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Abstract

Diabetic Retinopathy (DR) is the leading cause of blindness in the working-age popula-

tion of the developed world and is estimated to affect over 93 million people.Detecting

DR is a time-consuming and manual process that requires a trained clinician to exam-

ine and evaluate digital color fundus photographs of the retina.In this report, we have

proposed three different methods for classifying DR Images. The first method uses Con-

volutional Neural Network. The Second method uses a pre-trained 2D VGG16 ConvNet

model for feature extraction. The third method uses Capsule Network. We discuss

merits and demerits of each method.
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Chapter 1

Introduction

1.1 Diabetic Retinopathy

People with diabetes can have an eye disease called diabetic retinopathy. This is when

high blood sugar levels cause damage to blood vessels in the retina. These blood vessels

can swell and leak. Or they can close, stopping blood from passing through. Sometimes

abnormal new blood vessels grow on the retina. All of these changes can steal your

vision.

1.1.1 Stages of Diabetic Eye Disease

There are two main stages of diabetic eye disease.

1. NPDR (non-proliferative diabetic retinopathy)

2. PDR (proliferative diabetic retinopathy)

1.2 The Dataset

We are provided with a large set of high-resolution retina images taken under a variety

of imaging conditions. A left and right field is provided for every subject. Images are

labeled with a subject id as well as either left or right (e.g. 1 left.jpeg is the left eye of

patient id 1).

A clinician has rated the presence of diabetic retinopathy in each image on a scale of 0

to 4, according to the following scale:

1. No DR

1
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2. Mild

3. Moderate

4. Severe

5. Proliferative DR

(a) No DR (b) Mild

(c) Moderate (d) Severe

(e) Proliferative DR

Figure 1.1: Images of Different Classes in the Dataset
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1.3 Challenges

The images in the dataset come from different models and types of cameras, which can

affect the visual appearance of left vs. right. Some images are shown as one would see

the retina anatomically (macula on the left, optic nerve on the right for the right eye).

Others are shown as one would see through a microscope condensing lens (i.e. inverted,

as one sees in a typical live eye exam). There are generally two ways to tell if an image

is inverted:

• It is inverted if the macula (the small dark central area) is slightly higher than the

midline through the optic nerve. If the macula is lower than the midline of the

optic nerve, it’s not inverted.

• If there is a notch on the side of the image (square, triangle, or circle) then it’s

not inverted. If there is no notch, it’s inverted.



Chapter 2

Related Work

2.1 Automatic detection and classification of diabetic retinopa-

thy stages using CNN

Many deep learning based DR classifiers has been published in the last few years. In [1],

a deep learning classifier has been published for the prediction of the different disease

grades. They used the Kaggle dataset provided by EYEPACS. They achieve around

85% accuracy for the five class classification and 95% accuracy for the two class clas-

sification(DR or no DR). They used 512 * 512 images for the training purpose. For

augmentation purpose they used rotation of images by 90 and 180 degrees. The follow-

ing table shows the results they obtained by using their proposed method:

Class Label Precision Recall f1-score

class0 0.88 0.95 0.91

class1 0.40 0.39 0.39

class2 0.70 0.42 0.52

class3 0.36 0.56 0.43

class4 0.62 0.49 0.54

Table 2.1: Automatic detection and classification of diabetic retinopathy stages using
CNN Result

4
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2.2 Application of Higher Order Spectra for the Identifi-

cation of Diabetes Retinopathy Stages

In[2], they have created an automated method for identifying the five classes. Features,

which are extracted from the raw data using a higher order spectra method, are fed

into the SVM classifier and capture the variation in the shapes and contours in the

images. This SVM method reported an average accuracy of 82%, sensitivity of 82%,

and specificity of 88%.

Figure 2.1: Proposed Block Diagram for classification

In this work, they used 300 retinal photographs of mild NPDR, moderate NPDR, severe

NPDR, PDR, and also normal cases. These data were provided by the National Univer-

sity Hospital, Singapore.Images, taken by Ziess Visucam lite fundus camera inter- faced

to a computer, were stored in 24-bit Joint Pho- tographic Experts Group format with

an image size of 256 * 256 pixels.



