INDIAN STATISTICAL INSTITUTE

Severity Gradation of Psoriatic Plaques
using Ensemble of Deep Convolutional

Neural Networks
by
Sayan Chatterjee

Under the Guidance of
Prof. Utpal Garain
CVPR Unit,ISI Kolkata

STATISTICAL

1o

Z>=-0D Z=—
5
M Co=e N Z =

J
'.
~ U

en A
T

Teadmam chan

| UNITY IN DIVERSITY |

A thesis submitted in partial fulfillment for the
degree of M.Tech in Computer Science

July 2018


University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, Sayan Chatterjee,registered as a student of M.Tech CS Program, ISI Kolkata,

declare that this thesis titled, Severity Gradation of Psoriatic Plaques using En-

semble of Deep Convolutional Neural Networks and the work presented in it are

my own. I confirm that:

This work was done wholly or mainly while in candidature for an M.Tech degree

at this institute.

Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated.

Where I have consulted the published work of others, this is always clearly at-
tributed.

Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:




Abstract

Severity gradation of psoriatic plaque is important for the estimation of Psoriasis Area
Severity Index (abbreviated as PASI) that facilitates the diagnosis as well as the treat-
ment of the disease. Severity assessment by manual examination of the plaques of the
diseased person or by observation of images of the affected skin area suffers from inter
and intra-observer variability. Therefore, automated techniques can not only lead to re-
duced effort but also can reduce inaccuracy, provided a sufficient amount of correctly
annotated data is available. Recent advancements of deep learning in computer vision
and medical imaging domain has led to a substantial improvement of performance over
traditional image processing techniques.This work has proposed five new methods for
severity scoring in order to bring about improvement in accuracy from the baseline.
The first method uses a small-sized CNN with very less number of parameters for clas-
sification; the second method uses a two-stage classification approach based on CNN;
the third method is a pair wise CNN based classification method; the fourth one is a
majority voting based CNN ensemble and fifth one is a stacking or super-learning based
CNN ensemble. Other approaches like Texture CNN based classification have also been
tried and depicted in the thesis as well.
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Chapter 1

Introduction

1.1 Psoriasis

Psoriasis is a chronic, autoimmune, inflammatory skin disease that causes elevated,
reddish patches with scale formation on human skin surface.The skin lesions may vary
in severity from minor localized patches to patches that cover the entire body. Psoriasis
is a non-contagious disease, i.e it cannot transmit from one person to another.The causes
of psoriasis are not yet completely known.Experts do not consider it to be purely a skin
disorder and according to them it can also have an impact on other organ systems. It is
generally considered to be a genetic disease influenced by environmental factors.Psoriasis
develops when the immune system mistakes a normal skin cell for a pathogen, and sends
out faulty signals that cause overproduction of new skin cells. The difficulty faced in
the treatment of psoriasis arises from the fact that it’s nature varies among patients
by a large extent.So one treatment methodology will not work for all sorts of patients

affected by the same disease.

1.2 Problem Statement

Due to the inherent variability of nature of the skin lesions, Psoriasis needs a quanti-
tative assessment of severity.There exists an index named Psoriasis Area Severity In-
dex(abbreviated as PASI) [2] for this purpose.PASI considers two quantities for severity

assessment: 1)percentage of the body surface area affected by the disease and 2)severity



of the plaques formed on the skin.The four body parts:(i) head(h), (ii) trunk(t), (iii) up-
per extremity(u) and (iv) lower extremity(l) are considered.The extent of area involved
in each part (A4, A, and A;) is given a score between 0-6.The severity of the plaques
is measured based on three parameters: degree of redness or erythema(FEy, Ey, E,, and
Ep),thickness or the induration(Iy, Iy, I, and I;)and scaling(Sh, St, S, and S;)and given
a value between 0-4 according to the level of severity as shown in the table 1.1.The

severity scores according to the area affected is given in table 1.2.

Finally the complete severity score is given by the formula: 0.1(Ej + I + Sp)An +
0.2(Ey+ I+ Su)Ay+0.3(Ey + I+ Sp) A + 0.4(E; + I; + S;) A;. The PASI score varies in
gradation of 0.1 units from 0 to 72.0. Patients having a PAST index > 10 are considered

to be suffering from a severe form of this disease.

Severity(%) | Score
Absent 0
Mild 1
Moderate 2
Severe 3
Very Severe 4

TABLE 1.1: Scoring of each Severity Parameter

Area Involved(%) | Score
0 0
1-10 1
10-29 2
30-49 3
50-69 4
70-89 )
90-100 6

TABLE 1.2: Severity Scoring on the Basis of the Percentage of Body Surface Area
Affected

The objective of the work is to grade the severity of the plaques according to the three

parameters of the skin lesions (erythema, induration and scaling).



1.3 Related Works

1.3.1 Severity Grading of Psoriatic Plaques using Deep CNN based
Multi-task Learning (Pal et al, ICPR 2016)

Complete severity assessment on the basis of all three skin parameters using deep learn-
ing based approach is quite a new topic explored first by Pal et al in 2016. The work
was published in International Conference of Pattern Recognition, 2016. They used the

dataset collected by themselves for assessment purpose.

The dataset used for this purpose are RGB images collected by layman photographers
in an uncontrolled environment with different viewing angle,distance and varying back-
ground.The images were cropped to a size of (227 x 227) for feeding them into the
CNN.The data set had been annotated manually by a domain expert. Each image has
3 annotations corresponding to three parameters (erythema, induration and scaling) as

mentioned. A total of 707 images had been collected.

For classification, i.e severity grading purpose, a deep convolutional neural network
based multi-task learning approach has been explored. In MTL approaches, the network
models learn multiple tasks but share common layers. Moreover, it has less memory
requirement leading to reduced testing time.These models also have the flexibility of
handling different error functions for different tasks.The network architecture used in

this approach is as shown in the Figure 1.1.

