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“And, when you want something, all the universe conspires in
helping you to achieve it.”

Paulo Coelho, The Alchemist.
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“Sed quis custodiet ipsos custodes?”

Juvenal, Satires (Satire VI, lines 347–348).

1
Prologue

1.1 Background

This famousphrase, which literally translates to “Whowill guard the guards them-
selves?”, was coinedby theRomanpoet Juvenal satirically referring to theoptimistic
view of trusting the guardians of the state as a solution to deal with the problem of
marital fidelity. Juvenal suggests that keeping wives under guard may not be a so-
lution to prevent infidelity - because guards themselves might not be trustworthy.
Juvenal suggests that keeping wives under guard may not be a solution to prevent
infidelity - because guards themselves might not be trustworthy. In present times,
this phrase is intimately connected to the corruption and nepotism in the govern-
ment, law enforcement, and other forms of social institutions. Hence, a central
concern of modern societies is to design social institutions that induce truthful be-
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haviour from individuals.
Most social institutions resort to collective decisionmaking procedures such as

voting when designing policies. The scientific study of collective decision making
procedures is known as social choice theory. The subject was pioneered by the early
works of French mathematicians, Jean-Charles de Borda ([16]) and Marquis de
Condorcet ([25]), who initiated a formal analysis of these problems in terms of
voting and related procedures. Kenneth Arrow and Leo Hurwicz later developed
a mathematical formulation of these issues using a much general framework ([4],
[47] and [48]).

A collective decisionmaking procedure is formally called a social choice function.
Individuals report their preferences over the social alternatives (policies, public fa-
cilities, candidates in an election and so on). At every profile of individual prefer-
ences, a social choice function chooses an alternative that is, in some sense, optimal
for the society. Thus, a social choice function can be thought of as embodying the
welfare judgements of a social planner. However, the planner would be unaware
of the true profile of individual preferences, and she must rely on the individuals’
reports about their preferences. This requires the planner to design social choice
functions so that individuals report their preferences truthfully.

We consider a few examples in order to illustrate these notions more clearly.
Suppose that the government proposes a public project, such as a highway, flyover,
hospital etc. When the government decides whether the project should be under-
taken, it performs a cost-benefit analysis of these projects. The possible benefits of
such a projectwould be lower commuting time, increase in property values, and an
overall improvement in socialwelfare. Since suchprojectswouldbeusually funded
by an increase in taxes, the planner must also have certain fairness considerations
in her mind, such as taxing individuals who live near this proposed public facility
higher than the ones who live far from it. These aspects of this decision involve in-
formation privately held by the individuals such as individuals’ valuation of each
project. Another class of examples is that of voting problems. A set of voters must
elect a candidate for a political position. In this case, the set of social goals can
be identified with different political agendas (say, going from the left to the right
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on a uni-dimensional political spectrum). Again, as in the previous example, the
individual preferences over the candidates might be private information.

In order to capture the welfare judgements of the social planner, it is natural to
impose certain desirable properties on a social choice function. A social choice
function is called unanimous if whenever all the agents in a society unanimously
agree on their best alternative, that alternative is chosen. A social choice func-
tion is called strategy-proof if no agent can benefit bymisreporting her preferences.
Throughout the present thesis, we focus our attention on unanimous and strategy-
proof social choice functions.

Designing social choice functions that possess the desirable properties of una-
nimity and strategy-proofness leads to the famous Gibbard-Satterthwaite impossi-
bility theorem ([43], [75]). It says that if the range of the social choice function
contains at least three alternatives, then every unanimous and strategy-proof so-
cial choice function is a dictatorial rule. A dictatorial rule always selects the most
preferred alternative of some particular individual, called a dictator, in the society.
An assumption that lies at the heart of this impossibility result is that the individ-
ual preferences are unrestricted. In other words, an individual can misreport any
plausible preference in place of his true preference.

Researchers in mechanism design have persistently looked for ways to bypass
the Gibbard-Satterthwaite impossibility result. The present thesis is concerned
with one such approach where we consider restrictions on the domain of admis-
sible preferences. Domain restrictions naturally arise in several practical scenarios.
However, this approach has proved to be a double-edged sword in the sense that it
leads to both impossibility and possibility results. This is because the unrestricted
domain assumption in theGibbard-Satterthwaite result is by nomeans a necessary
condition for the dictatorial result to hold. This leads us to the notions of dictato-
rial and non-dictatorial domains. A domain of admissible preferences is called dic-
tatorial if every unanimous and strategy-proof social choice function on it is dicta-
torial. Similarly, a domain is called non-dictatorial if it admits non-dictatorial rules
as unanimous and strategy-proof social choice functions.

Several restricted domains such as the free pair at the top domains ([12], [20]),
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linked domains ([6]), and circular domains ([74]) are known to be dictatorial do-
mains. These results imply that it is impossible to sustain a reasonable aggrega-
tion procedure without strategic manipulation. Hence, these results are usually
deemed unsatisfactory as such domain restrictions preclude the possibility of ar-
riving at any fair compromise.

On the other hand, consider a situation where the social planner has to locate a
public good (hospital, shopping mall etc.), i.e., a facility which generates a positive
externality to individuals. In this case, it is natural that individuals would want to
place such a facility closer to their own locations. This means that individual pref-
erences would have a unique peak at their own location and it falls as one moves
away from its peak. Such preferences are called single-peaked and domains contain-
ing such preferences are non-dictatorial. Similarly, consider a situation where the
social planner has to locate a public bad (nuclear power plant, garbage dump etc.),
i.e., a facility which generates a negative externality to individuals. In this case, it is
natural that individuals would want to place such a facility farther away from their
own locations. This means that individual preferences would have a unique dip at
their own location and it rises as onemoves away from its dip. Such preferences are
called single-dipped and domains containing such preferences are non-dictatorial.
Next, consider a situation where the government is trying to set the tax level. In
suchmodels, it is customary to assume that relatively poorer individualswouldpre-
fer a higher tax regimeover a relatively lower one as hewould benefit froma greater
redistribution of income. This means that the domain restriction relevant in such
situations allow only for a single reversal of a higher tax regime with a lower one
when moving from the preference of a lower income individual to that of a higher
income individual. Such a domain of preferences is called single-crossing which are
also known to be non-dictatorial.

1.2 Motivation

The existing literature on domain restrictions in strategy-proof social choice has
been subject to severe criticism due to its limited practical applicability. For in-
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stance, most of the existing literature on non-dictatorial domain restrictions like
single-peakeddomains, single-dippeddomains, and single-crossingdomainsmake
two customary assumptions: (i) prior order assumption, which says that alterna-
tives can be arranged over a uni-dimensional space, and (ii) maximality assump-
tion, which says that all preferences with the relevant restriction are admissible. In
the context of electoral competition, [81] criticizes the prior order assumption on
the following accounts:

(i) Uni-dimensionality: The uni-dimensionality assumption is a far-fetched
one when reconciled with evidence in both two-party and multi-party sys-
tems. Voters’ ordering over the candidates’ positions on different policies
and issuesmight be independent of eachother. For example, therewouldbe
no relation (in a statistical sense) in the voter attitudes towards candidates’
viewsonanti-abortionpolicies and terrorism in the recently concludedPres-
idential election in theUS.Therefore, each of these attitudesmust be placed
ondifferent dimensions and a uni-dimensional policy spacewould be anun-
realistic assumption in these situations.

(ii) Full comparability of alternatives: The assumption that any two alterna-
tives can be comparedwith respect to the given prior ordering over the alter-
natives is very unrealistic. This assumption fails if voters aremerely reacting
to the association of the candidates to an issue or goal which is positively or
negatively valued by them. For instance, the outcome of 2014General Elec-
tions in India was highly influenced by the high profile scandals, such as the
Commonwealth Games scam, Coal-gate scandal, 2G scam etc., as the In-
dian voters associated the then incumbent UPA government to these scan-
dals when bringing the Modi government to power (for more details, see
[23] and [82]).

(iii) Single prior ordering: The assumption that all individuals derive their
preferences based a single prior ordering over the alternatives is not applica-
ble to many practical scenarios. This is because different individuals come
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from different socio-economic backgrounds, and hence they might be con-
cerned about different aspects of an alternative. This leads the individuals
to have different prior ordering over the alternatives.

Further, themaximality assumption fails in thedomain restrictionconsidered in
models of voting ([84], [5],[64], [66], [65], etc.) and taxation and redistribution
([38]).

Among the non-dictatorial domains discussed, single-peaked domains are by
far the most popular. A few empirical studies like [58], [41], and [59] find that
voters’ preferences often violate the very assumption of single-peakedness. For
instance, in many practical economic and political situations, voters’ preferences
are known to be multi-peaked (see [28], [32], [78], [31], [34], [80] and so on).
However, these empirical studies show that voters’ preferences are consistent with
mild violations of single-peakedness.

Keeping these practical and empirical considerations inmind, themainmotiva-
tion of this thesis is to further explore domain restrictions to accommodate these
criticisms and thereby, widen the applicability of the standard social choice frame-
work.

1.3 Our contribution

In this section,weprovide abrief overviewofour contribution to the areaof strategy-
proof social choice.

1.3.1 Dictatorship on Top-circular Domains

In Chapter 2, we consider domains of admissible preferences with a natural prop-
erty called top-circularity. Several domainswithpractical applications suchasmulti-
dimensional single-peaked domain in [9], union of a single-peaked and a single-
dipped domain, etc. satisfy top-circularity. We show that if such a domain satisfies
either the maximal conflict property or the weak conflict property, then it is dictato-
rial. We show that this result can be applied to the problem of locating a public
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facility where the planner does not know whether agents derive positive or nega-
tive externality from the facility. The union of a single-peaked and a single-dipped
domain captures such situations and such domains are top-circular satisfying the
maximal conflict property. It follows from our results that such domains are dicta-
torial. Further, we obtain the result in [74] as a corollary.

1.3.2 On Single-peaked Domains and Min-max Rules

In Chapter 3, we consider social choice problems where the set of alternatives can
be ordered over a real line and the admissible set of preferences of each agent is
single-peaked. A preference is called single-peaked if the preference falls as one
moves away from its top-ranked alternative. First, we show that if all the agents
have the same admissible set of single-peaked preferences, then every unanimous
and strategy-proof social choice function is tops-only. A social choice function is
called tops-only if it is insensitive to changes in agents’ preferences below the top-
ranked alternative. Next, we consider situations where different agents have differ-
ent admissible sets of single-peaked preferences. We showbymeans of an example
that unanimous and strategy-proof social choice functions need not be tops-only
in this situation, and consequently provide a sufficient condition on the admissible
sets of preferences of the agents so that unanimity and strategy-proofness guaran-
tee tops-onlyness. Finally, we characterize all domains on which (i) every unani-
mous and strategy-proof social choice function is a min-max rule ([54]), and (ii)
every min-max rule is strategy-proof. As an application of our result, we obtain a
characterization of the unanimous and strategy-proof social choice functions on
maximal single-peaked domains ([54], [86]), minimally rich single-peaked do-
mains ([61]), maximal regular single-crossing domains ([72], [73]), and distance
based single-peaked domains.

1.3.3 Strategy-proof Rules on Partially Single-peaked Domains

In Chapter 4, we consider domains that exhibit single-peakedness only over a sub-
set of alternatives. We call such domains partially single-peaked domains and pro-
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vide a characterization of the unanimous and strategy-proof social choice func-
tions on these domains. As an application of this result, we obtain a characteriza-
tion of the unanimous and strategy-proof social choice functions onmulti-peaked
domains ([80], [78], [37]), single-peaked domains with respect to a partial or-
der ([18]), multiple single-peaked domains ([67]) and single-peaked domains on
graphs ([76]). As a by-product of our results, it follows that strategy-proofness im-
plies tops-onlyness on these domains. Moreover, we show that strategy-proofness
and group strategy-proofness are equivalent on these domains.

1.3.4 On Strategy-proofness and Uncompromisingness

In Chapter 5, we consider a social choice setting where the set of alternatives can
be ordered over a real line. InChapter 3, we have characterized domains where the
set of unanimous and strategy-proof rules coincide with the set of min-max rules.
Min-max rules satisfy an interesting property called uncompromisingness ([17]). A
social choice function is uncompromising if no agent can influence the outcome
by taking extreme positions. It follows from our result in Chapter 3 that a do-
main is not top-connected single-peaked then unanimous and strategy-proof rules
may violate uncompromisingness. In this chapter, we consider arbitrary single-
peaked domains (not necessarily top-connected) and provide a general charac-
terization of the unanimous and strategy-proof social choice functions on those
domains. We show that every unanimous and strategy-proof social choice func-
tion defined on such domains satisfy a property called weak uncompromisingness.
Weak uncompromisingness implies that whenever an agent’s top-ranked alterna-
tive moves closer to the outcome, the outcome does not change. Moreover, if an
agent moves his top-ranked alternative away from the outcome, the outcome can
change only in a restricted way.

As an application of this result, we obtain a characterization of the unanimous
and strategy-proof social choice functionsonmaximal single-peakeddomains ([54],
[86]),minimally rich single-peakeddomains ([61]),maximal regular single-crossi-
ngdomains ([72], [73]), one-dimensionalEuclidean single-peakeddomains ([26]),

8



and left (or right) single-peaked domains ([64], [66], [65]).

1.3.5 Social Choice on Domains based on Trees

In Chapter 6, we consider social choice problems where the set of alternatives are
arranged over a (fixed) tree. We study unanimous and strategy-proof SCFs when
agents’ preferences are single-peaked on such a tree. Such preferences naturally
arise in situations where a public good (shopping mall, hospital, etc.) has to be
located on a road or railroad network. We show that when such domains satisfy a
property called top-connectedness, every unanimous and strategy-proof SCF sat-
isfiesPareto property and tops-only property. Further, we show thatwhen suchdo-
mains satisfy a stronger requirement called strongly connected, every unanimous
and strategy-proof SCF is uncompromising. In this setting, uncompromisingness
means if the top-ranked alternative of each agent does not “cross” the outcome, i.e.,
the outcome does not lie on the unique path joining the initial top-ranked alterna-
tive to the final one of each agent.

TheChapters are intended tobe self-contained. Wealso try tounify the symbols
across the chapters.

9



2
Dictatorship on Top-circular Domains

2.1 Introduction

2.1.1 Motivation

The coincidence of strategy-proofness and dictatorship has always been an in-
triguing question since Alan Gibbard and Mark Satterthwaite proposed their im-
possibility result ([43], [75]) - famously knownas theGibbard-Satterthwaite (GS)
Theorem-which states that everyunanimous and strategy-proof social choice func-
tion (SCF) defined over the unrestricted domain of preferences (provided that
there are at least three alternatives) is dictatorial. However, the unrestricted do-
main assumption in the GS theorem is far from being the necessary condition for
dictatorship. A domain of preferences is called dictatorial if every unanimous and
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strategy-proof SCF on it is dictatorial.
Apart from being a generalization of the GS theorem, dictatorial domains have

garnered a lot of interest in the literature. At present, there is a sizeable literature
on dictatorial domains as seen in the works of [12], [6], [74], and [62]. The main
motivationof this chapter is to finddictatorial domains that canbe applied to some
economic and political environment.

2.1.2 Our contribution

A crucial property of a dictatorial domain is that for every alternative a, theremust
be at least two preferences ab . . . and ac . . . in the domain, where b ̸= c.¹,² A
domain of practical importance of such type is the onewhose top-graph comprises
of a maximal cycle.³,⁴ We call such a domain a top-circular domain.

We prove by means of an example that the top-circular domains are not dic-
tatorial. In view of that, we identify two conditions called the maximal conflict
property and the weak conflict property such that if a top-circular domain satisfies
either of these two conditions, then it becomes a dictatorial domain. Maximal
conflict property requires the existence of two exactly opposite preferences and
consequently verifying if some domain satisfies this property is easy. However,
weak conflict property is somewhat technical and the corresponding verification
is relatively harder. Several domains of practical importance such as the maximal
single-peaked domain, the maximal single-dipped domain, and maximal single-
crossing domains (with respect to a given ordering over the alternatives) satisfy
the maximal conflict property. Also, maximal single-peaked domains satisfy the
weak conflict property. Here, maximality refers to the largest possible set of pref-
erences with the corresponding property. We obtain the dictatorial result in [74]

¹Wedenote by ab . . . a preferencewhichplaces a at the top and b at the second-rankedposition.
²[70] shows that this property is necessary and sufficient for dictatorship on a large class of

domains which they call short-path-connected domains. However, the domains that we consider are
not short-path-connected.

³The top-graph of a domain is defined as the graph where nodes are alternatives and there is an
edge between two alternatives a, b if there are preferences ab . . . and ba . . . in the domain.

⁴An undirected graph with nodes v1, . . . , vk is said to contain a maximal cycle if it has the fol-
lowing edges: {v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk, v1}.
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as a corollary of our result.
We apply this result to the problem of locating a public facility. For certain pub-

lic facilities such as metro stations, hospitals etc., agents want the facility to be
located closer to their own locations, and consequently their preferences can be
modeled as single-peaked with respect to a given ordering over the alternatives.
On the other hand, for facilities like garbage dumps or nuclear plants, agents want
the facility to be located farther from their own locations, and consequently their
preferences can bemodeled as single-dipped with respect to a given ordering over
the alternatives. For both these cases, it is well-known that one can design non-
dictatorial rules that satisfy unanimity and strategy-proofness.⁵,⁶

However, for facilities like shoppingmalls, factories etc., the social planner may
not have clear knowledge onwhether the agentswant it to be closer or farther away.
This is because, some individuals may be concerned about the resulting conges-
tion, pollution etc., whereas some others may want to minimize their commut-
ing distance. In such a situation, the relevant admissible domain is the union of
a single-peaked and a single-dipped domain with respect to a given ordering over
the alternatives.⁷ Our result shows that every unanimous and strategy-proof SCF
on such a domain is dictatorial.

2.1.3 Relation to the literature

In this section, we discuss the connection of our result with the vast literature on
dictatorial domains. [12] and[77]provide ageneralizationofGibbard-Satterthwa-
ite theorem by showing that every free pair at the top (FPT) domain is dictatorial.

⁵[54], [9] and [86] characterize the unanimous and strategy-proof SCFs on the single-peaked
domains as min-max rules.

⁶[60], [8] and [52] characterize the unanimous and strategy-proof SCFs on the single-dipped
domains as voting by extended committees.

⁷Alternativemodels that consider similar practical situations exist in the literature. For instance,
[83] and [40] partition the set of agents into those who can only have single-peaked preferences
and those that can only have single-dipped preferences. On the other hand, [1] considers a sit-
uation where the social planner is informed about the location of the agents but agents can have
single-peaked preferences with the peak at her location or single-dipped preferences with the dip
at her location. Though the domain restriction considered in the aforementionedmodels are close
in spirit with ours, they admit non-dictatorial, unanimous, and strategy-proof SCFs.
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A domain satisfies the FPT property if for every two alternatives x and y, it con-
tains a preference which places x at the top and y at the second-ranked position. It
is worth noting that such a domain requires at least m(m − 1) preferences, where
m is the total number of alternatives. Later, in a seminal contribution, [6] further
generalizes this result by showing that the same holds if a domain satisfies a much
weaker property called the linked property.⁸ More recently, [62] further general-
izes the dictatorial results in [6]. However, all these domain restrictions are differ-
ent in nature from those we consider in this chapter. This is because, in contrast to
these works which put restrictions only on the first and second ranked alternatives
in a preference, we consider additional restrictions on some other ranked alterna-
tives as well. As a consequence, we obtain dictatorial domains that require fewer
preferences.

The structure of the domain restriction that we consider in this chapter is simi-
lar to that considered in [50]. They show that any domain containing all clockwise
and anti-clockwise preferences with respect to some arrangement of the alterna-
tives on a circle is dictatorial. Such domains are called circular domains. Later, [74]
generalizes circular domains by placing restrictions only on the first, second and
last ranks of a preference and show that such domains are also dictatorial. In a
subsequent chapter, [20] independently prove that circular domains (as defined
in [50]) are dictatorial.⁹ However, our result generalizes all these results in a sub-
stantial way.

2.1.4 Remainder

The rest of the chapter is organized as follows. We describe the usual social choice
framework in Section 2.2. Section 2.3 presents our main results and Section 2.4
discusses applications of the same. The last section concludes the chapter. All the
omitted proofs are collected in the Appendix.

⁸We provide the technical definition of the linked property in Remark 2.2.2.
⁹They also provide two conditions T and T′, and show that any domain satisfying those is dic-

tatorial.
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2.2 The model

Let N = {1, . . . , n} be a set of agents, who collectively choose an element from
a finite set X = {x1, x2, . . . , xm} of at least three alternatives. A preference P over
X is a complete, transitive, and antisymmetric binary relation (also called a linear
order) defined on X. For two alternatives x, y ∈ X and a preference P, we write
xPy to mean that x is preferred to y according to P.¹⁰ We denote by L(X) the set
of all preferences over X. An alternative x ∈ X is called the kth ranked alternative
in a preference P ∈ L(X), denoted by rk(P), if |{a ∈ X | aPx}| = k − 1. For
ease of presentation, by ab . . . c . . . d . . ., we denote a preference P where r1(P) =
a, r2(P) = b and cPd. Also, by ab . . . c, we denote a preference P where r1(P) =

a, r2(P) = b, and rm(P) = c. We denote by D ⊆ L(X) a set of admissible
preferences over X. A preference profile, denoted by PN, is defined as an element
ofDn.

For simplicity, we do not use braces for singleton sets, for instance, we use the
notation i to mean {i}.

Definition 2.2.1 A social choice function (SCF) f on a domainD is defined as amap-
ping f : Dn → X.

Definition 2.2.2 An SCF f : Dn → X is unanimous if for all PN ∈ Dn such that
r1(Pi) = x for all i ∈ N and some x ∈ X, we have f(PN) = x.

Definition 2.2.3 An SCF f : Dn → X is manipulable if there exists a profile PN ∈
Dn, an agent i ∈ N, and a preference P′

i ∈ D of agent i such that f(P′
i, P−i)Pif(PN).

An SCF f is strategy-proof if it is not manipulable.

Definition 2.2.4 An SCF f : Dn → X is dictatorial if there exists an agent i ∈ N
such that for all profiles PN ∈ Dn, f(PN) = r1(Pi).

Definition 2.2.5 A domain D is called dictatorial if every unanimous and strategy-
proof SCF f : Dn → X is dictatorial.

¹⁰More formally, since P is a binary relation on X, xPy means that the pair (x, y) ∈ P.
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Definition 2.2.6 A domainD is regular if for all x ∈ X, there exists P ∈ D such that
r1(P) = x.

Remark 2.2.1 All the domains we consider in this chapter are regular.

Now, we introduce a few graph theoretic notions. A graph G is defined as a pair
⟨V, E⟩, where V is the set of nodes and E ⊆ {{u, v} | u, v ∈ V and u ̸= v} is
the set of edges. A cycle in a graph G = ⟨V, E⟩ is defined as a sequence of nodes
(v1, . . . , vk, v1) such that the nodes v1, . . . , vk are all distinct and {vi, vi+1} ∈ E for
all i = 1, . . . , k, where vk+1 ≡ v1.

All the graphswe consider in this chapter are of the kindG = ⟨X, E⟩, i.e., whose
node set is the set of alternatives.

Definition 2.2.7 The top-graph of a domain D is defined as the graph ⟨X, E⟩ such
that {x, y} ∈ E if and only if there exist two preferences P, P′ ∈ D with r1(P) =

r2(P′) = x and r2(P) = r1(P′) = y.

Now, we introduce the notion of a top-circular domain.

Definition 2.2.8 AdomainC with top-graph ⟨X, E⟩ is called top-circular if{xi, xj} ∈
E for all i, j with |i − j| ∈ {1,m − 1}.

Below, we present a top-circular domain and its top-graph.

Example 2.2.1 Let X = {x1, x2, x3, x4, x5}. Consider the domain given in Table
2.2.1. Figure 2.2.1 presents the top-graph of this domain. Note that this graph contains a
maximal cycle given by (x1, x2, . . . , x5, x1). Further, note that such a graphmay contain
some additional edges like {x1, x3} and {x2, x5}.

Remark 2.2.2 [6] introduce the notion of a linkeddomainand show that every linked
domain is dictatorial. A domain is called linked if the alternatives can be ordered as
y1, . . . , ym such that the top-graph ⟨X, E⟩ of the domain has the following property:
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

x1 x2 x2 x3 x3 x4 x4 x5 x5 x1 x1 x3 x2 x5
x2 x1 x3 x2 x4 x3 x5 x4 x1 x5 x3 x1 x5 x2
x5 x4 x5 x4 x2 x1 x3 x1 x2 x3 x5 x4 x3 x4
x4 x5 x1 x1 x1 x5 x1 x3 x3 x4 x2 x5 x4 x3
x3 x3 x4 x5 x5 x2 x2 x2 x4 x2 x4 x2 x1 x1

Table 2.2.1 A top-circular domain

x1

x2

x3

x4

x5

Figure 2.2.1 Top-graph of a top-circular domain

{y1, y2} ∈ E, and for all 3 ≤ l ≤ m, {{yj, yl}, {yk, yl}} ⊆ E for some j, k < l
with j ̸= k. It can be verified the the top-graph in Figure 2.2.1 satisfies this property
with respect to the order x5, x1, . . . , x4. Thus, it follows from [6] that every unanimous
and strategy-proof SCF on this domain is dictatorial. However, note that any arbitrary
top-circular domain need not be linked.

2.3 Main result

In this section we present the main result of this chapter. We first show by means
of an example that an arbitrary top-circular domain need not be dictatorial. The
domainprovided in this example is a two-dimensional single-peakeddomaingiven
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in [9].

Example 2.3.1 Suppose that each alternative has two dimensions, and in each dimen-
sion, it can take two values{0, 1}. In otherwords, the set of alternatives is X = {0, 1}×
{0, 1}. Suppose further that the domain is the maximal set of preferences satisfying
separability. Separability in this case says that if (x, y) appears as a top-ranked al-
ternative at some preference, then (1 − x, 1 − y) must appear as the bottom-ranked
alternative. It can be verified that the top-graph of this domain has the following cy-
cle ((1, 1), (1, 0), (0, 0), (0, 1), (1, 1)). Thus, this domain is top-circular. However, it
is well-known that this domain admits unanimous, strategy-proof, and non-dictatorial
SCFs.

In view of Example 2.3.1, we present below two conditions, and show that if a
top-circular domain satisfies either of the two, then it is dictatorial.

Definition 2.3.1 A domain D satisfies the maximal conflict property if there exist
P, P′ ∈ D such that rk(P) = rm−k+1(P′) = xk for all k = 1, . . . ,m.

Thus, the maximal conflict property ensures the existence of two exactly oppo-
site preferences.

