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Chapter 1

Introduction

Summary

Prediction problems like classification, regression, and time series forecasting have
always attracted both the statisticians and computer scientists worldwide to take
up the challenges of data science and implementation of complicated models using
modern computing facilities. But most traditional statistical and machine learn-
ing models assume the available data to be well-behaved in terms of the presence of
a full set of essential features, equal size of classes, and stationary data structures
in all data instances, etc. Practical data sets from the domain of business analyt-
ics, process and quality control, software reliability, and macroeconomics, to name
a few, suffer from various complexities and irregularities that are often sufficient
to confuse any predictive model. This can degrade the ability of the learning mod-
els to learn from the data. Motivated by this, we develop some nonparametric
hybrid predictive models and study their statistical properties for theoretical ro-
bustness in this thesis. In this chapter, we provide the genesis of predictive models
and the history of the hybrid and ensemble models. Subsequently, we discuss the
occurrences of the different data complexities and irregularities, such as feature
selection, class imbalance, regression estimation, and nonstationarity. Finally,
the chapter ends with an enumeration of the contributions made herein, in an
attempt to design novel solution strategies for these application-driven statistical
problems.

1.1 Background

The field of ‘Statistics’ is constantly challenged by the problems that science
and industry bring to its door. In the early days, these problems often came
from agricultural and industrial experiments and were relatively small in scope.
With the advent of computers and the information age, statistical problems have
exploded both in size and complexity. Challenges in the areas of data storage,
organization, and searching have led to the new field of ‘Data Mining’ whereas
statistical and computational tools to automate this process have created the area
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1. INTRODUCTION

of ‘Machine Learning’. Vast amounts of data are being generated in many fields,
and the statistician’s job is to make sense of it all, which includes extraction
of important patterns and trends and understand “what the data says” (Hastie
et al., 2009). We call this “learning from data” and this can roughly be summa-
rized in the following steps: (a) observe a phenomenon; (b) construct a model for
that phenomenon; (c) make predictions using the model.

The field of statistics and machine learning are two approaches toward the
common goal of learning about a problem from data. ‘Statistical Learning’ refers
to a set of tools for modeling and understanding complex data sets that blends
statistics with parallel developments in machine learning (Bousquet et al., 2003;
Hastie et al., 2009; Vapnik and Chervonenkis, 1974). Statistical learning has
emerged as a new subfield of statistics, focused on supervised and unsupervised
learning and prediction (Vapnik, 2013). In supervised learning, the goal is to
predict the value of an outcome measure based on some input measures whereas
in unsupervised learning, there is no outcome measure, and the goal is to describe
the associations and patterns among a set of input measures (James et al., 2013).

Recent technological advances have led society to capture large amounts of
data in almost all fields like business, economics, quality control, software relia-
bility, medicine, information technology, sports, etc. In many cases, the problem
is either a supervised learning problem, an exploratory data analysis problem, or
some combination of the above. ‘Predictive modeling’ commonly refers to the pro-
cess of developing statistical models using learning algorithms that approximate
the relationship between a target, response, or dependent variable and various
predictors or independent variables (Friedman et al., 2001). It uses multiple su-
pervised learning techniques to predict the values of the target variables based
on the given values for the explanatory variables (Siegel, 2013). The developed
model is then used to predict future values of the target variable. Depending on
the type of the target variable, numerical/continuous, or discrete/categorical, the
problem is, respectively, called a regression or classification problem. New devel-
opments in this area can change businesses and industries by predicting future
trends regularly. Over the last few decades, a significant proportion of research
is devoted to the design of robust, efficient, and adaptive classification methods
and regression estimation techniques.

1.1.1 A Brief History of Statistical Learning Models

Though the term statistical learning is relatively new, many of the concepts that
underlie the field were developed long ago (James et al., 2013; Stigler, 1977). Al-
ready in 1632, Galileo Galilei used a procedure that can be interpreted as fitting
a linear relationship to contaminated observed data (Schervish, 2012). Such fit-
ting of a line through a cloud of points is the classical linear regression problem.
A solution to this problem is provided by the famous principle of least squares
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method, which was discovered independently by A. M. Legendre and C. F. Gauss
and published in 1805 and 1809, respectively (Stigler, 1981). One of the earliest
methods developed for regression modeling is the linear regression due to F. Gal-
ton in 1889 (Galton, 1894). Linear regression is used for predicting quantitative
values and was first successfully applied to the problem of astronomy. In order to
predict qualitative values, such as whether a patient survives or dies, or whether
the stock market increases or decreases, R. A. Fisher proposed linear discriminant
analysis in 1936 (Fisher, 1938, 1940). In the 1940s, various authors put forth an
alternative approach, logistic regression (Berkson, 1944; Devroye et al., 1996). In
the early 1970s, Nelder and Wedderburn (1972) coined generalized linear mod-
els for an entire class of statistical learning methods that included both linear
and logistic regression as special cases. In the context of time series forecasting,
the early introduced parametric techniques include exponential smoothing (Holt,
1957; Winters, 1960) and autoregressive integrated moving average (ARIMA)
(Box et al., 1976) models.

But most of these standard statistical techniques are parametric methods,
meaning that a particular family of models, indexed by one or more parame-
ters, is chosen for the data. The model is fitted by selecting optimal values
for the parameters (or finding their posterior distribution) (James et al., 2013).
Examples include linear regression (with slope and intercept parameters) and
logistic regression (with the parameters being the coefficients). In these cases,
it is assumed that the choice of a model family (e.g., a linear relationship with
independent Gaussian error) is the correct family, and all that needs to be done
is to fit the coefficients (Schervish, 2012). Recently, methodological advancement
has occurred in the field of statistical learning due to the availability of massive
volumes of data and the advancement of computational facilities. A preferen-
tial shift took place towards computational search-based nonparametric modeling
techniques in which no prior assumptions are made about the underlying distri-
butions of the data (Dickey, 2012). The idea behind ‘Nonparametric Modeling’
is to move beyond restricting oneself to a particular family of models and utilize
a much larger model space. For example, the goal of many nonparametric regres-
sion problems is to determine the continuous function that best approximates the
random process without overfitting the data (Devroye et al., 1996; Györfi et al.,
2002). In nonparametric setup, one is not restricted to linear functions or even
differentiable functions. J. W. Tukey proposed the first nonparametric regression
estimate of local averaging type in 1947, which can be regarded as a special least
squares estimate (Györfi et al., 2002). Since that time, various nonparametric ap-
proaches emerged in the field of statistical learning (James et al., 2013). Among
these k-nearest neighbor (Fix and Hodges Jr, 1951), classification and regression
Tree (CART) (Breiman et al., 1984), artificial neural network (ANN) (Rumelhart
et al., 1985), multivariate adaptive regression spline (MARS) (Friedman, 1991),
Support Vector Machine (SVM) (Cortes and Vapnik, 1995), radial basis func-
tion networks (RBFN) (Krzyzak et al., 1996) and deep convolutional neural nets
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(Krizhevsky et al., 2012) are most popularly used predictive models developed
by statisticians (non-Bayesian) and computer scientists for a much broader com-
munity (Goodfellow et al., 2016; Murphy, 2012).

Bayesian nonparametric models are a novel class of models for Bayesian statis-
tics and machine learning (Hjort et al., 2010). Bayesian nonparametric methods
provide a Bayesian framework for model selection and adaptation using nonpara-
metric models (Orbanz and Teh, 2010). More precisely, a Bayesian nonparametric
model is a model that (1) constitutes a Bayesian model on an infinite-dimensional
parameter space and (2) can be evaluated on a finite sample in a manner that
uses only a finite subset of the available parameters to explain the sample (Müller
and Quintana, 2004). Popular examples of Bayesian nonparametric models in-
clude Gaussian process regression, in which the correlation structure is refined
with growing sample size, and Dirichlet process mixture models for clustering,
which adapt the number of clusters to the complexity of the data (Orbanz and
Teh, 2010). Bayesian nonparametric models have recently been applied to a vari-
ety of machine learning problems, including regression (Huang and Meng, 2020),
classification (Nguyen et al., 2016), clustering (Ni et al., 2020), causal inference
(Hill and Su, 2013), image segmentation (Nguyen et al., 2014), and target motion
patterns (Joseph et al., 2011). Furthermore, hierarchical modeling is a funda-
mental concept in Bayesian statistics (Teh and Jordan, 2010). The basic idea is
that parameters are endowed with distributions which may themselves introduce
new parameters, and this construction recurses. In particular, nonparametric
models involve large numbers of degrees of freedom, and hierarchical modeling
ideas provide essential control over these degrees of freedom. Moreover, hierar-
chical modeling makes it possible to take the building blocks provided by simple
stochastic processes such as the Dirichlet process and construct models that ex-
hibit a richer probabilistic structure (Neal, 2000). It has a wide range of practical
applications, in problems in computational biology, computer vision, and natural
language processing (Ghosal and Van der Vaart, 2017).

In the context of predictive modeling, the Bayesian counterparts of some ma-
chine learning models have become very popular in modern data science, for ex-
ample, Bayesian CART (Chipman et al., 1998), Bayesian additive regression trees
(BART) (Chipman et al., 2010), Bayesian support vector regression (Chu et al.,
2004), Bayesian neural networks (MacKay, 1992b) and Bayesian deep neural nets
(Gal et al., 2017). For imbalanced classification problems where the target class
distributions are not equal, some modifications to the decision tree classifier are
proposed, namely the Hellinger distance decision tree (HDDT) (Cieslak et al.,
2012), class confidence proportion decision tree (Liu et al., 2010), and Inter-node
Hellinger distance-based decision tree (Akash et al., 2019). However, these predic-
tive models have several limitations, which often affect the proper approximation
of the relationship between the predictors and the target variables (Castillo and
Melin, 2009). Firstly, real-world data sets often contain a substantial quantity of
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noise (e.g., errors, uninformative or highly correlated predictors, unbalanced class
distributions, etc.), which can mislead the learning algorithm and produce non-
optimal or wrong approximations (Kuncheva, 2004). Secondly, most statistical
learning algorithms have limitations in their operations that result in the non-
identification of the optimal model in the model space of the learning algorithm
(Zhou, 2012). Finally, different learning algorithms vary in their interpretations
of the data and noise, which may lead to varying approximations of the relation-
ship between the target variable and its predictors.

Among various distribution-free (nonparametric) predictive models, CART
and ANN are most popular in statistics and machine learning mainly for their ef-
ficiency, theoretical robustness, and ability to deal with complex data structures
(Breiman et al., 1984; Hornik et al., 1989). Some key technical aspects com-
mon to these predictive modeling algorithms are the ability to generate models
in the presence of noise in the data and to fabricate accurate error estimates for
the generated models. These techniques provide the foundations for most modern
predictive modeling methods. Also, a variety of techniques (e.g., cross-validation)
are developed to handle noise and perform error estimation. Decision trees are
found robust when limited data are available (Breiman et al., 1984), unlike ANN.
But decision trees are high variance estimators and the variance may become
large for complex problems (Loh, 2011) whereas feedforward neural networks are
universal approximators (Hornik et al., 1989). Advanced neural networks are
highly complex, have many free tuning parameters, and may over-fit when lim-
ited data are available (Dunson, 2018).

As a result of these limitations, the building of an optimal and efficient pre-
dictive model for a complex real-life problem is often impossible (Wozniak, 2013).
The lack of universally best choice can be formalized in what is called the ‘No
Free Lunch theorem’ (Wolpert, 1996), which in essence says that, if there is no
assumption on how the past (i.e., training data) is related to the future (i.e.,
test data), a prediction is often impossible. Typically, in a collection of possible
models, one would look for the one that fits the data well, but at the same time
is as simple as possible.

1.1.2 Developments of Hybrid Predictive Models

The diversity between statistical learning algorithms has inspired the develop-
ment of hybrid and ensemble learning systems (Kuncheva, 2004; Ranawana and
Palade, 2006). The relevance of hybrid and ensemble methodologies in the field
of nonparametric predictive modeling is motivated by their power of being able
to express knowledge contained in the data sets in multiple ways, benefiting each
from the other (Kuncheva, 2002). These methods exploit the diversity of in-
dividual models and increase individual models’ performance in terms of model
accuracy and generalization capability. Hybrid and ensemble models introduce an
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intelligent combination strategy, especially while dealing with complicated classi-
fication and regression problems (Zhou, 2012). The integration of the underlying
technologies into hybrid and ensemble machine learning solutions facilitates more
intelligent search, enhanced optimization, reasoning and merges various domain
knowledge with empirical data to solve advanced and complex problems with data
irregularities. Both ensemble and hybrid methods make use of the information
fusion concept but in a slightly different way.

Ensemble models combine multiple but homogeneous, weak (base) models,
typically within boosting (Freund and Schapire, 1996) and bagging approaches
(Breiman, 1996). Even a more general form of the ensemble is at the level of
their outputs, using various fusion and combination methods (Kuncheva, 2004).
This can be grouped into fixed (e.g., majority voting), and training combiners
(e.g., decision templates) (Lughofer, 2012; Sannen et al., 2010). Some popular
examples of nonparametric ensemble models include random forest (Breiman,
2001), gradient-boosted tree (Friedman, 2001) and Bayesian additive regression
trees (Chipman et al., 2010) for pattern classification and regression estimation
problems. Hellinger distance random forest (HDRF), an ensemble of HDDTs,
is found useful for imbalanced pattern classification (Aler et al., 2020; Su et al.,
2015). Ensemble systems have been successfully applied in many fields, for ex-
ample finance (Leigh et al., 2002), bioinformatics (Tan et al., 2003), medicine
(Mangiameli et al., 2004), manufacturing (Rokach, 2008; Rokach and Maimon,
2006), image retrieval (Lin et al., 2006; Tao et al., 2006) and recommender system
(Schclar et al., 2009) to name a few. But, ensembles do not always improve the
accuracy of the model but sometimes tend to increase the base model’s error.
To overcome these drawbacks, a more robust approach, namely hybridization of
models, was introduced (Castillo and Melin, 2009; Wang and Lin, 2019).

Hybrid methods, in turn, combine completely different and heterogeneous
statistical and machine learning models, seeking for homogeneous solutions for
providing a reasonable interpretability and accuracy trade-off (Wozniak, 2013).
Some popular examples of nonparametric hybrid learning models based on deci-
sion trees and neural nets include perceptron trees (Utgoff, 1989), entropy nets
(Sethi, 1990), neural trees (Sirat and Nadal, 1990), soft decision tree (Frosst and
Hinton, 2017), flexible neural tree (Chen et al., 2005, 2006) and recently intro-
duced adaptive neural trees (Abpeikar et al., 2020; Tanno et al., 2019). The
primary goal of these hybrid approaches was to combine decision trees with neu-
ral nets to gain the mutual benefit of both approaches. Several hybrid models
are proposed by combining linear and nonlinear time series models in the con-
text of time series forecasting. Among them, the hybrid ARIMA-ANN model
(Zhang, 2003) and hybrid ARIMA-SVM model (Pai and Lin, 2005) are most
popular in the literature. These hybrid approaches are applied for complex pre-
dictive modeling scenarios within the field of data-driven model-based design in
which classical statistical and machine learning techniques cannot perform well.
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Various extensions and implementations of the above-mentioned hybrid struc-
tures are available in the current literature of classification, regression and time
series forecasting with applications in image recognition (Reinders et al., 2018;
Rota Bulo and Kontschieder, 2014), medical diagnosis (Jerez-Aragonés et al.,
2003; Mathan et al., 2018), fraud detection (Dong et al., 2018), knowledge ac-
quisition (Tsujino and Nishida, 1995), river-stage predictions (Tsai et al., 2012),
quality control (Sugumaran et al., 2007) and reliability modeling (Ordóñez et al.,
2019) and financial time series forecasting (Adhikari and Agrawal, 2014), to name
a few. Rokach (2009) offers a comprehensive review of the ensemble and hybrid
literature and accommodates a wide spectrum of existing classifier ensemble and
hybridization methods for pattern classification and regression estimation. Al-
though these hybrid models are empirically shown to be useful in solving real-life
problems, the theoretical results are yet to be shown for many of them.

1.1.3 Our Observation and Motivation for the Thesis

Although several taxonomies are reported in the literature, aiming to categorize
hybrid systems from the system’s designer point of view, there are still research
gaps that need to be addressed (Rokach, 2009). On the theoretical side, the lit-
erature of hybrid predictive models is less conclusive. Regardless of their uses
in practical issues of pattern classification, regression, and time series forecast-
ing, little is known about the statistical properties of these popular hybrid mod-
els. These hybrid systems become infeasible for high-dimensional and small or
medium sample-sized data sets involving both feature selection and prediction
tasks. So far, the research in the field of hybrid or ensemble systems is mostly
concentrated on general nonparametric regression estimation problems and rel-
atively balanced well-structured pattern classification data sets. There is a vast
scope of research to explore the beauty of hybrid models for complex situations
with data irregularities. Another open problem in the hybrid literature is that
the researchers only considered two or multiple frequentist methods while creating
the hybridization. However, there is a scope to explore hybrid models to blend
frequentist and Bayesian methods for prediction tasks. Thus, the development
of novel hybrid methodologies will be required for high-dimensional, imbalanced,
nonstationary, and complex real-life data sets having irregularities.

Under this scope, this thesis includes several contributions of the author deal-
ing with real-world problems that demand new hybrid techniques to improve the
robustness of the available tools. In this thesis, we are motivated to develop some
novel hybrid predictive models for various supervised learning tasks. Theoreti-
cal (asymptotic properties) and practical (computational and applied) aspects of
combining predictive models are studied. We consider two main goals: first is
to achieve better prediction accuracy for the motivating real-life problems; and
second, we study the asymptotic properties for the robustness of the methodology
that makes the proposed hybrid methods theoretically well-grounded.
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The primary motivation of this thesis comes from the real-world data sets,
with a variety of data types, such as business, process efficiency improvement,
water quality control, software defect prediction, and unemployment rate forecast-
ing. But the emphasis is given towards the development of hybrid models that are
scalable (the size of the data does not pose a problem), robust (work well in a wide
variety of problems), accurate (achieve higher predictive accuracy), statistically
sound (have desired asymptotic properties), and easily interpretable. Through-
out the thesis, we start with the motivational applied problems followed by the
development of novel hybrid predictive models. Finally, we establish asymptotic
results for the proposed hybrid approaches along with relevant applications.

1.2 Problem Description

We live in the age of data, where many of the things around us are connected
to various data sources, and many aspects of our daily lives are captured and
stored digitally. We are surrounded by an ever-expanding sea of data fed from
multitudes of sources, including social networks, video, economic data, customer
transactions, stock market data, industrial process data, weather data, business
data, software-based data, healthcare records, and the list goes on. We often
make decisions based on the available information. As the available data or in-
formation is growing exponentially with each passing day, the opportunities to
make better decisions to improve all aspects of our lives is also increasing ex-
ponentially. Given the human brain’s inability to process a massive amount of
data, complex data structures, and high-dimensional data, we turn to computer
systems to aid in our decision-making. The process of developing these predic-
tive models has evolved in statistics, machine learning, artificial intelligence, data
mining, predictive analytics, and, more recently, data science. Although each of
these fields approaches the problem from distinct perspectives using similar or
different tools, they all share the same ultimate objective of making accurate
predictions (Kuhn and Johnson, 2013).

Presently, though various predictive models are available in the literature, re-
searchers are still facing the problem of choosing the best model for a particular
data set (Kuncheva, 2004). Usually, there is little or no a priori information
available about the data in hand, leaving the researchers with no other choice
but a nonparametric approach. Although the predictive performance of individ-
ual models like decision trees, neural networks, and their Bayesian counterparts
can sometimes be not nearly as strong on unseen data as that obtained on the
training data. It is because these nonparametric methods suffer from difficulties
like computational complexity, bias-variance trade-off issues, and over-fitting to
the data set used for training (Kuncheva, 2004). Researchers have observed that
these issues can be overcome by inducing hybrid and ensemble systems for these
problems (Wozniak, 2013; Zhou, 2012). Both theoretical and empirical research
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affirms that hybrid and ensemble models generally perform better than individual
models (Hansen and Salamon, 1990; Opitz and Maclin, 1999). Even though it is
shown that diversity is an essential factor in explaining why hybrids or ensemble
models perform so well, it is still an open question of how the trade-off between
the accuracy of the individual models and the diversity among the models should
be handled (Kuncheva and Whitaker, 2003; Tang et al., 2006). Accordingly,
building a capable hybrid or ensemble system is a complex and challenging pro-
cess that requires intuition about the statistical learning algorithms and in-depth
knowledge about the real-life problems (Kuncheva and Whitaker, 2003). The pri-
mary concerns while developing an efficient hybrid model along with key design
features are as follows:

(a) the combination of the classifiers or models to be used;

(b) the base classifier or model to be used for creating the hybridization or
ensemble must be simple so that they should not overfit;

(c) to create a ‘good’ ensemble or hybrid model, the base learner used should
be as accurate as possible;

(d) hybridization sometimes results in reduced accuracy due to difficulty in
selecting the correct combination of predictive models;

(e) hybridization can help in handing data irregularities, like missing features,
imbalanced data, high-dimensional low-sample-size data, etc.

(f) diversity in the methods to be used in the hybridization is considered to be
a key design feature for any hybrid system.

(g) interpretability, white-box explainability, and robustness are some key de-
sirable characteristics of the hybrid models to be developed.

Figure 1.1: A taxonomy for different kinds of prediction problems
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1.2.1 Characterization of the Problems

In this thesis, we try to develop some novel nonparametric hybrid predictive
models for the data sets available from the fields of business analytics, software
reliability engineering, macroeconomics, process and quality control. In general,
prediction problems in data science are branched out in different types of clas-
sification and regression problems. A taxonomy of different prediction problems
is presented in Figure 1.1. But real-life data pose challenges associated with
supervised learning tasks under the scope of this thesis are as follows.

• Feature selection cum classification problem. Often, the data set
comprises of several redundant information in the feature space, and the
selection of essential features becomes an important job before performing
the classification tasks. For example, consider a problem of the dean of a
private business school in India, who would like to admit students whose
placement probability is very high at the end of the Masters’ program. The
decision regarding the admissibility of a student has to be taken during the
admission process itself. Hence, the past data that are available during the
student admission process has to be the basis of the decision making process.
To solve this problem, we require a model that will help the business school
authorities select the important features from different academic character-
istics of the students to enhance their placement probability. Finally, we
would like to develop a model to predict whether a student will be placed
or not based on specific characteristics (e.g., past academic records) of the
student at the time of admission to the course. This business school dean’s
dilemma problem is addressed in Chapter 3 by developing a nonparamet-
ric hybrid predictive model based on classification tree and neural networks
that can be used for both feature selection and classification tasks. Another
example of a feature selection cum classification problem can be drawn from
the field of medical data analysis. Consider a computerized process of my-
ocardial perfusion diagnosis from cardiac single proton emission computed
tomography (SPECT) images using a data mining and knowledge discov-
ery approach. Kurgan et al. (2001) created a database consisting of 267
cleaned patient SPECT images (about 3000 2D images), accompanied by
clinical information and physician’s interpretation. The job is to develop
a user-friendly model for computerizing the diagnostic process to extract a
set of essential features, and then to generate explicit rules to mimic a car-
diologist’s diagnosis. Several other examples from the medical field are also
used to show the effectiveness of the hybrid model developed in Chapter 3.

• Imbalanced classification problem. A common issue in many classifi-
cation problems is that the classes are imbalanced. In most cases, it is the
minority class that is most important to be able to predict correctly. Si-
multaneously, most statistical and machine learning tools perform better at
predicting the majority class, making them biased towards that class. This
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problem occurs in software defect prediction when software engineers try
to identify defects in the early phases of the software development life cy-
cle. Imbalanced software data sets contain non-uniform class distributions,
with a few instances belonging to a specific class (defective modules) as
compared to that of the other class (non-defective ones). This imbalanced
classification problem of the software industries is addressed in Chapter 4
by building a novel hybrid methodology, namely, the Hellinger net that
outperforms state-of-the-art imbalanced classifications tools (e.g., HDDT,
HDRF, etc.) to handle the ‘curse of imbalanced data’. Another example
of an imbalanced classification problem can be drawn from the problem of
prognosis of breast cancer recurrence. The domain is characterized by 2
decision classes and 9 attributes. Data for 286 patients with known diag-
nostic status 5 years after the operation were available (Michalski et al.,
1986). This data consists of 70% positive class examples and 30% negative
class examples. Chapter 4 also attempts to deal with these types of class
imbalance problems arising in different applied domains.

• Nonparametric Regression estimation problem. A modern paper
manufacturing industry wants to improve the efficiency of the fiber-filler re-
covery process. The effectiveness of fiber-filler recovery equipment depends
on several critical process parameters and monitoring them is a tricky propo-
sition. The goal of improving process efficiency is to ensure an increase in
the gain in percentage recovery of the fiber-filler recovery equipment, which
leads the paper company to become environmentally friendly with very
less ecological damage apart from being cost-effective. This problem can be
viewed as a typical nonparametric regression estimation problem. One tries
to establish a relationship between the response variable (recovery percent-
age of the equipment) with that of the significant causal variables (process
parameters) without any prior assumptions of the data generating process.
A novel hybrid methodology is introduced in Chapter 5 to address this
problem for process efficiency improvement in the paper industry. Though
we concentrate on the development of a nonparametric regression problem
in Chapter 5, the model may also be useful for prediction problems arising
in other domains where there is no prior knowledge available on the data
generating process, for example, Auto MPG data set (Redmond and Baveja,
2002) and Wisconsin (Prognostic) breast cancer (Mangasarian et al., 1995),
to name a few.

• Combining frequentist and Bayesian methods for nonparametric
regression. Popular hybrid predictive models use different ideas to com-
bine two or more frequentist models. Though frequentist and Bayesian
methods differ in many aspects, they share some basic optimal properties.
In real-life regression problems, situations exist in which a model based
on one of the methods is preferable due to some subjective criterion. We
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try to create hybridization based on frequentist version of decision trees
(neural networks) combining with the Bayesian counterparts of neural net-
works (decision trees) to utilize the superiority of two ideologically different
paradigms in Chapter 6 of this thesis. We call this ‘Bayesian neural tree’
that can exploit the architecture of a tree-based method and contains a
lesser number of parameters than advanced deep neural networks. The
Bayesian neural tree model is further applied to solve the water quality
prediction problem of boiler inlet water for the paper machine in a modern
paper manufacturing company. It shows remarkable improvements com-
pared to other conventional methods. Also, we consider data from the field
of cement and concrete research (Yeh, 1998) in which concrete strength
development (water-to-cement ratio) is influenced by the content of other
concrete ingredients. High-performance concrete is a highly complex ma-
terial, which makes modeling its behavior a very difficult task. Chapter 6
aims at developing a nonparametric regression model which can also pre-
dict the compressive strength of high-performance concrete. Several other
examples have been used while comparing the performance of the model
developed in Chapter 6.

• Time series forecasting of nonstationary and nonlinear data. This
problem is motivated by the unemployment rate prediction of a country,
which is a crucial factor for the country’s economic and financial growth
planning and a challenging job for policymakers. Traditional stochastic
time series models, as well as modern nonlinear time series techniques, were
employed for unemployment rate forecasting previously (Edlund and Karls-
son, 1993; Katris, 2020; Vicente et al., 2015). These macroeconomic data
sets are mostly nonstationary and nonlinear. Thus, it is atypical to assume
that an individual time series forecasting model can generate a white noise
error. Several hybrid time series models are available in the forecasting
literature. We address this problem by introducing an integrated approach
based on the linear ARIMA model and nonlinear autoregressive neural net
model, which is an improvement over the most popular hybrid ARIMA-
ANN model (Zhang, 2003) in Chapter 7. The hybrid methodology is fur-
ther applied to predict the unemployment rate of various countries, namely
Canada, Germany, Netherlands, New Zealand, Sweden, and Switzerland. It
shows significant improvements compared to other conventional methods.
Though we concentrate on the unemployment rate forecasting problem in
Chapter 7, however, the developed model in this chapter can also be useful
for forecasting problems arising in other domains where the data sets exhibit
enough nonlinearity and nonstationarity. Some examples include exchange
rate forecasting (Boothe and Glassman, 1987), electricity consumption fore-
casting (Cao and Wu, 2016), and forecasting of numbers of passengers in
airlines (Kim and Ngo, 2001), to name a few.
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1.2.2 Objectives of the Thesis

In this thesis, the main focus regarding the explicit learning strategy is on the
development of specialized hybrid models for the various applied problems, drawn
from the fields of business analytics, process control, quality prediction, software
reliability engineering, and macroeconomic data modeling. We also employ the
proposed hybrid frameworks on multiple publicly available classification and re-
gression data sets to show the general applicability of the developed techniques
in various applied domains. Furthermore, each of the chapters focuses on the
implicit learning strategy, in particular, on the hybridization of tree-based meth-
ods with neural network-based models, which are introduced in Chapter 3-6 and
hybridization of ARIMA with an autoregressive neural network in Chapter 7. We
build some novel hybrid predictive models in a fully nonparametric setup com-
bining both the decision tree-based models and neural network-based models in
such a way that these models are capable of performing well in the prediction
tasks in Chapter 3-6. In Chapter 7, a hybrid model is introduced for forecasting
macroeconomic time series by combining linear and nonlinear forecasting models
and its asymptotic stationarity is derived. In this thesis, the emphasis is on the
distribution-free properties of the newly developed predictive models, and thus
most of the consistency results presented in this thesis are valid for all the distri-
butions of the data. The theoretically proven consistency results for the proposed
models can guarantee that taking more samples essentially suffices to reconstruct
the unknown distribution of the data roughly. Motivated by this, we derive the
asymptotic properties of each of the developed hybrid models in the subsequent
chapters of this thesis from a statistician’s perspective.

Throughout the thesis, several novel hybrid predictive models are developed
to solve a wide variety of applied data science problems and their statistical, com-
putational and practical aspects are studied to address the shortcomings of the
current literature. The primary goal of statistics is making inductive inferences
with the developed model and emphasizes on theoretical supports for the model
unlike building a ‘black-box-like’ model. In the thesis, all the newly introduced
hybrid models have the desired statistical properties and are empirically shown
to be useful in solving real-life problems from various applied fields. The main
goal of this thesis is to develop novel hybrid predictive models combining two dif-
ferent models for studying the problem of inductive inference based on the data
sets available in the field of quality, reliability, economics, and business analyt-
ics. The theoretically proven consistency results for the proposed nonparametric
hybrid predictive models represent the topology in the sense of ‘generalizing’ the
observed values of neighborhoods. Thus, this thesis will necessarily fill the gap
between theory and practice that exists from the very beginning of the develop-
ment of hybrid models for the last three decades. A chapter-wise enumeration of
the contributions made in this thesis is presented in the following section, along
with brief descriptions of each of the contributions.

13
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1.3 Thesis layout: Chapter-wise Contributions

of the Thesis

This section will look at the novel contributions made in the subsequent chap-
ters of this thesis. Several nonparametric hybrid methodologies are developed
in the following chapters to address some crucial predictive analytics problems
drawn from the fields of business analytics, manufacturing process control, qual-
ity control, macroeconomic forecasting, and software defect prediction. Chapter
2 introduces the basics of statistical learning theory, some relevant statistical
learning models, brief details of popular hybrid models, and describes useful
performance metrics to be used in the subsequent chapters of this thesis. In
Chapter 3-4, we develop some novel hybrid techniques to address the problems of
the feature selection cum classification and class imbalance issues, respectively.
Chapters 5-6 attempt to create hybrid methods in the context of regression esti-
mation (frequentist) and Bayesian nonparametric regression, respectively, along
with methodological developments and relevant applications. Chapter 7 presents
a hybrid model for time series forecasting, which can simultaneously handle linear
and nonlinear time series. Conclusions are drawn in Chapter 8 based on a critical
evaluation of the contributions made in this thesis. The codes for the methods
presented in this thesis can be found at https://github.com/tanujit123.

In Chapter 2, some statistical and machine learning techniques related to hy-
bridization to be used in this thesis are recalled. In Section 2.2 of the chapter,
underlying ideas, definitions, and some useful theorems on statistical learning
theory are given. These ideas are used throughout the remaining part of the
thesis. In Section 2.3, an introduction to the constituent predictive models re-
lated to hybridization is given. Introducing these models will help us in building
hybrid predictive models in the later chapters. In Section 2.4, some popular hy-
brid methods are recalled as these methods relate closely to the context of this
thesis and are widely used in predictive analytics problems. Various performance
evaluation metrics to be used in the subsequent chapters for comparing the devel-
oped models with the state-of-the-art methods are briefly described in Section 2.5.

In Chapter 3, we begin by looking at a type of classification problem that
requires selecting a set of essential features from the feature space prior to per-
forming the classification task. This problem occurs in the selection of Masters’
students in a private business school where the authorities of the business school
want to come up with a model that can let them select the academic character-
istics of students to enhance their placement probability after completion of the
professional course. To solve the problem, a hybrid model based on classification
trees (CT) and ANN is developed to strengthen both the feature selection and
classification tasks, following Chakraborty et al. (2018, 2019c). In Section 3.2 of
the chapter, we discuss the motivating example of the business school data sets
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in detail that motivates us to design this new hybrid approach in this chapter. In
Section 3.3, we present the formulation of the proposed hybrid CT-ANN model.
Several statistical properties of the model are studied in Section 3.4. In Section
3.5, our proposed hybrid model is applied to the business school data. In Section
3.6, we apply the newly developed hybrid CT-ANN model for various medical
data sets to show the potential application of the methodology in other applied
domains. A simulation study is also presented in Section 3.7 to make our results
more convincing.

In Chapter 4, we start with another critical classification problem in which
the class distributions are not equally distributed. It has been observed that
there are situations where many cases belong to a larger (majority) class and
fewer cases belong to a smaller (minority) yet usually more exciting class. This
is called an imbalanced classification problem, where traditional classifiers tend
to misclassify the minority class cases as a member of the majority class. The
curse of imbalanced data sets and motivational example of imbalanced software
defect prediction data are given in Section 4.2. A nonparametric hybrid model,
namely Hellinger net, is developed that can solve this imbalanced classification
problem arising in software reliability engineering, following Chakraborty and
Chakraborty (2020a,b). Hellinger net utilizes the strength of a skew insensitive
distance measure, namely Hellinger distance, in handling class imbalance prob-
lems. The detailed formulation of the Hellinger net algorithm is described in
Section 4.3, followed by the asymptotic consistency of the framework, which is
discussed in Section 4.4. In Section 4.5, the performance of our model is as-
sessed over ten software defect prediction data sets and compared with the other
state-of-the-art models. In Section 4.6, we apply the newly developed imbal-
anced classifier for standard UCI data sets to show the potential application of
the methodology in other applied domains. A simulation study is also presented
in Section 4.7 to make our results more convincing.

In Chapter 5, we consider another wing of the prediction problem, namely the
regression estimation problem, where we try to improve the efficiency of the waste
recovery process in a modern paper manufacturing company. Here, we extend the
approach presented in Chapter 3 in the regression framework with conspicuous
modifications in the hybrid methodology, following Chakraborty et al. (2019a,
2020b). The detailed formulation of a hybrid algorithm, namely the radial basis
neural tree (RBNT) model, based on regression trees and radial basis neural
net, is described in Section 5.2. The proposed model has the advantages of easy
interpretability and excellent performance when applied to the process efficiency
improvement problem. We study the asymptotic properties of the framework
to show its theoretical robustness in Section 5.3. In Section 5.4, we describe
the application of the proposed RBNT model to the waste recovery problem. A
simulation study is also presented in Section 5.5 to investigate the asymptotic
behavior of our proposed methodology.
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In Chapter 6, we have broadened the scope of research on hybrid predictive
models from a frequentist approach to building hybridization of frequentist and
Bayesian methods for nonparametric regression tasks. Nonparametric regression
techniques, such as regression trees and neural networks, have frequentist and
Bayesian (Bayesian CART and Bayesian neural networks) counterparts to learn
from data. Hence, we present a hybrid model that blends two distinct paradigms
while building the hybridization. The formulation of the hybrid approach, namely
Bayesian neural tree, is discussed in Section 6.2, following Chakraborty et al.
(2019b,d). We study the consistency of the proposed models and derive the opti-
mal value of a critical model parameter in Section 6.3. We discuss the application
of the proposed hybrid structures to the problem of water quality prediction faced
by a modern paper manufacturing company in Section 6.4. In Section 6.5, our
model’s performance is assessed over some standard regression data sets to show
the general applicability of the newly introduced hybrid approach that blends
two contrasting statistical paradigms.

In Chapter 7, we consider a different kind of regression problem involving
autocorrelations in the data. This is motivated by the unemployment rate fore-
casting problem, a perpetual topic of research over the past three decades in
economics. These macroeconomic data sets, mostly nonstationary and nonlinear,
are described in Section 7.2. We present a hybrid approach based on linear and
nonlinear models that can predict the unemployment rates more accurately in
Section 7.3, following Chakraborty et al. (2020a). We discuss the asymptotic
stationarity of the proposed hybrid approach using Markov chains and nonlinear
time series analysis techniques in Section 7.4. The application of the proposed
approach to various unemployment rate data sets is presented in Section 7.5. A
simulation study is also presented in Section 7.6 to make our results more con-
vincing.

Finally, in Chapter 8, relevant conclusions that result from the different chap-
ters are summarized along with indications of some possible future directions of
research.
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Chapter 2

Preliminaries

Summary

This part of the thesis introduces the basic mathematical concepts needed to under-
stand the statistical aspects of machine learning models and some relevant hybrid
predictive models. We begin with general ideas from statistical learning theory,
some fundamental bounds, and empirical process techniques. Next, we briefly de-
scribe some constituent models that will be useful in the development of hybrid
predictive models in the later parts of this thesis. We also discuss some popular
hybrid models based on decision trees and neural networks, useful for classifica-
tion and regression data analysis. Finally, the performance evaluation metrics to
be used for comparing different predictive models are described. In the subsequent
parts of this thesis, we develop some novel hybrid predictive models within this
framework.

2.1 Introduction

The main goal of statistical learning theory is to provide a framework for study-
ing the problem of inference: gaining knowledge, constructing models from a
set of data, and making predictions using the model to make appropriate deci-
sions (Hastie et al., 2009). Indeed, the theory of statistical inference should be
able to give a formal definition of words like learning, generalization, overfitting,
and to characterize the performance of learning algorithms so that, ultimately, it
may help design better learning algorithms (Bousquet et al., 2003). In statistical
learning, the word ‘learning’ is considered as the process of converting experi-
ence into knowledge. The input to a statistical learning algorithm is training
data, representing experience, and the output is some expertise. For a formal
mathematical understanding of this concept, we recall basic ideas from statistical
learning theory, predictive models, and hybrid learning systems which we use in
this thesis. Statistical learning theory puts the learning process into a statistical
or mathematical framework. Definitions and necessary results on empirical risk
minimization, empirical processes, and useful bounds for complexity regulariza-
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2. PRELIMINARIES

tion are covered in Section 2.2; for a detailed treatment on these topics, one may
refer to Bousquet et al. (2003); Devroye et al. (1996); Györfi (2002); Györfi et al.
(2002).

In Section 2.3 of this chapter, we give a brief description of some popular
statistical and machine learning models, mainly tree-based and neural network-
based models, that will be further used for hybridization in subsequent chapters.
We also briefly describe some popular hybrid models in Section 2.4; also refer to
Kuncheva (2004); Rokach (2010); Wozniak (2013); Zhou (2012) for more details
on these hybrid models. The newly developed hybrid models presented in this
thesis are compared with these hybrid models already available in the literature
in order to show better performance of the proposed models. The existing hy-
brid methods are critically reviewed from a pragmatic viewpoint, and we identify
some drawbacks of the models available in the current literature, which eventu-
ally fabricates our motivation for this thesis. Finally, we recall some standard
performance evaluation metrics in Section 2.5 which are used for comparison
purposes.

2.2 Basics of Statistical Learning Theory

Statistical learning theory is the mathematical theory of machine learning, for
which the foundations were mainly laid by Vapnik and Chervonenkis (1974).
The goal of learning theory is to study in a statistical framework, the properties
of learning algorithms. In particular, most results take the form of the so-called
error bounds. This section introduces the techniques that are used to obtain such
results in the subsequent chapters.

2.2.1 A Binary Classification Problem

In this section, we consider a supervised learning framework for pattern classi-
fication. Binary pattern classification is all about predicting the unknown class
Y ∈ {0, 1} of an observation based on d-dimensional feature vector X after see-
ing the data Dn = {(X1, Y1), · · ·, (Xn, Yn)}. In pattern recognition, we create
a function g(x) : Rd → {0, 1} which represents one’s guess of y given x. The
mapping g is called a ‘classifier’. To model the learning problem, let (X, Y ) be
an Rd×{0, 1}-valued random pair which is defined by the pair (µ, η), where µ is
the probability measure for X and η is the regression of Y on X. More precisely,
for a Borel-measurable set A ⊆ Rd,

µ(A) = P [X ∈ A]

and for any x ∈ Rd,

η(x) = P [Y = 1|X = x] = E [Y |X = x] .

18
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Thus, η(x) is called the a posteriori probability and the distribution of (X, Y ) is
determined by (µ, η). An error occurs if g(X) 6= Y and the probability of error
for a classifier g is

L(g) = P [g(X) 6= Y ] = E
[
1g(X) 6=Y

]
.

The Bayes classifier is given by

g∗(x) =

{
1 if η(x) > 1/2

0 otherwise

that minimizes the probability of error. Also, the smallest error probability
L∗ = P [g∗(X) 6= Y ] is called the Bayes error or Bayes risk. Note that g∗ de-
pends upon the distribution of (X, Y ). If this distribution is known, g∗ may be
computed. Mostly, the distribution of (X, Y ) is unknown, so that g∗ is unknown
too (Györfi, 2002).

A novice might ask simple questions like this: How does one construct a
good classifier? Can we estimate how good a classifier is? We call a classifier
as ‘good’ if it is consistent (Devroye et al., 1996). A consistent rule guarantees
that taking more samples essentially suffices to roughly reconstruct the unknown
distribution of (X, Y ). In other words, infinite amounts of information can be
gleaned from finite samples. Without this guarantee, we would not be motivated
to take more samples. One should be careful to not impose conditions on (X, Y )
for the consistency of a rule because such conditions may not be valid. If a rule
is consistent for all distributions of (X, Y ), it is said to be universally consistent.
Below we present formal definitions of weakly and strong universal consistency
(Györfi, 2002).

Definition 1 The classifier g is called weakly universal consistent if

P [g(X) 6= Y ]→ L∗

for all distributions of (X, Y ).

Definition 2 The classifier g is called strongly universal consistent if

P [g(X) 6= Y |Dn]→ L∗ a.s.

for all distributions of (X, Y ).

We assume that a class C of classifiers g : Rd → {0, 1} is given, and we want to
choose one classifier that provides a small probability of errors. Due to having a
lack of knowledge about the underlying distributions of the data, we take resort to
a nonparametric set-up and we use the data to estimate the probabilities of error
for the classifiers in C. It is alluring to pick a classifier from C that minimizes
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an estimate of the probability of error over the class. The most natural way to
estimate the probability of error L(g) = P [g(X) 6= Y ] is the error count

L̂n(g) =
1

n

n∑
j=1

1{g(Xj)6=Yj},

where L̂n(g) is called the empirical error of the classifier g. A good method should
pick a classifier with a probability of error that is close to the minimal probability
of error in the class. Intuitively, if we can estimate the error probability for
the classifiers in C uniformly, then the classification function that minimizes the
estimated probability of error is likely to have a probability of error that is close to
the best in the class. We denote by g∗n the classifier that minimizes the estimated
probability of error over the class:

L̂n(g∗n) ≤ L̂n(g) for all g ∈ C.

Then for the probability of error L(g∗n) = P [g∗n(X) 6= Y |Dn] of the selected rule,
we have the following inequality:

Lemma 1 (Györfi, 2002, Lemma 1.1)

L(g∗n)− inf
g∈C

L(g) ≤ 2 sup
g∈C
|L̂n(g)− L(g)|,

i.e., |L̂n(g∗n)− L(g∗n)| ≤ sup
g∈C
|L̂n(g)− L(g)|.

We see that upper bounds for sup
g∈C
|L̂n(g) − L(g)| provide us with upper bounds

for two things simultaneously:

1. An upper bound for the sub-optimality of g∗n within C, that is, a bound for
L(g∗n)− infg∈C L(g).

2. An upper bound for the error |L̂n(g∗n) − L(g∗n)| committed when L̂n(g∗n) is
used to estimate the probability of error L(g∗n) of the selected rule.

2.2.2 Regression Problem

Let Y be a real-valued random variable and X be a d-dimensional random vector.
We do not assume anything about the distribution of (X, Y ). In a regression
problem, one wishes to estimate Y given X, i.e., one wants to find a function f
defined on the range of X so that f(X) is “close” to Y . Assume that the main
aim of the analysis is to minimize the mean squared error:

min
f
E
{

(f(X)− Y )2
}
.
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The regression function m(x) is defined by

m(x) = E[Y |X = x]

for E|Y | <∞. For each measurable function f one has

E
{

(f(X)− Y )2
}

= E
{

(m(X)− Y )2
}

+ E
{

(m(X)− f(X))2
}

= E
{

(m(X)− Y )2
}

+

∫
Rd
|m(X)− f(X)|2 µ(dx), (2.1)

where µ denotes the distribution of X. The second term of the R.H.S. of (2.1) is
called L2 error for the function f and is denoted by

J(f) =

∫
Rd
|m(X)− f(X)|2 µ(dx).

In the regression estimation problem, we let (X1, Y1), ..., (Xn, Yn) to be indepen-
dent and identically distributed copies of (X, Y ). The regression function estimate
is denoted by

mn(x) = mn (x, (X1, Y1), ..., (Xn, Yn)) .

We are interested in the L2(µ) convergence of the regression estimate mn to m and
below we present the formal definitions of weak and strong universal consistency
for regression set-up.

Definition 3 The estimator mn is called weakly universal consistent if

E {J(mn)} → 0

for all distributions of (X, Y ) with E|Y |2 <∞.

Definition 4 The estimator mn is called strongly universal consistent if

{J(mn)} → 0 a.s.

for all distributions of (X, Y ) with E|Y |2 <∞.

In order to get universally consistent estimates it suffices to show that
∫ ∣∣mn(x)−

m(x)
∣∣2µ(dx) converges to 0 for all distributions of (X, Y ) with E|Y |2 <∞. This

is formulated in the following lemma:

Lemma 2 (Györfi, 2002, Lemma 10.1) Let Fn = Fn(Dn) be a class of functions
f : Rd → R depending on the data Dn = {(X1, Y1), ..., (Xn, Yn)}. If mn satisfies

mn(·) = arg min
f∈Fn

1

n

n∑
j=1

|f(Xj)− Yj|2, then
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2. PRELIMINARIES∫ ∣∣mn(x)−m(x)
∣∣2µ(dx) ≤ 2 sup

f∈Fn

∣∣∣∣ 1n
n∑
j=1

∣∣Yj − f(Xj)
∣∣2 − E

∣∣Y − f(X)
∣∣2∣∣∣∣

+ inf
f∈Fn

∫ ∣∣f(x)−m(x)
∣∣2µ(dx). (2.2)

We call the first term of the R.H.S. of (2.2) the estimation error and the sec-
ond term the approximation error. The estimation error measures the distance
between the L2 risk of the estimate and the L2 risk of the best function in Fn.
The approximation error measures how well the regression function can be ap-
proximated by the function of Fn in L2. In order to get universally consistent
estimates it suffices to show that both the terms converge to 0 for all distributions
of (X, Y ) with E|Y |2 <∞.

2.2.3 Vapnik-Chervonenkis (VC) Theory

Let X1, · · · , Xn be i.i.d. random variables taking values in Rd with common
distribution µ(A) = P [Xi ∈ A], where A ⊂ Rd. Define the empirical distribution

µn(A) =
1

n

n∑
i=1

1{Xi∈A}, where A ⊂ Rd.

Consider a class A of subsets of Rd. We are concerned about the behavior of the
random variable sup

A∈A
|µn(A)−µ(A)|. Here we derive inequalities for the expected

value, in terms of certain combinatorial inequalities related to A. The first such
quantity is the V C shatter coefficient, defined by

SA(n) = max
x1,··· ,xn∈Rd

∣∣∣ {{x1, · · · , xn} ∩ A;A ∈ A}
∣∣∣.

The SA(n) is the maximal number of different subsets of a set of n points which
can be obtained by intersecting it with elements of A. We define VC dimension
as follows:

Definition 5 (VC dimension) Let A be a class of subsets of Rd with A 6= φ. The
V C dimension VA of A is defined by

VA = sup {n ∈ N : S(A, n) = 2n} ,

i.e., the V C dimension VA is the largest integer n such that there exists a set
of n points in Rd which can be shattered by A, where S(A, n) is the n-th shatter
coefficient of A.

The theorem below is the classical version of the Vapnik-Chervonenkis inequality
(Vapnik and Chervonenkis, 1974):
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Theorem 1 (Vapnik-Chervonenkis Inequality)

P

{
sup
A∈A
|µn(A)− µ(A)| > t

}
≤ 4SA(2n)e−nt

2/8

for any n and t > 0.

The main virtue of the Vapnik-Chervonenkis inequality is that it converts the
problem of uniform variations of empirical average into a combinatorial problem.
The key to understand the behavior of the maximal deviations is the investigation
of the behavior of SA(n). We see that if A is any class of sets with V C dimension
V , then using V C inequality

E

{
sup
A∈A
|µn(A)− µ(A)|

}
≤ 2

√
V log(n+ 1) + log2

n

i.e., whenever A has a finite V C dimension, the expected largest deviation over

A converges to zero at a rate O

(√
logn
n

)
. The next result by Sauer (1972) shows

the V C dimension provides a useful bound for the shatter coefficient of a class.

