
Some Studies for Rotational Invariance
in Convolutional Neural Networks

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF

THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Yash M. Sawant
[Roll No: CS-1614]

under the guidance of

Dr. Swagatam Das
Associate Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute
Kolkata-700108, India

July 2018

CERTIFICATE

This is to certify that the dissertation entitled “Some studies for
Rotational Invariance in Convolutional Neural Network ” submit-
ted by Yash M. Sawant to Indian Statistical Institute, Kolkata, in partial
fulfillment for the award of the degree of Master of Technology in Com-
puter Science is a bonafide record of work carried out by him under my
supervision and guidance. The dissertation has fulfilled all the requirements
as per the regulations of this institute and, in my opinion, has reached the
standard needed for submission.

Prof. Swagatam Das
Associate Professor,
Electronics and Communication Sciences Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

i

Acknowledgements

I would like to express my thankfulness to my supervisor Prof. Swagatam
Das for encouraging me to pursue research in deep learning and for his helpful
suggestion and constant guidance and support.

My sincere thanks to Shounak Datta for his valuable suggestions and
discussions. I would also like to thank my friends, who are keen to listen to
my doubts.

Lastly but not the least, I am thankful to God in the form of beautiful
family, good teachers, and amazing friends.

ii

Abstract

Computer vision is an amazing field of using computing machinery to re-
semble human vision system where common tasks include image recognition.
Convolutional Neural Networks(CNNs) has shown amazing capabilities for
such tasks. Besides several advantages, CNNs are significantly susceptible to
the rotational transformation of images. CNNs from the input images tries
to abstract each image by learning local knowledge using convolutional filters
applied over all parts of the image. We propose two methods for considering
rotational invariance in learning. The first method uses rotational invariant
filter method. The second method uses nonlinear neighbourhood component
analysis for learning specialized filters for which the two images of the same
class but in different rotational space lie close to each other. We discuss
future scope solution for the NCA method.

iii

Contents

List of Figures 1

1 Introduction 2
1.1 Convolutional Neural Network 2
1.2 Rotational Invariance . 3
1.3 Our Contribution . 3
1.4 Outline . 3

2 Related Work 4
2.1 Data Augmentation with Rotational Invariant Layer 4
2.2 Rotation of Filters and Feature Maps with Maxout Networks . 5

3 Preliminaries 6
3.1 Restricted Boltzmann Machine (RBM) 6

3.1.1 Training RBM . 6
3.1.2 Sampling in an RBM 7

3.2 Non-Linear Neighbourhood Component Analysis 8
3.2.1 Nonlinear NCA . 9
3.2.2 Deep Belief Network 10
3.2.3 Greedy Layer-wise Pretraining 11

4 Proposed Methods 13
4.1 Baseline CNN . 13

4.1.1 Training . 14
4.2 Rotational Invariant Filters 15

4.2.1 Training Rotational Invariant Filters 15
4.3 NCA Objective on CNN . 16

4.3.1 Difficulties in Training 16

iv

5 Results and Experiments 17
5.1 Preparing Datasets . 17
5.2 Results . 17

6 Conclusion and Future Work 20
6.1 Future Work . 20

6.1.1 Pretraining CNN as Convolutional DBN 20
6.1.2 Convolutional RBM 20
6.1.3 Probabilistic Max-pooling 20

6.2 Conclusion . 21

v

List of Figures

2.1 Rotating 3× 3 Filters...[8]

3.1 Image Reconstruction using RBM..............................[11]

3.2 Learning a representation in low dimensional space...[13]

4.1 Baseline ConvNet for Comparison..............................[16]

4.2 Rotated MNIST images..[16]

1

Chapter 1

Introduction

1.1 Convolutional Neural Network

Convolutional Neural Network architectures popularly known as CNN or
ConvNet is a class of deep feed-forward neural networks mostly used for
image recognition tasks.

