operators. In what follows, we make extensive use
 of diffraction transfer operators, sometimes referred to as T-matrices. In general,
 it is possible to relate the total incident and scattered partial waves for any struc?
 ture through the diffraction characteristics of that body in isolation. For each body
 Aj, there exists a diffraction transfer operator that relates the coefficients of the
 incident and scattered partial waves, such that

 oo oo

 (2-10) 4,? = E E B3mn?A
 71 = 0 V? ? OO

 where A? contains the amplitudes of the scattered modes due to the incident modes
 of amplitude DK The idea of the diffraction transfer operator is not restricted to
 a single structure. We can thus associate such an operator with a module. More
 general information on diffraction transfer operators can be found in the monograph
 [20] (referred to as T-matrices therein).

 Assuming methods for solving the standard scattering problem for each body
 involved are available, the corresponding (truncated) diffraction transfer operator can
 be calculated numerically. Different methods are outlined in [10, 13, 35]. For some
 special cases, analytic representations exist. For example, for a rigid bottom-mounted
 circular cylinder of radius a, the elements of the diffraction transfer operator are

 J -J^(fc0a)/^(fcoa), 0 < rn = n < oo, -oo < /x = v < oo, (Z.llJ ^>ran{iv ~ \ ,,  0 otherwise.

 It is also worth noting that the change in the diffraction transfer operator induced
 by a rotation of the body about its mean-center position is particularly simple [31].
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 3. Scattering by a finite number of bodies and grouping into modules.
 The scattering properties of a finite number of bodies can be calculated in many differ?
 ent ways, for example, by using the finite element method, which involves discretizing
 all body surfaces, or, more efficiently, using an interaction theory [12, 31]. For our
 purposes, the scattered wavefield needs to be represented in terms of eigenfunction
 expansions (2.5) in order to allow the scattering properties to be described by a single
 diffraction transfer operator. We briefly summarize how this can be achieved using
 the interaction theory. Note that the idea of using the interaction theory to group
 several bodies into modules has been successfully applied previously [13, 7] and is
 referred to as the multipole method in optics.

 The interaction theory works by developing a system of equations for the un?
 known coefficients (in the expansion (2.5)) of the scattered wavefields of all bodies.
 This system of equations is based on transforming the scattered potential of Aj into
 an incident potential upon A/, j, / = 1,..., N, j / /. Doing this for all bodies simul?
 taneously, and relating the incident and scattered potential for each body, a system
 of equations for the unknown coefficients is developed.

 The scattered potential (p^ of body Aj needs to be represented in terms of the
 regular cylindrical eigenfunction expansion of the incident potential <f)\ upon Ai j' ^ /,
 (also cf. (2.5) and (2.7)), and this can be achieved using Graf's addition theorem
 (equation 9.1.79 in [1]). Since the expansion of the scattered and incident potentials
 in cylindrical eigenfunctions is valid only outside the escribed cylinder of each body,
 the escribed cylinder of each body may not contain any other body.

 Making use of the eigenfunction expansion as well as Graf's addition theorem, the
 scattered potential of Aj (cf. (2.5)) can be expressed in terms of the incident potential
 in the local coordinates of A/ as

 (3.1) $(rh6hz)
 oo oo oo

 171 = 0 U = ? OO T ? ? OO

 where (Bji^dji) are the coordinates of the mean-center position of the Ith body in
 terms of the coordinate system of the jth body. Let Dlnu denote the coefficients of an
 ambient incident wavefield in the incoming eigenfunction expansion for A/ (cf. (2.7)).
 The total incident wavefield upon body A/ can now be expressed in terms of the
 coefficients

 N oo

 (3.2) Dlni/ = D'W + J2 E AU-^K^iknR^-^'
 .7 = 1 T ? ? OO

 in the expansion (2.7).
 Using the diffraction transfer operator, the substitution of (3.2) into (2.10) gives

 the required equations to determine the coefficients of the scattered wavefields of all
 bodies,

 oo oo N oo

 (3.3) Almjl = E E ?mn^[^ + E E ^(-l)^r-,(fc?%)ei(T-^<< 71=0 V=? OO 7 = 1 T = ? OO

 m?N,/iGZ,l = l,...,JV.
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 For a given incident wave having coefficients Dlny in the local expansion (2.7),
 the solution of (3.3) gives the coefficients Alm of the scattered wavefield around each
 body in the expansion (2.5).

