CRITERIA OF ESTIMATION IN LARGE SAMPLES®

By C. RADHAKRISHNA RAO
Iwdian Statistical Institule

SUMMARY. Tho oxisting criteria of eon-ulcncy nnd eflicioney of cstimation have boen oxamined
in tho light of recent critich and g them. A now critorion called uniform firet
order ¢ficiency which is a bottor indicator of tho of an esti T in intical inferonce has
beon introduced. It is, howover, pointed out thot tho anomaly in the earlior critorion of officioncy can
bo removed by considering consistont celimators which converge to a normal distribution uniformly in
compaote of tho parumoter apnco. First order efficiency by iteoll cannot discriminato cmong a large
pumber of cetimation procodurcs. Thereforo, en odditionsl criterion called tho second order efficiency
has been introduced, 'rhu:h oonndernbly rostricts tho class of uscful estimation procedurcd and by which
soveral well blished dy could bo elimi; d in favour of tho mothed of maximum
likelihood,

1. INTRODUOTION
Estimation, as conceived by the lato Sir Ronald Fishor, is one of the mothodo-
logical processes by which data aro analysed or reduced for purposesof drawing inf
on tho unknown population from which data are observed. For instanco & sample
survoy of consumer expenditure may provido a roass of data which by themselves are

difficult to intorpret. Wa thereforo need y figutes or esti which provide
o fair iden of tho characteristics of the populati pled and cnable us to answer
8 variety of questi Has tho | pita expenditure on rico increased over timo

and is it different in different regions? Does a given cstimato reasonably agree with
what is bolioved to Lo the per-capita expendituro, or with another estimato obtained

by a parallol agenoy? No clear indication of to such questions would be
availnblo without computing from the dataan estimate which represents the per-capita
expenditure and other ities which indiente tho possiblo extent of error in tho esti-

mato and guido us in making judicious statements about the population. Further
questions may suggest thomsolves aftor somoe initial questions are answered with the
estimates already obtained.

There has been a tond to ider tho problem of estimation as a part of
d theory, requiring a p d purposo for the cstimate and specification of
loss resulting from any given magnitude of error in tho estimate. It is not, howover,
my viow that tho lattor approach should be pletely abandoned. There may bo
situations whero such an approach is necessary and appropriato as in tho case of accep-
tanco procedures in industrial statistics. But in a majority of situations the fi k
of decision theory may not be applicablo and it may bo 'y to ider the probl

of estimation from a wider point of view as ‘extraction of information’ for drawing
inf and forr ding it, as n sub for tho entiro data, for possiblo future uses.

Sinco estimation, howovor it may be viewed, involves reduction of data, it
may ontail somo loss of information for we aro intorproting tho data through the

Looture deliverod on tho ocoasion of the proscniation of Slanti Swarup Bhatnagar award
for 1050,

This papor has boon inoluded in Contributione fo Statistice proscntod to Profossor P, €. Mahalanobis
on Wi occoalon of his 70th birthday,
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estimates, Tho criteria for choico of eatimators should then relato to minimisation of
loss of information, Uufortunately, no objective rocasuremont of information is O3~
sibleand heneo tho difliculty In the formulation of auitablocritoria. However, asymptotio
theories of estimation based on the criterin of consisicncy and efficiency (to Lo referred
to as v-oflicioncy) havo bLeen constructed and certain methods have been shown
to yiold estimators eatisfying these criteria. It was thought that the criteria of con-
sistency amd v-offici ousure mi loss of inf jon duc to cstimntion as
tho samplo size incroascs.

Theso theorica aro not satisfactory duo to threo main reasons.  Firstly, all tho
results relato to limiting propertica as the samplo sizo tends to infinity and no indication
is availablo of their applicability to plea of sizes ordinarily mot with in actual
practico.  Sccondly, thero ecom to exist infinitely many procedures leading to esti-
mators satisfying tho stated criterin and no further criteria havo been suggestod to
distinguish among thom. Thirdly, the criterion of w-efliciency does not provide n
satisfactory index of tho performance of an estimator from the view point of statistical
inferenco.

I have attompted to resolve theso difficulties in somo ways (Rao, 10060b, 1061,
1962). Firstly, the criterion of v-clficiency hns beon reformulated to ensure some
optimum asymptotic proporties of an estimator used in the placo of tho samplo for
purposes of inforenco” This is called first order efficiency. Secondly, another eriterion
known as gecond order efficiency has been introduced to distinguish among different
procedures leading to first order officiont estimators. On the basis of tho latter cri-

terion soveral well-known p lures, such as tho mini hi-squaro, modified mini-
mum chi-square cte., which aro consldomd a3 competitors to maximum likelihood on
the basis of v-efliciency, could be eliminated. The socond order eflicioncy also provides

a partial answer to tho question of sample size. Correction terms of order O(»~1) to
the estimato and of ordor O{n-%) to its procision havo been determined for soveral
cstimation procedures.