Theorem 2 (Sauer’s lemma) Let A be a class of sets with V C dimension V <
∞. Then for all n,

SA(n) ≤
V∑
i=0

(
n

i

)
.

Now, one may immediately deduce the following using Sauer’s lemma (Györfi,
2002, Corollary 1.4).

Corollary 1 1. If A is the class of all linear halfspaces, viz., subsets of Rd of
the form {x : aTx ≥ b}, where a ∈ Rd, b ∈ R takes all possible values then
V ≤ d+ 1.

2. If A is the class of all closed balls in Rd, viz., sets of the form{
x =

(
x(1), · · · , x(d)

)
:

d∑
i=1

∣∣x(i) − ai
∣∣2 ≤ b

}
,

where a1, · · · , ad, b ∈ R, then V ≤ d+ 2.

Note that the above-mentioned result implies that the V C dimension of the class
of all linear halfspaces actually equals d+ 1.

Remark 1 An interpretation of V C dimension and shatter coefficient is that
they measure the effective size of the class, that is the size of the projection of
the class onto finite samples. In addition, this measure does not just ‘count’ the
number of functions in the class but does not depend on the geometry of the class.
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Finally, the finiteness of the V C dimension ensures that the empirical risk will
converge uniformly over the class to the true risk.

To complete our argument, we need to relate the V C dimension of a class of
sets A to the covering numbers N(r,A(xn1 )) which is a monotonically decreasing
function of r, defined as follows:

Definition 6 (Covering numbers) The covering number of F at radius ε, with
respect to Dn, denoted by N(F, ε, n) is the minimum size of a cover of radius ε.

The relationship between V C dimension with that of covering numbers are given
in the following theorem:

Theorem 3 Let A be a class of sets with V C dimension V < ∞. For every
x1, · · · , xn ∈ Rd and 0 ≤ r ≤ 1,

N(r,A(xn1 )) ≤
(

4e

r2

) V
1−1/e

.

Proof For proof, see Theorem 1.17 of Györfi (2002). �

Let Zn
1 = (Z1, · · · , Zn) is a sequence of i.i.d. random variables. Then N1 (ε,G, Zn

1 )
is also a random variable. Using the bounds above, we may derive some interesting
inequalities (Haussler, 1992; Pollard, 1984, 1990) which will be useful in the later
portions of the thesis .

Theorem 4 (Pollard’s Inequality (1984)) Let G be a set of functions g : Rd →
[0, B]. For any n, constant B (> 0) and ε > 0,

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E{g(Z1)}

∣∣∣∣∣ > ε

}
≤ 8E

{
N1

( ε
8
,G, Zn

1

)}
.e
− nε2

(128B2) .

Proof For proof, see Theorem 9.1 of Györfi et al. (2002). �

Theorem 5 (Haussler’s Inequality (1992)) Let G be a set of functions g : Rd →
[0, B] with VG+ ≥ 2, let p ≥ 1, also let Zn

1 ∈ Rd.n and let 0 < ε < B
4

. Then

Np (ε,G, Zn
1 ) ≤ 3

(
2eBp

εp
log

3eBp

εp

)V
G+

.

Proof For proof, see Theorem 9.4 of Györfi et al. (2002). �
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Theorem 6 (Pollard’s Theorem (1990)) Let F and G be classes of real functions
on Rd, bounded by M1 and M2, respectively (i.e., for e.g., |f(x)| ≤ M1 for every
x ∈ Rd and f ∈ F). For arbitrary fixed points zn1 = (z1, · · · , zn) in Rd define the
sets F(zn1 ) and G(zn1 ) as follows:

F(zn1 ) = {(f(z1), · · · , f(zn)); f ∈ F} and G(zn1 ) = {(g(z1), · · · , g(zn)); g ∈ G}.

Introduce T(zn1 ) = {(h(z1), · · · , h(zn));h ∈ T} for the class of functions

T = {fg; f ∈ F, g ∈ G}.

Then for every ε > 0 and zn1

N (ε,T(zn1 )) ≤ N

(
ε

2M2

,F(zn1 )

)
.N

(
ε

2M1

,G(zn1 )

)
.

Proof For proof, see Theorem 29.7 of Devroye et al. (1996). �

2.2.4 Basic Bounds and Concentration Inequalities

In this section, we show how to obtain simple error bounds (also called general-
ization bounds) from empirical processes and some other interesting inequalities
within this framework.

Definition 7 Let (X, d) be a metric space and let ε > 0. A set A ⊂ X is an
ε-net of X if for all x ∈ X there exists an y ∈ A such that d(x, y) ≤ ε.

If X has a finite ε-net, then one may define the ε-covering number N(X, ε) of X
as the cardinality ε-net.

Definition 8 A set A ⊂ X is an ε-packing if for all x 6= y ∈ A, d(x, y) ≥ ε. The
ε-packing number M(X, ε) is the number of points in the ε-packing with largest
cardinality.

The next lemma follows immediately from the above definitions.

Lemma 3 For all X and ε > 0,

M(X, ε/2) ≤ N(X, ε) ≤M(X, ε).

Hoeffding’s Inequality. Let us rewrite the quantity we are interested in as
follows

L(g)− Ln(g) = E [f(Z)]− 1

n

n∑
i=1

f(Zi).
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It is easy to recognize here the difference between the expectation and the em-
pirical average of the random variable f(Z). By the laws of large numbers, we
immediately obtain that

P

[
lim
n→∞

1

n

n∑
i=1

f(Zi)− E [f(Z)] = 0

]
= 1.

This indicates that with enough samples, the empirical risk of a function is a
good approximation to its true risk. It turns out that there exists a quantitative
version of the law of large numbers when the variables are bounded (Györfi, 2002,
Theorem 1.2).

Theorem 7 (Hoeffding’s Inequality) Let Z1, · · · , Zn be n i.i.d. random variables
with f(Z) ∈ [a, b]. Then for all ε > 0, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− E [f(Z)]

∣∣∣∣∣ > ε

]
≤ 2 exp

[
− 2nε2

(b− a)2

]
.

An important feature of the result above is that it is completely distribution-free.
The actual distribution of the data does not play a role at all in the upper bound,
which will be very useful to derive the consistency results of our proposed hybrid
frameworks in later parts of this thesis. Below we present an important result
from measure theory about sequences of events.

Lemma 4 (Borel-Cantelli Lemma) Suppose that {An : n ≥ 1} is a sequence of
events in a probability space. Then the event A(i.o.) = {An occurs for infinitely many n}
is given by

A(i.o.) =
∞⋂
k=1

∞⋃
n=k

An.

If
∞∑
n=1

P (An) <∞,

then P (A(i.o.)) = 0; only a finite number of the events occur, w.p. 1.

No Free Lunch Theorem. We now cite an important result that tells for a
fixed sample size, one can construct arbitrarily bad problems for a given algorithm
(Wolpert, 2002). The theorems below state that the ‘bad’ probability measure is
constructed on a countable set (where the outputs are not related at all to the
inputs so that no generalization is possible), and is such that the rate at which
one gets to see new inputs is as slow as the convergence of an.
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Theorem 8 (No Free Lunch) For any algorithm, any n and any ε > 0, there
exists a distribution µ such that L∗ = 0 and

P

[
L(gn) ≥ 1

2
− ε
]

= 1.

Theorem 9 (No Free Lunch at all) For any algorithm and any sequence {an}
that converges to 0, there exists a distribution µ such that L∗ = 0 and

L(gn) ≥ an.

2.3 Overview of Constituent Models

The primary goal in statistics is making the scientific inferences and emphasizes on
theoretical supports (like asymptotic properties) of the classifier unless building
a “black-box-like” model for the task at hand (Dunson, 2018). Decision trees and
neural nets are two competitive models having a strong statistical background.
Below we briefly describe these constituent models to be used in the development
of hybrid methods in Chapters 3-6. For Chapter 7, we discuss the component
time series models (ARIMA and ARNN) to be used in the hybridization within
the chapter itself.

2.3.1 Classification and Regression Tree (CART)

CART is a greedy divide-and-conquer algorithm that finds axis-parallel partitions
via recursive partitioning of the feature space into homogeneous regions (Breiman
et al., 1984). The binary decision tree construction starts with assigning the total
training data points in one group, named as the parent node. Parental nodes
are split into two child nodes using one of the feature vectors. The selection of
attributes is made based on any entropy-based impurity function for classification
problems. Classification tree (CT) usually uses Gini impurity and information
gain to measure the splits’ quality, and the best split amongst all the splits
at a given branch is selected. The splitting process ends when a full tree is
grown. Different tree complexity measures are usually employed to prune the
branches with very few data points to avoid data over-fitting. Finally, we can
assign the class labels for each terminal or leaf nodes. Regression trees or RT, for
short, are designed for dependent variables that take a finite number of unordered
values, with prediction error typically measured by the squared difference between
the observed and predicted values (Quinlan, 1990). Given a test data point,
a sequence of tests along the decision nodes starting from the root node will
determine the path along the tree until it reaches a terminal node. At the terminal
node, a prediction is made according to the local model associated with that
node. To construct an RT using the training set, we start at the root node. We
select the variable (and its split threshold) whose splitting will lead to the largest

27



2. PRELIMINARIES

reduction in mean squared error (MSE). We continue these splits recursively
until the MSE reaches an acceptable threshold. A typical practice is to perform
some kind of pruning for the tree, once designed. This will eliminate ineffective
nodes and to keep in check model complexity. CART models are popular for
several reasons (Hastie et al., 2009): they are easy to interpret, they can easily
handle mixed discrete and continuous inputs, they are insensitive to monotone
transformations of the inputs (because the split points are based on ranking
the data points), they perform automatic variable selection, they are relatively
robust to the outlier, they scale well to large data sets, and they can be modified
to handle missing inputs. However, CART models also have some disadvantages.
The primary one is that they do not predict very accurately compared to other
kinds of models. This is in part due to the greedy nature of the tree construction
algorithm. The related problem is that trees are unstable: small changes to the
input data can have significant effects on the structure of the tree. This is due to
the hierarchical nature of the tree-growing process, causing errors at the top to
affect the rest of the tree. In frequentists terminology, we say that trees are high
variance estimators (Loh, 2011).

2.3.2 Bayesian CART Model

A CART model consecutively divides the predictor space into multiple regions.
The partitioning begins at the root node, followed by splits at each internal
node. A splitting rule (i.e., a chosen predictor and a split threshold) for a node
is determined based on the minimization of the mean squared error (MSE) in
regression settings. For each node, a stopping criterion called ‘minsplit’ is defined
in terms of the minimum number of observations required in the node for further
splitting. A node with less than ‘minsplit’ samples are labeled as a terminal node.
At a terminal node, the predictor space is not split any further. Every data point
falls into a region defined at one of the terminal nodes, and predictions are made
using the local parameter. A fully grown tree is often pruned back via cross-
validation or cost-complexity pruning to avoid overfitting. In contrast, in the
Bayesian version of CART, we assume that a tree T has b terminal nodes. Let
the set of terminal node parameters be Λ = {λ1, . . . , λb}. A prior is then placed
on (Λ, T ) as

P (Λ, T ) = P (Λ|T ) P (T ), (2.3)

where P (T ) is specified as a tree generating stochastic process comprising two
functions, namely Psplit(m,T ), the probability that a terminal node m in a tree
T is split, and Prule(γ|m,T ), the probability that a splitting rule γ is assigned
if m is split (Chipman et al., 1998). A general form of Psplit(m,T ) is (Chipman
et al., 1998)

Psplit(m,T ) = α(1 +Dm)−β, (2.4)
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where Dm denotes the number of splits before the mth node, and 0 < α < 1 and
β ≥ 0. Larger values of β make the splitting of deeper nodes less probable, since
the RHS in (2.4) is a decreasing function of the depth Dm of a node. The prior
Prule(γ|m,T ) is specified so that at an internal node, each available predictor
is equally likely to be chosen for a split, and for a chosen predictor, each of its
observed values is equally likely to be chosen as a splitting threshold. P (Λ|T ) is
generally specified so that the marginalization

P (Y |T,X) =

∫
P (Y |X,Λ, T ) P (Λ|T ) dΛ (2.5)

is feasible (Chipman et al., 1998). For a continuous Y , we model the values in the
mth terminal node as a Gaussian with mean µm and variance σ2

m, where 1 ≤ m ≤ b

. Thus, we have Λ =
{
µm, σ

2
m

}b
m=1

, with µm and σ2
m having conjugate Gaussian

and Inverse-Gamma priors respectively, as in Chipman et al. (1998, 2002). The
posterior over the possible tree models P (T |Y,X) is analytically explored via a
Metropolis-Hastings search algorithm. A ‘good’ tree is usually found as a trade-
off between the number of terminal nodes b, and a high value of the marginal
probability P (Y |T,X).

2.3.3 Bayesian Additive Regression Trees (BART)

Bayesian additive regression trees (BART) is a fully Bayesian approach to mod-
eling with ensembles of trees in which the overall conditional mean of a response
given predictors is expressed as the sum of many trees (Chipman et al., 2010).
The BART algorithm includes an effective Markov Chain Monte Carlo algorithm
which explores the complex space of an ensemble of trees without pre-specifying
the dimension of each tree (Pratola et al., 2014). Guided by the prior, the com-
plexity of the model is inferred. The overall model is made up of many small
contributions from ensemble models. Typically, as in BART, the models in the
ensemble are binary trees (Hill et al., 2020). BART can uncover complex regres-
sion functions with high-dimensional regressors in a fairly automatic way and
provide Bayesian quantification of the uncertainty through the posterior (Chip-
man et al., 2010). Let y denote the response and x denote the vector of predictor
variables. BART consider the basic model

Yi = f(xi) + εi, εi
iid∼ N(0, σ2), (2.6)

The goal is to be able to infer about the function f with minimal assumptions
and high dimensional x. BART lets

f(x) =
m∑
j=1

g(x;Tj,Mj) (2.7)

29



2. PRELIMINARIES

where each g(x;Tj,Mj) represents the function captured by a single binary tree.
Each binary tree is described by the tree T which encode the structure of the
tree and all of the decision rules and M = (µ1, µ2, . . . , µb) which records the
values associated with each bottom or leaf node of the tree which has b bottom
nodes. Thus, the construction of the BART model comprises of two main steps:
a sum-of-trees model and a regularization prior on the parameters of that model.
Chipman et al. (2010) provides a very detailed description of BART prior, BART
MCMC and specification of the prior on σ.

2.3.3.1 BART Prior

BART entails both a prior on the parameter Θ = ((T1,M1), . . . , (Tm,Mm), σ) and
a MCMC algorithm for exploring the posterior. Note that the dimension of each
Tj is not fixed. The prior has the form

p(Θ) = p(σ)
m∏
j=1

p(Tj,Mj)

with p(T,M) = p(T )p(M |T ). Note that the dimension of M depends on T .

p(M |T ) =
m∏
i=1

p(µi)

with p(µ) ∼ N(0, τ 2) so that conditional on all the trees all the µ’s at the bottom
of all three are i.i.d. N(0, τ 2). The prior for σ is the standard inverted chi-squared:
σ2 ∼ (νλ)/(χ2

ν). Chipman et al. (2010) describe a tree growing process to specify
the prior p(T ) and data based default prior choices for τ and (ν, λ). The key to
these prior choices is that the prior expresses of preference for small trees and
shrinks all the µ towards zero in such a way that only the overall sum can capture
f . These prior specifications enable BART to make each individual tree a “weak
learner” in that it only makes a small contribution to the overall fit.

2.3.3.2 BART MCMC

Given the observed data y, the BART model induces a posterior distribution
p((T1,M1), . . . , (Tm,Mm), σ|y) on all the unknowns that determine a sum-of-trees
model (2.6 and 2.7). Although the sheer size of the parameter space precludes
exhaustive calculation, the following backfitting MCMC algorithm can be used to
sample from this posterior. At a general level, the algorithm is a Gibbs sampler
(Casella and George, 1992). For notational convenience, let T(j) be the the set
of all trees in the sum except Tj, and similarly define M(j). Thus T(j) will be a
set of m− 1 trees, and M(j) the associated terminal node parameters. The Gibbs
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sampler here entails m successive draws of (Tj,Mj) conditionally on (T(j),M(j), σ):

(Tj,Mj)|T(j),M(j), σ, y,

j = 1, . . . ,m, followed followed by a draw of σ from the full conditional:

σ|T1, . . . , Tm,M1, . . . ,Mm, y.

Each (T,M) draw is done by letting p(T,M |o) = p(T |o)p(M |T, o) where o de-
notes all the other conditioning information. Given the prior choices one can
analytically integrate out the µ to obtain an computationally convenient expres-
sion for p(T |o) Metropolis Hastings steps are then use to propose changes to T
(Chipman et al., 2010). While many useful steps are in the literature the key
steps are the birth/death pair. A birth step proposes adding a decision rule to
a bottom node of the current tree so that it spawns left and right child bottom
nodes. A death move proposes the elimination of a left/right pair of bottom
nodes. This key birth/death pair of moves allows the MCMC to explore trees of
varying complexity and size, as in Chipman et al. (2010).

However, BART assumes independent and identical distributed (i.i.d) normal
errors. This strong parametric assumption can lead to misleading inference and
uncertainty quantification (George et al., 2019). A recent modification to the
BART model using the classic Dirichlet process mixture (DPM) mechanism can
adapt to non-normal errors (George et al., 2019). Also, Chakraborty (2016)
provides a flexible Bayesian regression tree model when the response variable is
a vector and the components of the vector are highly correlated.

2.3.4 Hellinger Distance Decision Tree (HDDT)

One way of handling an imbalanced data set is to take recourse to sampling
techniques during the preparation of the data set for further analysis. However,
a significant disadvantage of these techniques is that in the process of sampling,
we lose a lot of information in the form of losing the real-life data. Cieslak and
Chawla (2008) proposed HDDT, which uses HD as the splitting criterion to build
a decision tree. HD is used as a measure of distributional divergence and has
the property of skew insensitivity (Rao, 1995). Let (Θ, λ) denote a measurable
space. For any binary classification problem, let us suppose that P and Q be two
continuous distributions concerning the parameter λ having the densities p and
q in a continuous space Ω, respectively. Define HD as follows:

dH(P,Q) =

√∫
Ω

(
√
p−√q)2dλ =

√
2

(
1−

∫
Ω

√
pqdλ

)
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where
∫

Ω

√
pqdλ is the Hellinger integral. It is noted that HD doesn’t depend

on the choice of the parameter λ. Given a countable space Φ, HD can also be
written as follows:

dH(P,Q) =

√√√√∑
φ∈Φ

(√
P (φ)−

√
Q(φ)

)2

The bigger the value of HD, the better is the discrimination between the features.
A feature is selected that carries minimal affinity between the classes. For the
application of HD as a decision tree criterion, the final formulation can be given
as follows:

dH(X+, X−) =

√√√√ K∑
j=1

(√
|X+j|
|X+|

−

√
|X−j|
|X−|

)2

(2.8)

where |X+| indicates the number of examples that belong to the majority class in
the training set and |X+j| is the subset of the training set with the majority class
and the value j for the feature X. A similar explanation can be written for |X−|
and |X−j| but for the minority class. Here K is the number of partitions of the
feature space X. Since equation (2.8) is not influenced by prior probability, it is
insensitive to the class distribution. Based on the experimental results, Cieslak
and Chawla (2008) concluded that unpruned HDDT is recommended for dealing
with imbalanced problems as a better alternative to sampling approaches.

2.3.5 Artificial Neural Networks (ANN)

Neural network models are inspired by biological nervous systems (Kuncheva,
2004). The connections between elements mainly determine the network func-
tions. The training of a neural network can be done by performing a particular
function by adjusting the values of the connections (weights) between elements.
Neural networks are trained so that a particular input (feature vectors) leads
to a specific target output (class level). The network is adjusted, based on a
comparison of the output and the target, until the network output matches the
observed class. Mapping functions used in ANN are very flexible. Given the right
weights, this function can approximate almost any functional form to any degree
of accuracy. This function approximation is mainly made by an activation func-
tion (for example, logsig, tansig, etc.). The neural networks most commonly used
in engineering applications are the multilayer perceptron networks, also known
as “backpropagation” or “feedforward” networks. Back-propagation is a gradient
descent algorithm that compares actual outputs with desired outputs (Rumelhart
et al., 1985). If an error exists, its reduction is accomplished by back-propagating
the error through the network and adjusting the weights. A network can have one
or more hidden layers. While training the network with any particular data set,
the problem of overfitting can be avoided by training the network for a limited
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number of epochs (Goodfellow et al., 2016).

A feedforward neural network model with p input nodes, one hidden layer
with M hidden nodes, one output node and activation functions Ψ is a model
relating p explanatory variables x = (x1, x2, . . . , xp) and a response variable y of
the form

ŷ(x) =
M∑
j=1

βjΨ(x
′
γj + δj) (2.9)

with βj ∈ R, γj ∈ Rp. The terms δj are designated biases and may be as-
similated to the rest of the γj vector if we consider an additional input with
constant value one, say x0 = 1. The typical setup for FFNNs is: Given data
D = {(x1, y1), . . . , (xN , yN)} and fixed M , choose β = (β1, β2, . . . , βM), γ =
(γ1, γ2, . . . , γM) according to a least squares criterion

min
β,γ

N∑
i=1

(yi − ŷ(xi))
2 ,

via backpropagation (Rumelhart et al., 1985), an implementation of steepest de-
scent algorithm. Hence, at least implicitly, we are assuming a normal error model
and we are viewing a nonlinear parametric regression problem. It is also some-
times suggested to include a regularisation term in the objective function to avoid
data overfitting (Goodfellow et al., 2016).

Deep neural networks contain multiple nonlinear hidden layers, and this makes
it very useful for complex, large-scale image data sets (Nowlan and Hinton, 1992).
But, deep neural net models are highly complex and over-parameterized models
that lack substantial flexibility and sometimes lead to overfitting (Dunson, 2018).
It requires extensive data sets (like image, audio, video data sets), which poses a
significant problem in many real-life situations. Statisticians are usually not sat-
isfied with a ‘black-box-like’ model for prediction; instead, they prefer classifiers
with asymptotic behavior like consistency (Dunson, 2018). Because of the uni-
versal consistency of one-hidden-layer feedforward neural networks (Hornik et al.,
1989), there is a little theoretical gain in considering neural networks with more
than one hidden layer. However, there may be an information-theoretic gain as
the number of hidden neurons needed to achieve the same performance may be
substantially reduced (Devroye et al., 1996).

2.3.6 Radial basis function Networks (RBFN)

An ANN is a nonparametric model consisting of an input layer, a certain number
of hidden layers, and an output layer. All inputs to the network pass through
the hidden layers, after which they are mapped to the final output. Each inter-
connection of neurons in an ANN is associated with a weight and such weights
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are obtained by minimizing an error function and its gradient. RBFN, a family
of ANNs, consists of only a single hidden layer and uses a nonlinear function
called a radial basis function as an activation function, unlike MLP. RBFN is
a three-layered feed-forward structure where the input layer distributes inputs
to the hidden layer, which contains neurons with a nonlinear activation function
(Györfi et al., 2002). Since Gaussian functions are most frequently used in this
layer, we use the Gaussian kernel in this thesis:

φi(xi) = φ
(
‖ xi − ci ‖;σi

)
= exp

(
− ‖ xi − ci ‖

2

2σ2
i

)
where x is an input vector, φi is the output of ith hidden neuron in the hidden layer
with centers ci and σi as the standard deviations of the RBFN model. Finally,
the output layer can be written as a weighted sum of hidden layer outputs:

f(xi) =
k∑
j=1

γj φ
(
‖ xi − cj ‖

)
+ γ0,

where γj is the weight of the link from jth hidden neuron to the ith output neuron.
An exciting property of RBFN which distinguishes it from other types of ANNs
is that the center vector can be selected as cluster centers of the input data.

2.3.7 Bayesian Neural Networks (BNN)

In BNN, we consider an ANN with parameter vector θ and σ denotes the vari-
ance function, which contains the network weights and a general offset (or bias)
parameter. In the Bayesian approach to neural network learning, the objective
is to find the predictive distributions for the target values in a new test case
given the inputs for that case as well as inputs and target for the training cases.
In the Bayesian setting, a zero-mean multivariate Gaussian prior is placed on θ
(MacKay, 1992b; Neal, 1996) as

P (θ) =
1(

2π
σp

) l
2

.exp
(
−σp

2
||θ||2

)
, (2.10)

where l is the length of θ. The likelihood function is modeled as a Gaussian
function which is given by

P (Ln|θ) =
1(

2π
σl

)n
2

.exp

(
−σl

2

n∑
i=1

(
Ŷi − Yi

)2
)
. (2.11)
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Predictions are obtained from the posterior predictive distribution

P (Y |X,Ln) =

∫
θ

P (Y |X, θ) P (θ|Ln) dθ. (2.12)

The integral in (2.12) is approximated by P (Y |X, θ̃), where θ̃ is obtained by
locally minimizing

E =
σl
2

n∑
i=1

(
Ŷi − Yi

)2
+
σp
2
||θ||2. (2.13)

The first term in the R.H.S. of (2.13) corresponds to the error function mini-
mized in frequentist settings. The second term corresponds to a regularization
term that penalizes larger values in θ and, hence, restrains overfitting. A BNN
can also have a variable architecture, i.e., the number of hidden nodes can be
subject to a Geometric distribution, which enables one to place a lower probabil-
ity on more extensive networks, see Rios Insua and Müller (1998). Neal (1996)
applied hybrid Markov chain Monte Carlo (MCMC) numerical integration tech-
niques for the implementation of Bayes procedures. Also, Holmes and Mallick
(1998) have used Bayesian neural network modeling in the regression context and
Ghosh et al. (2004) considers a hierarchical Bayesian neural network approach
for posterior prediction probabilities of certain features indicative of non-organ-
confined prostate cancer (Chakraborty et al., 2005).

2.3.7.1 Variable Architecture in BNN and BNN Priors

An important issue that has received comparatively little attention in the lit-
erature is the choice of architecture which, for the model we are considering,
following the notations of Section 2.3.5, consists mainly of choosing the number
M of hidden nodes. Typically, a choice is made by trial and error, though there
are several heuristics helping in that task (Rios Insua and Müller, 1998). We
rewrite Eqn. 2.9 after including a linear regression term x

′
λ (λ denotes linear

weights) as follows.

yi = x
′

iλ+
M∑
j=1

βjΨ(x
′

iγj + δj) + εi, i = 1, 2, . . . , N, (2.14)

where εi ∼ N(0, σ2). A choice of Ψ is a logistic activation function. The
parameters in variable architecture-based BNN model are the linear weights
λ = (λ0, λ1, . . . , λp) and (β0, β1, . . .), the logistic parameters (γ0, γ1, . . .), the num-
ber M of terms and the error variance σ2. The prior over network parameters
is:

βj ∼ N(µβ, σ
2
β), λj ∼ N(µβ, σ

2
β), γj ∼ N(µγ, Sγ), σ

−2 ∼ Gamma(s/2, sS/2).
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We provide a prior over the number M of hidden nodes. We choose a geometric
prior with parameter α based on the recommendation of Rios Insua and Müller
(1998):

M ∼ Geom(α).

Assuming geometric prior for the number M of hidden nodes rewards by putting
geometrically decreasing prior probability on larger networks and have also been
recommended in Lee (2004).

2.3.7.2 MCMC Posterior Simulation for BNN Model with Variable
Architecture

First, the variable architecture model defines a model with changing dimension-
ality parameter vector: posterior inference has to mix over models with hidden
layers of different size. Rios Insua and Müller (1998) introduced an algorithm
which addresses the changing dimensions by using an implementation of reversible
jump (Green, 1995) with moves corresponding to “birth”, “death”, “thinning”
and “seeding” of hidden nodes since straightforward implementation of commonly
used MCMC schemes is hindered by a variety of issues. Second, the high dimen-
sional parameter vector is typically highly correlated a posteriori, necessitating
MCMC strategies which use blocking to jointly update as many parameters as
possible and marginalizing to partly avoid the random walk nature of Metropolis
algorithms. Rios Insua and Müller (1998) introduced a scheme which marginalizes
over the weights βj when updating the input weights γj. Posterior simulation in
this BNN model is done by stating the algorithm for one sweep, i.e., the transition
from imputed parameter values at iteration t to those values at iteration t + 1.
The list below outlines the steps in one sweep. Details of each step are discussed
in Rios Insua and Müller (1998). An item of the form [a|b] indicates that parame-
ter a is being updated using current values for parameters b. The absence of some
parameter c in the conditioning set (to the right of the bar) indicates that either
c is being marginalized over, or that a and c are conditionally independent given
b. Let γj = (γj1, . . . , γjp)

′
, γ = (γ1, . . . , γM)

′
, β = (β1, . . . , βM)

′
, λ = (λ0, . . . , λp)

and ν = (µβ, σβ, µγ, σγ, σ). Let γ−jk indicate the list of all weights γj′k′ without
γjk. The following steps define one sweep of the Markov chain:

(i) [γjk|γ−jk,M, ν,D], j = 1, . . . ,M, k = 0, . . . , p,

(ii) [M |γ, ν,D], “Birth/Death”

(iii) [M |γ, ν,D], “Seed/Thin”

(iv) [β, λ|γ,M, ν,D],

(v) [ν|β, γ, λ,D].

Convergence of the algorithm to the desired stationary distribution is also dis-
cussed in Rios Insua and Müller (1998).
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2.4 Overview of Hybrid Predictive Models

Hybridization of two (or more) models offers many alternatives for handling com-
plex data structures involving uncertainty, ambiguity, and high dimensionality of
the data. Hybridization appears in many domains, including human biological
systems, such as the central nervous system, which is a de facto hybrid compo-
sition of many diverse computational units (Von Neumann and Kurzweil, 2012).
Hybrid approaches in predictive modeling problems try to exploit the strength of
the component models, obtaining enhanced performance by their combinations.
Even the “no free lunch theorem” suggests that there is no single computational
view that can solve all problems (Wolpert, 2002). Historically, the idea of hy-
bridization was first proposed by Chow (1965), who gave conditions for optimality
of the joint decision of independent binary classifiers with appropriately defined
weights. In 1979, Dasarathy and Sheela (1979) combined a linear classifier and a
k-NN classifier and identified the region of the feature space where the classifiers
disagree. Another work by Rastrigin and Erenstein (1981) performed a feature
space partitioning first and then assigned to each partition region an individual
classifier that achieves the best classification accuracy over it. Below we first
describe the need for hybridization. Then we discuss some widely used hybrid
predictive models that combine decision trees (DT) and neural nets (NN) to gain
the mutual benefits of both approaches. Finally, we comment on the pros and
cons of these popular hybrid approaches and the need for future research.

2.4.1 Need for Hybridization

The benefits from the hybridization of two learning algorithms can be formally
written as follows:

• Statistical issue: It is often the case that the model space is too large to
explore for limited training data, and that there may be several different
models giving the same accuracy on the training data. The risk of choosing
the wrong model can be reduced by combining two models, like DT and
ANN.

• Representation issue: In many learning tasks, the true unknown hypoth-
esis could not be represented by any hypothesis in the hypothesis space. By
hybridization, it may be possible to expand the space of representable func-
tions. Thus the learning algorithm may be able to form a more accurate
approximation to the true unknown hypothesis.

• Computational issue: Many learning algorithms perform some kind of
local search that may get stuck in local optima. Even if there are enough
training data, it may still be challenging to find the best hypothesis. By
combining two or more models, the risk of choosing a wrong local minimum
can be reduced.
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These three issues are among the most critical factors for which the traditional
learning approaches fail. A learning algorithm that suffers from the statistical
issue is generally said to have a high “variance”, a learning algorithm that suffers
from the computational issue can be described as having a high “computational
variance”, and a learning algorithm that suffers from the representational issue
is generally said to have a high “bias”. Therefore, through combination, the
variance, as well as the bias of learning algorithms, may be reduced; this has
been confirmed by many empirical studies (Bauer and Kohavi, 1999; Opitz and
Maclin, 1999).

2.4.2 Hybrid Methods based on DT and NN

Substantial research has been published that combines decision trees and NNs.
Several hybrid models have been developed over the last four decades, integrating
the decision tree algorithm with neural networks (Sakar and Mammone, 1993;
Sethi, 1990; Sirat and Nadal, 1990; Tsujino and Nishida, 1995). All of these
methods have been shown to improve the decision tree and aid in interpretability.
Others have used ANNs to improve the splitting in a decision tree. Here we
provide an expanded review of related works based on the following categories:

1. Mapping Decision Trees to Neural Networks: The first work in the
area of mapping DT into NNs was led by Paul. E. Utgoff in his seminal paper on
‘Perceptron tree’ (Utgoff, 1989). The hybrid model has the advantages of a hier-
archical organization of DT, together with the perceptron’s ability to deal with
many variables. An extension of the idea, namely neural tree (NT), introduced
by Sirat and Nadal (1990) for multi-class classification problems, includes a hier-
archical net structure, a decision tree organization, and an efficient learning rule.
Pan et al. (2003) implemented an intrusion detection system (IDS) model based
on neural network and C4.5 algorithm viz. decision tree algorithm to solve the
problem of network security. Sakar and Mammone (1993) introduced neural tree
networks (NTN), which consists of neural networks connected in a tree structure.
In NTN, the neural networks at each tree node are recursively used to partition
the feature space into sub-regions, resulting in better classification performance.
Later on, Foresti and Dolso (2004) introduced adaptive neural tree (ANT) and
Chen et al. (2005) developed a flexible neural tree (FNT) for feature selection and
intrusion detection problems. An experimental result by Chen et al. (2012) had
shown that the FNT model is efficient for forecasting small-time scale traffic mea-
surements and can produce the statistical features of real traffic measurements.
A typical flexible neuron operator and a neural tree model with +n as the flexible
neuron, xi’s as leaf nodes in the input layer, wi’s as weights and y as the output,
are illustrated in Figure 2.1. Next, Rota Bulo and Kontschieder (2014) used an
ANN to determine splits for random forest (ensemble of trees). Other seminal
works include using a random forest to make predictions after designing an ANN
(Kontschieder et al., 2015). Modern versions of Adaptive neural trees (ANTs)
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incorporates representation learning into edges, routing functions, and leaf nodes
of a decision tree, along with a backpropagation-based training algorithm that
adaptively grows the architecture from primitive modules (e.g., convolutional lay-
ers) (Abpeikar et al., 2020; Tanno et al., 2019). The ANT growing procedure is
related to the progressive growth of NNs (Fahlman and Lebiere, 1990; Hansen
and Salamon, 1990; Irsoy et al., 2012), or more broadly, the field of deep neural
architecture search (Cortes et al., 2017). This allows the architectures of ANTs
to adapt to the data available.

Figure 2.1: (a) A flexible neuron operator and (b) a typical representation of the
FNT with function instruction set F = {+2,+3,+4,+5}, and terminal instruction
set T = {x1, x2, x3}.

2. Soft Decision Trees: Entropy nets (EN), a mapping of decision trees into
a multilayered neural network structure, introduced by Sethi (1990), used the
idea of pruning the DT using neural networks. The number of neurons in the
input layer of the neural network equals the number of internal nodes of the de-
cision tree. Then these neurons are run through the hidden layer, and finally, the
number of neurons in the output layer equals the number of distinct classes. EN
has the advantage of having relatively fewer neural connections and improving
DT performance in a significant margin (Sethi, 1991, 1995). A real-life appli-
cation of entropy nets is given by Tsai et al. (2012) to solve the complicated
problem of water-stage predictions under the interaction of upstream flows and
tidal effects during typhoon attacks in Taiwan. Their decision tree-based ANN
model used the idea of splitting the feature space into areas by the CART and
builds a locally specialized ANN model in each of the regions and is employed
to river-stage predictions. Figure 2.2 represents a schematic diagram of the EN
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model. In a soft decision tree, the ANN is used to determine the splits. Based
on the idea of Entropy nets, a soft decision tree (SDT) model was introduced
by Suárez and Lutsko (1999). The hierarchical mixture of experts (HMEs) pro-
posed by Jordan and Jacobs (1994) is a variant of SDTs whose routers are linear
classifiers, and the tree structure is fixed. Léon and Denoyer (2016) recently pro-
posed a more computationally efficient training method that can directly optimize
hard-partitioning by differentiating through stochastic gradient estimators. More
modern SDTs (Frosst and Hinton, 2017; Laptev and Buhmann, 2014; Rota Bulo
and Kontschieder, 2014) have used multilayered perceptrons (MLP) or convolu-
tional layers in the routers to learn more complex partitioning of the input space.
However, the simplicity of identity transformers used in these methods means
that input data is never transformed. Thus, each path on the tree does not
perform representation learning, limiting their performance. Frosst and Hinton
(2017) used a distilling neural network to build a new version of a ‘soft decision
tree’.

Figure 2.2: Schematic diagram of Entropy nets configuration.

3. Deep Neural architecture search using DT: Nowadays, it is possible to
train NNs in an end-to-end fashion (Hinton et al., 2006). One area which still uses
progressive growth is lifelong learning, in which a model needs to adapt to new
tasks while retaining performance on previous ones (Xiao et al., 2014; Yoon et al.,
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2017). In particular, Xiao et al. (2014) introduced a method that grows a tree-
shaped network to accommodate new classes. However, their method never trans-
forms the data before passing it to the children classifiers, and hence never benefit
from the parents representations. While we learn the architecture of an ANT in
a greedy, layer-wise fashion, several other methods like evolutionary algorithms
(Real et al., 2017; Stanley and Miikkulainen, 2002), sequential optimisation (Liu
et al., 2018) and boosting (Cortes et al., 2017) are found extremely useful for
complex architectures. More recent works suggested that integrating non-linear
transformations of data into DTs would enhance model performance. The neu-
ral decision forest (NDF) (Kontschieder et al., 2015), which held a cutting-edge
performance on ImageNet (Deng et al., 2009) in 2015, is an ensemble of DTs,
each of which is also an instance of ANTs where the whole GoogleNet architec-
ture (Szegedy et al., 2015) (except for the last linear layer) is used as the root
transformer, prior to learning tree-structured classifiers with linear routers. Xiao
(2017) employed a similar approach with an MLP at the root transformer, and
is optimized to minimize a differentiable information gain loss. The conditional
network proposed by Ioannou et al. (2016) sparsified convolutional neural net-
work (CNN) architectures by distributing computations on hierarchical structures
based on directed acyclic graphs with MLP-based routers, and design models with
the same accuracy with reduced computing cost and less number of parameters.
However, in all cases, the model architectures are pre-specified and fixed. These
models are highly useful for high dimensional data sets with very large number
of training samples (as in image/video/audio processing) (Dunson, 2018).

2.4.3 Advantages and Drawbacks of the Existing Hybrid
Models and the Work Done in this Thesis

By the design, the hybrid models discussed in Subsection 2.4.2 inherit the follow-
ing desirable properties from both DTs and NNs:

• Architecture learning: by progressively growing tree-to-network-mapped
models, the architecture adapts to the availability and complexity of data.
The growth procedure can be viewed as an architecture search with a hard
constraint over the model class (Irsoy et al., 2012).

• Representation learning: as each root-to-leaf path in a soft decision tree
is an NN, features can be learned end-to-end with gradient-based optimiza-
tion. Combined with the tree structure, an SDT can learn such features
which are hierarchically shared and separated (Frosst and Hinton, 2017).

• Lightweight inference: at inference time, NDFs and ANTs perform con-
ditional computation, selecting a single root-to-leaf path on the tree on a
per-sample basis, activating only a subset of the parameters of the model
(Kontschieder et al., 2015; Tanno et al., 2019).
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Despite the practical usage of these hybrid methods in the real-life problems
of classification and regression, these methods incur several drawbacks. A few
drawbacks of the existing neural trees, soft decision trees, and ANTs are listed
below:

1. Accurate classification of high dimensional feature space leads to more depth
trees, thus achieving less depth neural trees require more complex compu-
tations at each node (Abpeikar et al., 2020; Rani et al., 2015).

2. Regardless of the practical use of SDT and neural trees, theoretical proper-
ties like universal consistencies of these hybrid methods are unknown. Thus,
one needs to analyze the data complexity for splitting, which leads to more
accurate classification in the neural trees node.

3. The data partition of each neural tree node is considered as a sub-problem
(Utgoff, 1989). Each sub-problem needs an eligible neural network, which
leads to accurate and fewer depth trees (Foresti and Dolso, 2004). There
are some studies in hybrid neural trees with different MLP, but there does
not exist any neural tree with expert nodes.

4. Because of the huge amount of redundancy in high-dimensional feature
spaces, the previously used hybrid models sometimes over-fit for small or
moderate sample-sized data sets. In NDF, each node in their oblique de-
cision tree involves all features rather than a single feature, which renders
the model uninterpretable.

The interpretability of predictive models is important, especially in cases
where ethics are involved, such as law, economics, medicine, business, and fi-
nance applications, where we wish to verify a model’s reasoning manually. Deep
neural networks (Goodfellow et al., 2016) have achieved excellent performance in
many areas, such as computer vision, speech processing, and language modeling.
However, the lack of interpretability prevents this family of black-box models from
being used in applications. Moreover, in some areas like Business Intelligence,
quality control, software reliability, etc., it is often more important to know how
each factor contributes to the prediction rather than the conclusion itself. Thus,
after generating a set of base learners, rather than trying to find the best single
learner, hybrid methods resort to combinations for achieving a strong generaliza-
tion ability, where the combination method plays a crucial role (Kuncheva, 2004).

This thesis develops some novel hybrid predictive models combining DTs and
ANNs in Chapters 3-6 and ARIMA and ARNN in Chapter 7. The primary mo-
tivation of this thesis comes from the real-world data sets, with a variety of data
types, such as business, macroeconomics, process efficiency improvement, water
quality control, and software defect prediction. But as a secondary motivation, we
emphasize on the development of hybrid models that are scalable (the size of the
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data does not pose a problem), robust (work well in a wide variety of problems),
accurate (achieve higher predictive accuracy), statistically sound (have desired
asymptotic properties), and easily interpretable. These hybrid methods are ex-
pected to outperform the current state-of-the-art and overcome the deficiencies of
the current models available in the literature. Throughout the thesis, we discuss
a motivational applied problem that triggers the development of novel hybrid pre-
dictive models. Finally, we establish asymptotic results for the proposed hybrid
approaches along with relevant applications.

2.5 Performance Evaluation Metrics

We describe different performance metrics to be used in the subsequent chapters
to assess the performances of the newly introduced hybrid frameworks in this
thesis. To date, various performance metrics have been proposed and employed
to evaluate the accuracy of the classification and regression models, but no single
performance metric has been recognized as the universal standard. As a result,
we need to assess the performance based on several different metrics for various
problems.

2.5.1 Performance Metrics for Classification case

A confusion matrix is a matrix representation of the classification results. It
contains data about real and predicted classifications done by a classification
framework. Once the confusion matrix for a model is built, the Precision, Recall,
F-measure, Accuracy percentage, and area under the receiver operating character-
istic curve (AUC) are effectively ascertained (Bradley, 1997; Kubat and Matwin,
1997). The performance of different classifiers is evaluated based on these mea-
sures. The ratio of correctly predicted positive observations to the total predicted
positive observations is called Precision, while the ratio of correctly predicted pos-
itive observations to the total observations in the actual class is called Recall. The
harmonic mean of Precision and Recall is known as F-measure, while Accuracy
is the ratio of correctly predicted observations to the total observations. AUC
estimates the area under the ROC curve that illustrates the trade-off between
detection and false alarm rates (Bradley, 1997). Higher the value of performance
metrics, the better the classifier is. For symmetric data sets where the values of
false positives and false negatives are almost the same, accuracy turns out to be
the best measure. However, when we deal with imbalanced class distribution in
a binary classification set up, F-measure and AUC are usually more useful than
accuracy (Davis and Goadrich, 2006). These performance measures are used in
Chapter 3 and Chapter 4 of the thesis. The expressions for different performance
measures are as follows:

AUC =
Recall+Specificity

2
;
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F-measure = 2

(
Precision×Recall

)(
Precision+Recall

) ;

Accuracy = (TP+TN)
(TP+TN+FP+FN)

;

Precision = TP
TP+FP

; Recall = TP
TP+FN

; Specificity = TN
FP+TN

;
where, TP (True Positive): correct positive prediction; FP (False Positive): in-
correct positive prediction; TN (True Negative): correct negative prediction; FN
(False Negative): incorrect negative prediction.

2.5.2 Performance Metrics for Regression case

For evaluating the regression models, we use two absolute performance measures,
viz. the mean absolute error (MAE) and the root mean squared error (RMSE);
one relative measure, viz. the mean absolute percentage error (MAPE), and two
“goodness of fit measures”, i.e., the coefficient of determination (R2) and adjusted
R2. These performance measures truly represent different angles to evaluate re-
gression models. These performance measures are used in Chapter 5 to Chapter
7 of the thesis. The formulae used for the performance metrics are as follows
(Hastie et al., 2009):

MAE =
1

n

n∑
i=1

|Yi − Ŷi|,

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣,
RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2,

R2 = 1−
∑n

i=1(Yi − Ŷi)2∑n
i=1(Yi − Y )2

,

Adjusted R2 = 1− (1−R2)(n− 1)

(n− d− 1)
,

where, Yi, Y , Ŷi denote the actual value, average value and predicted value of the
dependent variable, respectively for the ith instant. Here n, d denote the number
of data used for performance evaluation and the number of independent variables.
It is to be noted that lower values of MAE, MAPE, and RMSE, and higher values
of R2 and adjusted R2 indicate better model performance.
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Chapter 3

A Nonparametric Hybrid Model
for Pattern Classification

Related Publications:

1. Chakraborty, T., Chakraborty, A. K., Murthy, C. A. (2019). A nonpara-
metric ensemble binary classifier and its statistical properties. Statistics &
Probability Letters, 149, 16-23.

2. Chakraborty, T., Chattopadhyay, S., Chakraborty, A. K. (2018). A novel
hybridization of classification trees and artificial neural networks for selec-
tion of students in a business school. Opsearch, 55(2), 434-446.

Summary

Private business schools in India face a regular problem of picking quality students
for their Master of Business Administration (MBA) programs to achieve the de-
sired placement percentage. Selecting a wrong student may increase the number
of unplaced students. Also, the more the number of unplaced students more is the
negative impact on the institute’s reputation. Business school authorities would,
therefore, always want to ensure that they admit the right set of students to their
MBA program. In this chapter, we propose a novel hybrid model based on clas-
sification tree (CT) and artificial neural network (ANN) to be referred to as a
hybrid CT-ANN model to analyze and select the optimal academic characteristics
of students to enhance their placement probability. Several statistical properties,
including theoretical consistency and upper bound of an essential parameter of the
proposed classifier, are derived. Our experimental findings show that the proposed
hybrid CT-ANN model achieves greater accuracy in predicting students’ placement
than conventional supervised learning models. Our proposed hybrid classifier can
also be used in a wide variety of feature selection cum classification problems that
arise in other applied domains. We assess its performance using various other
real-life classification data sets to show the general applicability of the proposed
model.
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3.1 Introduction

Out of the many reasons behind the closing down of many of the private business
schools, the foremost one is the inability of the authorities to provide jobs to
Master of Business Administration (MBA) students passing out of these business
schools. The most challenging task for administrations is to find out the optimal
set of parameters for choosing the right candidates in their MBA program, which
will ensure the employability of the candidates. Attracting students in business
schools are highly dependent on the business schools’ placement records. If the
right set of students are not selected for a few years, the number of unplaced
students will certainly accumulate, resulting in the damage of reputation for the
business school. One needs to develop a model so that the model ensures ap-
propriate feature selection (selection of important students characteristics) with
a decision on the optimal values or ranges of the features and higher prediction
accuracy of the classifier.

Distribution-free classification models are specially used in the fields of statis-
tics and machine learning for more than forty years now, mainly for their accuracy
and ability to deal with high dimensional features and complex data structures.
Two such models, CT and ANN, can model arbitrary decision boundaries. CT
is found to be robust when limited data are available, unlike ANN. But decision
trees are high variance estimators and greedy (Breiman et al., 1984), whereas
neural networks are universal approximators (Hornik et al., 1989). Though ad-
vanced neural networks are highly complex with many free tuning parameters,
and may over-fit when limited data are available (Dunson, 2018). To utilize the
positive aspects of two powerful models, theoretical frameworks for combining
both classifiers are often used jointly to make decisions. The ultimate goal of de-
signing classification models is to achieve the best possible performance in terms
of accuracy measures for the task at hand. This objective led researchers to create
efficient hybrid models and prove their statistical properties to make their best
use. Mapping tree-based models to neural networks allow exploiting the former
to initialize the latter. Parameter optimization within the ANN framework will
yield an intermediate model between CT and ANN, as found in the past liter-
ature (Sakar and Mammone, 1993; Sethi, 1990). Tsai neural tree model (Tsai
et al., 2012) uses the idea of splitting the parameter space into areas by CT and
builds in each of the regions a locally specialized ANN model (Sirat and Nadal,
1990). In deep neural tree model (Yang et al., 2018), a decision tree provides
the final prediction, and it differs from conventional CT by introducing a global
optimization of split and leaf node parameters using ANN. But the significant
disadvantages of these algorithms are slow training, having many tuning parame-
ters, easy sticking on local minima, and poor robustness (Tsai et al., 2012). These
hybrid models are empirically shown to be useful in solving real-life problems, but
the theoretical results are yet to be proved for many of them.
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On the theoretical side, the literature is less conclusive, and regardless of
their use in practical problems of classification, little is known about the sta-
tistical properties of these models. The most celebrated theoretical result has
given the sufficient conditions for almost-sure L1-consistency of histogram-based
classification and data-driven density estimates (Lugosi and Nobel, 1996). In the
case of neural networks, it is theoretically proven that if a one hidden layered
(1HL) neural network is trained with an appropriately chosen number of neurons
to minimize the empirical risk on the training data, it results in a universally
consistent classifier (Faragó and Lugosi, 1993; Lugosi and Zeger, 1995). Devroye
et al. (1996) have theoretically shown that there is some gain in considering two
hidden layers (2HL), but it is not necessary to go beyond 2HL in ANN. In the
case of hybrid models, the asymptotic results are less explored in the literature.