 In order to obtain the diffraction transfer operator of the module made up of
 bodies Aj, j ? l,...,iV, system (3.3) needs to be solved for all possible incident
 waves of unit amplitude with respect to the origin (i.e., for Dnv ? 1 for one (n, v) at
 a time and zero for the others). The conversion to the local coordinates of A\ is given
 by

 oo

 (3.4) Dlw = DnTIT.u{knRi)^T-v^,
 T = ? 00

 where (R^?i) is the mean-center position of A/ in polar coordinates and where we
 have again utilized Graf's addition theorem. Solving (3.3) for each Dnv, the resulting
 total scattered wave of the modules (with respect to the origin) is similarly given by

 N oo

 (3.5) 4& = E E 4rVr(W)e-i("-TW,
 1=1 r=-oo

 from which the elements of the diffraction transfer operator of the module can be read
 off directly.

 4. Scattering by a periodic line array of bodies. In the same way as in the
 previous section, the interaction theory can be used to derive a system of equations
 for the periodic line array of identical modules, where the modules have mean-center
 positions (jR,0), j e Z, and the same diffraction transfer operators M (see [35] for
 details). In this case, the system of equations (3.3) becomes
 (4-1)

 OO OO oo oo

 4nM = E E Mmn?V[&nv+ E E AiT(-iyKT-v{kn\j-l\B)e^-v^-' 71 = 0 ?OO > = -oc T= ?OO

 mGN, where the angles ipn account for the difference in direction depending
 on if the jth module is located to the left or to the right of the Ith module and are
 defined by

 ?n =

 Because of the periodicity of the geometry and of the incident wave, the coeffi?

 cients Alm? can be written as Alm? = PiA^ = PiAmpi, say, where Pt = ei/?fecosx. The
 same can be done for the coefficients of the incident ambient wave, i.e., Dlny = P\Dnv.
 Noting that Pfl = P-i and P3P\ = Pj+i, (4.1) simplifies to

 oo oo oo oo

 -W = E E Mmnia,[bnv+{-\y E Anr E Pj-iKr-,(kn\j-l\R)e^-^>-' 71 = 0 V= ? OO T ? ? OO :/=-oc

 Introducing the constants
 oo oo

 (4.2) anv = 2~2 Pj-Mkn\j - l\R)e^>-< = ]T(P_,- + (-1)"P^K^knjR),
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 which can be evaluated separately since they do not contain any unknowns, the prob?
 lem reduces to

 co co

 (4.3) Am? = J2 J2 Mmn^[Dnu + {-I)" ? AnT ont_y n = 0 V? ? 00 T ? ? co

 The efficient computation of the constants a% is not trivial as the sum in (4.2) is not
 absolutely convergent owing to the slow decay of the modified Bessel function of the
 second kind for large imaginary arguments (the terms in the sum decay like j~1/2el3?
 for some 0). Appropriate methods for the computation of the a% are outlined in [35]
 based on results of [16]. The calculation of the constants a?, n / 0, is easy, however,
 since the modified Bessel function of the second kind decays exponentially for large
 real arguments.

 4.1. The far field. In this section, the far field, which describes the scattering
 far away from the array, is described. The derivation can be found in [35] and is
 equivalent to that of [41] for electromagnetic scattering. First, we define the scattering
 angles, which give the directions of propagation of plane scattered waves far away from
 the array. Letting p = 2tt/R, define the scattering angles Xm by

 (4.4) Xm ? arccos(^m/A:), where 0m = kcosx + ?P

 and write ip for t/V Also note that xo ? X by definition. If \ipm\ < k, i.e., if

 mp -1 < cosx + ? < 1, K

 we say that m G A4 and then 0 < Xm < tt. It turns out (see below) that these angles
 (?Xm for m G M) are the directions in which plane waves propagate away from the
 array.

