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Abstract

Domain adaptation is highly researched area among machine learn-

ing experts. In domain adaptation we use a domain with enough

class label (source domain) and try to predict class label of a differ-

ent data which doesn’t have any class label (target domain) . Both

source and target domain share the same features space. Many

approaches are there but one popular approach is to reduce the dis-

tance between source and target domain data distributions. There

are many algorithm that tries to project the source and target data

into a latent space so that the distance between data distribution of

source and target domain reduces. But when we try to project data

into a latent space the shape of data may change . Most domain

adaptation algorithm does not try to preserve the shape of data ex-

plicitly. Projection of data into a latent space may change the shape

of data or precisely the topology of the data. If we can preserve the

topology of the data when we are projecting the data into a latent

space then we may achieve better accuracy . In this thesis we have

developed a method so that we can preserve the topology of the data

at the time of projecting it into a latent space . For projection in to a

latent space we have used auto-encoder that create encoded version

of data at hidden layers. Hidden layer representation of an auto-

encoder is a projection of data into a latent space . The distance

between data distribution of hidden layer representation of source

and target data reduces . In an auto-encoder ,the shape of the data

may not be preserved i.e auto-encoder is not forced to preserve any

topological property of the data. In this thesis we have added a ex-

tra constraint in a auto-encoder so that auto-encoder can preserve

topological property of the data . Preserving topology of data can

enhance the ability of the classifier that is trained on source data to

correctly classify target data .



Contents

1 Introduction 5

2 Preliminary Knowledge: 7

2.1 Auto-encoder: . . . . . . . . . . . . . . . . . . . . . . 8

3 Autoencoder in domain adaptation: 12

4 Domain Adaptation preserving topology: 14

5 Preserving topology in autoencoder 16

5.1 Adding topology constraint in autoencoder: . . . . . 16

5.2 Outline of Learning Procedure for modified auto-encoder: 21

5.3 Neighbourhood selection for a point: . . . . . . . . . 23

5.4 Algorithm for creating a batch: . . . . . . . . . . . . 24

5.5 Procedure for training: . . . . . . . . . . . . . . . . . 24

6 Experimental Result: 26

4



Chapter 1

Introduction

Many machine learning methods work well only under a common

assumption: the training and test data are drawn from the same

feature space and the same distribution. When the distribution

changes, most statistical models need to be rebuilt from scratch us-

ing newly collected training data. In many real world applications,

it is expensive or impossible to recollect the needed training data

and rebuild the models. In such cases, knowledge transfer or trans-

fer learning between task domains would be desirable. In a normal

machine learning method people assume that the distributions of

the labelled and unlabelled data are the same . Transfer learning,

in contrast, allows the domains, tasks, and distributions used in

training and testing to be different. In the real world, we observe

many examples of transfer learning . For example, we may find that

learning to recognize orange might help to recognize mousambi. The

study of transfer learning is motivated by the fact that people can

intelligently apply knowledge learned previously to solve new prob-

lems faster or with better solutions.[1]

Transfer learning has different sub category. Here we work in the

field of domain adaptation . Domain adaptation is needed when we

have no labelled data in the target domain but a lot of labelled data

in source domain and feature space for both domains is same with

different marginal probability distribution . There are different kind
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of algorithm for domain adaptation. Generally we can categorise

those algorithm into three distinct category.

Three algorithmic principles for domain adaptation:

Re-weighting algorithms: The objective is to re-weight the source

labelled sample such that it ”looks like” the target sample (in term

of the error measure considered)[2][3].

Iterative algorithms: A method for adapting consists in itera-

tively ”auto-labelling the target examples. The principle is simple:

1. a model h is learned from the labelled examples

2. h automatically labels some target examples

3. a new model is learned from the new labelled examples

Note that there exists other iterative approaches, but they usually

need some labelled examples for the target domain[4].

Search of a common representation space: The goal is to find

or construct a common representation space for the two domains.

The objective is to obtain a space in which the domains are close to

each other while keeping good performances on the source labelling

task. This can be achieved through the use of Adversarial machine

learning techniques where feature representations from samples in

different domains are encouraged to be indistinguishable [5][6].

In this thesis we will discuss a algorithm related to searching

of common representation space . For creating a common represen-

tation space we have used modified auto-encoder . We will discuss

all the necessary details one by one.