Chapter 3

Proposed Method

3.1 Data Preprocessing

We have used Kaggle dataset, which contains 35,126 images, for diabetic Retinopathy.

The provided dataset has images of different dimensions. So we have used various

techniques to preprocess the dataset. The following techniques used to preprocess the

dataset:

1. Cropping

2. Reshaping

3. Contrast Improvement

Figure 3.1: Original Image

6
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3.1.1 Cropping

Images in the dataset are having black portion around the actual image of eye. Black

portion affect the performance of the model because it contains no information. So we

need to crop this black portion from the image.

3.1.2 Reshaping

Images in dataset are of different size. So to make the images of same size reshape[3]

the images. For different models we used different size of images. We used images of

size 192*192 for Capsule Network, 256*256 for VGG16 and 512*512 for Convolutional

Network.

3.1.3 Contrast Improvement

For contrast Improvement we use CLAHE(Contrast Limited Adaptive Histogram Equalization)[4].

Ordinary AHE tends to overamplify the contrast in near-constant regions of the image,

since the histogram in such regions is highly concentrated. As a result, AHE may cause

noise to be amplified in near-constant regions. Contrast Limited AHE (CLAHE) is a

variant of adaptive histogram equalization in which the contrast amplification is limited,

so as to reduce this problem of noise amplification.

(a) Cropping and Reshaping (b) After CLAHE

Figure 3.2: Images after Pre-Processing

3.2 Data Augmentation

The data-set provided by Kaggle is imbalance. So to make it balance we need data

augmentation. We augment only those classes which are having less images. So after

augmentation all the classes have more or less same number of images.
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We used the following techniques for data augmentation:

1. Flipping Horizontally

2. Flipping Vertically

3. Rotation

By using these techniques our model is more robust for different orientations.

(a) Flipping Horizontally (b) Flipping Vertically

Figure 3.3: Images After Horizontal and Vertical Flipping

(a) Rotation 90 degree (b) Rotation 180 degree

Figure 3.4: Images After Rotation

We have used images of size 192*192, 256*256, 512*512 for three proposed methods.

3.3 Convolutional Network for Diabetic Retinopathy

They are made up of neurons that have learn-able weights and biases. Each neuron

receives some inputs, performs a dot product and optionally follows it with a non-

linearity. The whole network still expresses a single differentiable score function: from
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the raw image pixels on one end to class scores at the other.And they have a loss function

on the last (fully-connected) layer.

3.3.1 Discussion

In this architecture initially we use a kernel of (7*7) because it will extract simple features

from the image and we use stride of 2 for first convolutional layer[5]. Conventionally this

is better to use small kernel size so that it can extract more information from the image.

But initial convolutional layer extract very simple features from the image so we use

kernel of size (7*7) with a stride of 2. For rest of network for convolutional layer we use

kernel size of (3*3) with a stride of one so that we can extract more information and more

complex features of the image. For pooling we use max pooling of kernel size of (3*3)

with a stride of 2 so that we can reduce the size of the output of previous layer so that

we can reduce the number of parameters by extracting important information by using

maximum value around a pixel. To control the overfitting we use different techniques like

batch normalization[6], dropout[7] etc. we initialize the kernels as default which is using

glorot uniform method. The kernels initialization is not important because we use the

batch normalization between Conv2D layer and activation layer because training Deep

Neural Networks is complicated by the fact that the distribution of each layer’s inputs

changes during training, as the parameters of the previous layers change. This slows

down the training by requiring lower learning rates and careful parameter initialization,

and makes it notoriously hard to train models with saturating nonlinearities. We refer

to this phenomenon as internal co-variate shift, and address the problem by normalizing

layer inputs.

Initially we use less number of kernels because initial layers will extract simple features,

so by increasing depth of network we increase the number of kernels. So the layers which

are at the end of the network will extract more complex features. And at last we use

three fully connected layers.