The present paper ia intonded for a further di: ion of first and socond ordor
officiencics and to introduco n now concopt of uniform efficiency which scems to bo
important when asymptotic th are idored, Some new light is thrown on

the uso of asymptotic varianco of an estimator as an indox of efficiency. Further the
second order officieney is linked with torms of ordor {n~%) in tho asymptotic cxpnnswn
of the varianco of an estimator, Probl g further investigation are indicated.

In undertaking theso studios I have been guided by tho basio ideas contained
in two fundamental papers on cstimation by Fisher (1922, 1025). I wish to rocord
my debt of gratitudo to tho lato Sir Ronald Fisher for tho oncouragoment I rocoived
from him whon I was working under his guidance at Cambridge and during his recont
visits Lo tho Indian Statistical Instituto. I also wish to thank Prol'omr D. C \Inlmlu-
nobis, tho Dircctor of tho Indian Statistical Insti for his stimul
on the logie of slatistical inforonce and tho purposo of statistics to wlucl.l T havo beon
constantly oxposed.
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2. CoNSISTENOY
The criterion of consistency is in tho nature of identifying tho parameter for
which a statistio ia enid to bo an estimator. This is important from tho practieal point
of viow of intorproting tho catimatea. Thero aro various definitions of consisteney of
which the one frequently referred to in literature is probability consistoncy (PC).
Definition 27 :  Probability consistency (PC). A scquenco of statistics
T, is snid to bo consistent for a parameter 0 if T,— 0 in probability.

But ono eriticism of such a dofinition is that it places no reatriction on the
atatistio for any given n. An alternative definition of consistoncy duo to Fisher,
called Fisher consistoncy (FC) secoms to bo moro satisfactory in this respect, but
somewhat restrictive in application.

Definition 2B : Fisher consistency (FC). A statistio T', = f(S,), whero 8,
is tho empirical distribution function based on n observations and f ia & weakly conti-
nuous functional defined on the space of distribution functions is snid to bo Fisher
consistent if f(Fy) = 0, whero F, is tho truo distribution function from which obser-
vations aro drawn,

It is ensy to sco that FC==) PC and that FC refers to a restriction on the
estimate for any finito »# and is not just a limiting property of a sequenco of statistics.
But it is applicablo only in situations whero independent observations aro drawn from
a population characterised by a distribution function.

3. EFFICIENOY

Efficiency of an estimator, which we rename s v-efficiency beeauso it is linked
with asymptotic varianco, is usunlly defined as follows :

Definition 3A: v-efficiency. Considor tho class (T} of coLnsisten'. asympto-
tically normal (CAN) cstimators of 0, i.o., for cach T',, aYT,—~0)> N[0, t{0)]. Ary
member of the sub-class for which v{0) == 1/i(0) is said to be an eflicicnt estimator of 0.

It was bolioved that for a CAN cstimator, tho asymptotic variance v(0) satis-
fies the incquality

0)> T(}T) . (3)

and that an cstimator with the smallest v{0) has maximum concentration round the
true valuo in sufficiently largo samples. Unfortunately, both theso results aro nat
strictly truo without any restrictions on tho estimating function or tho modo of cone
vergonco to normality. About ton years ago Hodges (sco LeCam, 1953) constructed
an examplo to show that the result (3.1) is not truo in goneral. Lot

T,=2 (2] > }

=az(|E| <n )
where Z is the avernge of » observations from N(0, 1) and « is arbitrary. It may be
verified that 7, is also CAN with
wHO) =1, for 0;&0}

= al, for 0=10
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#0 that tho variance at 0 = 0 ean be made arbitrarily emall. Such an estimato has
been termesd ‘super efficient.”  Thia examplo throws in doubt tho oxact significanco
of v-cfliciency.

Even if thero is no lower bound to asymptotic varinnee, the question remains
as to whether wo should prefer the estimator T, as defined in (3.2) to 2 becauso of smaller
asymptotic variance at least at ono point and equivalence elsowhere. Tt cin bo ensily
scen that for any given n, T, haa better concentration than 2, in tho senso of higher
probabilitics for intervals enclosing the true value, only for the specinl values of
0 = 0 and a small neighbourhood of zero, and thereafter for a continuous set of 0, T,
has less concentration than 2, This may.alto bo inferred by comparing the mean
squaro errors (m.s.e.) of T, and 2. For anygiven n the m.s.c. of T, is smaller than that
of Z for & closo to zero and thereafter it stays larger, although the differenco tenda to
zero a8 0 increnses. It may, however, be observed that tho m.e.e. in cither case tends
to the corresponding asymptotic valuo but the anomaly arisea due to convergenco
being not uniform in the ease of T,. Wo shall have oceasion to stress the impertance
of uniform convergence in a later section of this paper. An attempt to improve the
concentration in the neighbourhood of a particular value of the parameter scems to
have injured the performanco of the cstimator at other values. A general statement
to this effect is proved by LeCam (1053) using bounded risk functions. Superiority
0s judged by asymptotic variance funetion need not therefore indicate greater concen-
tration for all values of tho unknown parameter oven in sufficiently large samples.