The network uses a shared sub-net and three different sub-nets for classification accord-
ing to the three different parameters as shown in Figurel.l. Images of size (227x227) is
given as input to the shared sub-net of the MTL framework and the produced feature
maps by the shared sub-net are given as input to the three different sub-nets predicting

three different scores for three different parameters.

The shared sub-net in the architecture proposed in this work uses five convolutional4+ReLU
layers, three max-pooling and two normalization layers with number of parameters (fea-
ture maps and kernel sizes) as mentioned in the figure. The loss function used by this

approach was the cross-entropy loss function.



For evaluation of the model, a 7-fold cross validation had been done and for each fold
the validation accuracy had been measured. The average of the accuracy values over all

the folds is the accuracy of the proposed model.

Several experiments had been performed to compare results with the proposed ap-
proach.For obtaining the results using an STL framework only one sub-net had been
used at a time. Moreover, local binary pattern feature extraction followed by a tra-
ditional machine learning based classifier like support vector machines and KNN (K-
Nearest Neighbour) had been performed. Deep CNN based approach has certainly

outperformed all other methods by a large margin as shown in the table.

Method Erythema | Scaling | Induration
LBP+KNN | 24.2857 | 28.1429 34.5714
LBP+SVM | 39.6040 | 38.8967 | 45.6860
FC6+KNN | 25.8571 | 25.0000 35.8571
FC6+SVM | 53.6068 | 51.2023 57.2843
FC7+KNN | 26.8571 | 27.7143 32.0000
FC7+SVM | 57.5672 | 49.7878 58.9816

STL 59.6888 | 58.9816 60.6789
MTL 60.6789 | 54.8797 | 61.1032

TABLE 1.3: Experimental Results as Reported in the Work [1]

The model was reported to be trained using a batch size of 256 images with SGD
optimizer having momentum value 0.9, weight decay 0.0005 with learning rate 0.001.
The learning process was said to be stopped when the network parameters got saturated
(when the training error and the objective function did not change significantly for more
than 10 epochs).In case of the MTL framework, it was said to be found that 200 epochs

are sufficient for the parameters to get saturated.

An accuracy measure allowing ( +1) deviation from the predicted score had been ana-
lyzed as the severity scoring suffers from inter and intra observer variability. It reported
an accuracy of 93.64% for erythema,93.78% for scaling and 93.78% for induration for
the MTL approach proposed in this work.
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FIGURE 1.1: DCNN structure used for the MTL framework

1.3.2 Other Works

As already mentioned, automated severity assessment of psoriatic plaques is not a well
explored topic. A few approaches for segmentation of psoriasis images had been explored
( [3], [4], 5], [6] ). Taur et al [3] have proposed a multiresolution based orthogonal
subspace technique for segmentation of images, Lu et al have proposed Markov Random
Field and SVM based approaches for segmentation. Bogo et al[5] had tried to locate
lesional plaques based on chromatic information and then expanding these zones to

achieve accurate segmentation through Geometric Active Contours method.Pal et al [6]



had applied a mixture model based color clustering approach for segmentation.Ring,
Jacques, and Kontinen [7] have provided an interactive method for segmenting psoriasis
lesions from normal skin using color thresholding. Automatic erythema gradation had
also been attempted but there had been no effort for grading erythema, scaling and

induration altogether before the work done by Pal et al [1].



Chapter 2

Proposed Methods and Results

2.1 Dataset

The dataset used is the same as the dataset used in the work [1] done by Pal et al,i.e
it has 707 number of images of psoriasis plaques having 3 labels corresponding to ery-
thema,scaling and induration respectively. The images are RGB images having dimension

(224x224x3).A few samples of the images for each parameter are shown in table 2.1

Severity
Factor

Erythema

Scaling

Induartion

TABLE 2.1: A few sample of the images with the corresponding severity scores. The

erythema score increases as the skin becomes redder.The scaling score increases as the

skin becomes more silvery. The induration score increases if the patches become more
elevated.



2.2 The Primary Challenges to Solve this Problem

Data Insufficiency The number of image samples in the data is substantially low
(707) for a deep neural network to be trained from scratch.It is very difficult to avoid

overfitting.

Data Imbalance The number of data samples corresponding to each severity score is
not the same.The number of data samples per class for each parameter is shown in the

table 2.2.There is a chance for the model to get biased towards the majority classes.

Parameter | classO | classl | class2 | class3 | class4

Erythema 94 212 231 144 26
Scaling 86 239 237 121 24

Induration 116 297 251 43 0

TABLE 2.2: Number of Data Samples per Class

Noise and Unwanted Components As the data have been captured in uncontrolled
environment, the illumination condition is not uniform for all the images.Some images
have glares due to light falling on it and in some cases the presence of skin hair makes
it difficult to locate the lesion.Existing image processing techniques cannot remove the
glare and skin-hair totally from psoriasis plaque images.Even though we try extracting
handcrafted features from the images, chances are less that some meaningful information

indeed comes out.

Here it is to be noted that data augmentation techniques do not help much here. Conven-
tional image augmentation techniques include flipping (vertical and horizontal), rotation
with different angles, adding Gaussian noise, power law transforms etc. Among the tech-
niques mentioned, only flipping and rotation can be applied here. The severity grading
depends on the contrast of color between the affected area of the skin and the healthy
part of the skin. With approaches like power law transforms, color properties can get
destroyed. The data itself is not free from noise. So adding Gaussian noise makes no

sense.

There have been efforts in the literature for processing psoriasis images so that some
meaningful feature extraction can be carried out like removal of skin hair from 2D

psoriasis images by George et al [8].