CNNs like traditional feed-forward neural architectures consists of an in-
put image, a convolutional hidden layer and output layer. The hidden layer
of a CNN typically consists of convolutional layers, pooling layers, fully con-
nected layers and sometimes normalization layers. One of the important
operation in CNN is convolution and the so the name. Mathematically it is
a cross-correlation rather than a convolution. A set of convolution filter is
applied over the image computing a singular value for each part known as
receptive field of the singular value. Doing so, the filters learn the spatial con-
stancy feature detecting structures as a real-world image may be composed
of a different repeating pattern. The filters are not learned in rotational in-
variant fashion as the filters are applied over the image as a sliding window
stride horizontally and vertically.

CNNs also consists of two major pooling techniques for convolutional
hidden volumes. They are used to generalize the local detecting feature in
the vicinity and also helps in reducing the number of neurons for further
processing. Pooling helps in resolving small translational invariance. Then
comes the Fully Connected Layers(FCs) that connect every neuron in the last
convolutional volume to every neuron in this layer similar to traditional MLP
neural architecture. As the filters are mainly learned in the described fashion

2

reducing the classification loss, the CNNs are invariant to small distortions,
translations, scaling but are sensitive to rotations. In this work, CNN is
mostly adapted for achieving rotational invariance learning.

1.2 Rotational Invariance

In computer vision or image recognition tasks, CNN has outperformed tradi-
tional techniques such as SIFT[1] as compared in ImageNet classification [2].
Rotational Invariance is necessary for domains such as in textured images or
in areas of application of object detection. Besides several feature learning
advantages, CNNs are significantly susceptible to the rotational transforma-
tion. Rotational Invariance is necessary in many areas of computer vision
such as object tracking, texture classification.

1.3 Our Contribution

In this work, a baseline CNN is compared to the proposed method for achiev-
ing rotational invariance. The proposed method is motivated by the work
of Cheng et. al [3]. In the work of Cheng, rotational invariance is achieved
through data augmentation of rotational transformed images with the orig-
inal ones and adding a new FC layer which they called rotational invariant
(RI) layer and with modified objective forced on this layer to achieve rota-
tional invariance.

1.4 Outline

The rest of this report is organized as follows.

• Chapter 2 discusses related work for achieving rotational invariance for
CNN architectures.

• Chapter 3 discusses some background for CNN and related concepts in
this work.

• Chapter 4 discusses baseline CNN model and the proposed methods.

• Chapter 5 discusses results achieved by the baseline CNN, the proposed
method and the future scope.

3

Chapter 2

Related Work

2.1 Data Augmentation with Rotational In-

variant Layer

Due to limited size of the training set, performing data augmentation to
artificially increase the number of training examples is necessary to avoid
overfitting. Rotate1 the image set randomly by defining K rotation angles.

T = {φ1, φ2, φ3, ..., φK} (2.1)

Given the training samplesX
′
= {xi ∈ X∪TφiX} and their corresponding

labels Y
′
= {yxi |xi ∈ X

′}.
In the original paper[3], CNN is modified by adding one additional layer

known as Rotational Invariant layer with the modified objective

J = C(X
′
, Y

′
) + λ1R(X,TφX) +

λ2

2
‖W‖2

2 (2.2)

and

R(X,TφX) =
1

2N

∑
xi∈X

‖f(xi|W)− 1

K

K∑
j=1

f(Tφjxi|W)‖2
2 (2.3)

1Content taken from original paper (Cheng et.al 2016)

4

2.2 Rotation of Filters and Feature Maps with

Maxout Networks

In [4], filter rotation is done through various angles such as can be of

T = {0, π
4
,
π

2
,
3π

4
, π,

5π

4
,
3π

2
,
7π

4
} (2.4)

Thereby producing convolution volumes equal to the number of rotated an-
gles. These convolutional volumes can individually be treated as single Con-
vNet flow[5] for each different rotated angles and can be concatenated at
the end to create a single representation layer for all the channel by using
Maxout[6] technique suggested by (Goodfellow, 2013). In practice, the num-
ber of output feature maps will be large and for rotated angles will increase
furthermore the number of feature maps and following convolutional layer
will receive the higher number of feature maps. In order to reduce these net-
work requirement, Maxout is carried on different rotated feature maps itself
to concatenated into one feature map and sent further for next convolutional
layer. The key idea of maxout networks is to output the max of several input
feature maps when applied to several feature maps of the same dimension,
will output a single feature map of the same original dimension.