Consider another super cfficient estimator U,,

U=z (|§|>n“")}

=az, (2] <niy

where x,, is the sample median and a is arbitrarily small.  The statistics (3.2) and (3.3)
have the samo asymptotic variance and aro thereforo indistinguishablo on tho basis
of v-efficiency. Thero must, however, bo some difference in the performanco of theso
two statistics, tho estimator (3.3) being cssentially equivalent to tho sample median
when 0 = 0.

Sinco thero is no lower bound to the asymptotio variance of a CAN estimator,
it may bo thought that an improvement over i possiblo by constructing o statistio
T, with a uniformiy lower asymptotie varianco and thereby incrensing the concentra-
tion at overy valuo of the pnrameter, ns at & = © in examples (3.2) and {3.3). LeCam
{1053) has demonstrated that such an jmprovement is not possible for any continuous
interval of the parameter and tho set of points with a Jower asymptotio varianco
has to bo of Lebesgue mensuro zoro.

Can wo avoid all theso troubles by considering only efficient estimators in
tho senso of Definition 3A and not trying to improve upen tho asymptotio varianco
1/i(0)? Tho following example provides an answor ta this question.

Let W,=% (2] > n1y)

(3.3)

e (84)
)

= (2} 2 (121 <»)
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whoro 2 is the samplo mean and 7., is the samplo median, ¥, is also CAN with the
samo asymptotic varianco {0) = 1 for all & aa that of 2. Tho estimator 1V is thus
indistinguishnble from 2 so far ns consistency and v-cficiency aro concerned, Yet
for any given large n, W', hns leas concentration than that of 2 for all values of 0.

It is no doubt true that an estimator having a higher concentration than
another for every valup of @ is moro uscful indrawing inferenceson 0 from an observed
ceiimate. That such a situation is realised for an estimator compared to another for
sufliciently Jarge n cannot bo judged by comparing the asymptotio variances only
as shown by examples (3.2), (3.3) and (3.4). It is, however, difficult to choose between
two estimntors whon ono docs not have uniformly better concentration than another
without bri in other iderations. For i wo may have un estimator
whoso distribution for a particular value of & is highly coneentrated but it will bo a
poor discriminator between this valuo of & and other values closo to it if the concen-
tration at the other values is low. To compare the estimatora %, T, U, and ¥, wo
may oxamine one aspect of their usefulness in statistieal inferenco e.g., the power func-
tions of tests based on theso statistica to test the hypothesis that 0 has an assigned
valuo. It may bo inferred from the optimum properties posseused by 2, that in large
samples Z and T, tend to havo the same local power (Rro, 1062) whereas U, and W,
Deing equivalent to the sample median when 8 = 0, will have a smaller local power.
Sinco v-cficicncy does not enablo us to distinguish between catimators such ns Z or
T, and U, or 17, wo shall consider an alternative definition of efficiency (to bo called
first order) which appears to be more satisfactory.

ging

Definition 3B : First order efficiency. A statistic T, is said to bo efficient
if

(T —0)—HO)Z, |50 . YY)

where f(0) is o function of @ only, and Z, = n-1[d log P(X,, 0)/d0], P(X,, 0) being
the density of tho observations. The condition (3.5) implics that the asymptotic cor-
relation between 7', and Z,, is unity.

I bave shown elsewhere (Rao, 1060b) that nccording to definition 31, T, isjust
as efficient s 2, although 7', is super eflicient in tho senso of v-efMciency and U, and
I7, aro not cfficient in tho now scnse at @ = 0 althongh U, and 1, are super efficient
and eflicient respectivoly in tho old zense. If tho efficiency of an estimator fs measured
by the square of jts asymptotic corrclation with Z,, thon U, and 1", havo the samo
cfficicney 2{m < 1, although U, and ¥, have diff asymptotic vari Itis
also shown (Theorem 2 in Rao, 1062) that an estinator satisfying, or cfficient in the
sonso of Definition 3B provides a locally more powerful test of & simplo hypothesis
concerning 0 than any other test in sufficiontly largo samples. Another important

q1 of Dofinition 3B of officionoy is that tho ratio of I{T,) tho Fisher's
information contained in the estimator 7', to I, tho total information in the samplo
tonds to unity as n— o0 (Doob, 1034; Rao, 1081).
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Tho Definition 3B of efficiency implics that tholimiting distribution of a¥(T',—0)
is normal for any given € and in largo samnples, any simplo hypolhcsls on 0 can bo tested
by using the normal approximation. But in probl of i inf , it i
often neceasary to oxpress our preferenco for different values of 9, on the basis of the
estimato as in the case of interval estimation, and not just examino whether a parti-
cular valuo ia truo or not. Thero is thus for a given n, a need to consider the wholo
sct of distributions of tho estimator for all values of 0 at least in a small interval (in
Iargo samples) where differont values of 0 have to bo distinguished.  If tho distrit
are to be approximated by appropriate normal distributions, it scema to bo a logical

ity that tho converg to normality of the chosen cstimator should bo uniform
in compacta of 0. Under fairly general conditions the convergenco to normality
of niZ (0) is found to bo uniform in which enso the desired property is assured by the
following definition of uniform first order efliciency.