2.3 Design of a Smaller Sized CNN for Classification

As the number of data samples is too low for a very deep CNN to be trained from scratch,
a different architecture of CNN with much less number of parameters has been designed
for classification purpose.In the previous work [1] the network used was inspired from
AlexNet which has a very high number of trainable parameters, the number of feature
maps per layer was also very high. The CNN designed, although has same number
of convolutional layers but the number of feature maps per layer and number of units
in last two fully connected layers is much less. So the total number of parameters
has been reduced to 1,572,261 from that of AlexNet which has 58,301,829 number of

parameters.The detailed design of the network is as shown in the table 2.3.

Layer Output Shape | No of Parameters
Toput (224,224,3) 0
Conv2D (224,224,32) 896

BatchNorm (224,224,32) 128
ReLU (224,224,32) 0
Maxpool (112,112,32) 0
Conv2D (112,112,32) 25632
BatchNorm (112,112,32) 128
ReLU (112,112,32) 0
Maxpool (56,56,32) 0
Conv2D (56,56,64) 51264
BatchNorm (56,56,64) 128
ReLU (56,56,64) 0
Maxpool (28,28,64) 0
Conv2D (28,28,64) 102464
BatchNorm (28,28,64) 256
ReLU (28,28,64) 0
Maxpool (7,7,64) 0
Conv2D (7,7,128) 204928
BatchNorm (7,7,128) 512
ReLU (7,7,128) 0
Maxpool (3,3,128) 0
Flatten (1152,) 0
Dropout(0.5) (1152,) 0
FC (1024,) 1180672
Dropout(0.5) (1024,) 0
Softmax (5,) 5125

TABLE 2.3: CNN1 Architecture with Number of Parameters
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Here the image of size (224x224x3) is given as input to the network.Then it is passed
through a convolution layer with [3 x 3] kernel. The number of feature map for this
layer is 32.A Batch Normalization layer followed by a ReLU activation layer is applied
on the feature map. Later the feature map is reduced to a size (112x12x32) through
the application of a Max Pooling layer of kernel size [2 x 2] with stride 2.This block
of Convolution, Batch Normalization and ReLu followed by a Max Pooling has been
applied 5 times to reduce the image size to (3x3x128). Then it has been flattened and
a fully connected layer with number of units 1024 followed by a dropout layer with a
dropout probability of 0.5 has been applied .Lastly a softmax layer has been connected
to generate class probabilities.From the 2nd convolutional layer onwards, the kernel size
has been increased to [5x5].As kernel size is also a hyperparameter, different settings

have been tried. This setting of the kernel size worked best.

The number of layers in the network cannot be reduced much because in that case
MaxPooling operation with a higher stride has to be used and due to that there may be

loss of information.

The network was trained for 100 epochs with SGD optimizer with learning rate 0.001,
momentum 0.09, a decay of .000001 and batch size 2. It has been observed that the
models get saturated at about 80 epochs.The saturation point may vary from one fold
to another; that is why 100 epochs has been used. The model has been saved epoch
by epoch using model checkpoint. The plot of validation and training accuracy vs the
number of epochs has been shown in figure 2.1 for one trial run for 350 epochs.The

validation accuracy scores for 7 fold cross validation are tabulated in the table 2.4.

So it shows that this model performs a bit poorer than that reported in the work by
Pal et al.The reason may be two; firstly the model used in the paper was a pre-trained
AlexNet.The hyperparameter tuning of the proposed model does not match that of the
pre-trained AlexNet and secondly, the number of parameters in the proposed model is
also very less.It is important to note that the result reported for the proposed model is

the best one obtained after an extensive hyperparameter tuning. Many different learning
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Accuracy

0.2

L L L
150 200 250 300 350
No of Epochs

FIGURE 2.1: One Instance of a Trial Run showing Training and Validation Accuracy
Variation over 350 epochs

Accuracy(%)
Erythema | Scaling | Induration

Fold No

1 55.45 58.42 62.38
2 49.50 54.45 60.39
3 60.39 52.47 63.37
4 57.42 54.45 61.38
) 56.43 50.49 58.42
6 61.38 56.43 59.41
7 58.41 56.44 58.42

average 57.01 04.74 60.54

TABLE 2.4: Accuracy Values across Different Folds for CNN1

rate values, regularization constants, feature map numbers etc have been tried with and
the best one is reported. Moreover, other optimizers like RMSprop, AdaGrad, Adam

etc have been tried with but SGD seemed to work best in this problem.

2.4 Two Stage Classification: Five Class Base CNN fol-
lowed by Multiple Binary CNNs

The confusion matrices of the CNN for each fold was analyzed to guess whether the
classifier is predicting randomly or they are predicting within (£1) of the actual classes
and it was found that if we allow a (£1) tolerance for accuracy calculation it can be

increased even up to 94%. Therefore,most of the misclassifications are within the actual
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As most of the predicted classes are within (£1) of the actual classes,an algorithm
exploiting this property has been designed to boost the performance of the classifiers.The
algorithm will be effective where the number of classes are small. Otherwise,it will be
computationally expensive to train a large number of binary CNNs.The algorithm goes

as follows:

1. Train 7 binary classifiers for classifying class pairs (0, 1), (1, 2), (2, 3), (3, 4), (0,
2), (1, 3), (2, 4)i.e if there are total N number of classes,train classifiers to classify
(n—1,n), (n,n+ 1) and (n,n + 2) class-pairs for each n (except 0 and N — 1).
These binary classifiers have to be at least as accurate as the base classifier for

performance improvement.
2. For each data sample do the following.

e Feed the data sample to the N class base classifier.Say the predicted class

label is n.

e From the confusion matrices, it can be said there is almost 90% probability
that the actual class label is within the triplet (n — 1,n,n + 1).Feed the data

sample to all three binary classifiers (n — 1,n), (n,n+1), (n —1,n+ 1)

e Among the three predictions from the three binary classifiers,take majority
voting. The class getting the majority vote is the predicted class for this 2nd

level classifier.