Motivated by the above discussion, we have proposed a hybrid CT-ANN model
(Chakraborty et al., 2018, 2019c) that exploits the strengths of CT and ANN mod-
els to overcome their drawbacks. The approach is mainly developed for feature
selection cum classification problems, which can solve the business school data
set problem (refer to Section 3.5). Later different training schemes are experi-
mentally evaluated on various small and medium-sized medical data sets having
high dimensional feature spaces. The proposed model is found to be efficient
for feature selection cum classification tasks. We have established the consis-
tency results and upper bound for the model parameter of the hybrid CT-ANN
model, which assures a basic theoretical guarantee of the efficiency of the pro-
posed algorithm. In our model, we have used CT as a feature selection algorithm
(Breiman et al., 1984) and have justified that CT output plays an essential role
in the further model building using the ANN algorithm. The proposed ensemble
CT-ANN model has the advantages of significant accuracy, a very less number
of tuning parameters, and easy interpretability. The superiority of the proposed
algorithm lies in its proven theoretical consistency using empirical risk minimiza-
tion. Further, numerical evidence based on the business school data set shows
the usefulness of the proposed model. Besides having the ability to deal with
small and medium-sized data sets, our model is useful for the selection of essen-
tial features and performing classification tasks in other high-dimensional feature
spaces and complex data structures also.

3.2 Motivating Example

Recently, many of the business schools are getting closed, especially in major
cities in India (Ojha, 2017). There are many reasons behind the closing down of
several business schools, out of which, a rise in the number of unplaced students
played an important role. Administrators of the business schools thought it was
due to their inability to detect the parameters that could be used to identify
students who were ideal for the program as far as placement after the program
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is concerned (Ganatra and Dinesh Kumar, 2014). Placement is one of the ma-
jor factors attracting a student to a business school. If non-placeable students
are selected, then it affects the reputation of the institute, which further may
increase the number of unplaced students in subsequent years. Also, there are
always possibilities to reject a placeable candidate at the time of admission to the
MBA program. In this chapter, we try to explore the important characteristics
of students who enter a business school and relate them with the prospects of
getting placed.

We want to develop a model that can help the authorities of a business school
predict whether a student will be placed or not based on specific characteristics
of that student available at the time of admission to the professional course. The
advancement in the data mining field makes it possible to mine educational data
to improve the quality of the educational processes (Asif et al., 2017). Different
supervised learning algorithms were tried to predict various parameters connected
with educational data (Pena Ayala, 2014; Romero and Ventura, 2010). Meedech
et al. (2016) used decision trees and rule induction models to discover knowledge
from the students’ data in a university in Thailand to predict dropouts of stu-
dents. Yadav and Pal (2012) used decision tree methodology to select students
for admission in a particular course. Another critical study made by Kovacic
(2010) was able to identify up to what extent the enrollment data containing
characteristics of students can be used to pre-identify successful and unsuccessful
students as the results of the final examination are concerned. However, the ac-
curacy level achieved by the authors was only 60.5 percent. El Moucary (2011)
used both ANN and classification and regression tree (CART) algorithm with
important cross-validation and testing that enables authorities of an engineering
college to decide about the selection criteria of engineering students in Masters’
studies. Gupta et al. (2013) explored the socio-demographic variables that may
help in pre-identifying successful and unsuccessful students. Their research sug-
gests the use of CART to build a data warehouse for a particular university to
predict future student admission. It is, however, clear that majority of the clas-
sifiers, namely, k-Nearest Neighbor (kNN), Linear Discriminant Analysis (LDA),
Random Forest (RF), CART, Support Vector Machines (SVM), ANN and Lo-
gistic Regression (LR) hardly lift the accuracy level of prediction to around 60
percent.

In this chapter, classification trees and artificial neural networks are combined
together to improve the accuracy of individual models. To illustrate the effec-
tiveness of the hybrid CT-ANN approach, we performed this technique on the
business school data. In addition to this, the number of hidden neurons is also
varied to see its effect on the convergence rate. Our results indicate that the
proposed combined approach predicts much more accurately and converges much
faster than the conventional CART method or ANN approach or any other tradi-
tional supervised methodologies. Finally, we propose this hybrid CT-ANN model
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to select the optimal characteristics of the students looking to enter a business
school, which will help them get a placement at the end of the curriculum. This
is probably the first time such a hybrid model is used to solve this challenging
problem. The performance of the proposed model has also been compared with
conventional models to show that the proposed hybrid model works better for
solving this real-life problem.

3.3 Formulation of the Proposed Model

Common theoretical frameworks for combining classifiers that use distinct pat-
tern representations are often used jointly to make a decision. The ultimate goal
of designing pattern classifiers is to achieve the best possible classification perfor-
mance for the task at hand (Kim, 2016). This objective led us to the development
of a new classifier for the problem of selecting optimal student-characteristics in a
business school to predict the possibility of students’ placement accurately at the
end of the curriculum. Decision trees and neural networks are competitive tech-
niques for modeling classification problems. Classification trees are hierarchical
classifiers relatively superior to ANN in the readability of knowledge (Murthy,
1998). But, ANNs are better in implementing comprehensive inference over the
inputs (Zhou et al., 2002).

CT is a nonparametric classification algorithm that has a built-in mechanism
to perform feature selection (Quinlan, 1993). Unlike many other classification
models, CT doesn’t have any strong assumption about the normality of the data
and homoscedasticity of the noise terms. In our proposed model, we first split
the feature space into different areas by CT algorithm. Most important features
are chosen using CT, and redundant features are eliminated. Then we build the
ANN model using the important variables obtained through the CT algorithm
along with prediction results made by the CT algorithm, which is used as an
additional input feature in the neural networks. Then the ANN model is applied
with one (hidden) layer to get the final classification results. The optimum value
of the number of neurons in the hidden layer is derived in the next section. Since
we have taken CT output as an input feature in the ANN model, the number of
hidden layers is chosen to be one. The informal work-flow of the proposed model
is as follows:

• First, apply the CT algorithm to train and build a decision tree and record
important features. The prediction results of CT algorithm is also applied
as an additional feature for further modeling.

• Using important input variables obtained from CT along with an additional
input variable (CT output), a neural network is generated. We run one
hidden-layered ANN algorithm with logistic sigmoidal activation function
and record the classification results.
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• The optimum number of neurons in the hidden layer of the model to be cho-

sen as O

(√
n

dmlog(n)

)
, where n, dm are the number of training samples and

the number of input features in ANN model, respectively (to be discussed
in Section 3.4).

The effectiveness of the hybrid CT-ANN model lies in selecting essential fea-
tures using the CT model and incorporating CT predicted class levels as a feature
in the ANN model. The inclusion of CT output as an input feature in the ANN
model increases the dimensionality of feature space that results in better class
separability as well. The fundamental work by Cover (1965) states that if the
feature space is not densely populated, then in an intricate pattern classifica-
tion problem (e.g., business school problem), the feature space becomes linearly
separable in a high-dimensional space than in a low-dimensional space. Exper-
imental results by Lee and Srihari (1995) have shown that the performance of
the combined decision tree and ANN algorithm improves when more information
is included. The theoretical set-up is presented in Section 3.4, which gives ro-
bustness and statistical aspects of the proposed model. A flowchart of the hybrid
CT-ANN model is shown in Figure 3.1.

Figure 3.1: An example of Hybrid CT-ANN classifier with xi, where i = 1, 2, 3,
as important features obtained using CT, ci be the leaf nodes and OP as CT
output.

Our proposed model can be used for feature selection cum complex classifi-
cation problems. On the theoretical side, it is necessary to show the universal
consistency of the proposed model and other statistical properties for its robust-
ness. The Hybrid CT-ANN model is a two-step problem-solving approach, such as
initial feature selection followed by improving the model using an optimum ANN
technique. The proposed model, when applied to the business school problem,
can choose the optimal characteristics of the students that affect the placements
along with accurate future predictions. We will experimentally show that the
proposed model works better for the business school data than the other existing
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supervised models available in the literature. Our proposed methodology can be
used for selecting features of items that will satisfy a specific goal and also can
be employed for modeling such complex situations. The flowchart of the hybrid
CT-ANN model developed is presented in Figure 3.2.

Figure 3.2: Flowchart of proposed hybrid CT-ANN Model

Remark 2 One of the major challenges involved in our proposed algorithm is to
correctly choose the number of neurons in the hidden nodes in the specialized ANN
model. It was previously shown that too few hidden nodes limit network gener-
alization capabilities, while too many hidden layers can result in over-training of
the neural network (Devroye et al., 1996). We solved this problem by providing a
theoretical bound for the number of hidden neurons in the hidden layer of the ANN
model in Section 3.4 that plays a vital role in this novel method of hybridization.
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3.4 Statistical Properties of the Proposed Model

Our proposed ensemble classifier has the following nomenclature. First, it ex-
tracts essential features from the feature space using the CT algorithm. Then
it builds one hidden layered ANN model with the essential features extracted
using CT along with CT outputs as an additional feature. In this section, we
investigate the statistical properties of the proposed ensemble CT-ANN model
by introducing a set of regularity conditions for consistency of CT, followed by
the importance of CT outputs for further model building. And finally, we will
discuss the consistency results of ANN algorithm with an optimal value of the
number of neurons in the hidden layer of the model.

Let X be the space of all possible values of p features and C be the set of all
possible binary outcomes. We are given a training sample with n observations
L = {(X1, C1), (X2, C2), ..., (Xn, Cn)}, where Xi = (Xi1, Xi2, ..., Xip) ∈ X and
Ci ∈ C. Also let Ω = {ω1, ω2, ..., ωk} be a partition of the feature space X. We

denote Ω̃ as one such partition of Ω.

Define Lωi = {(Xi, Ci) ∈ L : Xi ∈ ωi, Ci ∈ C} as the subset of L induced by

ωi and let LΩ̃ denote the partition of L induced by Ω̃. The information gain (to

be introduced later) from the feature space is used to partition X into a set Ω̃

of nodes and then we can construct a classification function on Ω̃. There exists
a partitioning classification function d : Ω̃→ C such that d is constant on every
node of Ω̃. Now, let us define L̂ to be the space of all learning samples and
D be the space of all partitioning classification function, then Φ : L̂ → D such
that Φ(L) = (ψ ◦ φ)(L), where φ maps L to some induced partition (L)Ω̃ and ψ

is an assigning rule which maps (L)Ω̃ to d on the partition Ω̃. The most basic
reasonable assigning rule ψ is the plurality rule ψpl(LΩ̃) = d such that if x ∈ ωi,
then

d(x) = arg max
c∈C
|Lc,ωi |.

The plurality rule is used to classify each new point in ωi as belonging to
the class (either 0 or 1 in this case) most common in Lωi . This rule is very
important in proving risk consistency of the CT algorithm. Now, let us de-
fine a binary split function s(ωi), that maps one node to a pair of nodes, i.e.,
s(ωi) = (s1(ωi), s2(ωi)) = (ω1, ω2), then ω1∪ω2 = ωi, ω1∩ω2 = φ and ω1, ω2 6= φ.
Binary split function partitions a parent node ωi ⊆ X into a non-empty child
nodes ω1 and ω2, called left child and right child node respectively. A set of all
potential rules that we will use to split X is a finite set S = {s1, s2, ....sm}.

Define G as a goodness of split criterion which maps (ωi, s) for all ωi ∈ X
and s ∈ S to a real number. For any parent node ωi, the goodness of split
criterion ranks the split functions. We have used the following impurity function
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as goodness of split criterion:

G(Lωi , s) = H(Lωi)−
|Ls1(ωi)|
|Lωi |

H(Lω1(t))−
|Ls2(ωi)|
|Lωi |

H(Lω2(t))

where, H is taken as Gini Index and can be written as follows:

Hgini(ωi) =
∑
c6=c′

|Lωi,c|
|Lωi |

.
|Lωi,c′ |
|Lωi |

.

This criterion assesses the quality of a split s(ωi) by subtracting the average
impurity of the child nodes ω1, ω2 from the impurity of the parent node ωi. The
stopping rule in CT is decided based on the minimum number of the split in the
posterior sample called ‘minsplit’ to be denoted by r(ωi). If r(ωi) ≥ α, then ωi
will split into two child nodes and if r(ωi) < α, then ωi is a leaf node and no
more split is required. Here α is determined by the user, though for practice, it
is usually taken as 10% of the training sample size.

A binary tree-based classification and partitioning scheme Φ is defined as an
assignment rule applied to the limit of a sequence of induced partitions φ(i)(L),
where φ(i)(L) is the partition of the training sample L induced by the partition

(φi ◦ φi−1 ◦ .... ◦ φ1)(X). For every node ωi in a partition Ω̃ such that r(ωi) ≥ α,

then the function φ(Ω̃) splits each node into two child nodes using the binary

split in the question set as determined by G. For other nodes ωi ∈ Ω̃ such that
r(ωi) < α, then φ(Ω̃) leaves ωi unchanged. We write

Φ(L) = (ψ ◦ lim
i→∞

φ(i))(L) (3.1)

where, φ(i)(L) = L(φi◦φi−1◦....◦φ1)(X). CT as an axis-parallel split on Rp splits a
node by dividing it into child nodes consisting of either side of some hyperplane.
We need to show that the CT scheme is well defined, which will be possible only
if there exists some induced partition L

′
such that

lim
i→∞

φ(i)(L) = L
′
.

In fact, we need to show that the following lemma holds:

Lemma 5 If L is a training sample and φ(i) is defined as above, then there exists
N ∈ N such that for n ≥ N

φ(n)(L) = lim
i→∞

φ(i)(L) (3.2)
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Proof Let {LΩ̃} denote the sequence {L, φ1(L), φ2(L), . . . }. Defining

ωmaxi = max {ωi ∈ Ω̃i : r(ωi) > α}

as the size of the largest non-leaf node(s) in Ω̃i. Suppose there exists N ∈ N such

that (ωi)
max
N does not exist. Then every node in Ω̃N is a leaf. For all n > N ,

Ω̃n = Ω̃N , then (3.2) holds.

The sequence {|ωmaxi |} is strictly decreasing if it exists. Further if ωmaxi+1 exists
then |ωmaxi+1 | ≤ |ωmaxi | − 1 and |ωmaxi | ≥ 1 and |ωmax1 | = |L|. This means that
(ωi)

max
|L| can not exist, so (3.2) always holds with N ≤ |L|. �

For a wide range of partitioning schemes, the consistency of histogram clas-
sification schemes based on data-dependent partitions was shown in Lugosi and
Nobel (1996). To introduce the theorem, we need to define the followings:
For any random variable X and set A, let

ηn,X(A) =
1

n

n∑
i=1

I(Xi ∈ A)

be the empirical probability that X ∈ A based on n observations and I(z) denotes

the indicator of an event C. Now let T = (Ω̃1, Ω̃2, ...) be a finite collection of
partitions of a measurement space X. Define maximal node count of T as the
maximum number of nodes in any partition Ω̃ in T which can be written as
λ(T) = supΩ̃∈T |Ω̃|. Also let, ∆(T, L) = |{LΩ̃ : Ω̃ ∈ T}| be the number of distinct
partitions of a training sample of size n induced by partitions in T. Let ∆n(T)
be the growth function of T defined as

∆n(T) = sup
{L:|L|=n}

∆(T, L).

Growth function of T is the maximum number of distinct partitions of LΩ̃

which partitions Ω̃ in T. Take any class A ⊆ Rp, Sn(A) = max
{B⊂Rp:|B|=n}

|A ∩ B :

A ∈ A| is the maximum number of partitions of B induced by A, where B is
some n point subset of Rp, called shatter coefficient (Devroye et al., 1996). For

a partition Ω̃ of X, let Ω̃[x ∈ X] = {ω ∈ Ω̃ : x ∈ ω} be the node ω in Ω̃ which
contains x.
For a set A ⊆ Rp, let

D(A) = sup
x,y∈A

‖ x− y ‖

be the diameter of A. Now, for the sake of completeness we are rewriting the
Theorem 2 of Lugosi and Nobel (1996) in our context:

Theorem 10 Let (X, Y ) be a random vector taking values in Rp×C and L be the
set of first n outcomes of (X, Y ). Suppose that Φ is a partition and classification
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scheme such that Φ(L) = (ψpl ◦ φ)(L), where ψpl is the plurality rule and φ(L) =
(L)Ω̃n

for some Ω̃n ∈ Tn, where Tn = {φ(`n) : P (L = `n) > 0}. Also suppose that
all the binary split functions in the question set associated with Φ are hyperplane
splits. As n→∞, if the following regularity conditions hold:

λ(Tn)

n
→ 0 (3.3)

log(4n(Tn))

n
→ 0 (3.4)

and for every γ > 0 and δ ∈ (0, 1),

inf
S⊆Rp:ηx(S)≥1−δ

ηx(x : diam(Ω̃n[x] ∩ S) > γ)→ 0 (3.5)

with probability 1. then Φ is risk consistent.

Proof For the proof of Theorem 10, one may refer to Lugosi and Nobel (1996).
�

Remark 3 Now instead of considering histogram-based partitioning and classifi-
cation schemes, we are going to show the risk consistency of CT as defined above.
We can produce a simultaneous result with conditions 3.3 and 3.4 of Theorem
10 replaced by a simple condition. However, the shrinking cell condition 3.5 of
Theorem 10 is assumed.

Theorem 11 Suppose (X, Y ) be a random vector in Rp× C and L be the training
set consisting of n outcomes of (X, Y ). Let Φ be a classification tree scheme such
that Φ(L) = (ψpl◦limi→∞ φ

(i))(L) where, ψpl is the plurality rule and φ(L) = (L)Ω̃n

for some Ω̃n ∈ Tn, where Tn = {limi→∞ φ
(i)(`n) : P (L = `n) > 0}. Suppose that

all the split function in CT in the question set associated with Φ are axis-parallel
splits. Finally if for every n and wi ∈ Ω̃n, the induced subset Lwi has cardinality
≥ kn, where kn

log(n))
→∞ and 3.5 holds true, then Φ is risk consistent.

Proof Since |wi| ≥ kn ∀ wi ∈ Ω̃n, we can write

|Ω̃n| ≤
n

kn
(3.6)

for every Ω̃n ∈ Tn and in that case, we will have

λ(Tn)

n
≤ 1

kn

.
As n→∞, we can see 1

kn
→ 0 which gives λ(Tn)

n
→ 0. Hence condition 3.3 holds

true.
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Now for every Ω̃n ∈ Tn, using Cover’s theorem (Cover, 1965), any binary split of
Rp can divide n points in Rp in at most np ways. Using equation (3.6), we can
write ∆n(Tn) ≤ (np)

n
kn and consequently

log(∆n(Tn))

n
≤ p

log(n)

kn
(3.7)

As n → ∞, R.H.S. of equation (3.7) goes to 0. So condition 3.4 of Theorem 10
also holds and hence the theorem. �

Remark 4 Note that no assumptions are made on the distribution of the pair
(X, Y ) ∈ Rp × C. Also sub-linear growth of the number of cells (condition 3.3)
and sub-exponential growth of a combinatorial complexity measure (condition 3.4)
are not required, instead a more flexible restriction such as if each cell of Lωi has
cardinality ≥ kn and kn

log(n)
→∞, then CT is said to be risk consistent. So, feature

selection using the CT algorithm is justified, and now we are going to check the
importance of CT output in further model building. It is also noted that the choice
of important features based on CT is a greedy algorithm. The optimality of local
choices of the best feature for a node doesn’t guarantee that the constructed tree
will be globally optimal (Kuncheva, 2004).

Using CT given features, a list of essential features are selected from p available
features. It is noted that the CT output also plays an important role in further
modeling. To see the importance of CT given classification results (to be denoted
by OP in the rest of the chapter) as a relevant feature, we introduce a nonlinear
measure of the correlation between any feature and the actual class levels, namely
C-correlation (Yu and Liu, 2004), as follows:

Definition 9 C-correlation is the correlation between any feature Fi and the ac-
tual class levels C, denoted by SUFi,C. Symmetrical uncertainty (SU) (Press et al.,
1992) is defined as follows:

SU(X, Y ) = 2

[
H(X)−H(X|Y )

H(X) +H(Y )

]
(3.8)

where, H(X) is the entropy of a variable X and H(X|Y ) is the entropy of X
while Y is observed.

We can heuristically decide a feature to be highly correlated with class C if
SUFi,C > β, where β is a relevant threshold to be determined by users. Using
Definition 9, we can conclude that OP can be taken as a non-redundant feature
for further model building. This also improves the performance of the model at
a significant rate, to be shown in Section 3.5.

Now, we build an ANN model with CT selected features and OP as another
input feature in the ANN model. The dimension of the input layer in the ANN
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model, denoted by dm (≤ p), is the number of essential features obtained by CT
+ 1. We will use one hidden layer in the ANN model due to the incorporation of
OP as input information in the model. It should be noted that one-hidden layer
neural networks yield strong universal consistency, and there is a little theoretical
gain in considering two or more hidden layered neural networks (Devroye et al.,
1996). In the hybrid CT-ANN model, we have used one hidden layer with k
neurons. This makes the proposed hybrid binary classifier less complicated and
less time consuming while implementing the model.

After elimination of redundant features by the CT and incorporating OP
as an another input vector, let us now consider the following training sequence
ξn = {(Z1, Y1), ..., (Zn, Yn)} of n i.i.d copies of (Z, Y ) taking values from Rdm×C.
A classification rule realized by a one-hidden layered feedforward neural network
is chosen to minimize the empirical L1-risk, where the L1 error of a function
ψ : Rdm → {0, 1} is defined by J(ψ) = E{|ψ(Z) − Y |}. Before stating the suffi-
cient conditions for the consistency of the algorithm and optimal number of nodes
(k) in hidden layer for practical use of the model, let us define the followings:

Definition 10 A sigmoidal function σ(z) = 1
1+exp(−z) is called a logistic squasher

if it is non-decreasing and satisfies lim
z→∞

σ(z) = 0 and lim
z→−∞

σ(z) = 1.

The next theorem is based on the seminal work of Lugosi and Zeger (1995),
where they proved the results for universal consistency of the feedforward neural
networks in case of regression function estimation problem. Since this is a bit
different classification framework and the results of the Theorem will be useful in
finding the bounds for k, we state the Theorem and outline the idea of the proof
below.

Theorem 12 Consider a neural network with one hidden layer with bounded
output weight having k hidden neurons and let σ be a logistic squasher. Let Fn,k
be the class of neural networks with logistic squasher defined as

Fn,k =

{
k∑
i=1

ciσ(aTi z + bi) + c0 : k ∈ N, ai ∈ Rdm , bi, ci ∈ R,
k∑
i=0

|ci| ≤ βn

}

and let ψn be the function that minimizes the empirical L1 error over ψn ∈ Fn,k.
It can be shown that if k and βn satisfy

k →∞, βn →∞,
kβ2

nlog(kβn)

n
→ 0

then the classification rule

gn(z) =

{
0, if ψn(z) ≤ 1/2.

1, otherwise.
(3.9)
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is universally consistent.

Proof To show the universal consistency, it is sufficient to show that J(ψn) −
J∗ → 0 in probability, where J(ψn) = E{|ψn(Z) − Y ||ξn} and J∗ = infψn J(ψn)
(Devroye et al., 1996). We write

J(ψn)− J∗ =

(
J(ψn)− inf

ψ∈Fn,k
J(ψ)

)
+

(
inf

ψ∈Fn,k
J(ψ)− J∗

)
where, (J(ψn)−infψ∈Fn,k J(ψ)) is called estimation error and (infψ∈Fn,k J(ψ)−J∗)
is called approximation error, as described in Section 2.2.
Now, to handle the approximation error, let ψ

′ ∈ Fn,k be a function such that

E{|ψ′(Z)− g∗(Z)|} ≤ E{|ψ(Z)− g∗(Z)|}

for each ψ ∈ Fn,k. Clearly,

inf
ψ∈Fn,k

J(ψ)− J∗ ≤ J(ψ
′
)− J∗

= E{|ψ′(Z)− Y |} − E{|g∗(Z)− Y |}
≤ E{|ψ′(Z)− g∗(Z)|}

which converges to zero as n→∞. To handle estimation error, let us write

J(ψn)− inf
ψ∈Fn,k

J(ψ) ≤ 2 sup
ψ∈Fn,k

|J(ψ)− Jn(ψ)|

= 2 sup
ψ∈Fn,k

∣∣∣∣E{|ψ(Z)− Y |} − 1

n

n∑
i=1

|ψ(Zi)− Yi|
∣∣∣∣ (3.10)

Define the class Mn,k of functions on Rdm × {0, 1} by

Mn,k =

{
m(z, y) =

∣∣∣∣ k∑
i=1

ciσ(aTi z + bi) + c0 − y
∣∣∣∣ : ai ∈ Rdm , bi ∈ R,

k∑
i=0

|ci| ≤ βn

}

Then the upper bound of equation (3.10) becomes

2 sup
m∈Mn,k

∣∣∣∣E{m(Z, Y )} − 1

n

n∑
i=1

m(Zi, Yi)

∣∣∣∣
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Applying uniform law of large numbers we can observe for each m ∈Mn,k that

m(z, y) =

∣∣∣∣ k∑
i=1

ciσ(aTi z + bi) + c0 − y
∣∣∣∣

≤ 2max

( k∑
i=1

ciσ(aTi z + bi) + c0, 1

)

≤ 2max

( k∑
i=1

|ci|, 1
)

≤ 2βn

For large n and βn ≥ 1, using Theorem 4 (Pollard, 1984), we write

P

{
sup

m∈Mn,k

∣∣∣∣E{m(Z, Y )} − 1

n

n∑
i=1

m(Zi, Yi)

∣∣∣∣ > ε

}
≤ 8E{N(ε/8,Mn,k(Dn))}e−nε2/(512β2

n)

(3.11)

where N(ε,Mn,k(Dn)) denotes the l1-covering number of the random set

Mn,k(Dn) = {(m(Z1, Y1), ..., (m(Zn, Yn) : m ∈Mn,k} ⊂ Rn.

Observe that for m1,m2 ∈ Mn,k with m1(z, y) = |ψ1(z) − y| and m2(z, y) =
|ψ2(z)− y|, for any probability measure ν on Rdm ×{0, 1} with µ as the marginal
of ν on Rdm ,∫

|m1(z, y)−m2(z, y)|ν(d(z, y)) ≤
∫
|ψ1(z)− ψ2(z)|µ(dz).

It follows from above that

N(ε,Mn,k(Dn)) ≤ N(ε, Fn,k(Z
n)), where Zn = (Z1, Z2, ..., Zn).

It is evident that an upper bound on the covering number of the class of neural
networks Fn,k is also the upper bound on the quantity of our interest. Now, we
define three collections of functions:

G1 = {aT z + b; a ∈ Rdm , b ∈ R},
G2 = {σ(aT z + b); a ∈ Rdm , b ∈ R},

G3 = {cσ(aT z + b); a ∈ Rdm , b ∈ R, c ∈ [−βn, βn]}.

Using Corollary 1, we can write the Vapnik-Chervonenkis (VC) dimension of
the class of sets G+

1 = {(z, t) : t ≤ ψ(z), ψ ∈ G1} is VG+
1
≤ dm + 2. This implies

VG+
2
≤ dm + 2 (Pollard, 1990).
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So, for any zn = (z1, z2, ..., zn), using Theorem 5 (Haussler, 1992), we write:

N(ε, G2(zn)) ≤ 2

(
4

ε

)2(dm+2)

where G2(zn) = {z′ ∈ Rn : z
′

= (g(z1), g(z2), ..., g(zn)), g ∈ G2}. Using Theorem
6 (Pollard, 1990), we estimate covering numbers of G3(zn):

N(ε, G3(zn)) ≤ 4

ε
N(ε/(2βn), G2(zn)) ≤

(
8eβn
ε

)2(dm+5)

Now if βn > 2/e, we obtain the following:

N(ε, Fn,k(z
n)) ≤ 2βn(k + 1)

ε
N(ε/(k + 1), G3(zn))k ≤

(
8e(k + 1)βn

ε

)k(2dm+5)+1

.

Substituting this bound into equation (3.11), we get for large n,

P

{
sup
ψ∈Fn,k

∣∣∣∣E|ψ(Z)− Y | − 1

n

n∑
j=1

|ψ(Zj)− Yj|
∣∣∣∣ > ε

}

≤ 8

(
64e(k + 1)βn

ε

)k(2dm+5)+1

e−nε
2/(512β2

n)

(3.12)

which tends to zero if
kβ2

nlog(kβn)

n
→ 0.

It is easy to see that if we assume the following: if there exists δ (> 0) such that

β2
n

n1−δ → 0,

then strong universal consistency follows by applying the Borel-Cantelli Lemma
(Lemma 4) to the last probability in equation (3.12). �

Next, we find the optimal choice of k using the regularity conditions of strong
universal convergence and the idea of obtaining upper bounds on the rate of con-
vergence, i.e., how fast J(ψn) approaches to zero (Györfi et al., 2002).

To get an upper bound on the rate of convergence, we will have to impose
some regularity conditions on the posteriori probabilities. In the case of the rate
of convergence of estimation error, we will have a distribution-free upper bound
(Faragó and Lugosi, 1993). To obtain the optimal value of k, it is enough to find
upper bounds of the estimation and approximation errors. The upper bound of
approximation error investigated by Barron (1993) is given in Lemma 6.
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Lemma 6 Assume that there is a compact set E ⊂ Rdm such that Pr{Z ∈ E} =

1 and the Fourier transform P̃0(w) of P0(z) satisfies∫
Rdm
|ω||P̃0(ω)|dω <∞

then

inf
ψ∈Fn,k

E

(
f(Z, ψ)− P0(Z)

)2

≤ c

k
,

where c is a constant depending on the distribution.

Remark 5 The previous condition on Fourier transformation and extensive dis-
cussion on the properties of functions satisfying the condition (including logistic
squasher function) is given in Barron (1993).

Proposition 1 For a fixed dm, let ψn ∈ Fn,k. For the artificial neural networks
satisfying the regularity conditions of universal consistency and the conditions of

Lemma 6, the optimal choice of k is O

(√
n

dmlog(n)

)
.

Proof Applying Cauchy-Schwarz inequality in Lemma 6, we can write

inf
ψ∈Fn,k

E |f(Z, ψ)− P0(Z)| = O

(
1√
k

)
It is well known from Devroye et al. (1996) that for any ψ

J(ψ)− J∗ ≤ 2E |f(Z, ψ)− P0(Z)|

So, the upper bound of approximation error is found to be O

(
1√
k

)
.

It is noted that the approximation error goes to zero as the number of neurons
goes to infinity for a universally consistent classifier. For practical implementa-
tion, the number of neurons is often fixed (e.g., can’t be increased with the size
of the training sample). Now, it is enough to bound the estimation error.

Let us define r(ψn) = E(J(ψn)) = P (ψn(Z) 6= Y ) is the average error proba-
bility of ψn. Using Lemma 3 of Faragó and Lugosi (1993), we can write that the

estimation error is always O

(√
kdmlog(n)

n

)
.

Bringing the above facts together, we can write

r(ψn)− J∗ = O

(√
kdmlog(n)

n
+

1√
k

)
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Now, to find optimal value of k, the problem reduces to equating
√

kdmlog(n)
n

with

1√
k
, which gives k = O

(√
n

dmlog(n)

)
. �

Remark 6 We can see a remarkable property of the proposed hybrid CT-ANN
model from Proposition 1. Since for this class of posteriori probability function
as shown in Lemma 6, the rate of convergence does not necessarily depend on the
dimension, in the sense that the exponent being a constant, it can be concluded
that the proposed model does not suffer from the ‘curse of dimensionality’.

The optimal value of hidden nodes is found to be O

(√
n

dmlog(n)

)
for the

universally consistent hybrid CT-ANN model. For practical use, if the data set

is small or medium sample-sized, the recommendation is to use

(√
n

dmlog(n)

)
for

achieving utmost accuracy of the proposed model. The practical usefulness and
competitiveness of the proposed classifier in solving real life imbalanced business
school data problem is shown in Section 3.5.

3.5 Application to Business School Data

In this section, we first describe the business school data in brief that are used
in this study. Subsequently, we will report the experimental results and compare
our proposed hybrid CT-ANN model with other state-of-the-art classifiers.

3.5.1 Data Description

The data was provided by a private business school that receives a huge number
of applications from across the country for the MBA program and admits a pre-
specified number of students every year (Chakraborty et al., 2018; Ganatra and
Dinesh Kumar, 2014). The data set comprises of several parameters of passed out
students’ profile along with their placement information. We divided the data
into a training set (80 percent of the records) for building the model and test set
(20 percent of the records) to check the accuracy of the model. We aim to select
the optimal set of features and the corresponding optimal supervised model for
selecting the right set of students who will be fit for the MBA program of the
business school and, at the end of the program, will be able to get a placement.
The data set contains 24 explanatory variables, out of which 7 are categorical
variables and others are continuous variables. The response variable indicates
whether the student got placed or not. Sample data set is given in Table 3.1. We
also applied 5 × 2 cross-validation while evaluating classifiers on the data sets.
Each data set is broken into class-stratified halves, allowing two experiments in
each half, one is used as training and others as testing.
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Table 3.1: Sample business school data set.

ID Gender SSC HSC DEGREE E.Test SSC HSC HSC Placement
Percentage Percentage Percentage Percentile Board Board Stream

1 Male 68.4 85.6 72 70 ICSE ISC Commerce Yes
2 Male 59 62 50 79 CBSE CBSE Commerce Yes
3 Male 65.9 86 72 66 Others Others Commerce Yes
4 Female 56 78 62.4 50.8 ICSE ISC Commerce Yes
5 Female 64 68 61 24.3 Others Others Commerce No
6 Female 70 55 62 89 Others Others Science Yes
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

3.5.2 Analysis of Results

Before we apply the proposed model for analyzing the data, we explored a few of
the popular models used for binary classified data. Among them, LR, LDA, kNN
method, and SVM were used. To increase the accuracy of the prediction of these
methods, dimensionality reduction of the feature variables was carried out using
the correlation matrix and information value provided by each of the independent
variables. LR gave a maximum accuracy of 77.143 percent, which turns out to
be the same when we applied LDA, a popular alternative to logistic regression.
For the k-NN method, the value of k is chosen to minimize the cross-validation
error. The k-NN method with k = 13 increased the accuracy level of prediction
to 80 percent. However, another supervised model SVM obtained the accuracy
level to 75 percent.

Decision tree algorithms like RF and CART are again quite popular appli-
cation methodologies for classification problems. RF is a combination of several
decision trees, and hence its accuracy level, quite naturally, be higher. In the
present context, it gave a prediction accuracy of 82.857 percent on test data.
The CART model uses a Gini index of diversity with 24 variables. The variable
importance indicator Cp was used for selecting variables to enter and leave the
CART model. Based on the results of CART, four variables viz. HSC Percentage,
Degree Percentage, SSC Percentage, and Entrance test Percentile were chosen in
the final model. The predictive accuracy of the CART model further improved
to 83.333 percent. The optimal classification tree generated by the CART model
is given in Figure 3.3.

ANN model is again quite a popular supervised learning methodology that
is used in predicting data in classification problems. We have normalized our
data before training a neural network because avoiding normalization may lead
to a complicated training process. A min-max method is used for scaling the
data in the interval [0, 1]. Usually, 2/3 of the input layer size is taken as the
number of neurons (Zhou et al., 2002). Three hidden layers with the configuration
24 : 16 : 6 : 2 : 1 is used. The input layer has 24 inputs, with three hidden
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layers having 16, 6, and 2 neurons, and the output layer has a single output.
Similarly, the neural trees algorithm and entropy nets model were also used, and
the accuracy levels were compared.

Figure 3.3: The optimal classification tree generated by CART

Finally, we apply our proposed CT-ANN model to the business school data
set. There are three layers, namely, input, hidden, and output layer included
in the proposed CT-ANN model. The input layer has five nodes, out of which
the first four input values are based on the identification results made by CT.
The prediction results produced by the CT model were used as the other input
information for training the neural network. The neural network is illustrated in
Figure 3.4, which contains an input layer with five features, one hidden layer with
ten neurons and one single output layer. Various performance measures obtained
using different algorithms (average results after cross-validation) are presented
in Table 3.2. It is clear from Table 3.2 that the accuracy level of our proposed
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hybrid CT-ANN model is 91.667 percent, by far the best among the models used
for this data. For comparisons, the predictive results using the confusion matrix
for LR, LDA, kNN, RF, CART, SVM, ANN, and the hybrid models, including
our proposed model, are summarized in Table 3.2.

Figure 3.4: Hybrid CT-ANN topology for business school placement data

Table 3.2: Quantitative measures of performance for different classifiers.

Classifier Precision Recall F-measure Accuracy
LR 0.964 0.794 0.871 77.143

LDA 0.964 0.794 0.871 77.143
kNN 0.800 1.000 0.889 80.000
SVM 0.964 0.771 0.857 75.000
RF 0.823 1.000 0.903 82.857

CART 0.823 1.000 0.903 83.333
ANN 0.928 0.812 0.867 77.142

Neural Trees 0.918 0.894 0.906 85.169
Entropy Nets 0.839 0.928 0.881 80.555

Hybrid CT-ANN 0.942 0.970 0.956 91.667

Table 3.2 also suggests that the proposed model of CT-ANN outperforms
other supervised models in terms of F-measure. Hence, our proposed hybrid CT-
ANN model for the data under discussion turns out to be the ‘best’ model for
predicting whether a student will be placed or not, after s/he passes out of MBA.
The proposed model will help the authorities of the private business school in
recruiting prospective students with a higher chance of placements.
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3.6 Experiments with UCI Data

In this section, we apply the proposed hybrid CT-ANN model to various medical
data sets available at UCI public repository. The data sets and implementation
results are described, and this shows the general applicability of the proposed
classifier for feature selection cum classification problems in different domains.

3.6.1 Data

The proposed model is evaluated using six publicly available medical data sets
from the UCI Machine Learning repository (https://archive.ics.uci.edu/
ml/datasets.html) dealing with various diseases. These binary classification
data sets have a limited number of observations and high-dimensional feature
spaces. The breast cancer data set has 9 discrete features, whereas the pima
diabetes data set consists of 8 continuous features in the input space (Rodriguez
et al., 2006). Heart disease data set contained a total of 303 examples for 13
continuous features initially, out of which 6 contained missing class values, and 27
are disputed cases that were removed from the data set. Promoter gene sequences
data set has 57 sequential DNA nucleotide attributes. SPECT images data set is
represented by 22 binary features that have either 0 or 1 values, but the data set
is imbalanced. Wisconsin breast cancer data set consists of 699 examples carrying
9 continuous features in the input space (Kurgan et al., 2001). Table 3.3 gives a
summary of these data sets.

Table 3.3: Characteristics of the data sets used in experimental evaluation

Data Classes Objects Number of Number of Number of
(n) feature (p) (+)ve instances (−)ve instances

breast cancer 2 286 9 85 201
heart disease 2 270 13 120 150
pima diabetes 2 768 8 500 268

promoter gene sequences 2 106 57 53 53
SPECT heart images 2 267 22 55 212

wisconsin breast cancer 2 699 9 458 241

3.6.2 Experimental Results

In order to show the impact of the proposed 2-step pipeline model, it is applied
to the high-dimensional small or medium-sized medical data sets. These are such
types of data sets in which not only classification is the task but also feature
selection plays a vital role before it. We shuffled the observations in each of the
six medical data sets randomly and split it into training, validation, and test data
sets in a ratio of 50 : 25 : 25. We have also repeated each of the experiments ten
times with different randomly assigned training, validation and testing data sets.

Our proposed algorithm is compared with Classification Tree (CT), Random
Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN)
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with 1HL and 2HL, entropy nets, Tsai’s neural trees (NT) (Tsai et al., 2012),
deep neural decision trees (DNDT) (Yang et al., 2018) based on the different
performance metrics. All these classifiers other than DNDT are implemented
in R Statistical software on a PC with a 2.1GHz processor with 8GB memory.
We compared the proposed model with 1-HL ANN and 2-HL ANN without em-
ploying feature selection. Since the data sets are small and medium-sized, going
beyond 2HL ANN will over-fit the data set (Devroye et al., 1996), and this is also
reminiscent of universal approximation theorem (Hornik et al., 1989). For 1HL
ANN, the number of hidden neurons used is k ≈

√
n (Devroye et al., 1996), and

for 2HL ANN, 2/3 of the input sizes are taken as the number of neurons in the
1st HL and 1/3 of the input sizes in case of 2nd HL (Zhou et al., 2002). Similarly,
Tsai’s NT was also built, and the accuracy levels were compared. DNDT searches
tree structure and parameter with stochastic gradient descent, which was imple-
mented in TensorFlow (Abadi et al., 2016), and it is a kind of GPU-accelerated
computing (Yang et al., 2018). Breiman’s random forest (Breiman, 2001) also
has an in-built feature selection mechanism which was implemented using ‘party’
implementation in R and results are reported in Table 3.4.

To apply our proposed model to the medical data sets, we first apply CT
with ‘minsplit’ as 10% of the training sample size using the ‘rpart’ package im-
plementation in R statistical software. CT model uses the Gini index of diversity
with the available input feature space. The variable importance indicator Cp was
used to select variables to enter or leave the CT model. Based on the results of
CT, important variables or features were chosen in the final model along with
CT output. The number of reduced features after feature selection using CT
is reported in Table 3.4. The number of hidden neurons in the hidden layer is

calculated using this formula k =
√

n
dmlog(n)

, where n is the number of training

samples and dm as the number of input features in neural networks. We have
further normalized the data sets before training the neural network. Min-max
method is used for scaling the data in an interval of [0, 1]. Our model recommends
using the upper bound of the number of neurons in the HL of the ensemble model
for small or medium data sets. The ensemble CT-ANN model is trained using
‘neuralnet’ implementation in R. Training time and memory requirement for our
proposed model is quite low compared with DNDT, which needs the availability
of GPU. Table 3.4 gives the obtained results from different classifiers used for
experimental evaluation over six medical data sets.

We can conclude from Table 3.4 that the proposed model achieves the overall
highest accuracy for most of the data sets while working with reduced features
as compared to other state-of-the-art and remains competitive for other few data
sets as well. The proposed hybrid CT-ANN performed ‘best’ among the other
classifiers considered in this study for four out of six data sets and remained
competitive for the rest of the two data sets.
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Table 3.4: Performance measures (mean values and their standard deviation) of
different classification algorithms over six medical data sets

Classifiers Data set The number of (reduced) Classification F-measure
features after accuracy

feature selection (%)

CT

breast cancer 7 68.26 (6.40) 0.70 (0.07)
heart disease 7 76.50 (4.50) 0.81 (0.03)
pima diabetes 6 71.85 (4.94) 0.74 (0.03)

promoter gene sequences 17 69.43 (2.78) 0.73 (0.01)
SPECT heart images 9 75.70 (1.56) 0.78 (0.00)

wisconsin breast cancer 8 94.20 (2.98) 0.89 (0.01)

RF

breast cancer 6 69.00 (7.30) 0.72 (0.07)
heart disease 8 80.19 (4.23) 0.84 (0.01)
pima diabetes 6 73.49 (4.12) 0.76 (0.03)

promoter gene sequences 20 71.26 (1.97) 0.75 (0.03)
SPECT heart images 10 79.70 (1.23) 0.82 (0.01)

wisconsin breast cancer 8 95.75 (2.01) 0.96 (0.02)

SVM

breast cancer 9 64.62 (5.21) 0.68 (0.05)
heart disease 13 78.95 (4.89) 0.83 (0.01)
pima diabetes 8 70.39 (3.56) 0.72 (0.03)

promoter gene sequences 57 59.35 (1.37) 0.63 (0.02)
SPECT heart images 22 83.46 (1.29) 0.85 (0.00)

wisconsin breast cancer 9 93.30 (2.78) 0.94 (0.01)

ANN (with 1HL)

breast cancer 9 61.58 (5.89) 0.64 (0.04)
heart disease 13 73.56 (5.44) 0.79 (0.02)
pima diabetes 8 66.78 (4.58) 0.69 (0.04)

promoter gene sequences 57 61.77 (3.46) 0.65 (0.02)
SPECT heart images 22 79.69 (0.23) 0.81 (0.01)

wisconsin breast cancer 9 94.80 (2.01) 0.96 (0.01)

ANN (with 2HL)

breast cancer 9 62.20 (5.12) 0.64 (0.03)
heart disease 13 78.81 (3.96) 0.82 (0.03)
pima diabetes 8 69.78 (3.89) 0.73 (0.02)

promoter gene sequences 57 63.46 (2.19) 0.68 (0.02)
SPECT heart images 22 82.71 (0.78) 0.84 (0.01)

wisconsin breast cancer 9 95.60 (2.54) 0.96 (0.10)

Entropy Nets

breast cancer 7 69.00 (6.25) 0.72 (0.05)
heart disease 7 79.59 (4.78) 0.83 (0.01)
pima diabetes 6 69.50 (4.05) 0.72 (0.02)

promoter gene sequences 17 66.23 (1.98) 0.70 (0.01)
SPECT heart images 9 76.64 (1.70) 0.78 (0.01)

wisconsin breast cancer 8 95.96 (2.18) 0.96 (0.00)

Tsai’s NT

breast cancer 7 69.45 (7.17) 0.71 (0.07)
heart disease 7 80.25 (4.68) 0.85 (0.01)
pima diabetes 6 71.59 (4.19) 0.74 (0.03)

promoter gene sequences 17 70.67 (2.83) 0.74 (0.02)
SPECT heart images 9 76.95 (1.27) 0.78 (0.01)

wisconsin breast cancer 8 97.40 (2.11) 0.98 (0.01)

DNDT

breast cancer 8 66.12 (7.81) 0.68 (0.08)
heart disease 7 81.05 (3.89) 0.86 (0.02)
pima diabetes 6 69.21 (5.08) 0.72 (0.05)

promoter gene sequences 17 69.06 (1.75) 0.71 (0.01)
SPECT heart images 10 75.50 (0.89) 0.77 (0.00)

wisconsin breast cancer 7 94.25 (2.14) 0.95 (0.00)

Hybrid CT-ANN

breast cancer 7 72.80 (6.54) 0.77 (0.06)
heart disease 7 82.78 (4.78) 0.89 (0.02)
pima diabetes 6 76.10 (4.45) 0.79 (0.04)

promoter gene sequences 17 75.40 (1.50) 0.79 (0.01)
SPECT heart images 9 81.03 (0.56) 0.82 (0.00)

wisconsin breast cancer 8 97.30 (1.05) 0.98 (0.00)
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3.7 Simulation Study

This section provides a comparison of several classifiers on synthetic data sets
from scikit-learn library in Python. The point of this example is to illustrate
the nature of the decision boundaries of different classifiers. Three popularly used
toy data sets are generated to visualize the decision boundaries of the classification
algorithms used in this chapter. The details of the data generation process are de-
scribed with codes here: https://github.com/scikit-learn/scikit-learn/

blob/0fb307bf3/sklearn/datasets/_samples_generator.py. The ‘make moons’
function in scikit-learn library generates a two moons data set where we take
the number of samples to be 100 with the moderate noise level. We added
Gaussian noise to the data with the standard deviation equals to 0.3. The
’make circles’ function in scikit-learn generates a binary classification prob-
lem with data sets that fall into concentric circles. Again, as with the moons
test problem, we can control the amount of noise in the shapes. This test prob-
lem is suitable for algorithms that can learn complex nonlinear manifolds. We
generate a circle data set with some noise, refer to the input data plots in Table
3.6. This creates a large circle containing a smaller circle. Lastly, we generate
linearly-separable data with added noise. All these toy data sets represent binary
classification problems in 2D. In all the experiments, 60% of the data samples
are used for training, and the rest 40% of the data are for testing. Classification
accuracy of all the models in three synthetic data sets is reported in Table 3.5.

Table 3.5: Classification accuracy percentage of different classifiers on three syn-
thetic data sets. Best results in the Table are made bold.

Classifiers Moon data Circle data Linearly-separable data
kNN 90 82 90
CT 90 68 93

Linear SVM 90 40 95
ANN 88 60 93

Hybrid CT-ANN 93 90 95

To assess our proposed hybrid CT-ANN model, we perform experiments on
these data sets by employing all the algorithms and generate a graph representa-
tion of each data set. The implementation of all these models is done as in Section
3.6. The choice of tuning parameters for all the models is as follows. For the kNN
model, the value of k is varied between 2 to 7 and the best results are reported
for all the synthetic data sets. In the case of CT, the “Gini” index used as the
tree splitting criteria for all the data sets, and the maximum depth of the tree is
set to 5 for all the examples. In the case of linear SVM, we set the regularization
parameter for all these toy data sets at 0.025. While implementing ANN, we
used the logistic sigmoidal function with a stochastic gradient-based optimizer,
namely ‘adam’ by Kingma and Ba (2014). Finally, our proposed model is applied
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to the data sets, and tuning parameters are chosen as described in Section 3.3. As
shown in the plots of Table 3.6, our approach can correctly classify the majority
of the points and achieves the highest classification accuracy in comparison with
the single classifiers. This result seems to confirm that the proposed approach
can deal with complex data structure, i.e., nearby points and points on the same
structure are likely to have the same label.