In chapter 2 and 3 we will discuss some preliminary knowledge

and auto-encoder. In chapter 4 we will discuss why topology matters

in case of domain adaptation. In chapter 5 we will show how topo-

logical factor has been added to auto-encoder. And in last chapter

i.e chapter 6 we will show our experimental results.
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Chapter 2

Preliminary Knowledge:

Before starting the discussion we have to explain a few definitions

which are important in the context of domain adaptation.

Marginal Probability Distribution:

Marginal distribution functions of Xand Y mean individual distri-

bution functions Fx(X) and Fy(Y ) of X and Y respectively.Given,

joint distribution function of X and Y : Fxy(X, Y ). Then Fx(X) =

P (X ≤ x) = P (X ≤ x, Y < ∞).Fx(X) is called marginal probabil-

ity distribution of X. Similarly we can derive marginal probability

distribution for Y .

Domain and tasks:

A domain D consists of two components: a feature space χ and

a marginal probability distribution P (X),where X =
{
x1,x2, ...xn

}
∈ χ.For example,if our learning task is document classification, and

each term is taken as a binary feature, then χ is the space of all term

vectors,xi is the i th term vector corresponding to some documents,

and X is a particular learning sample. In general, if two domains

are different, then they may have different feature spaces or different

marginal probability distributions.

Given a specific domain, D =
{
χ, P (X)},a task consists of two

components: a label space Y and an objective predictive function

f(.),which is not observed but can be learned from the training

data,which consist of pairs
{
xi, yi}, where xi ∈ X and yi ∈ Y .The
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function f(.) can be used to predict the corresponding label,of a new

instance x.

Domain adaptation is a process of transferring knowledge when

feature space of source and target domain are same as well as the

source and target domain task but marginal probability distribu-

tions are different.

Before discussing our method for domain adaptation we are go-

ing to discuss a simple auto-encoder (used in our method) in this

chapter.

2.1 Auto-encoder:

An auto-encoder is a simple neural network model that has same

number of nodes in the output layer as in the input layer and it has

one or more hidden layers between input and output layers. It tries

to reconstruct the input patterns at the output layer[7].

Figure : 1
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The auto-encoder in Figure 1 has 5 nodes in input layer , 2 nodes

in hidden layer and 5 nodes in output layer. X
′

is output and X is

input; X
′
= f(g(X)) .

W is the weight matrix between the input and the hidden layer and

W
′

is the weight matrix between the input and the hidden layer.

L(X,X
′
) is the loss function where is X the input and X

′
is the

output.L(X,X
′
) is called reconstruction loss. Here f is encoder

function and is g decoder function.

Encoder part is from input layer to hidden layer and decoder

part is from hidden layer to output layer. So first input data are

encoded into a hidden form and then from that hidden form original

input data are reconstructed.

Generally for the reconstruction loss we use mean squared error.

Now we have to find how an auto-encoder is trained. Training of the

auto-encoder is same as normal multilayer perceptron having more

than one hidden layer. To find optimum weight matrix between lay-

ers gradient descent method is used to minimise the loss.

Above example contains only one hidden layer i.e only one en-

coder and decoder function . We can again use the hidden layer

representation and try to reconstruct it using another layer. This

layer wise approach is called stacked auto-encoder. It is same as

normal auto-encoder but it contains multiple layer of encoding and

decoding.

Let us discuss how we train a simple multilayer perceptron with one

hidden layer. We are using mean squared error as a loss function.

First we have to define some notation that we will use through

out the entire thesis.

We are using u, v for indexing data in a batch because it is conve-

nient for calculating gradient when topology constraint is used.(we

will discuss it in chapter 5)

N=number of nodes in input layer

p=number of nodes in output layer (p=N for auto-encoder)

m=number of nodes in hidden layer

n = number of data points in a batch(we are considering batch
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learning)

Yk(u) = value of k−th dimension of given input data point in a

batch indexed by u

y3k(u) = output of unit k at third layer(output layer) for a given

input data point in a batch indexed by u

y2j (u) =output of jth node at layer 2 for a input data point indexed

by u

y1i (u) =output of j-th node at layer 1 for a input data point indexed

by u

W 12
ij =weight between i th node of layer 1 and j th node of layer 2

W 23
jk =weight between j th node of layer 2 and k th node of layer 3

h2k,. =net input at node k of layer 2, . represents any data point

h3k,. =net input at node k of layer 3, . represents any data point

g
′
(h2j,u) is the derivative of output of j-th node at layer 2 w.r.t net

input h2j,u for data indexed by u.

g
′
(h3k,u) is the derivative of output of unit k in layer 3 with respect

to the net input h3k,u for data indexed by u.