It is like, the base 5 class CNN is providing the interval that the actual class may be
in and the voting of the second stage binary CNNs are trying to figure out the correct

class labels.

So following the strategy as mentioned above, 7 CNNs were designed to classify the
class pairs (0, 1), (1, 2), (2, 3), (3, 4), (0, 2), (1, 3), (2, 4).For a particular fold, among
the training data samples, those which belong to the particular class-pair that we are
going to classify, have been taken as training data.Other data samples are ignored.For
validation data also the same approach has been taken.The CNNs were designed by
transfer learning from the actual 5 class base classifier as depicted in section 2.3 so that
the performance of the binary CNNs do not get worsened. The last 5 level softmax

layer from the CNN described in table 2.3 has been removed and a fully connected layer
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for binary classification with signmoid activation has been added. The initial weights
were the weights learned previously and then it is fine tuned for the particular binary

classification problem.

The binary CNNs have been trained for 80 epochs with SGD optimizer with learning
rate .001, momentum 0.09, decay le-6 and batch size 2. Applying the above mentioned
algorithm, around 1-4 percent improvement of average accuracy over 7 folds was no-
ticed. The confusion matrices after the application of the algorithm are shown in the
table 2.6.The accuracy values before and after the application of algorithms are shown
in table 2.7 and 2.8.So it is evident from table 2.7 and 2.8 that we are getting 1.705%
performance improvement for erythema, 3.96% improvement for scaling and 1.14% per-
formance improvement for induration.The values are slightly different than that shown
in the previous section because it had to be retrained on a different machine due to some

issues.

Here it is to be noted that like the binary CNNs that have been designed to boost
performance, ternary CNNs were also designed for the same task.Those ternary CNNs
were designed just like the previous binary ones by replacing the last 5 level softmax
layer by a 3 level softmax layer. But the ternary CNNs did not perform as good as
the binary ones because the misclassification is highest among the (£1) of the predicted

class.That is why the aggregation at the 2nd level was not performed.
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TABLE 2.6: Confusion Matrices after Two Stage Classification
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Accuracy(%

Fold No Erythema Scalin);;( )Induration

1 48.51 55.45 62.38

2 50.50 54.45 60.39

3 57.43 54.45 63.37

4 60.39 58.41 59.41

5 62.37 52.47 56.43

6 60.39 54.45 57.42

7 57.42 58.41 58.42
average 56.715 55.44 59.68

TABLE 2.7: Accuracy Values across Different Folds after Classification with CNN1

Accuracy(%

Fold No Erythema Scaling( )Induration

1 52.47 58.41 66.34

2 57.42 62.37 59.41

3 58.42 53.47 64.35

4 60.39 63.36 57.43

) 63.37 55.45 59.41

6 60.39 62.37 59.40

7 59.41 60.39 59.42
average 58.42 59.40 60.82

TABLE 2.8: Accuracy Values across Different Folds after Two Stage Classification
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2.5 CNN based Pairwise Classification

Pairwise classification is a conventional machine learning approach where an N class
problem is converted into a series of binary class problems.Many learning algorithms
can handle or work better only on two class problems.In order to make them work in
an N class setting, a class binarization technique is required.One solution for this is
a one-against-all approach where one classifier for each class is constructed where the
positive training examples are the data samples that belong to that particular class and
the negative ones are formed by combining all other classes. Another approach is round-
robin or pairwise classification.The idea is to transform the original N class problems into
(]; ) number of binary class problems i.e building one classifier for each pair of classes
and later combining their predictions by some aggregation method. The later approach
had been shown to produce more accurate results than the one-against-all approach for
a wide variety of algorithms like SVM [9] or rule learning algorithms [10].Furnkranz
[11] has claimed in his paper that pairwise classification can be used as an ensemble
technique to obtain a performance improvement comparable to bagging or boosting. As
the misclassification of the designed CNNs are mainly between the neighbouring classes,
this pair wise classification technique has a potential to improve performance.The idea

is the following:

1. Train (g) i.e 10 CNNss for classifying the 10 possible class-pairs among the 5 classes.
2. For every test data

e Feed it to each binary classifier and collect the 10 predictions.From the set of

10 predictions select the most probable prediction by majority voting.

Therefore, 10 classifiers were trained like that said in the above algorithm. For the
algorithm applied in section 2.4, 7 classifiers were already trained. So 3 more classifiers

were to be trained.The results after combining the predictions are shown in table 2.9.

Therefore, using this algorithm we are achieving 3.675% performance improvement
from the base 5-class CNN in case of erythema, in case of scaling we are getting a
performance improvement of 5.36% and in induration we get 1.82% improvement in
accuracy.This method even outperforms the baseline MTL result in case of scaling and

induration by 5.93% and 1.5568% respectively.
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Accuracy(%)

Fold No Erythema | Scaling | Induration

1 54.45 60.39 66.33
2 56.44 66.33 60.39
3 62.37 56.43 67.33
4 59.41 62.37 61.39
) 66.34 54.45 60.39
6 64.35 63.36 59.41
7 58.40 62.37 63.37

average 60.30 60.81 62.66

TABLE 2.9: Accuracy Values after Classification with Pairwise CNN

2.6 CNN Ensembles

Ensemble learning is a way of combining multiple weak classifiers to produce a stronger
classifier.So in ensembles, multiple different learners are generated and their outputs are
combined. Different base learners can be generated in several ways like (i)using differ-
ent algorithms,(ii)using different hyperparameters in the same algorithm,(iii) different
representations or (iv) different training sets (in case of the learners which have a high

variance).