Definition 3C: Uniform first order efficiency. An estimator is said to have
uniform first order efficionoy if

nH|T,—0—Z,(0)/i(0)] S0 v (3.8)
in compacts of 0, whero the symbol UL standa for uniform convergence in law and
1(0) is Fishor's information per observation.

It would have beon more natural to define uniform first order efficiency as
| T, —0—(0) Z.40)| 5 0 . 3T
without specifying the valuo of #(0) as in (3.6). It appears that if the condition (3.7)

is satisficd for various values of £(0), then it is desirable to chooso an cstimator for
which £(0) is & minimum whick is shown to be [i(0)]-? in section 4 of this paper.

4. SoMe LEMMAS
Notations and assumptions. We consider only sequences of indopendent and
identically distributed variables with probability density p(z, 0), whero 0 is a parameter
with valucs in an open interval @, In the caso of discreto variables, p{z, 0) represcnts
tho probability of 2, Tho probability density of n observations is denotod by P(X,, 0).
The first derivative p'(x, 0) = dp(x, 0)/d0 oxists. Lot a(z, 0) = p'(x, 0)/p(z, 0) and
i(0) = Eyfa(z, O))
° Fisher's information per obsorvation bo continuous in 0. The following assumptions
are made in the various lemmas of this scetion.
Assumption 1z (i) p(0y, 0) = Ejfa(z, 0p)] = (0—0,)5(0p)+0(0—0c)
(i) (010, O))* = Vilalz, 05)] = i(0)+of1)
(i) (0o 0) = covy [a(z, 0), alx, 0p)]) = i(0o)+o{l)

Assumplion I : E,

. 244
};((%'gn < o0 for some ¢ > 0 in compacts of 0.
s
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Assumption 111 :
Let iz, 0, 0p) = log [pl, O)/p(z, 05))

0 80,00 = Enliz, 0,00 =—E=00 0 +ot0—0py

() [0, 0a))* = Vul¥z, 0, 0)] = (0—0)* i (0o)+o{0—0,)!
(i) £(0, 05) = covy,[U{z, 0, ), alx, Oy)) = (0—04)i(0y)+00—04)

Assumplion IV (i) }{%[P(x_. O)de = é_‘;‘ L%, 00

for evory Lobesgue measurablo sot E,,

s, )
0] E,ZEN i bounded in ta of 0.
* | 7iz, 9)| ’

Tho Assumptions I, 1, and III are not sovere. Conditions may bo imposed directly on
the probability density to ensuro them. For jnstanco restrictions such as those i
posed by Danials (1961) on tho probability density will imply the conditions {i}-(iii)
of Assumption I.

Lemma 1: Let §,(0) be the power function of any test of the hypothesis 0 = 0,
based on a sample of n independent observations, at probability leved @. Then under
Assumptions 1-ITT

_@wﬂ(oﬁau--) & Bla—8i) e (41)
where O is the disiribution function of N(0, 1) and a is the upper a point of N(0, 1).

The limit of B(0,+3n-3) when it exists is known as Pitman power of tho test.
Lemma 1 gives an upper bound to Pitman power under somo conditions on the pro-
bability density of the observations. Two limit theorems of a differont typo concorn-
ing tho local power of a test have beon given in an eatlier paper of tho author
(Rao, 1962).

Let

1 PX0) 1
z20=+ PX-0) - Tl 0

! P(X,. 0 _1 0,
Yo=—log Py~ Z bz, 0, 04)
u,{0) = n¥{Y ,—¥(0, 05)]/1(0, 0,)
va0) = ni[Y ,+-E(0,, 0))/ 7105, 0)
wa(0) = M Z(O)[i(0)]".
Under tho Assumptions I, II, and III, it is easy to show that

(i) Vool (0)—w, (0)] - 0 as 00, o (42)
(i) V0 Z{Zj'o’:;—w,(o)]-.o s 00, - 43)
(iii) wy(0) 3 N(0, 1) in compacts of 0, - {44
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The best test of the hypothesis /1, : 0 = 0, against the alternative 8, = 0,+3n
uL{0a) 3> ¢ e (45)
where ¢, is chosen such that tho sizo of tho test —« as n—» c0.
lim Pofu,(0,) > ¢} = lim Py[u,0,)—w,(0o}+w.(0) > c.]
as® e