Definition 2.3.2 A domainD satisfies the weak conflict property if

(i) {x1x2 . . . xm, xmxm−1 . . . x1} ⊆ D, and

(ii) for all k = 2, . . . ,m−1, there are twopreferencesP = xkxk−1 . . . x1 . . . xk+1 . . .

and P′ = xkxk+1 . . . xm . . . xk−1 . . . in the domainD.

Condition (i) in Definition 2.3.2 is a weaker version of the maximal conflict
property. It requires the existence of two preferences that are opposite with re-
spect to their first, second, and last-ranked alternatives. For an intuitive explana-
tion of Condition (ii), assume that the alternatives are arranged on a circle in the
following (clockwise) order: x1, x2, . . . , xm. Then, for every alternative xk, where
k ̸= 1,m, it ensures the existence of two preferences with xk as the top-ranked
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alternative such that in one of them, preference decreases in the anti-clockwise di-
rection (only) over the alternatives xk−1, x1 and xk+1, and in the other, it decreases
in the clockwise direction (only) over the alternatives xk+1, xm and xk−1. It further
says that in those two preferences, the second-ranked alternativesmust be the next
alternatives in the corresponding direction (i.e., xk−1 in the anticlockwise direction
and xk+1 in the clockwise direction).

In the following, we illustrate the notion of a top-circular domain with themax-
imal conflict property by means of an example.

Example 2.3.2 Let X = {x1, x2, x3, x4, x5, x6, x7}. Then, the domain C = {P1, P2,

P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14} as given in Table 2.3.1 is a top-circular
domain satisfying the maximal conflict property.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7 x1
x2 x1 x3 x2 x4 x3 x5 x4 x6 x5 x7 x6 x1 x7
x3 x6 x5 x6 x2 x1 x7 x1 x7 x7 x3 x5 x5 x4
x4 x5 x1 x1 x6 x7 x1 x3 x3 x1 x5 x4 x3 x2
x5 x3 x4 x4 x5 x2 x2 x2 x4 x4 x4 x3 x4 x3
x6 x7 x7 x7 x1 x6 x6 x7 x1 x2 x1 x2 x2 x6
x7 x4 x6 x5 x7 x5 x3 x6 x2 x3 x2 x1 x6 x5

Table 2.3.1 A top-circular domain satisfying the maximal conflict property

Now, we present an example of a top-circular domain with the weak conflict
property.

Example 2.3.3 Let X = {x1, x2, x3, x4, x5, x6, x7}. Then, the domain C = {P1, P2,

P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14} as given in Table 2.3.2 is a top-circular
domain satisfying the weak conflict property.

Remark 2.3.1 [50] consider domains containing all clockwise andanti-clockwise pref-
erences with respect to some arrangement of the alternatives on a circle and show that
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7 x1
x2 x1 x3 x2 x4 x3 x5 x4 x6 x5 x7 x6 x1 x7
x3 x6 x5 x6 x7 x1 x7 x1 x2 x1 x3 x4 x5 x4
x6 x3 x7 x1 x6 x7 x1 x6 x3 x7 x2 x2 x3 x5
x4 x4 x4 x5 x5 x5 x2 x2 x7 x4 x4 x5 x4 x2
x5 x7 x1 x4 x1 x6 x3 x7 x1 x2 x1 x3 x2 x6
x7 x5 x6 x7 x2 x2 x6 x3 x4 x3 x5 x1 x6 x3

Table 2.3.2 A top-circular domain satisfying the weak conflict property

these domains are dictatorial. Later, [20] independently show the same result. It is
worth noting that these are top-circular domains satisfying the weak conflict property.

Now, we proceed to present our main results.

Theorem 2.3.1 Let C be a top-circular domain satisfying the maximal conflict prop-
erty. Then, C is a dictatorial domain.

Theorem 2.3.2 Let C be a top-circular domain satisfying the weak conflict property.
Then, C is a dictatorial domain.

The proofs of Theorem 2.3.1 and 2.3.2 are relegated to the Appendix.

Remark 2.3.2 [20] introduce two properties called T and T′ and show that every
domain satisfying those two properties is dictatorial. It can be verified that a top-circular
domain satisfying the maximal conflict or the weak conflict property does not satisfy
properties T and T′.

2.4 Applications

2.4.1 Locating a public facility

In this section, we consider the problemof locating a public facilitywhen the social
planner does not have any informationwhether it generates positive or negative ex-
ternality for the agents. As argued in Section 2.1, the relevant domain restriction
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in such problems is the union of the single-peaked and the single-dipped domain.
In what follows, we describe such domains formally and show that they are dicta-
torial.

Definition 2.4.1 A preference P ∈ L(X) is called single-peaked if r1(P) = xi and
[j < k ≤ i or i ≤ k < j] imply xkPxj. A domain Dp is called single-peaked if it
contains all single-peaked preferences.

Definition 2.4.2 A preference P ∈ L(X) is called single-dipped if rm(P) = xi and
[j < k ≤ i or i ≤ k < j] imply xjPxk. A domain Dd is called single-dipped if it
contains all single-dipped preferences.

A domainD is called the union of the single-peaked and the single-dipped do-
main ifD = Dp ∪ Dd. It is easy to verify that the union of the single-peaked and
the single-dipped domain is a top-circular domain satisfying the maximal conflict
property. Thus, we have the following corollary of Theorem 2.3.1.

Corollary 2.4.1 LetD be the union of the single-peakedand the single-dippeddomain.
Then,D is a dictatorial domain.

2.4.2 Circular domains

Thenotionof circular domains is introduced in [74],wherehe shows that a circular
domain is dictatorial. However, we obtain this result as a corollary of our result.

Definition 2.4.3 AdomainD is called circular if it is a top-circular domain satisfying
the property that for all k = 1, . . . ,m, there are two preferences xkxk+1 . . . xk−1 and
xkxk−1 . . . xk+1 in the domainD.

Note that a circular domain is a top-circular domain satisfying the weak conflict
property. Thus, we have the following corollary of Theorem 2.3.2.

Corollary 2.4.2 ([74]) LetD be a circular domain. Then,D is a dictatorial domain.
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2.5 Concluding remarks

In this chapter, we prove that any unanimous and strategy-proof social choice rule
on a top-circular domain satisfying either the maximal conflict property or the
weak conflict property is dictatorial. Our result is independent from the existing
results on dictatorial domains.

Since dictatorial rules are tops-only, Theorem 2.3.1 and 2.3.2 imply that top-
circular domains satisfying either the maximal conflict property or the weak con-
flict property are tops-only. [20] provides sufficient conditions for a domain to be
tops-only, however, our domain restrictions do not satisfy their condition. More-
over, since dictatorial rules are also group-strategy-proof, it follows that the no-
tions of strategy-proofness and group-strategy-proofness are equivalent for the do-
mains we consider.

2.6 Appendix

In this section, we prove Theorem 2.3.1 and Theorem 2.3.2. The following propo-
sition in [6] allows us to restrict our attention to the case of two agents.

Proposition 2.6.1 ([6]) LetD be a regular domain such that every unanimous and
strategy-proof SCF f : D2 → X is dictatorial. Then, every unanimous and strategy-
proof SCF f : Dn → X is dictatorial.

The following proposition in [71] allows us to restrict our attention to minimal
top-circular domains satisfying either the maximal conflict or the weak conflict
property.¹¹

Proposition 2.6.2 ([71]) A superset of a regular dictatorial domain is also dictato-
rial.

Now, we introduce the notion of option sets, which we use in our proofs.

¹¹A top-circular domain is minimal if none of its subsets is top-circular.
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Definition 2.6.1 Given an SCF f : D2 → X, we define the option set of agent i ∈
{1, 2} at preference Pj ∈ D of agent j ∈ {1, 2} \ i, denoted by Oi(Pj), as Oi(Pj) =∪
Pi∈D

f(Pi, Pj).

Remark 2.6.1 Note that if an SCF f : D2 → X is unanimous, then r1(Pj) ∈ Oi(Pj)

for all Pj ∈ D. Furthermore, if f is strategy-proof, then for all i, j ∈ {1, 2}; i ̸= j
and all (P1, P2) ∈ D2, f(P1, P2) = max

Pi
Oi(Pj), wheremax

Pi
Oi(Pj) = x if and only if

x ∈ Oi(Pj) and xPiy for all y ∈ Oi(Pj) \ x.

Remark 2.6.2 Note that an SCF f : D2 → X is dictatorial if and only if there is
i ∈ {1, 2} such that Oi(Pj) = {r1(Pj)} for all Pj ∈ D.

For all the subsequent results, let C be a minimal top-circular domain. Suppose
f : C2 → X is a unanimous and strategy-proof SCFandOi(Pj) is the corresponding
option set of agent i at a preference Pj of agent j ∈ {1, 2} \ i. We prove a sequence
of lemmas that we use in the proofs of Theorem 2.3.1 and Theorem 2.3.2.

The following lemma establishes a property of a minimal top-circular domain.
We assume for this lemma that 0 ≡ m and m + 1 ≡ 1.

Lemma 2.6.1 Let P2, P′
2 ∈ C be such that r1(P2) = r1(P′

2) = xk. Then, for all
j ∈ {k − 1, k + 1}, xj ∈ O1(P2) if and only if xj ∈ O1(P′

2).

Proof: Assume for contradiction that there existP2, P′
2 ∈ C with r1(P2) = r1(P′

2) =

xk such that xj ∈ O1(P2) and xj ̸∈ O1(P′
2) for some j ∈ {k − 1, k + 1}. Consider

P1 ∈ C such that r1(P1) = xj and r2(P1) = xk. Such a preference exists in C as
|j − k| = 1. Then, by the strategy-proofness of f, f(P1, P2) = xj and f(P1, P′

2) = xk.
This means agent 2manipulates at (P1, P2) via P′

2, a contradiction. This completes
the proof of the lemma. ■

Thesubsequent lemmasestablish fewcrucial propertiesof aminimal top-circular
domain C such that {x1x2 . . . xm, xmxm−1 . . . x1} ⊆ C. Note that if a minimal top-
circulardomainC satisfies either themaximal conflict propertyor theweakconflict
property, then such two preferences are there in C.

22



Lemma 2.6.2 Let{x1x2 . . . xm, xmxm−1 . . . x1} ⊆ C . Then, for all P2 ∈ {x1x2 . . . xm,

xmxm−1 . . . x1}, rm(P2) /∈ O1(P2) implies O1(P2) = {r1(P2)}.

Proof: We prove the lemma for the case where P2 = x1x2 . . . xm ∈ C, the proof
of the same for the other case is analogous. Let P2 = x1x2 . . . xm ∈ C and let
rm(P2) = xm /∈ O1(P2). We show O1(P2) = {r1(P2)}. Assume for contradiction
that xj ∈ O1(P2) for some j ̸= 1,m. Let P′

2 ∈ C be such that r1(P′
2) = x1 and

r2(P′
2) = xm. Since xm /∈ O1(P2), by Lemma 2.6.1, xm /∈ O1(P′

2). Let P1 =

xmxm−1 . . . x1. By unanimity and strategy-proofness, we must have f(P1, P′
2) ∈

{x1, xm} as otherwise, agent 2manipulates at (P1, P′
2) via a preferencewhich places

xm at the top. Also, since xm /∈ O1(P′
2), we have f(P1, P′

2) = x1. However, since xj ∈
O1(P2) and xjP1x1, it must be that f(P1, P2) ̸= x1. Because r1(P2) = x1 = r1(P′

2),
this means agent 2manipulates at (P1, P2) via P′

2, a contradiction. This completes
the proof of the lemma. ■

Lemma 2.6.3 Let {x1x2 . . . xm, xmxm−1 . . . x1} ⊆ C and let O1(P2) ∈ {{r1(P2)},
X} for all P2 ∈ {x1x2 . . . xm, xmxm−1 . . . x1}. Suppose P̂2, P̄2 ∈ C is such that r1(P̂2) =

x1 and r1(P̄2) = xm. Then, O1(P̂2) = {x1} if and only if O1(P̄2) = {xm}.

Proof: Let P̂2, P̄2 ∈ C be such that r1(P̂2) = x1 and r1(P̄2) = xm. It is sufficient
to show that O1(P̂2) = {x1} implies O1(P̄2) = {xm}. By strategy-proofness, it is
enough to show that O1(P̄2) = {xm}where P̄2 = xmxm−1 . . . x1.

Assume for contradiction that O1(P̂2) = {x1} and O1(P̄2) ̸= {xm}. By the
assumption of the lemma, O1(P̄2) ̸= {xm} implies O1(P̄2) = X. Consider P̄′

2 ∈ C
such that r1(P̄′

2) = xm and r2(P̄′
2) = x1. Since O1(P̄2) ̸= {xm}, it follows from

strategy-proofness that O1(P̄′
2) ̸= {xm}. We show xj ̸∈ O1(P̄′

2) for all j ̸= 1,m.
Suppose not. Then, f(P1, P̄′

2) = xj for some P1 ∈ C with xj at the top. However,
because O1(P̂2) = {x1}, agent 2 manipulates at (P1, P̄′

2) via P̂2. Since O1(P̄′
2) ̸=

{xm} and xj /∈ O1(P̄′
2) for all j ̸= 1,m, itmust be thatO1(P̄′

2) = {x1, xm}. However,
since O1(P̄2) = X, which in turn means xm−1 ∈ O1(P̄2), by Lemma 2.6.1, we must
have xm−1 ∈ O1(P̄′

2), a contradiction. This completes the proof of the lemma. ■
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2.6.1 Proof of Theorem 2.3.1

In this section, we provide a proof ofTheorem 2.3.1. First, we establish a few prop-
erties of a top-circular domain satisfying the maximal conflict property.

Lemma 2.6.4 Let C satisfy the maximal conflict property. Let P, P′ ∈ C be such
that rk(P) = rm−k+1(P′) = xk for all k = 1, . . . ,m. Then, for all P2 ∈ {P, P′},
rm(P2) ∈ O1(P2) implies O1(P2) = X.

Proof: We prove this lemma for the case where P2 = P, the proof of the same
for the other case is analogous. Let P2 = P. Suppose xm ∈ O1(P2). We show
O1(P2) = X. We prove this by induction. Since xm ∈ O1(P2), it is sufficient to
show that for all 1 < k ≤ m, xk ∈ O1(P2) implies xk−1 ∈ O1(P2). Assume for
contradiction that xk ∈ O1(P2) but xk−1 /∈ O1(P2) for some 1 < k ≤ m. Consider
P1 = xk−1xk . . . ∈ C. Since xk ∈ O1(P2) and xk−1 /∈ O1(P2), f(P1, P2) = xk.
However, this means agent 2manipulates at (P1, P2) via a preference which places
xk−1 at the top, a contradiction. This completes the proof of the lemma. ■

Remark 2.6.3 Let C be a minimal top-circular domain satisfying the maximal con-
flict property, and let P, P′ ∈ C be such that rk(P) = rm−k+1(P′) = xk for all
k = 1, . . . ,m. Then, it follows from Lemma 2.6.2 that for all P2 ∈ {P, P′}, rm(P2) /∈
O1(P2) implies O1(P2) = {r1(P2)}. Again, it follows from Lemma 2.6.4 that for all
P2 ∈ {P, P′}, rm(P2) ∈ O1(P2) implies O1(P2) = X. Thus, for all P2 ∈ {P, P′}, we
have O1(P2) ∈ {{r1(P2)},X}.

Lemma 2.6.5 Let C satisfy the maximal conflict property. Further, let P, P′ ∈ C be
such that rk(P) = rm−k+1(P′) = xk for all k = 1, . . . ,m. Then, for all P2 ∈ {P, P′},
O1(P2) = {r1(P2)} implies O1(P̄2) = {r1(P̄2)} for all P̄2 ∈ C .

Proof: It is enough to prove the lemma for the case where P2 = P, the proof for
the other case is analogous. Let P2 = P. Suppose O1(P2) = {r1(P2)}. We show
O1(P̄2) = {r1(P̄2)} for all P̄2 ∈ C. By strategy-proofness, we have O1(P̄2) =

{r1(P̄2)} for all P̄2 ∈ C with r1(P̄2) = x1. Moreover, by Lemma 2.6.3 and Remark
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2.6.3, we have O1(P̄2) = {r1(P̄2)} for all P̄2 ∈ C with r1(P̄2) = xm. Take j ̸= 1,m
and P̂2 ∈ C with r1(P̂2) = xj. We show O1(P̂2) = {r1(P̂2)}.

First, we show O2(P1) = O2(P′
1) = X, where rm−k+1(P1) = rk(P′

1) = xk for
all k = 1, . . . ,m. We show this for P1, the proof of the same for P′

1 is analogous.
Since O1(P2) = {x1}, we have f(P1, P2) = x1. Because rm(P1) = x1, this means
rm(P1) ∈ O2(P1). By Lemma 2.6.4, this means O2(P1) = X.

Now, we complete the proof of the lemma. Assume for contradiction that xl ∈
O1(P̂2) for some xl ̸= r1(P̂2) = xj. Since rm−k+1(P1) = rk(P′

1) = xk for all k =

1, . . . ,m, we must have either xlP1xj or xlP′
1xj. Assume without loss of generality

that xlP1xj. Since O2(P1) = X and r1(P̂2) = xj, f(P1, P̂2) = xj. Let P̂1 ∈ C such
that r1(P̂1) = xl. Since xl ∈ O1(P̂2) and r1(P̂1) = xl, we have f(P̂1, P̂2) = xl. This
means agent 1manipulates at (P1, P̂2) via P̂1, a contradiction. Therefore, O1(P̂2) =

{r1(P̂2)}, which completes the proof of the lemma. ■

Now we are ready to prove Theorem 2.3.1.
Proof:[Proof ofTheorem2.3.1] In view of Propositions 2.6.1 and 2.6.2, it sufficient
to show that a minimal top-circular domain with the maximal conflict property is
dictatorial for two agents. Consider P2 ∈ C such that rk(P2) = xk for all 1 ≤
k ≤ m. By Remark 2.6.3, we have O1(P2) ∈ {{r1(P2)},X}. Suppose O1(P2) =

{r1(P2)}. Then, by Lemma 2.6.5, it follows that O1(P′
2) = {r1(P′

2)} for all P′
2 ∈ C,

which implies agent 2 is the dictator.
Now, suppose O1(P2) = X. Consider P1 ∈ C such that r1(P1) = xm. Since

O1(P2) = X, we have f(P1, P2) = xm. We claim O2(P1) = {r1(P1)}. Assume
for contradiction that xj ∈ O2(P1) for some j ̸= m. Since rm(P2) = xm, we
have xjP2xm. However, since xj ∈ O2(P1), agent 2manipulates at (P1, P2) via some
preference P̄2 with r1(P̄2) = xj. Therefore, O2(P1) = {r1(P1)}. By Lemma 2.6.5,
this means O2(P1) = {r1(P1)} for all P1 ∈ C, which implies agent 1 is the dictator.
This completes the proof of the theorem. ■
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2.6.2 Proof of Theorem 2.3.2

In this section, we provide a proof ofTheorem 2.3.2. First, we establish a few prop-
erties of a top-circular domain satisfying the weak conflict property.

Lemma 2.6.6 Let C satisfy the weak conflict property. Suppose P2 ∈ {x1x2 . . . xm,

xmxm−1 . . . x1} ⊆ C . Then, rm(P2) ∈ O1(P2) implies O1(P2) = X.

Proof: It is enough to prove the lemma for P2 = x1x2 . . . xm ∈ C, the proof for
the other case is analogous. Suppose xm ∈ O1(P2). We show O1(P2) = X. We
prove this by induction. By unanimity, x1 ∈ O1(P2). Therefore, it is sufficient
to show that for all 1 ≤ k < m, xk ∈ O1(P2) implies xk+1 ∈ O1(P2). Assume
for contradiction that xk ∈ O1(P2) and xk+1 /∈ O1(P2) for some 1 ≤ k < m.
Let P̂2 = xkxk+1 . . . xm . . . xk−1 . . . ∈ C. Note that since xm ∈ O1(P2) and
rm(P2) = xm, by strategy-proofness, it must be that xm ∈ O1(P̂2). Let P1 =

xk+1xk+2 . . . xm . . . xk . . . ∈ C. By unanimity and strategy-proofness, f(P1, P̂2) ∈
{xk, xk+1}, as otherwise agent 2 manipulates at (P1, P̂2) via some preference with
xk+1 at the top. Suppose f(P1, P̂2) = xk. Since xmP1xk and xm ∈ O1(P̂2), this means
agent 1 manipulates at (P1, P̂2) via some preference with xm at the top. Therefore,
we have f(P1, P̂2) = xk+1. Now, let P′

1 = xk+1xk . . . ∈ C. Then, since f(P1, P̂2) =

xk+1 and r1(P1) = r1(P′
1) = xk+1, by strategy-proofness, f(P′

1, P̂2) = xk+1. Also,
because xk ∈ O1(P2) and xk+1 /∈ O1(P2), we have f(P′

1, P2) = xk. Therefore, agent
2 manipulates at (P′

1, P̂2) via P2, a contradiction. This completes the proof of the
lemma. ■

Remark 2.6.4 Let C satisfy the weak conflict property. Then, by using arguments
similar to the ones employed in Remark 2.6.3, it follows from Lemma 2.6.2 and Lemma
2.6.6 that for all P2 ∈ {x1x2 . . . xm, xmxm−1 . . . x1}, O1(P2) ∈ {{r1(P2)},X}.

Lemma 2.6.7 LetC satisfy the weak conflict property. Further, let P2 ∈ {x1x2 . . . xm,

xmxm−1 . . . x1}. Then, O1(P2) = {r1(P2)} implies O1(P̄2) = {r1(P̄2)} for all P̄2 ∈ C .
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Proof: We prove this lemma for the case where P2 = x1x2 . . . xm, the proof for
the case where P2 = xmxm−1 . . . x1 is analogous. Let P2 = x1x2 . . . xm. Suppose
O1(P2) = {x1}. We showO1(P̄2) = {r1(P̄2)} for all P̄2 ∈ C. By strategy-proofness,
we have O1(P̄2) = {r1(P̄2)} for all P̄2 ∈ C with r1(P̄2) = x1. By Lemma 2.6.3
and Remark 2.6.4, O1(P2) = {x1} implies O1(P̄2) = {xm} for all P̄2 ∈ C with
r1(P̄2) = xm. We prove the lemma using induction. Take 1 ≤ j < m. Suppose
O1(P̄2) = {xj} for all P̄2 ∈ C with r1(P̄2) = xj. We show O1(P̂2) = {xj+1} for all
P̂2 ∈ C with r1(P̂2) = xj+1. Take P̂2 ∈ C with r1(P̂2) = xj+1. We show O1(P̂2) =

{xj+1}. By strategy-proofness, it is enough to show this for P̂2 = xj+1xj . . ..
First, we claim xk /∈ O1(P̂2) for all k ̸= j, j + 1. Assume for contradiction that

xk ∈ O1(P̂2) for some k ̸= j, j + 1. Then, f(P1, P̂2) = xk for some P1 ∈ C with
r1(P1) = xk. However, since O1(P̄2) = {xj} for all P̄2 ∈ C with r1(P̄2) = xj, agent
2manipulates at (P1, P̂2) via some preference P̄2 with r1(P̄2) = xj.

Now, we show xj /∈ O1(P̂2). Assume for contradiction that xj ∈ O1(P̂2). Let
P̂′
2 = xj+1xj+2 . . . xm . . . xj . . .. Then, by Lemma 2.6.1, xj ∈ O1(P̂′

2). Take P1 ∈ C
such that r1(P1) = xj. Then, because xj ∈ O1(P̂′

2), f(P1, P̂′
2) = xj. Now, takeP2 ∈ C

with r1(P2) = xm. SinceO1(P2) = {xm}, wehave f(P1, P2) = xm. Thismeans agent
2manipulates at (P1, P̂′

2) via P2. This completes the proof of the lemma. ■

Proof:[Proof of Theorem 2.3.2] The proof of Theorem 2.3.2 follows by using anal-
ogous arguments as for the proof of Theorem 2.3.1. ■
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3
On Single-peakedDomains andMin-max

Rules

3.1 Introduction

3.1.1 Background

The celebrated Gibbard-Satterthwaite ([43], [75]) theorem has drawn severe
criticism as it assumes that the admissible domain of each agent is unrestricted.
However, it is well established that in many economic and political applications,
there are natural restrictions on such domains. For instance, in the models of lo-
cating a firm in a unidimensional spatial market ([46]), setting the rate of carbon
dioxide emissions ([15]), setting the level of public expenditure ([69]), and so on,
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preferences admit a natural restrictionwidely known as single-peakedness. Roughly
speaking, single-peakedness of a preference implies that there is a prior order over
the alternatives such that thepreferencedecreases as onemoves away (with respect
to the prior order) from her best alternative.

3.1.2 Motivation and Contribution

The study of single-peaked domains dates back to [15], where it is shown that the
pairwise majority rule is strategy-proof on such domains. Later, [54] and [86]
characterize the unanimous and strategy-proof SCFs on these domains.¹,² How-
ever, their characterization rests upon the assumption that the set of admissible
preferences of each agent in the society is the maximal single-peaked domain, i.e.,
it contains all single-peakedpreferenceswith respect to a givenprior order over the
alternatives. Note that demanding the existence of all single-peaked preferences is
a strong prerequisite in many practical situations.³ This motivates us to analyze
the structure of the unanimous and strategy-proof SCFs on domains where agents
have arbitrary (but same) admissible sets of single-peaked preferences. We show
that every unanimous and strategy-proof SCF on such domains satisfies the Pareto
property and tops-onlyness.⁴

While single-peakedness is a natural condition in many practical scenarios, the
assumption that all agents have the same set of single-peaked preferences is not jus-
tifiable inmany contexts. In view of this, we consider the situation where different
agents have different admissible sets of single-peaked preferences.

First, we show bymeans of an example that tops-onlyness is not guaranteed for
unanimous and strategy-proof SCFs on such domains. Next, we provide two suffi-

¹[9] and [24] provide equivalent presentations of this class of SCFs.
²A rich literature has developed around the single-peaked restriction by considering various

generalizations and extensions (see [9], [29], [76], [55], and [56]).
³See, for instance, the domain restriction considered in models of voting ([84], [5]), taxation

and redistribution ([38]), determining the levels of income redistribution ([44], [79]), and mea-
suring tax reforms in the presence of horizontal inequity ([45]). Recently, [63] shows that under
mild conditions these domains form subsets of the maximal single-peaked domain.