We use activation function as LeakyReLU[8] because ReLU is active during back-propagation

only when the units are positive and zero otherwise. This leads to two problems:

1. Dead Neurons

2. Bias Shift
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3.3.1.1 Dead Neurons

If the units are not activated initially, then they are always in the off-state as zero

gradients flow through them (Dead Neurons). This can be solved by enforcing a small

negative gradient flow through the network (Leaky ReLU).

3.3.1.2 Bias Shift

From ReLU, there is a positive bias in the network for subsequent layers, as the mean

activation is larger than zero. Though they are less computationally expensive compared

to sigmoid and tanh because of simpler computations, the positive mean shift in the

next layers slows down learning. This is corrected by either using batch normalization

or using activations functions like ELU, SeLU or parametric exponential unit to shift

mean towards zero and reduce bias in the activations.

3.3.2 Architecture

We use the following architecture:

ConvNet Architecture

Layer (type) Output Shape Number of Parameter

InputLayer (None, 512, 512, 3) 0

Gaussian Noise (None, 512, 512, 3) 0

Conv2D (None, 253, 253, 32) 4736

Batch Normalization (None, 253, 253, 32) 128

LeakyReLU (None, 253, 253, 32) 0

MaxPooling2D (None, 126, 126, 32) 0

Conv2D (None, 126, 126, 32) 9248

Batch Normalization (None, 126, 126, 32) 128

LeakyReLU (None, 126, 126, 32) 0

Conv2D (None, 126, 126, 32) 9248

LeakyReLU (None, 126, 126, 32) 0

MaxPooling2D (None, 62, 62, 32) 0

Conv2D (None, 62, 62, 64) 18496

BatchNormalization (None, 62, 62, 64) 256

LeakyReLU (None, 62, 62, 64) 0

Conv2D (None, 62, 62, 64) 36928

BatchNormalization (None, 62, 62, 64) 256

LeakyReLU (None, 62, 62, 64) 0
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MaxPooling2D (None, 30, 30, 64) 0

Conv2D (None, 30, 30, 128) 73856

BatchNormalization (None, 30, 30, 128) 512

LeakyReLU (None, 30, 30, 128) 0

Conv2D (None, 30, 30, 128) 147584

BatchNormalization (None, 30, 30, 128) 512

LeakyReLU (None, 30, 30, 128) 0

Conv2D (None, 30, 30, 128) 147584

BatchNormalization (None, 30, 30, 128) 512

LeakyReLU (None, 30, 30, 128) 0

Conv2D (None, 30, 30, 128) 147584

BatchNormalization (None, 30, 30, 128) 512

LeakyReLU (None, 30, 30, 128) 0

MaxPooling2D (None, 14, 14, 128) 0

Conv2D (None, 14, 14, 256) 295168

BatchNormalization (None, 14, 14, 256) 1024

LeakyReLU (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

LeakyReLU (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

LeakyReLU (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

LeakyReLU (None, 14, 14, 256) 0

MaxPooling2D (None, 6, 6, 256) 0

Flatten (None, 9216) 0

Dropout (None, 9216) 0

Dense (None, 1024) 9438208

BatchNormalization (None, 1024) 4096

LeakyReLU (None, 1024) 0

Dense (None, 512) 524800

BatchNormalization (None, 512) 2048

LeakyReLU (None, 512) 0

Dense (None, 10) 5130

BatchNormalization (None, 10) 40

LeakyReLU (None, 10) 0
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Dense (None, 5) 55

Table 3.1: ConvNet Architecture.

3.3.3 Convolutional Layer

CONV layer will compute the output of neurons that are connected to local regions in

the input, each computing a dot product between their weights and a small region they

are connected to in the input volume.

3.3.4 Activation Layer

LeakyReLU layer will apply an elementwise activation function. This leaves the size of

the volume unchanged.LeakyReLU allow a small, non-zero gradient when the unit is not

active.

3.3.5 Batch Normalization Layer

Normalize the activations of the previous layer at each batch, i.e. applies a transforma-

tion that maintains the mean activation close to 0 and the activation standard deviation

close to 1.

3.3.6 Max Pooling Layer

POOL layer will perform a down-sampling operation along the spatial dimensions (width,

height).