The basic idea of ensembles is that if n independent weak learners make independent
errors, the combination of their outputs will have a lower error probability.But there
is a condition that each base weak learner should have an error rate which is greater
than the random.Let us consider a situation where there are n learners and each of
them have an accuracy rate, say p. In an ideal situation, if the learners are independent
and they all agree on an input data, the confidence of the learners on the data will be
1 — (1 —p)™. Soif n is high, the confidence on the data will be close to 1. In practical
situations, as the accuracy of the learners are not 1, it is less likely that all the learners
will agree on some particular data. Therefore as a solution, we can take the majority
votes of the learners.There can be multiple ways in which the output of the learners can

be combined.

For convolutional neural networks also, ensemble has been proved to be a very efficient
technique for performance enhancement.Krizhevsky et al [12] showed that on ImageNet
2012 classification benchmark, their model with 5 CNNs achieved a top-1 error rate of
38.1% while a single model achieved 40.7% top-1 error rate.Zeiler and Fergus [13] showed
that by the ensemble of 6 CNNs, they could reduce the top-1 error from 40.5% to 36.0%.
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For solving this problem, 5 CNNs were used. It is to be noted that for the ensembling to
be effective, the networks have to be different so that they make errors in independent

manners. So 5 different architectures had to be used.

2.6.1 CNN Model 1

The first model is the same as that described in section 2.3.

2.6.2 CNN Model 2

Architecture for CNN-2 is described in table 2.10.The difference in the architecture has
been achieved by using one less number of layers than the previous one.Here 4 such
convolutional, batch normalization and ReLU layer have been used with the same sized
kernel and feature maps as described in case of the first CNN. Only difference is that
here the feature map (28 x28x64) has been MaxPooled to (14x14x64) and then it has
been flattened to feed to the fully connected layers. That is why the number of trainable
parameters has increased to 13,032,229 from that of the previous CNN.

2.6.3 CNN Model 3

The architecture of the 3rd CNN has been described in table 2.11.The difference in
the architecture has been created by using a global average pooling layer after the last
convolutional layer. The global average pooling layer pools an average value from each
of the 2 dimensional feature map of the convolutional layer and combines each of the
value in a single vector. Thus the number of parameters can be reduced greatly by the
use of this layer and so overfitting can also be reduced substantially. Here it is to be
noted that even after the feature size has been reduced to (7x7x128) another layer of
MaxPooling has been used to make it (2x2x128) and then after another convolution,
Batch Normalization and ReLLU block, the global average pooling layer has been added.
The number of parameters of this model is 933,925.The kernel dimensions and other
parameters that have been used in this network are the same as the previous one. It

is to be noted that these variations in the architecture have been incorporated mostly
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Layer Output Shape | No of Parameters
Input (224,224,3) 0
Conv2D (224,224,32) 896
BatchNorm (224,224,32) 128
ReLU (224,224,32) 0
Maxpool (112,112,32) 0

Conv2D (112,112,32) 25632
BatchNorm (112,112,32) 128
ReLU (112,112,32) 0
Maxpool (56,56,32) 0
Conv2D (56,56,64) 51264
BatchNorm (56,56,64) 128
ReLU (56,56,64) 0
Maxpool (28,28,64) 0
Conv2D (28,28,64) 102464
BatchNorm (28,28,64) 256
ReLU (28,28,64) 0
Maxpool (14,14,64) 0
Flatten (12544,) 0
Dropout(0.5) (12544,) 0
FC (1024,) 12846080
Dropout(0.5) (1024,) 0
Softmax (5,) 5125

TABLE 2.10: CNN2 Architecture with Number of Parameters

to make the models different and independent.That the number of parameters doesn’t

grow too much has also been taken care of.
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Layer Output Shape | No of Parameters
Tnput (224,224,3) 0
Conv2D (224,224,32) 896

BatchNorm (224,224,32) 128
ReLU (224,224,32) 0
Maxpool (112,112,32) 0
Conv2D (112,112,32) 25632
BatchNorm (112,112,32) 128
ReLU (112,112,32) 0
Maxpool (56,56,32) 0
Conv2D (56,56,64) 51264
BatchNorm (56,56,64) 128
ReLU (56,56,64) 0
Maxpool (28,28,64) 0
Conv2D (28,28,64) 102464
BatchNorm (28,28,64) 256
ReLU (28,28,64) 0
Maxpool (7,7,64) 0
Conv2D (7,7,128) 204928
BatchNorm (7,7,128) 512
ReLU (7,7,128) 0
Maxpool (2,2,128) 0
Conv2D (2,2,128) 409728
BatchNorm (2,2,128) 512
GlobalAveragePooling (128,) 0
FC (1024,) 1180672
Softmax (5,) 5125

TABLE 2.11: CNN3 Architecture with Number of Parameters

2.6.4 CNN Model 4

The fourth CNN that has been used is a pre-trained ResNet50. Residual connections
had been introduced by He et al [14] in ImageNet challenge 2015. They showed that
by using residual connections/skip connections, more depth can incorporated in the
network without the fear of gradient being vanished. They used a 150 layer Residual
Deep Network for training the ImageNet dataset. The residual connections are like that

shown in figure 2.2

The baseline ”plain” models in the ResNet paper, as they have claimed, are based on
the VGG-net [15] .They have used all equal sized [3x3] kernels.Upon this framework

they have incorporated, what they have called the ”shortcut connections”.The shortcut
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FiGUure 2.2: Skip Connections in ResNet

connections perform identity mapping and it’s output is added with the main mapping
F(z). If the desired mapping is H(x), then the stacked nonlinear layers should learn
F(z) := H(z) — x. So the original mapping is recast into F(x) + z. They claimed
that this residual mapping is easier to optimize than the original, unreferenced map-
ping.The identity mapping can be used when the input and output are of the same
dimension.These identity mappings neither increase the number of parameters nor in-
crease the computational complexity.Moreover, as the addition operation distributes
the backpropagated gradient in equal values to the two branches,the gradient vanish-
ing problem does not occur.They showed that by using a 152 layer single ResNet, they

achieved a top-5 validation error of 4.49% in ImageNet dataset.