 The only terms which contribute to the far field are those for which \ipm\ < k.
 Thus, as y ?> ?oo, the far field consists of a set of plane waves propagating in the
 directions 9 ? ?Xm:

 1 co

 (4.5) ^ ^ + ILMz) Y: ? ? Ao, e^" - meM Xm m=-co

 From (4.5) the amplitudes of the scattered waves for each scattering angle ?Xm are
 given in terms of the coefficients AUM by

 1 co

 It is implicit in all of the above that sinxm / 0 for any m. If sin Xm ? 0, then we
 have the special situation where one of the scattered plane waves propagates along
 the array. We will not consider this resonant case here, in which the scattered field
 is dominated by waves traveling along the array, either toward x ? oo (if Xm ? 0) or
 toward x ? ?oo (if Xm ? and we refer the reader to [19] for details. In particular,
 this resonance is an artifact of the periodicity assumption.
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 4.2. Reflection and transmission matrices. For given k, R, and x> the far
 field scattering characteristics of a line array L3- are described by the coefficients A~
 and A+, calculated for unit incident potential. If x 18 positive, then the amplitudes
 of the reflected and transmitted waves traveling away from the array are given by
 A~ and Smo 4- , respectively. Analogously, for negative x, the amplitudes of the
 reflected and transmitted waves, respectively, are A+ and <5mu + A~. (Note that the
 A^ may be different for -fx and ?xO

 Thus, for given k, R, and x> we define the reflection and transmission matrices

 t/,t+ ? C#Mx#M (where denotes the number of elements in the set M), the
 columns of which contain the coefficients A^ and Smo -f , respectively, calculated
 for each incident angle +|Xn|- These matrices completely describe the far-field char?
 acteristics of the array for the incident wave of angle 4-|xl- Analogously, we define
 t~ and t~ having elements A~ and Smo H- , respectively, calculated for each inci?
 dent angle ? |Xn|? f?r the same situation but with incident angle ? |xl- The classical
 scattering matrix is then given by

 (4.7)  3 X t" r+ 3 3

 + 1

 Note that the only difference in calculating the elements of t+ and ft compared
 to r~ and t~ is the different right-hand side in (4.3) as one has to use ambient-wave
 coefficients D in one case and the complex conjugated coefficients D* in the other.
 Thus, when calculating the reflection and transmission matrices for given x? there is
 very little extra computational cost to compute them for ? \ additionally.

 If the array is up-down symmetric (i.e., with respect to the y-axis), it does not
 matter whether the incident wave travels in direction -f |xl or ~\x\-> and, m this case,

 the +- and ?reflection and transmission matrices are identical, i.e., t~ = r^" and
 v = ?

 It is useful to know how the reflection and transmission matrices change if the
 array undergoes a translation such that the mean-center position of the zeroth body
 (originally located at (0,0)) is shifted to lie at some new position (x,y). Writing

 P = [exp(i&xcosXm)J and Q ? |~exp(iA;2/sinXm)J? where \am\ is a diagonal matrix
 with diagonal elements am, the translation of the array causes the ambient wave
 incident on the array traveling in the positive direction to be phase shifted by PQ. In
 terms of coordinates centered at (x, y), the reflection and transmission matrices of the

 shifted array are thus given by rfQP and t+QP. Keeping in mind that the reflected
 and transmitted waves travel in opposite direction with respect to the ^-coordinate
 but in the same direction with respect to the x-coordinate, changing the coordinates
 back to the origin gives

 (4.8) P-1Qk+QP and P^Q-HjQP
 as the reflection and transmission matrices of the translated array. As expected, a shift
 in the x-direction by a multiple of the array spacing R leaves the matrices unchanged.

 Analogous formulas hold for xj and t~ but are not required in what follows.

 5. Scattering by multiple line arrays. It was found in [35] that in most
 situations the far-field approximation is very good, even near the line array, and some
 numerical experiments confirming this observation are given in section 7. Based on
 ideas of Mulholland and Heckl [29] for acoustic scattering and McPhedran et al. [25,
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 24, 4] for electromagnetic scattering, we present an efficient iterative method to stack
 up a finite number of periodic line arrays assuming that the far-field approximation
 is accurate for the considered stack spacing. It is noteworthy that the previous works
 consider only arrays of circular cylinders and thus arrays having up-down symmetry.

 It is easy to see from (4.4) that, once k, i?, and \ are fixed, an incident plane
 wave making an angle x/ for a i G M will result in transmitted and reflected waves
 traveling in the directions ?Xm> m e M. Thus, for a stack of arrays of the same
 horizontal spacing i?, only waves in the directions ?Xm> m ? jM, need to be taken
 into account.