We are considering batch learning for auto-encoder.

Eu is mean square error for each input data point indexed by u in

a batch

Eu =
1

2

p∑
k=1

(y3k(u)− Yk(u))
2

The mean square error E(i.e Ereconstruction) is computed over the

entire batch.

E =
1

n

n∑
u=1

Eu

Ereconstruction = E =
1

n
(

n∑
u=1

(
1

2

p∑
k=1

(y3k(u)− Yk(u))
2
)

We will consider one single batch to train our simple multi-layer

perceptron. First we have to present each data point of that batch
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to the network and then calculate the error E. Then we have to

calculate the gradient of the error w.r.t weights.

∂E

∂W 23
jk

=
1

n

n∑
u=1

∂Eu

∂W 23
jk

where
∂Eu

∂W 23
jk

= −(Yk(u)− y3k(u))g
′
(h3k,u)y2j (u)

y2j (u) is the output of jth node at layer 2 for data point indexed by u.

∂E

∂W 12
ij

=
1

n

n∑
u=1

∂Eu

∂W 12
ij

where
∂Eu

∂W 12
ij

= −(

p∑
k=1

{
(Yk(u)− y3k(u))g

′
(h3k,u)W 23

jk

}
)g

′
(h2j,u)y1i (u)

Since, we have calculated the gradient we can update the weights

now. If η is the learning rate then we can update the weights as

follows:

W 23
jk = W 23

jk + η(− ∂E

∂W 23
jk

)

W 12
ij = W 12

ij + η(− ∂E

∂W 12
ij

)
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Chapter 3

Autoencoder in domain

adaptation:

Auto-encoder is generally used to create compressed form of given

data. In general simple auto-encoder contains less number of nodes

in the hidden layer compared to that in the input layer. We can use

more number of nodes in hidden layer but that may not be useful to

get any encoded version of the input data. Our goal is to create an

encoded version of input data with lesser dimension. The encoder

function learns some useful characteristics of the input data and it

compresses the input data into a latent representation and decoder

reconstructs the original input from the latent representation con-

structed at the hidden layer .

In domain adaptation we have labelled source data and unlabelled

target data . Marginal probability distributions of source and target

data are usually different. If we can some how match the data dis-

tribution of source and target data then we can classify target data

by a classifier trained on the source data . If we try to create com-

pressed representation of both source and target data then in the

latent space(i.e hidden layer representation) the distance between

data distribution of source and target domain is likely to reduce .

We can not say that in latent space representation data distribution

of source and target data will exactly match but at least it will be
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better than original feature space. In general we create an auto-

encoder trained with both the source and target data and then we

try to generate latent representation of the total data (both source

and target) . In this process auto-encoder learns some interesting

features of the total data and in the hidden layer it generates an

encoded format . Now we train a classifier on the encoded data of

source and test it on target data. Since we are using latent represen-

tation,a classifier may do a better job in predicting the class labels

of the target data.

In simple auto-encoder we create one encoded form in hidden layer

but in stacked auto-encoder we again use the encoded form to cre-

ate another encoded form in next layer of auto-encoder.A stacked

auto-encoder enjoys all the benefits of any deep network of greater

expressive power.Further, it often captures a useful ”hierarchical

grouping” or ”part-whole decomposition” of the input. To see this,

recall that an auto-encoder tends to learn features that form a good

representation of its input. The first layer of a stacked auto-encoder

tends to learn first-order features in the raw input (such as edges

in an image). The second layer of a stacked auto-encoder tends

to learn second-order features corresponding to patterns in the ap-

pearance of first-order features (e.g., in terms of what edges tend to

occur together–for example, to form contour or corner detectors).

Higher layers of the stacked auto-encoder tend to learn even higher-

order features.For domain adaptation higher order feature is defi-

nitely useful. So,we take the encoded form of the last layer and use

it for domain adaptation. There are other variants of auto-encoder

[8] that uses different kind of structure and constraint to get better

latent representation of input data.

13



Chapter 4

Domain Adaptation

preserving topology:

Domain adaptation is a part of transfer learning . In domain adap-

tation we have enough labelled source data but no label data for

the target domain. The source and target tasks are the same , while

the statistical characteristic of the source and target domains are

different. For example,the feature space for both source and target

domain are the same but marginal probability distribution of input

data are different.