In [4] filters are rotated in the following way.

Figure 2.1: Rotating 3× 3 Filters by angles in set T

The corresponding weight values are shifted to right in circular fashion
as shown in figure 2.1 for 0, π

4
and so on.

5

Chapter 3

Preliminaries

3.1 Restricted Boltzmann Machine (RBM)

The restricted boltzmann machine (RBM) is a two-layer, bipartite, undi-
rected graphical model with a set of binary hidden units h, a set of (binary
or real-valued) visible units v, and a symmetric connections between these
two layers represented by a weight matrix W . The probabilistic configuration
for an RBM is defined by its energy function as follows:

P (v, h) =
1

Z
exp(−E(v, h)) (3.1)

where Z is the partition function. If the visible units are binary, E(v, h) is
defined as:

E(v, h) = −
∑
i,j

viWijhj −
∑
j

bjhj −
∑
i

civi (3.2)

3.1.1 Training RBM

The parameters of the RBM can be learnt by performing stochastic gradient
descent on the empirical negative log-likelihood1 of the training data.

L(θ,D) =
1

N

∑
x(i)∈D

log p(x(i)) (3.3)

1Content taken from deeplearning.net/tutorial/rbm.html

6

deeplearning.net/tutorial/rbm.html

P (x) =
∑
h

P (x, h) =
∑
h

exp(−E(x, h))

Z
(3.4)

And, free energy for convenience is defined as follows:

F(x) = − log
∑
h

exp(−E(x, h)) (3.5)

The derivative of negative of log p(x) is given by:

−∂ log p(x)

∂θ
=
∂F(x)

∂θ
−
∑
x̄

p(x̄)
∂F(x̄)

∂θ
(3.6)

We can approximate the second term in equation 3.6 by Monte Carlo
Markov Chain (MCMC) technique∑

x̄

p(x̄)
∂F(x̄)

∂θ
=

1

|N |
∑
x̄∈N

∂F(x̄)

∂θ
(3.7)

where x̄ of N to be sampled from p(x).

3.1.2 Sampling in an RBM

Gibbs sampling is the technique used for generating samples from p(x) by
initializing the visible variables v by some x(i) ∈ D.

• Gibbs Sampling The idea in Gibbs sampling is to generate posterior
samples by sweeping through each variable (or block of variables) to
sample from its conditional distribution with the remaining variables
fixed to their current values.

h(n+1) ∼ sigm(W
′
v(n) + c) (3.8)

v(n+1) ∼ sigm(Wh(n+1) + b) (3.9)

As individual units within a layer are independent therefore we have
two main conditional equations where we can sample the variables eas-
ily. As in Gibbs sampling, we repeatedly generate sample value from
conditional equations (3.8 & 3.9) till convergence.

7

• Contrastive Divergence (CD - K) : We start the Markov chain for
each x(i) ∈ D and repeatedly apply Gibbs sampling for K steps and
apply the update using (3.7).

• Persistent CD : We divide the data D in mini-batchM and for each
mini-batch we start the markov chain with some x(i) ∈ M(j) for jth
mini-batch and for each update we use previously computed sample for
generating new samples.

For MNIST image of 784 visible units and 500 hidden units. Figure 3.1 shows
one of input image

(a) Input Image (b) Reconstruction

Figure 3.1: RBM reconstruction for (784, 500) model

3.2 Non-Linear Neighbourhood Component

Analysis

The idea of Non-Linear Neighbourhood Component Analysis (Nonlinear NCA)
is transforming non linearly input space to a low dimensional feature space
in which K-Nearest neighbour classification performs well. The paper[7]
described a very effective and unsupervised way of training a multi-layer,
non-linear ”encoder” network that transforms the input data vector x into
a low-dimensional feature representation f(x|W) that captures a lot of the

8

structure in the input data.