= lim_Po,Ju,{0¢) > ¢,] by (4.2).
npen

Sinco the limiting distribution of () is N(0, 1), ¢,— @ tho upper & point of N(0, 1),
The power of tho test (4.5) is
B(0,) = Pe,(uf0.) >c,)
= Pouu(0.)—w.(0.)+w.(0,) 3> ca
_ 20,0,) 4 0010, 0)
Pou{ 00) T 10,0 410,0,) > et SECerrn )
writing u,(0,) in terms of v,(0,) using thoir definitions,
23[E(0y, 0,)+ 50 O]
Jim 40 = lim o, (w00 > et e }
= ¢ (a—dit) using (4.4) "of uniform convergenco,
whoro —48it = lir'n‘rﬂ[E(oo, 0)+80,, 0130, 0;). Tho result of Lemma 1 follows
by observing that £,(0) > £,(0) for ench 0, where §,(0) is the power of any othor test.
Lemma 2: Let a\(T,—0)=3 N(O, [#O)]) in compacis of 0, where Y(0) i
bounded, Then
(i) 7(0) is continuous if the probability density p{z, 0} is continuous in 0.
(ii) [(7{0))* < 1/i(0) under Assumptions I-111.
Wo uso an argument similar to that of LoCam (1960) to provo (i) of lemma 2 :

If p(z, 0) is continuous in @ tho distribution function Fy 4 of T, is continuous
in 0 and quently the ¢! istic function c (¢, 0) of U,=nal(T,—0) is
continuous in 0. Sinco U, converges uniformly, ¢ (¢, 0) converges uniformly to clt, 0)
thio charactoristic function of tho asymptotio distribution N(0,(¥(0)]}). But c{t, )
isf continuous. Honco ¥(0) is continuous in tho intorval of tho uniform convergence
of U,.

Lot us consider tho test

T —
7(00)
of the hypothesis § = 0o, at o probability Jovel @. Tho powor of tho test at 0 is
Bal0) = PyfuNT ,—05) > A,y(0)}
} — HO—
>
100
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Substituting 0 = 0,481~} and observing that tho convergence to normality of
2T ,—0) is uniform in 8, we find

lim B,(0y+8n71) = Ofa—8/7(0:)) e (4.8)
~—po
whoro the argument of ® in (4.0) is the limit of
A05) _ ni(0—0,)

¥ v
with 8 = 0y+48n, as n-» co0.
It is shown in Lemma 1 undor Assumptions I-IIT
Il 4,(0p+4074) < O(a—ai).
Laad )

Hence from (4.6)
Ola—3/y(0,)) < © (3—4iY)

or a—8}Y(0,) 2 a—8id
ie., Y40,) » 1/i(0,) (for any given 0,).

Wo thus seo that the asymptoti i of CUAN (consi uniformly
asymptotically normal) csti has Fisher’s lower bound 1/i{0) when tho probability

donsity satisfics some regularity conditions. It appears thon that in the examples of
Hodges and LeCam, super officioncy in the sense of having asymptotio variance less
than 1fi{0) has been achioved at the sacrifice of uniform convergence.

Lemma 3: L&t

z,0) _
nt { TOF 7(0) }—00. - (&7

Then

(i) 2HT,—~0)% N, [HO)) in compacls of 0, where y(0) is continuous, under
Assumption 11 and continuity of p(z, G), and

(i) ¥(0) =[O under Assumptions II and IV.

Under Assumption 11,

nlZ,0) 7t v (48
TOF ©,1) (4.8)
and honce "'(f"( =0 I yo, 1) - (49)

since by the condition (4.7) of Lemma 3, tho differenco of (4.8) and (4.9) 23 0, Honco
tho result (i) of Lomma 3 follows.
Considor the test

T —0,) 3 0.y(00) o (4.10)
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of the hypothesis 0 = 0, at a probability lovel &, whero ¢,— @, tho uppor @ probability
point of (0, 1), The powor of the test (4.10) at 0, == Op48n-t is
B0 +8n74) = Panh(T =00} > 0,7(0)
WD —. 30—
=Ps. {’l (T.—0) > € 7(00) _n¥0—0,)

7o) 70 7(0)
lim S0 +on-1) = Ola— (0] e @11
Ll

using tho uniform convergenco proved in (i) of Lomma 3. It appears from (4.11) that a
test of the hypothesis 0 = 0, based on T', does not attain the full Pitman power
®(a—4i}) unless y? = i1, It is thorofore interesting to know whether the condition
(4.7) of Lemma 3 iteclf jmplies that ¥ = §-1, I have been ablo to establish this result
only under tho additional Assumption IV but it is worth examining whether such a
strong nasumption is necossary.