Table 3.6: A comparison of several classifiers on synthetic data sets. The plots
show training points in solid colors and testing points semi-transparent. The
lower right in each plot shows the classification accuracy on the test set.

Synthetic data Moon data Circle data Linearly-separable
Classifiers set set data set

Input Data

kNN

CT

Linear SVM

ANN

Hybrid CT-ANN

70



3. A HYBRID BINARY PATTERN CLASSIFIER

3.8 Conclusions and Discussion

One of the aims of this chapter was to develop a model for selecting optimal
student-characteristics so that the chosen characteristics would ensure placement
for students. Our study presented a hybrid CT-ANN model that combines both
the artificial neural network and classification tree, which gives more accuracy
than other competitive models. We have found CT to be the optimal technique
for feature selection and found a hybrid CT-ANN model to be the optimal super-
vised model for accurate prediction of a student’s placement potential. Significant
accuracy of 91.667 percent has been achieved through the use of our experimen-
tally optimized model. Consequently, the CT-ANN successfully demonstrates
the best performance and offers a practical solution to the problem of finding
optimal criteria for selecting students in a business school. It can also be used
for modeling the selection of students based on past reports of placement. The
proposed CT-ANN model may be used for similar problems like choosing possible
customers in a city for a particular product based on the information available
about the customers who bought that specific product in other cities as well as
those customers who did not buy that particular product.

From the general applicability point of view, the newly introduced hybrid
classifier achieved higher accuracy in classification performance with minimal
computational cost (by working with a subset of input features). Our proposed
feature selection cum classification model is robust in nature. The proposed hy-
brid CT-ANN model is universally consistent and less time consuming during the
actual implementation. We have also found the optimal value of the number of
neurons in the hidden layer so that the user will have less tuning parameters to
be controlled. When applied to real-life data sets, the proposed model performed
better compared to other state-of-the-art models for most of the data sets and
remained competitive for the few different data sets. Besides the theoretical re-
sults, the proposed model performs well on several data sets involving feature
selection cum classification task in a supervised setting.

In the light of current advances in ANN, one might ask a simple question:
What is the need for a two-step pipeline (like hybrid CT-ANN model) over ad-
vanced ANN models? A straight-cut answer to this question could be unwise.
The primary goal of ‘statistics’ is to make scientific inferences from the model
compared to building a “black-box-like” model that may perform well for some
specific data sets, but may not be considered a general theory (Dunson, 2018).
Our proposed model is robust, universally consistent, easily interpretable, and
highly useful for high dimensional small or medium-sized data sets (for example,
medical data sets) to perform feature selection cum classification tasks. Advanced
ANN models (say, deep neural net) are highly complex, over-parameterized mod-
els and found useful when the data sets are huge (like image, audio, and video
data sets) (Dunson, 2018).
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Nevertheless, no model can have a dominant advantage in all aspects, and
there will always be a trade-off between accuracy, interpretability, and complex-
ity of the model (Wolpert, 1996). In recent work, we have improved the hybrid
CT-ANN model, especially for imbalanced data sets, which also involves feature
selection as a task before imbalanced pattern classification (Chakraborty and
Chakraborty, 2020b). Situations when feature selection is not a job (e.g., soft-
ware defect prediction data sets) in classification problems, our model may not
perform well. But the ensemble classifier will have an edge where the data analy-
sis requires important variable selections in the early stage followed by predictions
using classifiers for limited data sets. In the next chapter, we will try to solve
the problem of imbalanced pattern classification paradigm arising in software
reliability engineering with another novel hybrid approach.
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Chapter 4

Hellinger Net : A Hybrid Model
for Imbalanced Learning

Related Publications:

1. Chakraborty, T., Chakraborty, A. K. (2020). Hellinger Net : A Hybrid
Imbalance Learning Model to Improve Software Defect Prediction. IEEE
Transactions on Reliability, https://doi.org/10.1109/TR.2020.3020238.

2. Chakraborty, T., Chakraborty, A. K. (2020). Superensemble classifier for
improving predictions in imbalanced data sets. Communications in Statis-
tics - Case Studies and Data Analysis, 6(2), 123-141.

Summary

Learning from an imbalanced data set presents a tricky problem in which tradi-
tional statistical learning algorithms perform poorly. Traditional classifiers usu-
ally aim to optimize the overall accuracy without considering the relative distribu-
tion of each class. This problem occurs among others in Software defect prediction
(SDP) in which one tries to identify defects in the early phases of the software
development life cycle that yield a cost-effective and good quality of software prod-
ucts. Various statistical learning models have been employed to predict defects in
software modules. But the imbalanced nature of this type of SDP data sets is
pivotal for the successful development of a defect prediction model. Imbalanced
software data sets contain non-uniform class distributions, with a few instances
belonging to a specific class as compared to that of the other class. This chapter
proposes a novel hybrid methodology, namely the Hellinger net model, for imbal-
anced learning to improve defect prediction for software modules. Hellinger net, a
tree to network mapped model, is a deep feedforward neural network with a built-in
hierarchy, just like decision trees, and uses a skew insensitive distance measure,
namely Hellinger distance, in handling class imbalance problems. On the theoret-
ical side, we prove the theoretical consistency of the proposed model. A thorough
experiment was conducted over the ten SDP data sets to show the superiority of
the proposed method.
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4.1 Introduction

Software defect prediction (SDP) is a celebrated research topic in the field of
software reliability engineering, which has attracted a lot of attention from both
the industrial communities and academicians since the last three decades (Fenton
and Neil, 1999; Jing et al., 2016; Pelayo and Dick, 2012; Siers and Islam, 2015).
It allows software engineers to allocate limited human resources, time, and other
resources to defect-prone modules through early defect prediction. It also plays a
vital role in reducing software development costs and maintaining the high quality
of software systems. Existing works on SDP can be categorized into three broad
areas as follows (Liu et al., 2014):

• Finding the estimates for the number of defects in a software system.
Various statistical methods like defect detection profile methods, capture-
recapture models have been applied to estimate the number of defects that
exist in software based on testing, inspection, code metrics, and process
quality data (Briand et al., 2000).

• Capturing software defect associations using data mining technologies (for
example, association mining algorithms (Song et al., 2006)).

• Classifying between defect-prone and non-defect-prone categories in soft-
ware modules. Machine learning approaches, such as classification trees
(CT) (Breiman et al., 1984), random forest (RF) (Breiman, 2001), deep
feedforward neural networks (DFFNN) (Hornik et al., 1989), and ensemble
learning methods (Kuncheva, 2004) are used to predict the defect-proneness
of new software modules (Sun et al., 2012; Wang and Yao, 2013; Zheng,
2010).

However, the studies mentioned above have not considered an important char-
acteristic of the SDP problems, viz., the highly imbalanced nature between the
defect and non-defect classes of these data sets. In most cases, the collected
training defect prediction data sets contain much more non-defective modules
(majority) than defective ones (minority). The imbalanced distribution is the
critical factor accounting for the poor performance of traditional statistical and
machine learning methods, especially on the minority class (Hall et al., 2011;
Lessmann et al., 2008). Imbalanced learning is an emerging research domain in
machine learning since the last two decades that aims to deal with this kind of
problem in a better way (Gong et al., 2019). Several researchers noticed the neg-
ative effect of class imbalance on SDP and applied imbalance learning techniques
to improve the performance of their defect predictors recently (Gong et al., 2019;
Malhotra and Kamal, 2019; Sun et al., 2012; Wang and Yao, 2013). However,
there is a scope to enhance class imbalance learning in the context of SDP.
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4.1.1 Motivation

Previous studies in SDP developed various software defect prediction models to
predict the occurrence of a defect in the unseen (future) version of a software
product (Briand et al., 2000; Fenton and Neil, 1999; Jing et al., 2016; Liu et al.,
2014). Defects in software modules cause failures and do not allow them to pro-
duce desirable results. Therefore an early-warning (detection) system of software
defects is essential. In the initial phases of software development life cycles, a
set of identified defects could be corrected appropriately (Pelayo and Dick, 2012;
Siers and Islam, 2015; Song et al., 2006). Further, if such defects are prevented
from propagation to the later stages, then it will be cost-saving for the producer.
Thus, an accurate SDP model aids in the development of good quality software
products with a lower maintenance cost, which also results in higher customer
satisfaction. SDP models highly rely on past data sets to classify software mod-
ules as defective or non-defective. Recent work demonstrated that 80% of the
defect occurred in very few modules (20%). This indicates that the defective
class is there as a minority class in comparison to the non-defective (majority)
class that results in an imbalanced scenario in the SDP data sets. It is interesting
to note that the minority (defective) class, even being less in number, carries
more cost when they are misclassified. Even this results in higher testing costs
and escaping crucial errors lead to poor quality of the software. Therefore, it is
important to address the imbalanced data problem in SDP arena to reduce future
defect percentages, and for successful development of the software.

Traditional classifiers assumes that the classes to be distinguished should have
a comparable number of instances. Still, this assumption does not hold in real-
world classification problems (Kuncheva, 2004). Although existing machine learn-
ing techniques have shown great success in many real-world applications, the
problem of learning from imbalanced data is a relatively new challenge that has
attracted growing attention from both academia and industry. The imbalanced
learning problem is concerned with the performance of learning algorithms in
the presence of underrepresented data, and severe class distribution skews (He
and Garcia, 2009). Real-world data sets are usually skewed, in that many cases
belong to a larger class, and fewer cases belong to a smaller yet usually more
exciting class (Fernández et al., 2018b). Here the cost of misclassifying minority
examples is much higher due to the seriousness of the problem (Rastgoo et al.,
2016). Due to higher weightage is given to the majority class, traditional classi-
fiers tend to misclassify the minority class cases as a member of the majority class
(Wang et al., 2019a). This inherent complex characteristics of imbalanced data
sets require new understandings, principles, algorithms, and tools to efficiently
transform vast amounts of raw data into information and knowledge represen-
tation (Zhu et al., 2020). For example, consider a binary classification problem
with the class distribution of 90 : 10. In this case, a straightforward method of
guessing all instances to be positive class would achieve an accuracy of 90%.
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There are many approaches developed in the literature to handle imbalanced
data sets that are applied to SDP problems. One way to deal with the imbal-
anced data problems is to modify the class distributions in the training data using
sampling techniques to the data set. Sampling techniques either oversamples the
minority class to match the size of the majority class or undersamples the major-
ity class to match the size of the minority class (Guo and Viktor, 2004). Hybrid
sampling approaches not only balance the data but also remove noisy instances
lying on the wrong side of the decision boundaries (for example, Synthetic minor-
ity oversampling technique (SMOTE) + TL (Tomek links) and SMOTE + ENN
(edited nearest neighbor)) (Fernández et al., 2018b; Lemâıtre et al., 2017). But
these approaches have apparent deficiencies. Undersampling majority instances
may lose potentially useful information in the data set, whereas oversampling
increases the size of the training data set that may increase computational cost
(Fernández et al., 2018a). Even cost-sensitive learning methods do not effec-
tively solve the problem since assigning cost values is a difficult proposition. To
overcome these deficiencies, “imbalanced data-oriented” algorithms are popularly
used in imbalanced pattern classification that can handle class imbalance without
modifying the class distributions. Hellinger distance decision tree (HDDT) uses
HD as the tree splitting criterion, and it is insensitive towards the skewness of the
class distribution (Cieslak and Chawla, 2008; Cieslak et al., 2012). Based on the
experimental results, Chawla concluded that unpruned HDDT is recommended
to deal with imbalanced problems as a better alternative to sampling approaches
(Cieslak et al., 2012). An ensemble version of the HDDT method is Hellinger dis-
tance random forest (HDRF) (Su et al., 2015), which can also handle imbalanced
data sets. Though HDDTs are robust against class imbalance and mitigate the
need for sampling, they are greedy algorithms that sometimes overfit the data
set since no pruning techniques are applied (Boonchuay et al., 2017). HDDT also
suffers from the drawbacks of sticking to local minima and overfitting the data
set (Chaabane et al., 2019) when the tree size is enormous as compared with
the number of training data. Motivated by the studies mentioned above, this
chapter proposes a novel hybrid approach to deal with class imbalance problems
in SDP. We propose a novel methodology, namely Hellinger net, an “imbalanced
data-oriented” pattern classifier that can be used as a defect predictor to achieve
better accuracy for standard imbalanced SDP data sets. It is shown to be more
productive and efficient than other traditional classifiers at predicting defects and
improving the overall performance.

4.1.2 Contribution

Software testing takes place at different stages of the software development pro-
cess. Each module of software is tested separately whenever the module is ready.
After that, an integration testing takes place, which verifies whether the soft-
ware is working correctly or not. The NASA SDP data sets to be considered in
this chapter comes from McCabe and Halstead feature extractors of source code
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(Boetticher, 2007) on different modules. In particular, the data features various
attributes of a module on the different types of complexity measures proposed
in the software engineering literature (Briand et al., 2000). To understand the
overall defect percentage of a module, one may take the ratio of the number of
times the module did not produce expected results to the total number of trials
or inputs used to test the module (Fenton and Neil, 1999). Hellinger net is a
novel classification tool proposed in this chapter that uses Hellinger distance to
find the essential attributes of the modules and further use them as predictors in
our proposed Hellinger net model. The proposal is a hybrid learning approach
for imbalanced pattern classification problems that uses both HDDT and neural
networks. The proposed Hellinger net method can be thought of as a mapping
from HDDT to DFFNN which have a built-in hierarchy, and the number of neu-
rons in the hidden layers will be known apriori.

In Hellinger net, a pre-trained HDDT can be reformulated as two hidden lay-
ered neural networks with similar types of predictive behavior, but with improved
accuracy in imbalanced SDP problems (Chakraborty and Chakraborty, 2020a,b).
Extensive works are done earlier in the area of hybrid models based on DT and
DFFNN; see for example, Bifet et al. (2010); Chen et al. (2006); Kubat (1998);
Sethi (1990); Tanno et al. (2019); Zhou and Chen (2002). The motivation behind
developing the Hellinger net is to construct an HDDT and then simulate it using
neural networks to avoid the deficiencies of HDDT in the imbalanced framework.
Hellinger net is composed of three necessary steps: (a) converting an HDDT into
rules, (b) constructing two hidden layered DFFNN architecture from the rules,
and (c) training the DFFNN using stochastic gradient descent backpropagation
(Rumelhart et al., 1985). Soft pruning using DFFNN architecture in the HDDT
framework will avoid the need for tree-pruning vis-a-vis the risk of overfitting
for imbalanced classification problems. The proposed Hellinger net model has
the advantages of significant accuracy and the ability to handle high-dimensional
medium-sized defect prediction data sets. The novel hybrid formulation can pre-
vent HDDT from over-fitting and provides a better generalization of a trained
neural network than one can learn directly from the training data. We conduct
computational experiments to show the performance of the proposed Hellinger
net model for SDP using ten imbalanced data sets from the PROMISE repos-
itory. Experimental results show that our proposed approach achieves overall
higher accuracy than the existing methods for imbalanced learning in SDP. In
this chapter, we also prove the theoretical consistency of the Hellinger net us-
ing statistical learning theoretic approaches like complexity regularization and
covering numbers. We use several results previously developed in the field of
DT, FFNN, and hybrid DT-FFNN models (Biau et al., 2019; Brent, 1991; Lugosi
and Nobel, 1996; Lugosi and Zeger, 1995) to show the theoretical consistency
of the Hellinger net classifier. The approach depends on the choice of the total
number of leaves of HDDT and certain restrictions imposed on neural network
hyper-parameters to ensure the consistency of the proposed model.
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The remainder of this chapter is organized as follows. In Section 4.2, we
review related works on class imbalance learning and software defect predictions.
We then describe the formulation of the proposed hybrid model for handling
class imbalance problems in Section 4.3. In Section 4.4, we discuss asymptotic
properties (theoretical consistency) of the proposed Hellinger net model. Section
4.5 reports the results of the experiments on real SDP benchmark data sets.
In Section 4.6, we apply the newly developed imbalanced classifier for standard
UCI data sets to show the potential application of the methodology in other
applied domains. A simulation study is also presented in Section 4.7 to make our
results more convincing. Finally, we conclude this chapter with some discussion
in Section 4.8.

4.2 Related Works

In this section, we discuss the two main focal points of this chapter. At first,
we describe the class imbalance problem and state-of-the-art methods for solving
this problem. Further, we review the current research progress in the area of
SDP.

4.2.1 Class Imbalance Learning

The basic concept of class imbalance in the binary pattern classification prob-
lem is concerned with the situation in which one class of data is highly under-
represented as compared to the other class. By convention, the under-represented
class is known as minority class, whereas the other class having a larger number
of instances is called the majority class. From the SDP point of view, the defect
cases are less likely to happen than the non-defect cases. Misclassifying an exam-
ple from defect class (minority class) is more costly since the failure of finding a
defect can degrade the quality of the software by a considerable amount. Finding
out a pattern classifier that can provide high accuracy for the minority class in-
stances without affecting the degree of correctness of the majority class remains
the concern for the research in imbalanced learning. The problem is challenging
since almost all the traditional classifiers give higher weightage to the majority
class and result in misclassifying the minority class examples as the majority class
(Gong et al., 2019).

Numerous methods have been developed to tackle the curse of data imbalance
at both data and algorithm levels. Data-level methods concentrate on manipu-
lating training data to balance the skewed class distributions using various re-
sampling techniques. Algorithm-level methods modify the training mechanism to
improve performance accuracy on the minority class examples using techniques
like cost-sensitive learning and ensemble learning. The prevalent methodologies
of solving class imbalance can be categorized into the following.
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1. Sampling Techniques: It uses oversampling or undersampling techniques to
modify the data class distributions of the imbalanced data sets. Shatnawi
(2012) found random oversampling (ROS) more efficient than SMOTE in
adding training instances in the defective class of the SDP data sets. López
et al. (2013) have shown that using oversampling may result in overfitting as
the training data set may have multiple replicate instances. To overcome
this limitation, combined approaches of oversampling and undersampling
like ROS+TL, SMOTE+TL have been applied to the SDP data sets and
found more effective than individual methods but were worse than ensemble
learning methods (Gong et al., 2019).

2. Cost-sensitive Learning: This method mainly attaches different costs for
different class instances. Once the defective instances are misclassified,
they are given a higher cost, whereas if the non-defective instances are mis-
classified, they are attached with a lower cost (Liu et al., 2014). Ryu et al.
(2017) proposed a cost-sensitive transfer learning approach for the cross-
project defect prediction problem whereas Wan et al. (2017) proposed a
cost-sensitive method using dictionary learning to solve the class-imbalance
problem in SDP.

3. Ensemble Learning Techniques: This method combines multiple classifiers
and assign different weights to the component methods for dealing with
imbalance classification problems. Ensemble learning can enhance overall
performance by combining the strength of individual learners. Wang and
Yao (2013) proposed a dynamic version of the AdaBoost.NC for the im-
balanced classification problem in SDP. Kernel ensemble learning method
based on AdaBoost was also experimentally shown to be effective for 12
projects from NASA SDP data sets (Wang et al., 2016). Laradji et al.
(2015) combined the feature selection method with ensemble learning ap-
proaches to solve the class imbalance problem.

4.2.2 Software Defect Prediction

Software reliability is often modeled through stochastic processes, in general, Pois-
son processes that are capable of dealing with rare events like software defects.
They are also used to forecast future defects (Xie, 1991; Yamada, 2014). The
reliability of software cannot be predicted without some real information about
the software system we are interested in. An important and useful type of infor-
mation is the failure time data collected during the testing stage (Jelinski and
Moranda, 1972). Many software reliability models arc developed for the estima-
tion of software reliability based on failure time data. Some well-known models
are the exponential model, the logarithmic model, and the s-shaped model (Musa
and Okumoto, 1984; Pham, 2006). These models are commonly known as nonho-
mogeneous Poisson process (NHPP) models and the basic assumption is that the
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failure process can be described by an NHPP (Xie, 1995). Using different mean
value function describing the behavior of the failure process, the reliability can
be predicted. Also, Software metrics can be used for the estimation of software
reliability. Ruggeri et al. (2008) discussed two models, namely a hidden Markov
model and a self-exciting point process with latent variables that can incorporate
the case of reliability deterioration due to potential introduction of new bugs to
the software during the development phase. Since the introduction of bugs is an
unobservable process, latent variables are introduced to incorporate this charac-
teristic into the models.

SDP problems can also be formulated as binary classification problems in
which software modules are either classified as defect-prone or non-defect-prone
based on a set of software metrics. There are various types of software metrics
available from previously developed systems by standard tools, as discussed in
Nagappan and Ball (2005a). The first of its kind of software metric, popularly
known as the CK metric, was introduced by Chidamber and Kemerer (1994).
Various other software metrics such as code metrics (Basili et al., 1996), process
metric (Nagappan and Ball, 2005b), and previous defaults (Kim et al., 2007) were
subsequently introduced. In software reliability engineering, a set of static code
attributes is extracted from previous software releases with the log files of defects.
These values are used to build classifiers to predict defective modules for the next
phase of release. This helps in locating the parts of the software that are most
likely to contain defects. Thus, a ‘good’ defect predictor system can be used as a
guide to the software engineers to focus on the testing of the defect-prone parts of
the software systems. PROMISE repository (Boetticher, 2007), an open-source
of defect prediction data sets from real-world projects, made rapid growth in the
field of SDP by making data sets available for public use. SDP researchers have
developed several defect predictors to improve the quality of software and reduce
the cost of delivery of those software systems.

A variety of statistical and machine learning tools have been applied to solve
SDP problems, such as DT (Breiman et al., 1984; Khoshgoftaar and Seliya, 2002),
RF (Breiman, 2001; Guo et al., 2004), DFFNN (Hornik et al., 1989; Zheng,
2010), support vector machines (Gray et al., 2009), Naive Bayes (NB) (Rish,
2001; Turhan and Bener, 2009) and artificial immune systems (Catal and Diri,
2009). Some researcher have considered using ensemble learning (Guo et al.,
2004; Sun et al., 2012), analogy-based methods (Khoshgoftaar and Seliya, 2003),
genetic programming (Khoshgoftaar and Liu, 2007), kernel-based methods (Gray
et al., 2009; Yang and Li, 2007), cost-sensitive learning (Zheng, 2010), and trans-
fer learning (Turhan, 2012) to build SDP models. It was shown that no single
method is found to be the ‘best’ for all the SDP data sets, but overall RF and
cost-sensitive learning approaches appear to be ‘good’ choices for the majority of
the data sets (Wang and Yao, 2013).
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However, many of the previous studies had overlooked the class imbalance sce-
nario in SDP data characteristics. Although, many researchers have considered
the imbalanced data distribution between defect and non-defect classes and used
ensemble algorithms and other methods of dealing with data imbalance (Gong
et al., 2019). Also, some researches showed the usefulness of resampling based
on tree-based learners (Pelayo and Dick, 2012; Wang and Yao, 2013). Ensemble
and cost-sensitive learning approaches were also studied and found beneficial if a
proper cost ratio is set (Laradji et al., 2015; Zheng, 2010). But these approaches
have obvious deficiencies like modifying the actual data sets using sampling tech-
niques or choice of appropriate weights in creating ensembles. To overcome these
drawbacks, a few “imbalanced data-oriented” classifiers were introduced in the
recent literature (Aler et al., 2020; Cieslak and Chawla, 2008; Su et al., 2015).
These classifiers (e.g., HDDT and HDRF) can handle class imbalance without
modification to the class distributions, but there is scope for improvements.

4.3 Formulation of the Hellinger Net Model

The idea of the Hellinger net algorithm is to map an HDDT into a DFFNN
model. The additional training in the HDDT framework using stochastic gradient
descent backpropagation can necessarily improve the performance of HDDT for
imbalanced classification problems that arise in SDP. This will prevent the HDDT
from overfitting, and since DFFNN is used in the hybridization, there is no need
for further tree-pruning in the proposed Hellinger net model. In the following
section, we first discuss the failure of decision trees in data imbalance frameworks
and then describe the HDDT, which will be used in the proposed Hellinger net
model. Further, we describe the proposed model in mathematical details.

4.3.1 Main Insight: Failure of Decision Trees

We first investigate the effect of class imbalance on the decision trees, follow-
ing Chakraborty and Chakraborty (2020b). It is essential to see how decision
boundaries created by DT get affected by imbalance ratio (the ratio between the
number of minority and majority examples).

Table 4.1: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a+ b
Y − c d c+ d

sum of attributes a+ c b+ d n

Let X be an attribute and Y be the response class. Here Y + denotes ma-
jority class, Y − denotes minority class, and n is the total number of instances.
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Also, let X≥ −→ Y + and X< −→ Y − be two rules generated by DT. Table 4.1
shows the number of instances based on the rules created using DT. In the case
of imbalanced data set, the majority class is always much larger than the size of
the minority class, and thus, we will always have a+ b >> c+ d. The generation
of rules based on confidence in DT is biased towards the majority class. Various
measures, like information gain (IG), Gini index (GI), and misclassification impu-
rity (MI) expressed as a function of confidence, are used to decide which variable
to split in the important feature selection stage (Flach, 2003). From Table 4.1,
we can define

Confidence(X≥ −→ Y +) =
a

a+ c
.

Let us consider a binary classification problem with the label set Ω = {ω1, ω2}
and let P (j/t) be the probability for class ωj at a certain node t of the classification
tree, where, j = 1, 2 for binary classification problems. These probabilities can
be estimated as the proportion of points from the respective class within the data
set that reached the node t. Using Table 4.1, we compute the following:

P (Y +/X≥) =
a

a+ c
= Confidence(X≥ −→ Y +) (4.1)

For an imbalanced data set, Y + will occur more frequently with X≥ & X<

than to Y −. So the concept of confidence is a fatal error in an imbalanced
classification problem where minority class is of more interest and data is biased
towards the majority class. In binary classification, information gain for splitting
a node t is defined as:

IG = Entropy(t)−
∑
i=1,2

ni
n

Entropy(i) (4.2)

where i represents one of the sub-nodes after splitting (assuming we have two
sub-nodes only), ni is the number of instances in sub-node i and n is the total
number of instances. Entropy at node t is defined as:

Entropy(t) = −
∑
j=1,2

P (j/t)log
(
P (j/t)

)
(4.3)

The objective of classification using DT is to maximize IG which reduces to
(assuming the training set is fixed and so the first term in equation (4.2) is fixed
as well):

Maximize

{
−
∑
i=1,2

ni
n

Entropy(i)

}
(4.4)

Using Table 4.1 and equation (4.3); the maximization problem in equation (4.4)
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reduces to:

Maximize

{
n1

n

[
P (Y +/X≥)log

(
P (Y +/X≥)

)
+ P (Y −/X≥)log

(
P (Y −/X≥)

) ]
+
n2

n

[
P (Y +/X<)log

(
P (Y +/X<)

)
+ P (Y −/X<)log

(
P (Y −/X<)

) ]}
(4.5)

The task of selecting the ‘best’ set of features for node i is carried out by picking
up the feature with maximum IG. As P (Y +/X≥) >> P (Y −/X≥), we face a
problem while maximizing (4.5). We can conclude from the above discussion
that impurity-based measures for tree splitting in DT are biased towards majority
class.

4.3.2 Hellinger Distance Decision Tree (HDDT)

The Hellinger distance (HD), a symmetric and non-negative measure of distribu-
tional divergence, is related to the Bhattacharyya’s distance and the Kullback-
Leibler’s divergence (Rao, 1995). Cieslak and Chawla (2008) proposed the use
of HD as a decision tree split criterion for imbalanced data classification. They
were able to utilize the distance by considering two distributions P and Q to be
the normalized frequencies of feature values in a binary classification scenario.
Cieslak et al. (2012) used the notion of ‘affinity’ between P and Q as a deci-
sion tree split criterion. The aim is to split tree nodes on those features with
minimal affinity, i.e., maximal HD. This approach is appealing since it enables
the splitting of features based on how well they discriminate between the exam-
ples seen so far in the stream, rather than on the feature which describes the
largest possible number of instances seen so far (as with information gain in case
of Breiman’s CART (Breiman et al., 1984)). Intuitively, HD is skew insensitive,
since an abundance of examples of one class will only serve to make its sample
distribution more representative of its real distribution. If a feature is a good
class discriminator, then irrespective of the balance, it will remain as such. We
formally define HD as follows:

Definition 11 Let (Θ, λ) denote a measurable space and assume that P and Q
be two continuous distributions for the parameter λ having the densities p and
q in a continuous space Ω, respectively (Akash et al., 2019). We define HD as
follows:

dH(P,Q) =

√∫
Ω

(
√
p−√q)2dλ =

√
2

(
1−

∫
Ω

√
pqdλ

)
(4.6)

where
∫

Ω

√
pqdλ is the Hellinger integral.
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It is noted that HD doesn’t depend on the choice of the parameter λ. HD carries
the following important properties:

1. dH(P,Q) is in [0,
√

2];

2. HD is symmetric and non-negative namely dH(P,Q) = dH(Q,P ) ≥ 0;

3. The bigger the value of HD is, the better discrimination of the feature is.

HDDT uses HD as the tree-splitting criterion and builds the tree based on the
idea of Breiman’s CART (Breiman et al., 1984) as described in Cieslak et al.
(2012). The core of their approach is a tree with kn leaf regions defined by a
partition of the space based on the n data points. When constructing the tree,
the so-called CART-split criterion is applied recursively. This criterion determines
which input direction should be used to split and where the cut should be made.
HDDT uses the same idea of CART (other than the choice of the split criterion)
to make a hierarchical axis-parallel split of the feature input spaces. Each tree
node corresponds to one of the segmentation subsets in the feature space. We
consider only a binary tree where a node has exactly two child nodes or zero child
nodes (Cieslak et al., 2012).

Remark 7 HD as a distance function satisfies the metric properties and it is also
comparable with statistical distance (Chakraborty and Chakraborty, 2020b). Thus,
HD is used as a popular choice of splitting criteria in decision trees (Akash et al.,
2019) and an ensemble of trees (Aler et al., 2020) for improved performance in
imbalanced problems. But HDDT suffers from the drawbacks of sticking to local
minima and overfitting for the small or medium sample-sized data sets (Chaabane
et al., 2019). Therefore, we propose a Hellinger net model that adds a soft pruning
in the HDDT framework using neural networks based on the idea of Biau et al.
(2019); Frosst and Hinton (2017); Utgoff (1989).

4.3.3 Proposed Hellinger Net Model

Suppose we have a training sample Dn = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)} with
n observations on p input features X ∈ Cp = [0, 1]p and we try to predict its
corresponding class label Y ∈ {0, 1}. HDDT consists of split nodes (for example,
x(i) ≥ α for some i ∈ {1, 2, ..., p} and some α ∈ C) and leaf nodes. The feature
space Cp is partitioned into axis-parallel hyper-rectangles. The tree splitting
criteria that is used to create the HDDT after slightly modifying the definition
of HD in (4.6) is as follows (Cieslak and Chawla, 2008; Cieslak et al., 2012):

HD = dH(X+, X−) =

√√√√√ p∑
j=1

(√
|X+j|
|X+|

−

√
|X−j|
|X−|

)2

, (4.7)
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where |X+| indicates the number of examples that belong to the majority class
in training set and |X+j| is the subset of training set with the majority class and
the value j for the feature X. Similar explanation can be written for |X−| and
|X−j| but for the minority class. Here p is the number of partitions of the feature
space X. The bigger the value of HD, the better is the discrimination between the
features. A feature is selected if it carries the minimal affinity between the classes.
Since equation (4.7) is not influenced by prior probability, it is insensitive to the
class distribution. Here, instead of using class probability, normalized frequencies
aggregated over all the p partitions across classes are used. HDDT is strongly
considered to be skew insensitive because of not using prior probability in the
distance calculation. However, the split criterion defined in equation (4.7) only
works on the binary classification problem. Even various modifications of HDDT
were found useful for handling imbalanced data classification problems (Akash
et al., 2019; Su et al., 2015).

Figure 4.1: An example of Hellinger net model: An HDDT (left) and its corre-
sponding DFFNN structure (right). The circle nodes in the tree belong to split
nodes and square nodes to leaf nodes. The path to the green shaded leaf (4)
consists of all red nodes (0, 1, 3). Numbers in neurons correspond to numbers in
tree model nodes. The highlighted connections in the network are those relevant
for the activity of the green neuron and its output value.

During prediction, the input is first passed into the tree root node and then
iteratively transmitted to the leaf node. This procedure is repeated until a leaf
node is reached. If a leaf node represents region S, then the tree estimate takes
the following form:

tn(x) =
1

Nn(S)

 ∑
{xi∈S}

Yi

 , (4.8)

where Nn(S) is the number of observations in cell S. We assume, by convention,
0/0 = 0. Suppose we are given with an HDDT estimate tn (the construction is
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necessarily data-dependent and reminiscent to imbalanced classification frame-
work), that can take constant values on each of the k (≥ 2) terminal nodes.
Since the value of k depends on n, using the notation kn is also appropriate.
Finally, these estimates are reinterpreted as two hidden layered DFFNN model
based on the following rules given below. This additional training to the HDDT
using stochastic gradient descent backpropagation can necessarily improve the
performance of HDDT for imbalanced classification problems that arise in SDP.
This will prevent the HDDT from overfitting, and since DFFNN is used in the
hybridization, there is no need for further tree-pruning in the proposed model.

Designing the first hidden layer: Define HL1 = {H1, H2, ..., Hk−1} be
the collection of all hyperplanes participating in the construction of tn. We note
that each Hk′ ∈ HL1 is of the form Hk′ = {x ∈ Cp : hk′ (x) ≥ 0}, where

hk′ (x) = x(i
k
′ )−αi

k
′ for some (eventually data-dependent) ik′ ∈ {1, 2, . . . , p} and

αi
k
′ ∈ C. For reaching out in the leaf of any query point x, we try to find, for

each hyperplane Hk′ , the side on which x falls (we accordingly assign +1 if it falls
in the right side and −1 for left). The input layer supplies the features to HL1
of neurons that corresponds to k − 1 perceptrons, with the threshold activation
function τ(hk′ (x)) = τ(x(i

k
′ )−αi

k
′ ), where τ(u) = 2Iu≥0− 1 and I denotes an in-

dicator function. Thus, for each split in the HDDT, there exists a neuron in HL1
whose activity encodes relative position of an input value x with respect to the
respective split. The outputs of HL1 are ±1 vector (τ(h1(x)), . . . , τ(hk−1(x))),
that will delineate all the decisions of the inner tree nodes (it also includes the
nodes off the tree path of x). It is worth noting that τ(hk′ (x)) is +1 if x is on
one side of the hyperplane Hk′ , and −1 if x is on the other side of Hk′ (where, by
convention, +1 if x ∈ Hk′ ). In Hellinger net, we use sigmoidal activation func-
tion instead of the relay-type activation function τ(u) with a hyperbolic tangent
activation function σ(u) = tanh(u) which has a chosen range from −1 to 1. More
precisely, Hellinger net uses σ1(u) = σ(β1u) at every neuron of the first hidden
layer for better generalization, where β1 is a positive hyper-parameter that de-
termines the contrast of the hyperbolic tangent activation function.

Designing the second hidden layer: HL1 outputs a (k − 1)-dimensional
vector of ±1-bits that encodes the precise position of x in the leaves of the tree.
The second hidden layer has k neurons, one for each terminal nodes, and assigns
a leaf cell to the value x. Define HL2 = {L1, . . . , Lk} as the collection of all the
terminal nodes of the tree, and let L(x) be the leaf containing x. A connection
from a unit k

′
of HL1 to another unit k′′ of HL2 is set if and only if the hyperplane

Hk′ is necessitated in the sequence of splits making the path from the root to the
leaf nodes Lk′′ . The aforesaid connection will have weight +1 if the split by
Hk′ is from a right child node in that path, and −1 otherwise. We will have
(u1(x), . . . , uk−1(x)) as the vector of ±1 bits obtained at the output of HL1,
then the output vk′′(x) ∈ {−1, 1} of neuron k′′ is τ(

∑
k′→k′′ bk′,k′′uk′(x) + b0

k′′).
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By the notation k′ → k′′, we mean k′ is connected to k′′ and bk′,k′′ = ±1 is the
corresponding weight. The offset b0

k′′ is set to

b0
k′′ = −l(k′′) +

1

2
, (4.9)

where l(k′′) is calculated as the length of the path from the root to Lk′′ . The
rationale behind the choice of (4.9) is that there are exactly l(k′′) connections
starting from the HL1 and pointing to k′′, thus we have{ ∑

k′→k′′ bk′,k′′uk′(x)− l(k′′) + 1
2

= 1
2

if x ∈ Lk′′∑
k′→k′′ bk′,k′′uk′(x)− l(k′′) + 1

2
≤ −1

2
if x 6∈ Lk′′

(4.10)

Using (4.10), the value of vk′′(x) = 1 if and only if the terminal cell of the value
x is Lk′′ . To summarize, HL2 outputs a vector (v1(x), ..., vk(x)) of ±1 bits. In
Hellinger net, we use σ2(u) = σ(β2u) = tanh(β2u) at every neuron of the second
hidden layer instead of relay-type threshold activation function for better gener-
alization, where β2 is a positive hyper-parameter that determines the contrast of
the activation function.

Designing the output layer: The output layer calculates the average Ȳk′′
of the Yi corresponding to Xi falling in Lk′′ when vk′′(x) = +1. Equivalently, we
consider the following form of tree estimates:

tn(x) =
k∑

k′′=1

wk′′vk′′(x) + bout, (4.11)

where wk′′ = Ȳk′′/2 for all k′′ ∈ {1, . . . , k}, and bout = 1
2

∑k
k′′=1 Ȳk′′ .

Then the classification rule to be used by Hellinger net model can be written
as

gn(x) =

{
0, if tn(x) ≤ 1

2

1, otherwise,
(4.12)

where gn(x) is the predicted class of the proposed Hellinger net model.

We considered a tree estimate tn (obtained from HDDT) and seen it as a
neural network estimate. The architecture of this network (conditional on Dn) is
fixed, and so are the weights and offsets of the three layers. The original idea is
to keep the network structure intact and let the parameters vary in a subsequent
network training procedure with backpropagation training. Once the connections
between the neurons have been designed by the tree-to-network mapping, we
could then learn even better network parameters by minimizing some empirical
mean squared error for this network over the sample Dn. This additional training
can potentially improve the predictions of the base HDDT model. We can achieve
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better generalization in the neural network training stage by incorporating soft
nonlinearities in the neurons by choosing smooth activation functions. So, to
increase the generalization capabilities of the proposed tree-to-network mapped
model as described above, we replace the original relay-type activation function
τ(u) = 2Iu≥0−1 in its hidden layers with a smooth hyperbolic tangent activation
function,

σ(u) = tanh(u) =
eu − e−u

eu + e−u
=
e2u − 1

e2u + 1
,

which has a range of −1 to 1. More precisely, we use σ1(u) = σ(β1u) at every
neuron of the first hidden layer and σ2(u) = σ(β2u) at every neuron of the second
one. Here, β1 and β2 are positive hyperparameters that determine the contrast
of the hyperbolic tangent activation: the larger β1 and β2 are, the sharper is the
transition from −1 to 1. Obviously, when β1 and β2 approach infinity, the contin-
uous functions σ1 and σ2 converge to the threshold function. Besides eventually
providing better generalization, the hyperbolic tangent activation functions favor
smoother decision boundaries and permit a relaxation of crisp tree node mem-
bership (Brent, 1991). Using a smooth continuous activation function in the
architecture makes the network loss function differentiable with respect to the
parameters everywhere, and gradients can be backpropagated to train the net-
work.

Remark 8 In the Hellinger net, training of a neural network with sparse con-
nectivity retains some degree of interpretability of its internal representation. It
may be seen as a relaxation of original tree structures. The initial tree-type set-
ting provides a strong inductive bias, compared to a random initialization, which
contains valuable information and mimics the function of an HDDT-type tree
(Cieslak et al., 2012) before the backpropagation training. Compared to a random
initialization, this gives the network an effective warm start. Also, the additional
training using backpropagation with hyperbolic tangent activation function will
potentially improve the predictions of the DT as well as the risk of overfitting.
The use of hyperbolic tangent activation functions instead of threshold activation
function provide better generalization, smooth decision boundaries, and fast im-
plementation. They also support the differentiability of the empirical loss function
with respect to its parameters due to the continuous property of the tangent acti-
vation function. Thus the gradients can be backpropagated to train the Hellinger
net model.

4.3.4 Hellinger Net Algorithm

We present an informal workflow of the Hellinger net algorithm below (also see
Figure 4.1).

• Build HDDT with (kn−1) split nodes and kn leaf nodes. HDDT is mapped
into a two hidden layered DFFNN model having (kn − 1) and kn hidden
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neurons in first hidden layer (HL1) and second hidden layer (HL2), respec-
tively.

• The first hidden layer of the model is called the partitioning layer, which
partitions the input feature spaces into different regions. The partitioning
layer corresponds to the internal nodes of the HDDT. In HL1, the neurons
compute all the tree split decisions and indicate the split directions for the
inputs.

• Further, HL1 passes the information to HL2. The second hidden layer
implements the ANDing of partitioned regions. Also, an ORing in the final
layer of the two-layered DFFNN model is implemented. The neurons in the
second hidden layer represent the terminal nodes of the DT.

• Train the tree-structured neural network using a stochastic gradient descent
backpropagation algorithm. The additional training using backpropagation
potentially improves the predictions of the HDDT and can deny tree pruning
steps vis-a-vis the risk of overfitting. Hellinger net gives weight to the nodes
according to their significance, as determined by the stochastic gradient
backpropagation algorithm.

• The final layer is the output class label to be decided by the neural net-
work training. In the Hellinger net, the neural network follows the built-in
hierarchy of the originating tree since connections do not exist between all
pairs of neurons in any two adjacent layers.

Remark 9 Fitting a fully connected DFFNN algorithm with 2 hidden layers hav-
ing kn − 1 and kn neurons in the first and second hidden layer, respectively, re-
quires optimizing a total of (p + 1)(kn − 1) + k2

n + kn + 1 parameters, which is
O(pkn + k2

n) (Brent, 1991). If one assumes that the tree generated by HDDT al-
gorithm is roughly balanced, then the average depth of the tree is O(log kn). This
gives, on an average, 2(kn − 1) + O(kn log kn) + kn + 1 parameters to be fitted,
which is O(kn log kn) for Hellinger net model. For large kn, this quantity can be
much smaller than O(pkn + k2

n) and this gives a major computational advantage
in high-dimensional settings.

4.4 Asymptotic Results

To prove the theoretical consistency of Hellinger net, we consider the tree in the
ensemble model and denote it by G1 ≡ G1(Dn) as a bipartite graph which models
the connections between the input vectors x = (x(1), ..., x(p)) and kn − 1 hidden
neurons of HL1. Also, let G2 ≡ G2(Dn) represent the connections between
HL1 and kn hidden neurons of HL2. Define M(G1) be the set of p × (kn − 1)
matrices A = (aij) such that aij = 0 if (i, j) /∈ G1. Also, define M(G2) to be
the (kn − 1) × kn matrices B = (bij) such that bij = 0 if (i, j) /∈ G2. The model
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specifying parameters in the HL1 (of the size kn − 1) are put in a matrix A
of M(G1) identified by the weights over the edges of G1 and a column vector of
biases b1. Similarly, for HL2 (of the size kn), a matrix B of M(G2) of weights over
G2 and a column vector b2 of offsets is formed. Let us take the output weights
and offset to be Wout = (w1, . . . , wkn)> ∈ Rkn and bout ∈ R, respectively. And the
parameters that specify the Hellinger net model are constituted by a ‘vector’ as
shown below:

λ = (A, b1, B, b2,Wout, bout) ∈M(G1)×Rkn−1 ×M(G2)×Rkn ×Rkn ×R.

We further assume that there will always exist a positive constant c1 such
that

‖B‖∞ + ‖b2‖∞ + ‖Wout‖1 + |bout| ≤ c1kn, (4.13)

where ‖ · ‖∞ is the supremum norm of a matrix and ‖ · ‖1 is the L1-norm of
a vector. The rationale behind this assumption (4.13) is that the weights and
offsets are taken by the computation units of HL2 and the output layer. We note
that the condition is satisfied by the tree estimates as Y takes values in {0, 1}.

Thus, let Λn,kn =
{
λ = (A, b1, B, b2,Wout, bout) : (4.13) is satisfied

}
, then

DFFNN implements the functions of this particular form

fλ(x) = W>
outσ2

(
B>σ1(A>x+ b1) + b2

)
+ bout, x ∈ Cp,

where λ ∈ Λn,kn . We aim to tune the parameters λ using the training data Dn

such that the function realized by the acquired neural net becomes a ‘good’ esti-
mate that can minimize the empirical error. Let Fn,kn =

{
fλ : λ ∈ Λn,kn

}
, where

Fn,kn be the class of neural networks.

We define the L1 error of a function ψ : Cp → {0, 1} by J(ψ) = E{|ψ(X)−Y |}.
To show the strong consistency of the classification rule

gn(x) =

{
0, if ψn(x) ≤ 1

2
.

1, otherwise.

We need to show J(ψn) − J∗ → 0 in probability, where J(ψn) = E{|ψn(X) −
Y ||Dn} and J∗ = infψn J(ψn). Write

J(ψn)− J∗ =

(
J(ψn)− inf

ψ∈Fn,kn
J(ψ)

)
+

(
inf

ψ∈Fn,kn
J(ψ)− J∗

)
(4.14)

where, (J(ψn)− infψ∈Fn,kn J(ψ)) is called estimation error and (infψ∈Fn,kn J(ψ)−
J∗) is called approximation error (Devroye et al., 1996). The main result for
consistency of the Hellinger net classifier is formally presented in the following
theorem.
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Theorem 13 Assume X is uniformly distributed in [0, 1]p, Y = {0, 1}, and ψ ∈
Fn,kn. As n → ∞ and for any kn, β1, β2 → ∞ if the following conditions are
satisfied:

(A1)
k4
nlog(β2k

4
n)

n
→ 0,

(A2) there exists δ > 0 such that
k2
n

n1−δ → 0,

(A3)
k2
n

e2β2
→ 0, and

(A4)
k3
nβ2

β1

→ 0,

then the classification rule gn(x) is strongly consistent.

Remark 10 Theorem 13 states that with certain restrictions imposed on the
number kn of terminal nodes and the parameters β1, β2 being properly regulated
as functions of n, the empirical L1 risk-minimization provides strong consistency
of the Hellinger net classifier. It should be noted that the larger the value of kn, β1

and β2, the better is the model in practice. These results are in terms of theoreti-
cal feasibility. In practice, the learning model can be difficult due to optimization
difficulties.

Proof To prove Theorem 13, we need to show that under the conditions (A1)-
(A4), the estimation error and the approximation error tend to zero. This will
ensure the strong consistency of the proposed Hellinger net model. To handle
estimation error, we write

J(ψn)− inf
ψ∈Fn,kn

J(ψ)

≤ 2 sup
ψ∈Fn,kn

|J(ψ)− Jn(ψ)|

= 2 sup
ψ∈Fn,kn

∣∣∣∣E{|ψ(X)− Y |} − 1

n

n∑
i=1

|ψ(Xi)− Yi|
∣∣∣∣

(4.15)

We can assume that for each ψ ∈ Fn,kn , satisfies ‖ψ‖∞ ≤ c1kn. Define the class
Mn,kn of functions on Cp × {0, 1} by

Mn,kn =

{
m(x, y) =

∣∣y − ψ(x)
∣∣ : (x, y) ∈ Cp × {0, 1}

}

Then the upper bound of equation (4.15) becomes

2 sup
m∈Mn,kn

∣∣∣∣E{m(X, Y )} − 1

n

n∑
i=1

m(Xi, Yi)

∣∣∣∣.
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Applying uniform law of large numbers we can observe that the function m ∈
Mn,kn will satisfy the following: 0 ≤ m(x, y) ≤ 2c1kn. For large n and c1kn ≥ 1,
upon using Theorem 4 (Pollard, 1984), we obtain the following:

P

{
sup

m∈Mn,kn

∣∣∣∣E{m(X, Y )} − 1

n

n∑
i=1

m(xi, Yi)

∣∣∣∣ > ε

}

≤ 8E{N(ε/8,Mn,kn(Dn))} exp{−nε2/(512c2
1k

2
n)},

(4.16)

where N(ε,Mn,kn(Dn)) denotes the l1-covering number of the random set

Mn,kn(Dn) = {(m(X1, Y1), ..., (m(Xn, Yn) : m ∈Mn,kn}.

Observe that for m1,m2 ∈ Mn,kn with m1(x, y) = |ψ1(x) − y| and m2(x, y) =
|ψ2(x)− y|, for any probability measure υ on Cp × {0, 1},∫ ∣∣m1(x, y)−m2(x, y)

∣∣υ(d(x, y)) ≤
∫ ∣∣ψ1(x)− ψ2(x)

∣∣µ(dx),

where µ is the marginal of υ on Cp. It follows from above that N(ε,Mn,kn(Dn)) ≤
N(ε, Fn,kn(Xn)), where Xn = (X1, X2, ..., Xn).

Let the output of neurons of HL1 belong to the class

G1 = {σ1(a>x+ a0) : a ∈ Rp, a0 ∈ R},

and for 0 < ε < 1/4,

N(ε,G1, X
n) ≤ 2

(
4e

ε

)2p+4

.