One key idea is to find good feature representation that reduce

the distance between the two domains. So our goal is to find a com-

mon representation for source and target domain. Our assumption

is that if we find a common representation then the distance be-

tween source and target domain will be reduced. In other words we

can say that marginal probability distribution of both source and

target data may match if we get a suitable common representation.

After getting a common representation , we can train classifier (or

regression) on the source domain and test on the target domain data

. Actually getting a common representation is projecting the total

data into a latent space satisfying some desirable properties. In this

latent space source and target data distributions are likely to come

closer.

But in this process of finding common representation we are not
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considering the shape of the data. At the time of generating a com-

mon representation shape of the data may be changed and that can

create trouble at the time of testing of classifier algorithm on the

target data . Both common representation of the source data as

well as of the target data can differ from its original shape in the

original feature space.

But the question is whether we should consider geometric shape

or topological shape .We generally find a common representation

that has less dimensionality compared to original feature space. For

an example suppose we have three dimension data having a spherical

shape . If we want to find a common representation in two dimension

space then the shape of the common representation will be some two

dimensional geometric shape . We can’t compare two dimensional

geometric shape with three dimensional geometric shape. Also geo-

metric shape doesn’t indicate relative position of data points which

is crucial for training a classifier. So we can check if neighbourhood

of a point is intact in lower dimensional space of the common rep-

resentation.

If two data points are close in the original feature space then in

the lower dimensional representation that two points should be close

. In other words, we can say that points in neighbourhood of the

data point in original feature space should be the points in the neigh-

bourhood of that data point in the common representation(lower

dimensional representation). Since we are trying to preserve neigh-

bourhood, topology is the best criteria to measure whether neigh-

bourhood is preserved or not.
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Chapter 5

Preserving topology in

autoencoder

Preserving topology in autoencoder

As previous discussion of autoencoder we have seen that autoen-

coder has encoder part and decoder part. Encoder part creates

an encoded representation in a hidden layer and decoder part re-

constructs the original data from that hidden layer representation

. Generally hidden layer has a lower dimension compared to the

original dimension of data.

5.1 Adding topology constraint in autoencoder:

We have used sammons stress function as a penalty the loss function

of our autoencoder.

Sammon mapping or Sammon projection is an algorithm that

maps a high-dimensional dataset to a lower dimensional dataset by

trying to preserve the structure of inter-point distances in the high-

dimensional space in to the lower-dimension projection. It is partic-

ularly suited for use in exploratory data analysis. The method was

proposed by John W. Sammon in 1969 [9]. It is a non-linear ap-
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proach as the mapping can’t be represented as a linear combination

of the original variables as possible in techniques such as principal

component analysis, which makes it more difficult to use for classi-

fication applications.

We denote the distance between i th and j th objects in the origi-

nal space by d∗ij, and the distance between their projections by dij.

Sammon’s mapping aims to minimize the following error function,

which is often referred to as Sammon’s stress or Sammon’s error:

E =
1∑

i<j d
∗
ij

∑
i<j

(d∗ij − dij)2

d∗ij

The tendency to preserve local neighbourhood is favoured by the

factor of d∗ij in the denominator of main summation, ensuring that

if the original distance between two points is small ,then weight

given to their squared difference is high.

The minimization can be performed either by gradient descent,

as proposed initially, or by other means, usually involving iterative

methods. The number of iterations need to be experimentally de-

termined.

Since normal auto-encoder finds optimal parameter using gradient

descent, adding Sammons stress function won’t be too difficult. If

we add Sammons stress function to the loss function of auto-encoder

then normal gradient descent is enough to minimise total loss func-

tion .

Autoencoder with Sammon’s loss :
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The structure is same as normal auto-encoder . We are just using an

added constraint. We are not using any other extra constraint(such

as sparsity constraint). Also we are using batch learning procedure

for training our modified auto-encoder. We have used different strat-

egy to create batches. We will discuss that in the next section.

We are using the notation that we used in chapter 2. We are using

reconstruction loss and Sammons loss as our loss function. So, our

total loss function is

(Notations are defined in chapter 2).

Etotal = a ∗ Ereconstruction + b ∗ Esammon (5.1)

where a ≥ 0 ; b ≥ 0 (5.2)

We are taking a=1 and b=1 for simplification of our gradient cal-

culation.