Under condition (i) of Assumption IV we have tho expansion of the powor
function

B0ptdn-1) = p,(o,)+£7p;(o,)+:_:‘p:,(o') o (112)

and under condition (i) of Assumption IV, 85(0")/n is bounded in an intorval of ¢
enclosing 0, From (4.12) we find

Ym lm B0+ 8n—4)—~£(0,) = lim n-‘ﬁ'(o.).
z =0 "

&30 R
Henco lim O=N=@) iy peigoy) . (413)
30 8 e
The limit of the R.H.8. of (4.13) is
(if2m)le—ati2 e (L14)

using the result of Theorem 1 in an earlier paper (Rao, 1062). The valuo of the L.H.8.
of (4.13) is
(2myt)le—ath, (4.15)
Comparing (4.14) and (4.15) wo find "y' == § which establishes (ii) of Lemma 3.
Lemma 4: Let {o4T,—0), Z,(0))— in law to a bivariate normal distribu-
tion uniformly in compacts of 0, with the asymplotic copariance malriz
( A0y OO )
O A0 WD)
Then under Assumplions 1-111
AO) = 1= p{0) = 1 == 4| 2,00)—iT—0)]| ¥o.
Tho Lomma 4 implics that v-efficioncy of UCAN is equivalont to uniform firsb
order efficicnay.
Considor tho test
T =0 AZ 0] > ¢\
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whero ot = 1/i(0)4-A%(0,) + 2Ap{0,) the asymptotic varianco of tho test statistio,
Using an argument similar to that of Lemma 3, the Pitman power of the test is
Ola—&(14-Ai)o).
By tho result of Lomma 1,

".“_':.’E) < 83, for nny arbitrary A

or (L4200 & 14+2Aip+AN?

which implies p =1 at 0 = 0, (any chosen value). Tho asymptotic varianco of
n[Z,(0)—i(T,—0)] is then zero, and sinco the convergenco is assumed to bo uniform
tho desired result follows.

The results of Lemmas 1—4 under tho conditions assumed on the probability
density of tho observations can bo summarised as follows.

(i) If7,is UCAN, tho asymptotio varianco of 7', has Fisher's lower bound
1/ni. This implics that the concept of v-cliciency is not void whon the class of
cetimators is restricted to UCAN.

It may bo noted that the existoncs of such a lower bound to tho asymptotio
varianco was established by Kallianpur and Rao (1955) under somo conditions vn tho
cstimator such as Fisher consistoncy (FC) and Frechét differentiability. Recently
(Kallianpur, 1963) relaxed tho restriction of Frechét differentiability to a weaker
form due to Volterra. Some obscrvations on lower bound to asymptotio varianco of
a CAN estimator havo also beon mado by Bahadur (1960) from a different point of view,

(ii) Uniform first order efficiency of 7', implics that it is CUAN and
v-cficient.

(iii) Tho converso of (ij) has been established under the additional assuraption
that tho joint asymptotio distribution of 7', and Z, is bivariate normal and the con-
vergenco is uniform in compacts of 0.

It may bo interesting to examine other conditions under which tho existence
of a CUAN cstimator T', with v-cfficicncy implies uniform first order efficiency.
Restrictions on the estimator such as those imposed by Kallianpur and Rao (1955)
and Kallianpur (1963) may be sufficient.

Tho investigations of Section 4 show that v-ciliciency is & valid and wseful
concept if only wo restrict dur consideration to estimators which are consistent and
uniformly asymptotically normal in pact intervals of the unknown parameter,

5. SECOND ORDER EFFICIENCY
Tho second order officiency is defined in earlier papors by Rao (1061, 1962)
as tho minimum asymptotic variance of
a2, ~pHT~0)—¥(T,—0)] - (31
when minimised with respect to y. Undor somo conditions this minimum valuo is
equivalent to tho limiting valuo of the difference in the actual amounts of information
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contained in tho samplo and in tho statistio. It was also shown (Rno, 1061) that for
tho m.l. estimato tho asymptotio variance of (5.1) is tho least, thus establishing its
highest second order officiency.
It may bo scen that the concepts of first and sccond order efficiencies are not
explicitly linked with any loss function. Tt is also not important which function of
0 is under estimation. We could, for instance, define first order efficicncy as

| Z—BIT)—f0)] - 0

in probability for any function f admitting a i firut dorivative. Similarly
tho sccond order efficiency could bo defined as the minimum asymptotic variance of
™ Z.~FUT ) =LY (T =10 e (6.2)

whero f admits a continuous second derivative, The expression for tho minimum
asymptotio variance in either caso (5.1) or (5.2) would be exactly the same. Similarly
if T, is altored as

where g is a smooth function, the first and second order efficiencics remain the same
although from the point of view of quadratic loss function there would be differenco in
terms of order {1/a%). So the first and sccond order efficiencics as defined refer to
some intrinsic propertics of an estimator (statistic) used as a substitute for tho wholo
samplo for purposes of inforence on the unknown parameter.