In this case, a ResNet50 model pretrained on ImageNet dataset has been used. The
last softmax layer of the pretrained model has been removed and one 5 level softmax
layer has been added for generation of the class probabilities. The whole model was fine
tuned for the psoriasis dataset. The total number of parameters for this transfer learned
model is 2,468,097 which is substantially low for a model with 50 layers. The reason for
using a pre-trained model is that the number of data samples is very less. So transfer

learning from a very deep network like ResNet50 is the only feasible idea.

2.6.5 CNN Model 5

The 5th CNN architecture that has been used is a pre-trained DenseNet121 model.
DenseNet architecture was introduced by Huang et al [16] in CVPR 2017. Just like
ResNet, DenseNet also addresses the problem of vanishing gradient with very deep
architecture. Whereas ResNet uses shortcut connections from earlier layers to later
layers, DenseNet ensures maximum information flow between the layers of the network

by connecting all layers directly with each other. DenseNet does not combine features
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through summation, rather it combines features through concatenation. It’s I*" layer

has [ inputs from all the feature maps of the preceding convolutional blocks.

Suppose, Tg, L1, L2........ x;_, are the feature maps of all the preceding layers of the [*"
layer. The I*" layer output then will be 2; = F([xo, 21, T2, ...7;_1]) where [zq, 21, T2, ....... x]-1]
denotes the concatenation of the tensors xg, 1, Za....x;_;.This [ layer’s own feature
maps are passed to all L — [ subsequent blocks.So in an L layer network, there are
L(L + 1)/2 connections.They have termed this connections dense connections.These
dense connections effectively reduces the number of parameters in the network, as there
is no need to relearn the redundant feature maps.Also it has used narrow layers consist-
ing of only 12 filters per layer.If each function F' produces k feature maps, the number
of feature maps in the input of the I layer will be kg + k x (I — 1), where kg is the
number of channels in the input layer.The parameter & is called the ”growth rate” of
the network.They have claimed that a relatively small growth rate is sufficient to obtain
state-of-the-art results in ImageNet dataset. A five layer DenseNet block with growth
rate 4 has been depicted in the figure 2.3

FIGURE 2.3: 5 Layer DenseNet Block with Growth Rate 4

Apart from the better parameter efficiency, other advantages of the DenseNet architec-

ture are:
e Information and gradient flow through the network improves making it easy to
train

e Dense connections has a regularizing effect which reduces overfitting on smaller

training sets



24

To make the architecture independent from the previous four architectures, and to take
the advantages of transfer learning from a pre-trained model, DenseNet 121 was cho-
sen.The last softmax layer was removed and a 5 level softmax layer was added with the
network. The total number of parameters of the used DenseNet is 7,042,629 which is

noticeably less for a model with 121 layers.

All the 5 models were trained using SGD optimizer with learning rate .001, momentum
0.09, batch size 2, decay rate le-6 for 150 epochs. The models were saved using model
checkpoints epoch by epoch at the best points obtained till 150 epochs. Thus the effect

of fluctuations in validation accuracy can be avoided.

2.6.6 Ensemble by Majority Voting

The outputs from the 5 CNNs can be combined in multiple ways in case of ensembles.
One way is majority voting. A sample from the test data is taken and it is fed to 5
networks for testing, they all issue a vote. The sample is assigned the majority class.
The result of classification with 5 CNN ensembles combined by majority voting for

erythema , scaling and induration is described in table 2.12, 2.13, and 2.14 respectively.

Accuracy(%)

Fold No == N TGNN-2 [ ONN-3 | ONN-4 | ONN5 | Ensemble
1 55.45 | 51.48 | 47.52 | 52.48 | 54.45 55.45
2 4950 | 51.48 | 55.45 | 52.48 | 53.46 59.41
3 60.39 | 56.43 | 58.41 | 55.44 | 64.35 70.29
4 57.42 | 51.48 | 495 | 52.47 | 58.41 61.39
5 56.43 | 57.42 | 55.45 | 45.54 | 57.42 65.35
6 61.38 | 53.46 | 53.46 | 50.49 | 65.34 63.37
7 58.41 | 53.46 | 5445 | 56.43 | 55.44 66.33

average | 57.00 | 53.61 | 53.46 | 52.19 | 58.42 | 63.08

TABLE 2.12: Accuracy Values across Different Folds for Erythema for Ensemble with
Majority Voting

Therefore,this majority voting based ensemble has brought about a noticeable improve-
ment in the accuracy value for all the three parameters. It has outperformed the baseline
AlexNet based MTL approach in case of erythema by 2.401%, in case of scaling by
8.9103%, and in case of induration by 4.3768%.
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Accuracy(%)

Fold No = N1 TONN-2 [ CNN-3 | CNN-4 | CNN-5 | Ensemble
1 58.41 | 53.46 | 50.41 | 53.46 | 55.45 63.36
2 54.45 | 56.43 | 5545 | 60.39 | 66.33 66.34
3 5247 | 48.51 | 53.46 | 55.44 | 5544 59.41
4 54.45 | 58.41 | 55.45 | 57.42 | 66.33 70.29
5 50.49 | 45.54 | 4951 | 46.53 | 52.47 52.47
6 56.43 | 55.44 | 61.38 | 57.42 | 67.32 68.32
7 56.43 | 56.44 | 4950 | 56.43 | 59.41 66.33

average | 56.43 | 53.46 | 53.61 | 55.30 | 60.39 | 63.79

TABLE 2.13: Accuracy Values across Different Folds for Scaling for Ensemble with
Majority Voting