Etotal = Ereconstruction + Esammon (5.3)

Ereconstruction =
1

n
(

n∑
u=1

(
1

2

N∑
k=1

(y3k(u)− Yk(u))
2
) (5.4)

18



y3k(u) = output of unit k at third layer for a given input data point

in a batch indexed by u

Yk(u) = value of unit k of given input data point in a batch indexed

by u

Esammon =
1∑n−1

u=1

∑n
v=u+1 d

∗(u, v)

n−1∑
u=1

n∑
v=u+1

[d∗(u, v)− d(u, v)]2

d∗(u, v)

(5.5)

Esammon =
n−1∑
u=1

n∑
v=u+1

Euv
sammon (5.6)

Euv
sammon = λ

[d∗(u, v)− d(u, v)]2

d∗(u, v)
(5.7)

where λ =
1∑n−1

u=1

∑n
v=u+1 d

∗(u, v)

Euv
sammon is the Sammon’s loss for two data point indexed by u,v.

d∗(u, v) =distance between two input data indexed by u,v in origi-

nal dimension

d(u, v) =distance between hidden layer representation of two input

data indexed by u,v

Ereconstruction is same as used in normal auto-encoder[10].We have al-

ready given the gradient of Ereconstruction with respect to the weights

in chapter 2. We have to consider Esammon and find its gradient.

Sammons loss desn’t depend on the output of layer 3 (i.e output

layer ) hence gradient of Esammon w.r.t weight between layer 2 and

layer 3 is zero. i.e ∂Esammon

∂W 23
jk

= 0∀j, k in layer 2 and layer 3; where j is

index in layer 2 and k is index in layer 3. So,for all weights between

layer 2 and layer 3 gradient will be similar to normal auto-encoder.

But for all weights between layer 1 and layer 2 gradient will be

different . We have to calculate gradient of Esammon w.r.t to the

weights between layer 1 and layer 2
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∂Esammon

∂W 12
ij

=
n−1∑
u=1

n∑
v=u+1

∂Euv
sammon

∂W 12
ij

where

∂Euv
sammon

∂W 12
ij

=
∂Euv

sammon

∂d(u, v)

∂d(u, v)

∂[y2j (u)− y2j (v)]

∂[y2j (u)− y2j (v)]

∂W 12
ij

∂Euv
sammon

∂W 12
ij

= (−2λ
d∗(u, v)− d(u, v)

d∗(u, v)
)(
y2j (u)− y2j (v)

d(u, v)
)(g

′
(h2j,u)y1i (u)−g′

(h2j,v)y
1
i (v))

(5.8)

where g
′
(h2k,.) is the derivative of the output of unit k in layer 2

with respect to the net input h2k,. and g
′
(h2k,.) = (1 − y2k(.))(y2k(.))

if sigmoid is our activation function . Since we have calculated
∂Euv

sammon

∂W 12
ij

, we can calculate ∂Esammon

∂W 12
ij

. Also we can calculate the total

gradient ∂Etotal

∂W 12
ij

. Hence we are writing the gradients of Etotal with

respect to W 12
ij and W 23

jk .

∂Etotal

∂W 23
jk

=
1

n

n∑
u=1

{
− (Yk(u)− y3k(u))g

′
(h3k,u)y2j (u)

}
(5.9)

∂Etotal

∂W 12
ij

=
1

n

n∑
u=1

{
− (

p∑
k=1

{
(Yk(u)− y3k(u))g

′
(h3k,u)W 23

jk

}
)g

′
(h2j,u)y1i (u)

}
+

n−1∑
u=1

n∑
v=u+1

{
(−2λ

d∗(u, v)− d(u, v)

d∗(u, v)
)(
y2j (u)− y2j (v)

d(u, v)
)(g

′
(h2j,u)y1i (u)− g′

(h2j,v)y
1
i (v))

}
(5.10)
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5.2 Outline of Learning Procedure for modified

auto-encoder:

The basis procedure of gradient descent-based learning for our mod-

ified auto-encoder is outlined as follows in steps 1 - 6.

1.Select a a pattern from the batch and present it to the modi-

fied auto-encoder.

2.Compute activations and signals of input,hidden and output layer

neurons in that sequence (basically it’s a feed forward of input data)

3.After presenting all input pattern from the batch ,compute the

error(Etotal) at the output layer by using equation no (5.3),(5.4)

and (5.5).