 For given /c, i?, and \, the scattering characteristics of a line array Lj are com?

 pletely described by the reflection and transmission matrices *f,tf ? ?#Mx#M
 defined in section 4.2. Assuming that the reflection and transmission matrices for a
 stack of 7i ? 1 arrays are already known, we derive here how to add an nth array. To
 keep things as simple as possible, we consider only ambient waves of given incident
 angle x ? (0?7r) on the stack. Note that this implies no restriction of generality.

 Let $\n-i = W^-i and Tn_i = respectively, be the reflection and transmis?
 sion matrices of the stack consisting of n ? 1 arrays, and let sn > 0 be the (vertical)
 spacing between the stack and the array to be added on. The phase shift due to
 moving the stack along the y-axis such that the array in the stack, whose axis used to
 coincide with the x-axis, is now on the line y ? sn is encoded in the diagonal matrix

 n sinx?n)J (cf. section 4.2). The reflection and transmission matrices of
 the shifted stack are given by Qn^n-iQn and Qn1(%n-iQn, respectively. Now, place
 a line array characterized by matrices and on the x-axis as illustrated in Figure
 5.1. Assuming that the far-field approximation holds, the amplitudes of the waves
 traveling in between the old stack and the new array are

 (5-la) r =Qn*n-lQnf+,
 (5.1b) /+=tf<S + t-/
 with an incident wave field ? on the array. Furthermore, we have

 (5.2a) mn5 = x+6 + t-f-,
 (5.2b) 1n6 = Q-11n-1Qnf+.
 Eliminating /" and /+, we find that the total reflection and transmission matrices
 of the stack composed of n arrays are given by

 (5.3a) mn = x+ + t-QnWn-iQnil - r"Qn0ln-1Qn)-1t+,
 (5.3b) T? = Q-X-iQn(I - t-Qnmn.1Qn)-1t+.

 It is noteworthy that placing the new array in front of the stack is necessary in
 order to ensure that the scattering characteristics of the stack are required only in
 one direction. The backward reflection and transmission matrices, i.e., d\~ and T-,
 can be found by an analogous procedure if required.

 A measure for the total transmitted energy through the stack is given by

 (5.4) Et0t= Y, ICln)m0|2SmXm,

 where (Tn)mo is the element (m, 0) of the matrix Tn_i.
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 I?^^^^

 Fig. 5.1. i4rfrfition o/ i/ie nt/i single line array to the stack already made up ofn?1 arrays
 (plan view). Shifting the old stack along the y-axis, the reflection and transmission matrices of the
 old stack, 9tn-i and Xn_i, become Qn^n-iQn and Qn1(Zn-iQn with respect to the origin.

 6. Periodic and random arrangements. Some real-world problems involve
 a periodic arrangement of bodies (e.g., some off-shore wind farms or artificial break?

 waters), while in others the distribution is more or less random (e.g., ice floes in the
 MIZ). In the former case, the qualitative scattering behavior can be well approximated
 by looking at the corresponding problem for a doubly periodic array (i.e., an array
 which extends periodically in both horizontal dimensions). This allows us to look for
 Bloch wave solutions and find the Bloch transmission coefficient, which gives informa?
 tion about passing and stopping bands of the structure. In the latter case, artifacts
 artificially introduced by periodicity need to be suppressed as much as possible, and
 this is achieved well by averaging over different arrangements. We will consider these
 two scenarios in this section.

 6.1. Bloch waves and Bloch transmission. A substantial number of refer?
 ences exist for scattering by two-dimensional arrays of constant horizontal and vertical
 spacing as this problem arises not only in the water-wave context but also in crystal?
 lography, solid-state physics, optics, and photonics. We particularly refer the reader
 to [5, 6], since these works are built on a method similar to ours, and to [15] in the

 water-wave context. As it is the main aim of this paper to deal with random arrange?
 ments, this section is kept rather brief, and we refer the reader to the aforementioned
 works for further developments.

 We consider the case of a doubly periodic array, i.e., an array which extends
 periodically in both horizontal dimensions. In terms of the notation from the previous
 sections, we assume that, for given fc, R, and x> a single line array with reflection
 and transmission matrices r^t^ G C^Mx^M as defined in section 4.2 is repeated
 periodically along the y-axis with fixed period (i.e., vertical spacing) s. The periodicity
 of the geometry motivates us to look for periodic solutions satisfying

 (6.1) <t>(x, y + s,z) = eibs(j)(x, y, z).