There are two stages of training the network.

• Pretraining : Initialize the parameter vector W that defines the map-
ping from input vector to their low-dimensional representation.

• Fine-tuning : The parameter W can be fine-tuned by performing gra-
dient descent in the NCA objective function

3.2.1 Nonlinear NCA

We2 are given a set of N labelled training cases (xa, ca). For each training
vector xa, define the probability that point a selects one of its neighbours b
in the transformed feature space as:

pab =
exp(−dab)∑
z 6=a exp(−daz)

(3.10)

dab = ‖f(xa|W)− f(xb|W)‖2 (3.11)

The probability that point a belongs to class k depends on the relative prox-
imity of all other data points that belong to class k:

p(ca = k) =
∑
b:cb=k

pab (3.12)

The NCA objective is to maximize the expected number of correctly
classified points on the training data:

ONCA =
N∑
a=1

∑
b:ca=cb

pab (3.13)

2Content taken from original paper [7]

9

Figure 3.2[7] shows how two different images can be non-linearly trans-
formed to feature space where input images of same class can be make to lie
close to each other.

Figure 3.2: Learning a representation in low dimensional feature space by
non-linear transformation from images where similar class input images lie
close to each other.

3.2.2 Deep Belief Network

In the figure 3.2, input image is transformed to low dimensional feature space.
In the network, we can define joint probability distribution of the network as
follow

p(x,h(1),h(2),h(3),y) = p(h(3),y) p(h2|h(3)) p(h(1)|h(2)) p(x|h(1)) (3.14)

10

3.2.3 Greedy Layer-wise Pretraining

To [8] obtain a estimator of the gradient of the log-likelihood of an RBM(Equation
3.7), the loglikelihood of a value x under the model of the RBM is

log p(x) = log
∑
h

p(x,h) = log
∑
h

exp(−E(x,h))− log
∑
x̃,h

exp(−E(x̃,h)

(3.15)
Concavity of the log function satisfies

log(
∑
i

λiai) ≥
∑
i

λi log(ai) (3.16)

where
∑

i λi = 1&λi ≥ 0

For any model p(x,h(1)) with latent variables h(1) we can write:

log p(x) = log

(∑
h(1)

q(h(1)|x)
p(x,h(1))

q(h(1)|x)

)
(3.17)

By equation (3.16), we can write equation (3.17) as

log p(x) ≥
∑
h(1)

q(h(1)|x) log

(
p(x,h(1))

q(h(1)|x)

)
(3.18)

Considering q(h(1)|x) as λi. This is called variational bound.

log p(x) ≥
∑
h(1)

q(h(1)|x) log p(x,h(1))−
∑
h(1)

q(h(1)|x) log(q(h(1)|x) (3.19)

• The first term in equation 3.19 if maximized will maximize approxi-
mately log p(x)

• log p(x,h(1)) can be written as

log p(x,h(1)) = log p(x|h(1)) + log p(h(1)) (3.20)

11

• If we try to minimize the negative of∑
h(1)

q(h(1)|x) log p(h(1)) =
∑
h(1)

q(h(1)|x) log
∑
h(2)

p(h(1),h(2)) (3.21)

It will result in maximizing the lower bound of log p(x) by (3.18) and
hence log p(x)
Equation (3.21) can be approximated by using first learning the first
layer RBM and sample h(1) from x.

The following procedure is used to pretrain the DBN.

• Learn the parameter W 1 of a model by considering it as RBM.

• Freeze the parameters of the lower-level model and treat the hidden
features activation by sampling each binary features from visible units,
as the data for the next layer model.

• Proceed recursively for all the layers.

12

Chapter 4

Proposed Methods

4.1 Baseline CNN

A Baseline CNN consists of two convolutional layer using 5 × 5 filters. For
each layer ReLU activation is used. It also consists of 5 FCs layers.