4.Use the error calculated in Step 3 to compute the change(gradient)

in the hidden to output layer weights and the change in input to hid-

den layer weights according to equation no (5.9) and (5.10).

5. Update all weights using the change(gradient) computed in step

4.

W 23
jk = W 23

jk + η(−∂Etotal

∂W 23
jk

)

W 12
ij = W 12

ij + η(−∂Etotal

∂W 12
ij

)

6. repeat Steps 1 through until Etotal falls below a predefined thresh-

old.

Since we are using coefficient(a,b) then we can regulate the

amount of importance given to a particular loss(reconstruction or

Sammon’s loss).

In the above formulation we are considering batch learning.

Since we are using topology so we have to use more than one data

point to train the auto-encoder. But the question is how to create a

batch accordingly so that topology of original can remain intact. We

can create batch randomly as generally we do for training a neural
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network. Taking random points in a batch wont be a best choice

for preserving topology. So here we are creating a batch by taking

a point and its neighbourhood. In the next section we are going to

discuss how we are creating batches.
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5.3 Neighbourhood selection for a point:

Neighbourhood selection for a point is very simple. Neighbourhood

of a data point means a set of points close to that particular point.

So,we have to find the close points that surrounds that particular

point. We take a point and try to find some fixed number of points

which are close to that particular point . Then we create a batch

using those closest points . If dimension of data is small then finding

neighbourhood is easy using brute force method. But if dimension is

large then brute force method will take a lot of time. It will increase

the preprocessing time. We can reduce the time of batch creation

by using probabilistic approach to find close points of a given point.

We have used locality-sensitive hashing in order to speed up the

batch creation process.Locality-sensitive hashing (LSH) reduces the

dimensionality of high-dimensional data. LSH hashes input items

so that similar items map to the same buckets with high probabil-

ity (the number of buckets being much smaller than the universe

of possible input items). LSH differs from conventional and crypto-

graphic hash functions because it aims to maximize the probability

of a collision for similar items. Locality-sensitive hashing has much

in common with data clustering and nearest neighbour search.

LSH is based on the simple idea that, if two points are close

together then after a projection operation these two points will re-

main close together. Two points that are close together on the

sphere are also close together when the sphere is projected onto the

two-dimensional page. This is true no matter how we rotate the

sphere. Two other points on the sphere that are far apart will, for

some orientations, be close together on the page, but it is more likely

that the points will remain far apart[11].

The accuracy of an LSH is determined by probability that it will

find the true nearest neighbour. Although LSH is probabilistic in

nature it is widely used in clustering of high dimensional data. Also

in randomised algorithm LSH is widely used.
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5.4 Algorithm for creating a batch:

D=[x1,x2, ...xn] are the total data points for which we want to cre-

ate batches.

We want to divide the whole dataset into batches with size k.

B is an empty set that is used for storing batches ;

while D not empty do

if size of D is less than equal to k then
Create a batch using the points in D , store the batch in

B and break
else

Create hash table with D using LSH technique;

select one point P randomly from D;

find the set S of k-1 nearest points of P by searching in

the hash table;

Create a batch using the point P and it’s nearest point

set S, store the batch in B;

delete the points in S and the pont P from D;

repeat
end

end

Output: a set B of batches for training the auto-encoder

Algorithm 1: Create Batch Algorithm

We have used this algorithm to create batches from dataset(both

source and target dataset) to train our modified auto-encoder.

5.5 Procedure for training:

Source dataset is denoted as S and target dataset is denoted as T .

Total dataset consists of both source and target dataset.
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Our method of training:

1.Create batches from source dataset S using CreateBatch algorithm

and also create another batches from target dataset T using same

CreateBatch algorithm.

2.train an auto-encoder with Sammon’s loss with the total batches

(i.e source plus target dataset batches) as discussed in section 5.2

3.After training, generate hidden layer representation of total dataset

using that trained auto-encoder. Hidden layer representation of

source dataset is denoted as Hs and Hidden layer representation

of target dataset is denoted as Ht

4. Divide the latent projection of source data into training set Hs
′

and validation set Vs.

5.train a SVM classifier Cl using Hs
′.

6. do a cross-validation to get optimum parameter for the SVM

classifier Cl using the validation set Vs.