 Such solutions are sometimes called Bloch waves and the factor el6s is the Bloch
 transmission coefficient. The real part of b encodes the phase change as the wave
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 propagates one period while the imaginary part gives the change in amplitude. Inter?
 vals of ambient wavenumbers k for which b is real are known as passing bands, while
 those for which b has nonzero imaginary part are known as stopping bands.

 It is sufficient to consider only a single line array placed on the x-axis and to
 enforce periodicity conditions at y = ?s/2,

 (6.2) <t>{x, s/2, z) = elbs(j)(x, -s/2, z) and dy<t>(x, s/2, z) = elbsdy(j>(x, -s/2, z).

 A method of determining the value of b for given fc, i?, and \ can be developed as
 follows (based on [29]).

 We adopt the notation from the previous section for wavefields above and below
 the array (also cf. Figure 5.1) by respectively writing ?+ and S~ for the forward and
 backward traveling wavefields below the array (S and ?Kn_i<5 in the previous section)
 and j? for the corresponding wavefields above the array. Also keeping in mind that
 the far field at y ? ?s/2 has the form (4.5), conditions (6.2) can be expressed as

 (6.3) ei6fl(<S++<T)=Q/+ + Q-7~ and e[bs(S+ - S~) = Q/+ - Q"1/"

 Adding and subtracting these two equations gives

 (6.4) ei?js?+ = Q/+ and elbs5~ = Q~l f~.
 From (5.1b) and (5.2a), we also have

 (6.5) /+= t+a++r-/- and (T = t+<5 + r/~
 Combining (6.4) and (6.5) to eliminate S and /+ eventually leads to

 (6.6)
 5+
 r

 __ e 165
 5+
 r

 i.e., e?lbs is found by seeking eigenvalues of the matrix in (6.6) (owing to the symmetry
 of the problem, the eigenvalues appear in pairs of complex conjugates).

 6.2. Averaging. Since the method for calculating the scattering by a large stack
 is computationally cheap, it is particularly suitable if the bodies are arranged more
 or less randomly and the exact body positions are neither known nor essential. In
 this case, it is important to suppress effects artificially introduced by the periodicity
 of the geometry, and this can be done by averaging over random samples. This is the
 strategy, which is aimed at simulating wave scattering in the MIZ.

 It is straightforward and computationally very cheap to sample over random
 choices of distances between the line arrays in a stack (i.e., over vertical spacing
 sn). This requires only multiple runs of the iteration (5.3) but ensures nonperiodicity
 in the ^/-direction. The reflection and transmission matrices of a single line array need
 only be calculated once.

 The next simplest choice is to sample as well over many stacks, each having
 a different array spacing of the line array (i.e., over horizontal spacing i?). This
 additionally breaks up the periodicity in the x-direction but requires the calculation
 of new reflection and transmission matrices for each sample. The computational cost
 is considerably higher than that for the first scheme, but it is still manageable, as the
 typically most costly operation, the calculation of the diffraction transfer operators,
 does not need to be carried out multiple times. As all arrays in one stack have to



 WATER-WAVE SCATTERING BY VAST FIELDS OF BODIES 1579

 have the same spacing in order to ensure the same scattering angles, using arrays with
 different spacings in the same stack is not sensible.

 Obviously, there are numerous other possible choices for randomization and av?
 eraging. For example, computationally cheap choices are randomly shifting each line
 array in the stack by a small distance or randomly rotating modules within each array.

 We do not follow these ideas here. It will be shown in section 7.2 that the approaches
 above already give reasonable agreement with experimental data in the case of ice
 floes in the MIZ.

 It is also noteworthy that, depending on the application, there might be other
 parameters over which averaging could be performed. For example, it might be sensi?
 ble to average over body properties (size, mechanical properties, etc.) as well, which
 has proved very useful in other applications [2]. We restrict our attention here to
 averaging over random changes in the body positions, that is, changes in sn and R.

