DENSITY IN THE LIGHT OF PROBABILITY THEORY-II*

By E. M. PAUL

Indian Statistical Institute

SUMMARY. Let $\{X_0\}$ be a sequence of abstract spaces, each X_0 consisting of the points 0, 1, 2, At the point r in X_0 , we place probability $1/2(1-1/q_0)$, q_0 being the n-th prime number. Let X be the product space X_0 , X_0 , ... and let P be the needuct space X. X_0 , ... and let P be the needuct space X.

Let J be a sequence $\{j_m\}$ of positive integers. Let S be any set of positive integers. $M_J^{U}(S)$ is the set of vectors $(x_1, x_1, \ldots) \in X$ such that $2^{x_1} \ldots q_n^{x_n} \in S$ for infinitely many $n \in J$. $M_J^{U}(S)$ is the set of vectors $(x_1, x_1, \ldots) \in X$ such that $2^{x_1} \ldots q_n^{x_n} \in S$ for all sufficiently large $n \in J$. We prove that $P(M_J^{U}(S)) \leq \delta_L(S) \leq \delta^{U}(S) \leq P(M_J^{U}(S))$ for all sets S if and only if $\frac{\log J_{m+1}}{\log J_m}$ is bounded as $m \to \infty$. $\delta_L(S) = 0$ and $\delta^{U}(S) = 0$ stand for lower and upper logarithmic densities, respectively.

Let f be a finite function defined on the set of positive integers. Suppose for a J satisfying the condition above, $\lim_{m\to\infty} \int \left(2^{\frac{\pi}{2}} \dots e_{f}^{\frac{\pi}{2}}\right)_{m}\right) = g(s)$ exists with probability 1. Then f has a distribution and this is the same as that of g(s); we employ logarithmic density.

GENERALIZATION OF THE MAGNIFICATION THEOREM

We now generalize the magnification theorem in the case of the special example discussed in the previous paper (Paul, 1962). Let J be a class of positive integers. Let S be an arbitrary set of positive integers. We define the upper J-magnification of S, $M_J^q(S)$, to be the set of vectors (x_1, x_2, \ldots) such that $\binom{2^{x_1}}{3^x} \ldots \binom{x_n}{q_n} e S$ for infinitely many values of $n \in J$. The lower J-magnification of S, $M_J^q(S)$, is defined to be the set of vectors (x_1, x_2, \ldots) such that $\binom{2^{x_1}}{3^x} \ldots \binom{x_n}{q_n} e S$ for all sufficiently large values of n in J. Obviously, $M^L(S) \leqslant M_J^q(S) \leqslant M_J^q(S) \leqslant M^p(S)$. This raises the question of obtaining sharper estimates for lower and upper logarithmic densities.

Let J consist of j_1, j_2, \ldots , in ascending order. We shall prove the following theorem.

Theorem: $P\{M_J^L(S)\} \leq \delta^L(S) \leq \delta^U(S) \leq P\{M_J^U(S)\} \text{ for all sets } S \text{ if and only if } \left(\frac{\log j_{s+1}}{\log i}\right) \text{ remains bounded as } n \to \infty.$

The proof of the 'if' part is similar to the proof given by the author (Paul, 1962). Let us call the space $X_1 X_2 \dots X_{j_1}$ by the name Y_1 and $X_{(j_1+1)} X_{(j_1+2)} \dots X_{j_2}$ by the name $Y_2 \dots$ In each space X_n , let us introduce the

Part 1 of this paper has been published in Sankhya, Series A, 24, Part 2, pp. 103-114.

SANKIIYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

measure described earlier by the author (Paul, 1962) and in each space Y_m let us introduce the product measure. X may be looked upon as the space $Y_1Y_2Y_3...$ Instead of the spaces $X_1, X_2, ...$ (Paul, 1962; Section 2) we now have $Y_1, Y_2, ...$ We treat the point (0, 0, ..., 0) of Y_n as the element 0 of X_n . Let $(x_1, x_3, ..., x_n, 0, 0, ...)$ $\varepsilon I \subset X$. We associate with it the number $q_n^{x_1} ... q_n^{x_n}$. If $\sigma \subset I$, we define $\delta^{\sigma}(\sigma)$ to be the upper logarithmic density of the corresponding set of positive integers. The space $Y_1, Y_2, ...$ and δ satisfy Postulates (A) to (F) of Section 2 and condition G of Section 3 of the previous paper (Paul, 1962). The proof that condition H also holds is similar to the preof given in Section 6 of the previous paper (Paul, 1962) but requires a little explanation. Let B be a right-complete set in $I \subset Y_1, Y_2, ...$ Let $(x_1, ..., x_m, 0, 0, ...)$ be a basic vector of B and let $x_m > 0$. Let $j_n < m \le j_{n+1}$. Let

$$f_n(s) = \frac{(1 - 1/q_1^s)(1 - 1/q_2^s)...(1 - 1/q_{f(n+1)}^s)}{\left(2^{z_1} ... q_m^{z_m}\right)^s}$$

We are interested in proving that $\sum_{n} f_{n}(s)$, over all basic vectors, is continuous on [1, 2]. Since m may be $< j_{(n+1)}$, our previous argument does not go through directly. So we introduce

$$\phi_n(s) = \frac{(1-1/q_1^s)...(1-1/q_m^s)}{\left(2^{z_1}...q_m^{z_m}\right)^s}.$$

Then

$$\frac{f_n(s)}{\phi_n(s)} \geqslant \left(1 - \frac{1}{q_{j_n}}\right) \dots \left(1 - \frac{1}{q_{j_{n+1}}}\right) \geqslant \frac{\log q_{j_n}}{2 \log q_{j_{n+1}}},$$

by Merten's theorem, $> \alpha > 0$, by hypothesis on J.