⁴[20] provide a sufficient condition on a domain so that every unanimous and strategy-proof
SCFon it is tops-only. However, an arbitrary single-peakeddomaindoesnot satisfy their condition.
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cient conditions, called left-connected and right-connected, on the admissible sets of
single-peaked preferences of the agents so that unanimity and strategy-proofness
imply tops-onlyness. A set of single-peaked preferences is called left-connected
(right-connected) if for every two consecutive alternativeswith respect to the prior
order over the alternatives, say x and x + 1, we have a preference that places x + 1
at the top and x at the second-ranked position (x at the top and x+ 1 at the second-
ranked position). Finally, we show by means of examples that the exact struc-
ture of unanimous and strategy-proof SCFs depends heavily on the domain. In
order to obtain a tractable structure of such SCFs, we restrict our attention to top-
connected single-peaked domains and provide a characterization of the unanimous
and strategy-proof SCFs on those. A domain is top-connected if the admissible
sets of preferences of each agent is both left-connected and right-connected.⁵

The unanimous and strategy-proof SCFs on themaximal single-peaked domain
are known asmin-max rules ([54], [86]). Min-max rules are quite popular for their
desirable properties like tops-onlyness, Pareto property, and anonymity (for a sub-
class of min-max rules called median rules). Owing to the desirable properties of
min-max rules, [11] characterizemaximal domains onwhich a givenmin-max rule
is strategy-proof. Recently, [3] provide necessary and sufficient conditions for the
comparability of twomin-max rules in terms of their vulnerability tomanipulation.
Motivated by the importance of themin-max rules, we characterize all domains on
which (i) every unanimous and strategy-proof social choice function is a min-max
rule, and (ii) every min-max rule is strategy-proof. We call such a domain a min-
max domain.

Note that min-max domains do not require that the admissible preferences of
all the agents are the same. Furthermore, it is worth noting that in a social choice
problemwithm alternatives, the number of preferences of each agent in amin-max
domain can range from 2m− 2 to 2m−1, whereas that in themaximal single-peaked
domain is exactly 2m−1. Thus, on one hand, our result characterizes the unanimous
and strategy-proof SCFsona large classof single-peakeddomains, andon theother

⁵The top-connectedness property is well studied in the literature (see [12], [6], [20], [21],
[22], [63] and [70]).
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hand, it establishes the full applicability of min-max rules as strategy-proof SCFs.

3.1.3 Applications

Anoutstandingexampleof a top-connected single-peakeddomain is a top-connected
regular single-crossing domain.⁶,⁷ [73] shows that anSCF is unanimous and strategy-
proof on a maximal single-crossing domain if and only if it is a min-max rule.⁸ In
contrast, our result shows that an SCF is unanimous and strategy-proof on a top-
connected regular single-crossing domain if and only if it is a min-max rule. Thus,
we extend [73]’s result in two ways: (i) by relaxing the maximality assumption on
a single-crossing domain, and (ii) by relaxing the assumption that every agent has
the same set of preferences. However, we assume the domains to be regular. Note
that in a social choice problem with m alternatives, the number of admissible pref-
erences of each agent in a top-connected regular single-crossing domain can range
from 2m − 2 to m(m − 1)/2, whereas that in the maximal single-crossing domain
is exactly m(m − 1)/2.

Other important examplesof top-connected single-peakeddomains includemin-
imally rich single-peaked domains ([61]) and distance based single-peaked domains.
A single-peaked domain is minimally rich if it contains all left single-peaked and all
right single-peaked preferences.⁹,¹⁰ Further, a single-peaked domain is called dis-
tance based if the preferences in it are derived by using some type of distances
between the alternatives. It follows from our result that an SCF is unanimous and
strategy-proof on these domains if and only if it is a min-max rule.

⁶A domain is regular if every alternative appears as the top-ranked alternative of some prefer-
ence in the domain.

⁷Single-crossing domains appear in models of taxation and redistribution ([68], [53]), lo-
cal public goods and stratification ([85], [35], [39]), coalition formation ([30], [51]), selecting
constitutional and voting rules ([10]), and designing policies in the market for higher education
([36]).

⁸[73] provides a different but equivalent functional form of these SCFs which he calls aug-
mented representative voter schemes.

⁹A single-peaked preference is called left (or right) single-peaked if every alternative to the left
(or right) of the peak is preferred to every alternative to its right (or left).

¹⁰Such preferences appear in directional theories of issue voting ([81], [64], [66], [65]).
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3.1.4 Remainder

The rest of the chapter is organized as follows. We describe the usual social choice
framework in Section 3.2. In Section 3.3, we study the structure of the unanimous
and strategy-proof SCFs on single-peaked domains, and in Section 3.4, we charac-
terize such SCFs on top-connected single-peaked domains. Section 3.5 character-
izes min-max domains. In Section 3.6, we discuss some applications of our results,
andweconclude the chapter in the last section. All theomittedproofs are collected
in the Appendix.

3.2 Preliminaries

Let N = {1, ..., n} be a set of at least two agents, who collectively choose an
element from a finite set X = {a, a + 1, . . . , b − 1, b} of at least three alterna-
tives, where a is an integer. For x, y ∈ X such that x ≤ y, we define the intervals
[x, y] = {z ∈ X | x ≤ z ≤ y}, [x, y) = [x, y] \ {y}, (x, y] = [x, y] \ {x}, and
(x, y) = [x, y] \ {x, y}. For notational convenience, whenever it is clear from the
context, we do not use braces for singleton sets, i.e., we denote sets {i} by i.

A preference P over X is a complete, transitive, and antisymmetric binary rela-
tion (also called a linear order) defined on X. We denote by L(X) the set of all
preferences over X. An alternative x ∈ X is called the kth ranked alternative in a
preference P ∈ L(X), denoted by rk(P), if |{a ∈ X | aPx}| = k − 1.

Definition 3.2.1 A preference P ∈ L(X) is called single-peaked if for all x, y ∈ X,
[x < y ≤ r1(P) or r1(P) ≤ y < x] implies yPx.

For an agent i, we denote by Si a set of admissible single-peaked preferences. A
set SN =

∏
i∈N

Si is called a single-peaked domain. Note that we do not assume that

the set of admissible preferences are the same across all agents. An element PN =

(P1, . . . , Pn) ∈ SN is called a preference profile. The top-set of a preference profile
PN, denoted by τ(PN), is defined as τ(PN) =

∪
i∈N

r1(Pi). A set Si of admissible

32



preferences of agent i is regular if for all x ∈ X, there exists a preference P ∈ Si

such that r1(P) = x.

Definition 3.2.2 A social choice function (SCF) f on SN is a mapping f : SN → X.

Definition 3.2.3 An SCF f : SN → X is unanimous if for all PN ∈ SN such that
r1(Pi) = x for all i ∈ N and some x ∈ X, we have f(PN) = x.

Definition 3.2.4 An SCF f : SN → X satisfies the Pareto property if for all PN ∈ SN

and all x, y ∈ X, xPiy for all i ∈ N implies f(PN) ̸= y.

Remark 3.2.1 Note that sinceSi is single-peaked for all i ∈ N, an SCF f : SN → X
satisfies Pareto property if f(PN) ∈ [min(τ(PN)),max(τ(PN))] for all PN ∈ SN.

Definition 3.2.5 An SCF f : SN → X is manipulable if there is PN ∈ SN, i ∈
N, and P′

i ∈ Si such that f(P′
i, PN\i)Pif(PN). An SCF f is strategy-proof if it is not

manipulable.

Definition 3.2.6 An SCF f : SN → X is called group manipulable if there is PN ∈
SN, a non-empty coalition C ⊆ N, and a preference profile P′

C ∈ SC of the agents in
C such that f(P′

C, PN\C)Pif(PN) for all i ∈ C. An SCF f : SN → X is called group
strategy-proof if it is not group manipulable.

Definition 3.2.7 An SCF f : SN → X is called tops-only if for all PN, P′
N ∈ SN such

that r1(Pi) = r1(P′
i) for all i ∈ N, we have f(PN) = f(P′

N).

Definition 3.2.8 An SCF f : SN → X is called uncompromising if for all PN ∈ SN,
all i ∈ N, and all P′

i ∈ Si :

(i) if r1(Pi) < f(PN) and r1(P′
i) ≤ f(PN), then f(PN) = f(P′

i, PN\i), and

(ii) if f(PN) < r1(Pi) and f(PN) ≤ r1(P′
i), then f(PN) = f(P′

i, PN\i).

Remark 3.2.2 If an SCF satisfies uncompromisingness, then by definition, it is tops-
only.
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Definition 3.2.9 Let β = (βS)S⊆N be a list of 2n parameters satisfying: (i) βS ∈ X
for all S ⊆ N, (ii) β∅ = b, βN = a, and (iii) for any S ⊆ T, βT ≤ βS. Then, an SCF
fβ : SN → X is called a min-max rule with respect to β if

fβ(PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}.

Remark 3.2.3 Every min-max rule is uncompromising.¹¹

3.3 SCFs on Single-peakedDomains

In this section, we establish that every unanimous and strategy-proof SCF on a
class of single-peaked domains is tops-only.

First, we state an important result that follows from [7].

Theorem 3.3.1 ([7]) Every strategy-proof SCF on a single-peaked domain is group
strategy-proof.

For a set of preferencesD, we denote by τ(D) the set of alternatives that appear
as a top-ranked alternative in some preference inD, that is, τ(D) = ∪P∈D{r1(P)}.

Our next corollary follows from Theorem 3.3.1.

Corollary 3.3.1 Let SN be a single-peaked domain such that τ(Si) = τ(Sj) for all
i, j ∈ N. Then, every unanimous and strategy-proof SCF f : SN → X satisfies Pareto
property.

The proof of Corollary 3.3.1 is rather straight-forward, but for the sake of com-
pleteness, we provide a proof.
Proof: By Theorem 3.3.1, f must be group strategy-proof. Suppose that the corol-
lary does not hold. Then, without loss of generality we can assume that there is a
profilePN ∈ SN where r1(P1) ≤ r1(Pj) for all j ∈ N such that f(PN) < r1(P1). Note
that this means r1(P1)Pjf(PN) for all j ∈ N. Let P̄N be such that r1(P̄j) = r1(P1) for

¹¹For details, see [86].
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all j ∈ N. Note that such a profile P̄N is in SN since τ(Si) = τ(Sj) for all i, j ∈ N.
By unanimity, f(P̄N) = r1(P1). This means all the agents together manipulate f at
PN via P̄N, a contradiction. This completes the proof of Corollary 3.3.1. ■

Ournext theoremshows that if every agent in a society has the same set of single-
peaked preferences, then each unanimous and strategy-proof SCF on that domain
is tops-only.

Theorem 3.3.2 Let S be a(ny) set of single-peaked preferences. Then, every unani-
mous and strategy-proof SCF f : Sn → X satisfies tops-onlyness.

Note that the set of single-peaked preferences S in Theorem 3.3.2 need not be
regular. The proof of Theorem 3.3.2 is relegated to the Appendix.

Now, we consider situations where different agents can have different sets of
single-peaked preferences. First, we show by means of an example that unanimity
and strategy-proofness do not guarantee tops-onlyness on such domains.

Example 3.3.1 Let N = {1, 2, 3} and let X = {x1, x2, x3}, where x1 < x2 < x3.
Suppose that S1 = {x1x2x3, x2x1x3, x2x3x1, x3x2x1}, S2 = {x1x2x3, x2x1x3, x3x2x1},
and S3 = {x1x2x3, x2x3x1, x3x2x1} where by x1x2x3 we mean a preference P such that
x1Px2Px3.

Consider the SCF on this single-peaked domain as given in Table 3.4.1. The table is
self-explanatory.

It is easy to verify that the SCF given in Table 3.3.1 is unanimous and strategy-proof.
However, since f(x2x1x3, x3x2x1, x1x2x3) = x1 and f(x2x3x1, x3x2x1, x1x2x3) = x3, this
SCF is not tops-only.

In view of Example 3.3.1, we look for additional conditions on the set of (ad-
missible) single-peaked preferences of each agent so as to ensure tops-onlyness for
every unanimous and strategy-proof SCF on the respective domains. In what fol-
lows,we introduce thenotionof left-connected and right-connected single-peaked
domains.
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P3 = x1x2x3

P1
P2 x1x2x3 x2x1x3 x3x2x1

x1x2x3 x1 x1 x1
x2x1x3 x1 x1 x1
x2x3x1 x1 x1 x3
x3x2x1 x1 x1 x3

P3 = x2x3x1

P1
P2 x1x2x3 x2x1x3 x3x2x1

x1x2x3 x2 x2 x3
x2x1x3 x2 x2 x3
x2x3x1 x2 x2 x3
x3x2x1 x3 x3 x3

P3 = x3x2x1

P1
P2 x1x2x3 x2x1x3 x3x2x1

x1x2x3 x2 x2 x3
x2x1x3 x2 x2 x3
x2x3x1 x2 x2 x3
x3x2x1 x3 x3 x3

Table 3.3.1 A non-tops-only SCF
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Definition 3.3.1 A regular set of single-peaked preferences S is called left-connected
if for all x ∈ [a + 1, b], there exists P ∈ S such that r1(P) = x and r2(P) = x − 1.
Similarly, a regular set of single-peaked preferences S is called right-connected if for all
x ∈ [a, b − 1], there exists P ∈ S such that r1(P) = x and r2(P) = x + 1.

We call a single-peaked domain SN left-connected (right-connected) if for each
i ∈ N, Si is a left-connected (right-connected) set of single-peaked preferences.

Note that the domain in Example 3.3.1 is neither left-connected nor right-conn-
ected. This is because, even though the set of preferencesS1 is both left-connected
and right-connected, the set S2 is left-connected but not right-connected whereas
the set S3 is right-connected but not left-connected.

Theorem 3.3.3 Let SN be a left-connected or right-connected single-peaked domain.
Then, every unanimous and strategy-proof SCF f : SN → X satisfies tops-onlyness.

The proof of Theorem 3.3.3 is relegated to Appendix.

3.4 SCFs on Top-connected Single-peakedDomains

In this section, we characterize the unanimous and strategy-proof SCFs on a class
of single-peaked domains.

First, we present an example to show that the structure of the unanimous and
strategy-proof SCFs on arbitrary single-peaked domains is quite intractable.

Example 3.4.1 Fix x, y ∈ X with y − x ≥ 2. For all i ∈ N, let Sxy
i be the set of all

single-peaked preferences such that for all P ∈ Sxy
i , r1(P) ∈ (x, y) implies ry−x(P) = x

and ry−x+1(P) = y. In other words, the set of preferences Sxy
i is such that if the top-

alternative of a preference is in the interval (x, y), then all the alternatives in that interval
are ranked in the top y − x − 1 positions, and x and y are ranked consecutively after
those alternatives. Similarly, let Syx

i be the set of all single-peaked preferences such that
for all P ∈ Syx

i , r1(P) ∈ (x, y) implies ry−x(P) = y and ry−x+1(P) = x.
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Let x = βn−1 ≤ βn−2 ≤ . . . ≤ β1 ≤ β0 = y. Consider the SCF fxy : Sxy
N → X as

given below:

fxy(PN) =

{
median{r1(P2), . . . , r1(Pn), β0, . . . , βn−1}, if r1(P1) ∈ [x, y)
r1(P1), otherwise

The above SCF can be viewed as a partially median rule in the following sense. Con-
sider the median rule¹² defined over the interval [x, y] for the agents in N \ 1 given by
the parameters (β̂k)k=0,...,n−1, where β̂k = βk for all k = 0, . . . , n − 1. Then, the rule
fxy works as follows: if agent 1’s top-ranked alternative lies outside the interval [x, y),
then she is the dictator (i.e., the outcome is her top-ranked alternative), otherwise the
outcome is determined by fβ̃. In other words, fxy partitions the set of preference profiles
into two subsets, and behaves like a dictatorial rule in one subset and like a (generalized)
median rule in the other.

Similarly, define fyx : Syx
N → X as follows:

fyx(PN) =

{
median{r1(P2), . . . , r1(Pn), β0, . . . , βn−1}, if r1(P1) ∈ (x, y]
r1(P1), otherwise

Note that both fxy and fyx are unanimous by definition. We show that fxy is strategy-
proof on Sxy

N , but manipulable on Syx
N . It follows from similar arguments that fyx is

strategy-proof on Syx
N , but manipulable on Sxy

N .
Clearly, no agent can manipulate fxy at a profile PN ∈ Sxy

N where r1(P1) /∈ [x, y).
Consider a profile PN ∈ Sxy

N where r1(P1) ∈ [x, y). Since fxy(PN) = median{r1(P2),

. . . , r1(Pn), β0, . . . , βn−1} and Sxy
i is single-peaked, by the property of a median rule,

an agent i ̸= 1 cannot manipulate at PN. Now, consider a preference P′
1 ∈ Sxy

1 . If
r1(P′

1) ∈ [x, y), then fxy(P′
1, PN\1) = fxy(PN) and hence agent 1 cannot manipulate.

On the other hand, if r1(P′
1) /∈ [x, y), then fxy(P′

1, PN\1) = r1(P′
1) /∈ [x, y). How-

ever, by the definition of Sxy
1 , uP1v for all u ∈ [x, y) and all v /∈ [x, y), this means

¹²Amedian rule is amin-max rule that is anonymous. More formally, amin-max rulewith respect
to parameters (βS)S⊆N is a median rule if βS = βS̄ for all S, S̄ ⊆ N with |S| = |S̄|. For details see
[54].
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fxy(PN)P1fxy(P′
1, PN\1), and hence agent 1 cannot manipulate at PN.

Now, we show that fxy is manipulable on Syx
N . Consider a profile PN ∈ Syx

N where
r1(P1) ∈ (x, y) and r1(Pj) = x for all j ̸= i. Then, by the definition of fxy, fxy(PN) = x.
Let P′

1 ∈ Syx
1 be such that r1(P′

1) = y. Then, fxy(P′
1, PN\1) = y. However, since

P1 ∈ Syx
1 , by the definition of Syx

1 , yP1x. This means agent 1manipulates at PN via P′
1.

It can be verified that the structure of the unanimous and strategy-proof SCFs
will get more complicated as we take x and y farther apart (i.e., increase the length
of the interval [x, y]). This makes the characterization of such SCFs on these do-
mainsquite intractable. Therefore,we impose amild restrictioncalled top-connect-
edness on single-peaked domains, and characterize the unanimous and strategy-
proof SCFson suchdomains. Webeginwith the formal definitionof top-connecte-
dness.

Definition 3.4.1 A set of single-peaked preferences S is called top-connected if it is
both left-connected and right-connected.

Note that theminimumcardinality of a top-connected set of single-peaked pref-
erences withm alternatives is 2m− 2. Also, since themaximal set of single-peaked
preferences is top-connected, the maximum cardinality of such a set is 2m−1. Thus,
the class of top-connected single-peaked preferences is quite large. In what fol-
lows, we provide an example of a top-connected set of single-peaked preferences
with five alternatives.

Example 3.4.2 Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. Then,
the set of single-peaked preferences in Table 3.4.1 is top-connected.

Note that thedomainsSxy
i andSyx

i inExample 3.4.1 arenot top-connected. This
is because, for instance, there is no preference in Sxy

i with y − 1 as the top-ranked
alternative and y as the second ranked alternative. A similar argument holds for
Syx

i .
Now, we provide a characterization of the unanimous and strategy-proof SCFs

on top-connected single-peaked domains.

39



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x1 x2 x2 x2 x2 x3 x3 x3 x3 x4 x4 x5
x2 x1 x3 x3 x3 x2 x4 x4 x4 x3 x5 x4
x3 x3 x4 x1 x4 x4 x2 x5 x2 x5 x3 x3
x4 x4 x1 x4 x5 x5 x5 x2 x1 x2 x2 x2
x5 x5 x5 x5 x1 x1 x1 x1 x5 x1 x1 x1

Table 3.4.1 A top-connected set of single-peaked preferences

Theorem 3.4.1 LetSi be a top-connected set of single-peaked preferences for all i ∈ N.
Then, an SCF f : SN → X is unanimous and strategy-proof if and only if it is amin-max
rule.

The proof of Theorem 3.4.1 is relegated to Appendix.
The following corollary is immediate from Theorem 3.4.1.

Corollary 3.4.1 ([54], [86]) Let Si be the maximal set of single-peaked preferences
for all i ∈ N. Then, an SCF f : SN → X is unanimous and strategy-proof if and only
if it is a min-max rule.

3.5 Min-maxDomains

In this section, we introduce the notion of min-max domains and provide a char-
acterization of these domains.

Definition 3.5.1 LetDi ⊆ L(X) for all i ∈ N be a regular set of preferences and let
DN =

∏
i∈N

Di. Then,DN is called a min-max domain if

(i) every unanimous and strategy-proof SCF onDN is a min-max rule, and

(ii) every min-max rule onDN is strategy-proof.

Our next theorem provides a characterization of the min-max domains.

Theorem 3.5.1 AdomainDN is amin-maxdomain if andonly ifDi is a top-connected
set of single-peaked preferences for all i ∈ N.

The proof of Theorem 3.5.1 is relegated to Appendix.
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3.6 Applications

3.6.1 Regular Single-crossing Domains

In this subsection, we introduce the notion of regular single-crossing domains and
provide a characterization of the unanimous and strategy-proof SCFs on these do-
mains.

Definition 3.6.1 A set of preferencesS is called single-crossing if there is a linear order
◁ on S such that for all x, y ∈ X and all P, P̂ ∈ S ,

[x < y, P ◁ P̂, and xP̂y] ⇒ xPy.

Definition 3.6.2 A single-crossing set of preferences S is called maximal if there is no
single-crossing set of preferences S ′ such that S ⊊ S ′.

In what follows, we provide an example of a maximal regular single-crossing set
of preferences with five alternatives.

Example 3.6.1 Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. Then,
the set of preferences in Table 3.6.1 is maximal regular single-crossing with respect to the
linear order given by P1 ◁ P2 ◁ P3 ◁ P4 ◁ P5 ◁ P6 ◁ P7 ◁ P8 ◁ P9 ◁
P10 ◁ P11. To see this, consider two alternatives, say x2 and x4. Then, x2Px4 for all
P ∈ {P1, P2, P3, P4, P5, P6} and x4Px2 for all P ∈ {P7, P8, P9, P10, P11}. Therefore,
x2P̂x4 for some P̂ ∈ D and P ◁ P̂ imply x2Px4.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

x1 x2 x2 x2 x2 x3 x3 x3 x4 x4 x5
x2 x1 x3 x3 x3 x2 x4 x4 x3 x5 x4
x3 x3 x1 x4 x4 x4 x2 x5 x5 x3 x3
x4 x4 x4 x1 x5 x5 x5 x2 x2 x2 x2
x5 x5 x5 x5 x1 x1 x1 x1 x1 x1 x1

Table 3.6.1 A maximal regular single-crossing set of preferences
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Remark 3.6.1 Note that a maximal regular single-crossing set of preferences is not
unique.

The following lemmas establish two crucial properties of a (maximal) regular
single-crossing set of preferences.

Lemma 3.6.1 ([33], [63]) Every regular single-crossing set of preferences is single-
peaked.

Lemma 3.6.2 Everymaximal regular single-crossing set of preferences is top-connected.

The proof of this lemma is left to the reader.
The following corollary follows fromTheorem3.4.1 andLemma3.6.2. It charac-

terizes the unanimous and strategy-proof SCFs onmaximal regular single-crossing
domains.

Corollary 3.6.1 ([73]) LetSi be a maximal regular single-crossing set of preferences
for all i ∈ N. Then, an SCF f : SN → X is unanimous and strategy-proof if and only
if it is a min-max rule.

The following corollary is obtained from Theorem 3.4.1 and Lemma 3.6.1. It
characterizes the unanimous and strategy-proof SCFs on top-connected regular
single-crossing domains. Note that in a social choice problem with m alternatives,
the cardinality of a top-connected regular single-crossing set of preferences can
range from 2m−2 tom(m−1)/2, whereas that of amaximal regular single-crossing
set of preferences is exactly m(m − 1)/2.

Corollary 3.6.2 LetSi be a top-connected regular single-crossing set of preferences for
all i ∈ N. Then, an SCF f : SN → X is unanimous and strategy-proof if and only if it
is a min-max rule.
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3.6.2 Minimally Rich Single-peaked Domains

In this subsection, we present a characterization of the unanimous and strategy-
proof SCFs on minimally rich single-peaked domains. The notion of minimally
rich single-peaked domains is introduced in [61]. For the sake of completeness,
we present below a formal definition of such domains.

Definition 3.6.3 A single-peaked preference P is called left single-peaked (right single-
peaked) if for all u < r1(P) < v, we have uPv (vPu). Moreover, a set of single-peaked
preferences S is called minimally rich if it contains all left and all right single-peaked
preferences.

Clearly, a minimally rich set of single-peaked preferences is top-connected. So,
we have the following corollary from Theorem 3.4.1.

Corollary 3.6.3 Let Si be a minimally rich set of single-peaked preferences for all i ∈
N. Then, an SCF f : SN → X is unanimous and strategy-proof if and only if it is a
min-max rule.

3.6.3 Distance based Single-peaked Domains

In this subsection,we introduce thenotionof single-peakeddomains that arebased
on distances. Consider the situation where a public facility has to be developed at
one of the locations x1, . . . , xm. Suppose that there is a street connecting these lo-
cations, and for every two locations xi and xi+1, there are two types of distances, a
forward distance from xi to xi+1 and a backward distance from xi+1 to xi. An agent
bases her preferences on such distances, i.e., whenever a location is strictly closer
than another to her most preferred location, she prefers the former to the latter.
We show that under some condition on the distances, such a set of preferences is
top-connected single-peaked. Below, we present this notion formally.

A directed graph G over X is defined as a pair ⟨X, E⟩, where X denotes the set of
nodes and E ⊆ X × X denotes the set of edges. The direction of an edge (x, y) is
from x to y (this iswell-defined since (x, y) is an orderedpair). A graphG = ⟨X, E⟩
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is called a directed line graph if (x, y) ∈ E if and only if |x − y| = 1. Consider the
directed line graph G = ⟨X, E⟩ on X. A function d : E → (0,∞) is called a
distance function onG. Given a distance function d, define the distance between two
alternatives x, y as the distance of the path between x and y, i.e., d(x, y) = d(x, x +
1)+. . .+d(y−1, y) ifx < y andasd(x, y) = d(x, x−1)+. . .+d(y+1, y) ifx > y. A
preferencePrespects a distance functiond if for allx, y ∈ X,d(r1(P), x) < d(r1(P), y)
implies xPy. A set of preferences S is called single-peaked with respect to a distance
function d if S = {P ∈ L(X) | P respects d}.

A distance function satisfies adjacent symmetry if d(x, x+ 1) = d(x, x− 1) for all
x ∈ X\{a, b}. Below, we provide an example of a set of single-peaked preferences
with respect to an adjacent symmetric distance function.

Example 3.6.2 Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. The
directed line graph G = ⟨X, E⟩ on X and the adjacent symmetric distance function d
on E are as given below. Then, the set of preferences in Table 3.6.2 is single-peaked with

x1 x2 x3 x4 x5
1

5

5

2

2

3

3

6

Figure 3.6.1 The directed line graph G on X and an adjacent symmetric distance
function d on G

respect to the distance function d.