 The quantity of main interest when considering scattering by ice floes in the MIZ is
 the total transmitted energy, which can be measured by the quantity Etot (cf. (5.4)),
 and its attenuation. Therefore, we find Etot as a function of M, where M is the
 number of line arrays in the stack, for given (constant) horizontal array spacing R
 and vertical spacing s or as an average over Z samples of stacks, each sample yielding
 an energy E\?\ i = In this case, Etot = Y%=\ E\ol/Z. If only random
 choices of distances between the line arrays in a stack are considered, each E\ot is
 calculated by choosing each sn, n = 2,..., M, randomly about a mean s with a given
 standard deviation. If random choices of array spacings are also required, each E\ot
 is calculated by first choosing a common spacing for the line arrays in the ith stack
 (again as a random choice about a mean R with a given standard deviation) and then
 choosing each sn, n = 1,...,M, randomly about a mean s with a given standard
 deviation as before.

 7. Numerical simulations. We present numerical simulations showing some
 typical results, which can be obtained by the presented method. Two different body
 types are considered: the rigid bottom-mounted circular cylinder as a simple model
 for supporting columns of one or more structures or as a breakwater and the floating
 elastic plate of shallow draft as a model for ice floes. Both models are well studied,
 and line arrays of such bodies have already been investigated in detail by the authors,
 including validation and comparison with other results [35, 32].

 The ice floes are modeled as thin elastic plates of shallow draft sitting at the
 water surface, as modeled in [26]. We present results for square ice floes and circular
 ice floes. The employed solution method for circular ice floes is given in [34].

 7.1. Bottom-mounted circular cylinders. We present some simulations for
 circular rigid bottom-mounted cylinders of radius a. This problem is equivalent to
 two-dimensional acoustic scattering in a medium with constant sound speed c. The
 ^-dependence can be omitted, and the theory above applies with the following modi?
 fications:

 1. The dispersion relation (2.3) is replaced by k ? u/c, where c is the speed of
 sound in the medium under consideration, and the dispersion relation (2.4)
 is omitted.

 2. All factors cos km(z + d), cos kmd, and fo are replaced by 1.
 Note that the first point implies that there are no evanescent modes in this problem;
 i.e., the sums over m and n in the eigenfunction expansions (2.5) and (2.7), respec?
 tively, contain only the terms for m = 0 and n = 0. The diffraction transfer operator
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 Fig. 7.1. i?ea/ part o/ t/ie potential on the y-axis. Thick lines show the full potential calculated
 via (7.1) while thin lines correspond to the far-field approximation (4.5) for incident angle 7r/3 (left)
 and tt/2 (right). The cylinder radius is a ? 1 and the other data is given by A = 1.8, R = 3 (solid
 lines), A = 1.8, R = 4 (dashed lines), A = 2.5, ? = 3 (dotted lines), and A = 2.5, ? = 4 (dash-dotted
 lines).

 is given by (2.11). Moreover, we have ko = ?iuj/c. This problem was considered in
 detail by, e.g., [17].

 7.1.1. Validity of the far-field approximation. We begin by presenting some
 computations illustrating how quickly the far-field approximation is accurate in prac?
 tice. Figure 7.1 shows the real part of the potential along the y-axis calculated using
 the full solution (thick lines), i.e.,

 CO

 (7.1) 4>s= Yl PjAoMkor^J,
 j,fl=-OC

 and the far-field approximation given by (4.5) (thin lines) for different parameter
 values. It can be seen that the far-field approximation and the full solution become
 similar quickly away from the array axis (they are nearly indistinguishable at y ? ?2
 for all cases), implying that the approximation is valid even near the array. It can be
 seen that the approximation is generally more accurate for perpendicular incidence
 (X ? ft/fy- The comparison of the imaginary parts of the potential (not shown) gives
 analogous results.

 7.1.2. Impact of distribution of cylinder radii. We investigate what impact
 a change in the distribution of the cylinders has. For this purpose, we consider modules
 of two adjacent cylinders of different radii a\ and a2. We choose a\ ? 0.25,0.5,0.75,1
 and a2 accordingly such that the sum of the cross-sectional areas is always equal to
 27T, i.e., a2 = \/2 ~ av Obviously, a\ ? 1 implies a2 = 1, i.e., the two cylinders are
 identical in this case, and this is in fact equivalent to a line array of single cylinders

 with half the spacing, which we consider in the next section.
 We choose the line-array spacing B = 6 and consider the total reflection of a

 stack of two and eight such line arrays over a range of incident wavenumbers. The
 incident angle is \ ? 7r/3 in all cases, and the stack spacing in sn = 5. The results
 are presented in Figure 7.2.