Next, letting G2 = {bg : g ∈ G1, b ∈ [−c1kn, c1kn]} we get

N(ε,G2, X
n) ≤ 4c1kn

ε
N
( ε

2c1kn
, G1, X

n
)

≤
(8ec1kn

ε

)2p+5

.

The second unit will compute the functions of the collection

G3 =

{
σ2

( kn−1∑
i=1

gi + b0

)
: gi ∈ G2, b0 ∈ [−c1kn, c1kn]

}
.

Note that σ2 satisfies the Lipschitz property |σ2(u) − σ2(v)| ≤ β2|u − v| for all
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(u, v) ∈ R2. Therefore,

N(ε,G3, X
n) ≤ 2c1β2k

2
n

ε
N
( ε

2β2kn
, G2, X

n
)kn−1

≤
(16ec1β2k

2
n

ε

)(2p+5)kn
.

Also, let G4 = {wg : g ∈ G3, w ∈ [−c1kn, c1kn]}.

Now, without loss of generality c1, β2 ≥ 1, and we get

N(ε,G4, X
n) ≤ 4c1kn

ε
N
( ε

2c1kn
, G3, X

n
)

≤
(32ec2

1β2k
3
n

ε

)(2p+5)kn+1

.

Finally, we can write

Fn,kn =

{
kn∑
i=1

gi + bout : gi ∈ G4, bout ∈ [−c1kn,−c1kn]

}
.

We conclude

N(ε, Fn,kn , X
n) ≤ 2c1kn(kn + 1)

ε

[
N
( ε

kn + 1
, G4, X

n
)]kn

≤
(32ec2

1β2(kn + 1)4

ε

)(2p+5)k2n+kn+1

.

(4.17)

Combining (4.16)-(4.17) together, we obtain

P

{
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣− E∣∣Y − f(X)

∣∣∣∣∣ > ε

}

≤ 8
(256ec2

1β2(kn + 1)4

ε

)(2p+5)k2n+kn+1

exp

(
− nε2

512c2
1k

2
n

)
.
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Now if the conditions (A1) and (A2) of Theorem 13 holds, then

∞∑
n=1

P

{
sup

f∈Fn,kn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣− E∣∣Y − f(X)

∣∣∣∣∣ > ε

}

<

∞∑
n=1

8 exp

[(
(2p+ 5)k2

n + kn + 1
)
× log

(256ec2
1β2(kn + 1)4

ε

)
− nε2

512c2
1k

2
n

]

=
∞∑
n=1

8

[
− nδ.n

1−δ

k2
n

(
ε2

512c2
1

−

(
(2p+ 5)k2

n + kn + 1
)
k2
n log

(
256ec21β2(kn+1)4

ε

)
n

)]

<∞.

Applying the above together with Borel-Cantelli Lemma (Lemma 4), we have
estimation error approaches to zero.

To handle the approximation error, let us consider a piece-wise constant func-
tion (also, referred as pseudo-estimate) in resemblance with the tree tn. Define

(W ?
out)k′′ =

1

2
E [Y |X ∈ Lk′′ ] and b?out =

1

2

kn∑
k′′=1

E [Y |X ∈ Lk′′ ] .

Thus, the tree-type pseudo-estimate has the form

tλ?(x) = W ?>
out τ

(
B?>τ(A?>x+ b?1) + b?2

)
+ b?out, x ∈ Rp,

for some λ? = (A?, b?1, B
?, b?2,W

?
out, b

?
out) and ‖W ?

out‖ ≤ kn
2

.
Also by definition,

fλ?(x) = W ?>
out

[
σ2

(
B?>σ1(A?>x+ b?1) + b?2

)]
+ b?out.

Now, let ψ
′ ∈ Fn,kn be a function such that

E{|ψ′(X)− g∗(X)|} ≤ E{|ψ(X)− g∗(X)|}

for each ψ ∈ Fn,kn . The existence of such a function is justified because E{|ψ(X)−
g∗(X)|} is a continuous function of the parameters of the neural network ψ.
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Clearly,

inf
ψ∈Fn,kn

J(ψ)− J∗ ≤ J(ψ
′
)− J∗

= E{|ψ′(X)− Y |} − E{|g∗(X)− Y |}
≤ E{|ψ′(X)− g∗(X)|}
≤ E{

∣∣fλ?(x)− tλ?(x)
∣∣}.

Thus, for any positive kn and using triangle inequality,∣∣fλ?(x)− tλ?(x)
∣∣

≤ kn
2
×
∥∥∥σ2

(
B?>σ1(A?>x+ b?1) + b?2

)
− τ
(
B?>τ(A?>x+ b?1) + b?2

)∥∥∥
≤ kn

2

[∥∥∥σ2

(
B?>σ1(A?>x+ b?1) + b?2

)
− σ2

(
B?>τ(A?>x+ b?1) + b?2

)∥∥∥
+
∥∥∥σ2

(
B?>τ(A?>x+ b?1) + b?2

)
− τ
(
B?>τ(A?>x+ b?1) + b?2

)∥∥∥]
=
kn
2

[
I1 + I2

]
, say. (4.18)

Recall that σi is hyperbolic tangent activation function and τ is a threshold
activation function, then we can write for all u ∈ R,

|σi(u)− τ(u)| ≤ 2e−2βi|u| for all i = 1, 2.

Now, using Lipschitz property and the definition of B?, we can find the upper-
bound for I1 as follows:

I1 ≤
kn∑
j=1

β2

∣∣∣(B?>(σ1(A?>x+ b?1)− τ(A?>x+ b?1)
)
j

∣∣∣
≤ β2kn

∥∥σ1(A?>x+ b?1)− τ(A?>x+ b?1)
∥∥

≤ 2β2kn

kn−1∑
j=1

exp

(
−2β1|(A?>x+ b?1)j|

)
≤ 2β2k

2
n exp

(
−2β1ε

)
(for some fixed j and arbitrary ε > 0).

For all n large enough, choosing ε = log(β1)
2β1

, we get

I1 ≤
2β2k

2
n

β1

.
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Similarly,

I2 ≤ 2
kn∑
j=1

exp
[
− 2β2

∣∣(B?>τ(A?>x+ b?1) + b?2
)
j

∣∣] ≤ 2kne
−β2 .

Since for every j,∣∣(B?>τ(A?>x+ b?1) + b?2
)
j

∣∣ ≥ 1

2
from the definition of (A?, b?1, B

?, b?2).

Putting these upper bounds of I1 and I2 together in (4.18) we get the following:

E
∣∣fλ?(x)− tλ?(x)

∣∣ ≤ [k2
ne
−β2 +

β2k
3
n

β1

]
. (4.19)

R.H.S. of (4.19) tends to zero if the conditions (A3) and (A4) of Theorem 13
hold. �

4.5 Computational Experiments

In this section, we first describe the data sets to be used in this study. Subse-
quently, we are going to report the experimental results and compare our proposed
model with other state-of-the-art methods.

4.5.1 Data Description

In our experiments, we take ten software defect prediction data sets from pub-
licly available NASA data sets, which are available at the PROMISE repository
(Boetticher, 2007). These data sets are clean data sets that do not have any data
quality issues and have been used in current studies on SDP (Gong et al., 2019).
Each data set reports the attributes of a software module along with the class
label of whether this module contains defects or not. The imbalance rate of these
data sets varies from 2.1 to 35.2%. Table 4.2 gives an overview of these SDP data
sets.

4.5.2 Results and Comparisons

In order to show the impact of the proposed Hellinger net classifier, it is applied
to the standard SDP data sets. We do experiments on ten clean PROMISE data
sets for SDP and compare our proposed method with seven competitive methods
from the SDP and class imbalanced learning literature. To start, we first shuffled
the observations in each of the different PROMISE data sets randomly and split
them into training, validation, and test data sets in a ratio of 50 : 25 : 25. We have
employed 10-fold cross-validation (CV) with different randomly assigned training,
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Table 4.2: Characteristics of the PROMISE SDP data sets (Defect % is the
percentage of defective modules)

Data set Classes Objects Attributes Defect %
CM1 2 327 37 12.8
KC3 2 194 39 18.6
MC1 2 1988 38 2.3
MC2 2 125 39 35.2
MW1 2 253 37 10.7
PC1 2 705 37 8.7
PC2 2 745 36 2.1
PC3 2 1077 37 12.4
PC4 2 1287 37 13.8
PC5 2 1711 38 27.5

Table 4.3: Recall, AUC and F-measures (mean values and their standard devia-
tion) for different classifiers over ten SDP data sets

data set Measure ISDA STr-NN SMB+DT VCB-SVM ABNC+DT HDDT HDRF Hellinger
net

CM1 F-measure 0.84 (0.02) 0.845 (0.012) 0.792 (0.01) 0.76 (0.03) 0.842 (0.02) 0.785 (0.015) 0.82 (0.054) 0.865 (0.052)
AUC 0.55 (0.032) 0.566 (0.02) 0.653 (0.017) 0.595 (0.04) 0.66 (0.019) 0.573 (0.04) 0.671 (0.049) 0.706 (0.04)
Recall 0.30 (0.01) 0.38 (0.02) 0.593 (0.001) 0.395 (0.04) 0.320 (0.005) 0.30 (0.01) 0.491 (0.049) 0.66 (0.034)

KC3 F-measure 0.73 (0.01) 0.77 (0.02) 0.78 (0.06) 0.80 (0.02) 0.732 (0.006) 0.892 (0.014) 0.902 (0.014) 0.832 (0.027)
AUC 0.56 (0.05) 0.656 (0.04) 0.748 (0.03) 0.626 (0.017) 0.541 (0.07) 0.532 (0.12) 0.737 (0.01) 0.744 (0.02)
Recall 0.35 (0.02) 0.5 (0.015) 0.348 (0.024) 0.465 (0.01) 0.33 (0.07) 0.584 (0.03) 0.536 (0.008) 0.60 (0.02)

MC1 F-measure 0.975 (0.001) 0.95 (0.003) 0.965 (0.002) 0.97 (0.001) 0.97 (0.005) 0.94 (0.005) 0.97 (0.004) 0.985 (0.003)
AUC 0.64 (0.02) 0.76 (0.03) 0.69 (0.01) 0.66 (0.025) 0.59 (0.01) 0.532 (0.06) 0.70 (0.01) 0.80 (0.03)
Recall 0.18 (0.00) 0.58 (0.00) 0.42 (0.001) 0.36 (0.008) 0.17 (0.00) 0.333 (0.00) 0.50 (0.01) 0.60 (0.00)

MC2 F-measure 0.67 (0.02) 0.71 (0.02) 0.66 (0.01) 0.61 (0.04) 0.75 (0.01) 0.57 (0.06) 0.68 (0.01) 0.73 (0.04)
AUC 0.638 (0.01) 0.65 (0.01) 0.59 (0.01) 0.57 (0.02) 0.69 (0.01) 0.43 (0.06) 0.60 (0.01) 0.673 (0.008)
Recall 0.60 (0.01) 0.5 (0.00) 0.33 (0.00) 0.26 (0.02) 0.4 (0.01) 0.5 (0.00) 0.55 (0.01) 0.54 (0.02)

MW1 F-measure 0.80 (0.04) 0.91 (0.014) 0.88 (0.144) 0.779 (0.132) 0.832 (0.090) 0.772 (0.120) 0.795 (0.134) 0.902 (0.017)
AUC 0.612 (0.08) 0.816 (0.02) 0.70 (0.016) 0.643 (0.014) 0.58 (0.10) 0.535 (0.04) 0.627 (0.1) 0.790 (0.023)
Recall 0.40 (0.01) 0.70 (0.02) 0.50 (0.06) 0.35 (0.02) 0.620 (0.05) 0.40 (0.01) 0.55 (0.04) 0.65 (0.03)

PC1 F-measure 0.915 (0.02) 0.890 (0.05) 0.89 (0.032) 0.88 (0.03) 0.92 (0.002) 0.882 (0.01) 0.902 (0.04) 0.945 (0.008)
AUC 0.586 (0.08) 0.808 (0.027) 0.786 (0.008) 0.67 (0.010) 0.632 (0.07) 0.532 (0.05) 0.719 (0.08) 0.854 (0.022)
Recall 0.842 (0.108) 0.858 (0.087) 0.796 (0.118) 0.838 (0.080) 0.815 (0.107) 0.832 (0.090) 0.839 (0.108) 0.87 (0.07)

PC2 F-measure 0.97 (0.00) 0.97 (0.00) 0.96 (0.01) 0.97 (0.01) 0.96 (0.00) 0.95 (0.00) 0.97 (0.00) 0.98 (0.005)
AUC 0.5 (0.00) 0.5 (0.00) 0.56 (0.01) 0.45 (0.005) 0.620 (0.04) 0.432 (0.00) 0.570 (0.01) 0.66 (0.02)
Recall 0 (0.00) 0.1 (0.00) 0 (0.00) 0 (0.00) 0.05 (0.00) 0.1 (0.00) 0.1 (0.00) 0.2 (0.00)

PC3 F-measure 0.888 (0.01) 0.840 (0.05) 0.82 (0.03) 0.81 (0.02) 0.880 (0.02) 0.796 (0.03) 0.883 (0.017) 0.907 (0.04)
AUC 0.598 (0.018) 0.756 (0.012) 0.635 (0.03) 0.654 (0.018) 0.65 (0.02) 0.532 (0.04) 0.614 (0.02) 0.835 (0.009)
Recall 0.48 (0.01) 0.67 (0.02) 0.45 (0.03) 0.48 (0.02) 0.38 (0.028) 0.49 (0.01) 0.64 (0.02) 0.70 (0.005)

PC4 F-measure 0.905 (0.015) 0.86 (0.01) 0.88 (0.01) 0.79 (0.02) 0.89 (0.04) 0.82 (0.006) 0.87 (0.01) 0.90 (0.02)
AUC 0.805 (0.01) 0.836 (0.01) 0.80 (0.03) 0.67 (0.04) 0.744 (0.03) 0.679 (0.05) 0.783 (0.01) 0.842 (0.03)
Recall 0.50 (0.06) 0.80 (0.03) 0.71 (0.01) 0.47 (0.07) 0.53 (0.04) 0.41 (0.09) 0.63 (0.03) 0.82 (0.03)

PC5 F-measure 0.74 (0.05) 0.72 (0.10) 0.75 (0.02) 0.78 (0.02) 0.73 (0.05) 0.78 (0.02) 0.80 (0.01) 0.825 (0.01)
AUC 0.65 (0.03) 0.66 (0.04) 0.62 (0.06) 0.68 (0.01) 0.56 (0.05) 0.62 (0.005) 0.64 (0.06) 0.70 (0.05)
Recall 0.45 (0.00) 0.360 (0.00) 0.40 (0.00) 0.26 (0.00) 0.35 (0.00) 0.25 (0.00) 0.40 (0.00) 0.50 (0.00)
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Table 4.4: Statistical test results (p-values) between Hellinger net and other com-
parative methods for SDP data sets

Measure ISDA STr-NN SMB+DT VCB-SVM ABNC+DT HDDT HDRF

AUC 0 0.01 0.005 0.001 0.02 0 0
Recall 0.01 0.01 0 0.045 0.03 0 0.001

F-measure 0.004 0.05 0.003 0.007 0.032 0.233 0.118

validation, and test sets. Further, we compare our proposed classifier mostly with
“imbalanced data-oriented” classifiers as baseline comparisons. Five ‘best’ class
imbalance learning methods are random undersampling SMOTEBoost (SMB)
(Chawla et al., 2003), AdaBoost.NC (ABNC) (Wang and Yao, 2013), stratifica-
tion embedded in nearest neighbor (STr-NN) (Gong et al., 2019), improved sub-
class discriminant analysis (ISDA) (Jing et al., 2016) and value-cognitive boosting
with support vector machine (VCB-SVM) (Ryu et al., 2016) that are used for
comparison study in this study. A python toolbox, namely ‘imbalanced-learn’, is
used to tackle the curse of imbalanced data sets, provides an application of a wide
range of available sampling methods that have been used in our study (Lemâıtre
et al., 2017). We implement these two sampling techniques using “imbalanced-
learn” package in python with the default parameters available in the toolbox.
These methods provide us balanced data sets with equal class distributions. On
the balanced data sets, we use the well known DT learner in the SMB and ABNC
sampling methods as the base classifier for all the experiments. It is the most
commonly discussed technique in SDP literature and we use the default parameter
setting available in the ‘scikit-learn’ package in python toolbox. We only disable
the tree pruning since it may remove leaves from the minority class concept. In
the case of another individual learner NB, we use data pre-processed by the log
filter, and another ensemble method RF is trained by using 50 unpruned trees
for all the data sets used here. We implemented the HDDT algorithm based
on Cieslak et al. (2012) for learning from imbalanced SDP data sets. HDDT
usually achieved higher accuracy than standard DT. This indicates that “imbal-
anced data-oriented” classifiers perform better than the conventional supervised
classifiers designed for general purposes. Further, we implemented HDRF based
on Su et al. (2015) which is among other imbalanced data-oriented algorithms.
Implementation of sampling technique methods requires careful verification of
parameter settings so that one can control the strength of emphasizing the mi-
nority class prior to the learning algorithm. SMB proceeds with 50 classifiers
constructed based on the training data, with SMOTE applied at each round of
Boosting. The number of nearest neighbors is chosen to be five based on the
recommendation of Wang and Yao (2013). ABNC has, as a prerequisite, random
oversampling applied to the minority class first to ensure both the classes have
the same size. Then 50 classifiers are constructed sequentially by ABNC. λ is a
penalty strength assigned for encouraging the ensemble diversity and it is varied
from 1 to 20 with the increment of 1 for all the experiments.

98



4. HELLINGER NET FOR IMBALANCED LEARNING

Then we started experimenting with our proposed model. The training pro-
cedure for the optimal hybrid model is as follows. HDDT is first built using
the ‘scikit-learn’ package implementation (Pedregosa et al., 2011) for tree de-
signing. From the HDDT, we extracted the set of all split directions and split
positions and used them to build neural network initialization parameters. The
hybrid models are then trained using the ‘TensorFlow’ library in python software
(Abadi et al., 2016). The optimization with the network model is done by min-
imizing the empirical error on the training set. It is achieved by employing an
iterative stochastic gradient-descent optimization technique. The architecture of
the network is kept fixed, and thus the weights and offsets of the three-layered
DFFNN model are also fixed. A natural idea is then to keep the structure of
the network intact and let the parameters vary in a subsequent network training
procedure with backpropagation neural network training. We have used the de-
fault functions available in TensorFlow for this. DFFNN, in the hybrid set up,
was trained for 100 epochs. The default hyper-parameter values were chosen for
the gradient-based optimization algorithm available in Python machine learning
software. We have experimentally found that using a lower value for β2 than
that for β1 is appropriate for achieving the high accuracy of the model. In this
case the initial parameters of the tan-hyperbolic activation function in the two
layers were chosen as: β1 = 100, β2 = 1. This is also practically very significant
since for a relatively small β2, the transition in the activation function from −1
to +1 is smoother and a very stronger stochastic gradient signal reaches the first
hidden layer in backpropagation training. Similarly, a converse explanation can
be given for β1. The training time and memory requirements are also quite low
for the hybrid model compared to advanced deep neural network models. Our
proposed hybridization is faster, especially when trained on a GPU. In Table 4.3,
we present the results of different classifiers on the SDP data sets and the best
results are displayed in bold fonts.

To sum up, among seven competitive methods, the proposed method is the
winner according to the performance metrics (Recall, AUC value, and F-measure)
for the seven out of ten NASA SDP data sets. From the statistical point of view
on the nature of the SDP problem, the robustness of the proposed method to
class imbalance problem in SDP implies that the extracted features are appropri-
ate for describing the software modules’ attributes. Moreover, STrNN and ISDA
are ‘second’ and ‘third’ best choices as an imbalanced classifier in terms of the
performance metrics for the majority of the SDP data sets as compared to the
other traditional methods considered in this study. From the experimental eval-
uation of different classifiers, it can be concluded that, on average, the Hellinger
net model outperforms other individuals, ensemble, and hybrid statistical and
machine learning models by a significant margin. The possible reasons for the
failure of the earlier state-of-the-arts in comparison with our proposed approach
for 70% of the data sets are: (a) Methods like STrNN, ABNC, VCB, SMB, and
ISDA only focused on the characteristics of the source data set and worked on
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data-level; (b) These methods do not consider the information of target data
set to select the appropriate training data; (c) These methods do not consider
the class imbalance problem in algorithmic level. Thus, the proposed Hellinger
net method can be a ‘good’ choice for imbalanced learning in SDP data sets to
the software engineers working on early defect predictions and software quality
improvements.

4.5.3 Significance of Improvements

In this section, we comment on the significance of the improvement and describe
the potential threats to impact the results of our studies.

• (a) Level of Imbalance: It is clear from Table 4.2 that the proposed
Hellinger net model is able to handle data sets with an imbalance rate
varying from 2.1% to 35.2%. There is further validation required from
other standard UCI imbalanced data sets and simulated data sets which
are given in Section 4.6 and 4.7.

• Potential Improvements: Finally, from Table 4.3, we can see that there is
a significant difference between our proposed Hellinger net model and other
state-of-the-art approaches in terms of Recall, F-measure, and AUC. Since
defective instances are more important than clean examples in software
defect testing, the Hellinger net improves the Recall values that well relieves
the class-imbalance problems for SDP. In terms of AUC, Recall, and F-
measure, our proposed method performed superior to all the state-of-the-
art for seven out of ten data sets and has shown significant improvement
over them.

• Statistical Significance: To determine the statistical significance of com-
parative methods, we performed a Wilcoxon signed-rank test. This is a
distribution-free test between two classifiers where we make a hypothesis
that there exist no significant differences between our proposed Hellinger
net model and each of the other approaches at a confidence level of 95%.
If the p-value of the test is below 0.05, we conclude that there is a signif-
icant difference between our proposed Hellinger net and each of the other
state-of-the-art approaches. These results are presented in Table 4.4.

• Validity of Performance Measures: We consider only F-measure, AUC,
and Recall as the performance metrics in this study. There are different
metrics available in the literature and it may influence the performance
of classifiers. However, our experiments’ performance measures are care-
fully selected to ensure the reliability of experimental results, including
F-measure, AUC, and Recall. In future work, other performance measures
will be considered.
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• Data Validity: We choose ten cleaned data sets from publicly available
data sets PROMISE and NASA which have been widely used in many
studies for SDP. Our selected data sets are diverse in size, features, and
percentage of defective instances, and this helps draw the generalization of
our findings. Also, we consider a larger number of data sets, and this further
validates our studies. However, further investigations on some commercial
data sets are required which are given in Section 4.6.

• Conclusion Validity: Threats to conclusion validity concern the rela-
tionship between the treatment and the outcome. In these experiments,
we employed 10-fold cross-validation while experimentation with SDP data
sets to avoid random bias, and calculate the average results to achieve the
performance of all compared approaches. F-measure, AUC, and Recall are
used to measure the effectiveness of the compared methods. Furthermore,
the Wilcoxon signed-rank test is used to compare the state-of-the-art meth-
ods statistically.

4.6 Experimental Analysis with UCI Data

In this section, we describe the standard UCI data sets in brief and also discuss
the performance evaluation metric. Subsequently, we are going to report the
experimental results and compare our proposed model with other state-of-the-art
classifiers.

4.6.1 Data Description

The proposed Hellinger net model is evaluated using five publicly available data
sets from a wide variety of application areas such as management, business, and
medicine, available at UCI Machine Learning repository (Asuncion and Newman,
2007). The breast cancer data set consists of 9 discrete features, whereas the
Pima diabetes data set has 8 continuous features in its feature space. German
credit card data set (also popularly known as Statlog data set) consists of 13
qualitative features and 7 numerical features. In this data set, entries represent
persons who take credit from a bank, and each person is classified as good or bad
credit risks according to the collection of attributes. Page blocks database has
numeric attributes, contains blocks of the page layout of a document that has been
detected by a segmentation process. Indian business school data set includes 10
continuous and 7 categorical variables on the characteristics of students admitting
in a business school and the response variable denotes whether the student will
be placed or not at the end of the curriculum (Chakraborty et al., 2018). To
measure the level of imbalance of these data sets, we compute the coefficient of
variation (CV), which is the proportion of the deviation in the observed number
of samples for each class versus the expected number of examples in each class
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(Wu et al., 2010). We have chosen the data sets with a CV more than equal to
0.30− a class ratio of 2 : 1 on a binary data set as imbalanced data. Table 4.5
gives an overview of these data sets.

Table 4.5: Characteristics of the UCI data sets used in experimental evaluation

Data set Classes Objects Number of Number of Number of CV
(n) feature (p) (+)ve instances (−)ve instances

breast cancer 2 286 9 201 85 0.41
german credit card 2 1000 20 700 300 0.40

indian business school 2 480 17 400 80 0.56
page blocks 2 5473 10 4913 560 0.80

pima diabetes 2 768 8 500 268 0.30

4.6.2 Results and Comparisons

In order to show the impact of the proposed classifier, it is applied to the high-
dimensional small or medium-sized data sets from various applied areas. These
are such types of data sets in which not only classification is the task but also
feature selection plays a vital role as well. To start, we first shuffled the observa-
tions in each of the five different data sets randomly and split them into training,
validation, and test data sets in a ratio of 50 : 25 : 25. We have repeated each of
the experiments five times with different randomly assigned training, validation,
and test sets. Further, we compare our proposed classifier mostly with “imbal-
anced data-oriented” classifiers as baseline comparisons. Even we apply different
sampling approaches over traditional classifiers and evaluate AUC values to see
the competitiveness of the proposed model.

We start the experimental analysis by implementing a CT algorithm to five
publicly available imbalanced data sets. A tree-based CT model is trained using
‘rpart’ package implementation in R. CT uses the Gini index, and Cp has been
used for the selection of variables to enter and leave the tree structure. Further,
an ensemble of trees, random forests (RF), was implemented using ‘randomFor-
est’ package in R. We report their prediction performances in Table 4.6. Another
simple nonparametric algorithm, k-nearest neighbor (kNN) is applied to the data
sets using class implementation in R. To implement neural nets, we first stan-
dardize the data sets and run the ANN model. And we used the “logsig” transfer
function to bring back the original form at the end of modeling. We implemented
the ANN model with different combinations of hidden layers without employing
any other feature selection algorithm using ‘neuralnet’ package. Since the data
sets are small or medium sample-sized, thus going beyond two hidden layered
(2HL) neural nets will overfit the data sets. For one hidden layer (1HL) ANN
model, the number of hidden neurons is chosen as 2/3 the size of the input layer,
plus the size of the output layer. But for the 2HL ANN model number of neurons
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in 1st HL is chosen as 2/3 the size of the input layer and the number of neurons
in 2nd HL are chosen as 1/3 the size of the input layer. RBFN is a particular
class of ANN that uses a radial basis kernel for nonlinear classification. Using the
‘RSNNS’ package, we applied the RBFN model with the Gaussian kernel func-
tion, and the maximum number of iterations in all these NN implementations
is chosen as 100. Execution time for the RBFN model is lesser than ANN but
higher than tree-based models.

Table 4.6: AUC results (and their standard deviation) of classification algorithms
over original imbalanced test data sets

Classifiers breast German credit Indian business page pima
cancer card school blocks diabetes

CT 0.603 (0.04) 0.665 (0.03) 0.810 (0.04) 0.950 (0.00) 0.724 (0.02)
RF 0.690 (0.06) 0.725 (0.03) 0.850 (0.04) 0.964 (0.00) 0.747 (0.04)

k-NN 0.651 (0.03) 0.727 (0.01) 0.750 (0.03) 0.902 (0.02) 0.730 (0.05)
RBFN 0.652 (0.06) 0.723 (0.04) 0.884 (0.05) 0.935 (0.01) 0.725 (0.04)
HDDT 0.625 (0.04) 0.738 (0.04) 0.933 (0.02) 0.974 (0.00) 0.760 (0.02)
HDRF 0.636 (0.04) 0.742 (0.03) 0.939 (0.02) 0.988 (0.00) 0.760 (0.03)

ANN (with 1HL) 0.585 (0.03) 0.700 (0.03) 0.768 (0.05) 0.918 (0.02) 0.649 (0.03)
ANN (with 2HL) 0.621 (0.02) 0.715 (0.02) 0.820 (0.04) 0.925 (0.01) 0.710 (0.03)

Hellinger net 0.730 (0.05) 0.802 (0.03) 0.968 (0.01) 0.980 (0.02) 0.809 (0.03)

We now implemented the HDDT algorithm by using R Package ‘CORElearn’
for learning from imbalanced data sets. HDDT usually achieved higher accuracy
than CT and RF. It indicates that “imbalanced data-oriented” classifiers perform
better than the conventional supervised classifiers designed for general purposes.
Further, we implemented HDDT and HDRF which are among other imbalanced
data-oriented algorithms. Finally, we applied our proposed Hellinger net classifier
which is a tree-to-network-mapped model. The implementation of the Hellinger
net model is similar to the one described in Section 4.5.2. We reported the
performance of various classifiers in terms of AUC value in Table 4.6. It is clear
from Table 4.6 that our proposed methodology achieved better performance than
the other state-of-the-art models for most of the UCI data sets used in this study
except the page blocks data. It is to be noted that even in the case of page blocks
data, the difference in the AUC between HDRF and Hellinger net is marginal.
We have highlighted the highest AUC value in the table with bold for all the data
sets. It is clear from computational experiments that our model stands as very
much competitive with state-of-the-art.

4.7 Simulation Study

Real-world data sets commonly show the particularity to have a number of sam-
ples of a given class under-represented compared to other classes. This imbalance
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gives rise to the “class imbalance” problem or “curse of imbalanced data sets”
(Chawla et al., 2003) which is the problem of learning a concept from the class
that has a small number of samples. This section provides a comparison of
our proposed Hellinger net model with several other “imbalanced data-oriented”
classifiers on synthetic data sets from imbalanced-learn library in Python.
imbalanced-learn is an open-source python toolbox aiming at providing var-
ious imbalanced data sets along with a wide range of methods to cope with the
problem of imbalanced data frequently encountered in machine learning and pat-
tern recognition (Lemâıtre et al., 2017). The point of this example is to illustrate
the nature of decision boundaries of different classifiers and to understand how
well they perform on minority class examples. Three toy data sets (binary) are
generated with weights = [0.2, 0.8], [0.1, 0.9] and [0.05, 0.95], i.e., data sets with
imbalance rates of 20%, 10% and 5%, respectively. These data sets will be useful
to visualize the decision boundaries of the classifiers used in this chapter and also
to understand the percentage of imbalance rate that can be handled by the pro-
posed Hellinger net model. The ‘linearly separable’ function in scikit-learn
library generates 100 samples with moderate noise level. We added Gaussian
noise to the data with the standard deviation equals to 0.5. This test problem
is suitable for algorithms that can learn data imbalance problems in complex
nonlinear manifolds. The example (refer to the input data plots in Table 4.8)
generates data sets with Gaussian noise. All these toy data sets represent binary
imbalanced classification problems in 2D. In all the experiments, 60% of the data
samples are used for training, and the rest of them are for testing. The classifi-
cation accuracy of all the models in three synthetic data sets is reported in Table
4.7.

Table 4.7: AUC results of different imbalanced classifiers on three synthetic data
sets.

Imbalanced Simulated Data Simulated Data Simulated Data
Classifiers with IR = 20% with IR = 10% with IR = 5%

HDDT 0.80 0.85 0.91
HDRF 0.82 0.88 0.91

VCB-SVM 0.87 0.89 0.93
ISDA 0.84 0.91 0.90

Hellinger net 0.86 0.92 0.95

In order to assess our proposed Hellinger net model, we perform experiments
on these data sets by employing all the algorithms and generate a graph repre-
sentation of each data set. The implementation of all these models is done as
discussed in Section 4.5.2. The choice of tuning parameters for all the models is
as follows. For the HDDT model, the maximum depth of the tree is set to 5 for
all the examples. In the case of HDRF, we set the number of trees to be built
as 30. Finally, our proposed model is applied to the data sets and the results
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are reported in Table 4.7. As shown in the plots of Table 4.8, our approach is
able to correctly classify minority samples and achieves the highest AUC values
in comparison with the other imbalanced classifiers for two data sets. This result
seems to confirm that the proposed approach can deal with a highly imbalanced
data structure.

Table 4.8: A comparison of several imbalanced classifiers on synthetic data sets.
The plots show training points in solid colors and testing points semi-transparent.
The lower right in each plots shows the classification accuracy on the test set.

Synthetic Imbalance = 20% Imbalance = 10% Imbalance = 5%
data rate rate rate

Input Data

HDDT

HDRF

VCB-SVM

ISDA

Hellinger net

105



4. HELLINGER NET FOR IMBALANCED LEARNING

4.8 Conclusions and Discussion

SDP is a widely popular research domain in software reliability engineering. The
primary objective of the SDP is to find as many defective software modules as
possible in the initial stages of software testing. The difficulty in building an
effective prediction model with high performance in SDP data sets is due to the
imbalance nature in its data characteristics. This chapter proposed a novel hybrid
model, namely the Hellinger net, for improving predictions in binary imbalanced
SDP problems.

Our proposed model considers data imbalance and overcomes the deficiencies
of component tree-based and neural network models. We experimented with 10
NASA SDP data sets from the PROMISE repository to validate the performance
of our proposed method in comparison with other state-of-the-art methods. Dif-
ferent training algorithms like Naive Bayes with log filter and Random Forest
were implemented on the SDP data sets. Then, two sampling methods, such as
SMOTEBoost and AdaBoost.NC, along with base classifier decision trees, were
employed on these SDP data sets. Further, ‘imbalanced data-oriented’ classifiers,
namely HDDT and HDRF, were tested on these data sets. But the usefulness of
the proposed Hellinger net model lies in its theoretical robustness, overall excel-
lent performance, and easy interpretability compared to complex “black-box-like”
models. Finally, the proposed hybrid classifier, namely the Hellinger net, based
on HDDT and neural networks, was implemented to improve HDDT and over-
come its drawbacks.

The proposed Hellinger net classifier offers the advantage of the highest ac-
curacy in terms of two popular performance evaluation metrics (AUC and F-
measure) as compared to the traditional models discussed in this chapter. The
experimental results depicted that the proposed Hellinger net is adequate to solve
the class-imbalance problems. Hellinger net model also has the desired statistical
properties like theoretical consistency, easy interpretability, and achieves higher
accuracy. The work in this chapter is mostly focused on the development of
an imbalanced classifier for the improvements of software defect predictions on
NASA data sets. But we also provide results with standard UCI and simulated
data sets to show the general applicability of the proposed Hellinger net model.
An immediate extension of this chapter is to extend this work for imbalanced
classification problems in the presence of a conceptual shift that happens to be
a key research area in industrial statistics. It is also essential to look for other
SDP scenarios like learning from data with minimal defective modules and many
unlabelled modules (e.g., semi-supervised setting), which can also be a possible
extension of this work. Lastly, one can also try to use the Hellinger net model
in data imbalance problems from other domains to find the extensive usage of
the proposed methodology. In the next chapter, we will discuss another type of
prediction problem, namely, regression estimation.
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Chapter 5

A Distribution-free Hybrid
Method for Regression Modeling

Related Publications:

1. Chakraborty T, Chattopadhyay S, Chakraborty A.K. (2020) Radial basis
neural tree model for improving waste recovery process in a paper industry.
Applied Stochastic Models in Business and Industry, 36, 49-61.

2. Chakraborty, T., Chakraborty, A. K., Chattopadhyay, S. (2019). A novel
distribution-free hybrid regression model for manufacturing process effi-
ciency improvement. Journal of Computational and Applied Mathematics,
362, 130-142.

Summary

This work is motivated by a particular problem of a modern paper manufacturing
industry, in which the maximum efficiency of the waste recovery process is de-
sired. As a by-product of the paper manufacturing process, a lot of waste along
with valuable fibers and fillers come out from the paper machine. The waste recov-
ery process (WRP) involves separating the unwanted materials from the valuable
ones so that the recovered fibers and fillers can be further reused in the production
process. This job is done by fiber-filler recovery equipment (FFRE). The efficiency
of FFRE depends on several crucial process parameters and monitoring them is
a difficult proposition. To solve this problem, we propose a novel hybrid method-
ology, namely, radial basis neural tree (RBNT) model, for waste recovery process
improvement in a paper industry. The proposed model can be useful to find the
essential parameters from the set of available data and perform prediction tasks to
improve WRP efficiency. An idea of parameter optimization along with regular-
ity conditions for the universal consistency of the proposed model are given. The
proposed model performs superior when applied to the FFRE efficiency improve-
ment problem. This work will help the paper company to become environmentally
friendly with less ecological damage apart from being cost-effective.
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5.1 Introduction

Regression problems arise in many practical situations where a specific response
variable can be expressed through a relationship with the so-called causal vari-
ables. In practical applications, it becomes quite challenging to identify the right
set of causal variables. This chapter is motivated by a specific problem in a
modern paper industry that produces papers for multiple uses. Paper machines
usually produce papers by using pulp, fibers, fillers, chemical lubricants, and sub-
stantial water resources. As a by-product of the paper manufacturing process,
many waste materials come out from the paper machine. These waste materials
contain lean water, garbage, and valuable fibers, fillers. To save the expensive
and reusable materials from the waste, an equipment called FFRE (also popu-
larly known as Krofta supercell) is used by many paper manufacturing industries
(Krofta, December 2, 1986,D). The dissolved air flotation cum sedimentation pro-
cess (DAFSP) is used in FFRE to collect valuable materials from waste. If FFRE
becomes efficient, it will help the company to cut costs by reusing the relevant
materials in the production process. However, the efficiency of FFRE is not al-
ways satisfactory, and that causes a monetary loss for the company. A lot of
preliminary analysis was done to find out a set of possible causal variables that
affect FFRE efficiency, which, in other words, means high recovery percentage of
valuable materials. The objective of this work is to correctly find out the most
important process parameters from the set of all available causal variables. Also,
we will try to develop a prediction model that can help the company to estimate
future losses. This work aims to help the company in improving the quality and
productivity of the paper manufacturing process. Furthermore, process improve-
ment through waste management and valuable material recovery can make the
manufacturing process environmentally friendly with very less ecological damage
(Jiang et al., 2018).

The problem can be viewed as a typical nonparametric regression problem
where one can establish a relationship between the response variable (recov-
ery percentage of FFRE) and the major causal variables (process parameters of
DAFSP) without having any prior information about the data. Regression trees
(RT), support vector regression (SVR), and artificial neural networks (ANN) have
been applied for various prediction tasks in water quality improvement, water
planning, and many other related problems (Bhattacharya and Solomatine, 2005;
Gmar et al., 2017; Mahuli et al., 1993; Shrimali and Singh, 2001). Even various
hybrid regression models have been developed for performing regression tasks
in many real-life problems like water demand forecasting and others (Brentan
et al., 2017; Cancho et al., 2016; Lee and Chen, 2005; Sebri, 2016). To develop
a prediction model for the waste recovery improvement that can also determine
critical parameters among the set of possible parameters, we take recourse to
nonparametric regression methodology. The tree-structured model, RT, is fa-
mous for its easy interpretability and built-in mechanism of important variable
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selection (Breiman et al., 1984), but they are sometimes unstable. On the other
hand, neural networks were developed to mathematically model human intel-
lectual abilities by biologically plausible engineering designs (Kuncheva, 2004),
but it may fail when limited data are available (Pektas and Cigizoglu, 2017).
Among the family of ANNs, radial basis function networks (RBFN) have the
advantages of having only one hidden layer, less time complexity, and easy inter-
pretability. RBFN models are found to be more effective than ANN in practical
problems like daily trip flow modeling (Celikoglu and Cigizoglu, 2007) and travel
time measure specification (Celikoglu, 2011). RBFN theory has been applied to
various problems, like estimation, prediction, and/or classification problems in
previous literature (Silgu and Celikoglu, 2015). To harness the advantages of
single models, several previous works have concentrated on the hybridization of
RT and ANN models, viz. entropy nets (Sethi, 1990) and neural tree (Sirat and
Nadal, 1990), and various others (Frosst and Hinton, 2017; Humbird et al., 2018;
Kim, 2016; Pektaş and Cigizoglu, 2013; Tsai et al., 2012).

Motivated by the above discussion, we have proposed a radial basis neural
tree (RBNT) model that utilizes both the tree-based models and ANN to solve
the production process efficiency problem (Chakraborty et al., 2019a, 2020b). In
the hybridization, we have used RT as a feature selection algorithm and utilized
RT given features along with RT predicted values as input features in the RBFN
model. Since RBFN doesn’t need pre-specifying the number of hidden nodes
unlike other ANNs, thus, we have used RBFN in the proposed RBNT model. We
also try to fill the gap between theory and practice by showing the consistency of
the proposed hybrid regression model. Our model combines RBFN with RT to
enhance the predicting accuracy for this typical regression problem. In the FFRE
data set, parameter optimization within the proposed RBNT framework yields
the proposed model that is intermediate between RT and RBFN and outperforms
RT, RBFN, and other commonly used nonparametric regression models. The
proposed model has the advantages of higher accuracy, converges much faster
than many other complex hybrid models, and easy interpretability compared to
many advanced “black-box-like” models. Unlike parametric regression models,
the proposed model has no assumptions on the distribution of the input and
output variables. When applied to solve the process efficiency problem, we found
a set of most important process parameters from the available data that controls
process recovery percentage. Our proposed model is found useful for forecasting
future process efficiency in terms of recovery percentage until the company can
make suggested changes to the process for its improvement. To summarize, the
contributions are:

• We propose a two-step pipeline model, namely, the RBNT model for improv-
ing the waste recovery process based on decision tree and neural networks.

• Optimization of model parameters and the regularity conditions for the
universal consistency of the proposed model are discussed.
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• The robustness of the proposed algorithm is shown through experimental
evaluation on the FFRE data set.

5.2 Radial Basis Neural Tree (RBNT) Model

One of the ultimate goals of designing a regression model is selecting the best
possible regressors that can predict the response variable accurately. RT is a
nonparametric regression technique that has a built-in mechanism for feature se-
lection. RBFN is a particular type of non-linear neural network which is more
intuitive than the multilayered perceptron (MLP). Generally, RT uses a hier-
archical segmentation of the input feature spaces, whereas RBFN uses a radial
basis function as an activation function in its network structure. Both models
do not assume normality of the data, nor do they assume homoscedasticity of
noise terms. In the proposed RBNT model, we first split the input feature space
into areas by RT algorithm. Based on feature rankings provided by RT, a set of
important features are chosen and extracted from the training data set. We then
build the RBFN model using the important variables obtained through the RT
algorithm along with the prediction results obtained from RT as another input
information in the input layer of the network. The effectiveness of the proposed
classifier lies in the selection of important features and the use of prediction re-
sults of RT followed by the application of the RBFN model. The inclusion of RT
output as an additional input feature improves the model accuracy in a signifi-
cant margin. The proposed RBNT regression model can handle high-dimensional
data sets through the implementation of RT in selecting features as well as the
incorporation of its predicted outputs tied up with one hidden layered RBFN
model. This hybridization improves the performances of RT, RBFN, and it also
reduces the biases and variances of these individual models. A simple workflow
of our proposed model is as follows:

• Apply RT algorithm to train and build a decision tree. Use the tree to
extract the important features and find the splits between different adjacent
values of the features.

• Choose the features that have minimum mean squared error as important
input variables and record RT predicted outputs.

• Export important input variables along with an additional feature (predic-
tion values of RT algorithm) to the RBFN model and a neural network is
generated.

• RBFN model uses a Gaussian kernel as an activation function, and param-
eter optimization is done using a gradient descent algorithm. Finally, we
obtain the final outputs.
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Figure 5.1: An example of RBNT with xi; i = 1, 2, 3 as important features ob-
tained by RT, yj; j = 1, 2, 3, 4 as leaf nodes and OP as RT output. An RT (Left)
and one hidden layered RBFN model (Right).

RBNT model is a two-step pipeline approach such as choosing the most im-
portant features among the set of available features and finally getting improved
prediction results. Since RT is robust in handling the curse of high-dimensional
data sets, incorporating its predicted results and important features obtained by
RT as input features in RBFN will necessarily improve the model’s performance.
The proposed RBNT model can be used for feature selection cum prediction task
in regression problems. On the theoretical side, it is necessary to prove the uni-
versal consistency of the model for its robustness (to be discussed in the next
section). A flowchart of the RBNT model is presented in Figure 5.1.

5.3 Statistical Properties of the RBNT Model

In this section, we investigate the theoretical consistency of the proposed model
by introducing a set of regularity conditions on the RBNT model. Further, an
idea about parameter optimization in the RBNT model is also proposed.

5.3.1 Regularity Conditions for Universal Consistency

To explore the statistical properties, we are going to investigate the sufficient con-
dition(s) for the consistency of RT. For a wide range of data-dependent partition-
ing schemes, the statistical consistency of histogram-based regression estimates
was shown in the literature (Nobel, 1996). It requires a set of regularity condi-
tions to be satisfied to show the consistency of histogram regression estimates.
Also, it is assumed to have regression variables to be bounded throughout. But
in our case, we will represent regression trees where the partitions are chosen
to have rectangular cells, i.e., regression trees employing axis-parallel splits and
response variable can take values within a specific range. There is no assumption
made on the distributions of predictor and response variables.
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Consider a nonparametric regression framework where X is the space of all
possible values of p features and Y is the set of all possible outcomes. We also
assume that the response variable can take values in [−K,K], where K ∈ R.
We try to predict a regression function r(x) = E(Y |X = x) ∈ [−K,K] based
on the given n training samples, Ln = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}. Also let
Ω = {ω1, ω2, ..., ωk} be a partition of the feature space X based on RT algorithm.

We denote Ω̃ as one such partition of Ω. Define (Ln)ωi = {(Xi, Yi) ∈ Ln : Xi ∈
ωi, Yi ∈ [−K,K]} to be the subset of Ln induced by ωi and let (Ln)Ω̃ denote the

partition of Ln induced by Ω̃.

The criterion used to identify the best features is mean squared error (MSE)
for RT model. We don’t make any assumption on the distribution of the pair
(X, Y ) ∈ Rp × [−K,K]. MSE is used to partition feature space into a set Ω̃ of

nodes. Thus, there exists a partitioning regression function d : Ω̃→ Y such that
d is constant on every node of Ω̃. Now let us define L̂n to be the space of all
learning samples and D be the space of all partitioning regression function. Then,
we define a binary partitioning and regression tree based rule Φ : L̂n → D such
that Φ(Ln) = (ψ ◦φ)(Ln), where φ maps Ln to some induced partition (Ln)Ω̃ and
ψ is an assigning rule which maps (Ln)Ω̃ to a partitioning regression function d

on the partition Ω̃. The most basic reasonable assigning rule ψ is the plurality
rule ψpl((Ln)Ω̃) = d such that if x ∈ ωi, then

d(x) = arg min
Yi∈[−K,K]

| 1
n

n∑
i=1

(Φ(Ln)− Yi)2|

The stopping rule in RT is decided based on the minimum number of split in
the posterior sample called “minsplit”. If “minsplit” ≥ α then ωi will split into
two child nodes and if “minsplit” < α then ωi is a leaf node and no more split
is required. Here α is determined by the user, usually it is taken as 10% of the
training sample size.

Now let T = (Ω̃1, Ω̃2, ...) be a finite collection of partitions of a measurement
space X. Let us define maximal node count of T as the maximum number of
nodes in any partition Ω̃ in T which can be written as

λ(T) = sup
Ω̃i∈T
|Ω̃i|

Also let, ∆(T, Ln) = |{(Ln)Ω̃ : Ω̃ ∈ T}| be the number of distinct partitions of a
training sample of size n induced by partitions in T. Let ∆n(T) be the growth
function of T defined as

∆n(T) = sup
{Ln:|Ln|=n}

∆(T, Ln).
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Growth function of T is the maximum number of distinct partitions of (Ln)Ω̃ that

partitions Ω̃ in T and can be induced in any training samples with n observations.
For a partition Ω̃ of X, Ω̃[x ∈ X] = {ωi ∈ Ω̃ : x ∈ ω} be the node ωi in Ω̃ which
contains x.

For consistency of any histogram based regression estimates, the sub-linear
growth of restricted cell counts (see in equation 5.1), sub-exponential growth of
a combinatorial complexity measure (see in equation 5.2) and shrinking cell (see
in equation 5.3) conditions are to be satisfied (Nobel, 1996):

λ(Tn)

n
→ 0 as n→∞ (5.1)

log(4n(Tn))

n
→ 0 as n→∞ (5.2)

and for every γ > 0 and δ ∈ (0, 1),

inf
S⊆Rp: P (S)≥1−δ

P (x : diam(Ω̃n[x] ∩ S) > γ)→ 0 with probability 1. (5.3)

Our objective is to provide a single sufficient regularity condition for the binary
partitioning and regression tree-based rule to be universally consistent. Optimal
binary regression trees are shown to be consistent when the size of the tree grows
as o( n

log(n)
), where n is the number of training samples. Now we are going to

show that instead of satisfying regularity conditions of equations (5.1), (5.2) and
(5.3), as in Nobel (1996), if a regression tree estimate Φ satisfies the condition of
Theorem 14, then RT will be consistent.

Theorem 14 Suppose (X, Y ) be a random vector in Rp × [−K,K] and Ln be
the training set of n outcomes of (X, Y ). Finally if for every n and wi ∈ Ω̃n, the
induced subset (Ln)wi contains at least kn of the vectors of X1, X2, ..., Xn, then
empirically optimal regression trees employing axis parallel splits are consistent
when the size kn of the tree grows as o( n

log(n)
).