3.3.7 Fully Connected Layer

FC layer will compute the class scores, resulting in volume of size [1x1x5], where each of

the 5 numbers correspond to a class score. Each neuron in this layer will be connected

to all the numbers in the previous layer.

3.3.8 Over-fitting

One of the main problem for ConvNets is Over-fitting. when the network performs

better on training data than the validation / test data then model said to be Over-fit.

So to control the Over-fitting we used following techniques:
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1. Gaussian Noise

2. Batch Normalization

3. Dropout

4. Regularization

3.4 Transfer Learning using VGG16

It usually refers to a deep convolutional network for object recognition developed and

trained by Oxford’s renowned Visual Geometry Group (VGG)[9], which achieved very

good performance on the ImageNet dataset. This model of the 16-layer network used by

the VGG team in the ILSVRC-2014 competition.It was the runner up of the ImageNet

classification challenge with 7.3 percent error rate.

3.4.1 Discussion

We use the VGG16[9] model upto block5. Then we insert six layers for our data-set.

For this model we use image size of (256*256). After getting the output of block5 of

VGG16 model we insert a Flatten layer then we insert a Dropout[7] layer to control

the over-fitting and and to reduce the number of parameters so that model can be

more robust to test dataset. Then we insert five more blocks. Each block consists Dense

layer, followed by Batch Normalization layer, which is followed by LeakyReLU layer. We

insert a batch normalization so that the mean activation close to 0 and the activation

standard deviation close to 1 because of this the training of the model will be fast. We

use LeakyReLU activation function because of dying ReLU problem in neural network.

3.4.2 Architecture

The original VGG16 network architecture contains 5 groups of convolutional layers that

in total include 13 convolutional layers, each with a kernel size of (3,3), 5 max-pooling

layers, each with a pooling size of (2,2). The network accepts 3-channel image of reso-

lution 224*224.

VGG16 Architecture

Layer (type) Output Shape Number of Parameter
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InputLayer (None, None, None, 3) 0

Conv2D(block1) (None, None, None, 64) 1792

Conv2D(block1) (None, None, None, 64) 36928

MaxPooling2D(block1) (None, None, None, 64) 0

Conv2D(block2) (None, None, None,

128)

73856

Conv2D(block2) (None, None, None,

128)

147584

MaxPooling2D(block2) (None, None, None,

128)

0

Conv2D(block3) (None, None, None,

256)

295168

Conv2D(block3) (None, None, None,

256)

590080

Conv2D(block3) (None, None, None,

256)

590080

MaxPooling2D(block3) (None, None, None,

256)

0

Conv2D(block4) (None, None, None,

512)

1180160

Conv2D(block4) (None, None, None,

512)

2359808

Conv2D(block4) (None, None, None,

512)

2359808

MaxPooling2D(block4) (None, None, None,

512)

0

Conv2D(block5) (None, None, None,

512)

2359808

Conv2D(block5) (None, None, None,

512)

2359808

Conv2D(block5) (None, None, None,

512)

2359808

MaxPooling2D(block5) (None, None, None,

512)

0

Table 3.2: VGG16 Architecture upto Block5.

We change the original input size from (224*224) to input size of (256*256). Then after
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loading pre-trained weights, fully connected layers are removed from the network up to

last densely connected layer of size 4096 hidden units. And we used five fully connected

layer in place of last two fully connected layers. To control Over-fitting we use Batch

Normalization, Dropout and regularization. The table 3.2 describes the architecture of

ConvNet model.

VGG16 Architecture

Layer (type) Output Shape Number of Parameter

InputLayer (None, 256, 256, 3) 0

VGG16 (model) multiple 14714688

Flatten (None, 32768) 0

Dropout (None, 32768) 0

Dense (None, 4096) 134221824

BatchNormalization (None, 4096) 16384

LeakyReLU (None, 4096) 0

Dropout (None, 4096) 0

Dense (None, 2048) 8390656

BatchNormalization (None, 2048) 8192

LeakyReLU (None, 2048) 0

Dense (None, 1024) 2098176

BatchNormalization (None, 1024) 4096

LeakyReLU (None, 1024) 0

Dense (None, 512) 524800

BatchNormalization (None, 512) 2048

LeakyReLU (None, 512) 0

Dense (None, 10) 5130

BatchNormalization (None, 10) 40

LeakyReLU (None, 10) 0

Dense(Predictions) (None, 5) 55

Table 3.3: Modified VGG16 Model.