P1 P2 P3 P4 P5 P6 P7 P8

x1 x2 x2 x3 x3 x4 x4 x5
x2 x3 x1 x4 x2 x5 x3 x4
x3 x1 x3 x2 x4 x3 x5 x3
x4 x4 x4 x5 x5 x2 x2 x2
x5 x5 x5 x1 x1 x1 x1 x1

Table 3.6.2 A set of single-peaked preferences with respected to the distance func-
tion d
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Let G = ⟨X, E⟩ be the directed line graph on X and let d : E → (0,∞) be
an adjacent symmetric distance function. Then, it is easy to verify that a set of
single-peaked preferenceswith respect to the distance function d is top-connected.
Therefore, we have the following corollary from Theorem 3.4.1.

Corollary 3.6.4 Let G = ⟨X, E⟩ be the directed line graph on X and let di : E →
(0,∞) be an adjacent symmetric distance function for all i ∈ N. Suppose that for all
i ∈ N, Si is the set of single-peaked preferences with respect to the distance function di.
Then, f : SN → X is unanimous and strategy-proof if and only if it is a min-max rule.

3.7 Concluding Remarks

In this chapter, wehave studied social choiceproblemswhere the admissible sets of
preferences of all agents are single-peaked. First, we have shown that if the agents
have arbitrary (but same) admissible sets of single-peaked preferences, then ev-
ery unanimous and strategy-proof SCF on corresponding domains satisfies Pareto
property and tops-onlyness. We have further shown that if the admissible sets of
preferences of each agent satisfies a mild condition called left-connectedness (or
right-connectedness), then the same result holds even when different agents have
different admissible sets of single-peaked preferences. Next, we have shown by
means of an example that the exact structure of the unanimous and strategy-proof
SCFs on such domains is quite intractable, and consequently have provided a full
characterization of the unanimous and strategy-proof SCFs under an additional
condition that the admissible set of preferences of each agent is top-connected.
Outstandingexamplesof top-connected single-peakeddomains aremaximal single-
peakeddomains,minimally rich single-peakeddomains, distancebased single-pea-
ked domains, and top-connected regular single-crossing domains. Finally, we have
introduced the notion ofmin-max domains, the domains forwhich the set of unan-
imous and strategy-proof SCFs coincides with that of min-max rules. We have
shown that a domain is amin-max domain if andonly if it is a top-connected single-
peaked domain.
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3.8 Appendix

3.8.1 Proof of Theorem 3.3.2

Proof: LetPN ∈ SN, i ∈ N, andP′
i ∈ S be such that r1(Pi) = r1(P′

i). It is enough to
show that f(PN) = f(P′

i, PN\i). Suppose not. Let r1(Pi) = r1(P′
i) = x, f(PN) = z,

and f(P′
i, PN\i) = y. By strategy-proofness, zPiy and yP′

iz. SinceSi is single-peaked
and r1(Pi) = r1(P′

i), this means either y < x < z or z < x < y. Assume without
loss of generality that y < x < z. Let N̄ = {j ∈ N | r1(Pj) ≥ x} and let P̄N ∈ SN

be such that P̄j = Pi for all j ∈ N̄, and P̄j = Pj for all j /∈ N̄.

Claim 1. f(P′
i, PN\i) = y implies f(P̄N) = y.

By Pareto optimality, f(P̄N) ≤ x. If f(P̄N) ∈ (y, x] then agents in N̄manipulates
f at (P′

i, PN\i) via P̄N. On the other hand, if f(P̄N) < y, then agents in N̄manipulate
f at P̄N via (P′

i, PN\i). This completes the proof of Claim 1.

Claim 2. f(PN) = z implies f(P̄N) ̸= y.
Because zP̄jy for all j ∈ N, if f(P̄N) = y, then agents in N̄manipulates f at P̄N via

PN. This completes the proof of Claim 2.

However, Claim2 contradictsClaim1. This completes the proof of the theorem.
■

3.8.2 Proof of Theorem 3.3.3

Proof: Weprove the theorem for the casewhereSN is right-connected, the proof of
the same for the case where SN is left-connected follows from similar arguments.

It is sufficient to show that f(PN) = f(P′
i, PN\i) for all Pi, P′

i ∈ Si and all PN\i ∈
SN\i with r1(Pi) = r1(P′

i). Assume for contradiction, f(PN) ̸= f(P′
i, PN\i). By

strategy-proofness, wehave f(PN)Pif(P′
i, PN\i) and f(P′

i, PN\i)P′
i f(PN). Assumewith-

out loss of generality, f(P′
i, PN\i) < r1(Pi) < f(PN). Suppose f(P′

i, PN\i) = y,
r1(Pi) = x, and f(PN) = z. Let N1 = {j ∈ N | r1(Pj) ≥ z}. By Pareto optimality,
N1 ̸= ∅. Consider P1

N ∈ SN such that r1(P1
j) = z− 1 and r2(P1

j) = z for all j ∈ N1,
and P1

k = Pk for all k /∈ N1. By group-strategy-proofness, f(P1
N) ∈ {z, z − 1}.
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By Pareto optimality, f(P1
N) ≤ z − 1. Combining, f(P1

N) = z − 1. Now, let
N2 = {j ∈ N | r1(Pj) = z − 1}. Consider P2

N ∈ SN such that r1(P2
j ) = z − 2 and

r2(P2
j ) = z − 1 for all j ∈ N2, and P2

k = Pk for all k /∈ N2. Using similar logic as
before, f(P2

N) = z− 2. Continuing in this manner, we construct a profile P̂N ∈ SN

such that r1(P̂j) = x for all j ∈ N with r1(Pj) ≥ x, P̂k = Pk for all k ∈ N such that
r1(P̂k) < x, and f(P̂N) = x.

Now, consider the profile P̄N ∈ SN such that P̄i = P′
i , P̄k = Pk if k ∈ N

such that r1(Pk) < x, and r1(P̄k) = x if k ∈ N \ i such that r1(Pk) ≥ x. By
Pareto optimality, f(P̄N) ≤ x. This, together with group-strategy-proofness from
(P′

i, PN\i) to P̄N, implies f(P̄N) ≥ y. However, by group-strategy-proofness from
P̄N to (P′

i, PN\i), we f(P̄N) ≤ y. Combining, f(P̄N) = y.
Note that P̂j = P̄j for all j ∈ N with r1(Pj) < x and r1(P̂j) = r1(P̄j) for all j ∈ N

with r1(Pj) ≥ x. Thismeans the group of agents {j ∈ N | r1(P̄j) = x}manipulates
at P̄N via P̂N, a contradiction. This completes the proof of the theorem. ■

3.8.3 Proof of Theorem 3.4.1

Proof: (If part) Note that a min-max rule is unanimous by definition (on any do-
main). We show that such a rule is strategy-proof on SN. For all i ∈ N, let S̄i be
the maximal set of single-peaked preferences. By [86], a min-max rule is strategy-
proof on S̄N. Since Si ⊆ S̄i for all i ∈ N, a min-max rule must be strategy-proof
on SN. This completes the proof of the if part.

(Only-if part) LetSi be a top-connected set of single-peaked preferences for all
i ∈ N and let f : SN → X be a unanimous and strategy-proof SCF. We show that f
is amin-max rule. First, we establish a few properties of f in the following sequence
of lemmas.

By Corollary 3.3.1 and Theorem 3.3.3, f must satisfy the Pareto property and
tops-onlyness. Also, by Theorem 3.3.1, f is group strategy-proof. Our next lemma
shows that f is uncompromising.

Lemma 3.8.1 The SCF f is uncompromising.
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Proof: Let PN ∈ SN, i ∈ N, and P′
i ∈ Si be such that r1(Pi) < f(PN) and r1(P′

i) ≤
f(PN). It is sufficient to show f(P′

i, PN\i) = f(PN). Suppose r1(Pi) = x, f(PN) = y,
and f(P′

i, PN\i) = y′.
By strategy-proofness, we must have y′ < x. This is because, if y′ ∈ [x, y), then

agent imanipulates at PN via P′
i . On the other hand, if y′ > y, then bymeans of the

fact that r1(P′
i) ≤ y, agent i manipulates at (P′

i, PN\i) via Pi.
Because y′ < x, we assume without loss of generality that r1(P′

i) = y′ and
min(τ(P′

i, PN\i)) = y′.¹³ Assume for contradiction that y ̸= y′.
Let T = {j ∈ N | r1(Pj) < x}. For j ∈ T, let P′

j ∈ Sj be such that r1(P′
j) = x.

Claim 1. f(PN) = y implies f(P′
T, PN\T) = y.

IfT is empty, then there is nothing to show. SupposeT is non-empty. By Pareto
property, f(P′

T, PN\T) ≥ x. If f(P′
T, PN\T) ∈ [x, y), then the agents inTmanipulate

f at PN via (P′
T, PN\T). On the other hand, if f(P′

T, PN\T) > y, then the agents in T
manipulate f at (P′

T, PN\T) via PN. This completes the proof of Claim 1.

Let T′ = T ∪ i. For all j ∈ T′, let P̃j ∈ Sj be such that r1(P̃j) = x.

Claim 2. f(P′
i, PN\i) = y′ implies f(P̃T′ , PN\T′) = x.

Let T′′ be the set of agents whose top-ranked alternative is y′ at the profile (P′
i,

PN\i). More formally, T′′ = i ∪ {j ∈ N | r1(Pj) = y′}. Consider the profile
P̄N ∈ SN such that r1(P̄j) = y′ + 1 for all j ∈ T′′ and P̄j = Pj for all other agents.
By tops-onlyness of f, we can assume r2(P̄j) = y′ for all j ∈ T′′. However, since
f(P′

i, PN\i) = y′, by group strategy-proofness, f(P̄N) ∈ {y′, y′ + 1} as otherwise
agents inT′′ manipulate f at P̄N via (P′

i, PN\i). Sincemin(τ(P̄N)) = y′+1, by Pareto
property,

f(P̄N) = y′ + 1.

Using similar logic, we can construct a profile P̂N ∈ SN where r1(P̂j) = y′ + 2
for all agents j with r1(P̄j) = y′ + 1 and P̂j = P̄j for all other agents, and conclude

¹³Since f(P′
i , PN\i) = y′, if r1(P′

i) ̸= y′, then by strategy-proofness, f(P′′
i , PN\i) = y′ for some

P′′
i ∈ Si with r1(P′′

i ) = y′. Similarly, if r1(Pj) < y′ for some j ∈ N \ i, then by strategy-proofness,
f(P′

i , P
′
j , PN\{i,j}) = y′ for some P′

j ∈ Sj with r1(P′
j) = y′.
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that
f(P̂N) = y′ + 2.

Continuing in thismanner, wemove all the agents j inT′ to a preference P̃j ∈ Sj

with r1(P̃j) = x while keeping the preferences of all other agents unchanged and
conclude that

f(P̃T′ , PN\T′) = x.

This completes the proof of Claim 2.

Now, we complete the proof of the lemma. Consider the profiles (P′
T, PN\T)

and (P̃T′ , PN\T′). Note that for an agent j, if r1(Pj) > x, then her preference is the
same in both the profiles (P′

T, PN\T) and (P̃T′ , PN\T′). Moreover, for an agent j, if
r1(Pj) ≤ x, then her top-ranked alternative is x in both the profiles. Therefore, the
top-alternatives of each agent in these two profiles are the same. However, since
f(P′

T, PN\T) ̸= f(P̃T′ , PN\T′), Claim 1 and 2 contradict tops-onlyness of f. This
completes the proof of the lemma. ■

The following lemma establishes that f is a min-max rule.

Lemma 3.8.2 The SCF f is a min-max rule.

Proof: For all S ⊆ N, let (Pa
S, P

b
N\S) ∈ SN be such that r1(Pa

i ) = a for all i ∈ S and
r1(Pb

i ) = b for all i ∈ N\S. Define βS = f(Pa
S, P

b
N\S) for all S ⊆ N. Clearly, βS ∈ X

for all S ⊆ N. By unanimity, β∅ = b and βN = a. Also, by strategy-proofness,
βS ≤ βT for all T ⊆ S.

Take PN ∈ SN. We show f(PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}. Suppose S1 = {i ∈
N | r1(Pi) < f(PN)}, S2 = {i ∈ N | f(PN) < r1(Pi)}, and S3 = {i ∈ N | r1(Pi) =

f(PN)}. By strategy-proofness and uncompromisingness, βS1∪S3 ≤ f(PN) ≤ βS1 .
Consider the expression min

S⊆N
{max

i∈S
{r1(Pi), βS}}. Take S ⊆ S1. Then, by Condi-

tion (iii) in Definition 3.2.9, βS1 ≤ βS. Since r1(Pi) < f(PN) for all i ∈ S and
f(PN) ≤ βS1 ≤ βS, we have max

i∈S
{r1(Pi), βS} = βS. Clearly, for all S ⊆ N such

that S ∩ S2 ̸= ∅, we have max
i∈S

{r1(Pi), βS} > f(PN). Consider S ⊆ N such
that S ∩ S2 = ∅ and S ∩ S3 ̸= ∅. Then, S ⊆ S1 ∪ S3, and hence βS1∪S3 ≤
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βS. Therefore, max
i∈S

{r1(Pi), βS} = max{f(PN), βS} ≥ max{f(PN), βS1∪S3}. Since

βS1∪S3 ≤ f(PN), we have max{f(PN), βS1∪S3} = f(PN). Combining all these, we
have min

S⊆N
{max

i∈S
{r1(Pi), βS}} = min{f(PN), βS1}. Because f(PN) ≤ βS1 , we have

min{f(PN), βS1} = f(PN). This completes the proof of the lemma. ■The proof

of the only-if part of Theorem 3.4.1 follows from Lemmas 3.8.1 - 3.8.2. ■

3.8.4 Proof of Theorem 3.5.1

Proof: The proof of the if part follows from Theorem 3.4.1. We proceed to prove
the only-if part. LetDN be a min-max domain. We show thatDi is top-connected
single-peaked for all i ∈ N. We show this in two steps: in Step 1 we show thatDi

is single-peaked for all i ∈ N, and in Step 2, we show thatDi is top-connected for
all i ∈ N.

Step 1. Suppose thatDi is not single-peaked for some i ∈ N. Then, there isQ ∈ Di

and x, y ∈ X such that x < y < r1(Q) and xQy. Consider themin-max rule fβ with
respect to (βS)S⊆N such that βS = x for all ∅ ⊊ S ⊊ N. Take PN ∈ DN such that
Pi = Q and r1(Pj) = y for all j ∈ N \ i. By the definition of fβ, fβ(PN) = y. Now,
take P′

i ∈ Di with r1(P′
i) = x. Again, by the definition of fβ, fβ(P′

i, PN\i) = x. This
means agent imanipulates at PN via P′

i , which is a contradiction to the assumption
thatDN is a min-max domain. This completes Step 1.

Step 2. In this step, we show thatDi satisfies top-connectedness for all i ∈ N. As-
sume for contradiction thatDi is not top-connected for some i ∈ N. By definition,
Di is regular. Since Di is single-peaked, for all P ∈ Di, r1(P) = a (or b) implies
r2(P) = a + 1 (or b − 1). Again, becauseDi is single-peaked, for all P ∈ Di and
all x ∈ X \ {a, b}, r1(P) = x implies r2(P) ∈ {x− 1, x+ 1}. SinceDi violates top-
connectedness, assume without loss of generality that there exists x ∈ X \ {a, b}
such that for all P ∈ Di, r1(P) = x implies r2(P) = x − 1. Consider the following
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SCF:¹⁴

f(PN) =


x if r1(Pi) = x and xPj(x − 1) for all j ∈ N \ i,
x − 1 if r1(Pi) = x and (x − 1)Pjx for some j ∈ N \ i,
r1(Pi) otherwise.

It is left to the reader to verify that f is unanimous and strategy-proof. We show
that f is not uncompromising, which in turn means that f is not a min-max rule.
Let PN ∈ DN be such that r1(Pi) = x and r1(Pj) = x − 1 for some j ̸= i, and let
P′

i ∈ Di be such that r1(P′
i) = x + 1. Then, by the definition of f, f(PN) = x − 1

and f(P′
i, PN\i) = x + 1. Therefore, because f(PN) = x − 1 and x − 1 ≤ r1(Pi) ≤

r1(P′
i), the fact that f(P′

i, PN\i) = x+ 1 is a violation of uncompromisingness. This
completes Step 2 and the proof of the only-if part. ■

¹⁴HereDi satisfies the unique seconds property defined in [6] and the SCF f considered here is
similar to the one used in the proof of Theorem 5.1 in [6].
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4
Strategy-proof Rules on Partially

Single-peakedDomains

4.1 Introduction

4.1.1 Background of the Problem

Most of the subject matter of social choice theory concerns the study of the
unanimous and strategy-proof SCFs for different admissible domains of prefer-
ences. In the seminal works by [43] and [75], it is shown that if a society has at
least three alternatives and there is no particular restriction on the preferences of
the individuals, then every unanimous and strategy-proof SCF is dictatorial, that
is, a particular individual in the society determines the outcome regardless of the
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preferences of the others. The celebrated Gibbard-Satterthwaite theorem hinges
crucially on the assumption that the admissible domain of each individual is unre-
stricted. However, natural domain restrictions arise in many economic and politi-
cal applications. For instance, in the models of locating a firm in a unidimensional
spatial market ([46]), setting the rate of carbon dioxide emissions ([15]), setting
the level of public expenditure ([69]), and so on, preferences admit a natural re-
strictionwidely known as single-peakedness. Informally, a single-peaked preference
with respect to some arrangement of the alternatives over a uni-dimensional space,
called a prior order, requires that the preference decreases as onemoves away (with
respect to the prior order) from her best alternative.

The study of single-peaked domains dates back to [15], where it is shown that
the pairwise majority rule is strategy-proof on such domains. [54] and [86] have
characterized the unanimous and strategy-proof SCFs on such domains as min-
max rules.¹,² InChapter 3, we characterize thedomainswhere the set of unanimous
and strategy-proof SCFs coincide with that of min-max rules.

4.1.2 Our Motivation

It is both experimentally and empirically established that inmanypolitical and eco-
nomic scenarios ([58], [41], and [59]), where the preferences of individuals are
normally assumed to be single-peaked, they are actually not. Nevertheless, such
preferences have close resemblance with single-peakedness. In this chapter, we
model such preferences as partially single-peaked. Roughly speaking, partial single-
peakedness requires the individual preferences to be single-peaked only over a sub-
set of alternatives. It is worth noting that the structure of the unanimous and
(group) strategy-proof rules on such domains are not explored in the literature.
In view of this, our main motivation in this chapter is to develop a general model
for partially single-peaked domains and to provide a characterization of the unan-
imous and (group) strategy-proof rules on those. Below, we present some evi-

¹[9] and [24] provide equivalent presentations of this class of SCFs.
²A rich literature has developed around the single-peaked restriction by considering various

generalizations and extensions (see [9], [29], [76], [55], and [56]).
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dences of partially single-peaked domains in the literature. In Section 4.4, we will
formallydefine thesenotions and showthat they are special casesof partially single-
peaked domains.

Multi-peaked Domains

In many practical scenarios in economics and politics, the preferences of the in-
dividuals often exhibit multi-peakedness as opposed to single-peakedness. As the
name suggests, multi-peaked preferences admit multiple ideal points in a unidi-
mensional policy space. We discuss a few settings where it is plausible to assume
that individuals have multi-peaked preferences.

• Preference for ‘Do Something’ in Politics: [28] and [32] consider public (de-
cision) problems such as choosing alternate tax regimes, lowering health
care costs, responding to foreign competition, reducing the national debt,
etc. They show that a public problem is perceived to be poorly addressed
by the status-quo policy, and consequently some individuals prefer both
liberal and conservative policies to the moderate status quo. Clearly, such a
preferencewill have two peaks, one on the left of the status quo and another
one on the right.

• Multi-stage Voting System: [78], [31], [34], etc. deal with multi-stage vot-
ing system where individuals vote on a set of issues where each issue can
be thought of as a unidimensional spectrum and voting is distributed over
several stages considering one issue at a time. In such a model, preference
of an individual over the present issue can be affected by her prediction of
the outcome of the future issues. In other words, such a preference is not
separable across issues. They show that the preferences of the individuals
in such scenarios exhibit multi-peaked property.

• Provision of Public Goods with Outside Options: [13], [80], and [14] con-
sider the problem of setting the level of tax rates to provide public funding
in the education sector, and [49] and [37] consider the same problem in
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the health insurance market. They show that the preferences of individuals
exhibit multi-peaked property due to the presence of outside options (i.e.,
the public good is also available in a competitive market as a private good).
For instance, in the problem of determining educational subsidy, an indi-
vidual with lower income may not prefer a moderate level of subsidy since
she cannot afford to bear the remaining cost for higher education. Thus,
her preference in such a scenario will have two peaks - one at a lower level
of subsidy so that she can achieve primary education, and another one at a
very high level of subsidy so that she can afford the remaining cost for higher
education.

• Provision of Excludable Public Goods: [42] and [2] consider public good pro-
visionmodels such as health insurance, educational subsidies, pensions, etc.
where the government provides the public good to a particular section of in-
dividuals, and show that individuals’ preferences in such scenarios aremulti-
peaked.

Single-peaked Domains with respect to Partial Orders

In the literature, single-peaked domains are generally considered with respect to
some (prior) linear order. Such a preference restriction requires an individual to
order (a priori) the whole set of alternatives in a linear fashion. However, it is well-
documented in psychology that inmany situations individuals are unable to derive
a complete ordering over the alternatives. For instance, in the political science lit-
erature, it may not be possible for the individuals to unambiguously order the par-
ties who are moderate in their policies (center parties) over the policy spectrum.
Similarly, in a public good provision problemwhere locations are distributed over
different geographical regions, even though individuals can derive some prior or-
dering (based on traffic distance or so) over the locations that are in same region,
but they may not be able to do the same for locations in different regions. Such
a situation can only be modeled by considering single-peaked domains with re-
spect to prior orderings that are incomplete (or partial). In this respect, our work
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is closely related to [18] who consider semi-lattice single-peakedness - preferences
that are single-peaked with respect to a semi-lattice (which is a partial order).

Multiple Single-peaked Domains

[67] introduces the notion of multiple single-peaked domains. Such a domain is
defined as a union of some domains each of which is single-peaked with respect
to some prior orderings over the alternatives. A plausible justification for such a
domain restriction is provided by [57] who argues that the alternatives can be or-
dered differently using different criteria (which he calls an impartial culture) and it
is not publicly knownwhich individual uses what criterion. On one extreme, such
a domain becomes an unrestricted domain if there is no consensus among the indi-
viduals on the prior order, and on the other extreme, it becomes a maximal single-
peaked domain if all the individuals agree on a single prior order. It is worth noting
that such domains can be seen as a special case of partially single-peaked domains.

Single-peaked Domains on Graphs

[76] considers domains that are based on some graph structure over the alterna-
tives (e.g., locating a new station in a rail-road network). They assume that the in-
dividuals derive their preferences by using single-peakedness over some spanning
tree of the underlying graph. In this chapter, we show that when the underlying
graph has some specific structure (involves a cycle or so), then the induced do-
mains become partially single-peaked.

4.1.3 Our Contribution

In this paper,wedevelopageneralmodel forpartially single-peakeddomainswhich
capture the non-single-peakeddomains that commonly arise in practical scenarios.
Formally speaking, we assume that thewhole interval of alternatives is divided into
subintervals such that every preference in the domain is required to satisfy single-
peakedness over each of those subintervals, and is allowed to violate the property
outside those. We characterize the unanimous and strategy-proof SCFs on such
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domains as partly dictatorial min-max rule (PDMMR). Loosely put, a PDMMR
acts like a min-max rule over the subintervals where the domain respects single-
peakedness and like a dictatorial rule everywhere else.

The class of partially single-peaked domains that we consider in this paper is
quite large. It includes single-peaked domains on one extreme andunrestricted do-
mains on the other. To corroborate this fact, we prove that partially single-peaked
domains contain almost all domains on which (i) every unanimous and strategy-
proof SCF is a PDMMR, and (ii) every PDMMR is strategy-proof.

4.1.4 Relation with [67]

In this section, we compare our results with those of [67]. [67] provides a char-
acterization of the unanimous and strategy-proof SCFs on multiple single-peaked
domains. We think our results significantly improve that in [67] from both practi-
cal and theoretical point of views.

Practical point of view

• Multiple single-peakeddomains assume that everypreference is single-peaked
with respect to some prior ordering. However, this is a strong requirement
for practical purposes. For instance, consider the situation where the loca-
tions x1, . . . , x10 are arranged on a street. Suppose further that there is a
direct route from x4 to x8. This means that a preference with x4 at the top
may have x8 as its second ranked alternative, and that with x8 at the topmay
have x4 as second ranked alternative and vice-versa. However, it is not pos-
sible for the designer to assume any ordering with respect to which such a
preference will be single-peaked (particularly, over the alternatives x5, x6,
and x7). Thus, such domains violate the basic principle of multiple single-
peaked domains which assumes that every agent derives his/her preference
with respect to some prior ordering over the alternatives.

• Multiple single-peaked domains require each single-peaked domain to be
maximal. Such a single-peaked domain requires 2m−1 preferences, where m
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is the number of alternatives. This is a strong requirement since many do-
mains of practical importance such as Euclidean etc. do not satisfy this con-
dition. In contrast, our result applies tomultiple single-peakeddomains that
require each single-peaked domain to be only top-connected. It is worth
noting that the number of preferences in such single-peaked domain can
range from 2m − 2 to 2m−1. This significantly improves the applicability of
multiple single-peaked domains.

Theoretical point of view

• In general, a major step in characterizing the unanimous and strategy-proof
SCFs on a domain is to show that the domain is tops-only. In case of multi-
ple single-peaked domains, tops-onlyness follows from [20]. However, the
same does not follow for partial single-peaked domains.

• It follows from [7] that every unanimous and strategy-proof SCF on multi-
ple single-peaked domain is group strategy-proof. However, the same does
not hold for partially single-peaked domains. We establish this indepen-
dently in this paper.

4.1.5 Other related papers

[19] study a related restricted domain known as a semi-single-peaked domain. Such
a domain violates single-peakedness around the tails of the prior order. They show
that if a domainadmits ananonymous (andhencenon-dictatorial), tops-only, unan-
imous, and strategy-proof SCF, then it is a semi-single-peaked domain. However,
we show that if single-peakedness is violated around the middle of the prior order,
then there is no unanimous, strategy-proof, and anonymous SCF. Thus, our char-
acterization result on partially single-peaked domains complements that in [19].
Recently, [3] provide necessary and sufficient conditions for the comparability of
two min-max rules in terms of their vulnerability to manipulation. However, our
results identify the min-max rules that are manipulable if single-peakedness is vio-
lated over a subset of alternatives.
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4.1.6 Remainder

The rest of the chapter is organized as follows. We describe the usual social choice
framework in Section 4.2. In Section 4.3, we presents our main results. Section
4.4 provides a few applications of our results, and the last section concludes the
chapter. All the omitted proofs are collected in Appendix 4.6.