Proof Since T(kn) contains all the binary RT partitions having kn leaves,

λ(T(kn)) = kn.

Therefore, λ(T(kn))
n

= kn
n

tends to zero as n→∞. Hence,

λ(T(kn))

n
→ 0.

Thus, the condition (5.1) holds.
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Now, regression trees having kn leaves has kn−1 internal nodes and therefore
each partition is based on at most kn − 1 intersecting half-spaces. Any binary
split of Rp can divide n points in at most np ways based on the Cover’s theorem
(Cover, 1965). So, their intersection will partition n points in at most n(kn−1)p

ways. Thus we write the following:

4n(T(kn)) ≤ n(kn−1)p,

and consequently,

log(4n(T(kn)))

n
≤ p(kn − 1)

n
log(n). (5.4)

As, n→∞, R.H.S. of equation (5.4) goes to zero. So condition (5.2) holds.

Now, if kn = o
(

n
log(n)

)
, then for every n and ω ∈ Ω̃n, the induced subset

(Ln)ω ∈ T(kn) such that for every compact set V ⊆ Rd we can write

maxA∈(Ln)ωi
diam(A ∩ V )→ 0.

This implies condition (5.3) is satisfied and hence the theorem. �

Remark 11 Regression trees are consistent when the size of the tree grows as
o( n

log(n)
), where n is the number of training samples. It should be noted that the

choice of important features based on RT is a greedy algorithm and the optimality
of local choices of the best feature for a node doesn’t guarantee that the constructed
tree will be globally optimal (Kuncheva, 2004). It is also noted that with suffi-
ciently large n, the optimal regression tree will not divide the regions of the feature
space on which the regression function is constant. We further conclude that fea-
ture selection using the RT algorithm is justified, and the RT output will also play
an important role in designing the regression model for increasing the predictive
accuracy of the model. It should also be mentioned that incorporating RT output
as an input feature in RBFN, the dimensionality gets increased. Thus the perfor-
mance of the ANN model will be improved at a significant rate (Kohonen et al.,
1988).

The proposed hybrid model has two parts: extracting essential features from
the feature space using RT algorithm and building one hidden layered ANN model
with the important features extracted using RT along with RT output as another
input vector in the RBFN model. In the second stage of the pipeline, the RBFN
model is constructed with RT extracted features and OP (RT outputs) as another
input feature in our model. The dimension of the input layer in the RBFN model,
denoted by dm (< p) equals the number of important features obtained by RT +
1. Since the RBFN model consists of strictly one hidden layer, thus the proposed
model is easily interpretable and fast in implementation. Our next objective
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is to discuss the sufficient condition for the universal consistency of the RBFN
model. After incorporating RT output in the feature space, we have n training
sequence ξn = {(Z1, Y1), ..., (Zn, Yn)} of n i.i.d copies of (Z, Y ) taking values from
Rdm × [−K,K]. A regression estimate realized by a one-hidden layered neural
network is chosen to minimize the

empirical L2-risk =
1

n

n∑
j=1

| f(zj)− Yj |2 .

RBFN is a family of ANNs, consisting of only a single hidden layer and uses
a nonlinear function called radial basis function as an activation function, un-
like feed forward neural network (Györfi et al., 2002). Gaussian functions, most
frequently used in this layer, can be defined as follows:

φi(zi) = φ
(
‖ zi − ci ‖;σi

)
= exp

(
− ‖ zi − ci ‖

2

2σ2
i

)
where zi is an input vector, φi is the output of ith hidden neuron in the hidden
layer with centers ci and σ2

i as the variance. Here we can select the center vector
as cluster centers of the input data. For practical use, the number of clusters is
generally chosen to be much smaller than the number of data points resulting in
RBFN of less complexity than other types of ANNs. Let us now consider a RBF
network with one hidden layer having k nodes for a fixed Gaussian function given
by the equation:

f(zi) =
k∑
j=1

wj φ
(
‖ zi − cj ‖;σi

)
+ w0,

where
∑k

j=0 |wj| ≤ b (> 0) and c1, c2, ..., ck ∈ Rdm . The weights wj and cj
are parameters of the RBFN and φ is the Gaussian radial basis function with
φ(z) → 0 as z → ∞. The next theorem gives regularity conditions for the
universal consistency of RBFN model.

Theorem 15 Consider a RBF network with Gaussian radial basis kernel having
one hidden layer with k (> 1) nodes. If

k →∞, b→∞ and
kb4log(kb2)

n
→ 0 as n→∞,

then RBFN model is said to be universally consistent for all distribution of (Z, Y ).

Remark 12 The idea of the proof is based on Krzyzak et al. (1996). It is worth-
while to note that Theorem 14 and 15 together give the regularity conditions for
consistency of the proposed RBNT model.
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Proof Given the training set ξn = {(Z1, Y1), (Z2, Y2), ..., (Zn, Yn)}, our estimate
of the regression function m(z) = E[Y |Z = z] is an RBF network mn which
minimizes L2 risk. Using the above formulation of RBFN model, for each n we
fix Θn as the set of parameters, defined by

Θn =

{
θ = (w0, w1, ..., wk, c1, c2, ..., ck, σ1, σ2, ..., σk) :

k∑
j=0

|wj| ≤ b

}
.

Our objective is to choose a regression estimator mn from the class

Fn,k = {fθ : θ ∈ Θn} =

{
k∑
j=1

wjφ
(
‖ zi − cj ‖

)
+ w0 :

k∑
j=0

|wj| ≤ b

}

with mn satisfying

1

n

n∑
j=1

|mn(Zj)− Yj|2 = min
f∈Fn,k

1

n

n∑
j=1

|f(Zj)− Yj|2.

Since we considered the Gaussian kernel function, it satisfies the properties of
regular radial kernels, like non-negativity, monotonically decreasing, and left con-
tinuity. For universal consistency under the condition of the theorem,

E

∫
(mn(z)−m(z))2µ(dz)→ 0 (n→∞)

for all distribution of (Z, Y ). Here Y is bounded and µ be the probability measure
of Z. Using Lemma 2 (Györfi et al., 2002), we write

E

∫
|mn(z)−m(z)|2µ(dz) ≤ 2E sup

f∈Fn,k

∣∣∣∣∣ 1n
n∑
j=1

|f(Zj)− Yj|2 − E|f(Z)− Y |2
∣∣∣∣∣

+ E inf
f∈Fn,k

∫
|f(z)−m(z)|2µ(dz).

The first term in the R.H.S. of the above inequality (the estimation error) can
be handled by using non asymptotic uniform deviation inequalities and covering
numbers. The second term of the above inequality (the approximation error)
converges to zero when k →∞. Thus, we only need to show

lim
n→∞

E
{

sup
f∈Fn,k

∣∣∣ 1
n

n∑
j=1

|f(Zj)− Yj|2 − E|f(Z)− Y |2
∣∣∣} = 0

for universal consistency of the model when the conditions of Theorem 15 are
satisfied.
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To prove this, we consider the functions h(z, y) = (f(z)− y)2, f ∈ Fn,k to be
bounded by h(z, y) ≤ 4 max{|f(z)|2, |y|2} ≤ 4 max{b2φ∗2, K2} ≤ 4b2φ∗2, where φ
is assumed to be bounded by φ∗ and |Y | ≤ K. Using Theorem 4 (Pollard, 1984),
we obtain for arbitrary ε > 0,

P

{
sup
f∈Fn,k

∣∣∣∣∣ 1n
n∑
j=1

|f(Zj)− Yj|2 − E|f(Z)− Y |2
∣∣∣∣∣ > ε

}

≤ 8E

{
N

(
ε

32φ∗b
, Fn,k, ξn

)}
e
− nε2

128(4φ∗2b2)2 (5.5)

where, N is the L1 ε-covering number of F with respect to ξn.

Define the class of functions: G =
{
φ (‖ z − c ‖;σ) : c ∈ Rdm

}
. To bound the

L1 ε-covering number of G with respect to ξn, we use the VC dimension of graph
sets of functions in G. We write

N

(
ε

32φ∗b
, Fn,k, ξn

)
≤

k∏
j=1

N

(
ε

32φ∗b(k + 1)
, {w.g : g ∈ G, |w| ≤ b}, ξn

)
×N

(
ε

32φ∗b(k + 1)
, {w : |w| ≤ b}, ξn

)
≤

k∏
j=1

N

(
ε

64φ∗b2(k + 1)
, G, ξn

)
N

(
ε

64φ∗2b(k + 1)
, {w : |w| ≤ b}, ξn

)
×N

(
ε

32φ∗b(k + 1)
, {w : |w| ≤ b}, ξn

)
≤

k∏
j=1

(
2b
ε

64φ∗2b(k+1)

N

(
ε

64φ∗b2(k + 1)
, G, ξn

))(
2b
ε

32φ∗b(k+1)

)

≤
(

128φ∗2b2(k + 1)

ε

)k+1(
N

(
ε

64φ∗b2(k + 1)
, G, ξn

))k

≤
(

128φ∗2b2(k + 1)

ε

)k+1
3

(
6eφ∗

ε
64φ∗b2(k+1)

)2(d2m+dm+2)
k

≤
(

384eφ∗2b2(k + 1)

ε

)2(d2m+dm+2)k+1

(5.6)
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Collecting (5.5)-(5.6) together we get,

P

{
sup
f∈Fn,k

∣∣∣∣∣ 1n
n∑
j=1

|f(Zj)− Yj|2 − E|f(Z)− Y |2
∣∣∣∣∣ > ε

}

≤ 8

(
384eφ∗2b2(k + 1)

ε

)2(d2m+dm+2)k+1

exp

(
− nε2

128 (4φ∗2b2)2

)
.

Let Z̃ be a non-negative random variable and ε > 0, then

E{Z̃} =

∫ ∞
0

P{Z̃ > t}dt ≤ ε+

∫ ∞
0

P{Z̃ > t}dt

Therefore, for any ε ∈ [0, 1
4
),

E
{

sup
f∈Fn,k

∣∣∣ 1
n

n∑
j=1

|f(Zj)− Yj|2 − E|f(Z)− Y |2
∣∣∣}

≤ ε+ 8

∫ ∞
ε

(384eφ∗2b2(k + 1)

t

)2
(
d2m+dm+2

)
k+1

exp
(
− nt2

2048φ∗4b4

)
dt

≤ ε+ 8
(384eΦ∗2b2(k + 1)

ε

)2
(
d2m+dm+2

)
k+1
(

2048φ∗4b4

nε
exp

(
− nε2

2048φ∗4b4

))

≤ ε+
8× 2048φ∗4b4(k + 1)

nε
exp

[(
2
(
d2
m+dm+2

)
k+1

)
log
(384eφ∗2b2(k + 1)

ε

)
− nε2

2048φ∗4b4

]

Therefore,

E
{

sup
f∈Fn,k

∣∣∣ 1
n

n∑
j=1

|f(Zj)− Yj|2 − E|f(Z)− Y |2
∣∣∣} −→ ε

if kb4 log(kb2)
n

→ 0 as n → ∞ and k, b → ∞. Since ε was arbitrary, the proof is
complete. �

Remark 13 We can conclude that if the RBNT model satisfies the regularity
conditions as stated in Theorem 14 and Theorem 15, then the proposed algorithm
will be universally consistent. This is a fundamental property of any model for
its robustness and general use. But computationally choosing parameters of the
RBFN by minimizing empirical L2 risk will be very costly. In practice, parameters
of the RBFN model are learned by a gradient descent algorithm as mentioned
below.
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5.3.2 Optimization of Model Parameters

Here we are going to discuss about the tuning parameters of the RBNT model. In
the first stage of the pipeline model, “minsplit” function is chosen as 10% of the
training data set which is recommended as the stopping rule in the RT algorithm.
Further, we use RT suggested features along with RT output as an additional fea-
ture in the input space of the RBFN. RBFN is trained using a linear combination
of Gaussian basis functions. Therefore we need to use an optimization algorithm
for empirical error (to be denoted by Ee in the rest of the paper) minimization on
ξn (Poggio and Girosi, 1990). Three important parameters to be optimized while
training the RBF network are: centers (ci), standard deviation (σi) and weights
(wj) of each neuron. We use a gradient descent algorithm over E to perform the
optimization task in the RBFN model (Karayiannis, 1999), as follows:

∆ci = −ρc∇ciEe,

∆σi = −ρσ
∂Ee
∂σi

,

∆wj = −ρw
∂Ee
∂wj

,

where ρc, ρσ and ρw are small positive constants. Using this the parameters of
the Gaussian basis function will be optimized. Generalization error is usually
estimated by cross-validation method, and the optimum value of k would be
found by trial and error.

5.4 Application to Waste Recovery Problem

A modern paper manufacturing company is facing a problem of fiber and filler
losses which account for a substantial monetary loss for the company. The ob-
jective of this work is to improve the waste recovery process by improving the
percentage of recovery of the FFRE which will reduce the fiber and filler losses.
The inlet to FFRE is the waste (lean backwater combined with some valuable
materials) coming out of the paper machine which undergoes froth flotation when
treated with chemical and air (Aldrich et al., 2010; Marques and Tenório, 2000).
The chemical helps to form the flocks from the fines present in the lean backwa-
ter and air helps to form the cake over the FFRE for recovery. The cake is then
scooped out, collected and sent back to the paper machine process stream. The
remaining water is sent to a water level tank for further purification.

FFRE removes solids using air flotation and sedimentation processes. Turbu-
lence caused by water movement is an important factor in flotation and greatly
reduces the efficiency of the other types of flotation units. Conventionally there
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must always be water movement for the water to flow from inlet to outlet. In
FFRE, the inlet and outlet of the process are not stationary, and it rotates about
the center. The rotation is synchronized so that the water in the water level tank
achieves zero velocity during flotation. In practical terms, this allows better clar-
ification in smaller surface areas and a much shallower tank. The processing time
of water from the inlet to the outlet takes around 2-3 minutes. Air is dissolved
into the water using air dissolving tube (ADT) of FFRE (Krofta, December 8,
1998), and unclarified water is released through a valve. The water flows in at
the exact center, through a rotary joint. Coarse air is discharged through a vent
pipe in the duct. The flow is directed to eliminate turbulence. Since the inlet
distribution is moving forward at the same speed with that of the water is flowing
out, the water stays in one spot in the tank without any movement during flota-
tion. The floated material is recovered from the top surface through the FFRE
spiral scoop. The scoop is designed to remove the floated material at the highest
possible consistency, with a minimum surface disturbance. The level of water
determines the consistency of the floated material removed. The flotation system
in FFRE removes the solid content in the water by floating them to the surface
for removal. Chemicals are used to increase the clarifier’s efficiency by flocking
out small and colloidal particles, that otherwise would not float or settle in the
clarifier. The schematic diagram of the FFRE process is shown in Figure 5.2.

Figure 5.2: Schematic diagram of fiber and filler recovery process

120



5. DISTRIBUTION-FREE HYBRID REGRESSION MODEL

5.4.1 Data Collection Plan

Initially, the efficiency of Krofta performance was measured and found to be not
satisfactory. The efficiency of Krofta performance is quantified in terms of Inlet
parts per million (Inlet PPM) and Outlet PPM, viz.,

Efficiency =
(Inlet PPM−Outlet PPM) ∗ 100

Inlet PPM
.

Figure 5.3: Summary of the FMEA

To identify the important parameters affecting the Krofta efficiency, a fail-
ure mode and effect analysis (FMEA) was performed with the help of process
experts. FMEA is a useful analytical tool used in many process industries for
understanding the potential areas of failures, so that appropriate measures can
be taken apriori in order to avoid the occurrence of failure (Arvanitoyannis and
Varzakas, 2009). While carrying out FMEA, potential failure modes are identi-
fied and potential effects of those failures on the system are also noted. Severity
(S) of these potential failures is subjectively estimated by the experts on a 1-10
scale, 10 being given for the highest possible severity and 1 for the lowest possible
severity. The potential causes for such failures are identified next along with each
of its estimated occurrence (O) rating, which is also on a 1-10 scale. The higher
possible occurrence will fetch a higher rating. Later detectability (D) rating for
such potential failure causes are estimated on a 1-10 scale where the least possible
detectability fetches a higher rating like 9 or 10 and higher detectability brings a
lower value for the rating. The combined impact of all such ratings is represented
by risk priority number (RPN), where RPN = S × O ×D. Higher the value of
RPN, more is the concern for that particular failure mode.
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In the present case of the Krofta efficiency improvement problem, Figure 5.3
depicts some critical process parameters in the X-axis and their corresponding
RPN value on the Y-axis. Only a few of these parameters are controllable. Thus,
the controllable essential parameters were taken up for further investigation after
a brainstorming session with the process experts. The data were collected for
the paper tissues, taking Krofta efficiency percentage as the response and other
parameters as the potential causal variables. The details of these parameters are
given in Table 5.1.

5.4.2 Data

The data set comprises of 300 observations that are collected for a year from
the process on the following causal variables: Inlet Flow, Water Pressure (water
inlet pressure to ADT), Air Pressure, Pressure of Air-Left, Pressure of Air-Right,
Pressure of ADT-D Left, Pressure of ADT-D Right and Amount of chemical
lubricants. The response variable (FFRE recovery percentage) lies between 20 to
100. The sample data set for the paper tissue is presented in Table 5.1. This data
set will be used for finding crucial process parameters and also finding a prediction
model that can help the company to forecast future recovery percentage of FFRE.

Table 5.1: Sample process data set

Sl. No. Inlet Flow Water Pressure Air Pressure Air-Left Air-Right ADT-D ADT-D Amount of Recovery
Left Right chemical Percentage

1 1448 6.4 5.8 1.0 2.1 3.2 4.0 2.0 96.80
2 1794 5.2 5.6 2.4 1.6 3.6 4.0 3.0 97.47
3 2995 6.0 6.0 1.5 4.5 4.0 4.8 4.0 28.87
4 1139 6.5 6.0 1.2 1.7 3.0 4.6 2.0 33.05
5 2899 6.2 5.7 2.0 1.2 3.1 4.0 2.0 97.91
6 1472 6.6 6.8 3.7 3.1 5.2 4.8 4.0 57.77
7 1703 6.2 6.0 2.9 1.0 3.0 4.2 2.0 26.94
8 1514 5.5 5.0 2.0 2.1 3.8 4.7 2.0 67.01
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

5.4.3 Analysis of Results

Here we elaborate on the experimental evaluation of the proposed RBNT model
while applied to the waste recovery process (WRP) data set. We first shuffled
the observations of the WRP data set randomly and split them into training
and testing data in a ratio of 60 : 40. Each experiment is repeated ten times
with different randomly assigned training and test sets (10-fold cross-validation).
We have considered here six well-known machine learning models for comparison
purposes. These algorithms have been executed with their default parameters.
The performance of each model was evaluated using several statistical measures.
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The FFRE efficiency corresponding to a tissue depends on several process
features such as Water Pressure, Air Pressure, Inlet Flow, AIR-Left, AIR-Right,
amount of chemical, ADT-D Left and ADT-D Right. Our task is to select the
relevant features out of the above and apply the model to improve the recovery
percentage. We first apply the RT method to choose the important FFRE fea-
tures and then compute the RBFN model with the selected important features
along with RT output, as shown in Figure 5.1. RT is trained using rpart package
implementation in R that uses the Gini index, and Cp for selection of variables to
enter and leave the tree structure. To implement neural nets, we first normalize
the data sets and run the ANN model. A transfer function (“logsig”) is applied to
bring back the original form at the end of modeling. We implemented the ANN
model with different combinations of hidden layers without employing any other
feature selection algorithm using neuralnet package. Due to the fact that the data
set is medium-sized, thus going beyond two hidden layered (2HL) neural net will
over-fit the data set. The number of neurons in the 1st hidden layer is chosen as
2/3 the size of the input layer and the number of neurons in the 2nd hidden layer
is chosen as 1/3 the size of the input layer. RBFN with Gaussian radial basis
kernel was trained using RSNNS package and the maximum number of iterations
in all these NN implementations is chosen as 100. Execution time for the RBFN
model is much less than ANN but higher than RT. Further, we compare our
proposed model with different regressions models, viz. SVR, Bayesian additive
regression tree (BART), and Tsai’s neural tree. BART was implemented on the
original data set using BART package implementation in R statistical software
with the number of trees in the sum model chosen to be 50. And SVR was imple-
mented with the built-in package e1071 in R with the Gaussian kernel function.
Tsai’s neural tree is a hybrid model based on RT and RBFN used for water stage
forecasting and has been used for comparison purposes (Tsai et al., 2012). It was
found that Tsai’s neural tree performs better than single regression models used
in this study.

To apply the proposed RBNT model to the waste recovery data set, we first
use RT with “minsplit” as 10% of the training sample size using rpart package
in R. The important features are extracted and RT outputs are recorded. Fur-
ther, we build an RBFN model using RSNNS package with the Gaussian kernel
activation function and gradient descent algorithm for parameter optimization.
Each time before applying neural networks, we have normalized the data sets.
The essential features for the FFRE recovery data set using our proposed RBNT
model are: Water Pressure, Air Pressure, Inlet Flow, ADT-D Left, and ADT-
D Right. Table 5.2 exhibits the quantitative measures corresponding to MAE,
RMSE, MAPE, R2 and Adj(R2), respectively, for the data set and for all the com-
peting methods. A method is said to perform better than the other comparative
algorithms if it minimizes the MAE, RMSE, MAPE values, and maximize the R2

and Adj(R2) values between the predictions relative to the observations. Table
5.2 exhibits the results based on 10 fold cross-validations and we reported the
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mean values of respective measures along with standard deviations. It can be ob-
served from Table 5.2 that the MAE, RMSE and MAPE values obtained through
the proposed RBNT model are always smaller than the values obtained from all
other competing methods over the WRP data set. Tsai Neural tree provides the
second best performance and performs better than the remaining single models
in terms of having low RMSE, MAE, and MAPE values. The proposed model
has smaller standard deviations with respect to different performance measures
under 10 fold cross-validation. The model can be used for forecasting the future
values of FFRE efficiency for the paper manufacturing company.

Table 5.2: Quantitative measures of performance for different regression models.
Results are based on 10-fold cross validations. Mean values of the respective
measures are reported with standard deviation within the bracket.

Regression Models MAE RMSE MAPE R2 Adj(R2)
RT 11.691 (0.45) 16.927 (0.89) 29.010 (1.02) 59.028 (3.25) 55.304 (1.95)

ANN 12.334 (0.25) 17.073 (0.56) 27.564 (1.85) 58.310 (2.98) 54.529 (2.08)
SVR 12.460 (0.28) 20.362 (1.23) 40.010 (1.81) 40.174 (2.05) 35.325 (2.64)

BART 12.892 (0.59) 16.010 (1.25) 30.038 (1.95) 59.380 (2.50) 56.458 (1.75)
RBFN 13.926 (2.50) 18.757 (3.25) 32.48 (3.45) 49.689 (5.45) 46.335 (3.95)

Tsai Neural tree 10.895 (0.78) 16.012 (0.50) 24.021 (1.85) 65.120 (2.89) 62.946 (1.78)
RBNT 9.226 (0.35) 14.331 (0.82) 20.187 (1.45) 70.632 (2.00) 68.675 (2.13)

Based on the model, we further created an experimental design to obtain the
optimal level of the tuning parameters. Final recommendations based on the
results of the design of experiments were implemented in the process to monitor
the Krofta efficiency. However, we have discussed only the proposed model and
its accuracy level compared to other relevant state-of-the-art models. Our model
helped the manufacturing process industry to achieve an efficiency level of about
80% from the current level of approximately 60% to improve the Krofta supracell
recovery percentage.

5.5 Application to Simulated Data

We investigate the asymptotic behavior of the proposed RBNT model on an
artificial data set created by sampling inputs x uniformly from the p-dimensional
hypercube [0, 1]p and computing outputs y as

y(x) =

p∑
j=1

sin
(
20x(j) − 10

)
+ ε,

where ε is a zero mean Gaussian noise with variance σ2, which corrupts the de-
terministic signal. We choose p = 2 and σ = 0.01, and investigate the asymptotic
behavior as the number of training samples increases. Figure 5.4 illustrates the
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RMSE for an increasing number of training samples and shows that the RBNT
model error decreases much faster than other competitive model errors as sample
size increases.
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Figure 5.4: This figure shows the test RMSE for synthetic data with exponentially
increasing training set size (x-axis). Solid lines connect the mean RMSE values
obtained across 3 randomly drawn data sets for each data set size, whereas error
bars show the empirical standard deviation.

5.6 Conclusions and Discussion

In this chapter, we proposed a novel distribution-free hybrid regression model
which is a hybridization of RT and RBFN model for improving the waste re-
covery process in a paper company. The proposed model demonstrated the best
performance and offered a practical solution to the WRP problem of finding cru-
cial process parameters to improve the recovery percentage of fiber filler recovery
equipment. The model can also be useful for future recovery prediction of the
process that may give the company an indication of the stability of the process.
Using the recommendation of the model, we further designed a set of experi-
ments to find the optimal level of essential process parameters causing the FFRE
efficiency. This resulted in improved waste recovery from an existing average
recovery percentage of 60% to 80% which added financial benefit to the paper
company. Our proposed model takes into account the curse of high-dimensional
data and performs well on small or medium-sized data sets. We have shown our
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proposed methodology performed quite well through computational experiments
compared to the other state-of-the-arts in the tissue paper data set. The proposed
RBNT model has the most desired statistical property, viz. universal consistency.
The usefulness and effectiveness of the model lie in its robustness and easy inter-
pretability as compared to complex “black-box-like” models. Though the hybrid
RBNT model was primarily developed for modeling the FFRE efficiency improve-
ment problem, the model can also be used for other regression problems. The
asymptotic behavior of the proposed RBNT model is also evaluated using an ar-
tificial data set.

Our proposed model is robust, universally consistent, easily interpretable, and
highly useful for high dimensional small or medium-sized data sets to perform fea-
ture selection cum regression estimation tasks. Advanced neural net models (say,
deep neural net) are highly complex, over-parameterized models, and found use-
ful when the data sets are enormous (like image, audio, and video data sets).
Nevertheless, no model can have a dominant advantage and one may also refer
to no free lunch theorems (Wolpert and Macready, 1997). Typically, there will
always be a trade-off between accuracy, interpretability, and complexity of the
model for every new finding. An immediate future work of this chapter is to in-
vestigate the applicability of the proposed model on spatio-temporal and survival
data sets involving regression tasks. In the next chapter, we look at the regression
estimation problem from a Bayesian point of view. Chapter 6 attempts to blend
frequentist and Bayesian paradigm in a hybridization framework.
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Chapter 6

Bayesian Neural Tree Models for
Nonparametric Regression
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Tree Models for Nonparametric Regression. ArXiv preprint arXiv:1909.00515,
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Summary

Frequentist and Bayesian methods differ in many aspects but share some basic
optimal properties. In real-life prediction problems, situations exist in which a
model based on one of the above paradigms is preferable depending on some sub-
jective criteria. Nonparametric classification and regression techniques, such as
decision trees and neural networks, have both frequentist (classification and regres-
sion trees (CART) and artificial neural networks) as well as Bayesian (Bayesian
CART and Bayesian neural networks) approach to learning from data. In this
chapter, we present two hybrid models combining the Bayesian and frequentist
versions of CART and neural networks, which we call the Bayesian neural tree
(BNT) models. BNT model can simultaneously perform feature selection and
prediction, are highly flexible, and generalize well in settings with limited training
observations. We study the statistical consistency of the proposed approach and
derive the optimal value of a vital model parameter. The newly proposed BNT
models are applied to solve a practical problem of water quality prediction in a
paper manufacturing company. We also provide some illustrative examples us-
ing a wide variety of standard regression data sets from UCI repository to show
the superiority of the proposed models in comparison to popularly used Bayesian
CART and Bayesian neural network models.
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6.1 Introduction

Methodologies in nonparametric regression employ either a frequentist or a Bayesian
approach to learning from data. The choice between these two paradigms is often
philosophical and based on subjective judgments. Two models, namely decision
trees and neural networks, have primarily been used in the frequentist setting, but
have robust Bayesian counterparts. Classification and regression trees (CART)
were introduced by Breiman et al. (1984) for flexibly modeling the conditional
distribution of an outcome variable given the predictors. For a data set, a tree
is grown by sequentially splitting its internal nodes, and then pruning the grown
tree back to avoid overfitting (Loh, 2011). The splitting rule for each node is
based on minimizing the mean squared error (MSE) in regression and Gini index
in classification. The Bayesian approach for finding a ‘good’ tree model entails
specification of a prior distribution and stochastic search (Chipman et al., 1998,
2002). The fundamental idea behind Bayesian CART (BCART) is to have the
prior induce a posterior distribution that can guide a (posterior) stochastic search
towards a promising tree model (Chipman et al., 2002).

On the other hand, an artificial neural network (ANN) is an interconnected
gathering of artificial neurons organized in layers (Hornik et al., 1989). A stan-
dard ANN model has three layers of nodes, namely input, hidden, and output
layers, where nodes are neurons that use a nonlinear activation function (except
for the input nodes). A backpropagation gradient descent algorithm is used to
compare the network outputs with the actual outputs (Rumelhardt et al., 1986).
If an error exists, it is backpropagated through the network, and the weights in
the network architecture are adjusted accordingly (LeCun et al., 2015). An ANN,
however, is often prone to overfitting when the data comprise a limited number of
observations. A Bayesian treatment to an ANN offers a practical solution to this
problem by naturally allowing for regularization (MacKay, 1992a; Neal, 1996). A
Bayesian neural network (BNN) can also deal with the issue of model complexity,
e.g., by selecting the number of hidden neurons in the model. In particular, a
BNN treats the network weights to be random and obtains a posterior distribu-
tion over them (Barber and Bishop, 1998; Kendall and Gal, 2017). Neal (1996)
introduced advanced Bayesian simulation methods, specially the hybrid Monte
Carlo method, into the analysis of neural networks.

Although CART, BCART, ANN, and BNN individually perform well, they
exhibit certain drawbacks. Tree-based models may overfit the training data, or
stick to a local minimum in the decision boundaries. Additionally, the training of
neural networks suffers considerably in a limited-data setup. Thus, a hybrid (or
ensemble) formulation of trees and neural networks can be used to leverage their
strengths and overcome their limitations. Several such hybrid models blending
CART and ANNs have been discussed in the literature (Chakraborty et al., 2019c,
2020b; Micheloni et al., 2012; Sethi, 1990; Sirat and Nadal, 1990; Utgoff, 1989;
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Vanli et al., 2019), and have been useful for improving the prediction accuracy of
the individual models. These hybrid models, however, only consider frequentist
implementations of their components. Some other works have explored hybrid
frequentist-Bayesian models in the context of parametric inference, hypothesis
testing, and other inferential problems (Bayarri and Berger, 2004; Bickel, 2015;
Yuan, 2009). However, we are not aware of any hybrid algorithms blending fre-
quentist and Bayesian methods for nonparametric regression.

Motivated by this, we propose a hybrid approach, called the Bayesian neural
tree (BNT) model, for feature-selection-cum-prediction purposes (Chakraborty
et al., 2019b,d). BNT model utilizes the built-in feature selection mechanisms of
tree-based models (CART and BCART), along with the accuracy and flexibility
of neural net (ANN and BNN), particularly in limited-data-size settings. The
proposal can overcome the deficiencies of the component models, have a lesser
number of tuning parameters, and are easily interpretable. On the theoretical
side, we prove the statistical consistency of the models, which gives a theoretical
guarantee of their robustness. We apply the proposed hybrid frameworks to solve
a specific problem faced by a modern paper manufacturing company. Boiler inlet
water quality is a significant concern for the paper machine. If the water treat-
ment plant can not produce water of desired quality, it results in poor health of
the boiler water tube and, consequently, affects the paper’s quality. This variation
is due to several crucial process parameters. We use the newly developed BNT
models for boiler water quality prediction and show its excellent performance
compared to other state-of-the-art. Finally, we also explore the performance of
the BNT models using various standard regression data sets.

6.2 Formulation of the BNT Models

We begin by establishing notations. We assume that models are trained on n
observations, and that there are d predictor variables. For data point i, where
1 ≤ i ≤ n, let Yi denote the response variable, Y i denote its mean value, and
Ŷi denote the final prediction obtained from a model. Let Xi = (Xi1, . . . , Xid)

′

denote the input vector for the ith data point, where 1 ≤ i ≤ n. We denote the
training data as Ln = {Yi, Xi}ni=1. In what follows, we omit the subscript i for
simplicity of notation.

We now describe the working principles of the proposed BNT model. We
present two variants of BNT models where each consists of a Bayesian (frequen-
tist) implementation of a tree-based component for feature selection purposes,
and a frequentist (Bayesian) implementation of a neural network component for
prediction purposes (see Figure 6.1). Such hybridization or blending trees and
neural networks in entirely frequentist settings were first proposed and theoreti-
cally justified in Chakraborty et al. (2019a,c, 2020b). In this chapter, we extend
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our approaches proposed in Chapter 5 but consider frequentist as well as Bayesian
versions of the component models. In theory, both BNT models are asymptoti-
cally consistent, as we prove in Section 6.3.

6.2.1 BNT-1 model

The BNT-1 model comprises of two stages. In the first stage, a classical CART
model is fit to the data, taking all d predictors. The CART model implicitly se-
lects a feature at each internal split (based on maximum reduction in the MSE).
Thus, the features used to construct the CART model can be considered impor-
tant features in the data. We record these features, as well as the predictions
obtained from the CART model. In the second stage, we construct a BNN with
one hidden layer, where the input variables are the selected features from CART
plus the prediction results from stage one. We use a Gaussian prior for the
network weights and also model the data likelihood to be Gaussian. The prior
for the number of hidden neurons (k) is taken to be a Geometric distribution
with probability of success p. This is made possible by introducing a Markov
Chain Monte Carlo (MCMC) posterior simulation scheme using reversible jump
(Green, 1995) steps to move between different size architectures as in Rios Insua
and Müller (1998). Since the BNN model can naturally be regularized through
its implementation, it is less likely to overfit the data. The final set of predictions
are obtained after fitting the BNN model to the data. A detailed discussion about
the priors to be used and the MCMC algorithm for training the Bayesian model
is described in Section 2.3.7 of Chapter 2.

Algorithm 6.1: BNT-1

Input: Ln = {Y ;X1, . . . , Xd}
Output: Ŷ

1 Fit a CART model to Ln with a specified ‘minsplit’ value.

• Record S ⊆ {X1, . . . , Xd}, the set of selected features from CART.

• Record Ŷcart, the predictions from CART.

• Construct S
′
= {S, Ŷcart}, the complete set of features for the BNN model.

2 Fit a BNN model with k hidden neurons, where k ∼ Geometric (p), and

with input feature set S
′
.

• Record Ŷ , the final set of predictions from the BNN.

Thus, the proposed BNT-1 model utilizes the intrinsic feature selection ability
of CART in the first stage, and trains a BNN model in the second stage using the
selected features and predicted values from CART. This improves the accuracy
of the individual models, as utilizing the CART output as a feature in the BNN
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adds non-redundant information. We present a formal workflow of the BNT-1
model below.

6.2.2 BNT-2 model

The BNT-2 model also follows a two-step pipeline. A BCART model is fitted to
the data in the first stage, with the best fitting tree found via posterior stochas-
tic search. For feature selection in the context of BCART, Bleich et al. (2014)
illustrates three different schemes based on variable inclusion proportions or the
proportion of times a predictor variable is used for a split within each posterior
sample. The three schemes differ in thresholding the inclusion proportions: ‘lo-
cal’, ‘global max’, and ‘global SE’ procedures. Any of the procedures can be
utilized for feature selection based on the data and prediction problem at hand.
In this chapter, we use the local thresholding procedure. A detailed discussion
about the priors to be used and the MCMC algorithm for training the Bayesian
model is described in Section 2.3.3 of Chapter 2.

Algorithm 6.2: BNT-2

Input: Ln = {Y ;X1, . . . , Xd}
Output: Ŷ

1 Fit a BCART model to the data via a posterior stochastic search over the
possible tree models.

• Record S ⊆ {X1, . . . , Xd}, the set of selected features obtained using a
thresholding procedure.

• Record Ŷbcart, the prediction from BCART.

• Construct S
′
= {S, Ŷbcart}, the complete set of features for the ANN

model. Denote the dimension of S
′

as dm.

2 Fit a one-hidden-layer ANN model with input feature set S
′
, and with

number of hidden neurons k =
√

n
dmlog(n)

.

• Record Ŷ , the final set of predictions from the ANN.

Thus, we record the important features and predictions from BCART and use
these as inputs to a one-hidden-layer ANN in stage two. One hidden layer in the
ANN sufficed, due to incorporating the selected features and predicted outputs
from BCART. Using a single hidden layer also reduces the model’s overall com-
plexity and the risk of overfitting in small and medium-sized data sets (Devroye
et al., 1996). The optimal choice for the number of hidden neurons (k) for the

ANN is derived under Proposition 2 in Section 6.3.2, and is given as
√

n
dmlog(n)

,

where dm is the dimension of the input feature space of the ANN, and n is the
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Figure 6.1: An overview of Bayesian neural tree models. A CART (BCART)
model is at the top and its corresponding BNN (ANN) model at the bottom. OP
denotes the tree (CART/BCART) output.

training sample size. The final set of predictions is obtained after fitting the ANN
model to the data. The precise algorithm is as follows.

6.3 Statistical Properties of BNT Models

The results on the consistency of multivariate histogram-based regression esti-
mates on data-dependent partitions (Lugosi and Nobel, 1996; Nobel, 1996) and
that of regression estimates realized by an ANN (Devroye et al., 1996; Lugosi
and Zeger, 1995), we know that under certain conditions, both the nonparamet-
ric models converge to the true density functions. In Bayesian settings, poste-
rior concentration of the BCART model (Rocková and van der Pas, 2020), and
posterior consistency of the BNN model (Lee, 2000, 2004) have been previously
explored. We use these results to prove the theoretical consistency of the BNT
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models under certain conditions. We also find the optimal value of the number
of hidden nodes in the BNT-2 model in Section 6.3.2.

6.3.1 Asymptotic Properties of the BNT-1 Model

Let X = (X1, X2, ..., Xd) be the space of all possible values of d features, and let
Y = (Y1, . . . , Yn)

′
be the response vector, where each Yi takes values in [−K,K],

and K ∈ R. A regression tree (RT) f : Rd → R is defined by assigning a
number to each cell of a tree-structured partition. We seek to estimate a re-
gression function r(x) = E(Y |X = x) ∈ [−K,K] based on n training samples
Ln = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}. The regression function r(x) minimizes

the predictive risk J(f) = E
∣∣f(X) − Y

∣∣2 over all functions f : Rd → R. Practi-

cally, given the training data Ln, we can find an estimate f̂ of f that minimizes
the empirical risk

Jn(f) =
1

n

n∑
i=1

(
f(Xi)− Yi

)2

over a suitable class of regression estimates, since the distribution of (X,Y) is not
known apriori. We let Ω = {ω1, ω2, ..., ωk} be a partition of the feature space X
and denote Ω̃ as one such partition of Ω. Define (Ln)ωi = {(Xi, Yi) ∈ Ln : Xi ∈
ωi, Yi ∈ [−K,K]} to be the subset of Ln induced by ωi and let (Ln)Ω̃ denote

the partition of Ln induced by Ω̃. Now define L̂n to be the space of all learning
samples and D be the space of all partitioning regression functions. Then a binary
partitioning rule f : L̂n → D is such that f ∈ (ψ ◦ φ)(Ln), where φ maps Ln to
some induced partition (Ln)Ω̃ and ψ is an assigning rule which maps (Ln)Ω̃ to

a partitioning regression function f̂ on the partition Ω̃. Consistent estimates of
r(·) can be achieved using an empirically optimal regression tree if the size of the
tree grows with n at a controlled rate.

Theorem 16 Suppose (X,Y) is a random vector in Rp × [−K,K] and Ln is the
training set of n outcomes. Finally, for every n and wi ∈ Ω̃n, the induced subset
(Ln)wi contains at least kn of the vectors of X1, X2, ..., Xn. Let f̂ minimizes the
empirical risk Jn(f) over all kn nodes of RT, f ∈ (ψ ◦ φ)(kn). If kn → ∞ and

kn = o
(

n
log(n)

)
, then P

∣∣f̂ − r∣∣2 → 0 with probability 1.

Proof For proof, refer to Theorem 14 of Chapter 5. �

The BNT-1 model essentially uses the feature selection mechanism of RT, and
RT output also plays an important role in designing the ensemble model. We
further build a one hidden layered BNN model using RT given features and RT
output as another input feature in the BNN model. We denote the dimension
of the input feature space of the BNN model in the ensemble as dm (≤ d).
We further assume that these covariates are fixed and have been rescaled to
[0, 1]dm = Cdm .Now, let the random variables Z and Y take their values from
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Cdm and [−K,K] respectively. Denote the measure of Z over Cdm by µ and
m : Cdm → [−K,K] be a measurable function such that m(Z) approximates Y .
Given the training sequence ξn = {(Z1, Y1), (Z2, Y2), ..., (Zn, Yn)} of n i.i.d. copies
of (Z,Y), the parameters of the neural network regression function estimators are
chosen such that it minimizes the

empirical L2-risk =
1

n

n∑
j=1

|f(Zj)− Yj|2.

We have used logistic squasher as a sigmoidal function in BNN and treat the
number of hidden nodes (k) as a parameter in the proposed Bayesian ensemble
formulation. In usual Bayesian nonparametrics, the number of hidden nodes
grows with the sample size, and thus we can use an arbitrarily large number
of hidden nodes asymptotically. But we use the formulation by Rios Insua and
Müller (1998) and treat the number of hidden nodes in the ensemble model as
a parameter and show that the joint posterior becomes consistent under certain
regularity conditions. We consider geometric prior for k, following Rios Insua and
Müller (1998). This will give better uncertainty quantification by allowing the
unconstrained size of the hidden nodes. The major advantage of using a Bayesian
setting over the frequentist approach is that it allows one to use background
knowledge to select a prior probability distribution for the model parameters.
Also, the predictions of future observations are made by integrating the model’s
prediction for the posterior parameter distributions obtained by updating the
prior by taking into account the data. We address this by properly defining
the class of prior distribution for neural network parameters that reach sensible
limits when the size of the networks goes to infinity and further implementing
the Markov Chain Monte Carlo (MCMC) algorithm in the network structure
(MacKay, 1992b). We define

E
[
Yi|Zi = zi

]
= β0 +

k∑
j=1

βjσ(aTj zi) + εi, (6.1)

where k is the number of hidden nodes, βj’s are the weights of these hidden nodes,

aj’s are vectors of location and scale parameters, and εi
iid∼ N(0, σ2). Expanding

(6.1) in vector notation yields the following equation:

yi = β0 +
k∑
j=1

βjσ

(
aj0 +

dm∑
h=1

ajhzh

)
+ εi, (6.2)

where dm is the number of input features. We consider the asymptotic properties
of the neural network in the Bayesian setting. We show the consistency of the
posterior for neural networks in Bayesian setting which along with Theorem 16
ensures the consistency of the proposed BNT-1 model.
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Let λi = P (k = i) be the prior probability that the number of hidden nodes
is i, and of course

∑
i λi = 1. Also, Πi be the prior for the parameters of the

regression equation, given that k = i. We can then write the joint prior for all

the parameters as
∑
λiΠi. Here we consider Πi

ind∼ N(0, τ 2) and the prior for k
be geometric distribution. In the sequel, we also assume that

Y |Z = z ∼ N

(
β0 +

k∑
j=1

βj

1 + exp
(
−aj0 −

∑dm
h=1 ajhzh

) , 1).
Let f0(z, y) be the true density. We can define a family of Hellinger neighborhoods
as

Hε = {f ; DH(f, f0) ≤ ε},

with DH(f, f0) as defined below:

DH(f, f0) =

√√√√∫ ∫ (√f(z, y)−
√
f0(z, y)

)2

dzdy.

Let Fn be the set of all neural networks with parameters |ajh| ≤ Cn and |βj| ≤
Cn, where j = 1, . . . , k and h = 1, . . . , dm, and Cn grows with n such that
Cn ≤ exp (n(b−a)) for any constant b such that 0 < a < b < 1 when k ≤ na. The
Kullback-Leibler divergence (not a distance metric) is defined as

DK(f0, f) = Ef0

[
log

f0(z, y)

f(z, y)

]
.

For any γ > 0, we define Kullback-Leibler neighborhood by

Kγ = {f : DK(f0, f) ≤ γ}.

We denote the prior for f by Πn(·) and the posterior by P
(
· |(Z1, Y1), ..., (Zn, Yn)

)
.

We will present results on the asymptotic properties of the posterior distribution
for the neural network model present in the ensemble BNT-1 model over Hellinger
neighborhoods.

Theorem 17 Assume that Z is uniformly distributed in [0, 1]dm, Πi
ind∼ N(0, τ 2),

k ∼ Geometric, and the following conditions hold:
(A1) For all i, we have λi > 0;
(A2) Bn ↑ n, for all r > 0, there exists q > 1 and N such that

∑∞
i=Bn+1 λi <

exp
(
− nqr

)
for n ≥ N ;

(A3) There exists ri > 0, Ni such that Πn(F c
n) < exp(−nri) for all n ≥ Ni;

(A4) For all γ, v > 0, there exists I and Mi such that for any i ≥ I, Πi(Kγ) ≥
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exp(−nv) for all n ≥Mi.
Then for all ε > 0, the posterior is asymptotically consistent for f0 over Hellinger
neighborhoods and P

(
Hε |(Z1, Y1), ..., (Zn, Yn)

)
→ 1 in probability.

In other words, the posterior probability of any Hellinger neighborhood of f0 con-
verges to 1 in probability.

Proof To prove the theorem, we first show that the regularity conditions hold
when we assume a Geometric prior for k. And finally, show the posterior consis-
tency by using conditions (A1)-(A4). Since we take geometric prior for k, it is
obvious that λi > 0. Now,

∞∑
i=Bn+1

λi = P (k > Bn)

=
∞∑

i=Bn+1

p(1− p)i = (1− p)Bn+1

= exp
[
(Bn + 1)log(1− p)

]
= exp

[
−nq

(
− log(1− p)

)]
(Using Bn = O(nq) for q > 1)

≤ exp
(
− nq.r

)
for r > 0 and sufficiently large n. (6.3)

We consider a geometric prior with parameter p. Also let, Bn = O(nq) for any
q > 1. For any i, we write i < na for a > 0 and sufficiently large n, where θ be
the vector of all parameters (other than k):

Πi

(
F c
n

)
=

∫
F cn

Πi(θ)dθ

≤
dn∑
i=1

2

∫ ∞
Cn

φ

(
θi
τi

)
dθi

≤ dn

[
2τφ

(
Cn
τi

)
Cn
τi

]
by Mill’s ratio

= dn

[
2τ 2
i

Cn
.

1√
2Π

.exp

(
− C2

n

2τ 2
i

)]
≤ dn

(
τ 2
i

√
2

Π

)
.exp

(
− nb−a − 1

2τ 2
i

e2nb−a
) [

Taking Cn = en
b−a
, 0 < a < b < 1

]
= exp

[
− nb−a + log

(
dnτ

2
i

√
2

Π

)]
.exp

(
− 1

2τ 2
i

e2nb−a
)

≤ exp

(
− 1

2τ 2
i

e2nb−a
) [

Using dn = (p+ 2)na + 1 ≤ (p+ 3)na for large n
]

≤ e−nri , where e2nb−a > n for large n and taking r =
1

2τ 2
i

. (6.4)
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We can write

Gc
n =

∞⋃
i=0

F c
i ,

where Fi is the set of all neural networks with i nodes and with all the parameters
less than Cn in absolute value, Cn ≤ exp(nb), 0 < b < 1.

Π(Gc
n) =

∞∑
i=0

λiΠi(F
c
i ) ≤

Bn∑
i=0

λiΠi(F
c
i ) +

∞∑
i=Bn+1

λi = I1 + I2, say.

To handle I1 and I2, we use (6.4) and (6.3):

I1 ≤
Bn∑
i=0

λiexp(−nri)

≤ exp(−nr∗)
Bn∑
i=0

λi
(
By letting r∗ = min{r0, r1, ..., rBn}

)
≤ exp(−nr∗).

And, I2 ≤ exp(−nqr∗) for sufficiently large n. For large n, q > 1 and r = r∗/2,
we have

Π(Gc
n) < exp(−nr).

Now, to show (A4) holds true, we consider the following:

Πi(Mδ) =
d̂n∏
i=1

∫ θi+δ

θi−δ

1√
2Πτ 2

.exp

(
− u2

2τ 2

)
du

≥
d̂n∏
i=1

2δ inf
u∈[θi−1,θi+1]

1√
2Πτ 2

.exp

(
− u2

2τ 2

)

=
d̂n∏
i=1

δ

√
2

Πτ 2
.exp

(
− ξi

2τ 2

) [
ξi = max{(θi − 1)2, (θi + 1)2}

]
≥
(
δ

√
2

Πτ 2

)d̂n
.exp

(
− ξ̂d̂n

2τ 2

) [
ξ̂ = max

i
{ξ1, ξ2, . . . , ξd̂n}

]
> e−nv

[
Using d̂n ≤ (p+ 3)na and for large n and for any v

]
. (6.5)

For any δ > 0, let l be the number of hidden nodes required by the theorem for
making g0 continuous and square differentiable. Using (6.5) we write

Π(Mδ) =
∞∑
i=0

λiΠi(Mδ) ≥ λlΠl(Mδ) ≥ λlexp(−nv∗).
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For sufficiently large n and for any v∗, l is a constant, thus λl does not depend on n
and is positive for geometric prior. Thus, Π(Mδ) ≥ exp(−nv) for any sufficiently
large n.
We can now use conditions (A1)-(A4) to show that

P
(
Hε |(Z1, Y1), ..., (Zn, Yn)

)
→ 1 in probability.