3.5 Capsule Network

The Capsule Network[10] which performs well on MNIST dataset. CapsNet also required

less number of epochs during training but due to large number of kernels at the first and

second layer the number of parameters are very high so it increase the time complexity

of the model. So We did not made any changes in the CapsNet just use it for Diabetic

Retinopathy Images and describe the functioning of the CapsNet.
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3.5.1 Discussion

The first part of CapsNet is a traditional convolutional layer. The goal is to extract

basic features from the input images, like edges and curves. For this layer we use 256

filters and kernel size of 9*9 and stride of 1. Then we apply a non-linearity function

LeakyReLU.

3.5.1.1 PrimaryCaps Layer

The PrimaryCaps layer start of as a traditional convolution layer, but this time we are

using a stack of 256 outputs which we are getting from the previous layer. So this time

we are using 9*9*256 kernels, instead of 9*9*3 kernels. In the previous layer we were

looking for simple features like edges, curves etc., but in this layer we are looking for

slightly more complex features, which are combination of the previous layer features.

For this layer we are using a stride of 2. That means previously we were moving one

pixel at a time now we are moving two pixel at a time . Using stride of two we can

reduce the size of our input more rapidly. We will convolve over the output of previous

layer with 256 kernels. So we will end up with a stack of 256 89*89 outputs. In total

PrimaryCapsules has [32*89*89] capsule outputs (each output is an 8D vector) and each

capsule in the [89*89] grid is sharing their weights with each other. These capsules are

our new pixels, with a capsule we can store 8 values per location. Now we have 32

capsule layers and each capsule layer has 7921 capsules. That means we have total of

2,53,472 capsules.

Like a traditional 2D or 3D vector, this vector has an angle and a length. The length

describes the probability, and the angle describes the instantiation parameters.

3.5.1.2 Squashing

After we have our capsules, we are going to perform another non-linearity function on

it, but this time the equation is a bit more involved. The function scales the values of

the vector so that only the length of the vector changes, not the angle. This way we can

make the vector between 0 and 1, so it’s an actual probability.

3.5.1.3 Routing by Agreement

With the help of Routing by Agreement Algorithm we decide what information need to

send to the next level. In ConvNet, we usually do ”max pooling” after convolutional
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Figure 3.5: Squashing function

layer. Max Pooling is used to reduce the size of the image by only passing the highest

activated pixel in particular region to the next level.

Now in the CapsNet with the help of Routing by Agreement Algorithm, we only pass

the useful information and throw the data that would just add noise to the results. Now

using this technique we are reducing the size of the image and also keeping the important

information in the image.

The capsule’s predictions for each class are made by multiplying its vector by a ma-

trix[16*8] of weights for each class that we are trying to predict. So our prediction is a

16 degree vector.

3.5.1.4 DigitCaps Layer

After Dynamic Routing Agreement we are getting five dimensional vectors i.e one vector

for each class. Now this matrix represents the final prediction of the CapsNet model.

The length of the vector is the confidence of the correct class prediction. Longer length

of the vector represent better prediction. This vector can also be used to regenerate the

input image.

3.5.1.5 Reconstruction

This part consists a few fully connected layers. With the help of this reconstruction part

we try to generate the original image and then try to minimize the loss between this

generated image and the original image. In this way it act like regularizer which help

to reduce the over-fitting in the model.
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3.5.2 Architecture

CapsNet Architecture

Layer (type) Output Shape Number of Parameter

InputLayer (None, 192, 192, 3) 0

Conv2D (None, 185, 185, 256) 49408

LeakyReLU (None, 185, 185, 256) 0

primarycap Conv2D (None, 89, 89, 256) 5308672

primarycap Reshape (None, 253472, 8) 0

primarycap squash (None, 253472, 8) 0

digitcaps (None, 5, 16) 163489440

InputLayer (None, 5) 0

Mask (None, 16) 0

Dense (None, 512) 8704

LeakyReLU (None, 512) 0

Dense (None, 1024) 525312

LeakyReLU (None, 1024) 0

Dense (None, 110592) 113356800

output (None, 5) 0

out recon (None, 192, 192, 3) 0

Table 3.4: CapsNet Model.