In a discussion on my paper (Rao, 1962), Lindley thought that tho superiority
of the m.]. estimate ia probably established through somo specific loss function impli-
cit fn the definition of sccond order cfficiency. It is, therefore, proposed to comp
differont cstimators in a moro direct way by assuming a quadratic loss function.
Beforo doing this, the procedure has to be cleared of some unpleasantness arising
out of somo samples of relatively small frequency leading to largo deviations in the
estimator and making tho expected loss unduly large. We shall, thereforo, omit a
portion of tho sample apaco and pare tho perf of esti over tho rost
of tho sample spaco. Usually the total probability of the portion so omitted rapidly
diminishes to zcro as tho samplo size incroases and the valuo of tho estimator over
this portion could bo defined arbitrarily except that it should bo bounded.

Wa shall consider the caso of tho finito multinomial distribution as in tho earlier
paper (Rao, 1861). Let us the th ical frequencies in the k cells by

m(0), ..., m{0)
where 0 is an unknown parameter, tho observed proportions by

Dis s P
and tho estimating oquation by
SO, Py i) =0 o (83)
whore JO,m(0), ..., m0) = 0
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80 that the estimator satisfics Fishor consistoncy. We shall assume that f as a function
of 0, py, ..., p sdmits third order partial derivativea which are boundod in a closed
region P of tho oubo O

0L mg), i=1,..,k

and for values of 0 satisfying (5.3) with (py, ..., )P, Tho truo point m(0), ..., n,(0)
is assumed to bo an interior point of P. Let 0 Lo n solution of the equation (5.3)
such that 0°~s 0 as pi—m; (0). Then expanding f(0°, Py, ..., Ps) by Taylor's theorem
at 0, m(0), ..., m(0), we have

¥ 0o~ 04z Lipm)

les & (0 m)p—
=—.§E~ 7 ’5".(?. 7,) (P~}
L ge & ooy Y (p—
=5 0*=0F o —(0*=0)% Fir, (@=m) e, ... (54)

Due to the boundednces of the third order partial derivatives, if we dofine 0% arbitrarily
in C—P, cxcopt that it should be bounded, it follows that

E(0"—0) = 0(n~),  E() = O(n~).
If the cquation (5.3) is such that first ordor efficiency is satisfied then
o Lo _ _1m

o, 80  im,

a8 shown in (Rao, 1061) in which case, dividing (5.4) by 8f/30, the left hand side expres-
sion can be written

0 —0-Z 0

where Z, = E(n/(p,—n,)n,]. If the right hand side of (5.4) without ¢, divided by

/100 and (0*—0) replaced by Z,/i is represented by S, we have the approsimate reln-
tion

0*—0—-Z.fi ~ S, e (8.8)
Hence E(0*—0) ~ E(S,) = YO)/n

wheroe ¥{0)/n is tho bias in tho estimator up to terms of O(1/n). Such a bias has no
effect if the moan square crror is evaluated up to terms of O(1/n). Otherwiso corrce-
tion for bias scems to bo necessary, Tho correction ean casily bo dono by considering
the estimator

b m go Y0
n

in which tho bins is o{1/n). We shall evaluate E(§—0)* upto torms of O(1/u?).
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Consider the approximate rolationship

Eg)~0+ YO
n
which on difforentiation with reapect to 0 yiclds
nE(0°Z,) ~ 1+_”;“_0’. e (5.6)
Further P(0) ~ V(0" 2,1 (0)ni)
~V(0")— 2 (0)n%
using (5.6) and
V(0 —Z,fi) = P(0°)+V(2,fi)—2 cov (&°, Z,Hi)
_ 1_2 b
=TOrg=a(1+3)

= m)_m’. - (57
From (5.5) V0" —Z.Ji) ~ V(S,) = Z”%fl (say)
Using (5.7) we have
v = ,,l;*'d%?) +o (7%) . (58)

We shall computo (0) for somo methods of estimation and compare tho values. The
varianco of §°, without correction for bias, is

V(o) = $+"i,(£—)+ 2':;?’ +o( l) - (39)

v

(i) Maximum likelihood, For tho method of maximum likelihood (ml)

8 = Z{\W.—g2,) _ ﬂl‘zi
" [ 29
whero W, = Z{d* log m /d0%)p,—m), § = (tu—Hfi

e = Indmimy(n [m.
Tho bias in the estimator and tho valuo of Y(0) aro

M) _ pgy=— o

n nit’
- 2
W{(0) = n1V(8,) = V[Z_(Il:: gZ,)]+ I;_:: {¥4)
= I‘n—'zl'n'l'llao_l_(l‘u—lll)'_{_ e
[ i [ 2¢4
= y(ml). e (5.10)
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The variance of tho m.]. estimator wilhout corroction for bias is
V(m 1) 14
+ T do m') +o (T)
which agrecs with tho expmlnn given by Haldane and Smith (1956). It may bo
seon that yr(m.1.) is connocted with Ey(m.1.), the indox of sccond ordoe efliciency defined
in tho earlior paper (Rao, 1961) by the rolation

Py(ml) = E,(m.l.)+12‘—§;'- .