Alternatively, P
(
Hc
ε |(Z1, Y1), ..., (Zn, Yn)

)
→ 0 in probability. Now,

P
(
Hc
ε |(Z1, Y1), ..., (Zn, Yn)

)
=

∫
Hc
ε

∏n
i=1 f(zi, yi)dΠn(f)∫ ∏n
i=1 f(zi, yi)dΠn(f)

=

∫
Hc
ε
Rn(f)dΠn(f)∫
Rn(f)dΠn(f)

, where Rn(f) =

∏n
i=1 f(zi, yi)∏n
i=1 f0(zi, yi)

=
D1

D2

, say.

Using Wong and Shen (1995) and (A1-A4), we can find the supremum of the
likelihood ratios Rn(f). Thus, we have

D1 < e
−nt
2 + e−2c2ε2 , where t, c2 > 0.

Using Lee (2000, Lemma 5), we have D2 > e−nδ for large n, except on a set with
probability approaching to 0. Finally, we have

P
(
Hc
ε |(Z1, Y1), ..., (Zn, Yn)

)
<
e
−nt
2 + e−2c2ε2

e−nδ

≤ e−nε
′

+ enε
2ε
′

, where ε
′
> 0

−→ 0 for sufficiently large n.

�

Remark 14 Theorem 17 shows that the posterior is consistent when the number
of hidden neurons of the neural network (with Bayesian setting) is a parameter
that can be estimated from the data. Thus, we can let the data derive the number
of hidden nodes in the model and emphasize on model selection during practical
implementation.

6.3.2 Asymptotic Properties of the BNT-2 model

We consider the nonparametric regression model

Yi = f0(Xi) + εi, εi
iid∼ N(0, 1),
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where the output variable Y = (Y1, Y2, ..., Yn)
′

is dependent on a set of d poten-
tial covariates X = (Xi1, Xi2, ..., Xid)

′
, 1 ≤ i ≤ n. We further assume that these

covariates are fixed and have been rescaled such that every Xij ∈ [0, 1]d = Cd,
1 ≤ i ≤ n and 1 ≤ j ≤ d. The true unknown response surface f0(Xi) is assumed
to be smooth.

Recent work by Rocková and van der Pas (2020) had shown that the BCART
model achieves a near-minimax-rate optimal performance when approximating
a single smooth function. Thus, the optimal behavior of a BCART model is
guaranteed, and even under a suitably complex prior on the number of terminal
nodes, a BCART model is reluctant to overfit. In the BNT-2 model, we build
a BCART model in the first stage and perform variable (feature) selection as in
Bleich et al. (2014), which ensures that we can obtain a consistent BCART model
under the assumptions of Theorem 4.1 of Rocková and van der Pas (2020).

The selected important features, along with the BCART outputs, are trained
using an ANN model with one hidden layer. We denote the dimension of the
input feature space of this ANN model as dm (≤ d). The rescaled feature space
is denoted by Cdm = [0, 1]dm . Using one hidden layer in the ANN makes the
BNT-2 model less complex and fastens its actual implementation. Moreover,
there is no theoretical gain in considering more than one hidden layer in an ANN
(Devroye et al., 1996). Below, we establish sufficient conditions for consistency
of the BNT-2 model along with the optimal value of the number of hidden nodes k.

Let the rescaled set of features of the ANN be Z. Z and Y take values from
Cdm and [−K,K], respectively. We denote the measure of Z over Cdm by µ and
m : Cdm → [−K,K] be a measurable function that approximates Y. Given the
training sequence (Z,Y) of n i.i.d copies, the neural network hyperparameters are
chosen by empirical risk minimization. We consider the class of neural networks
having a logistic sigmoidal activation function in the hidden layer and k hidden
neurons, with bounded output weights.

Fn,k =

{
k∑
i=1

ciσ(aTi z + bi) + c0 : k ∈ N, ai ∈ Rdm , bi, ci ∈ R,
k∑
i=0

|ci| ≤ βn

}
,

and obtain mn ∈ Fn,k satisfying

1

n

n∑
i=1

|mn(Zi)− Yi|2 ≤
1

n

n∑
i=1

|f(Zi)− Yi|2, if f ∈ Fn,k,

where, mn is a function that minimizes the empirical L2-risk in Fn,k. The theorem
below, due to Lugosi and Zeger (1995, Theorem 3), states the sufficient conditions
for the consistency of the neural network.
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Theorem 18 Consider an ANN with a logistic sigmoidal activation function hav-
ing one hidden layer with k (> 1) hidden nodes. If k and βn are chosen to satisfy

k →∞, βn →∞,
kβ4

nlog(kβ2
n)

n
→ 0

as n → ∞, then the model is said to be consistent for all distributions of (Z,Y)
with E|Y|2 <∞.

Proof For the proof, one may refer to Györfi et al. (2002, Chapter 16). �

Now, we obtain an upper bound on k using the rate of convergence of a neural
network with bounded output weights. In what follows, we have assumed that m
is Lipschitz (δ, C)-smooth according to the following definition:

Definition 12 A function m : Cdm → [−K,K] is called Lipschitz (δ, C)-smooth
if it satisfies the following inequality:

|m(z
′
)−m(z)| ≤ C‖z′ − z‖δ

for all δ ∈ [0, 1], z
′
, z ∈ Cdm, and C ∈ R+.

Proposition 2 Assume that Z is uniformly distributed in Cdm and Y is bounded
a.s. and m is Lipschitz (δ, c)-smooth. Under the assumptions of Theorem 18
with fixed dm, and m, f ∈ Fn,k, also f satisfying

∫
Cdm

f 2(z)µ(dz) < ∞, we have

k = O

(√
n

dmlog(n)

)
.

Proof To prove Proposition 2, we use results from statistical learning theory
of neural networks (Györfi et al., 2002, Chapter 12). We use the complexity
regularization principle to choose the parameter k in a data-dependent manner
(Hamers and Kohler, 2003; Kohler, 2006; Kohler and Krzyżak, 2005). Consistency
results presented in Theorem 18 state that

E
∫
Cdm

(mn(Z)−m(Z))2µ(dz)→ 0 as n→∞.

We can write using Lemma 2 (Györfi et al., 2002) that

E

[∫
Cdm

∣∣mn(Z)−m(Z)
∣∣2µ(dz)

]
≤ 2E

[
sup
f∈Fn,k

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Zi)
∣∣2 − E

∣∣Y − f(Z)
∣∣2∣∣∣∣
]

+ E

[
inf

f∈Fn,k

∫
Cdm

∣∣f(Z)−m(Z)
∣∣2µ(dz)

]
(6.6)

where µ denotes the distribution of Z. For the consistency of the neural network
model, the estimation error (first term in the R.H.S. of 6.6) and the approximation
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error (second term in the R.H.S. of 6.6) should tend to 0. To find the bound for
k, we apply non-asymptotic uniform deviation inequalities and covering numbers
corresponding to Fn,k. Assuming Y is bounded as in Theorem 18, we write (6.6)
as

E
∫
Cdm

∣∣mn(Z)−m(Z)
∣∣2µ(dz) ≤ 2 min

k≥1

{
penn(k)

+ inf
f∈Fn,k

∫
Cdm

∣∣f(z)−m(z)
∣∣2µ(dz)

}
+O

( 1

n

)
. (6.7)

We have assumed that for each f ∈ Fn, Y is bounded. Let wn1 = (w1, w2, . . . , wn)
be a vector of n fixed points in Rdm and let H be a set of functions from Rdm →
[−K,K]. For every ε > 0, we let N(ε,H,wn1 ) be the L1 ε-covering number of H
with respect to w1, w2, . . . , wn. N(ε,H,wn1 ) is defined as the smallest integer N
such that there exist functions h1, . . . , hN : Rdm → [−K,K] with the property
that for every h ∈ H, there is a j ∈ {1, . . . , N} such that

1

n

n∑
i=1

∣∣h(wi)− hj(wi)
∣∣ < ε.

Note that if W n
1 = (W1,W2, . . . ,Wn) is a sequence of i.i.d. random variables,

then N(ε,H,W n
1 ) is also a random variable. Now, let W = (Z, Y ), W1 =

(Z1, Y1), . . . ,Wn = (Zn, Yn), and Cdm = [0, 1]dm , we write

Hn =

{
h(z, y) := |y − f(z)

∣∣2 : (z, y) ∈ Cdm × [−K,K] and f ∈ Fn
}
.

The functions in Hn will satisfy the following:

0 ≤ h(z, y) ≤ 2β2
n + 2K2 ≤ 4β2

n.

Using Theorem 4 (Pollard, 1984), we have, for arbitrary ε > 0,

P

{
sup
f∈Fn,k

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Zi)
∣∣2 − E∣∣Y − f(Z)

∣∣2∣∣∣ > ε

}
≤ P

{
sup
h∈Hn

∣∣∣ 1
n

n∑
i=1

h(Wi)− E(h(W ))
∣∣∣ > ε

}
≤ 8E

[
N
(ε

8
, Hn,W

n
1

)]
exp

(
− nε2

128(4β2
n)2

)
. (6.8)

Next, we try to bound the covering number N
(
ε
8
, Hn,W

n
1

)
. Let us consider two
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functions hi(z, y) = |y − fi(z)|2 of Hn for some fi ∈ Fn and i = 1, 2. We get

1

n

n∑
i=1

∣∣h1(Wi)− h2(Wi)
∣∣

=
1

n

n∑
i=1

∣∣∣∣∣Yi − f1(Zi)
∣∣2 − ∣∣Yi − f2(Zi)

∣∣2∣∣∣
=

1

n

n∑
i=1

∣∣f1(Zi)− f2(Zi)
∣∣× ∣∣f1(Zi)− Yi + f2(Zi)− Yi

∣∣
≤ 4βn

n

n∑
i=1

∣∣f1(Zi)− f2(Zi)
∣∣.

Thus, if {h1, h2, ..., hl} is an ε
8

packing of Hn on W n
1 , then {f1, f2, ..., fl} is an

ε
32βn

packing of Fn.

Thus, N
(ε

8
, Hn,W

n
1

)
≤ N

( ε

32βn
, Fn, Z

n
1

)
. (6.9)

The covering number N
(

ε
32βn

, Fn, Z
n
1

)
can be upper bounded independently of

Zn
1 by extending the arguments of Lemma 1 (Györfi et al., 2002). We now define

the following classes of functions:

G1 = {σ(a>z + b) : a ∈ Rdm , b ∈ R},

G2 = {cσ(a>z + b) : a ∈ Rdm , b ∈ R, c ∈ [−βn, βn]}.

For any ε > 0,

N(ε,G1, Z
n
1 ) ≤ 3

(
2e

ε
log

3e

ε

)dm+2

= 3
(3e

ε

)2dm+4

.

Also, we get

N(ε,G2, Z
n
1 ) ≤ 4βn

ε
N
( ε

2βn
, G1, Z

n
1

)
≤
(12eβn

ε

)2dm+5

.

We obtain the bound on the covering number of Fn,

N(ε, Fn, Z
n
1 ) ≤ 2βn

ε
N
( ε

k + 1
, G2, Z

n
1

)k
≤
(12eβn(k + 1)

ε

)(2dm+5)k+1

. (6.10)
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According to (6.10), and for any Zn
1 ∈ Rdm , we have

N
( 1

n
, Fn,k, Z

n
1

)
≤
(

12enβn(k + 1)
)(2dm+5)k+1

. (6.11)

Using the complexity regularization principle we have

sup
Zn1

N

(
1

n
, Fk,n, Z

n
1

)
≤ N

(
1

n
, Fk,n

)
to be the upper bound on the covering number of Fk,n, and define for wk ≥ 0,

penn(k) =
constant×K2 × logN

(
1
n
, Fk,n

)
+ wk

n

as a penalty term penalizing the complexity of Fk,n (Kohler and Krzyżak, 2005).
Thus, equation (6.11) implies that penn(k) is of the following form with wk = 1
and βn = constant <∞,

penn(k) =
constant×K2 × (2dm + 6)klog

(
12enβn) + 1

n
= O

(
kdmlog(n)

n

)
.

The approximation error inf
f∈Fk,n

∫
Cdm

∣∣f(z)−m(z)
∣∣2µ(dz) depends on the smooth-

ness of the regression function. According to Theorem 3.4 of Mhaskar (1993), for
any feedforward neural network with one hidden layer satisfying the assumptions
of Proposition 2, we have

∣∣f(z)−m(z)
∣∣ ≤ ( 1√

k

) δ
dm

for all z ∈ [0, 1]dm . Thus, we have,

inf
f∈Fn,k

∫
Cdm

∣∣f(z)−m(z)
∣∣2µ(dz) = O

(1

k

)
.

Using (6.7), we have

E
∫
Cdm

∣∣mn(Z)−m(Z)
∣∣2µ(dz) ≤ O

(
kdmlog(n)

n

)
+O

(
1

k

)

for sufficiently large n.

Now we can balance the approximation error with the bound on the covering
number to obtain the optimal choice of k from which the assertion follows. �

Remark 15 For practical purposes, we choose the number of hidden neurons in
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the BNT-2 model to be k =
√

n
dmlog(n)

.

6.4 Benchmark Comparison Experiments

We now present applications of the two BNT models to real-life data sets, and
evaluate them against their component regression models, namely a simple CART
model, a simple BCART model, a one-hidden-layer ANN, and a one-hidden-layer
BNN.

6.4.1 Data

Table 6.1: Data set characteristics: number of samples and number of features,
after removing observations with missing information or nonnumerical input fea-
tures

Data set Number of observations Number of features

AutoMPG 398 7

Housing 506 13

Power 9568 4

Crime 1994 101

Concrete 1030 8

We use regression data sets available on the UCI machine learning repository
(https://archive.ics.uci.edu/ml/datasets.html). These data sets have a
limited number of observations and high-dimensional feature spaces (Lichman
et al., 2013). Concretely, we use the Auto MPG, Housing, Power, Communities
and Crime (Redmond and Baveja, 2002), and Concrete Compressive Strength
(Yeh, 1998) data sets as testing ground for the models. To showcase the abilities
of the BNT, we picked diverse, but mostly small regression data sets with few
samples. It is on these small data sets where the benefits of neural optimization
can usually not be exploited, but with the specific inductive bias of the BNT
it becomes possible. As a part of the data cleaning process, we systematically
eliminate all nonnumerical features and observations with missing values. Table
6.1 summarizes the characteristics of the data sets.

6.4.2 Implementation and Results

We shuffled the observations in each data set randomly and split it into training,
validation, and test set in a ratio of 50/25/25. Each experiment is repeated 10
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times with different randomly assigned training, validation, and test set. Nonnu-
merical features and samples with missing entries were systematically removed.
Table 16.1 summarizes the characteristics of the resulting data sets. In prelimi-
nary experiments, data normalization or rescaling to the unit cube did not have
a big impact on the models, so we kept the original values given in each of the
sets. Experiments are carried out using R (version 3.6.1).

We fitted a CART model using the rpart package, with the stopping parameter
‘minsplit’ set to 10% of the training sample size. Random forest was implemented
using the randomForest package in R. To fit a simple MacKay’s BNN (MacKay,
1992a), we simply call it BNN, we use the brnn package with the number of hidden
layers set to one and the number of hidden neurons set to the default value (i.e.,
2). The brnn package implements a BNN with a Gaussian prior and likelihood. To
fit a simple, one-hidden-layer ANN, we make use of the neuralnet package and set
the number of hidden neurons to the default value (2). A Bayesian CART model
is fit using the bartMachine package (Kapelner and Bleich, 2016), with the number
of trees set to one. For feature selection under BCART, we use local threshold-
ing of the variable inclusion proportions, although empirical explorations show
that results are not very sensitive to other thresholding methods. As seen in
Table 6.2, the component models of the BNTs exhibit consistent results, and
neural networks perform better than the tree-based models for a majority of the
data sets. For comparison, we also evaluate Bayesian Additive Regression Trees
(BART) (Chipman et al., 2010). BART is trained also with 30 trees, 1000 MCMC
steps (after burn-in of 100 steps), and otherwise default hyperparameters from
the BayesTree R implementation. Also, Neal’s Bayesian neural network, (Neal,
1996), we call it Neal’s BNN, we used 5 hidden units for all the data sets and
priors are assigned based on the recommendation given in (Chakraborty et al.,
2005). We assigned a N(0, 1002) prior to the output bias and independent Gaus-
sian prior to the rest of the parameters. The precision parameter has a gamma
distribution with a mean of 0.05 and a variance of 0.01. More details about
the prior specifications and the software can be obtained from Neal’s website
(http://www.cs.utoronto.ca/œradford/fbm.software.html). Results using
Neal’s neural network are reported under the column name Neal’s BNN. It is
clear from Table 6.2 that Neal’s BNN many times improves the predictions of
Mackay’s BNN for the UCI data sets used in the experimentation.

We now turn to the implementation of the two BNT models. To implement
BNT-1, we first record the selected features and predictions from the CART
model, forming the set of features for the subsequent BNN model. Again, a
CART model is trained with the stopping parameter ‘minsplit’ set to 10% of the
training sample size. A one-hidden-layer BNN is then fit with the number of
hidden neurons k drawn from Geometric distributions with success probabilities
p ∈ {0.3, 0.6, 0.9}. The reversible jump MCMC to fit the Bayesian model is de-
scribed in Section 2.3.7 of Chapter 2. We followed the implementation scheme
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Table 6.2: Test set results (average) for each of the model across different data.

Data Set Model Performance Metrics
No. of features used MAE MAPE RMSE R2 adjusted R2

AutoMPG

CART 3 2.640 0.120 3.419 83.45 83.03
BCART 3 2.796 0.117 3.693 80.65 80.32

RF 5 2.541 0.109 3.440 84.96 82.67
ANN 7 2.241 0.096 3.164 85.80 85.04
BNN 7 2.253 0.097 3.123 86.12 85.44

Neal’s BNN 7 2.249 0.094 3.058 86.55 84.91
BART 5 2.002 0.090 2.933 88.50 87.50

BNT-1 (p=0.3) 4 2.111 0.091 3.016 87.15 86.77
BNT-1 (p=0.6) 4 2.110 0.092 3.013 87.12 87.00
BNT-1 (p=0.9) 4 2.119 0.092 3.018 87.30 87.00

BNT-2 4 2.081 0.090 3.033 86.90 86.82

Housing

CART 3 3.161 0.163 5.068 69.62 69.00
BCART 4 3.683 0.194 5.057 69.79 68.91

RF 7 2.954 0.165 4.980 72.50 70.98
ANN 13 2.736 0.132 4.782 72.95 70.62
BNN 13 2.742 0.132 4.793 70.44 70.27

BART 7 2.750 0.130 4.655 72.64 71.97
BNT-1 (p=0.3) 4 2.643 0.129 4.731 73.58 73.00
BNT-1 (p=0.6) 4 2.641 0.128 4.730 73.58 73.00
BNT-1 (p=0.9) 4 2.641 0.128 4.730 73.58 73.00

BNT-2 5 2.751 0.134 4.597 75.04 74.85

Power

CART 2 4.157 0.009 5.389 90.18 90.10
BCART 2 5.502 0.008 4.561 92.97 92.91

RF 4 4.515 0.008 4.950 93.05 92.98
ANN 4 3.558 0.008 4.501 93.79 93.70
BNN 4 3.563 0.007 4.510 94.05 94.05

BART 4 3.522 0.008 4.495 93.69 92.45
BNT-1 (p=0.3) 3 3.444 0.008 4.460 93.20 93.20
BNT-1 (p=0.6) 3 3.443 0.008 4.463 93.20 93.20
BNT-1 (p=0.9) 3 3.442 0.008 4.461 93.20 93.20

BNT-2 3 3.408 0.007 4.410 93.40 93.40

Crime

CART 12 0.166 0.435 0.230 39.96 33.50
BCART 15 0.186 0.580 0.231 39.44 25.07

RF 15 0.161 0.505 0.208 54.62 52.07
ANN 101 0.164 0.442 0.222 46.33 44.81
BNN 101 0.167 0.567 0.290 58.00 58.00

BART 15 0.142 0.305 0.150 60.08 58.75
BNT-1 (p=0.3) 13 0.158 0.395 0.218 46.30 40.66
BNT-1 (p=0.6) 13 0.154 0.395 0.218 46.30 40.66
BNT-1 (p=0.9) 13 0.158 0.395 0.218 46.30 40.66

BNT-2 16 0.143 0.367 0.193 57.88 57.40

Concrete

CART 5 7.462 0.286 9.414 69.42 68.95
BCART 3 7.909 0.304 10.064 65.14 64.98

RF 5 5.955 0.246 8.390 75.97 72.88
ANN 8 6.987 0.235 9.194 70.92 70.14
BNN 8 6.043 0.268 7.676 74.60 74.23

BART 5 5.495 0.190 7.052 82.74 80.90
BNT-1 (p=0.3) 6 5.493 0.194 6.961 83.33 83.00
BNT-1 (p=0.6) 6 5.492 0.194 6.950 84.00 83.00
BNT-1 (p=0.9) 6 5.493 0.194 6.961 83.33 83.00

BNT-2 4 5.473 0.178 6.636 87.95 87.80
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given by Rios Insua and Müller (1998) to implement BNN with variable architec-
ture in the BNT-1 model. To implement BNT-2, we record important features
and predictions from the BCART model using the bartMachine package in R.
Then we use these as inputs to the ANN model with one hidden layer. The num-

ber of neurons in the ANN is taken to be
√

n
dmlog(n)

, which is the optimal number

derived in Section 6.3.2. Additionally, all data sets are min-max scaled to be in
the [0, 1] range before training the neural network models. From Table 6.2, we
observe that across all data sets, the proposed BNT models greatly improve the
performance of their component models. We note that the BNT-2 model outper-
forms all others on the 60% of the data sets (best results are made bold in Table
6.2). Consequently, we can expect the BNT predictions to be at least better than
the individual model predictions, since cases, where further optimization is likely
to have led to overfitting, are directly filtered out. BART (Chipman et al., 2010)
is ranked second among all the regression models used in this study and outper-
formed BNT models for two out of five UCI data sets. Overall, the experimental
results suggest that BNT models can be thought of as a new competitor to the
popular BART (Chipman et al., 2010) model in the context of nonparametric
regression.

6.5 Application to Water Quality Prediction

We consider a particular problem in a modern paper industry that produces pa-
pers for multiple uses. Paper machines produce papers using pulp, fiber, filler,
chemical lubricant, and a considerable amount of water. The boiler produces
steam for power generation purposes and also helps to make pulp for paper pro-
duction. The steam produced in the boiler is used for cooking wood chips (along
with the cooking chemicals). Steam is also sent to dryer cans to remove water
from the sheet produced by the paper machine. The boiler stipulates the de-
sired level of water quality to be received from the water treatment plant. In the
plant, the process of demineralization (DM process) is applied for the removal
of dissolved solids by the ion exchange process (IEP) that involves two stages of
demineralization (Batchelder, 1965). In the first stage, it removes cations from
water by the cation exchange process and then removes anions from water by the
anion exchange process in the second stage (Lhassani et al., 2001).

DM process outlet pH happens to be the key performance indicator (KPI) of
the water treatment plant. It was found that the plant can not produce water
of desired quality specified by the boiler to be supplied to the paper machine.
Finding a prediction model for the water quality will help the company to address
the problem of variation in DM outlet water pH as well as an indication for the
health of the boiler water tube. Controlling water pH will necessarily improve the
water quality of the boiler, thus resulting in a monetary benefit for the company
(Wang et al., 2019b; Zhang et al., 2019a). An extensive preliminary data analysis
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was conducted to determine a set of possible causal variables that happen to be
the key to water pH level variations. Several statistical and machine learning tools
like statistical quality control techniques, regression trees (RT), support vector
regression (SVR) and artificial neural networks (ANN), etc. have previously been
applied to solve the problems of water quality of river (Antanasijević et al., 2020;
Mahuli et al., 1993; Ouyang et al., 2006; Singh et al., 2009) and surface water
planning (Avila et al., 2018; Bhattacharya and Solomatine, 2005; Gmar et al.,
2017). We investigate our proposed methodology on the water quality data set
collected from a modern paper manufacturing company.

6.5.1 Data Collection Plan

In this section, we describe the motivating business problem and the data collec-
tion plan for our study. The data on pH is taken regularly from the boiler lab of
the paper manufacturing company. However, when the study was taken up, we
considered only the most recent 12 months of data for analysis. Measurement of
water pH level at boiler lab is done through a digital meter which is calibrated
once a month using a standard solution. DM process outlet pH happens to be
the KPI of the water treatment plant, which gives the water of desired quality
specified by the boiler.

Figure 6.2: Process flow diagram of DM plant process

Water treatment plant comprises of two units: fresh-water treatment and
condensate water treatment. Fresh-water treatment plant involves filtration of
fresh-water obtained from the tube well followed by treatment of water with
chemicals, making the water suitable for boiler and turbine. Condensate treat-
ment involves filtration and treatment of condensate water obtained from paper
machines. The quality of condensate coming from paper machines is the primary
constraint for the current problem. Once the filtration of water or condensation
is done, they are sent to the DM plant, where water is made suitable for the use
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of boiler (Vedelago and Millar, 2018). Brief details of the types of equipment
used in DM plant processes are given below (see Figure 6.2).

• Strong acid cation (SAC) exchanger extracts the cations from the water by
the cation resin and converts it into mineral acids. A vessel is also provided
for controlling the flow rates of the inlet and outlet water.

• Strong base anion (SBA) exchanger is an anion exchanger in which a vessel
is internally lined with rubber to prevent corrosion. An external vessel is
also provided with manually operated valves to control the inlet and outlet
water flow rates.

• The mixed bed (MB) unit comprises of a mild steel rubber-lined pressure
vessel. Externally, the unit is provided with piping and valves to control
the flow of water during service.

• Activated carbon filters (ACF) are used to remove chlorine and organic
matter from water. Usually, ACFs are placed downstream of multi-grade
filters and need to be regularly back-washed by reversal of flow to keep the
surface of the carbon particles clean.

Once the water is treated, it is stored in a tank called the DM water storage
tank (DMST). The water is pumped from DMST to the boiler via the DM transfer
pump. Chemicals like HCl and caustic soda are used for regeneration of the resins
in SAC, SBA, and MB Exchanger. Morpholine is used for scaling the pH of DM
water. Condensate water is also sent through an MB exchanger for the treatment
of water. It is essential to maintain DM outlet water of pH in the range of 8.5-9.2
for the excellent health of the water tubes and paper machine. It was found that
the variation in pH of DM water is significant, and thus maintaining boiler water
pH is an essential task for the company. A set of causal variables affecting the
boiler water quality was found with the help of process experts and after some
preliminary data analysis, which is discussed in the next subsection.

6.5.2 Data Description

Several brainstorming sessions were held with the process experts to identify
the causal parameters causing the variations in the DM water outlet pH. Since
not all the parameters are controllable by the users of the processes, a list of
controllable parameters was prepared. Accordingly, data were collected for the
DMST-1 and DMST-2 processes. The data set collected from the process for a
year consists of the observations from the following causal variables: Inlet Flow,
Water Pressure (water inlet pressure to the Exchanger), Air Pressure, MB stroke,
and Amount of Morpholine or Chemical dosing (Liter per hr). The values of the
response variable (DM water pH) varies between 7 to 10 (refer to Figure 6.3 for
a graphical summary). Sample data sets for DMST-1 and DMST-2 are given

149



6. BAYESIAN NEURAL TREE MODEL

in Tables 6.3 and 6.4. These data sets will be used for further model building
that can help the company to forecast future water pH levels and take necessary
actions for the reduction in water pH variation.

Table 6.3: Sample data set for DMST-1

Sl. No. Inlet Flow Water Pressure Air Pressure MB stroke Amount of DM water
chemical outlet pH

1 1980 5.8 5.0 70 9.96 9.276
2 2150 7.0 7.0 60 8.69 9.094
3 1780 6.0 5.0 45 7.73 8.594
4 2808 5.2 6.4 50 6.54 8.738
5 1590 6.2 5.7 40 5.56 8.592
6 2995 6.0 6.0 50 7.23 9.099
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

Table 6.4: Sample data set for DMST-2

Sl. No. Inlet Flow Water Pressure Air Pressure MB stroke Amount of DM water
chemical outlet pH

1 1489 5.4 6.0 80 10.04 9.246
2 1139 5.8 5.0 65 10.66 9.033
3 1448 5.4 5.0 45 7.69 8.483
4 1703 6.2 5.8 40 7.54 8.594
5 1258 6.2 5.7 35 5.99 7.589
6 1139 6.0 5.2 50 6.97 9.021
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

6.5.3 Analysis of Results

We started analyzing the data with the Anderson-Darling normality test on DM
water outlet pH, and it confirms that the dependent variable doesn’t follow a nor-
mal distribution (see Figure 6.3). An absence of normality in the DM water outlet
pH data removed the possibility of applying conventional parametric regression
methods. This leads us to think about nonparametric regression approaches. The
stability of the process was checked using a X −R control chart (see Figure 6.3).
From the X − R chart, it can be easily concluded that DM water outlet pH has
high variation, and it also indicates the presence of some assignable causes in the
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process. The data set contains only numerical features with no missing entries.
Thus no data cleaning task was performed.

Figure 6.3: Summary statistics (above) and control chart (below) for DM water
outlet pH
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Table 6.5: Quantitative measures of performance for different regression models
on test data set (average values of the metrics after 10-fold cross validations)

Regression Models Data set RMSE MAPE R2 Adj R2

Kernel SVR
DMST 1 4.06 4.50 75.66 70.29
DMST 2 4.18 5.20 72.70 67.25

B-splines
DMST 1 4.32 5.40 69.85 63.30
DMST 2 6.94 7.21 56.70 49.78

MARS
DMST 1 4.29 5.26 65.95 58.90
DMST 2 6.74 7.93 57.53 47.05

RT
DMST 1 3.44 4.12 80.52 75.56
DMST 2 3.89 4.78 76.56 71.23

ANN (with 2HL)
DMST 1 3.86 4.80 76.95 70.03
DMST 2 4.12 5.91 70.10 64.73

BNT-2 Model
DMST 1 3.05 3.40 85.40 82.50
DMST 2 3.20 3.75 83.50 80.00

We have shuffled the observations of the water pH data set randomly and
split it into training and testing data sets in a ratio of 70 : 30. Each experiment
is repeated ten times with different randomly assigned training and test sets.
We will finally report the averages of the performance metrics observed over five
times validations in Table 6.5. Various nonparametric regression models were
applied to the data sets with default parameters, and the results were recorded.
To implement Kernel SVR, we build a Gaussian kernel-based SVR model by
the built-in package e1071 in the R statistical package. The other two classical
regression models, namely B-splines regression and MARS, were implemented us-
ing the built-in libraries splines2 and earth in R, respectively. Then we started
experimenting with the proposed hybrid BNT-2 model since it outperforms the
BNT-1 model in many of the cases while implementation with UCI data sets. We
first build BCART using the bartMachine implementation in R statistical soft-
ware. We have used “minsplit” splitting rule to stop the tree, which determines
the minimum number of points a node must have to be considered for splitting.
From the tree, we extracted the set of all the most essential features as well as the
prediction results and executed them in BNN architecture. We have used most
of the default arguments present in these packages, as reported in Section 6.4.2.
The training time and memory requirements are also quite low for the hybrid
model compared to the 2HL ANN model. In Table 6.5, we present the results
of different regression models on the water pH data sets, and the best results
are displayed in bold fonts. The experimental evaluation of different regression
models shows that the hybrid model outperforms other statistical and machine
learning models with a significant margin. The proposed hybrid model will be
useful for forecasting future values of water pH, given the values of the process
variables. The model will also be helpful for the management and engineers to
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take further preventive action as well.

However, since our objective of the work is not only to develop a competitive
prediction model for water pH level in the DM process but also to find out the
optimal level of process parameters (in other words, causal variables) using the
model. To keep DM water pH in the range of 8.5− 9.2 as specified by the boiler
manual, the recommendations of our model are to maintain MB strokes, water
pressure, and chemical consumption within a specified range, as shown in Table
6.6. The user of the process can’t control inlet flow, and Air pressure need not
be controlled as far as the recommendation of the proposed model goes. Table
6.6 gives the optimum range of controllable parameters for DMST 1 and DMST
2 based on the recommendation of regression analysis performed by an optimal
hybrid model.

Table 6.6 depicts a range for all the critical process variables for which the ex-
pected DM water outlet pH will be within the required specification, i.e., 8.5−9.2.
However, to find out the exact values of the process parameters within the range
prescribed in Table 6.6, a design of experiment (DOE) would be necessary, which
was subsequently carried out to solve the problem. Though we have discussed
only the proposed model and its accuracy level, our model also helped the manu-
facturing process industry to improve its water quality level and to gain monetary
benefits due to a reduction in the chemical consumption.

Table 6.6: Optimal range of causal variables for achieving desired pH level

Process Range for Range for Range for Expected range
Water Pressure MB stroke chemical consumption for DM water outlet pH

DMST 1 5.0-6.0 45-55 6.5-7.5 8.5-9.1

DMST 2 5.0-6.0 40-50 7.5-8.5 8.5-9.2

6.6 Concluding Remarks

This chapter presents two hybrid models that combine frequentist and Bayesian
implementations of decision trees and neural networks. The BNT models are
novel, first-of-their-kind proposals for nonparametric regression purposes. We
find that the models performed quite better on small to medium-sized data sets
than other state-of-the-art nonparametric models. Moreover, the BNT models
have a significant advantage over purely frequentist hybridization. A Bayesian
approach to constructing a CART or an ANN model can check the overfitting
issue in the model. A BCART model allows placing priors that control the depth
of the resultant trees, and BNNs with Gaussian priors are inherently regular-
ized. This prevents the need to tune multiple parameters via cross-validation
manually. Thus, the proposed BNT models overcome the deficiencies of their
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component models and the drawbacks of using fully frequentist or fully Bayesian
models. We also show that the BNT models are consistent, which ensures their
theoretical validity. When applied to solve water quality forecasting problems in
a paper manufacturing industry, the proposed hybrid machine learning paradigm
performs better than competing tools. The developed model was used to predict
water pH levels in the DM process for a paper manufacturing sector and on a
wide variety of standard regression data sets. The experimental results on UCI
data sets are also promising for the proposed BNT models. It can be thought of
as a new alternative to the popularly used BART model (Chipman et al., 2010)
for nonparametric regression problems.

An immediate extension of this work will be to develop a hybrid methodology
based on two Bayesian models, namely BCART or BART and BNN, to enhance
uncertainty quantification and decision making in a fully nonparametric regres-
sion scenario. Even there are other scopes of improving the proposed BNT models
for survival regression problems and lifetime data analysis. In the next chapter,
we look at a different kind of regression problem, namely time series forecasting.
Chapter 7 presents a hybrid framework based on linear and nonlinear models for
forecasting unemployment rates for different countries.
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Chapter 7

A Hybrid Time Series Model for
Macroeconomic Forecasting

Related Publication:

1. Chakraborty, T., Chakraborty, A. K., Biswas, M., Banerjee, S., Bhat-
tacharya, S. (2020). Unemployment Rate Forecasting: A Hybrid Approach.
Computational Economics, https://doi.org/10.1007/s10614-020-10040-2.

Summary

Unemployment has always been a very focused issue causing a nation as a whole to
lose its economic and financial contribution. The unemployment rate prediction
of a country is a crucial factor for the country’s economic and financial growth
planning and a challenging job for policymakers. Traditional stochastic time se-
ries models, as well as modern nonlinear time series techniques, were employed
for unemployment rate forecasting previously. But these macroeconomic data sets
are mostly nonstationary and nonlinear in nature. Thus, it is atypical to assume
that an individual time series forecasting model can generate a white noise er-
ror. In this chapter, we propose a hybrid model combining linear autoregressive
integrated moving average (ARIMA) model and nonlinear autoregressive neural
networks (ARNN) model to take advantage of the unique strength of ARIMA and
ARNN models in modeling the unemployment rate data sets. The proposed hybrid
approach is applied to six unemployment rate data sets from various countries,
namely, Canada, Germany, Netherlands, New Zealand, Sweden, and Switzerland.
The results of computational tests are very promising in comparison with other
conventional methods. The results for asymptotic stationarity of the proposed hy-
brid approach using Markov chains and nonlinear time series analysis techniques
are given in this chapter which guarantees that the proposed model cannot show
‘explosive’ behavior or growing variance over time. We also use simulated time
series data set to show the effectiveness of the proposed hybrid forecasting model.
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7.1 Introduction

Economic indicators such as GDP and labor statistics are used by investors to
forecast economic trends and decide on the appropriate investment policies. In
particular, the unemployment rate for any country represents one of the most
important economic indicators for financial market participants due to its corre-
lation with the country’s business cycle and its influence on the monetary policy
(Blanchard and Leigh, 2013). Accurate forecasting of the unemployment rate is
central to economic decision-making and it helps in the design of government pol-
icy for the country’s development. The study of unemployment rate forecasting
started in the middle of the 1990s. Many time series models have been employed
extensively for the prediction of macroeconomic variables, including unemploy-
ment. Previous studies on unemployment rate suggested an asymmetry in the
unemployment rate data for various European countries (Milas and Rothman,
2008). One of the primary time series implications of such behavior is that it is
inconsistent with a linear data generating process with symmetrically distributed
innovations.

In previous studies on unemployment rate forecasting for various developed
countries, the autoregressive integrated moving average (ARIMA) model was ap-
plied for analyzing Germany and Spain’s unemployment data obtained from on-
line search (Funke, 1992; Vicente et al., 2015). The usefulness and effectiveness
of the classical linear ARIMA model were evident from the results obtained while
using various European unemployment rate forecasting data sets (Edlund and
Karlsson, 1993) and out-of-sample forecasts for Canadian unemployment rates
(Khan Jaffur et al., 2017). But the situation was a bit different in case of un-
employment rate forecasting for the USA. The threshold autoregressive (TAR)
model, a classical nonlinear time series model, outperformed the linear time se-
ries models for forecasting the USA unemployment rate data set (Montgomery
et al., 1998). For short term forecasting of seasonally adjusted monthly USA
unemployment data sets, nonlinear models outperform the linear models (Nagao
et al., 2019; Proietti, 2003).

The current progress in the area of modern statistics and machine learn-
ing have equipped the forecasters with nonlinear forecasting tools such as artifi-
cial neural networks (ANN), deep learning, and support vector machines (SVM)
among many others (Katris, 2020). ANN is found to be the most accurate in fore-
casting unemployment over the asymmetric business cycle for the USA, Canada,
UK, France, and Japan (Moshiri and Brown, 2004; Peláez, 2006). The previous
results show that the nonlinear models are well-versed to seize the asymmetry
of unemployment rate time series for long-term forecast horizons (Katris, 2020).
Despite all these, there remains an asymmetry in unemployment rate forecasting
and its elimination is bound to be a challenging job (Galbraith and van Norden,
2019).
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The classical ARIMA model is competitive for forecasting stochastic time se-
ries whereas nonlinear ANN has produced favorable results for similar problems
in the past decades. Nevertheless, neural nets also have the apparent drawback
of finding the ‘optimal’ network architecture. To overcome this drawback, the
autoregressive neural network (ARNN) model was proposed in some recent lit-
erature (Faraway and Chatfield, 1998). ARNN is a “white-box-like” model that
fits a feed-forward neural net having one hidden layer to any time series data
set with lagged values of the series as inputs (Teräsvirta et al., 2005). It has
the advantages of less complexity and easy interpretability over ANN formula-
tion (Hyndman and Athanasopoulos, 2018). The data sets at hand contain both
linear and nonlinear patterns in the current problem of unemployment rate fore-
casting. It will be critical for policymakers to make any decision based on a single
model since one can see regular changes in the dynamic behavior of the unemploy-
ment rates. By hybridizing linear and nonlinear models, one may reduce the bias
and variances of the prediction error of component models (Oliveira and Torgo,
2014). Thus, combining both the linear and nonlinear models will be preferred
for accurately predicting such complex autocorrelation structures (Khashei and
Bijari, 2011a). Several hybrid models were applied in the past to solve various
forecasting problems that arose in the stock market, financial econometrics, elec-
tricity, epidemiology, and other applied areas (Aladag et al., 2009; Arora and
Taylor, 2016; Khashei and Bijari, 2011b; Pai and Lin, 2005; Terui and Van Dijk,
2002; Tümer and Akkuş, 2018; Zhang, 2003). All these hybrid models are prac-
tically shown to be useful in solving real-life forecasting problems, but there are
hardly any theoretical results for asymptotic stationarity for these models in the
literature.

This chapter proposes a hybrid approach that studies the relationship be-
tween linear and nonlinear components of the unemployment rate time series
(Chakraborty et al., 2020a). The proposed hybrid methodology assumes an ad-
ditive relationship between linear and nonlinear models, assuming that different
models can capture the linear and nonlinear patterns of a time series separately,
and then the forecasts can be combined. The proposed hybrid method will be
appropriate for explaining variations of the unemployment rate in the presence
of nonstationarity and nonlinearity in this time series. In the first phase of the
proposed model, an ARIMA model is applied to catch the linear patterns of the
data set. Residual error values of the ARIMA model are calculated and restored
for further modeling. In the next stage, a nonlinear ARNN model is applied to
capture the nonlinear trends in the data set using the residual values obtained
from ARIMA. We call this two-step approach as ‘hybrid ARIMA-ARNN’ model.
Of particular interest for the statisticians in time series forecasting literature is
the question of asymptotic stationarity of the model, viz. whether the probabilis-
tic structure of the series is constant over time or at least asymptotically constant.
In this study, we have shown the asymptotic stationarity of the proposed hybrid
ARIMA-ARNN model using Markov chains and nonlinear time series analysis
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techniques. The theoretical results for asymptotic stationarity guarantee that
the model cannot have a growing variance with time. The asymptotic behavior
of the proposed hybrid model is especially crucial for predictions over a larger
interval of time or when using the model to generate an artificial time series. We
theoretically show asymptotic stationarity for the proposed hybrid approach in
Section 7.4. Finally, we test the performance of the proposed model on six un-
employment rate data sets and compare our proposed model with several other
state-of-the-art forecasting models in Section 7.5. A simulation study is also
presented in Section 7.6 to make our results more convincing.

7.2 Unemployment Rate Data and its Charac-

teristics

The unemployment rate represents the number of unemployed as a percentage of
the labor force. Forecasting unemployment rate can be defined as the projected
value for the number of unemployed people as a percentage of the labor force.
Six seasonally adjusted monthly data sets on unemployment rates for Canada,
Germany, Netherlands, Sweden, and Switzerland and one quarterly data of New
Zealand were collected from the open-access data repository FRED Economic
Data sets (Link: https://fred.stlouisfed.org/) and OECD data repository
(Link: https://data.oecd.org/). A summary of these unemployment rate data
sets is provided in Table 7.1. The plots of the training data for various countries
are given in Table 7.2. The graphical presentation of the data sets confirms the
presence of nonstationarity and nonlinearity in these unemployment rate data.
We also use a well-known linearity test, namely the new-F test, since it covers
the most extensive set of alternatives of nonlinearity (Terui and Van Dijk, 2002).
The new-F test rejects the null hypothesis of linearity most strongly for all the
six unemployment rate data sets.

Table 7.1: Descriptions of the unemployment rate data sets

Data Total Maximum Minimum Training set Test set
size value value size (Years) size (Years)

Canada 468 13.0 5.6 432 (1980-2015) 36 (2016-2018)
Germany 468 12.1 3.0 432 (1980-2015) 36 (2016-2018)

Netherlands 432 9.5 3.1 396 (1983-2015) 36 (2016-2018)
New Zealand 132 11.2 3.3 100 (1986-2009) 32 (2010-2018)

Sweden 432 10.5 1.3 396 (1983-2015) 36 (2016-2018)
Switzerland 468 5.37 0.1 432 (1980-2015) 36 (2016-2018)
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Table 7.2: Graphical analysis of training unemployment rate data sets for different
countries and its corresponding ACF and PACF plots

Country Training data ACF plot PACF plot
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In this chapter, we consider approaches for the prediction of univariate unem-
ployment rate time series. A combination of linear and nonlinear methods that
take into account the specific characteristics of data can offer more accurate pre-
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dictions. Some inherent characteristics of these data sets are the departure from
normality and the nonlinearity of the dependence structure of the data which are
also evident from previous studies of these data sets (Galbraith and van Norden,
2019; Katris, 2020; Nagao et al., 2019). To take into account the nonstationarity,
the linear ARIMA model is first considered. Furthermore, since nonlinearity ex-
ists, the neural networks-based ARNN model seems suitable in the second stage
of the hybrid model.

7.3 Methodology

This work proposes a hybrid model based on ARIMA and ARNN model to fore-
cast the unemployment rates for six countries. Below we first discuss about the
constituent models to be used in the hybridization.

7.3.1 ARIMA Model

ARIMA is a linear time series model, used for tracking linear tendencies in sta-
tionary time series data. ARIMA model is denoted by ARIMA(p, d, q). The
parameters p and q are the order of the AR model and the MA model respec-
tively, and d is the level of differencing (used for converting nonstationary series
into a stationarity one) (Box et al., 1976). ARIMA model can be mathematically
expressed as follows:

yt = θ0 +

p∑
i=1

φiyt−i + εt −
q∑
j=1

θjεt−j,

where yt denotes the actual value of the variable under consideration at time
t, εt is the random error at time t, φi and θj are the coefficients of the model.
The necessary steps for building an ARIMA model for any given time series data
set are as follows: model identification of the model (achieving stationarity),
estimation of model parameters (the autocorrelation function (ACF) and the
partial autocorrelation function (PACF) plots are used to select the AR and MA
model parameters, respectively), and model diagnostics checking (finding the
‘best’ fitted forecasting model using Akaike information criterion (AIC) or the
Bayesian information criterion (BIC)) (Hyndman and Athanasopoulos, 2018).

7.3.2 ARNN Model

ANN is a widely used supervised learning model, highly useful for sophisticated
nonlinear time series forecasting. Any neural net architecture can be described
as a network of “neurons”, arranged in layers, namely the input layer, hidden
layer, and output layer. The information from one layer to another layer is
passed using weights that are selected using a risk minimization based ‘learning
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algorithm’. The ARNN model is a modified neural network model especially
designed for time series data sets which uses a pre-specified number of hidden
neurons in its architecture (Faraway and Chatfield, 1998). It uses lagged values
of the time series as inputs to the model. ARNN(p, k) is a nonlinear feed-forward
neural net model with one hidden layer (having p lagged inputs) and k hidden
units in the hidden layer. It also uses BIC as the criterion for comparing different
models created by ARNN. Here x̂t is computed using selected past observations
xt−j1 , · · · , xt−jp as the inputs. Thus, ARNN model with one hidden layer can be
depicted with the following mathematical form:

x̂t = φ0

{
wc0 +

∑
k

wk0φk

(
wck +

∑
i

wikxt−ji

)}
,

where {wck} denotes the connecting weights and φi is the activation function.
Weights of the ARNN model are trained using a gradient descent backpropagation
algorithm (Rumelhart et al., 1985). The ARNN(p, k) model uses p as the number

of lags for an AR(p) model and k is usually set to k =
[

(p+1)
2

]
for non-seasonal

time series data (Hyndman and Athanasopoulos, 2018).

7.3.3 Proposed Hybrid ARIMA-ARNN Model

The ARIMA model is a popular classical time series model for linear data struc-
tures. In contrast, with the advent of neural networks, even nonlinear structures
in the data set can be handled. The aim of developing a hybrid model based
on linear and nonlinear time series models is to harness the advantages of single
models and reduce the risk of failures of single models. The underlying assump-
tion of the developed hybrid approach is that the relationship between linear and
nonlinear components are additive. Even if the relationship is of multiplicative
type, in the log-log scale, it becomes additive. Hence, without loss of generality,
we may assume the relationship to be additive.

We propose a hybrid ARIMA-ARNN model, which is a two-step pipeline
approach. In the first step of the proposed hybrid approach, an ARIMA model
is built to model the linear components of time series, and a series of forecasts
are generated. In the second phase, the ARIMA residuals are modeled using a
nonlinear ARNN model. The formulation of the proposed hybrid ARIMA-ARNN
model (Zt) can be formally represented as follows:

Zt = Yt +Nt,

where Yt is the linear part and Nt is the nonlinear part of the hybrid model. We
can estimate both Yt and Nt from the training data set. Let, Ŷt be the forecast
value of the ARIMA model at time t and εt represent the error residuals at time
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t, obtained from the ARIMA model. We can then write

εt = Zt − Ŷt.

The residuals are modeled by the ARNN model and can be represented as follows

εt = f(εt−1, εt−2, ..., εt−n) + ςt, for some integer n,

where f is a nonlinear function of the ARNN model and ςt is the random shocks.
Therefore, we can write the combined forecast as:

Ẑt = Ŷt + N̂t,

where N̂t is the forecasted value of the ARNN model. ARNN models the left-over
autocorrelations in the residuals, which ARIMA could not model. This is impor-
tant because the linear ARIMA model may fail to generate white noise behavior
in the forecast residuals due to the model misspecification and disturbances in the
unemployment rate time series. Therefore, if the error series is modeled again, the
performance of the original forecaster can be improved, even though marginally
at times. A flowchart of the hybrid ARIMA-ARNN model is presented in Figure
7.1. The algorithmic representation of the proposed hybrid approach is given in
Algorithm 7.1.