4.2 Preliminaries

Let N = {1, . . . , n} be a set of at least two agents, who collectively choose an
element from a finite setX = {a, a+ 1, . . . , b− 1, b} of at least three alternatives,
where a is an integer. For x, y ∈ X such that x ≤ y, we define the intervals [x, y] =
{z ∈ X | x ≤ z ≤ y}, [x, y) = [x, y] \ {y}, (x, y] = [x, y] \ {x}, and (x, y) =
[x, y] \ {x, y}. Throughout this chapter, we denote by x and x two arbitrary but
fixed alternatives such that x < x − 1. For notational convenience, whenever it is
clear from the context, we do not use braces for singleton sets, i.e., we denote sets
{i} by i.

A preference P over X is a complete, transitive, and antisymmetric binary rela-
tion (also called a linear order) defined on X. We denote by L(X) the set of all
preferences over X. An alternative x ∈ X is called the kth ranked alternative in a
preference P ∈ L(X), denoted by rk(P), if |{a ∈ X | aPx}| = k − 1. For no-
tational convenience, sometimes we denote by P = xy . . . a preference P with
r1(P) = x and r2(P) = y. A domain of admissible preferences, denoted by D,
is a subset of L(X). An element PN = (P1, . . . , Pn) ∈ Dn is called a prefer-
ence profile. The top-set of a preference profile PN, denoted by τ(PN), is defined
as τ(PN) = {x ∈ X | r1(Pi) = x for some i ∈ N}.

4.2.1 Domains and Their Properties

In this subsection, we introduce a few properties of a domain and a class of do-
mains.
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Definition 4.2.1 A domainD of preferences is regular if for all x ∈ X, there exists a
preference P ∈ D such that r1(P) = x.

All the domains we consider in this chapter are assumed to be regular.

Definition 4.2.2 AdomainD satisfies the top-connectedness property if for all x, y ∈
X with |x − y| = 1, there is P ∈ D such that P = xy . . ..

Graph of a Domain

In this subsection, we introduce the notion of the graph of a domain. First, we
introduce a few graph theoretic notions. A directed graph G is defined as a pair
⟨V, E⟩, where V is the set of nodes and E ⊆ V × V is the set of directed edges, and
an undirected graph G is defined as a pair ⟨V, E⟩, where V is the set of nodes and
E ⊆ {{u, v} | u, v ∈ V and u ̸= v} is the set of undirected edges. For a graph
(directed or undirected) G = ⟨V, E⟩, a subgraph G′ of G is defined as a graph
G′ = ⟨V, E′⟩, where E′ ⊆ E. For two graphs G1 = ⟨V1, E1⟩ and G2 = ⟨V2, E2⟩,
the graph G1 ∪ G2 is defined as G1 ∪ G2 = ⟨V1 ∪ V2, E1 ∪ E2⟩.

All the graphswe consider in this chapter are of the kindG = ⟨X, E⟩, i.e., whose
node set is the set of alternatives.

Definition 4.2.3 A directed (undirected) graph G = ⟨X, E⟩ is called the directed
(undirected) line graph on X if (x, y) ∈ E ({x, y} ∈ E) if and only if |x − y| = 1.

Definition 4.2.4 A graph G is called a directed (undirected) partial line graph if G
can be expressed as G1∪G2, where G1 = ⟨X, E1⟩ is the directed (undirected) line graph
on X and G2 = ⟨[x, x], E2⟩ is a directed (undirected) graph such that (x, y), (x, z) ∈
E2 ({x, y}, {x, z} ∈ E2) for some y ∈ (x + 1, x] and z ∈ [x, x − 1).

InFigure4.2.1,wepresent adirectedpartial line graphonX = {x1, x2, x3, x4, x5, x6,
x7}where x = x3 and x = x6.

Definition 4.2.5 The top-graph of a domainD is defined as the directed graph ⟨X, E⟩
such that (x, y) ∈ E if and only if there exists a preference P = xy . . . ∈ D.
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x1 x2 x3 x4 x5 x6 x7

Figure 4.2.1 A directed partial line graph

Note that a domain satisfies the top-connectedness property if and only if its
top-graph is the directed line graph on X.

4.2.2 Single-peaked Domains

Definition 4.2.6 A preference P ∈ L(X) is called single-peaked if for all x, y ∈ X,
[x < y ≤ r1(P) or r1(P) ≤ y < x] implies yPx. A domain is called single-peaked if
each preference in it is single-peaked, and a domain is called maximal single-peaked if it
contains all single-peaked preferences.

Definition 4.2.7 Adomain is called top-connected single-peaked if it is both top-conne-
cted and single-peaked.

4.2.3 Partially Single-peaked Domains

In this section, we consider a class of domains that violates single-peaked property
over the interval [x, x] and exhibits the property everywhere else. We call such
domains partially single-peaked domains which are formally defined below.

Definition 4.2.8 A domain S̃ is said to satisfy single-peakedness outside [x, x] if for
all P ∈ S̃ , all u /∈ (x, x), and all v ∈ X,

[
v < u ≤ r1(P) or r1(P) ≤ u < v

]
implies uPv.

To gain more insight about Definition 4.2.8, first consider a preference with
top-ranked alternative in [x, x]. Then, Definition 4.2.8 says that such a preference
satisfies single-peakedness over the intervals [a, x] and [x, b]. That is, the relative
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ordering of two alternatives u, v is derived by using single-peaked property when-
ever both of them are either in the interval [a, x] or in the interval [x, b]. Note that
Definition 4.2.8 does not impose any restriction on the relative ordering of an al-
ternative in [x, x] and any other alternative. Next, consider a preference P such
that r1(P) /∈ [x, x]. Suppose, for instance, r1(P) ∈ [a, x). Then, Definition 4.2.8
says that (i) P satisfies single-peakedness over the interval [a, r1(P)], and (ii) if an
alternative u lies in the interval (r1(P), x] or in the interval [x, b], then, as required
by single-peakedness, it is preferred to any alternative v in the interval (u, b]. Thus,
Definition 4.2.8 does not impose onP any restriction on the relative ordering of an
alternative in (x, x) and an alternative in [x, b]. Therefore, in particular, Definition
4.2.8 does not impose any restriction on any preference on the relative ordering of
two alternatives in the interval (x, x).

Definition 4.2.9 A domain S̃ is said to violate single-peakedness over [x, x] if there
exist Q = xy . . . ,Q′ = xz . . . ∈ S̃ such that either

[
y ∈ (x + 1, x) and z ∈

(x, x − 1)
]
or
[
y = x and z = x

]
.

Note that since r2(Q) > r1(Q)+1 and r2(Q′) < r1(Q′)−1, both the preferences
Q and Q′ violate single-peakedness. This, together with the facts that r1(Q) = x,
r1(Q′) = x, and r2(Q), r2(Q′) ∈ (x, x), implies that a domain with those two
preferences violates single-peakedness over [x, x]. In Section 4.3.2, we show that
the particular restrictions on the second-ranked alternatives of Q and Q′ given in
Definition 4.2.9 are necessary for the results we derive in this chapter.

Remark 4.2.1 Definition 4.2.9 considers violation of single-peakedness only over in-
tervals. It may seem that the possibility of violating this over several intervals is excluded
in this definition. However, as we argue in the following, that is not the case. Note that
by Definition 4.2.9, if a domain violates single-peakedness over several intervals, then it
also violates the same over the minimal interval that contains all those. Thus, for the
notion of violation of single-peakedness that we consider in this chapter, it is enough to
consider it over an interval.

Definition 4.2.10 A domain S̃ is called partially single-peaked if
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(i) it satisfies single-peakedness outside [x, x] and violates it over [x, x], and

(ii) it contains a top-connected single-peaked domain.

Remark 4.2.2 Condition (ii) in Definition 4.2.10 may not seem to be essential in
modeling non-single-peaked preferences that arise in political and economic scenarios.
However, we feel this is not the case. In most political and economic scenarios where
a prior ordering over the alternatives exists (naturally), non-single-peaked preferences
arise because some individuals may not use that ordering completely in deriving their
preferences. However, there is no logical ground to rule out the possibility that some in-
dividuals may still use that ordering in deriving their preferences. Thus, one must allow
for the single-peaked preferences in such domains.

We illustrate the notion of partially single-peaked domains in Figure 4.2.2. Fig-
ure 4.2.2(a) andFigure 4.2.2(b) present partially single-peaked preferencesPwith
r1(P) ∈ [x, x] and r1(P) ∈ [a, x), respectively. Figure 4.2.2(c) presents partially
single-peaked preferences Q = xy . . . and Q′ = xz . . . when y ∈ (x + 1, x) and
z ∈ (x, x − 1), and Figure 4.2.2(d) presents those when y = x and z = x. Note
that, as explained before, all these preferences are single-peaked over the intervals
[a, x] and [x, b]. Furthermore, for the preference depicted in Figure 4.2.2(a), there
is no restriction on the ranking of the alternatives in the interval (x, x), and for the
one shown in Figure 4.2.2(b), there is no restriction on the ranking of the alterna-
tives in the interval (x, x) except that x is preferred to all the alternatives in (x, b].
Also, for the preferences in Figures 4.2.2(c) and 4.2.2(d), there is no restriction
on the ranking of the alternatives in (x, x) other than that on the second-ranked
alternatives.

Now, we interpret Definition 4.2.10 in terms of its top-graph. Let G be the top-
graphof a partially single-peakeddomain. Then,G canbewritten asG1∪G2, where
G1 = ⟨X, E1⟩ is the directed line graph on X and G2 = ⟨[x, x], E2⟩ is a directed
graph such that (x, r2(Q)), (x, r2(Q′)) ∈ E2 where r2(Q) ∈ (x+1, x] and r2(Q′) ∈
[x, x−1). Therefore,G is a directed partial line graph. InExample 4.2.1, we present
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a x x br1(P)

(a) Partially single-peaked preference P with
r1(P) ∈ [x, x]

a x x br1(P)

(b) Partially single-peaked preference P with
r1(P) ∈ [a, x)

a bxr1(Q) = x r2(Q) a bx r1(Q′) = xr2(Q′) = y′

(c) Partially single-peaked preferences Q,Q′ with x + 1 < r2(Q) < x and x < r2(Q′) < x − 1

a br1(Q) = x r2(Q) = x a br1(Q′) = xr2(Q′) = x

(d) Partially single-peaked preferences Q,Q′ with r2(Q) = x and r2(Q′) = x

Figure 4.2.2 Partially single-peaked preferences

a partially single-peaked domain with seven alternatives, and in Figure 4.2.3, we
present the top-graph of that domain.

Example 4.2.1 Let X = {x1, x2, x3, x4, x5, x6, x7}, where x1 < x2 < x3 < x4 <

x5 < x6 < x7, and let x = x3 and x = x6. Then, the domain in Table 4.2.1 is a par-
tially single-peaked domain. To see this, first consider a preference with top-ranked al-
ternative in the interval [x3, x6], say P7. Note that x3P7x2P7x1 and x6P7x7, whichmeans
P7 is single-peaked over the intervals [x1, x3] and [x6, x7]. Moreover, the position of x5
is completely unrestricted (here at the bottom) in P7. Next, consider a preference with
top-ranked alternative in the interval [x1, x3], say P2. Once again, note that P2 is single-
peaked over the intervals [x1, x3] and [x6, x7]. Further, x3 is preferred to the alternatives
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x4, x5, x6, x7, and there is no restriction on the relative ordering of the alternatives x4
and x5 (here x5P2x4). Thus, the domain in Table 4.2.1 satisfies single-peakedness out-
side the interval [x3, x6]. Now, consider the preferences Q and Q′. Since r1(Q) = x3,
r2(Q) = x5, r1(Q′) = x6, and r2(Q′) = x4, this domain violates single-peakedness
over [x3, x6]. Finally, note that the domain contains a top-connected single-peaked do-
main given by P1, P3, P4, P5, P6, P8, P9, P10, P11, P12, P13, and P14.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Q Q′

x1 x2 x2 x2 x3 x3 x4 x4 x4 x5 x5 x6 x6 x7 x3 x6
x2 x1 x1 x3 x2 x4 x6 x3 x5 x4 x6 x5 x7 x6 x5 x4
x3 x3 x3 x1 x4 x2 x3 x5 x3 x3 x4 x4 x5 x5 x2 x3
x4 x6 x4 x4 x5 x5 x2 x2 x2 x6 x3 x3 x4 x4 x6 x7
x5 x5 x5 x5 x6 x6 x1 x6 x1 x7 x2 x2 x3 x3 x1 x2
x6 x7 x6 x6 x7 x1 x7 x1 x6 x2 x7 x7 x2 x2 x7 x1
x7 x4 x7 x7 x1 x7 x5 x7 x7 x1 x1 x1 x1 x1 x4 x5

Table 4.2.1 A partially single-peaked domain

The top-graph G of the domain in Example 4.2.1 is given in Figure 4.2.3. Note
that G is a partial line graph since it can be written as G1 ∪ G2, where G1 is the di-
rected line graphon{x1, x2, x3, x4, x5, x6, x7} andG2 is a directedgraphon{x3, x4, x5, x6}
having edges (x3, x5), (x4, x6) and (x6, x4).

x1 x2 x3 x4 x5 x6 x7

Figure 4.2.3 Top-graph of the domain in Example 4.2.1

4.2.4 Social Choice Functions and Their Properties

In this section, we introduce the notion of social choice functions and discuss their
properties.
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Definition 4.2.11 A social choice function (SCF) f onDn is a mapping f : Dn → X.

Definition 4.2.12 An SCF f : Dn → X is unanimous if for all PN ∈ Dn such that
r1(Pi) = x for all i ∈ N and some x ∈ X, we have f(PN) = x.

Definition 4.2.13 An SCF f : Dn → X is manipulable if there exists i ∈ N, PN ∈
Dn, and P

′

i ∈ D such that f(P
′

i , PN\i)Pif(PN). An SCF f is strategy-proof if it is not
manipulable.

Definition 4.2.14 An SCF f : Dn → X is called dictatorial if there exists i ∈ N such
that for all PN ∈ Dn, f(PN) = r1(Pi).

Definition 4.2.15 A domainD is called dictatorial if every unanimous and strategy-
proof SCF f : Dn → X is dictatorial.

Definition 4.2.16 Twopreference profiles PN, P′
N are called tops-equivalent if r1(Pi) =

r1(P′
i) for all agents i ∈ N.

Definition 4.2.17 An SCF f : Dn → X is called tops-only if for any two tops-
equivalent PN, P′

N ∈ Dn, f(PN) = f(P′
N).

Definition 4.2.18 A domain D is called tops-only if every unanimous and strategy-
proof SCF f : Dn → X is tops-only.

Definition 4.2.19 An SCF f : Dn → X is called uncompromising if for all PN ∈ Dn,
all i ∈ N, and all P′

i ∈ D:

(i) if r1(Pi) < f(PN) and r1(P′
i) ≤ f(PN), then f(PN) = f(P′

i, P−i), and

(ii) if f(PN) < r1(Pi) and f(PN) ≤ r1(P′
i), then f(PN) = f(P′

i, P−i).

Remark 4.2.3 If an SCF satisfies uncompromisingness, then by definition, it is tops-
only.
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Definition 4.2.20 Let β = (βS)S⊆N be a list of 2n parameters satisfying: (i) βS ∈ X
for all S ⊆ N, (ii) β∅ = b, βN = a, and (iii) for any S ⊆ T, βT ≤ βS. Then, an SCF
fβ : Dn → X is called a min-max rule with respect to β if

fβ(PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}.

Remark 4.2.4 Every min-max rule is uncompromising.³

Definition 4.2.21 A min-max rule fβ : Dn → X with parameters β = (βS)S⊆N is
a partly dictatorial min-max rule (PDMMR) if there exists an agent d ∈ N, called the
partial dictator of fβ, such that βd ∈ [a, x] and βN\d ∈ [x, b].

In Lemma 4.3.1, we explain why the particular agent d is called the partial dicta-
tor of fβ.

Remark 4.2.5 [67]defines partly dictatorial generalizedmedian voter scheme (PDG-
MVS)onmultiple single-peakeddomains. It can be shown that PDMMRcoincideswith
PDGMVS on those domains.⁴

4.3 Results

4.3.1 UnanimousandStrategy-proofSCFsOnPartiallySingle-peaked
Domains

In this subsection, we characterize the unanimous and strategy-proof SCFs on par-
tially single-peakeddomains aspartlydictatorial generalizedmedianvoter schemes.

First, we present a lemma that justifies why the agent d in Definition 4.2.21 is
called the partial dictator. It shows that a PDMMRchooses the top-ranked alterna-
tive of the partial dictator whenever that lies in the interval [x, x]. It further shows
that it chooses an alternative in the interval [a, x] or [x, b] depending on whenever
the top-ranked alternative of the partial dictator lies in that interval.

³For details, see [86].
⁴For details see the proof of Theorem 3.1 in [67].
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Lemma 4.3.1 Let fβ : Dn → Xbe aPDMMR. Suppose agent d is the partial dictator
of fβ. Then,

(i) fβ(PN) ∈ [a, x] if r1(Pd) ∈ [a, x),

(ii) fβ(PN) ∈ [x, b] if r1(Pd) ∈ (x, b], and

(iii) fβ(PN) = r1(Pd) if r1(Pd) ∈ [x, x].

Proof: First, we prove (i). The proof of (ii) can be established using symmetric
arguments. Assume for contradiction that r1(Pd) ∈ [a, x) and fβ(PN) > x. Since fβ

is a min-max rule, fβ is uncompromising. Therefore, fβ(P′
d, PN\d) = fβ(PN), where

r1(P′
d) = a. Again by uncompromisingness, we have fβ(P′

N) ≥ fβ(PN), where
r1(P′

i) = b for all i ̸= d. Because fβ(PN) > x, this means fβ(P′
N) > x. However,

by the definition of fβ, fβ(P′
N) = βd. Since βd ∈ [a, x], this is a contradiction. This

completes the proof of (i).
Now, we prove (iii). Without loss of generality, assume for contradiction that

r1(Pd) ∈ [x, x] and fβ(PN) > r1(Pd). Using a similar argument as for the proof of
(i), we have fβ(P′

N) ≥ fβ(PN), where r1(P′
d) = a and r1(P′

i) = b for all i ̸= d. This,
in particular, means fβ(P′

N) > x. Since by the definition of fβ, fβ(P′
N) = βd and

βd ∈ [a, x], this is a contradiction. This completes the proof of (iii). ■

Now, we present a characterization of the the unanimous and strategy-proof
SCFs on partially single-peaked domains.

Theorem 4.3.1 Let S̃ be a partially single-peakeddomain. Then, anSCF f : S̃n → X
is unanimous and strategy-proof if and only if it is a PDMMR.

The proof of the Theorem 4.3.1 is relegated to Appendix 4.6.
Our next corollary is a consequence of Lemma 4.3.1 andTheorem4.3.1. It char-

acterizes a class of dictatorial domains, and thereby it generalizes the celebrated
Gibbard-Satterthwaite ([43], [75]) results. Note that our dictatorial result is inde-
pendent of those in [6], [74], [62], and so on.

Corollary 4.3.1 Let x = a and x = b. Then, every partially single-peaked domain is
dictatorial.
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4.3.2 A Result on Partial Necessity

In Subsection 4.3.1, we have focused on partially single-peaked domains and have
shown that every unanimous and strategy-proof SCF on those is a PDMMR. In
this subsection,we lookat the converseof this problem, that is, we focusonPDMMR
and investigate the class of domains where these rules are unanimous and strategy-
proof. We show that the partially single-peaked domains are almost all domains
with this property. This indicates that our notion of partial single-peaked domains
is quite general. A formal definition is as follows.

Definition 4.3.1 A domainD is called a PDMMR domain if

(i) every unanimous and strategy-proof SCF onDn is a PDMMR, and

(ii) every PDMMR onDn is strategy-proof.

By Theorem 4.3.1, every partially single-peaked domain is a PDMMR domain.
In what follows, we show that a domain has to be very close to a partially single-
peaked domain in order to be a PDMMR domain.

Conditions (i) and (ii) in Definition 4.2.10 are obviously strong conditions. In
what follows, we showbymeans of Lemma4.3.2, Example 4.3.1 andExample 4.3.2
that Condition (i) in the said definition is necessary for a domain to be a PDMMR
domain. Regarding Condition (ii), in Example 4.3.3, we provide a domain that
fails to satisfy Condition (ii) (but satisfies Condition (i)) and is not a PDMMR
domain. Note that this does not prove that Condition (ii) is necessary (even in
the presence of Condition (i)) since there are many ways this condition can be
violated, and herewe consider a particular type of violation of it. Thus, Conditions
(i) and (ii) are close to being necessary in an appropriate sense for a PDMMR
domain.

Lemma 4.3.2 LetD be a PDMMR domain. Then,D satisfies single-peakedness out-
side [x, x].
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Proof: First, we show that a preferencewith top-ranked alternative in [x, x] satisfies
single-peakedness outside [x, x]. Without loss of generality, assume for contradic-
tion that there exists P̃ ∈ D with r1(P̃) ∈ [x, x] such that uP̃v for some u < v ≤ x.
Consider the PDMMR fβ : Dn → X, where

βS =


v if S = {1},
a if {1} ⊊ S,
b if 1 /∈ S.

We show that fβ is not strategy-proof. Note that agent 1 is the partial dictator of
fβ. Consider the preference profile PN ∈ Dn such that r1(P1) = a, P2 = P̃, and
r1(Pj) = b for all j ̸= 1, 2. Then, by the definition of fβ, fβ(PN) = v. Let P′

2 ∈ D
be such that r1(P′

2) = u. Again, by the definition of fβ, fβ(P′
2, PN\2) = u. Since uP̃v,

this means agent 2manipulates at PN via P′
2.

Now, we show that a preference with top-ranked alternative outside [x, x] satis-
fies single-peakedness outside [x, x]. Without loss of generality, assume for contra-
diction that there exist P̃ ∈ D with r1(P̃) ∈ [a, x) and u, v ∈ X with u /∈ (x, x)
such that

[
v < u ≤ r1(P) or r1(P) ≤ u < v

]
and vP̃u. If

[
v < u ≤ r1(P̃)

]
and

vP̃u, then using a similar argument as for the proof of the necessity of Condition
(i), it follows that there is a PDMMR on Dn that is manipulable. Hence, assume
r1(P̃) ≤ u < v and vP̃u. We distinguish two cases.

Case 1. Suppose u ≤ x.
Consider the PDMMR fβ : Dn → X, where

βS =

{
u if 1 ∈ S and S ̸= N,
b if 1 /∈ S.

We show that fβ is not strategy-proof. Let PN ∈ Dn be such that P1 = P̃ and
r1(Pj) = b for all j ̸= 1. Then, by the definition of fβ, fβ(PN) = u. Let P′

1 ∈ D be
such that r1(P′

1) = v. Again, by the definition of fβ, fβ(P′
1, PN\1) = v. Since vP̃u,

agent 1manipulates at PN via P′
1.
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Case 2. Suppose x < u.
Since u /∈ (x, x), this means x ≤ u. Consider the PDMMR fβ : Dn → X,

where

βS =

{
a if 1 ∈ S,
u if 1 /∈ S and S ̸= ∅.

We show that fβ is not strategy-proof. Let PN ∈ Dn be such that P2 = P̃ and
r1(Pj) = b for all j ̸= 2. Then, by the definition of fβ, fβ(PN) = u. Let P′

2 ∈ D be
such that r1(P′

2) = v. Again, by the definition of fβ, fβ(P′
2, PN\2) = v. Since vP̃u,

agent 2manipulates at PN via P′
2. ■

Now, we discuss the necessity of the existence of two particular preferences
Q,Q′ as mentioned in Definition 4.2.9. Recall that Definition 4.2.9 requires two
non-single-peaked preferences Q = xy . . . and Q′ = xz . . . inD such that either[
y ∈ (x + 1, x) and z ∈ (x, x − 1)

]
or

[
y = x and z = x

]
. Suppose a domain

D satisfies single-peakedness outside [x, x]. Suppose further that it contains a non-
single-peaked preference of the form Q, but no preference of the form Q′. In the
following example, we construct a two-agent unanimous and strategy-proof SCF
on such a domain that is not a PDMMR.

Example 4.3.1 Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5.
By P = x1x2x3x4x5, we mean a preference P such that x1Px2Px3Px4Px5. Consider the
domain as follows:

D ={x1x2x3x4x5, x1x3x4x5x2, x2x1x3x4x5, x2x3x4x5x1, x3x2x1x4x5, x3x4x5x2x1, x4x3x2x1x5,

x4x5x3x2x1, x5x4x3x2x1}.

Note that D \ {x1x3x4x5x2} is a top-connected single-peaked domain and the pref-
erence x1x3x4x5x2 is of the form Q where x = x1 and x ≥ x3. However, there is
no preference in D of the form Q′, that is, no preference Q′ with r1(Q′) ≥ x3 and
r2(Q′) ∈ [x1, r1(Q′) − 1). In Table 4.3.1, we present a two-agent SCF that is unani-
mous and strategy-proof but not a PDMMR.
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P1

P2 x1x2x3x4x5 x1x3x4x5x2 x2x1x3x4x5 x2x3x4x5x1 x3x2x1x4x5 x3x4x5x2x1 x4x3x2x1x5 x4x5x3x2x1 x5x4x3x2x1

x1x2x3x4x5 x1 x1 x2 x2 x2 x2 x2 x2 x2
x1x3x4x5x2 x1 x1 x2 x2 x3 x3 x3 x3 x3
x2x1x3x4x5 x2 x2 x2 x2 x2 x2 x2 x2 x2
x2x3x4x5x1 x2 x2 x2 x2 x2 x2 x2 x2 x2
x3x2x1x4x5 x2 x3 x2 x2 x3 x3 x3 x3 x3
x3x4x5x2x1 x2 x3 x2 x2 x3 x3 x3 x3 x3
x4x3x2x1x5 x2 x3 x2 x2 x3 x3 x4 x4 x4
x4x5x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x4
x5x4x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x5

Table 4.3.1 A unanimous and strategy-proof SCF which is not a PDMMR

It is left to the reader to verify that the SCF presented in Table 4.3.1 is unanimous and
strategy-proof. Note that it violates tops-onlyness at the preference profiles (x3x4x5x2x1, x1x2x3x4x5)
and (x3x4x5x2x1, x1x3x4x5x2), and hence it is not a PDMMR.

Now, suppose that D contains two non-single-peaked preferences Q and Q′,
however, they do not satisfy Definition 4.2.9 for their second-ranked alternatives.
In the following example, we construct a two-agent unanimous and strategy-proof
SCF on such a domainD that is not a PDMMR.

Example 4.3.2 Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5.
LetD be the domain given in Example 4.3.1. Consider the domainD ∪ {x5x1x4x3x2}.
As pointed out in Example 4.3.1, D \ {x1x3x4x5x2} is a top-connected single-peaked
domain. Consider the non-single-peaked preferences x1x3x4x5x2 and x5x1x4x3x2. They
can be considered as Q and Q′ only if x = x1 and x = x5. However, since their second-
ranked alternatives are x3 and x1, respectively, they do not satisfy Definition 4.2.9. In
Table 4.3.2, we present a two-agent SCF that is unanimous and strategy-proof but not
a PDMMR.