1t may bo scen that the m.l. estimator corrocted for bins is similar to the esti-
mator given by Lindley (1961). For other propertios of m.l. estimators referenco may
Lo mado to papery by Cramér (1946), Danicls (1951), Doob (1934, 1036), LoCam {1053,
1056), Rao (1057, 1958, 1960a), Wald (1949) and others. Uniform consistency and
convergence to normality of m.l estimators aro considered by Kraft (1955) and
Parzon (1054).

(ii) Minimum chi-square. A th jcal i igation of the asymp
properties of mini ohi-squnro esti is ined jn papera by Neyman (1049)
and Rao (1955). The estimating cquation is

P _
z ﬂ,”,"‘ =0
and the value of S, is
# Z{Wu—92,) _#
(Q+ J;_Z})-FT——?{‘" z

whore Q-—_..E "'

= ()t mz >:("') =),

By using the expressions nlready donved in Rao (1061}, the bias in the minimum
chi-aquare cstimate and the value of y{0) are

b“” {2 z’i_l‘ﬂﬁl}
§ o,

21
¢(0) = n1V(S,) = 3+¢(m L)
whore s= _'_z( ') "w + ’2‘:2 e (51)

which is non-negative and zero only in apocial cascs.
(ili) Minimum modified chi-square(Neyman, 1049). The estimating oquationis

D YL

7

]Mﬂg to the value of s'
l WA ok Pu—gZ,) 1
2(Q+~2i‘" z,)+_z I ‘,._Z _"2., z,
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Tho bias and y(0) are
0) - 1 — "r zl‘u"l‘n
o LA !
V(0) = 434+¥{m.L).
(iv) Haldane’s minimum discrepancy (laldane, 1953), Tho cstimating equa-
tion, after a slight modification which docs not effect tho treatment of the present

paper, is
nm,
i3
}:?_

d

=0
giving the value of §,
: # ZW,~9Z,) _
—+1) (@4 G3 23]+ 2T b g
The bias and ¥{0) are
k+1) o 11, ) (R 1)pt50~,
[ { + )27’ +( + )I‘:o I"u}
¢(0) = (‘-‘+1)'3+¥'(m-|-)
(v) Minimum Hellinger distance. The estimating equation is
meb
z - 0
giving the value of S,
1 12 24Wa—9Z.) _
I R e R
Tho bias and ¥{0) are
LURET RS
n o al X

Y0 =+l
(vi) Minimum Kullback-Licbler separalor. Tho estimating equation is

S lg X =0
3 03‘7'
giving the value of 3,
- P g\ 3 ZAWa—gZ) _ B
(0+4 28)+- 25— A g,

The values of blas and (9} are

) L g, pamp
e haa
Y(0) = 8+-¢(ml)
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It is seen that among tho six mothods compared, the mean squaro crror in
tho estimator corrected for biag is tho least in the caso of the m.l., when terms up to tho
order (/n?) aro considered. It may bo shown moro gonerally (following tho mocha-
nism doveloped in tho earlier paper, Rao 1961) that undor tho assumptions made
ou the estimating equation f(0, p) = 0, the m.]. estimator has tho least valuo for y(0).

Tho bias and varianco for estimators corrected for bins, obtained by tho dif-
ferent methods considered in this section are givon below, where & and ¥(m.1.) are ns
defined in (5.10) and (5.11).

variance of estimator
corrected for bias
bias ——
method of estimation {coefficient of n-1) coefficient coeflicient
of n-1 of n~?

maximum likelihood — b .:_ Y(ml)
ini Ao (M _ tstin 1 ’
minimum chi-square 2i£ ( ”') Y T $+¢(m.l)
modified minimum chisquars — 3 S (ﬂ)+2"w_“"" 1wl
T o\7, 2it .
Haldane's mini —k4) p (1:)+ (L'+1)I':o—lln 2 gypml)
discrepancy 2 m, 2 i}
minimum Hellinger distanco 1x (l’ )+’_'3L2/'“ 18 +¥(m.l)
2 \a, 4t [ 4
ini 2 _1 m Hw—Hn 1 PARVIES
minimum K.-L, soparate = z ( ”:) +_Ti’_ I +y(m.l)

The expressions for biag and variance will be similar in the caso of estimation
of parametors in o continuous distribution. Tho conditions to bo assumed on tho esti-
mating equation and the probability deneity will be very sovero if an oxpunsion of tho
asymptotio varianco up to terms of order (1/n?) is desired. A recent paper by Linnik
and Mitrafanova (1963) on tho computation of tho varianco of tho m.l estimator in
o continuous ¢aso sliows tho naturo of tho comploxitics invoived.
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