We now apply the argument given in the previous paper (Paul, 1962) and prove that $\sum_{n} \phi_{n}(s)$ is continuous on [1, 2]. Continuity of $\sum_{n} f_{n}(s)$ on [1, 2] follows immediately, and the 'if' part is proved.

Before proving the 'only it' part, we give an example of a J and a right-complete set in $I \subset Y_1 Y_2 \dots$ such that condition H (Paul, 1962) is violated. Of course, in this case $\left(\frac{\log j_{s+1}}{\log j_s}\right)$ will be unbounded. Let us take a fixed number < 1, say $\frac{3}{4}$. Also, let us take the sequence $\frac{9}{10}, \frac{10}{11}, \frac{11}{12}, \dots \rightarrow 1$.

Let $j_1=2$, so that the first block of primes is 2, 3. Let us declare $(0,1,0,0,\ldots)$ and $(2,1,0,0,\ldots)$ as basic vectors. The cylinder sets whose bases are the points (0,1) and (2,1) carry probability

$$\beta_1 = \frac{(1-\frac{1}{2})(1-\frac{1}{2})}{3} + \frac{(1-\frac{1}{2})(1-\frac{1}{2})}{2^2 \cdot 3} = \frac{5}{36}.$$

DENSITY IN THE LIGHT OF PROBABILITY THEORY-II

We now determine j_1 . The set of numbers of the form 2^{n_1} 3^{n_2} has density zero. Thus the complementary set C_1 has density 1. We now take numbers 5, 7, 10, 11, 13, 14, 15, 17, ..., M_1 of C_1 so that

$$\frac{\sum \frac{1}{n} \text{ of these number}}{\sum \limits_{n=1}^{M_s} \frac{1}{n}} > \frac{9}{10}.$$

Let

$$\phi(m) = (1-1/q_1) \dots (1-1/q_m)$$

We take a ja so large that

$$\beta_2 = \frac{5}{36} + \phi(j_2). \, \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{M_2} \, \right] < \frac{3}{4}.$$

We now introduce basic vectors so that $5, 7, 10, ..., M_2$ all become members of our right-complete set. In order to admit 5, we declare (0, 0, 1, 0, 0, ...) as a basic vector. In order to admit 7, we declare (0, 0, 0, 1, 0, 0, ...) as a basic vector. For 10, we declare (1, 0, 1, 0, 0, ...), and proceed like this until M_2 gains entry into our right-complete set. Of courso, we make j_2 so large that $g_i > M_2$.

Let C_1 be the complement of the set of numbers of the form $2^{n_1}...q_{j_1}^{n_{j_1}}$. We choose an M_2 so large that

$$\underbrace{\left\{\begin{array}{c} \sum\limits_{(j_{1+1})}\frac{1}{n}\\ \frac{1}{n}\\ \frac{M_{1}}{2}\frac{1}{n} \end{array}\right\}}_{n:C_{1}} \geq \frac{10}{11}.$$

We choose a j_3 so large that $\beta_3 = \beta_2 + \phi(j_3) \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{M_3}\right) < \frac{3}{4}$.

We then admit basic vectors so that all n in E_n $\{ncO_n, q_{(j_2, 1)} \leqslant n \leqslant M_3\}$ gain entry into our right-complete set. Proceeding like this, we construct a right-complete (with respect to J) set whose upper logarithmic density is = 1 but whose magnification has measure $<\frac{3}{2}$.

Now, let J be any given sequence such that $\frac{\log j_{n+1}}{\log j_n}$ is unbounded. The counter example given above can be modified so as to prove the 'only it' part, as follows. Suppose q_{k+1}, \ldots, q_l is a block of consecutive primes. Let M be such that $q_{k+1} < M < q_l$. Consider the set of numbers all of whose prime factors are exclusively from among q_1, q_2, \ldots, q_k , let G_l be the complement of this set. Consider the quantity

$$\underbrace{\left\{ \sum_{\substack{n \in C_k \\ q_{k,1}} < n \leq M} \frac{1}{n} \right\}}_{\sum_{i=1}^{k} \frac{1}{n}} \ge \frac{\log M - e^* \log q_k}{\log M}$$

SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS: SERIES A approximately (v denotes Euler's constant),

$$= 1 - \epsilon^* \cdot \frac{\log q_k}{\log M}$$
.

We now use the following lemma:

Lemma: Let $a_1, a_2, ...$ be increasing sequence of positive integers such that $\log a_{n+1}$ is unbounded. Take any $\epsilon > 0$, $\delta > 0$. We can determine an n and a positive, integer M such that

$$a_n < M < a_{n+1} \quad and \quad \frac{\log a_n}{\log M} < \epsilon \quad and \quad \frac{\log M}{\log a_{n+1}} < \delta.$$

Rigorizing the nonrigorous part above is trivial.

Corollary: Let f(n) be a finite real-valued function defined on the set of positive integers. Suppose there is a sequence J of positive integers j_n such that $\frac{\log j_{n+1}}{\log j_n}$ is

bounded and $f(2^{x_1}, \dots, q_{j_n}^{x_{j_n}})$ converges with probability 1 to a random variable g(z), as $n \to \infty$. Then f has a distribution and this is the same as the distribution of g(z); we use logarithmic density.

REFERENCE

PAUL, E. M. (1962): Density in the light of probability theory. Sankhya, Series A, 24, 103-114.

Paper received : March, 1962.