Note that the restriction of the SCF presented in Table 4.3.2 toD2 is same as the SCF
presented in Table 4.3.1. It is left to the reader to verify that this SCF is unanimous and
strategy-proof. However, as pointed out in Example 4.3.1, it violates tops-onlyness, and
hence it is not a PDMMR.

Our next example shows that the requirement of top-connectedness in addition
with single-peakedness as given inCondition (ii) is necessary. In fact, we show that
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P1

P2 x1x2x3x4x5 x1x3x4x5x2 x2x1x3x4x5 x2x3x4x5x1 x3x2x1x4x5 x3x4x5x2x1 x4x3x2x1x5 x4x5x3x2x1 x5x4x3x2x1 x5x1x4x3x2

x1x2x3x4x5 x1 x1 x2 x2 x2 x2 x2 x2 x2 x1
x1x3x4x5x2 x1 x1 x2 x2 x3 x3 x3 x3 x3 x1
x2x1x3x4x5 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
x2x3x4x5x1 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
x3x2x1x4x5 x2 x3 x2 x2 x3 x3 x3 x3 x3 x3
x3x4x5x2x1 x2 x3 x2 x2 x3 x3 x3 x3 x3 x3
x4x3x2x1x5 x2 x3 x2 x2 x3 x3 x4 x4 x4 x4
x4x5x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x4 x4
x5x4x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x5 x5
x5x1x4x3x2 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5

Table 4.3.2 A unanimous and strategy-proof SCF which is not a PDMMR

if a single-peaked domain is not top-connected, then it admits SCFs that are not
PDMMRs.

Example 4.3.3 Consider a domain D that violates Condition (ii) in the following
manner: there exists u ∈ [x, x] such that for all P ∈ D, r1(P) = u implies r2(P) =
u − 1.

f(PN) =


u if r1(Pi) = u and uPj(u − 1) for all j ∈ N \ i,
u − 1 if r1(Pi) = u and (u − 1)Pju for some j ∈ N \ i,
r1(Pi) otherwise.

It is straightforward to show that the SCF f is not a PDMMR as no agent is a partial
dictator.

Remark 4.3.1 It is worth noting that the reason why PDMMR domains are not nec-
essarily partially single-peaked is that the top-connectedness requirement of the single-
peaked preferences as given in Condition (ii) is not necessary for the alternatives in the
interval (x, x).

4.3.3 Group Strategy-proofness

In this section, we consider group strategy-proofness and obtain a characteriza-
tion of the unanimous and group strategy-proof SCFs on partially single-peaked
domains. We begin with the definition of group strategy-proofness.
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Definition 4.3.2 An SCF f : Dn → X is called group manipulable if there is a pref-
erence profile PN, a non-empty coalition C ⊆ N, and a preference profile P′

C ∈ D|C|

of the agents in C such that f(P′
C, PN\C)Pif(PN) for all i ∈ C. An SCF f : Dn → X is

called group strategy-proof if it is not group manipulable.

In the following theorem, we present a characterization of the unanimous and
group strategy-proof SCFs on partially single-peaked domains. It is worth men-
tioning that these domains do not satisfy the sufficient condition for the equiva-
lence of strategy-proofness and group strategy-proofness provided in [7].

Theorem 4.3.2 Let S̃ be a partially single-peakeddomain. Then, anSCF f : S̃n → X
is unanimous and group strategy-proof if and only if it is a PDMMR.

Proof: Let S̃ be a partially single-peaked domain. Suppose f : S̃n → X is a
PDMMR where agent d is the partial dictator. It is enough to show that f is group
strategy-proof. Clearly, no group can manipulate f at a preference profile PN ∈ S̃n

where r1(Pd) ∈ [x, x]. Consider a preference profile PN ∈ S̃n such that r1(Pd) ∈
[a, x). We show that f is group strategy-proof at PN. Since r1(Pd) ∈ [a, x), by the
definition of PDMMR, f(PN) ∈ [a, x]. Let C′ = {i ∈ N | r1(Pi) ≤ f(PN)}
and let C′′ = {i ∈ N | r1(Pi) > f(PN)}. Suppose a coalition C manipulates
f at PN. Then, there is P′

C ∈ S̃ |C| such that f(P′
C, PN\C)Pif(PN) for all i ∈ C. If

f(P′
C, PN\C) < f(PN), then by the definition of S̃ , we have C ∩ C′′ = ∅. How-

ever, by the definition of PDMMR, f(P′
C, PN\C) ≥ f(PN) for all C ⊆ C′ and

all P′
C ∈ S̃ |C|, a contradiction. Again, if f(P′

C, PN\C) > f(PN), then by the def-
inition of S̃ , we have C ∩ C′ = ∅. However, by the definition of PDMMR,
f(P′

C, PN\C) ≤ f(PN) for all C ⊆ C′′ and all P′
C ∈ S̃ |C|, a contradiction. The

proof of the same for the case where r1(Pd) ∈ (x, b] follows from a symmetric ar-
gument. This shows f is group strategy-proof, and hence completes the proof of
the theorem. ■

4.4 Applications

In this section, we present a couple of examples of our main result.

74



4.4.1 Multi-peaked Domains

In Section 4.1, we have discussed the importance ofmulti-peakeddomains inmod-
eling preferences of individuals in certain economic and political scenarios. In this
subsection, we formally define this notion and show that these are special cases of
partially single-peaked domains.

Definition 4.4.1 A preference P is called multi-peaked if there are d0, p1, d1, p2, d2,
. . . , dk−1, pk, dk with a = d0 ≤ p1 < d1 < . . . < pk ≤ dk = b such that for all
i = 0, . . . , k − 1 and all x, y ∈ [di, di+1], [x < y ≤ pi+1 or pi+1 ≤ y < x] implies
yPx. For such a preference P the alternatives p1, . . . , pk are called its peaks.

We present a multi-peaked domain in Figure 4.4.1.

d0 = p1 d1 p2 d2 p3 d3 p4 d4 p5 d5 p6 d6

Figure 4.4.1 A multi-peaked preference

Definition 4.4.2 Let c1 and c2 be such that a ≤ c1 < c2 − 1 ≤ b. Then, a domain
D is called multi-peaked with critical values c1, c2 if each preference inD is either single-
peaked or multi-peaked with all its peaks in the interval [c1, c2].

It is easy to verify that a multi-peaked domain with critical values x and x is a
partially single-peaked domain. Thus, we have the following corollary.

Corollary 4.4.1 Let S be a multi-peaked domain with critical values c1 and c2. Then,
an SCF f : Sn → X is unanimous and (group) strategy-proof if and only if it is a
PDMMR.
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4.4.2 Single-peaked Domains with respect to Partial Orders

As discussed in Section 4.1, expecting individuals to have a complete prior order
over the alternatives is a strong prerequisite. In view of this, we relax this condition
by requiring the individuals to have a partial prior order over the alternatives and
to derive preferences based on such a partial order. In this subsection, we argue
that such a domain is partially single-peaked.

Definition 4.4.3 A binary relation is called a partial order if it is reflexive, antisym-
metric, and transitive.

Note that a partial order need not be complete. We denote a partial order by ◁.⁵
Also, we write a ⊴ b to mean a ◁ b or a = b.

Definition 4.4.4 A preference P is said to be single-peaked with respect to a partial
order ◁ over X if for all distinct x, y ∈ X,

[x ◁ y ⊴ r1(P) or r1(P) ⊴ y ◁ x] implies yPx.

A domain is called single-peaked with respect to a partial order ◁ if it contains all single-
peaked preferences with respect to ◁.

Since every partial order can be thought of a subset of a linear order (as a binary
relation), it can be shown that a single-peaked domain with respect to a partial
order is partially single-peaked. However, we do not provide a concrete proof of
this since that is a bit technical.⁶ Nevertheless, in what follows we provide a few
examples of single-peaked domains with respect to partial orders and show that
those domains are partially single-peaked.

Example 4.4.1 Suppose that the set of alternatives is partitioned into a number of
subsets such that the designer knows how agents order (a priori) the alternatives in each

⁵To be precise, the antisymmetric part of a partial order.
⁶A proof of this fact is available on request.
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of those subsets, but does not know how agents compare alternatives in two different
subsets.

More formally, suppose that X is partitioned into the subsets X1, . . . ,Xk. For all
i = 1, . . . , k, let ≺i∈ L(Xi) be a linear order over Xi. Consider the partial order ◁
over X given by the union of ≺is, that is, x ◁ y if and only if there is i = 1, . . . , k such
that x, y ∈ Xi and x ≺i y. In what follows, we consider a simple such partial order and
present the single-peaked domain with respect to the same.

Let the set of alternatives be X = {x1, x2, x3, x4, x5, x6}. Suppose that X is parti-
tioned into the sets {x1, x2, x3} and {x4, x5, x6}. Consider the partial order ◁ given by
x1 ◁ x2 ◁ x3 and x4 ◁ x5 ◁ x6. In Table 4.4.1, we present the single-peaked domain with
respect to ◁. Note that the domain has the property that its restriction on {x1, x2, x3} is
single-peaked with respected to the prior order x1 ◁ x2 ◁ x3 and on {x4, x5, x6} is single-
peaked with respected to the prior order x4 ◁ x5 ◁ x6. Since this domain is large, we
provide only a few preferences that are significant for our purpose. Clearly, this domain
is partially single-peaked with x = x1 and x = x6. Therefore, it follows from Theorem
4.3.1 that it is a dictatorial domain.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6
x2 x4 x1 x3 x2 x4 x3 x5 x4 x6 x5 x3
x3 x2 x3 x1 x1 x5 x2 x6 x6 x4 x4 x5
x4 x5 x4 x4 x4 x6 x1 x3 x3 x3 x3 x2
x5 x3 x5 x5 x5 x2 x5 x2 x2 x2 x2 x4
x6 x6 x6 x6 x6 x1 x6 x1 x1 x1 x1 x1

Table 4.4.1 A single-peaked domain with respect to the partial order ◁

Example 4.4.2 In political science, it is often assumed that the parties can be ordered
from left to right on the policy spectrum based on whether they are more liberal (left)
or more conservative (right) in their policies. Deriving such an ordering can be done
unambiguously over the parties who are clearly identifiable as more left or more right.
However, ordering parties who aremoderate in their policies (i.e., having policies around
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the center of the spectrum) may not be possible. To model such a situation, one needs to
assume that the prior ordering of the parties (on the political spectrum) is not complete
around the center of the spectrum. In what follows, we consider a simple such partial
order and present the single-peaked domain with respect to the same.

Suppose that the set of alternatives is given by X = {x1, x2, x3, x4, x5, x6}. Consider
the partial order ◁ obtained from the linear order x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺
x6 by making x3 and x4 incomparable, that is, ◁ is given by x1 ◁ x2 ◁ x3 ◁ x5 ◁ x6
and x1 ◁ x2 ◁ x4 ◁ x5 ◁ x6. The single-peaked domain with respect to ◁ is given in
Table 4.4.2. Note that this domain is partially single-peaked with x = x2 and x = x5.
Therefore, it follows from Theorem 4.3.1 and Theorem 4.3.2 that any unanimous and
(group) strategy-proof SCF on this domain is a PDMMR.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

x1 x1 x2 x2 x2 x3 x3 x4 x4 x5 x5 x5 x6 x6
x2 x2 x1 x3 x4 x2 x4 x3 x5 x4 x6 x3 x5 x5
x3 x4 x3 x1 x3 x1 x5 x5 x3 x6 x4 x4 x4 x3
x4 x3 x4 x4 x1 x4 x6 x6 x6 x3 x3 x2 x3 x4
x5 x5 x5 x5 x5 x5 x2 x2 x2 x2 x2 x6 x2 x2
x6 x6 x6 x6 x6 x6 x1 x1 x1 x1 x1 x1 x1 x1

Table 4.4.2 A single-peaked domain with respect to the partial order ◁

The following corollary summarizes the above discussion on single-peaked do-
mains with respect to a partial order.

Corollary 4.4.2 Let ◁ be a partial order over X and letS be the single-peaked domain
with respect to ◁. Then, an SCF f : Sn → X is unanimous and (group) strategy-proof
if and only if it is a PDMMR.

4.4.3 Multiple Single-peaked Domain

In this subsection,weconsider awell-knownclassof domains calledmultiple single-
peaked domains and show that they are special cases of partially single-peaked do-
mains.
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We begin with introducing the notion of a single-peaked domain with respect
to an arbitrary order over X.

Definition 4.4.5 Let ≺ ∈ L(X) be a prior order over X. Then, a preference P ∈
L(X) is single-peaked with respect to≺ if for all x, y ∈ X, [x ≺ y ⪯ r1(P) or r1(P) ⪯
y ≺ x] implies yPx. A domain S≺ is called a single-peaked domain with respect to
≺ if each preference in it is single-peaked with respect to≺, and a domain S̄≺ is called
maximal single-peaked with respect to≺ if it contains all single-peaked preferences with
respect to≺.

Definition 4.4.6 Let L = {≺1, . . . ,≺q}, where ≺k ∈ L(X) for all 1 ≤ k ≤ q,
be a set of q prior orders over X. Then, a domain is called a multiple single-peaked
domain with respect to L, denoted by SL, if SL =

∪
k∈{1,...,q}

S̄≺k , where S̄≺k is the

maximal single-peaked domain with respect to the prior order ≺k. A multiple single-
peaked domain with respect toL is called trivial if S̄≺ = S̄≺′ for all≺,≺′∈ L.

For ease of presentation, for anymultiple single-peaked domain with respect to
L, we assume without loss of generality that the integer ordering< is in the setL.

Definition 4.4.7 Let SL be a non-trivial multiple single-peaked domain with respect
to a set of prior orders L. Then, alternatives u, v ∈ X with u < v − 1 are called
break-points of SL if

(i) for all preferences P ∈ SL and all c, d ∈ X\(u, v),
[
d < c ≤ r1(P) or r1(P) ≤

c < d
]
implies cPd, and

(ii) there exist P, P′ ∈ SL such that r1(P) = u, r2(P) ∈ (u + 1, v], r1(P′) = v,
and r2(P′) ∈ [u, v − 1).

Remark 4.4.1 The break points, say u, v, of a non-trivial multiple single-peaked do-
main SL induce the partition {XL,XM,XR} of X, where XL = [a, u), XM = [u, v],
and XR = (v, b]. [67] calls such a partition the maximal common decomposition of X
and the sets XL, XM, and XR as the left component, the middle component, and the right
component of alternatives, respectively.
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In the following, we illustrate thenotionof break-points of a non-trivialmultiple
single-peaked domain by means of an example.

Example 4.4.3 Let X = {x1, x2, x3, x4, x5, x6, x7} be the set of alternatives. Con-
sider the set of prior orders L = {<,≺1,≺2,≺3}, where <= x1x2x3x4x5x6x7, ≺1=

x1x2x3x5x4x6x7,≺2= x1x2x5x4x3x6x7, and≺3= x1x2x4x3x5x6x7. Let SL be the multi-
ple single-peaked domain with respect toL. Clearly,SL is non-trivial since S̄≺1 ̸= S̄≺2 .
We claim u = x2 and v = x6 are the break points ofSL. It is easy to verify thatSL satis-
fies Condition (i) in Definition 4.4.7. For Condition (ii), note that we have preferences
P, P′ ∈ S̄≺2 ⊆ SL where r1(P) = x2, r2(P) = x5, r1(P′) = x6, and r2(P′) = x3.
Further, note that the maximal common decomposition of X is given by XL = {x1},
XM = {x2, x3, x4, x5, x6}, and XR = {x7}.

It can be easily verified that every non-trivialmultiple single-peaked domain is a
partially single-peaked domain where x and x are the break-points. Thus, we have
the following corollary.

Corollary 4.4.3 ([67]) Let SL be a non-trivial multiple single-peaked domain with
break-points x and x. Then, an SCF f : Sn

L → X is unanimous and (group) strategy-
proof if and only if it is a PDMMR.

4.4.4 Single-peaked Domains on Graphs

In this subsection, we introduce the notion of single-peaked domains on graphs
and show that such a domain is partially single-peaked if the underlying graph sat-
isfies some condition. All the graphs we consider in this subsection are undirected.

Definition 4.4.8 A path in an undirected graph G = ⟨X, E⟩ from a node x to a
node y, denoted by πG(x, y), is defined as a sequence of nodes (x1, . . . , xk) such that
{xi, xi+1} ∈ E for all i = 1, . . . , k − 1. An undirected graph G = ⟨X, E⟩ is called
connected if for all x, y ∈ X, there is a path from x to y.
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Definition 4.4.9 An undirected graph G = ⟨X, E⟩ is called a tree if for every two
distinct nodes x, y ∈ X, there is a unique path from x to y. A spanning tree of an undi-
rected connected graph G is defined as a connected subgraph of G that is a tree. For an
undirected connected graph G, we denote by TG the set of all spanning trees of G.

Definition 4.4.10 Let T = ⟨X, E⟩ be a tree. Then, a domain is called single-peaked
with respect to T, denoted by ST, if for all P ∈ ST and all distinct x, y ∈ X,

[x ∈ πT(r1(P), y)] =⇒ [xPy].

Definition 4.4.11 Let G = ⟨X, E⟩ be an undirected connected graph. Then, a do-
main is called single-peaked with respect to G, denoted by SG, if SG = ∪T∈TGST.

Note that if T is the undirected line graph on X, then ST is the maximal single-
peaked domain. In Lemma 4.4.1, we show that if a domain is single-peaked with
respect to an undirected partial line graph as defined in Definition 4.2.4, then it is
a partially single-peaked domain.

Lemma 4.4.1 Let G be an undirected partial line graph. Then,SG is a partially single-
peaked domain.

Proof: Let G be an undirected partial line graph. We show that SG is a partially
single-peakeddomain. LetG = G1∪G2, whereG1 = ⟨X, E1⟩ is the undirected line
graph onX andG2 = ⟨[x, x], E2⟩ is an undirected graph such that {x, y}, {x, z} ∈
E2 for some y ∈ (x + 1, x] and z ∈ [x, x − 1).

First, we show that SG satisfies single-peakedness outside [x, x]. Take P ∈ SG

with r1(P) ∈ [x, x] and take u, v ∈ X \ (x, x). Suppose [v < u ≤ r1(P) or r1(P) ≤
u < v]. Consider an arbitrary spanning tree T of G. Then, by the definition of G,
u ∈ πT(r1(P), v), and hence uPv. Therefore, P satisfies single-peakedness outside
[x, x]. Using a similar argument, it can be shown that a preference P with r1(P) /∈
[x, x] satisfies single-peakedness outside [x, x].

Next, we show that SG violates single-peakedness over [x, x]. Consider the tree
T = ⟨X, E⟩ such that E = (E1 \ {x, x + 1}) ∪ {x, y}. Since G1 = ⟨X, E1⟩ is
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the undirected line graph on X, T is a spanning tree of G. Because {x, y} ∈ E,
there is a preference Q = xy . . . ∈ ST ⊆ SG. Similarly, there is a preference
Q′ = xz . . . ∈ SG. If y ̸= x and z ̸= x, then clearly Q and Q′ satisfy Definition
4.2.9. On the other hand, if, for instance, y = x, then that means there is an edge
{x, x} in G, and consequently, z can be chosen as x. This shows SG violates single-
peakedness over [x, x].

Now, we show that SG contains a top-connected single-peaked domain. Since
G1 is the undirected line graph on X, SG1 is the maximal single-peaked domain.
Moreover, since G1 is a spanning tree of G, SG1 ⊆ SG. This completes the proof of
the lemma. ■

CombiningTheorem4.3.1 andTheorem4.3.2 with Lemma 4.4.1, we obtain the
following characterization of the unanimous and strategy-proof SCFs on a single-
peaked domain with respect to an undirected partial line graph.

Corollary 4.4.4 Let G = ⟨X, E⟩ be an undirected partial line graph. Suppose SG is
the single-peaked domain with respect to G. Then, an SCF f : Sn

G → X is unanimous
and (group) strategy-proof if and only if it is a PDMMR.

4.5 Conclusion

In this chapter, we have considered non-single-peaked domains that arise in the
literature of economics and political science. We have modelled them as partially
single-peakeddomains andhave characterized all unanimous and(group) strategy-
proof rules on those as PDMMR.

4.6 Proof of Theorem 4.3.1

Weuse the following theorem inChapter 3 in theproof ofTheorem4.3.1. It charac-
terizes the unanimous and strategy-proof SCFs on a top-connected single-peaked
domain as min-max rules.
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Theorem 4.6.1 (Theorem 3.4.1) Let S be a top-connected single-peaked domain.
Then, an SCF f : Sn → X is unanimous and strategy-proof if and only if it is amin-max
rule.

Proof:[Proof ofTheorem4.3.1] (If part) Let S̃ be a partially single-peaked domain.
Suppose fβ be a PDMMR on S̃n. Then, fβ is unanimous by definition. We show
that fβ is strategy-proof. Let d be the partial dictator of fβ. If r1(Pd) ∈ [x, x],
then fβ(PN) = r1(Pd), and hence fβ cannot be manipulated at a preference pro-
file PN ∈ S̃n. Take PN ∈ S̃n such that r1(Pd) ∈ [a, x). Then, by Lemma 4.3.1,
fβ(PN) ∈ [a, x]. Take i ∈ N such that r1(Pi) ≤ fβ(PN). By the definition of fβ,
fβ(P′

i, PN\i) ≥ fβ(PN) for all P′
i ∈ S̃ . Since fβ(PN) ≤ x, by the definition of a par-

tially single-peaked domain, r1(Pi) ≤ fβ(PN)means fβ(PN)Piu for all u > fβ(PN).
Therefore, agent i cannot manipulate fβ at PN. By a symmetric argument, agent i
cannotmanipulate fβ at a preference profile where r1(Pi) ≥ fβ(PN). Using a similar
argument, it follows that fβ cannot be manipulated at a preference profile PN with
r1(Pd) ∈ (x, b]. This completes the proof of the if part.

(Only-if part) Let S̃ be a partially single-peaked domain. Suppose f : S̃n → X
is a unanimous and strategy-proof SCF. We show that f is a PDMMR. Let S be a
top-connected single-peakeddomain contained in S̃ . Such a domainmust exist by
Definition 4.2.10. ByTheorem4.6.1, f restricted toSn must be amin-max rule. We
establish a few properties of f in the following sequence of lemmas. As mentioned
earlier, weuse thenotationS in all these lemmas todenote a (fixed) top-connected
single-peaked domain contained in S̃ .

Ournext lemmaand its corollary show that f satisfies tops-onlyness for a particu-
lar type of preference profiles. It says the following. Let cbe an arbitrary alternative.
Consider a preference profile PN such that for all i ∈ N, Pi is single-peaked and
r1(Pi) ∈ {x, c}. Suppose the outcome of f at PN is c. Consider a tops-equivalent
preference profile P′

N where the agents with top-ranked alternative c in PN do not
change their preferences in P′

N. Then, the outcome of f at P′
N must be c.

Lemma 4.6.1 Let ∅ ⊊ S ⊊ N and let c ∈ X. Suppose (PS, PN\S) ∈ Sn and
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(P′
S, PN\S) ∈ S̃n are two tops-equivalent preference profiles such that r1(Pi) = x for all

i ∈ S, and r1(Pj) = c for all j ∈ N\S. Then, f(PS, PN\S) = c implies f(P′
S, PN\S) = c.

Proof: Take S such that ∅ ⊊ S ⊊ N. We prove the lemma using induction on
|c− x|. By unanimity, the lemma holds for c = x. Suppose the lemma holds for all
c such that |c−x| ≤ k. We prove the lemma for all c such that |c−x| = k+ 1. Take
c such that |c− x| = k+ 1. Let (PS, PN\S) ∈ Sn and (P′

S, PN\S) ∈ S̃n be two tops-
equivalent preference profiles such that r1(Pi) = x for all i ∈ S, and r1(Pj) = c for
all j ∈ N\S. Suppose f(PS, PN\S) = c. We show f(P′

S, PN\S) = c. We show this for
x < c, the proof for the case x > c is similar. Since x < c and |c − x| = k + 1, we
have c = x+ k+ 1. Let (PS, P̂N\S) ∈ Sn be such that P̂j = (x+ k)(x+ k+ 1) . . .
for all j ∈ N\S. Because f is amin-max rule onSn and f(PS, PN\S) = x+k+ 1, we
have f(PS, P̂N\S) = x+ k. Since (PS, P̂N\S) and (P′

S, P̂N\S) are tops-equivalent and
r1(P̂j) = x+k for all j ∈ N\S, we have by the induction hypothesis, f(P′

S, P̂N\S) =

x+k. For all j ∈ N\S, let P̄j = (x+k+1)(x+k) . . . ∈ S . Since f(P′
S, P̂N\S) = x+k,

by moving the agents j ∈ N \ S from P̂j to P̄j one-by-one and applying strategy-
proofness at every step, we have f(P′

S, P̄N\S) ∈ {x + k, x + k + 1}. We claim
f(P′

S, P̄N\S) = x + k + 1. Assume for contradiction that f(P′
S, P̄N\S) = x + k.

Recall that Pi ∈ S for all i ∈ S. Since (x + k)Pi(x + k + 1) for all i ∈ S, by
moving the agents i ∈ S from P′

i to Pi one-by-one and applying strategy-proofness
at every step, we have f(PS, P̄N\S) ≤ x + k. Since r1(Pj) = r1(P̄j) = x + k + 1
for all j ∈ N \ S, by strategy-proofness, f(PS, PN\S) ̸= x + k + 1. This contradicts
our assumption that f(PS, PN\S) = x + k + 1. Therefore, f(P′

S, P̄N\S) = x + k + 1.
Since r1(Pj) = r1(P̄j) = x+ k+ 1 for all j ∈ N \ S, we have by strategy-proofness,
f(P′

S, PN\S) = x + k + 1. This completes the proof of the lemma. ■

Corollary 4.6.1 Let ∅ ⊊ S ⊊ N and let c ∈ X. Suppose (PS, PN\S) ∈ Sn and
(P′

S, PN\S) ∈ S̃n are two tops-equivalent preference profiles such that r1(Pi) = x for all
i ∈ S, and r1(Pj) = c for all j ∈ N\S. Then, f(PS, PN\S) = c implies f(P′

S, PN\S) = c.

Our next lemma shows that the outcome of f at a boundary preference profile
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cannot be strictly in-between x and x.⁷

Lemma 4.6.2 Let PN ∈ S̃n be such that r1(Pi) ∈ {a, b} for all i ∈ N. Then,
f(PN) /∈ (x, x).

Proof: Assume for contradiction that f(PN) = u ∈ (x, x) for some PN ∈ S̃n such
that r1(Pi) ∈ {a, b} for all i ∈ N. Let S = {i ∈ N | r1(Pi) = a}. Then, it must
be that ∅ ⊊ S ⊊ N as otherwise we are done by unanimity. Let r2(Q) = y and
r2(Q′) = z, whereQ,Q′ ∈ S̃ are as given inDefinition 4.2.9. We distinguish three
cases based on the relative positions of y, z, and u.