Layer # of Units Kernel/Pooling Size Stride # of Parameters

Conv2D Conv1 32 (5, 5) (1, 1) 800
MaxPoo2D Conv1 - (2, 2) (2, 2) 0

Conv2D Conv2 64 (5, 5) (1, 1) 51200
MaxPool2D Conv2 - (2, 2) (2, 2) 0

Conv2 Flat - - - 0
FullyConnected(FC1) 3136 - - 3201024
FullyConnected(FC2) 1024 - - 716800

FullyConnected(NCA1) 700 - - 210000
FullyConnected(NCA2) 300 - - 21000
FullyConnected(NCA3) 70 - - 630

Table 4.1: Baseline CNN

Table 4.1 describes each layer for the architecture shown in Figure 4.1, the
first column states the layer type, the second column shows the corresponding
number of units. For example, Conv2D Conv1 contains 32 feature maps of
same size as that of input image. The Kernel/Filter size used is (5, 5) and
stride of 1 horizontally and 1 vertically as described in table (1, 1). As the

13

number of filters is 32 of size 5 × 5, we have total number of parameters of
the 1st layer 5× 5× 32. For every layer ReLU activation functions are used.
NCA layers are same as FullyConnected Layer but as described in Chapter
3, the features computed from the above layer are projected onto these layer
to make same class input images lie close to each other in the NCA3 layer
projected space.

Figure 4.1: Baseline CNN for Comparison

4.1.1 Training

Figure 4.1 shows the architecture of CNN for MNIST[9] dataset, each input
image is rotated randomly by angle multiple of π

4
. Figure 4.2 shows some of

the rotated MNIST images.
Image (d) is labelled 6 and also images labelled 6 & 9 are same in rotated

space and hence treated in class labelled 6. Therefore, output layer consists
of 9 softmax units.

14

(a) Label 7 (b) Label 3 (c) Label 4 (d) Label 6 (e) Label 1 (f) Label 8

Figure 4.2: Rotated MNIST images

4.2 Rotational Invariant Filters

CNN has two main components of learning features in the network. Convolu-
tion and pooling out essential features within a local region of interest. If we
suppose these filters to be rotational invariant that is for same input image,
each of the rotated filters result in approximately same feature activation in a
layer of interest. In table 4.1 layer FC2 is forced to be close to each other for
each of the rotated filter by using equation 4.1 where FC2 output is denoted
by fc(x

(i)|W) where c is described rotation angle and output results from
rotating filter by angle described by c. For MNIST training, the rotating
angles are

T = {0, π
4
,
π

2
,
3π

4
, π,

5π

4
,
3π

2
,
7π

4
} (4.1)

ORIF =
N∑
i=1

∑
1<a<b≤K

‖fa(x(i)|W)− fb(x(i)|W)‖2 (4.2)

Here, K is the number of defined rotation angles for the filters.

4.2.1 Training Rotational Invariant Filters

Equation 4.2 forces non-linearly the filters to have nearly same activation in
the layer of interest.

For MNIST dataset training is done as follows:

• In CNN described in Table 4.1, network is trained for MNIST images
without any rotation with the objective

O = C(X, Y) +ORIF (4.3)

15

C(X, Y) is cross-entropy loss and ORIF is equation 4.2 rotation invari-
ant filter objective.

• After the parameter update W , mini-batch is rotated and parameters
belonging to layers after FC2 are updated since rotation of image in-
volves corresponding rotation in space of FC1 and only parameters after
layer FC2 which is enforced in equation 4.2 needs to be fine-tuned.

4.3 NCA Objective on CNN

As described in Chapter 2, Neighbourhood component analysis objective
function learns low dimensional feature space where KNN perform well. We
can extend this concept to CNN by forcing NCA3 in table 4.1 to be close for
each of similar class images.