7.test the classifier Cl on Ht (i.e the hidden layer representation of

target data set) .
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Chapter 6

Experimental Result:

For experiments , we consider the Office [12] datasets. The dataset

contains 31 objects categories collected from three different sub-

datasets: Amazon, DSLR (digital single-lens reflex camera ), and

webcam. Following the same settings applied in [13], we select the 10

over-lapping object categories of Office for experiments, and produce

three different domains of interest: Amazon (A),DSLR (D), and we-

bcam (W). As a result, a total of 6 different cross-domain pairs will

be available (e.g.,A->W,W->D etc.).We extracted 10 classes com-

mon to all four datasets: BACKPACK, TOURING BIKE, CALCU-

LATOR, HEADPHONES, COMPUTER KEYBOARD, LAPTOP-

101, COMPUTER MONITOR, COMPUTER MOUSE,COFFEE-

MUG,AND VIDEO PROJECTOR. There are 8 to 151 samples per

category per domain, and 2533 images in total. We report in the

main text our results on the 10 common classes.

The above dataset contains different kinds of features but we

have used SURF features for our experiment . We have also used

SVM(support vector machine) as our desired classifier. Since we

are using coefficient a and b (as explained in previous chapter) to

control the effect of topological constraint we have to define a fixed

value for a and b. In our experiment, we have fixed a=1.0 but used

different b values . Besides that, the parameter of SVM is derived

using cross validation.

We have used linear kernel in our SVM classifier. Using cross-
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validation we have found optimum value for C (penalty parameter

of the error term). We have used different values of C for checking

validation accuracy. We have started the value of C from 0.001 up

to 5 and increased it by 0.001. For each value in that range(0.001

to 5) we have checked validation accuracy and found the best one.

The size of SURF feature is 800 and our auto-encoder has 500 nodes

in hidden layer. Our batch size is 20. Below table shows accuracy

of different algorithm. SA stands for subspace alignment[14] and

CORAl stands for Correlation Alignment[15].

method A -> D A-> W D->A D-> W W-> A W-> D

SA 37.6 37.1 38.1 79.2 37.3 78.2

CORAL 38.7 38.3 38.2 81.7 38.8 84.0

Now, we are presenting our experimental result one by one for dif-

ferent b values.

our method A -> D A -> W D -> A D -> W W -> A W -> D

b=0.0 39.896 43.6808 30.1234 62.2356 32.00 75.2345

b=0.0 38.1480 42.255 31.2547 63.5478 32.1245 75.486

b=0.0 39.2345 43.26879 30.1234 63.2356 32.3245 75.1235

b=0.0 38.3215 42.6808 31.5478 63.8478 32.4125 74.345

b=0.0 39.800 43.4724 31.2547 63.3156 31.50 74.5145

Avg 39.08 43.07 30.861 63.236 32.07 75.141

our method A -> D A -> W D -> A D -> W W -> A W -> D

b=0.1 42.857 48.0951 32.821 66.390 34.00 78.571

b=0.1 42.259 48.0651 33.0124 65.1245 34.5 77.057

b=0.1 43.2077 48.1751 32.548 66.102 35.0 78.865

b=0.1 42.2597 47.657 32.821 65.1245 34.5 77.571

b=0.1 42.857 48.0651 33.0124 66.252 35.0 78.865

Avg 42.689 48.011 32.84 65.79 34.6 78.186
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our method A -> D A -> W D -> A D -> W W -> A W -> D

b=0.2 43.649 45.106 32.123 65.383 33.750 77.8714

b=0.2 43.00 44.6808 31.2547 66.1246 34.00 77.0571

b=0.2 44.149 44.2553 31.5478 65.1025 34.890 77.5714

b=0.2 43.00 45.10 32.1240 66.3283 34.235 78.00

b=0.2 43.716 45.243 31.2547 65.384 33.750 77.9564

Avg 43.50 44.87 31.66 65.664 34.125 78.09

our method A -> D A -> W D -> A D -> W W -> A W -> D

b=0.3 42.857 46.095 32.3214 65.273 33.450 77.8714

b=0.3 41.26 47.065 33.41246 66.245 34.00 77.920

b=0.3 41.207 46.075 32.5478 65.2125 34.890 77.57142

b=0.3 40.860 47.657 33.01246 66.383 34.245 77.8714

b=0.3 41.26 46.095 33.01246 66.245 33.750 77.542142

Avg 41.49 46.597 32.86 65.871 34.067 77.755

So we can check that for some domain( A->D,etc.) accuracy is

much higher compared to other algorithm. So this results prove

that topology matters in case of domain adaptation.
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