Case 1. Suppose y ∈ (x + 1, x), z ∈ (x, x − 1), and u ∈ (x, z] ∪ [y, x).
We consider the case where u ∈ (x, z], the proof for the case where u ∈ [y, x)

follows from a symmetric argument. Let P′
N ∈ Sn be such that r1(P′

i) = z for all
i ∈ S, and P′

j = (x − 1)(x) . . . for all j ∈ N \ S. Further, let P̂N ∈ Sn be such that
r1(P̂i) = x for all i ∈ S and r1(P̂j) = x+ 1 for all j ∈ N \ S. Because f is a min-max
rule on Sn and f(PS, PN\S) = u, we have f(P′

S, P
′
N\S) = z and f(P̂S, P̂N\S) = x + 1.

As f(P̂S, P̂N\S) = x + 1, by Lemma 4.6.1, we have f(QS, P̂N\S) = x + 1, where
Qi = Q for all i ∈ S. Consider the preference profile (Q′

S, P
′
N\S), where Q′

i = Q′

for all i ∈ S. Note that f(P′
S, P

′
N\S) = z and Q′ = xz . . .. Therefore, by mov-

ing the agents i ∈ S from P′
i to Q′ one-by-one and using strategy-proofness at

every step, we have f(Q′
S, P

′
N\S) ∈ {x, z}. We claim f(Q′

S, P
′
N\S) = x. Assume

for contradiction that f(Q′
S, P

′
N\S) = z. Since xP′

jz for all j ∈ N \ S, by moving
the agents j ∈ N \ S from P′

j to Q′ one-by-one and applying strategy-proofness
at every step, we have f(Q′

S,Q
′
N\S) ̸= x. However, this contradicts unanimity.

So, f(Q′
S, P

′
N\S) = x. For all i ∈ S, let P̃i ∈ S be such that r1(P̃i) = x. By

strategy-proofness, f(P̃S, P′
N\S) = x. Since f is a min-max rule on Sn, this means

f(P̃S, P̂N\S) = x. For all i ∈ S, let P̃′
i ∈ S be such that r1(P̃′

i) = y. Because
(P̃S, P̂N\S), (P̃′

S, P̂N\S) ∈ Sn and f is amin-max rule onSn, f(P̃S, P̂N\S) = x implies
f(P̃′

S, P̂N\S) = y. Because f(P̃′
S, P̂N\S) = y and Q = xy . . ., by moving the agents

i ∈ S from P̃′
i to Q one-by-one and applying strategy-proofness at every step, we

⁷A boundary preference profile is one where the top-ranked alternative of each agent is either a
or b.
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have f(QS, P̂N\S) ∈ {x, y}. Since {x + 1} ∩ {x, y} = ∅ by our assumption, this
is a contradiction to our earlier finding f(QS, P̂N\S) = x + 1. This completes the
proof of the lemma for Case 1.

Case 2. Suppose y ∈ (x + 1, x), z ∈ (x, x − 1), z < y − 1, and u ∈ (z, y).
Let P′

N, P̂N ∈ Sn be such that r1(P′
i) = y and r1(P̂i) = x for all i ∈ S, and

r1(P′
j) = x and r1(P̂j) = z for all j ∈ N \ S. Because f is a min-max rule on Sn and

f(PS, PN\S) = u, we have f(P′
S, P

′
N\S) = y and f(P̂S, P̂N\S) = z. As f(P̂S, P̂N\S) = z,

by Lemma 4.6.1, we have f(QS, P̂N\S) = z, where Qi = Q for all i ∈ S. Again, as
f(P′

S, P
′
N\S) = y, by Corollary 4.6.1, we have f(P′

S,Q
′
N\S) = y, where Q′

j = Q′ for
all j ∈ N \ S. Because f(QS, P̂N\S) = z and Q′ = xz . . ., by moving the agents
j ∈ N \ S from P̂j to Q′ one-by-one and using strategy-proofness at every step,
we have f(QS,Q′

N\S) ∈ {x, z}. Again, because f(P′
S,Q

′
N\S) = y, Q = xy . . ., by

moving the agents i ∈ S from P′
i to Q one-by-one and using strategy-proofness

at every step, we have f(QS,Q′
N\S) ∈ {x, y}. Since {x, y} ∩ {x, z} = ∅ by our

assumption, this is a contradiction. This completes the proof of the lemma for
Case 2.

Case 3. Suppose y = x, z = x, and u ∈ (z, y).
Let P′

N ∈ Sn be such that r1(P′
i) = x for all i ∈ S and r1(P′

j) = x for all
j ∈ N \ S. Because f is a min-max rule on Sn and f(PS, PN\S) = u, we have
f(P′

S, P
′
N\S) = u. Take i ∈ N and consider the preference profile (Qi, P′

S\i, P
′
N\S),

where Qi = Q. Since r1(P′
i) = r1(Qi) = x and f(P′

S, P
′
N\S) ̸= x, by strategy-

proofness, f(Qi, P′
S\i, P

′
N\S) ̸= x. Continuing in this manner, it follows that f(QS,

P′
N\S) ≠ x, where Qi = Q for all i ∈ S. Moreover, since r2(Qi) = x for all

i ∈ S and r1(P′
j) = x for all j ∈ N \ S, by unanimity and strategy-proofness,

f(QS, P′
N\S) ∈ {x, x}. Since f(QS, P′

N\S) ̸= x, this means f(QS, P′
N\S) = x. Let

Q′
j = Q′ for all j ∈ N \ S. As f(QS, P′

N\S) = x and r1(Q′) = x, by strategy-
proofness, f(QS,Q′

N\S) = x. Now, if we first move the agents j ∈ N \ S from P′
j

to Q′ and then move the agents i ∈ S from P′
i to Q, then it follows from a similar

argument that f(QS,Q′
N\S) = x. Since x ̸= x, this is a contradiction to our earlier

finding that f(QS,Q′
N\S) = x. This completes the proof of the lemma for Case 3.
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Since Cases 1, 2 and 3 are exhaustive, this completes the proof of the lemma. ■

Let (βS)S⊆N be the parameters of f restricted toSn. In Lemma 4.6.3 and Lemma
4.6.4, we establish a few properties of these parameters.

Lemma 4.6.3 For all S ⊆ N, βS ∈ [a, x] if and only if βN\S ∈ [x, b].

Proof: Take S ⊆ N. It is enough to show that βS ∈ [a, x] implies βN\S ∈ [x, b].
Assume for contradiction that βS, βN\S ∈ [a, x]. Let Q′ ∈ S̃ with r1(Q′) = x
be as given in Definition 4.2.9. Suppose r2(Q′) = z. Take u ∈ (z, x). Let
(PS, PN\S) ∈ Sn be such that r1(Pi) = a for all i ∈ S and r1(Pj) = b for all
j ∈ N \ S. Since f restricted to Sn is a min-max rule, f(PS, PN\S) = βS ∈ [a, x].
Let (P′

S, P
′
N\S) ∈ Sn be such that r1(P′

i) = z for all i ∈ S and r1(P′
j) = u for all

j ∈ N \ S. Since f(PS, PN\S) ∈ [a, x], by uncompromisingness of f restricted to
Sn, we have f(P′

S, P
′
N\S) = z. Because Q′ = xz . . ., by moving the agents i ∈ S

one-by-one from P′
i to Q′ and applying strategy-proofness at every step, we have

f(Q′
S, P

′
N\S) ∈ {x, z}, where Q′

i = Q′ for all i ∈ S.
Now, let (P̄S, P̄N\S) ∈ Sn be such that r1(P̄i) = b for all i ∈ S and r1(P̄j) = a for

all j ∈ N\S. Again, since f restricted toSn is amin-max rule, f(P̄S, P̄N\S) = βN\S ∈
[a, x]. Recall that for j ∈ N\S, P′

j ∈ S with r1(P′
j) = u. Consider (P′′

S , P
′
N\S) ∈ Sn

such that r1(P′′
i ) = x for all i ∈ S. Since f(P̄S, P̄N\S) ∈ [a, x], by uncompromising-

ness of f restricted to Sn, we have f(P′′
S , P

′
N\S) = u. Because r1(P′′

i ) = x = r1(Q′)

for all i ∈ S, by Corollary 4.6.1, it follows that f(Q′
S, P

′
N\S) = u. However, as

u /∈ {x, z}, this is a contradiction to our earlier finding that f(Q′
S, P

′
N\S) ∈ {x, z}.

This completes the proof of the lemma. ■

The following lemma says that there is exactly one agent i such that βi ∈ [a, x].

Lemma 4.6.4 It must be that |{i ∈ N | βi ∈ [a, x]}| = 1.

Proof: Suppose there are i ̸= j ∈ N such that βi, βj ∈ [a, x]. By Lemma 4.6.3,
βi ∈ [a, x] implies βN\i ∈ [x, b]. Since j ∈ N \ i and βT ≤ βS for all S ⊆ T,
βN\i ∈ [x, b] implies βj ∈ [x, b], a contradiction. Hence, there can be at most one
agent i ∈ N such that βi ∈ [a, x].
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Now, suppose βi ∈ [x, b] for all i ∈ N. ByLemma4.6.3, thismeans βN\i ∈ [a, x]
for all i ∈ N. Therefore, there must be S ⊆ N such that βS ∈ [a, x] and for all
S′ ⊊ S, βS′ ∈ [x, b]. By unanimity, S ̸= ∅. If S is singleton, say {i} for some i ∈ N,
then βi ∈ [a, x] and we are done. So assume that there are j ̸= k ∈ S.

Consider the preference profile PN ∈ Sn such that r1(Pj) = x + 1, r2(Pj) = x,
r1(Pi) = y for all i /∈ S, and r1(Pi) = x for all i ∈ S \ j. Since βS ∈ [a, x]
and βS′ ∈ [x, b] for all S′ ⊊ S, it follows from the definition of a min-max rule
that f(PN) = x + 1. Let P′

k ∈ S be such that r1(P′
k) = y. Since βS\k ∈ [x, b]

and f restricted to Sn is a min-max rule, it follows that f(P′
k, PN\k) = y. Consider

the preference profile (Qk, PN\k), where Qk = Q. Because f(P′
k, PN\k) = y and

Qk = xy . . ., by strategy-proofness, f(Qk, PN\k) ∈ {x, y}. Suppose f(Qk, PN\k) =

x. Because f(PN) = x+ 1 and r1(Pk) = x, this means agent kmanipulates at PN via
Qk. So, f(Qk, PN\k) = y. Let P′

j ∈ S be such that r1(P′
j) = x. Since βS ∈ [a, x] and

x is the top-ranked alternative of the agents in S at preference profile (P′
j, PN\j), we

have f(P′
j, PN\j) = x. As r1(Pk) = r1(Qk) = x, this means f(P′

j,Qk, PN\{j,k}) = x.
Because f(Qk, PN\k) = y, r1(Pj) = x + 1, and r2(Pj) = x, agent j manipulates at
(Qk, PN\k) via P′

j . This completes the proof of the lemma. ■

Remark 4.6.1 By Lemma 4.6.3 and Lemma 4.6.4, it follows that f restricted to Sn is
a PDMMR.

Our next lemma establishes that f is uncompromising.⁸ First, we introduce few
notations that we use in the proof of the lemma. For PN ∈ S̃n, let Ñ(PN) = {i ∈
N | Pi /∈ S} be the set of agents who do not have single-peaked preferences at
PN. Moreover, for 0 ≤ l ≤ n, let S̃n

l = {PN ∈ S̃n | |Ñ(PN)| ≤ l} be the set
of preference profiles where at most l agents have non-single-peaked preferences.
Note that S̃n

0 = Sn and S̃n
n = S̃n.

Lemma 4.6.5 The SCF f is uncompromising.

⁸Since every SCF satisfying uncompromisingness is tops-only, Lemma 4.6.5 shows that a par-
tially single-peaked domain is a tops-only domain. It can be easily verified that partially single-
peaked domains fail to satisfy the sufficient conditions for a domain to be tops-only identified in
[20] and [22].
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Proof: Since S̃n
0 = Sn, f restricted to S̃n

0 is uncompromising. Suppose f restricted
to S̃n

k is uncompromising for some k < n. We show that f restricted to S̃n
k+1 is

uncompromising. It is enough to show that f restricted to S̃n
k+1 is tops-only. To see

this, note that if f restricted to S̃n
k+1 is tops-only, then f is uniquely determined on

S̃n
k+1 by its outcomes onSn. Therefore, since f restricted toSn is uncompromising,

f is uncompromising on S̃n
k+1.

Take PN ∈ S̃n
k+1 and j ∈ Ñ(PN). Let P̂j ∈ S be such that r1(P̂j) = r1(Pj).

Then, PN and (P̂j, PN\j) are tops-equivalent and (P̂j, PN\j) ∈ S̃n
k . It is sufficient to

show that f(PN) = f(P̂j, PN\j). Assume for contradiction that f(PN) ̸= f(P̂j, PN\j).
Assume, without loss of generality, that the partial dictator of f restricted to Sn

is agent 1. Then, by the induction hypothesis, agent 1 is the partial dictator of f
restricted to S̃n

k , i.e., for all PN ∈ S̃n
k , if r1(P1) ∈ [a, x) then f(PN) ∈ [a, x], if

r1(P1) ∈ (x, b] then f(PN) ∈ [x, b], and if r1(P1) ∈ [x, x] then f(PN) = r1(P1). We
distinguish two cases based on the position of the top-ranked alternative of agent
1.

Case 1. Suppose r1(P1) ∈ [a, x) ∪ (x, b].
Weconsider the casewhere r1(P1) ∈ [a, x), theproof for the casewhere r1(P1) ∈

(x, b] follows fromsymmetric arguments. Since r1(P1) ∈ [a, x), wehave f(P̂j, PN\j) ∈
[a, x]. Because P̂j is single-peaked, if f(P̂j, PN\j) < f(PN) ≤ r1(P̂j) or r1(P̂j) ≤
f(PN) < f(P̂j, PN\j), then agent j manipulates at (P̂j, PN\j) via Pj. Moreover, since
f(P̂j, PN\j) ∈ [a, x], if f(PN) < f(P̂j, PN\j) ≤ r1(P̂j) or r1(Pj) ≤ f(P̂j, PN\j) < f(PN),
then by the definition of a partially single-peaked domain, agent j manipulates at
(Pj, PN\j) via P̂j. Now, suppose f(P̂j, PN\j) < r1(P̂j) < f(PN). Let P̄j ∈ S be such
that r1(P̄j) = f(PN). Since f restricted to S̃n

k is uncompromising and f(P̂j, PN\j) <

r1(P̂j) < r1(P̄j), we have f(P̄j, PN\j) = f(P̂j, PN\j). Because r1(P̄j) = f(PN), it fol-
lows that agent j manipulates at (P̄j, PN\j) via Pj. Using a similar argument, it can
be shown that f(PN) < r1(P̂j) < f(P̂j, PN\j) leads to a manipulation by agent j.
Therefore, f(PN) = f(P̂j, PN\j) when r1(P1) ∈ [a, x). This completes the proof of
the lemma for Case 1.

Case 2. Suppose r1(P1) ∈ [x, x].
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Since agent 1 is the partial dictator, f(P̂j, PN\j) = r1(P1). Consider P̄j ∈ S
such that r1(P̄j) = f(PN). Since (P̄j, PN\j) ∈ S̃n

k , by the induction hypothesis,
we have f(P̄j, PN\j) = r1(P1). Because r1(P̄j) = f(PN) and f(P̄j, PN\j) = r1(P1) ̸=
f(PN), agent j manipulates at (P̄j, PN\j) via Pj. Therefore, f(PN) = f(P̂j, PN\j)when
r1(P1) ∈ [x, x]. This completes the proof of the lemma for Case 2.

Since Cases 1 and 2 are exhaustive, this completes the proof of the lemma by
induction. ■

Now, we complete the proof of the only-if part of Theorem 4.3.1. Since f is
uncompromising on S̃n and uncompromisingness implies tops-onlyness, the fact
that f restricted to Sn is a min-max rule with parameters (βS)S⊆N satisfying the
properties as stated in Lemma 4.6.3 and Lemma 4.6.4 implies that f is a PDMMR
on S̃n. ■

90



5
On Strategy-proofness and

Uncompromisingness

5.1 Introduction

5.1.1 Background of the problem

The single-peaked restriction, introduced in [15], is by far the most endur-
ing theme in the literature on domain restrictions in strategy-proof social choice.
Loosely put, a preference over a set of alternatives, given a prior ordering over this
set, is called single-peaked if it decreases as onemoves away (according to the prior
order) from its top-ranked alternative. Such preference restrictions arise naturally
in many economic and political applications such as in the models of locating a
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firm in a unidimensional spatial market ([46]), setting the rate of carbon dioxide
emissions ([15]), and setting the level of public expenditure ([69]).

[54] and [86] characterize the unanimous and strategy-proof social choice func-
tions (SCF)on these domains asmin-max rules. [86] shows thatmin-max rules sat-
isfy a well-known property called uncompromisingness ([17]). An SCF satisfies
uncompromisingness if no agent can take an extreme position to influence the social
outcome to their advantage. In Chapter 3, it is shown that top-connected single-
peaked domains are the only domains where the set of unanimous and strategy-
proof SCFs coincidewith that of allmin-max rules. In otherwords, top-connected
single-peaked domains are the only domains on which unanimity and strategy-
proofness are equivalent to uncompromisingness.

5.1.2 Our motivation

Thecharacterization result in [54] and [86]makes the implicit assumption that the
underlying domain is maximal single-peaked, i.e., it admits all single-peaked prefer-
ences. The maximality assumption in [54] and [86] is quite unrealistic as is seen
in the models of voting ([84], [5]), taxation and redistribution ([38]), determin-
ing the levels of income redistribution ([44], [79]), and measuring tax reforms
in the presence of horizontal inequity ([45]). Chapter 3 relaxes this maximality
assumption by considering top-connected single-peaked domains. However, the
following examples suggest that the domain restrictions in several practical scenar-
ios are not top-connected single-peaked.

(i) Directional theories of issue voting: [64], [66], and [65] consider mod-
els of electoral competition where voters react to policies or ideologies in
a symbolic way. Such a reaction will have two components: (i) direction,
and (ii) intensity. For example, consider a situation where the government
is setting the level of public expenditure in the education sector. Let us rep-
resent the intensity of such an expenditure using integers between −5 to
5. Negative (or positive) values represent decreasing (or increasing) the
existing level of public expenditure whereas the integer zero represents the
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neutral position, i.e., maintain the status quo level of expenditure. In such
a setting, it is expected that if an individual’s most preferred level of expen-
diture is negative then he would prefer a level of expenditure to its left to
one to its right. Such preferences are known as left single-peaked preferences
([61]) where every alternative to the left of its top-ranked alternative is pre-
ferred to the ones to the right. Similarly, one can introduce the notion of
right single-peaked preferences. Thus, the relevant domain restriction in this
example would be that the preferences are left single-peaked when the top-
ranked alternative is a negative value, they are right single-peaked when the
top-ranked alternative is a positive value, and they are single-peaked when
the top-ranked alternative is zero. It is straightforward to see that such do-
mains are neither single-crossing nor top-connected single-peaked.

(ii) One-dimensionalEuclideandomains: [26] introduces thenotionof one-
dimensional Euclidean domains. They arise in situations where individuals
in a society collectively choose the location of a new facility, such as a bus
stop or a library, and want it as close to their own locations as possible. For
example, consider the situationwhere a social planner is proposing to locate
a bus stop. In such situations, it is natural that an individual will prefer a
location to another if the physical distance of the former is lesser than the
latter. Thus, the crucial property of the preferences that arise here is that
they are determined by the Euclidean distance. Clearly, top-connectedness
is not guaranteed in such situations.

In view of this, our primary motivation is to provide a general characterization
of the unanimous and strategy-proof SCFs on arbitrary single-peaked domains.

5.1.3 Our contribution

First, we show that an SCF is unanimous and strategy-proof on an arbitrary single-
peaked domain if and only if it is weakly uncompromising. Weak uncompromis-
ingness implies that whenever an agent’s top-ranked alternative moves closer to
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the outcome, the outcome does not change. Moreover, if an agent moves his top-
ranked alternative away from the outcome, the outcome can change only in a re-
strictedway. We show that if a domain is top-connected, thenweak uncompromis-
ingness boils down to uncompromisingness, and consequently, the set of unani-
mous and strategy-proof SCFs coincide with that of min-max rules.

Next, we provide a parametric characterization of the unanimous and strategy-
proof SCFs. We observe that parametrically characterizing strategy-proof rules un-
der the requirement of unanimity is a hard problem as it involves a huge set of
parameters. Hence, we restrict our attention to anonymous SCFs. A social choice
function is called anonymous if it is outcome equivalent at any two anonymous pro-
files. A pair of preference profiles is called anonymous if one profile can be obtained
from the other by permuting the set of individuals. We introduce a class of SCFs,
called sequentially median rules, and show that these rules are unanimous, anony-
mous and strategy-proof on arbitrary single-peaked domains. Further, in a setting
with atmost three players, we show that sequentially median rules characterize the
set of unanimous, anonymous, and strategy-proof SCFs on arbitrary single-peaked
domains.

Lastly, bymeans of examples, weprovide a general algorithm to construct unani-
mous, anonymous and strategy-proof SCFs using weak uncompromisingness. We
also observe that the algorithm can be extended to the case of non-anonymous
SCFs in a straightforward manner.

5.1.4 Remainder

The rest of the chapter is organized as follows. We describe the usual social choice
framework in Section 5.2. Section 5.3 studies the unanimous and strategy-proof
SCFs on single-peaked domains and Section 5.5 provides a parametric characteri-
zation of such anonymous SCFs. Section 5.6 provides a general algorithm to con-
struct unanimous and strategy-proof rules using the notion ofweak uncompromis-
ingness and Section 5.7 concludes the chapter. All the omitted proofs are collected
in the Appendix.
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5.2 Preliminaries

Let N = {1, ..., n} be a set of at least two agents, who collectively choose an ele-
ment from a finite set A = {a, a + 1, . . . , b − 1, b} of at least three alternatives,
where a is an integer. For x, y ∈ A, we define the intervals [x, y] = {z ∈ A |
x ≤ z ≤ y or y ≤ z ≤ x}, [x, y) = [x, y] \ {y}, (x, y] = [x, y] \ {x}, and
(x, y) = [x, y] \ {x, y}. For notational convenience, whenever it is clear from the
context, we do not use braces for singleton sets, i.e., we denote sets {i} by i.

A preference PoverA is a complete, transitive, and antisymmetric binary relation
(also called a linear order) defined on A. The upper-contour set (lower-contour set)
of P at an alternative x ∈ A, denoted by U(P, x) (L(P, x)), is given by U(P, x) =
{y ∈ A | yPx} ∪ {x} (L(P, x) = {y ∈ A | xPy} ∪ {x}). We denote byL(A) the
set of all preferences overA. An alternative x ∈ A is called the kth ranked alternative
in a preferenceP ∈ L(A), denoted by rk(P), if |{a ∈ X | aPx}| = k−1. A domain
of admissible preferences, denoted by D, is a subset of L(A). For B ⊆ A and a
domainD,DB = {P ∈ D | r1(P) ∈ B}. An element PN = (P1, . . . , Pn) ∈ Dn is
called a preference profile. The top-set of a preference profile PN, denoted by τ(PN),
is defined as τ(PN) = {x ∈ A | r1(Pi) = x for some i ∈ N}. A domain D of
preferences is regular if for all x ∈ X, there exists a preference P ∈ D such that
r1(P) = x. All the domains we consider in this chapter are assumed to be regular.

Definition 5.2.1 A social choice function (SCF) f onDn is a mapping f : Dn → A.

Definition 5.2.2 An SCF f : Dn → A is unanimous if for all PN ∈ Dn such that
r1(Pi) = x for all i ∈ N and some x ∈ A, we have f(PN) = x.

Definition 5.2.3 An SCF f : Dn → A is manipulable if there exists i ∈ N, PN ∈
Dn, and P

′

i ∈ D such that f(P
′

i , PN\i)Pif(PN). An SCF f is strategy-proof if it is not
manipulable.

Definition 5.2.4 An SCF f : Dn → A is called dictatorial if there exists i ∈ N such
that for all PN ∈ Dn, f(PN) = r1(Pi).
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Definition 5.2.5 A domain D is called dictatorial if every unanimous and strategy-
proof SCF f : Dn → A is dictatorial.

Definition 5.2.6 Twopreference profiles PN, P′
N are called tops-equivalent if r1(Pi) =

r1(P′
i) for all agents i ∈ N.

Definition 5.2.7 AnSCF f : Dn → A is called tops-only if for any two tops-equivalent
PN, P′

N ∈ Dn, f(PN) = f(P′
N).

Definition 5.2.8 A domain D is called tops-only if every unanimous and strategy-
proof SCF f : Dn → A is tops-only.

5.3 SCFs on arbitrary single-peaked domains

In this section,weprovide a characterizationof theSCFsonarbitrary single-peaked
domains.

Definition 5.3.1 A preference P ∈ L(A) is called single-peaked if for all x, y ∈ A,
[x < y ≤ r1(P) or r1(P) ≤ y < x] implies yPx. A domain S is called a single-peaked
domain if each preference in it is single-peaked, and a domain S̄ is called a maximal
single-peaked domain if it contains all single-peaked preferences.

Definition 5.3.2 Let S be a single-peaked domain. An SCF f : Sn → A satisfies the
Pareto property if for all PN ∈ Sn,min(τ(PN)) ≤ f(PN) ≤ max(τ(PN)).

Definition 5.3.3 Let S be a single-peaked domain. Let β = (βS)S⊆N be a list of 2n

parameters satisfying: (i) βS ∈ A for all S ⊆ N, (ii) β∅ = b, βN = a, and (iii) for any
S ⊆ T, βT ≤ βS. Then, an SCF fβ : Sn → A is called a min-max rule with respect to
β if

fβ(PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}.

Next, we introduce the notion of uncompromisingness.
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Definition 5.3.4 Let S be a single-peaked domain. An SCF f : Sn → A is called
uncompromising if for all PN ∈ Sn, all i ∈ N, and all P′

i ∈ S:

(i) if r1(Pi) < f(PN) and r1(P′
i) ≤ f(PN), then f(PN) = f(P′

i, P−i), and

(ii) if f(PN) < r1(Pi) and f(PN) ≤ r1(P′
i), then f(PN) = f(P′

i, P−i).

Remark 5.3.1 Every min-max rule is uncompromising.¹

Remark 5.3.2 If an SCF satisfies uncompromisingness, then by definition, it is tops-
only.

Now, we introduce the notion of weak uncompromisingness. We begin with
defining the notion of left-right interval.