4.3.1 Difficulties in Training

For all the layers in Table 4.1 ReLU activation is used. NCA3 is 70 sized
vector where we are applying equation (3.13). Generally outputs from ReLU
activation goes larger as we go deeper into the layer such as for NCA3.

pab =
exp(−‖f(xa|W)− f(xb|W)‖2)∑
z 6=a exp(−‖f(xa|W)− f(xb|W)‖2)

(4.4)

If in the numerator term in Equation 4.4, the L2 norm of the difference
of NCA3 vector for two points a and b is large, the pab is very small and
hence insignificant for computing gradients. We can L2 normalize the NCA
vectors and use it for computing pab. Still we found out that L2 normalize
is not enough for getting significant gradients for weight updation. In the
future scope, the possible solution for this is discussed. For the cross-entropy,
gradients for the first layer filter weights are of order 1e5 and for the NCA,
the corresponding gradients are 1e-3.

16

Chapter 5

Results and Experiments

5.1 Preparing Datasets

We performed all our experiments using MNIST datasets. We performed
rotation of MNIST images by angle multiple of π

4
as described in the chapter

4 - section 4.1.1.

5.2 Results

For the rotational invariant filter, we can do the following two procedures.
Procedure I is described as follows:

1. Feed input images(MNIST) in mini-batches M without any rotation
and apply updates based on cross-entropy loss and ORIF as described
in Equation (4.2).

2. For some number of mini-batches, feed MNIST images with rotation
and apply updates for the parameters belonging to layers after FC2 in
table 4.1

Procedure II is described as follows:

1. For every mini-batch M(i). Apply the updates as in step 1 of
procedure I.

2. For the mini-batch M(i) apply the rotation and feed the rotated mini-
batch for the updation of parameters belonging to layers after FC2 in
table 4.1

17

CLOSS[1]1 is cross-entropy loss for softmax output used for augmen-
tated(rotated) dataset(MNIST). CLOSS[2]2 is used for normal MNIST im-
ages datasets. RIF is rotational invariant filter enforced on FC2 and brack-
eted are the applied procedure discussed above. Each epochs is of 54 iter-
ations and each mini-batch is of size 1000. Accuracy is calculated for 1000
rotated MNIST test images. In RIF(I) 10 mini-batches are applied. For
RIF(II) accuracy is taken after 27 iterations as 1 iteration is equivalent to 2
iterations in case of CLOSS. Table 5.1 shows the result achieved for MNIST
datasets

Method # of Epoch(s) Accuracy

CLOSS[1] 1 528/1000
2 622/1000
3 675/1000
4 701/1000
5 732/1000
6 750/1000

Table 5.1: Results achieved by Baseline CNN for MNIST datasets

1Cross Entropy Loss on Augmentated datasets
2Cross Entropy loss without rotation for weight updation of convolution filters

18

of Epoch(s) CLOSS[2] CLOSS[2] + RIF(I) CLOSS[2] + RIF(II)

1 368/1000 400/1000 396/1000
2 448/1000 521/1000 479/1000
3 507/1000 543/1000 544/1000
4 512/1000 584/1000 572/1000
5 547/1000 605/1000 617/1000
6 570/1000 615/1000 639/1000

Table 5.2: Results achieved by the Proposed Methods for MNIST datasets

19

Chapter 6

Conclusion and Future Work

6.1 Future Work

6.1.1 Pretraining CNN as Convolutional DBN

Convolutional Neural Network can be pretrained as convolutional deep belief
network as (Lee[10], 2009) introduced the method for training the network.

6.1.2 Convolutional RBM

Convolutional RBM (CRBM)1 is similar to RBM discussed in chapter 3, but
the weights are shared among all location in the image as in CNNs. The basic
CRBM consists of two layer: visible layer and hidden layer. As in CNN, the
size of filter NW and size of image NV , the size of output convolution hidden
layer (NH = NV −NW + 1)

6.1.3 Probabilistic Max-pooling

Suppose we have a model with a visible layer V and a hidden layer H and a
pooling layer P. Hidden layer H is divided into C × C for each of filter Nk

W .
Each block Bα can be sampled independently.