Chapter 4

Results and Future Work

In this chapter, we will be showing classification accuracy of some of the benchmark

algorithms. We will also compare our results with the deep learning method proposed

by Automatic detection and classification of diabetic retinopathy stages using CNN[1]

which present the result in terms of accuracy, precision, recall and f1-score. The model

has been implemented in python with tensorflow as the backend. We proposed three

methods out of which for one model we use the following system configuration:

GPU CONFIGURATION

Memory Processor Graphics OS

type

Disk

125.8 GiB Intel Xeon(R) CPU E5-

2620 V3 @ 2.40 * 24

Quadro

k6000/PCIe/SSE2

64-bit 7.6

TB

Table 4.1: GPU Configuration.

For other two models we use Intel AI DevCloud which gives access to a cluster comprised

of Intel Xeon Gold 6128 processors.

4.1 Evaluation Criterion

We use accuracy, precision, recall and f1-score to measure the proposed models for

Diabetic Retinopathy dataset. We use 5000 images in the test dataset.

19
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4.2 Results

We compare our results with the deep learning method proposed by Automatic detection

and classification of diabetic retinopathy stages using CNN[1]. We are getting better

results for class1, class2 and class4 using transfer learning from Automatic detection

and classification of diabetic retinopathy stages using CNN[1]. For class3 we are get-

ting better precision than Automatic detection and classification of diabetic retinopathy

stages using CNN[1] i.e our model gives correct classification for class3 58 percent of

the time while their[1] proposed model gives correct classification 36 percent of the time

for class3. while we are getting less recall than their[1] recall i.e our model out of total

class3 samples in test set predict 34 percent of the time as class3 while their[1] model

predict 56 percent of the time as class3 out of total sample for class3.

Modified VGG16 Result

Class Label Precision Recall f1-score

class0 0.82 0.93 0.87

class1 0.61 0.49 0.55

class2 0.70 0.75 0.72

class3 0.58 0.34 0.43

class4 0.80 0.61 0.69

Average 0.72 0.73 0.72

Table 4.2: Modified VGG16 Result(proposed method2)

Class Label Precision Recall f1-score

class0 0.88 0.95 0.91

class1 0.40 0.39 0.39

class2 0.70 0.42 0.52

class3 0.36 0.56 0.43

class4 0.62 0.49 0.54

Table 4.3: Automatic detection and classification of diabetic retinopathy stages using
CNN Result

Class Label Precision Recall f1-score

class0 0.78 0.86 0.82

class1 0.50 0.31 0.39

class2 0.61 0.73 0.66

class3 0.50 0.17 0.25

class4 0.48 0.50 0.49
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Table 4.4: CNN Result(proposed method1)

Figure 4.1: f1-score Comparison1

Figure 4.2: f1-score Comparison2
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4.3 Conclusion

Using transfer learning we are getting better results, except class0, f1-score for all the

classes is greater than or equal to their[1] f1-score. We are getting these results using

image size of (256 * 256). But using CapsNet[10] we get accuracy of 64.20 percent on

test dataset. We use image size of (192*192). Due to large number of parameters we

are not able to run the code for image size more than (192*192), so the CapsNet[10]

may give better results for image size more than (192*192). For method1 i.e using CNN

we are not getting good results. Using method1 we get 64.93 percent accuracy. For

method1 we use image size of (512 * 512).

4.4 Future Work

For CapsNet[10] we use image size of (192 * 192). We increase the image size i.e more

than (192 * 192) than we get resource exhausted error. So due to limited resources we

did not check the CapsNet for image size more than (192 * 192). So by increasing the

image size we can get better results.
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