 It can be seen that the general behavior of the curves is more or less the same
 for all cylinder radius distributions, particularly for small wavenumber. This is to
 be expected since the long waves do not interact as strongly with the objects. It is
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 two arrays eight arrays

 Fig. 7.2. Total transmission (as defined in (5.4)J versus incident wavelength for different
 cylinder radius distributions for two arrays (left) and eight arrays (right) in the stack.

 Fig. 7.3. Total transmission as defined in (5.4) for eight arrays in the stack (thin line) and
 Bloch transmission (thick line) versus incident wavelength for incident angle \ ? k/3 (left) and
 X = tt/2 (right).

 interesting to note that there is a sharp spike around k = 0.7 for all cylinder radius
 distributions except for the case where the cylinders are identical.

 7.1.3. Bloch transmission in a fully periodic stack. We want to investigate
 how well the Bloch transmission approximates the transmission by a finite number
 of arrays. For this purpose, we consider the setting with eight arrays of identical
 cylinders from the previous section and compare this to the corresponding Bloch
 transmission. Figure 7.3 (left) shows the total transmission for a stack of eight arrays
 of cylinders with unit radius compared to the eighth power of the largest eigenvalue
 of the matrix in (6.6) having absolute value less than or equal to one multiplied with
 sinx- The thin curve is obviously identical to the solid curve in Figure 7.2 (right).
 Figure 7.3 (right) shows the analogous results for incident angle x ? -Kj2.

 It can be seen that the Bloch transmission indeed approximates the behavior of
 eight arrays quite well. A comparison with a stack of twenty arrays (not shown) gives
 even better agreement, as would be expected. As pointed out before, more relevant
 information can be extracted from Bloch mode analyses; see [5, 6], for example.

 7.2. Ice floes. The quantity of main interest when considering scattering by
 ice floes in the MIZ is the total transmitted energy Etot (cf. (5.4)) and its attenua
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 Fig. 7.4. Total transmission versus number of arrays in the stack for incident angle x ? k/3
 and two different wavelengths with and without different averaging techniques using square (left)
 and circular (right) ice floes.

 tion. We present some qualitative results for typical parameter sets comparing square
 and circular ice floes and present a comparison of the attenuation coefficient with
 experimental data of [38].

 The ice floes are modeled as floating elastic plates of shallow draft following [26].
 They are determined by the (two-dimensional) region they occupy as well as the
 dimensionless stiffness and mass parameters

 Eh3 1 Plh

 where E is Young's modulus, v is Poisson's ratio, h is the floe thickness, p and p\ are
 the density of water and ice, respectively, and L is a characteristic length.

 7.2.1. Square and circular ice floes. For incident angle \ = x/3 and two
 wavelengths A = 1.8,2.5, we consider scattering by stacks of square and circular ice
 floes of nondimensional mass and stiffness 0.02 (in the nondimensionalization of [26]).
 The water depth is taken as 1.5 and basically implies deep water. Figure 7.4 shows
 the total transmitted energy versus number of arrays in the stack for the periodic
 arrangement as well as using the different averaging methods described in section 6.2.
 It can be seen that averaging over random distances between the arrays is necessary
 in order to obtain an exponential decay of the transmitted energy, which is what is
 observed in experiments; cf., e.g., [38]. This effect is also referred to as localization
 in electromagnetics theory. Also, averaging over the spacing of the arrays affects the
 results only marginally. It can be noted that solely averaging over array spacings
 (not shown) leads not to an exponential decay but to an oscillatory curve similar to
 that without any averaging. Thus, averaging over distances between arrays is most
 important, which, serendipitously, is also the least costly averaging.

 It can also be observed that the respective curves for square and circular ice floes
 look more similar to one another for the shorter incident wavelength.

 7.2.2. Comparison with experimental data. It is not our purpose here to
 give an extensive comparison of our model to experimental data. We also note that
 the experimental data is not extensive, is often missing important information (such
 as floe size and thickness), lacks consistency (so that experiments performed in similar
 conditions give quite different results), and is mostly more than thirty years old.
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 Table 7.1
 Attenuation coefficient experimentally found by Squire and Moore [38] and simulation results

 for 0.5 m thick ice floes of 40 m side length (simulations 1 and 2) as well as 0.6 thick ice floes of 50
 m side length (simulation 3).