E(v,h) = −
K∑
k=1

NH∑
i,j=1

NW∑
r,s=1

hkijW
k
rsvi+r−1,j+s−1−

K∑
k=1

bk

NH∑
i,j=1

hkij−c
NV∑
i,j=1

vij. (6.1)

1Content taken from orginal paper [10]

20

Suppose hkij is a hidden unit in Bα, the conditional probability

p(hkij = 1|v) =
exp(−E(hkij,v))

1 +
∑

(p,q)∈Bα exp(−E(hkpq,v))
(6.2)

and the conditional probability for the corresponding pooling unit pkα

p(pkα = 0|v) =
1

1 +
∑

(p,q)∈Bα exp(−E(hkpq,v))
(6.3)

Sampling H given V are done using (Equation 5.2 and 5.3) and for V are
done using weight values used for connection between V and H. Using the
above procedure, we can pretrain CNN as stack of CRBM as discussed for
the case of DBN in Chapter 3 as Convolutional Deep Belief Network. In [7]
after pretrain, we can apply ONCA objective for fine-tuning the network.

6.2 Conclusion

In this work, two methods were discussed Rotational Invariant Filter and
Non-Linear NCA method for achieving rotational invariance in CNN. For
the rotational invariant filter learning, an RI convolutional filter is discussed.
RIF method can perform better if a careful rotation is applied to the filters.
We had used simple bilinear image rotation transformation. Filters can also
be rotated in the hard-coded manner as discussed in Chapter 2 - Figure 2.1.
For the Non-Linear NCA, it is necessary for the CNN to be pre train first
using CDBN for gradients of the NCA to be effective. Implementation is
available at https://github.com/yashmrsawant/RICNN

21

https://github.com/yashmrsawant/RICNN

Bibliography

[1] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[3] Gong Cheng, Peicheng Zhou, and Junwei Han. Learning rotation-
invariant convolutional neural networks for object detection in vhr op-
tical remote sensing images. IEEE Transactions on Geoscience and Re-
mote Sensing, 54(12):7405–7415, 2016.

[4] Hongyang Gao and Shuiwang Ji. Efficient and invariant convolutional
neural networks for dense prediction. arXiv preprint arXiv:1711.09064,
2017.

[5] Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-
invariant convolutional neural networks for galaxy morphology predic-
tion. Monthly notices of the royal astronomical society, 450(2):1441–
1459, 2015.

[6] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389,
2013.

[7] Ruslan Salakhutdinov and Geoff Hinton. Learning a nonlinear embed-
ding by preserving class neighbourhood structure. In Artificial Intelli-
gence and Statistics, pages 412–419, 2007.

22

[8] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
Greedy layer-wise training of deep networks. In Advances in neural
information processing systems, pages 153–160, 2007.

[9] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010.

[10] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng.
Convolutional deep belief networks for scalable unsupervised learning of
hierarchical representations. In Proceedings of the 26th annual interna-
tional conference on machine learning, pages 609–616. ACM, 2009.

23

	List of Figures
	Introduction
	Convolutional Neural Network
	Rotational Invariance
	Our Contribution
	Outline

	Related Work
	Data Augmentation with Rotational Invariant Layer
	Rotation of Filters and Feature Maps with Maxout Networks

	Preliminaries
	Restricted Boltzmann Machine (RBM)
	Training RBM
	Sampling in an RBM

	Non-Linear Neighbourhood Component Analysis
	Nonlinear NCA
	Deep Belief Network
	Greedy Layer-wise Pretraining

	Proposed Methods
	Baseline CNN
	Training

	Rotational Invariant Filters
	Training Rotational Invariant Filters

	NCA Objective on CNN
	Difficulties in Training

	Results and Experiments
	Preparing Datasets
	Results

	Conclusion and Future Work
	Future Work
	Pretraining CNN as Convolutional DBN
	Convolutional RBM
	Probabilistic Max-pooling

	Conclusion