Accuracy (%
Fold No - 7 ToNN2 [ CNN-3 C}1:I(N-)4 CNN-5 | Ensemble
1 62.37 | 61.38 | 5342 | 57.43 | 66.33 63.31
2 60.39 | 59.40 | 57.42 | 46.53 | 51.48 62.37
3 63.36 | 65.35 | 62.38 | 51.49 | 56.43 66.33
4 61.38 | 62.37 | 57.43 | 47.53 | 5148 68.31
5 58.41 | 61.30 | 63.36 | 51.49 | 55.44 67.32
6 59.40 | 53.46 | 57.42 | 50.49 | 58.42 62.37
7 58.41 | 57.42 | 5445 | 5545 | 53.46 63.36
average | 60.53 | 60.11 | 58.60 | 51.48 | 56.15 | 65.48

TABLE 2.14: Accuracy Values across Different Folds for Induration for Ensemble With
Majority Voting
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2.6.7 Ensemble by Stacking or Super-Learning

Ensemble of multiple algorithms can be performed by averaging, voting or weighted vot-
ing or weighted linear or non-linear combinations. In weighted combination, the weights
can either be assigned arbitrarily or it can be proportional to accuracy or some other
metric decided by the user. Stacking is a special case of weighted combination process
where the weights are learned by the use of another learner called ”metalearner”.The
idea of stacking was originally proposed by Wolpert(1992) [17]. It says that stacking

works by reducing the bias of the generalizers with respect to the provided learning set.

Let there are N classifiers. The ' classifier is denoted by fi : (w1, 72, 3....7,) — R/I),
i.e it outputs either a class label or class probability distributions.The purpose of stack-
ing is to learn a metalearner h : (fi1(z), fa(x), f3(z)....... , fn(z)) = R/T) such that it
optimizes the weights of the combinations of the outputs of the 1st level learners to
produce the correct class labels or probabilities of the original problem. Each of the
first level classifiers can be assumed to be producing some features, i.e class labels or
probability distributions. These produced features can be stacked in a vector or ma-
trix.These vectors/matrices and the corresponding class labels are the training data for
the metalearner. Here a k-fold cross validation approach must be used to produce the
class labels or probability values from the base learners. For each fold, the predicted
class labels or the class-probabiliies from all the learners are stacked to produce training

data for the metalearner.The training labels are the same as the original labels.

Stacking has been proved to work better than other ensemble techniques like bagging

or boosting in various cases.It also reduces overfitting to a great extent.

In our case, as a metalearner, an MLP (Multi Layer Perceptron) has been used. Both
the probability distributions and the class labels generated by the five CNNs have been

combined separately to feed the metalearner.

The probability vectors generated by all the base learners have been stacked in a matrix
to produce a feature corresponding to a particular image. During the 7 fold cross
validation, for a particular fold, the trained model has been applied to the test data
for that particular fold and the probability scores for 5 classes have been generated and
these 5 probability vectors have been stacked into a matrix of size (5x5).These matrices

are the inputs of the MLP model described in the table. The number of parameters for



27

this MLP is 27129. The result across different folds for erythema, scaling and induration

has been described in the table 2.16. The accuracy values are shown in table 2.17

Layer Output Shape | No of Parameters
Input (5,5) 0
Flatten (25,) 0
FC (512,) 13312
LeakyReLU (512,) 0
Dropout (512,) 0
FC (512,) 13312
LeakyReLU (512,) 0
Dropout(0.5) (512,) 0
Softmax (5,) 505

TABLE 2.15: MLP Architecture for Meta-Learning with Probability Scores

Accuracy(%

Fold No Erythema Scalin);( )Induration

1 52.48 61.39 71.29

2 64.35 73.27 64.36

3 66.34 61.39 67.33

4 71.29 72.27 70.38

5 64.36 53.47 63.36

6 62.38 67.33 60.40

7 69.31 69.31 67.33
average 64.36 65.49 66.34

TABLE 2.16: Accuracy Values across Different Folds for Stacking with Probability
Scores

Therefore, this approach has been able to bring in changes in the accuracy. It has outper-
formed the baseline AlexNet based MTL approach in case of erythema by 3.6811%,in
scaling by 10.61% and in induration by 5.236%.

The class labels predicted by all the base learners have been stacked in a vector to
produce a feature corresponding to a particular image. During the 7 fold cross valida-
tion, for a particular fold, the trained model has been applied to the test data for that
particular fold and the labels and the corresponding 5 element feature vector has been
designed.These feature vectors are the inputs of the MLP model described in the table.
The number of parameters for this MLP is 1105. The result across different folds for

erythema, scaling and induration has been described in the table 2.18.



28

Layer Output Shape | No of Parameters
Input (5,) 0
FC (100,) 600
LeakyReLU (100,) 0
Softmax (5,) 505

TABLE 2.17: MLP Architecture for Meta-Learning with Class Labels

Accuracy(%)

Fold No Erythema | Scaling | Induration

1 64.36 63.36 73.27

2 72.27 61.39 65.35

3 64.36 72.27 71.29

4 70.29 69.31 69.31

5 59.40 71.30 65.35

6 72.27 65.35 61.39

7 66.34 62.38 66.34
average 67.04 66.47 67.51

TABLE 2.18: Accuracy Values across Different Folds for Stacking with Class Lables

Therefore, this approach has also been able to bring in a significant change in the
accuracy. It has outperformed the baseline AlexNet based MTL approach in case of
erythema by 6.36%,in scaling by 11.59% and in induration by 6.406%. The labels
for a few sample images have been shown in figure 2.6. The first set of labels (enclosed
by the first parentheses) represents the ground truth labels and the second set of labels
(enclosed by the second parentheses) represents the predicted class labels (in order of

erythema, scaling and induration respectively).