 Wave period [s] Attenuation [10 4 m L]
 Experiment Sim. 1 Sim. 2 Sim. 3

 12.2 0.272 ?0.054 0.0258 0.0005 0.0011
 9.4 0.438 ?0.036 0.0102 0.0032 0.0658
 7.6 0.855 ?0.049 0.6310 0.2341 1.0031
 6.4 1.087 ?0.037 6.2480 4.6381 11.142
 5.5 1.214 ?0.192 19.392 24.153 12.825

 Nevertheless, we compare our simulation results to the experimental data of
 Squire and Moore [38], which is regarded as one of the best experiments ever per?
 formed. Certainly, it is one of the few experiments to have been published in detail,
 or to have been the subject of an entire paper. Squire and Moore give attenuation
 coefficients for six dominant wavelengths. The attenuation coefficient is the number
 a, for which the curves in Figure 7.4 most closely satisfy

 (7.2) Etot(M) ^e-aMsinx.

 It turns out that, since Etot(M) has strong exponential-decay behavior, a can easily
 be determined by a least-square fit, and the approximation error is very small in
 all cases considered. We use square ice floes of dimensionless side length 2 for all
 simulations, and we only employ averaging over distances between the arrays in a
 stack.

 We choose the following parameters to account for the experimental conditions:
 E = 6 ? 109 Nm-2, v = 1/3, p = 1000 kg/m3, and p{ = 900 kg/m3. All numerical
 experiments refer to head-on incidence, i.e., \ = tt/2. The body spacing in the line
 arrays is B ? \/4/c, where c is the ice concentration given by Squire and Moore as
 0.5. The water depth is two thirds of the wavelength in order to account for deep
 water.

 Table 7.1 shows the (dimensional) attenuation coefficient experimentally found
 by Squire and Moore together with our simulation results. Simulations 1 and 2 refer
 to L = 20 m (i.e., floe side length 40 m) and h = 0.5 m, while simulation 3 is for
 L = 25 m and h = 0.6 m. For simulation 1, the averaging has been done over a
 vertical spacing with mean 2i? and standard deviation 1.5, while simulations 2 and
 3 refer to averaging with mean B and standard deviation 1/3. In all cases, a cut-off
 was implemented so that ice floes cannot overlap.

 The results show that the present method gives attenuation coefficients which are
 within an order of magnitude. We could fit the data for a given frequency by chang?
 ing the physical parameters to values which would not be unrealistic. However, the
 present scattering results show much greater variation in frequency than was observed
 in the experiment. This feature was also observed for the simpler two-dimensional

 model [14]. Several reasons for this behavior are possible, and further research, and
 more experimental measurements, are required. The principle shortcoming of the
 experimental data currently available is the inadequate measurement of the ice floe
 properties, such as floe length, floe thickness, and Young's modulus. Furthermore,
 ice floe properties can change rapidly with distance and time, especially near the ice
 edge, and only a single wave recording buoy was flown by helicopter to various loca?
 tions in the Squire and Moore experiment, so that the measurements were not made
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 simultaneously. On the other hand, the present model could also be developed further
 by averaging over material properties (such as floe size and floe thickness), which has
 proved successful in other areas [2], or by accounting for larger floes further away from
 the ice edge.

 8. Summary and discussion. A very efficient solution method for the water
 wave scattering problem by a large number of bodies has been presented. The method
 is applicable to arbitrary bodies. Bloch transmission for periodic configurations of
 bodies as well as averaging techniques for more or less random body arrangements
 have been discussed. In particular, it has been shown how the method can be used
 to calculate the attenuation of ocean waves by Marginal Ice Zones (MIZs).

 The presented simulation results for MIZs are rather preliminary but show the
 potential of the method to build a model MIZ, for which simulations are feasible. It is
 also worth pointing out that the discussed averaging techniques are highly paralleliz
 able, although this is probably not necessary. More research needs to be undertaken
 to find out whether it is sensible to average over other model parameters as well,
 such as the ice floe geometry, size, material parameters, and so on. Moreover, the
 influence of the particular ice floe model is worth examining. Such investigations will
 be presented in future publications.

 It is noteworthy that, because of the efficiency of the method, it is also easy to
 incorporate further observed properties of MIZs, such as a changing denseness in the
 ice cover or a changing thickness of the ice as functions of distance from the ice edge.

 Moreover, the evolution of the directional spectrum can also be extracted from the
 simulation results.
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