Figure 7.1: Flow diagram of the proposed hybrid ARIMA-ARNN model
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Algorithm 7.1: Proposed hybrid ARIMA-ARNN approach

1 Given a time series, input the in-sample (training) and out-of-sample (test)
data.

2 Determine the best ARIMA(p, d, q) model using the in-sample (training)
data.

• ARIMA parameters p, d, and q values are selected using standard
procedures, as described in Section 7.3.1.

• Obtain the predictions using the selected ARIMA(p, d, q) model for the
training data.

• Obtain the residual series (εt) by subtracting ARIMA predicted values
from the original training series.

3 Determine the best ARNN(p, k) model on the training residual series (εt).

• Perform lag selection for the training of residual series and apply ARNN
model with p selected lagged inputs from (εt) and k hidden units as
described in Section 7.3.2.

• Obtain predictions using the ARNN model (ε̂t).

4 Final predictions (Ẑt) are obtained by combining the ARIMA predictions
with ARNN predictions (ε̂t).

Remark 16 There exist large classes of time series (e.g., unemployment rate
time series), such as those with nonlinear moving average components, that are
not well modeled by feedforward networks or linear models, but can be modeled by
the proposed hybrid ARIMA-ARNN model. Practical ability will be shown in the
results of unemployment rate forecasting data analysis (refer to Section 7.5) and
also with a simulated data (refer to Section 7.6) where the hybrid ARIMA-ARNN
model gave the best performance over state-of-the-art models.

7.4 Asymptotic Stationarity of the Model

ARIMA has an in-built mechanism to transform a nonstationary time series into a
stationary time series by taking the differencing of the given time series (Brockwell
and Lindner, 2010). ANNs are asymptotically stationary and it requires the
process to be stationary while training the neural network, but when applied to a
nonstationary process, the out of sample predictions becomes poor (Leoni, 2009).
In the hybrid formulation based on ARIMA and ARNN model, this problem
can be overcome since we deal with only the additive error terms generated by
ARIMA and model it using ARNN model.
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Let us consider a nonlinear ARNN model generated by additive noise of the
ARIMA model. Let εt denote a time series generated by a nonlinear autoregres-
sive process as defined in (7.1). Thus, the stochastic difference equation is of the
form:

εt = f(εt−1, εt−2, ..., εt−p, θ) + ςt, (7.1)

where ςt is an i.i.d. noise process and f(·, θ) is a feedforward neural network with
weight parameter vector θ. This is called an ARNN process of order p and has
k hidden nodes in its one hidden layer, denoted by ARNN(p, k) model. ARNN
models are a natural generalization of the classic linear autoregressive AR(p)
process

εt = α1εt−1 + · · ·+ αpεt−p + ςt.

Now, we define f as a neural network and z denote a p-dimensional input feature
to the ARNN model (error residuals obtained from ARIMA model). We consider
the following architecture:

f(z) = c0 +
k∑
i=1

wiσ
(
ai + ai

′z
)

(7.2)

where ai, wi, and c0 are scalar weights, ai are p-dimensional weight vectors and
σ(·) is a bounded nonlinear sigmoidal function such as tan-hyperbolic or logistic
function. Since we consider unbounded additive noise terms generated by the
ARIMA model, we can not apply the results based on state space model of the
Markov chains. But if we suppose E(ςt) = 0, then f equals the conditional
expectation E

(
εt|εt−1, . . . , εt−p

)
and f(εt−1, εt−2, . . . , εt−p) is the best prediction

for εt in the mean square sense. Thus, for the unbounded noise terms, we define
the following notation:

zt−1 =
(
εt−1, . . . , εt−p

)′
F (zt−1) =

(
f(zt−1), εt−1, ..., εt−p+1

)′
et =

(
ςt, 0, . . . , 0)

′

Then we write scalar AR(p) models in (7.1) as a first-order vector model

zt = F (zt−1) + et (7.3)

with zt, et ∈ Rp (Chan and Tong, 1985). Also, we write

pn(z, A) = P{zt+n ∈ A|zt = z}
p(z, A) = p1(z, A)
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for the probability of going from point z to set A ∈ B in n steps, then {zt} with
p(z, A) forms a Markov chain with state space (Rp,B, λ), where B is a Borel set
on Rp and λ be the usual Lebesgue measure.

The Markov chain {zt} is said to be ϕ-irreducible, if for some σ-finite measure
ϕ on (Rp,B, λ) and for all z ∈ Rp, we have

∞∑
n=1

pn(z, A) > 0

whenever ϕ(A) > 0. This essentially means that all parts of the state space can
be reached by the Markov chain irrespective of the starting point. Another inter-
esting property of the Markov chain is aperiodicity that loosely means that there
are no (infinitely often repeated) cycles (Tong, 1990).

Since we are interested in the long-term properties of the time series, one
may ask whether certain features such as mean or variance change over time
or remain constant. A time series is called weakly stationary if E(εt) = µ and
cov(εt, εt+h) = γh ∀ t, that is mean and covariance do not depend on time t. A
more strong criterion is that the whole distribution of the process does not depend
on the time and then the series is called strictly stationary. It is interesting to note
that strong stationarity implies weak stationarity if the second order moments
of the series exist (Brockwell and Lindner, 2010). We further need to define
asymptotic stationarity in this context:

Definition 13 If εt is strictly stationary then P (εt ∈ A) = Π(A), for all t
and Π(·) is called the stationary distribution of the series. We call the series
asymptotically stationary if it converges to its stationary distribution (if it is not
started with Π):

lim
t→∞

P (εt ∈ A) = Π(A).

Also, trivially the series can only be stationary from the beginning if it starts with
the stationary distribution such that ε0 ∼ Π.

Definition 14 Let {zt}, a Markov chain, is said to be geometrically ergodic if
there exists a probability measure Π(A) on the state space (Rp,B, λ), and for ρ > 1
and for all z ∈ Rp,

lim
n→∞

ρn‖pn(z, ·)− Π(·)‖ = 0

where ‖.‖ denotes the total variation. Then Π satisfies the invariance equation

Π(A) =

∫
p(z, A)Π(dz), ∀ A ∈ B.
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If the markov chain is geometrically ergodic then its distribution will converge to
Π and the corresponding time series is called asymptotically stationary (Trapletti
et al., 2000).

Lemma 7 Let {zt} be defined by (7.3), and let E|ςt| < ∞ and the probability
distribution function (PDF) of ςt is positive everywhere in R. Then if f is defined
by (7.2), the Markov chain {zt} is ϕ-irreducible and aperiodic.

Proof It can easily be shown that {zt} is ϕ-irreducible if the support of the PDF
of ςt is the whole real line, viz., the PDF is positive everywhere in R (Chan and
Tong, 1985). In our case, every non-null p-dimensional hypercube can be reached
in p steps with positive probability (and hence every non-null Borel set A).

A necessary and sufficient condition for {zt} to be aperiodic is to have a set
A and positive integer n such that pn(z, A) > 0 and pn+1(z, A) > 0 for all z ∈ A
(Tong, 1990, p. 455). In this case, this is true for all n due to consideration of
the unbounded additive noise. �

Remark 17 Lemma 7 states that the state space of the Markov chain cannot be
reduced depending on the starting point. An example of a reducible Markov chain
is a series that is always positive if only z0 > 0 (and negative otherwise). But
this cannot happen in the ARNN(p, k) model due to having unbounded additive
noise terms.

The theorem below states the necessary condition for geometric ergodicity of a
markov chain (Chan and Tong, 1985).

Theorem 19 (Chan & Tong, 1985) Suppose {εt} and {zt} are defined as in
(7.1) and (7.3), respectively. Further, let F be compact (or preserve compact set)
and can be decomposed as F = Fh + Fd and the following conditions hold:
(i) Fh(.) is continuous and homogeneous and Fd(.) is of bounded range;
(ii) The origin is a fixed point of Fh and Fh is uniform asymptotically stable.
(iii) If E|ςt| <∞ and PDF of ςt is positive everywhere in R;
then {zt} is geometrically ergodic.

Proof See (Chan and Tong, 1985, p. 671-673). �

The next theorem gives the main result for asymptotic stationary of the hybrid
ARIMA-ARNN model.

Theorem 20 Let E|ςt| < ∞ and the PDF of ςt is positive everywhere in R,
and {εt} and {zt} are defined as in (7.1) and (7.3), respectively. Then if f is a
nonlinear neural network as defined in (7.2), then {zt} is geometrically ergodic
and {εt} is asymptotically stationary.
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Proof The noise process ςt satisfies E|ςt| < ∞ by assumption (e.g., Gaussian
noise). It is also important to note that neural network activation function (lo-
gistic sigmoidal activation function in this case) is continuous compact function
and has bounded range. For application to the unemployment rate problem, we
considered the logistic activation function F (z) = 1

1+e−z
in the ARNN model dur-

ing implementation.
Thus {zt} satisfies all the criteria to be geometrically ergodic and using Theorem
19, one can write that for the ARNN process with Fh ≡ 0 and Fd ≡ F . Thus,
the series {εt} is asymptotically stationary. �

Remark 18 We have found sufficient conditions for asymptotic stationarity of
the proposed hybrid ARIMA-ARNN model. This is important for predictions over
larger intervals of time, for example, one might train the network on an avail-
able sample and then use the trained network to generate new data with similar
properties like the training sample. Theoretical results on asymptotic stationary
guarantees that the proposed approach cannot have ‘explosive’ behavior or growing
variance with time.

7.5 Experimental Results and Discussions

Six open-access unemployment rate data sets are used to determine the effective-
ness of the proposed model. The properties of these data sets are different and
have been used in many previous studies (Edlund and Karlsson, 1993; Khan Jaffur
et al., 2017; Moshiri and Brown, 2004; Peláez, 2006). Various linear and nonlinear
models have been studied on these data sets that show highly nonlinear patterns
in these regions. Mean absolute error (MAE); root mean square error (RMSE)
and mean absolute percent error (MAPE) are used to evaluate the performances
of the proposed model and other single models, for details refer to Section 2.5
of Chapter 2. Six unemployment rate data sets are divided into training and
testing data, as described in Table 7.1. These data sets are mostly nonlinear
and non-Gaussian in nature and statistical tests confirm this (see Section 7.2).
Even time series plots of the data sets show nonlinearity and non-stationarity
(refer to Table 7.2). We experimentally evaluate the performances of ARIMA,
ANN, SVM, ARNN model, hybrid ARIMA-ANN model (Zhang, 2003), hybrid
ARIMA-SVM model (Pai and Lin, 2005), in comparison with our proposed hy-
brid ARIMA-ARNN model for all these data sets.

We start the experimental evaluation with the classical ARIMA(p, d, q) using
the “forecast” package in R statistical software. Fitting an ARIMA model, we
need to specify the orders of the model. Using the ACF plot and PACF plots, we
can decide the value of the model’s parameters. We performed the Augmented
Dickey-Fuller (ADF) test for stationarity check for the model to determine the
amount of d in the ARIMA model. The ‘best’ fitted ARIMA model is chosen using
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AIC value for each training data set. As the ARIMA model is fitted, predictions
are generated for one year and three year time steps. In the second stage, residu-
als obtained using the ARIMA model are remodeled with ARNN(p, k) model. We
employ a pre-defined Box-Cox transformation set to λ = 0 to ensure the forecast
values to stay positive. The values of p and k are obtained by training the net-
work, which is a data-dependent approach as in Hyndman and Athanasopoulos
(2018). Further, both the linear and nonlinear forecasts are added together to
get the final forecasts.

Other individual models like SVM were implemented using the “e1071” pack-
age in R statistical software with kernel = ‘radial’ of type polynomial (degree =
3). It is of form

K(x, y) = exp

(
−γ

p∑
j=1

(u− v)2

)
;

and γ here is a tuning parameter which accounts for the smoothness of the deci-
sion boundary and controls the variance of the model. The value of γ is chosen
based on the following formulae: γ = 1/(data dimension) for all the experiments.
For all the experiments, we use small values for γ, since it makes the decision line
or boundary is smoother and has low variance (Hastie et al., 2009). The ARNN
model was applied using the “forecast” package with ‘nnetar’ function and for
ANN model, we have used “nnfor” package with the ‘mlp’ function in R. The
ARNN(p, k) model parameters are chosen based on the formula given in Subsec-
tion 7.3.2. For all the experiments with the ANN model, we have used one hidden
layer with the number of hidden neurons k ≈

√
n, where n being the sample size.

We report all the choices of tuning parameters for all the models in Tables 7.3-7.8.

The experimental results are obtained as follows: ARIMA (3,1,3) was fit-
ted to Canada unemployment rate data with AIC and log-likelihood values as
-154.25 and 84.37, respectively. The ARIMA residuals were further trained with
ARNN(5,3) model with an average of 20 networks. Further, we computed the
predicted test outputs of the hybrid ARIMA-ARNN model and compared it with
actual test outputs. The values of different performance metrics are reported in
Table 7.3. For the Germany data set, ARIMA(1,2,1) having AIC = -494.05 and L
= 250.03 was fitted. An ARNN(1,1) model (1-1-1 network configuration) with an
average of 20 networks, each having four weights, was trained on ARIMA training
residuals. Both the forecasted results of ARIMA and ARNN are added together
to obtain the final forecast values based on which RMSE, MAE and MAPE val-
ues are computed and reported in Table 7.4. Similarly, we applied the proposed
hybrid ARIMA-ANN model for New Zealand and Netherlands data sets and the
results are reported in Table 7.6 and 7.5, respectively. ARIMA(1,1,2) with log-
likelihood = -22.54 and AIC=53.07 was first fitted to the quarterly unemployment
rate data set of New Zealand. The residuals are modeled with an ARNN(10,5)
model with an average of 20 networks. For the Netherlands’ monthly data, we fit
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an ARIMA(1,2,1) and ARNN(12,6) on ARIMA residuals. In the case of Sweden
data, ARIMA(3,1,1) was fitted with AIC = 0.65 and L = 4.68. Further, ARIMA
residuals were trained using ARNN(16,8) model (16-8-1 network configuration)
with an average of 20 networks, each having 145 weights. Again, we obtain the
final predicted forecast values for Sweden’s test data sets by adding both the
ARIMA and ARNN forecasts. The values of the performance metrics for mea-
suring forecasting accuracy are reported in Table 7.7. Finally, ARIMA(2,1,2) was
fitted to Switzerland data having AIC = -1745.46 and L equals to 877.73. The
residuals obtained from the ARIMA model was trained using ARNN(3,2) model
with an average of 20 networks, each of which is a 3-2-1 network with 11 weights.
Finally, the forecast results of ARIMA and ARNN residual forecasts are added
together to obtain the predicted forecasted values. We then compute the values
of the performance measures, viz. RMSE, MAE and MAPE values and report
them in Table 7.8.

For comparison purposes, we applied single ARIMA, ANN, ARNN, SVM,
along with hybrid ARIMA-ANN (Zhang, 2003), hybrid ARIMA-SVM model (Pai
and Lin, 2005) models for the seasonally adjusted unemployment rate data sets of
these countries. All the experimental results are reported in Tables 7.3, 7.4, 7.5,
7.6, 7.7, and 7.8. Figures in ( ) for all the Tables indicate the values of the tuning
parameters for each of the forecasting models. The predicted forecasts for the
test data sets of the proposed hybrid model for six data sets, along with actual
test values, are plotted in Figure 7.2. The performances of the proposed hybrid
ARIMA-ARNN model are superior as compared to all the individual models. In
comparison to other hybrid models, our proposal outperformed all the hybrid
models in a significant margin. The theoretically proven asymptotic stationarity
of the proposed hybrid model suggested that the model can not have a growing
variance over time. The consistency in experimental results empirically approves
the same. Thus, the usefulness of the proposed methodology is experimentally
validated as well.

Table 7.3: Performance metrics for different forecasting models on the Canadian
unemployment rate (monthly) data

Model 1-Year ahead forecast 3-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE

ARIMA(3,1,3) 0.133 0.115 1.623 0.847 0.685 9.708
ANN(10) 0.137 0.117 1.095 0.837 0.614 9.365

ARNN(15,8) 0.126 0.113 1.084 0.801 0.613 9.247
SVM(γ = 0.5) 0.273 0.248 1.915 0.998 0.740 10.92

Hybrid ARIMA(3,1,3)-SVM(γ = 0.5) 0.145 0.135 1.135 0.835 0.711 9.595
Hybrid ARIMA(3,1,3)-ANN(5) 0.118 0.108 1.017 0.638 0.615 8.387

Hybrid ARIMA(3,1,3)-ARNN(5,3) 0.106 0.098 0.838 0.627 0.601 8.017
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Table 7.4: Performance metrics for different forecasting models on the Germany
unemployment rate (monthly) data

Model 1-Year ahead forecast 3-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE

ARIMA(1,2,1) 0.098 0.092 1.490 0.361 0.303 5.177
ANN(10) 0.127 0.120 4.295 0.564 0.505 7.394

ARNN(5,3) 0.104 0.099 6.783 0.569 0.533 6.365
SVM(γ = 0.5) 0.101 0.099 1.594 0.566 0.509 6.272

Hybrid ARIMA(1,2,1)-SVM(γ = 0.5) 0.090 0.089 1.537 0.360 0.305 5.120
Hybrid ARIMA(1,2,1)-ANN(5) 0.082 0.096 1.558 0.306 0.297 4.243

Hybrid ARIMA(1,2,1)-ARNN(1,1) 0.077 0.071 1.068 0.300 0.291 4.156

Table 7.5: Performance metrics for different forecasting models on the Nether-
lands unemployment rate (monthly) data

Model 1-Year ahead forecast 3-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE

ARIMA(1,2,1) 0.144 0.119 2.003 0.306 0.270 5.671
ANN(10) 0.228 0.174 2.906 1.304 1.048 17.935

ARNN(14,7) 0.249 0.192 3.177 0.938 0.784 14.518
SVM(γ = 0.5) 0.228 0.174 2.906 1.304 1.048 17.935

Hybrid ARIMA(1,2,1)-SVM(γ = 0.5) 0.145 0.120 2.023 0.308 0.272 5.706
Hybrid ARIMA(1,2,1)-ANN(5) 0.143 0.118 2.002 0.306 0.270 5.668

Hybrid ARIMA(1,2,1)-ARNN(12,6) 0.140 0.114 1.192 0.300 0.264 5.529

Table 7.6: Performance metrics for different forecasting models on the New
Zealand unemployment rate (quarterly) data

Model 3-Year ahead forecast 8-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE

ARIMA(1,1,2) 1.121 1.118 13.779 1.985 1.850 24.775
ANN(10) 1.630 1.461 18.398 4.796 4.167 40.109

ARNN(12,6) 1.329 1.280 17.073 1.895 1.797 24.863
SVM(γ = 0.5) 1.329 1.280 17.073 1.895 1.797 23.940

Hybrid ARIMA(1,1,2)-SVM(γ = 0.5) 1.059 1.028 14.249 1.978 1.842 25.182
Hybrid ARIMA(1,1,2)-ANN(5) 1.019 0.986 13.748 1.941 1.820 24.763

Hybrid ARIMA(1,1,2)-ARNN(10,5) 0.998 0.944 11.272 1.318 1.239 22.992
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Table 7.7: Performance metrics for different forecasting models on the Sweden
unemployment rate (monthly) data

Model 1-Year ahead forecast 3-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE

ARIMA(3,1,1) 0.194 0.155 2.323 0.384 0.305 4.458
ANN(10) 0.257 0.282 2.895 0.324 0.412 3.797

ARNN(21,11) 0.253 0.178 3.275 0.324 0.288 4.336
SVM(γ = 0.5) 0.396 0.358 4.253 0.489 0.410 5.525

Hybrid ARIMA(3,1,1)-SVM(γ = 0.5) 0.198 0.157 2.252 0.391 0.312 4.544
Hybrid ARIMA(3,1,1)-ANN(5) 0.190 0.157 2.244 0.387 0.309 4.502

Hybrid ARIMA(3,1,1)-ARNN(16,8) 0.189 0.151 2.024 0.363 0.298 4.231

Table 7.8: Performance metrics for various forecasting models on Switzerland
unemployment rate (monthly) data

Model 1-Year ahead forecast 3-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE

ARIMA(2,1,2) 0.047 0.037 1.095 0.437 0.314 9.365
ANN(10) 0.026 0.023 1.094 0.526 0.433 11.176

ARNN(7,4) 0.027 0.028 1.715 0.498 0.340 10.924
SVM(γ = 0.5) 0.045 0.035 1.135 0.535 0.511 11.295

Hybrid ARIMA(2,1,2)-SVM(γ = 0.5) 0.040 0.038 1.117 0.438 0.315 9.387
Hybrid ARIMA(2,1,2)-ANN(5) 0.026 0.024 1.090 0.435 0.310 9.273

Hybrid ARIMA(2,1,2)-ARNN(3,2) 0.026 0.022 1.038 0.427 0.301 8.917
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Figure 7.2: Actual vs Predicted (based on hybrid ARIMA-ARNN model) fore-
casts for the test data sets of the Canada (a), Germany (b), Netherlands (c), New
Zealand (d), Sweden (e) and Switzerland (f) unemployment rate data sets
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7.6 Simulation Study

A time series data have been synthesized in such a way that the mean between
multiple segments in both the test and training data differ. Refer to Table 7.9
for the visualization of the same. The data consists of 165 points out of which
15 data points are kept as test samples (red-colored samples in the figure given
in Table 7.9). We randomly draw the required number of components from a
uniform distribution with varying means. We have used an R package ‘gratis’ for
the time series generation which is available from https://github.com/ykang/

gratis and a detailed description of the data generation process is given in Kang
et al. (2020).All the models discussed in Section 7.5 are trained on the data set
and results are reported in Table 7.11.

Table 7.9: Synthesized data set and corresponding ACF and PACF plots

Data ACF plot PACF plot
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Table 7.10: R functions and packages for implementation.

Model R function R package Reference

ARIMA auto.arima forecast Hyndman and Khandakar (2007)

SVM svm e1071 Kourentzes (2017)

ANN mlp nnfor Kourentzes (2017)

ARNN nnetar forecast Hyndman and Khandakar (2007)

Hybrid models - - https://github.com/tanujit123

We now study some basic characteristics of this synthetically generated time
series. KPSS tests are performed to examine the stationarity of a given time series
(Kwiatkowski et al., 1992). The null hypothesis for the KPSS test is that the time
series is stationary. Thus, the series is nonstationary when the p-value is less than
a threshold. The synthesized series can be characterized as non-stationary as the
p-value < 0.01. The value of Skewness and Kurtosis of this data is 0.4971 and
- 0.7465, respectively. Among the single models, ARIMA(2,1,4) performs ‘best’
in terms of accuracy metrics for 15-points ahead forecasts. ARNN(16,8) also has
competitive accuracy metrics. ARIMA residuals are trained with an ARNN(8,4)
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model to obtain the final prediction results of the hybrid ARIMA-ARNN model.
Hybrid ARIMA-ARNN model improves the earlier ARIMA forecasts and has the
best accuracy among all single and hybrid models (see Table 7.11). We have used
the default parameters available in R statistical packages while implementing rest
of the component models and the values for the tuning parameters are reported
in Table 7.11. In-sample and out-of-sample forecasts obtained from ARIMA
and hybrid ARIMA-ARNN models are depicted in Figure 7.3. Out-of-sample
forecasts are generated using the rest of the synthesized data set as training data.
A detailed summary of the implementation tools is presented in Table 7.10. The
experimental results based on the analysis of the synthesized data are presented in
Table 7.11 and it is clear from the table that the proposed hybrid ARIMA-ARNN
model works better than the state-of-the-art models.

Table 7.11: Performance metrics with 15 points-ahead test set for synthesized
data. Figures in ( ) indicate the values of the tuning parameters for each of the
forecasting models.

Model
15-points ahead forecast

RMSE MAE MAPE SMAPE

ARIMA(2,1,4) 0.718 0.609 1.689 1.607

ANN(10) 0.967 0.838 2.515 2.169

ARNN(16,8) 0.763 0.664 1.975 1.742

SVM(γ = 0.5) 0.841 0.669 1.748 1.768

Hybrid ARIMA(2,1,4)-SVM(γ = 0.5) 0.658 0.521 1.433 1.380

Hybrid ARIMA(2,1,4)-ANN(5) 0.711 0.605 1.690 1.599

Hybrid ARIMA(2,1,4)-ARNN(8,4) 0.597 0.465 1.322 1.245

Figure 7.3: Plots of the proposed forecasting model for training, testing, and
15-points ahead forecast results on synthesized data.
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7.7 Economic Implications and Conclusions

Forecasting the unemployment rate is very important for financial market par-
ticipants and is a reliable indicator of labor market conditions. The release of
the monthly (quarterly) unemployment rate for a country is one of the most
important regular economic events for market participants. The effect of the
unemployment news on stock returns is not so straightforward because of the
relative importance of information on labor market conditions and monetary pol-
icy changes over time depending on the state of the economy. Considering the
difficulty in predicting market reactions, forecasting the unemployment rate ac-
curately is highly useful for investors to hedge the market risk arising from the
unexpected change in business conditions and monetary policy.

In this study, we proposed a hybrid ARIMA-ARNN model using an error
modeling approach that performs considerably well for unemployment rates fore-
casting for countries like Canada, Germany, Netherlands, New Zealand, Sweden,
and Switzerland. The proposed hybrid ARIMA-ARNN model filters out linearity
using the ARIMA model and predicts nonlinearities present in the error residuals
with an ARNN model. The proposed hybrid ARIMA-ARNN model can explain
the linear and nonlinear tendencies present in the unemployment rate data sets of
developed countries better as compared to the traditional single and other hybrid
models. It also yields better forecast accuracy than various single and hybrid
models for most of the data sets considered in this study. Even we have experi-
mented on simulated time series data sets to show the excellent performance of
the proposed hybrid model over state-of-the-art models. The proposed model is
also tested on simulated time series data set and compared with available individ-
ual and hybrid forecasting models. The results are very promising and it shows
that the proposed model can perform in complex univariate time series data set
involving forecasting tasks.

The proposal will be useful for macroeconomists, policymakers, and econome-
tricians working in the field of government decision and policy makings. However,
any econometric phenomena can fluctuate heavily because of various external fac-
tors over time. And those fluctuations are generally challenging to be appropri-
ately captured for accurate forecasting. However, the proposed model may still
predict with better accuracy provided the conditions stated in the main result for
asymptotic stationarity of the hybrid model are satisfied. It is to be noted that
over the last four decades, the unemployment rates for most of the countries con-
sidered in this study had no consistent trend at all and has asymmetrical cyclical
movements. The best short-term forecasts and long-term forecasts of monthly
and quarterly unemployment rate data sets are obtained using the proposed hy-
brid model as compared to other competitive methods. An immediate extension
of this work is to see the model’s application for seasonal unemployment rate
data sets.
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Advanced neural network models (say, recurrent neural networks (RNN), long
short-term memory (LSTM) networks, and deep neural net) are highly complex,
over-parameterized models and found useful when the data sets are very large
(like image, audio, and video data sets) (Dunson, 2018). Since the number of
data points in both the data sets used in this chapter is very limited, advanced
deep learning techniques will over-fit the data sets, thus not been included in this
chapter. One possible area for future research would be to expand this hybrid
approach for multivariate time series forecasting problems that arise in various
applied domains.
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Chapter 8

Conclusions

Summary

In this chapter, we discuss the overall contributions made in this thesis and how
these contributions serve as possible solutions to various applied problems in the
fields of business analytics, quality control, macroeconomics, and software reli-
ability, among many others. We also proceed to identify some of the possible
future research areas stemming from the developed nonparametric hybrid methods
in this thesis that can be useful in the field of data science. The identified future
research scopes encompass adversarial machine learning as well as deep learning
paradigms.

8.1 Contribution of the Thesis

Our primary focus in this thesis is on the development of specialized nonparamet-
ric hybrid models for various applied problems, drawn from the fields of business
analytics, process control, quality prediction, macroeconomics, and software re-
liability engineering. In Chapters 1-2, we undertook an in-depth perusal of the
existing methods for handling the various kinds of data science problems. In each
of the chapters from Chapter 3 to Chapter 6, we focus on the implicit learning
strategies, in particular, on the hybridization of the tree-based methods with that
of neural network-based methods. In Chapter 7, we discuss the hybridization of
linear and nonlinear forecasting models in a macroeconomic context. We identi-
fied some of the principal shortcomings of the current hybrid approaches which
are shown below.

• A lot of research efforts have been dedicated to developing hybrid method-
ologies from the system’s designer point of view. However, none of the
existing methods present theoretical (statistical) interpretations of these
hybrid predictive models regardless of their uses in practical problems of
classification, regression, etc.
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• The existing approaches in the field of hybrid or ensemble systems are
mostly restricted on relatively balanced well-structured pattern classifica-
tion and general nonparametric regression estimation data sets. These hy-
brid systems become infeasible for high-dimensional moderate sample-sized
data sets involving both the feature selection and prediction tasks. There-
fore, there is a need to develop new hybrid techniques for complex situations
arising in the domain of quality, economics, software reliability, and business
analytics, to name a few, with data irregularities.

• Research in the underlying hybrid algorithms is far from done. If one needs
to use scalability, accuracy, robustness, statistical interpretation, and easy
interpretability as the criteria to judge these hybrid techniques, no existing
models can simultaneously excel in all criteria. Therefore, there is a need to
extend the available approaches and design some novel hybrid models that
are scalable, robust, accurate, statistically sound (have desired asymptotic
properties), and easily interpretable.

• Lastly, most of the existing methods in the hybrid literature have considered
two or more frequentist methods while creating the hybridization. However,
there is a scope to extend hybrid methods to blend two or more different
statistical paradigms, namely frequentist and Bayesian methods.

In Chapters 3-7, we have presented several novel hybrid methods for address-
ing the shortcomings of the current hybrid literature and applied these methods
to the problems drawn from the fields of business analytics, manufacturing pro-
cess control, process quality improvements, unemployment rate forecasting, and
software defect predictions. In Chapters 3 and 4, we developed hybrid method-
ologies to deal with problems of feature selection cum pattern classification and
imbalanced pattern classification, respectively. Some other hybrid methods were
introduced in the context of the regression estimation problems and Bayesian non-
parametric regression problems in Chapter 5 and Chapter 6, respectively. Finally,
in Chapter 7, we introduced a hybrid approach combining linear and nonlinear
models for time series forecasting.

In Chapter 3, we began with a motivating problem of a private business school
that would like to admit a handful number of students whose probability of place-
ment at the end of the Master’s program is very high. The basis of the decision-
making process is based on past students’ data available to the business school.
The business school administration wants to come up with a model that can help
them select the essential features from various available academic characteristics
of students and model it accordingly. We formulated this applied problem into
a feature selection cum prediction problem and developed a hybrid model based
on classification trees and artificial neural networks to solve the problem. In the
first stage of the model, we employed classification trees that could suggest an
essential set of features and precise classification of the business school data set.
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In the second stage of the model, the important set of features along with the
tree-predicted results were further trained with the neural net model, and final
results were obtained. The hybrid CT-ANN model was theoretically shown to be
consistent and an upper bound on the number of hidden neurons in the latter
stage of the model was derived for providing a ‘white-box-like’ interpretation of
the proposed framework. The hybrid CT-ANN model was applied to the business
school data set and found very useful in terms of various performance metrics in-
cluding classification accuracy. The robustness of the proposed hybrid approach
was shown by applying it to other standard data sets from medical domains and
toy data sets. The experimental findings suggested the efficacy and broad appli-
cability of the proposed model.

In Chapter 4, we addressed another challenging problem from the field of
imbalanced pattern classification. Traditional statistical learning algorithms per-
form poorly when the data sets are skewed and exhibit an unequal class dis-
tribution. An example of the imbalanced classification problem was given with
software defect prediction data sets from the field of software reliability engineer-
ing. A novel hybrid methodology, Hellinger net, was developed in this chapter
to handle the curse of imbalanced data sets. Hellinger net maps Hellinger dis-
tance decision tree to a two-hidden layered artificial neural network using the
idea of soft pruning while training the architecture. The asymptotic results for
the proposed Hellinger net model were presented, which gives the theoretical ro-
bustness of the approach presented in this chapter. Experimental validation of
the Hellinger net method on software defect prediction (SDP) data sets compared
with state-of-the-art techniques showed excellent performance of the model when
data exhibits skew-class distribution. The general applicability of the proposed
Hellinger net was shown by applying it to standard UCI imbalanced data sets
from various applied domains and also on simulated data sets.

In Chapter 5, we moved our focus towards another wing of supervised learning
problems, viz. regression estimation problems. The primary motivation of this
chapter came from the process efficiency improvement problem in a modern paper
manufacturing company. The issue of fiber-filler recovery process improvement in
the paper company was first framed into a nonparametric regression estimation
problem. Further, a solution methodology, namely radial basis neural tree, was
developed in this chapter to capture the relationship between the recovery per-
centage of the fiber-filler recovery equipment with that of the process parameters
as decided by preliminary statistical analysis and the process experts. An idea
of parameter optimization in the hybrid model, along with its asymptotic consis-
tency, were shown in this chapter to provide a strong statistical background for
the proposed model. The RBNT model, when applied to the problem of process
efficiency improvement of the paper manufacturing company, had shown out-
standing results compared to other state-of-the-art methods. We also tested the
asymptotic behavior of the proposed RBNT model on the simulated regression
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data set. The model was further extended in the next chapter where we used the
same analogy to combine two contrasting paradigms (frequentist and Bayesian
methods) of statistical science.

In Chapter 6, we built a hybrid model combining two self-contrasting paradigms
in a joint framework. Decision trees and neural nets have both the frequentist and
Bayesian counterparts, and situations exist when one approach is preferred over
the other. We created two hybridization based on frequentist versions of deci-
sion trees (neural networks) and Bayesian versions of neural nets (decision trees),
which can utilize the potential benefits of two ideologically different paradigms
and overcome their drawbacks. The algorithms presented in this chapter, we
called them ‘Bayesian neural trees’ (BNT), have significant benefits, such as fewer
tuning parameters than advanced neural nets and white-box interpretability. The
proposed BNT models attained the desired asymptotic properties under certain
regularity conditions and, when applied to various regression data sets (for ex-
ample, water quality prediction), performed superior to other state-of-the-art
methods.

In Chapter 7, we considered the problem of unemployment rate forecasting
from the time series literature. Unemployment has always been a very focused
issue causing the nation to lose its economic and financial contribution. Unem-
ployment rate data sets are mostly nonstationary and nonlinear in nature. We
proposed a hybrid approach based on linear ARIMA and nonlinear ARNN models
that can predict the unemployment rates more accurately. The hybrid approach
is an integration of two distinct models for generating better forecasts for the
test data sets. We derived the results for the asymptotic stationarity of the pro-
posed hybrid approach using Markov chains and nonlinear time series analysis
techniques. The application of the proposed approach to six unemployment rate
data sets from various countries, namely, Canada, Germany, Netherlands, New
Zealand, Sweden, and Switzerland, showed the superiority of the developed hy-
brid model.

The ideas, concepts, and methods presented in this thesis attempt to address
a wide variety of applied data science problems. The developed methods like the
hybrid CT-ANN model in Chapter 3 can improve predictions for both feature
selection and classification problems. Additionally, the Hellinger net method in
Chapter 4 presents a way to deal with the imbalanced class scenario in software
defect prediction problems. The RBNT model, as described in Chapter 5, is use-
ful for nonparametric regression problems. In Chapter 6, the blends of Bayesian
and frequentist frameworks are presented, which has a wide range of applica-
tions in regression problems from diverse fields. Finally, Chapter 7 describes a
hybrid time series forecasting model that generated superior forecasts of unem-
ployment rates for different countries. All these hybrid models presented in this
thesis have the desired statistical properties, are robust in nature, and are easily
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interpretable. Continuing research in the line of this thesis is needed to expand
and adapt these hybrid predictive models so that they can operate on a richer
collection of data types. Data is no longer just numerical or discrete. It can
be unstructured text, video clips, or audio clips, and the amount of information
available is also growing amazingly. Thus, the new developments of scalable and
automated predictive learning techniques for extracting useful knowledge from a
diverse source of data sets will be motivating thrust areas for future research as
we move forward.

The interpretability of predictive machine learning models is important, es-
pecially in cases where ethics are involved, such as law, medicine, and finance;
and other critical applications where we wish to manually verify the correctness
of a model’s reasoning. In some areas like Business Intelligence, it is often more
important to know how each factor contributes to the prediction rather than the
conclusion itself. With machine learning-based predictions becoming ubiquitous
and affecting many aspects of our daily lives, the focus of research moves be-
yond model performance (e.g., efficiency and accuracy) to model interpretability
(Doshi-Velez and Kim, 2017; Weller, 2017). This is particularly so in applications
where there are ethical (Bostrom and Yudkowsky, 2014) or safety concerns and
models’ predictions should be explainable in order to verify the correctness of
their reasoning process or justify their decisions. The hybrid models developed
from Chapter 3 to Chapter 7 are scalable (the size of the data does not pose
a problem), robust (work well in a wide variety of problems), accurate (achieve
higher predictive accuracy), statistically sound (have desired asymptotic prop-
erties), and interpretable. However, the (limited) explainability of these hybrid
models arises in the form of transparency in the context of human interpretation
of algorithms, noting their benefits, motivations, difficulties for measurement,
and potential concerns. There are now a number of attempts to make models
explainable. Some are model-agnostic (Ribeiro et al., 2016), while most are asso-
ciated with a certain type of model, e.g., rule-based classifiers (Dash et al., 2015;
Malioutov et al., 2017) and neural networks (Kim et al., 2016). Hence, there
is a need for future work to develop some new explanation techniques that can
explain the predictions of the hybrid models in a more interpretable and faithful
manner, by learning an interpretable model locally around the prediction. Such
understanding will provide insights into the model, which can be used to trans-
form an untrustworthy model or prediction into a trustworthy one. Furthermore,
the hybrid models presented in this thesis opens a broader scope for future re-
search in the direction of Bayesian nonparametrics, adversarial machine learning,
and deep learning. There is also the possibility of applying a hybrid approach
to software defect prediction problems using Poisson processes. We discuss some
motivating thrust areas for future research in the next section.
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8.2 Future Scope of Study

In this section, we attempt to identify some of the possible future scopes of
study in which the research work presented in this thesis can be extended. We
lay stress on the possible extension of our proposed methods on the problem
of data shift, missing data problem, adversarial classification problem, Bayesian
nonparametrics, and software reliability modeling.

8.2.1 Addressing Covariate Shift when Data is Imbalanced

In the present thesis, we have addressed the ‘curse of imbalanced data sets’ in
which there is an under-represented class and a majority class in Chapter 4.
However, data sets may arise where the training and test data distributions are
different in the data mining paradigm, thus leading to inaccurate conclusions
when building a model from the training data. This issue is popularly known
as data set shift problems in the machine learning literature (Quionero-Candela
et al., 2009), or more explicitly covariate shift problems (Hofer and Krempl, 2013).
In this case, the attribute values have different distributions between training and
test sets (López et al., 2014). In the presence of imbalance, the problem is even
more critical. This problem occurs in biomedical and software engineering where
data set shifts in the form of imbalanced data and covariate shifts are common.
Out of several possible causes for data set shift, some most important causes
are sample selection bias and nonstationary data environments (Moreno-Torres
et al., 2012). In the former case, the discrepancy in distribution is due to the fact
that the training examples have been obtained through a biased method, and
thus do not represent reliably the operating environment where the classifier is
to be deployed (test set). It commonly occurs, among others, in software defect
prediction data sets in which due to cost concerns, one of the classes is sometimes
sampled at a lower rate than it actually appears. The latter case arises when the
training and test environments are different, which could be due to temporal or
spatial change. It commonly appears in adversarial classification problems such
as spam detection, fraud detection, and image recognition (Laskov and Lipp-
mann, 2010). A possible solution may be to extend the idea of the Hellinger net
presented in Chapter 4 with that of “distributional-optimally balanced stratified
cross-validation” (DOB-SCV) approach introduced by López et al. (2014). The
DOB-SCV method attempts to minimize covariate shifts in data by keeping data
distribution as similar as possible between training and testing folds by maxi-
mizing diversity on each fold while requiring that the folds resemble each other
as closely as possible. Hence, one exciting avenue of future research may be to
employ our proposed Hellinger net along with DOB-SCV on real-world data sets
that suffer from the problem of class imbalance in the presence of covariate shift.
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8.2.2 Handling Data Irregularities with Hybrid Methods

In this thesis, we addressed some issues that arise in the field of data science,
such as feature selection cum classification problem in Chapter 3, regression es-
timation problem in Chapter 5 with possible extension for Bayesian paradigms
in Chapter 6, and nonlinear time series forecasting in Chapter 7. But due to
the unprecedented success of modern deep learning methods, we lay stress on
possible amalgamations between our proposed methods and state-of-the-art deep
learning techniques. Deep learning methods utilize neural networks having multi-
ple hidden layers to learn useful representations of data. Comprehensive reviews
of well-known deep learning architectures, including autoencoders, convolutional
neural network (CNN), deep belief network (DBN), and restricted Boltzmann ma-
chine, can be found in Goodfellow et al. (2016); Zhang et al. (2019b). Gondara
and Wang (2017) suggested the use of deep denoising autoencoders for multiple
imputations of continuous, categorical, and mixed data types with various miss-
ing features. Zhong et al. (2016) proposed a field-effect deep network (FEDN) for
image recognition with missing features. An interesting avenue of research will
be to employ our proposed hybrid CT-ANN model in the deep learning frame-
works to analyze incomplete data sets. Several recent works built deep neural
network-based decision trees and random forests, which can utilize the potential
benefits of both the deep neural nets and tree-based algorithms (Dong et al.,
2018; Feng and Zhou, 2018; Humbird et al., 2018; Kontschieder et al., 2015; Yang
et al., 2018). Thus, our proposed hybrid approaches can also be extended in a
deep learning framework that can be thought of as a broad generalization of the
hybrid approaches presented in this thesis. This will be useful for handling the
dependency structures, missing data features, and will be computationally very
useful with applications in image captioning, image recreation, and natural lan-
guage processing problems.

8.2.3 Building Hybrid Models for Adversarial Machine

Learning Problems

State-of-the-art machine learning (ML) algorithms perform extraordinarily well
on standard data but have recently been shown to be vulnerable to adversarial
examples, data instances targeted at fooling those algorithms (Goodfellow et al.,
2015). Predictive modeling techniques are widely used in security settings, email
spam detection systems, medical fraud assessment, and computer vision in which
data can be deliberately manipulated by an adversary trying to evade detec-
tion and achieve some benefit (Naveiro et al., 2019). However, most traditional
classifiers are not robust to such data modifications (Dalvi et al., 2004). A few
methods have been proposed to robustify classification algorithms in adversarial
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environments. Most of them have focused on application-specific domains, such
as spam detection (Ko lcz and Teo, 2009), medical fraud assessment (Ekin et al.,
2018) and computer vision (Elsayed et al., 2018). Some of the approaches to such
problems have focused on game-theoretic ideas with strong underlying common
knowledge assumptions (Zhou et al., 2019), which are not realistic in the security
realm whereas Gallego et al. (2020) provides an alternative Bayesian framework
that accounts for the lack of precise knowledge about the attacker’s behavior us-
ing adversarial risk analysis. (Naveiro et al., 2019) apply adversarial risk analysis
(ARA) (see also Banks et al. (2020)) to the emerging field of adversarial machine
learning (AML). In particular, it shows how to protect statistical classification
systems from attackers trying to fool them by intentionally modifying input data
in search of a benefit. This provides new tools in the field of AML which has been
previously based on standard game-theoretic approaches. AML is an emerging
field aimed at the protection of automated ML systems against security threats
and machine learning models are adapted to the adversarial case (Rios Insua
et al., 2020). In recent work, Cheng et al. (2020) proposed an advanced hybrid
deep adversarial autoencoder for parameterized nonlinear fluid flow modeling.
Thus, our proposed hybrid CT-ANN model in Chapter 3 can be extended in this
framework and there is a scope of future work to introduce new hybrid models
to deal with adversarial attacks in the machine learning domain.

8.2.4 Combining the Poisson Processes with Hybrid Meth-

ods for the Software Defect Problems

Software defect prediction has been a significant research topic in software en-
gineering for the last 30 years (Xie, 1995), with studies concentrating on esti-
mating how many defects remain in a system, identifying possible associations
between defects, and revealing the defect proneness of software systems (An-
dreou and Chatzis, 2016). Tracking and predicting quality and reliability is a
major challenge in large and distributed software development projects. A num-
ber of standard distributions have been successfully used in reliability engineering
theory and practice, common among these for modeling software defect inflow
being exponential, Weibull, and beta distributions (Rana et al., 2016). Another
line of research in reliability prediction is the use of Bayesian modeling and the
Non-Homogeneous Poisson Process (NHPP). Kuo et al. (1997) presented Bayes
inference methodology for NHPP models with S-shaped mean value functions.
Similarly, Li and Meeker (2014) used NHPP to model the distribution and found
that new parameters are required to balance the release readiness decision with
the reliability criteria of software release. Yet another approach is to use the time-
related analyses of defect inflow. Zhou and Davis (2005) analyzed time-related
bug reporting patterns of eight popular open-source projects and found that the
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Weibull distribution family is the most correct one for these projects; they showed
that open source projects exhibited similar reliability growth patterns as the pro-
prietary projects. This indicated that the NHPP models can have alternatives
and therefore the study of Zhao (2006) proposed to use the beta distribution to
indicate software testability. The author shows theoretically that testing effort
and test values can be simultaneously expressed through the distribution. How-
ever, no validation is provided using empirical data sets. The nature of the data,
i.e., rare defect events, might induce to use of Poisson or Self-exciting processes,
possibly different in different modules and with intensity depending on covariates
(Ruggeri et al., 2008). Thus, it becomes important to use the information on the
number and time of events to study also the temporal evolution of the process.
Therefore, a hybrid model can possibly be obtained combining the Poisson pro-
cess with the proposed Hellinger net method in Chapter 4. The temporal aspect
is very important since software developers are aiming to reduce defect events
and there is future scope of study to apply our proposed hybrid method along
with Poisson processes to the SDP problems.

8.2.5 Developing Bayesian Deep Neural Network driven

by Recursive Gaussian Processes

In the present thesis, we discussed a novel framework combining frequentist and
Bayesian machine learning methods for nonparametric regression tasks. Possible
future work in this direction would be to improve Bayesian deep neural networks
using recursive Gaussian processes (Lee et al., 2017) with automatic relevance
determination (ARD) prior (Wipf and Nagarajan, 2008) that takes care of im-
portant feature selection problem out of all the regressor variables and induces
sparsity.

Gaussian process behavior arises in many practical situations and current
Gaussian process-based Bayesian deep neural networks also demonstrate its util-
ity (Kwon et al., 2020; Matthews et al., 2018). The method proceeds by beginning
with a linear Gaussian framework and then proceeds recursively such that the
Gaussian process framework is preserved asymptotically even in the hidden lay-
ers. This seems to be less flexible than required in the sense that it fails to
adequately address the uncertainties at every layer. Indeed, uncertainties, hence
non-linear variations in the hidden layers, are expected to increasingly shift the
initial Gaussian process to non-Gaussian processes. Future scope of the study
will be to introduce some novel Bayesian methodology for deep neural networks
based on general Gaussian process priors that coherently and satisfactorily ad-
dress this issue. Given the data, all the unknown quantities can be learned in a
fully Bayesian framework, using a ‘look-up table’ idea (Ghosh et al., 2014) com-
bined with an efficient Markov Chain Monte Carlo (MCMC) methodology (Zhong
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and Ghosh, 2016). This will be useful to generalize Bayesian deep learning and
can be employed in challenging big data problems.

In supervised neural network set up, we have T hidden layers and input vec-
tor x = (x1, x2, . . . , xp)

′, tth hidden layer h(t) of dimension kt, t = 0, . . . , T and

output layer y = (y1, y2, . . . , yq). We set h
(0)
j = w

(0)′

j x+ b
(0)
j for k = 1, . . . , k0 and

h
(t)
j = g(t)

(
w(t)′h

(t−1)
j + b

(t)
j

)
, for j = 1, . . . , kt and t = 1, . . . , T and yj = f(h

(T )
j );

j = 1, . . . , q, as the final output. Let g(t)(w(t)′h(t−1) + b(t)) = g(t, w(t)′h(t−1) + b(t)),
where g(·, ·) is an appropriate Gaussian process. Also, f(·) is another appropri-
ate Gaussian process (or transformation of Gaussian process, if y needs to be
bounded, positive, etc.). The process g(·, ·) may also be some appropriate trans-
formation of the underlying Gaussian process. Weights w(t) and bias b(t) will be
assigned appropriate priors. An useful prior choice of w(t) seems to be the ARD
prior which takes care of important feature selection problem out of all the re-
gressor variables and induces sparsity. The function g(t, ·) is the random function
that generalizes the activation function which is considered fixed in classical neu-
ral network model. Usually, the activation function is modeled by the sigmoidal
function. Although classical neural networks uses the same activation function
for all the hidden layers, it makes sense to allow the activation function to vary
with different layers. The random function g(t, ·), which varies randomly with
each hidden layer t, can provide a broad generalization to the existing strategies
of Bayesian nonparametrics in the context of neural networks.

In a nutshell, this thesis contributes to the development of some hybrid predic-
tive models from both the theoretical and applied viewpoints with potential ap-
plications in a wide range of applied fields, ranging from process control, software
reliability engineering to business analytics, and macroeconomic data analysis.
We also highlighted the need for future research in different directions.
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