29

stacking of Features

™ -—VLlass—Labels

FIGURE 2.4: Stacked CNN Ensemble
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FI1GURE 2.5: Actual and Predicted Labels for Stacking With Class Labels for a Few
Sample Images



Chapter 3

Other Methods Tried and Future
Work

3.1 Manual Feature Set Development Followed by Classi-
fication with MLP

As the number of data samples is very less, a manual feature extraction approach followed
by a classification with MLP had been taken.In literature, there had been efforts to
detect melanoma by using such techniques ([18],[19]) but for psoriasis there is not any.
Images had been pre-processed by CLAHE followed by median filtering to remove the
noise. From the pre-processed image several features including GLCM features had been

extracted.

Let P be the gray level co-occurrence histogram.The value P(i, j) is the number of times
that grey-level j occurs at a distance d and at an angle theta from grey-level 7. The

GLCM features and other features are calculated abiding by the following definitions:

1. Mean Pixel Intensities For all 3 channels R, G ,B the mean values were calcu-

lated
2. Standard Deviation For all 3 channels

3. Entropy For all three channels image entropy values were calculated separately

31
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4. GLCM Features From 4 Gray Level Co-Occurrence Matrices for four angles, the

following features had been extracted

e Contrast

YO = 45)*P(i. )

v g

Dissimilarity:
> > li— 41 PG, j)
v g

¢ Homogeneity

Z ZP(i’j)/(l + (i —5)?)

/Z ZP(M)?

23 PGd) (= i)~ 1)/ /7]

e Energy

Correlation

e Asymmetry Index

2.2 PG

Therefore, a total of 33 features had been developed per image. Then an MLP had

been trained with the above mentioned feature set.The MLP structure is as shown in

the table

Layer | Output Shape | No of Parameters
Input (33,) 0

FC (132) 4488
ReLU (132,) 0

FC (132,) 17556
ReLU (132,) 0

Softmax (5,) 665

TABLE 3.1: MLP Architecture for Classification on Manually Developed Feature Set
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The MLP was trained by SGD optimizer with the parameter settings used in the previ-
ously mentioned methods. Again a 7 fold cross validation approach has been taken.The
average accuracy of the 7 folds were found to be 39.74% for erythema, 35.53% for scaling
and 43.68% for induration. So it is working very poorly as compared to CNN.The reason
for this may be two. Either the feature set that have been developed are not so impor-
tant for this particular problem or due to noise, glare, presence of skin hair meaningful
features could not be extracted. If the reason is the first one, then detailed domain
expertise is required to extract feature pertinent to this problem and if the reason is the
second, extensive image pre-processing techniques should be explored to eliminate all

the unwanted parts.

As the LAB color space is perceptually uniform with respect to human color vision,
feature extraction of the images in LAB color space had been attempted. As a channel
in LAB color space is for green-red color perception, GLCM and other features only
from this channel had been taken for erythema classification and the same features
had been taken from L channel for scaling classification. These features then were
used for classification using MLP, SVM and even with Random Forest algorithm. No

improvement over the method described in this section was noticed.

3.2 Transfer Learning from Pre-trained Texture Network

This is not a problem of object identification from an image. Generally CNNs do perform
well in case of classification where objects with particular shapes have to be identified.
All the standard datasets like ImageNet, CIFAR, MNIST are examples where a partic-
ular animal, vehicle, other objects, digits have to be identified. The shallower layers of
any CNN detect generic features like edges, curves, blobs etc and deeper layers com-
bine them to extract global spatial information based on which the object is identified.
In texture identification or classification, traditional CNN has not performed well. We
thought at first that our problem is solely about texture, so a texture CNN based ap-
proach had been taken.Andrearczyk et al (2015) [20] have proposed a model for texture
identification where a novel energy layer has been introduced. According to them the
global spatial features are not at all important for texture classification. So just after
the shallower convolutional layers of any CNN an energy layer had been added. The

architecture of the model, as given in the paper, is shown in figure
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FIGURE 3.1: Texture CNN

Here in the paper, after first few layers of AlexNet, the energy layer had been added.
The energy layer is similar to global average pooling layer. It extracts an average value
from each feature map of any particular convolutional layer. Here, in this work, an
architecture similar to the one proposed in section 2.3 had been used and a global
average pooling layer had been introduced after only 3 convolutional layers as described
in the paper. The number of parameters could be reduced to a large extent thus but
no change in accuracy was noticed.In fact it deteriorated. The average accuracy over
7 folds for erythema, scaling and induration was found to be 48.5%,46.4% and 49.5%

respectively.

The same model was trained on a texture dataset named CUReTCOL.This data set
consists of 5600 texture images having 61 different classes. This dataset is derived from
the original CUReT (Columbia-Utrecht Reflectance and Texture Database) dataset. The
same model gave an accuracy around 72% in the same dataset. After training this model,
this was transfer learned to our psoriasis dataset. No significant change in accuracy was
noticed. The reason is that the problem is entirely not dependent on texture. Erythema
and scaling score depends on the color contrast and induration score depends on the

elevation of the affected area with respect to the normal skin surface.

3.3 Future Work

As the misclassifications are mostly between neighbouring classes, embedding the images
in hyperbolic space can lead to the improvement in separability of the classes as in hy-
perbolic space, volumes grow exponentially as opposed to the Euclidean space where it
grows polynomially. Recently, a paper by Google DeepMind [21] has proposed a hyper-

bolic attention network that has outperformed conventional attention networks.There
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has been efforts to incorporate hyperbolic geometry in deep learning recently like hy-
perbolic neural embeddings [22], Poincare embeddings for learning hierarchical repre-
sentations [23] etc. Therefore, as future work proposal, we can try embed the images
in hyperbolic space or explore other methods to incorporate hyperbolic geometry in our

model.
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