Definition 5.3.5 LetS be a single-peaked domain. Then, an interval [x, y] is called a
left-right interval on S with cut-off z ∈ [x, y] if for all P ∈ S [x,z], we have xP(z + 1)
and for all P ∈ S(z,y], we have yP(z − 1).

Definition 5.3.6 LetS be a single-peakeddomain. ThenanSCF f : Sn → Asatisfies
weak uncompromisingness with respect to S if f is unanimous and for all PN ∈ Sn, all
i ∈ N, and all P′

i ∈ S with |r1(Pi)− r1(P′
i)| ≤ 1

(i) if r1(P′
i) ∈ [r1(Pi), f(PN)], then f(P′

i, P−i) = f(PN), and

(ii) if r1(Pi) ∈ [f(PN), r1(P′
i)] and f(PN) ̸= f(P′

i, P−i), then [f(PN), f(P′
i, P−i)] is a

left-right interval on S with cut-off r1(Pi).

Remark 5.3.3 Note that if an SCF satisfies weak uncompromisingness, then by defi-
nition, it is tops-only.

5.4 Results

Theorem 5.4.1 Let S be a single-peaked domain. Then, an SCF f : Sn → A is
unanimous and strategy-proof if and only if it is a weak uncompromising rule.

The proof of this theorem is relegated to Appendix 5.8.1.

¹For details, see [86].
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5.5 A parametric characterization

In this section, we show howTheorem 5.4.1 can be used to construct a parametric
(functional form) characterization of the unanimous and strategy-proof SCFs. We
provide this characterization for three agents, it will be clear from the presentation
of the same for more number of agents will be complicated.

Definition 5.5.1 (Sequentially median parameters) LetS be a single-peaked do-
main. Then, a collection of parameters β1, . . . , βk with a = β1 < . . . < βk = b is
called sequentially median parameters on S if for all j = 1, . . . k − 1, there exists
yj ∈ (βj, βj+1) such that for all P ∈ S(βj,yj], we have βjPr2(P) and for all P ∈ S(yj,βj),
we have βj+1Pr2(P).

Note that for a collection of sequentially median parameters β1, . . . , βk, for all
y ∈ (βj, βj+1) and for all P, P′ ∈ Sy, we have βjPβj+1 if and only if βjP

′βj+1. In
view of this, for such alternative y, we write βjyβj+1 (or βjyβj+1) tomean βjPβj+1 (or
βj+1yβj) for all P ∈ Sy.

For a collection of median parameters β∗1 , . . . , β
∗
n−1, we denote by fβ

∗
, the me-

dian rule with respect to β∗1 , . . . , β
∗
n−1.

Definition 5.5.2 (Sequentially median rules) An SCF f : Sn → X is called se-
quentially median if there are sequentially median parameters β1, . . . , βk and median
parameters β∗1 , . . . , β

∗
n−1 where β∗1 , . . . , β

∗
n−1 ∈ {β1, . . . , βk} such that

f(PN) =


fβ

∗
(PN) if fβ

∗
(PN) ∈ {β1, . . . , βk},

min{βj+1,max(τ(PN))} if fβ
∗
(PN) ∈ (βj, βj+1) and βj+1f

β∗(PN)βj,

max{βj,min(τ(PN))} if fβ
∗
(PN) ∈ (βj, βj+1) and βjf

β∗(PN)βj+1.

Lemma 5.5.1 Let f : Sn → X be a sequentially median rule with respect to sequen-
tially median parameters β1, . . . , βk and fβ

∗
: Sn → X be a median rule with respect

to median parameters β∗1 , . . . , β
∗
n−1For all PN, P′

N ∈ Sn, fβ
∗
(PN) ≥ fβ

∗
(P′

N) implies
f(PN) ≥ f(P′

N).
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The proof of this lemma is left to the reader.

Theorem 5.5.1 Let S be a single-peaked domain. Then, every sequentially median
rule f : Sn → X is unanimous, anonymous and strategy-proof.

The proof of this theorem is relegated to Appendix 5.8.2.

Theorem 5.5.2 Let S be a single-peaked domain and let n ≤ 3. Then, an SCF f :
Sn → X is unanimous, anonymous and strategy-proof if and only if it is a sequentially
median rule.

The proof of this theorem is relegated to Appendix 5.8.3.

5.6 Discussion

In this section, we provide two examples to illustrate how the weak uncompromis-
ingness property helps in constructing a unanimous and strategy-proof SCF. For
both these examples, anonymity is assumed for simplicity. One can use the same
procedure to construct SCFs that are not anonymous.

5.6.1 Left single-peaked domain

In this subsection, we first present a formal definition of left (right) single-peaked
domains and construct a unanimous, anonymous and strategy-proof SCF on such
domains using weak uncompromisingness.

Definition 5.6.1 A single-peaked preference P is called left single-peaked (right single-
peaked) if for all u < r1(P) < v, we have uPv (vPu). A set of single-peaked preferences
S is called left single-peaked (right single-peaked) if it contains all left single-peaked (all
right single-peaked) preferences.

Let the set of alternatives beA = {a1, a2, a3, a4, a5, a6, a7, a8}. Suppose that the
admissible domain of preferences is left single-peaked over these alternatives.
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In Table 5.6.1, we construct an anonymous SCF that satisfies weak uncompro-
misingness. In each rowofTable 5.6.1, one agent’s top-ranked alternative ismoved
from a2 to a8. In the first row, agent 4’s top-ranked alternative is moved from a2 to
a8. Note that the outcome ‘jumps’ from a1 to a3 while the top-ranked alternative
of agent 4moves from a2 to a3. Further, note that the interval [a1, a3] is a left-right
interval with cut-off a2 as required by weak uncompromisingness. Similarly, in the
second row, the outcomes jumps from a3 to a5 while the top-ranked alternative of
agent 3 moves from a4 to a5. Also, the interval [a3, a5] is a left-right interval with
cut-off a4. In this fashion, it can be checked that this SCF satisfies weak uncompro-
misingness, and hence, by Theorem 5.4.1, it is strategy-proof.

(r1(Pi))i∈N (a1, a1, a1, a2) (a1, a1, a1, a3) (a1, a1, a1, a4) (a1, a1, a1, a5) (a1, a1, a1, a6) (a1, a1, a1, a7) (a1, a1, a1, a8)

f(PN) a1 a3 a3 a3 a3 a3 a3

(r1(Pi))i∈N (a1, a1, a2, a8) (a1, a1, a3, a8) (a1, a1, a4, a8) (a1, a1, a5, a8) (a1, a1, a6, a8) (a1, a1, a7, a8) (a1, a1, a8, a8)

f(PN) a3 a3 a3 a5 a5 a7 a7

(r1(Pi))i∈N (a1, a2, a8, a8) (a1, a3, a8, a8) (a1, a4, a8, a8) (a1, a5, a8, a8) (a1, a6, a8, a8) (a1, a7, a8, a8) (a1, a8, a8, a8)

f(PN) a7 a7 a7 a7 a7 a7 a8

(r1(Pi))i∈N (a2, a8, a8, a8) (a3, a8, a8, a8) (a4, a8, a8, a8) (a5, a8, a8, a8) (a6, a8, a8, a8) (a7, a8, a8, a8) (a8, a8, a8, a8)

f(PN) a8 a8 a8 a8 a8 a8 a8

Table 5.6.1 Construction of unanimous, anonymous, and strategy-proof SCFs us-
ing weak uncompromisingness

5.6.2 Euclidean domains

In this subsection, we first present a formal definition of Euclidean domains and
construct a unanimous, anonymous and strategy-proof SCF on such domains us-
ing weak uncompromisingness.

For easeof presentation,weassume that the setof alternatives are (finitelymany)
elements of the interval [0, 1].² Let 0 = a1 < . . . < am = 1 be the alternatives. As-
sume that the individuals are located at arbitrary locations in [0, 1] and derive their
preferences using Euclidean distances of the alternatives from their own location.

²With abuse of notation, we denote by [0, 1] the set of real numbers in-between 0 and 1.
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We call such preferences Euclidean. Below, we provide formal definitions of these.

Definition 5.6.2 A preference P is called Euclidean if there is x ∈ [0, 1], called the
location of P, such that for all alternatives a, b ∈ A, |x− a| < |x− b| implies aPb. A
domain is called Euclidean if it contains all Euclidean preferences.

Let the set of alternatives be A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} with the
distance function as given in Figure 5.6.1. Suppose that the admissible domain of
preferences is Euclidean over these alternatives.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 2 5 3 3 7 2 4 1

Figure 5.6.1 Distance function of a Euclidean domain

In Table 5.6.1, we construct an anonymous SCF that satisfies weak uncompro-
misingness. In each rowofTable 5.6.1, one agent’s top-ranked alternative ismoved
from a2 to a8. In the first row, agent 4’s top-ranked alternative is moved from a2 to
a8. Note that the outcome ‘jumps’ from a1 to a5 while the top-ranked alternative
of agent 4moves from a2 to a3. Further, note that the interval [a1, a5] is a left-right
interval with cut-off a2 as required by weak uncompromisingness. Similarly, in the
second row, the outcomes jumps from a5 to a7 while the top-ranked alternative of
agent 3 moves from a5 to a6. Also, the interval [a5, a7] is a left-right interval with
cut-off a5. In this fashion, it can be checked that this SCF satisfies weak uncompro-
misingness, and hence, by Theorem 5.4.1, it is strategy-proof.

5.7 Conclusion

This chapter studies the structure of the unanimous and strategy-proof SCFs on
arbitrary single-peaked domains. It characterizes such SCFs by means of weak
uncompromisingness. Further, it provides a parametric characterization of such
SCFs for the case of 2 and 3 agents under the assumption of anonymity.
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(r1(Pi))i∈N (a1, a1, a1, a2) (a1, a1, a1, a3) (a1, a1, a1, a4) (a1, a1, a1, a5) (a1, a1, a1, a6) (a1, a1, a1, a7) (a1, a1, a1, a8) (a1, a1, a1, a9) (a1, a1, a1, a10)

f(PN) a1 a5 a5 a5 a5 a5 a5 a5 a5

(r1(Pi))i∈N (a1, a1, a2, a10) (a1, a1, a3, a10) (a1, a1, a4, a10) (a1, a1, a5, a10) (a1, a1, a6, a10) (a1, a1, a7, a10) (a1, a1, a8, a10) (a1, a1, a9, a10) (a1, a1, a10, a10)

f(PN) a5 a5 a5 a5 a7 a7 a7 a7 a7

(r1(Pi))i∈N (a1, a2, a10, a10) (a1, a3, a10, a10) (a1, a4, a10, a10) (a1, a5, a10, a10) (a1, a6, a10, a10) (a1, a7, a10, a10) (a1, a8, a10, a10) (a1, a1, a10, a10) (a1, a1, a10, a10)

f(PN) a7 a7 a7 a7 a7 a7 a9 a9 a9

(r1(Pi))i∈N (a2, a10, a10, a10) (a3, a10, a10, a10) (a4, a10, a10, a10) (a5, a10, a10, a10) (a6, a10, a10, a10) (a7, a10, a10, a10) (a8, a10, a10, a10) (a9, a10, a10, a10) (a10, a10, a10, a10)

f(PN) a9 a9 a9 a9 a9 a9 a9 a9 a10

Table 5.6.2 Construction of unanimous, anonymous, and strategy-proof SCFs us-
ing weak uncompromisingness

5.8 Appendix

5.8.1 Proof of Theorem 5.4.1

Proof: (If part) f is unanimous by definition. To show that f is strategy-proof, as-
sume for contradiction that f is manipulable. Thus there exists PN ∈ Sn, P′

i ∈ S
such that f(P′

i, P−i)Pif(PN). Without loss of generality we can assume |r1(Pi) −
r1(P′

i)| ≤ 1. Note that if r1(P′
i) ∈ [r1(Pi), f(PN)] then by Condition (i) in Defini-

tion 5.3.6, f(PN) = f(P′
i, P−i). This means r1(P′

i) /∈ [r1(Pi), f(PN)]. Without loss
of generality we can assume f(PN) ≤ r1(Pi) < r1(P′

i). But by Condition (ii) in
Definition 5.3.6, this means [f(PN), f(P′

i, P−i)] is a left-right interval onS with cut-
off r1(Pi). This, in particular, implies f(PN)Pir1(P′

i) and hence by single-peakedness
f(PN)Pif(P′

i, P−i).

(Only-if part) Let f : Sn → A be unanimous and strategy-proof SCF. We show
it is weak uncompromising. Since f is unanimous by assumption we proceed to
show that f satisfies Condition (i) and (ii) in Definition 5.3.6.
Condition (i): Let PN ∈ Sn and P′

i ∈ S such that |r1(Pi) − r1(P′
i)| ≤ 1 and

r1(P′
i) ∈ [r1(Pi), f(PN)]. We show f(P′

i, P−i) = f(PN). If |r1(Pi) − r1(P′
i)| < 1,

i.e, r1(Pi) = r1(P′
i) then, by tops-onlyness f(PN) = f(P′

i, P−i). So, we consider
the case |r1(Pi) − r1(P′

i)| = 1. Assume for contradiction f(PN) ̸= f(P′
i, P−i). By

strategy-proofness f(P′
i, P−i)P′

i f(PN). Since r1(P′
i) ∈ [r1(Pi), f(PN)], if f(P′

i, P−i) ∈
[r1(Pi), f(PN)) then, agent imanipulates at PN via P′

i . On the other hand if f(PN) ∈
[r1(Pi), f(P′

i, P−i)) then, agent imanipulates at (P′
i, P−i) viaPi. Thus r1(Pi) ∈ [f(PN),
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f(P′
i, P−i)]. Without loss of generalitywe assume f(P′

i, P−i) < f(PN). LetT = {j ∈
N|r1(Pj) ≤ r1(P′

i)}. Consider a profile P̄N such that P̄j = P′
i if j ∈ T, otherwise

P̄j = Pj. Note that since r1(P′
i) < f(PN), by group strategy-proofness and the

Pareto property f(P̄N) = f(PN). But as f(P′
i, P−i)P′

i f(PN), the set of agents inTwill
manipulate at P̄N via (P′

i, P−i), a contradiction. Thus f(PN) = f(P′
i, P−i).

Condition(ii): Note that if f(PN) = f(P′
i, P−i) then there is nothing to show.

So, without loss of generality, we assume f(PN) ≤ r1(Pi) < r1(P′
i) ≤ f(P′

i, P−i).
Again if f(PN) = r1(Pi) < r1(P′

i) = f(P′
i, P−i) then |f(PN)− f(P′

i, P−i)| = 1 and by
definition [f(PN)− f(P′

i, P−i)] is a left-right interval onS w.r.t. r1(Pi). Sowe further
assume f(PN) ≤ r1(Pi) < r1(P′

i) < f(P′
i, P−i). Take a ∈ [r1(P′

i), f(P
′
i, P−i)]. Then

by Condition (i), f(Pa, P−i) = f(P′
i, P−i). Now if f(PN) = r1(Pi), then by strategy-

proofness for all Pa ∈ S f(P′
i, P−i)Paf(PN), which shows [f(PN), f(P′

i, P−i)] is a left
right interval on S with cut-off r1(Pi). So, we assume f(PN) < r1(Pi). It is enough
to show that for all a ∈ [r1(P′

i), f(P
′
i, P−i)], and all Pa ∈ S , f(P′

i, P−i)Par1(Pi). Sup-
pose not, and for some a ∈ [r1(P′

i), f(P
′
i, P−i)] and Pa ∈ S , r1(Pi)Paf(P′

i, P−i). Let
T = {j ∈ N|r1(Pj) ≤ r1(P′

i)}. Consider the profile P̄N where P̄j = P′
i if j ∈ T and

P̄j = Pj if j /∈ T. Then, by condition (i), f(P̄N) = f(P′
i, P−i) as r1(P′

i) < f(P′
i, P−i).

Let T′ = {j ∈ N|r1(Pj) ≤ r1(Pi)}. Consider the profile P̂N such that P̂j = Pi if
j ∈ T′ and P̂j = Pj if j /∈ T′.

Claim: f(P̂N) = r1(Pi).
Note that by the Pareto property f(P̂N) ≥ r1(Pi), as by construction r1(P̂j) ≥

r1(Pi) for all j ∈ N. Sinceby strategy-proofness f(PN)Pif(P′
i, P−i), f(P̂N) ̸= f(P′

i, P−i).
If f(P̂N) = f(P′

i, P−i) then, agents in T′ will manipulate at P̂N via (PN). Now
suppose f(P̂N) > r1(Pi) then by condition (i) f(P̂N) = f(P̄N) but that means
f(P̂N) = f(P′

i, P−i) as f(P̄N) = f(P′
i, P−i). Thus f(P̂N) = r1(Pi), which completes

the proof of the claim.
Let T′′ = {j ∈ N|r1(Pj) ≤ a}, and P̃N be such that P̃j = Pa if j ∈ T′′ and

P̂j = Pj if j /∈ T′′. Using a similar argument as in the case of f(P̄N), we can show
f(P̃N) = f(P′

i, P−i). But since by our assumption r1(Pi)Paf(P′
i, P−i), agents in T′′

will manipulate at P̃N via P̂N. This is a contradiction to group strategy-proofness
and hence f(P′

i, P−i)Par1(Pi). This completes the proof of condition (ii). ■

103



5.8.2 Proof of Theorem 5.5.1

Proof: Let S be a single-peaked domain and let f : Sn → A be a sequentially
median rule.

Anonymity of f follows from the definition. We show f is unanimous. Take a
unanimous profile PN ∈ Sn. Let min τ(PN) = max τ(PN) = x. Since fβ

∗
is

unanimous, fβ
∗
= x. If x ∈ {β1, . . . , βk}, then f(PN) = fβ

∗
(PN) = x. Suppose

fβ
∗
(PN) ∈ (βj, βj+1) for some j = 1, . . . , k − 1. Then, min{max(τ(PN), βj)} =

max{min(τ(PN), βj+1)} = x, and hence f(PN) = x. This shows f is unanimous.
Now, we show that f is strategy-proof. Take PN ∈ Sn, i ∈ N, and P′

i ∈ S .
Note that if r1(Pi) < fβ

∗
(PN) and r1(P′

i) ≤ fβ
∗
(PN), then fβ

∗
(PN) = fβ

∗
(P′

i, PN\i),
and hence, by the definition of a sequentially median rule, f(PN) = f(P′

i, PN\i).
Similarly, if r1(Pi) > fβ

∗
(PN) and r1(P′

i) ≥ fβ
∗
(PN), then f(PN) = f(P′

i, PN\i).
So, suppose r1(Pi) < fβ

∗
(PN) and r1(Pi) > fβ

∗
(PN). Then, by the property

of a median rule, fβ
∗
(P′

i, PN\i) ≥ fβ
∗
(PN). If fβ

∗
(P′

i, PN\i) = fβ
∗
(PN), then by

the definition of a sequentially median rule, f(PN) = f(P′
i, PN\i). So, assume

fβ
∗
(P′

i, PN\i) > fβ
∗
(PN) and f(PN) > f(P′

i, PN\i). Suppose j < k is such that
fβ

∗
(PN) ∈ [βj, βj+1). This, together with the fact that f(PN) > f(P′

i, PN\i), implies
either f(PN) = βj and f(P′

i, PN\i) ≥ βj+1 or f(PN) = βj+1 and f(P′
i, PN\i) ≥ βj+2.

If f(PN) = βj and f(P′
i, PN\i) ≥ βj+1, then by the definition of a sequentially me-

dian rule, it must be that βjf
β∗(PN)βj+1. Since r1(Pi) ≤ fβ

∗
(PN), by the property

of sequential parameters, we have βjPix for all x ≥ βj+1, and hence i does not ma-
nipulate. On the other hand, if f(PN) = βj+1 and f(P′

i, PN\i) ≥ βj+2, then since
r1(Pi) ≤ fβ

∗
(PN) and fβ

∗
(PN) < βj+1, we have βj+1Pix for all x ≥ βj+1, and hence

i does not manipulate. It can be shown by similar logic that i cannot manipulate
when r1(Pi) > fβ

∗
(PN) and r1(Pi) < fβ

∗
(PN).

Suppose r1(Pi) = fβ
∗
(PN). If fβ

∗
(PN) ∈ {β1, . . . , βk} then f(PN) = fβ

∗
(PN) =

r1(Pi), and hence, i cannot manipulate. So, assume fβ
∗
(PN) ∈ (βj, βj+1) for some

j < k. Assume without loss of generality that f(PN) = βj. Then, by the definition
of a sequentially median rule, βjPiβj+1. Again, by the definition of a sequentially
median rule, f(P′

i, PN\i) /∈ (βj, βj+1). Also, by the single-peakedness of Pi, βiPix for
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all x /∈ [βj, βj+1). This means i cannot manipulate at PN. This completes the proof
of the theorem. ■

5.8.3 Proof of Theorem 5.5.2

Proof: The proof of the if-part follows from Theorem 5.5.1. We proceed to prove
the only-if part of the theorem. Let f : Sn → A be a unanimous, anonymous,
and strategy-proof SCF. By Theorem 5.4.1, f satisfies weak uncompromisingness.
Define β∗0 = a, β∗n = b, and for all k ∈ {1, . . . , n−1}, define β∗k = f(PN)wherePN

is such that r1(Pi) = b for all i = 1, . . . , k and r1(Pi) = a for all i = k + 1, . . . , n.
Take k ∈ {0, . . . , n − 1} such that β∗k < β∗k+1. Let us denote β∗k by βk1. We

construct βk2 as follows. Consider a(ny) profile where the top-ranked alternatives
of agents 1, . . . , k is b, of agents k + 1, . . . , n − 1 is a, and of agent n is βk1. We
first argue that the outcome at such a profile must be βk1. To see that, consider the
profile where the top-ranked alternatives of all agents except n remain the same
as above and that of n is a. By the definition of βk1, the outcome at this profile is
βk1. Since at the former profile, the top-ranked alternative of agent n is βk1, by a
straight-forward application of strategy-proofness it follows that the outcome at
that profile must be βk1. Now, keeping the top-ranked alternatives of all agents
except n unchanged, we keepmoving that of agent n ‘continuously’ (i.e., each time
one step) towards the right direction from βk1. We do this till the outcome changes
from βk1 for the first time. Since β∗k+1 > βk1, outcome must change at some time
point by this procedure. Note that by weak uncompromisingness, this changed
outcome must lie on the right of βk1. We define βk2 as the new outcome whenever
this first-time-change happens. We follow this method recursively to define βk3,
βk4, and so on. Below, we describe this method formally.

Let PN\n be such that r1(Pi) = b for all i = 1, . . . , k and r1(Pi) = a for all
i = k + 1, . . . , n − 1. Suppose P2

n is such that f(PN\n, Pn) = βk1 for all Pn with
r1(Pn) ∈ [βk1, r1(P

2
n) − 1] and f(PN\n, P2

n) ̸= βk1. As we have argued in the pre-
ceding paragraph, weak uncompromisingness implies βk1 < r1(P2

n) ≤ f(PN\n, P2
n).

Define βk2 = f(PN\n, P2
n). Having defined βkl, if βkl < β∗k+1, then define βk(l+1) =

105



f(PN\n, Pl+1
n ), where Pl+1

n is such that f(PN\n, Pn) = βkl for all Pn with r1(Pn) ∈
[βkl, r1(P

l+1
n )− 1] and f(PN\n, Pl+1

n ) > βkl. As we have argued before, βkl < βk(l+1).
Since f(PN\n, Pn) = β∗k+1 for allPn such that r1(Pn) ≥ β∗k+1, it follows that βk(l+1) ≤
β∗k+1. Moreover, for the same reason, theremust be lk such that βlk+1 = β∗k+1. Thus,
we obtain a collection of alternatives (βk1, βk2, . . . , βklk

).
Following this procedure for each k ∈ {0, . . . , n− 1}, we obtain the following

collectionof alternatives (β01, . . . , β0l0 , . . . , βk1, . . . , βklk
, . . . , β(n−1)1, . . . , β(n−1)ln−1

,

βn). By construction, these collection of alternatives satisfy the properties of se-
quentially median parameters. In what follows, we show that the SCF f is a se-
quentially median rule with respect to these parameters.

Take PN ∈ Sn. Let fβ
∗
be the median rule with respect to the parameters

β∗0, β
∗
1 , . . . , β

∗
n . Suppose fβ

∗
(PN) = βkl for some k = 0, 1, . . . , n− 1 and some l =

1, . . . , lk. By thedefinitionof themedian rule, thismeans βkl = median{r1(P1), . . . ,

r1(Pn), β∗0, . . . , β
∗
n}. Suppose l = 1. That is, βkl = β∗k . Then, by the definition

of the median rule, fβ
∗
(PN) = β∗k implies that PN is such that r1(Pi) = b for all

i = 1, . . . , k and r1(Pi) = a for all i = k + 1, . . . , n. Now, by weak uncompromis-
ingness, f(PN) = β∗k for all PN ∈ Sn such that r1(Pi) ≥ β∗k for all i = 1, . . . , k
and r1(Pi) ≤ β∗k for all i = k + 1, . . . , n. Thus, for all profiles PN such that
median{r1(P1), . . . , r1(Pn), β∗0, . . . , β

∗
n} = β∗k , we have f(PN) = β∗k .

Now, suppose l ̸= 1. Then, it must be that βkl = r1(Pi) for some i ∈ N. By
the definition of the median rule, this means |{i ∈ N | r1(Pi) ≥ βkl}| ≥ k + 1
and |{i ∈ N | r1(Pi) ≥ β∗kl}| ≥ n − k. We show f(PN) = βkl for all such
profiles. Consider PN such that r1(Pi) = b for all i = 1, . . . , k, r1(Pi) = a for all
i = k + 1, . . . , n − 1, and r1(Pn) = βkl. By the construction of βkl, f(PN) = βkl.
Now, by weak uncompromisingness, we conclude that f(PN) = βkl for all PN as
described above.

Suppose fβ
∗
(PN) ∈ (βkl, βk(l+1)) for some k = 0, . . . , n − 1 and some l =

1, . . . , lk − 1. Assume without loss of generality, βklf
β∗(PN)βk(l+1). This, in particu-

lar, means f(PN) = βkl. By the definition of fβ
∗
, |{i ∈ N | r1(Pi) ≥ βkl}| ≥ k + 1

and |{i ∈ N | r1(Pi) ≤ βkl}| ≥ n − k. Since n ≤ 3, it must be that there
exists at most one agent with top-ranked alternative strictly less than fβ

∗
(PN) and
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at most one agent with top-ranked alternative strictly greater than fβ
∗
(PN). Con-

sider the profile P̄N ∈ Sn where r1(P̄i) = b for all i = 1, . . . , k, r1(P̄i) = a for
all i = k + 1, . . . , n − 1, and r1(P̄n) = fβ

∗
(PN). Since n ≤ 3, by weak uncom-

promisingness, f(P̄N) = f(PN). By the construction of βkl and βk(l+1), f(P̄N) = βkl.
Combining, we have f(PN) = βkl which completes the proof of the theorem. ■
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6
Social Choice onDomains based onTrees

6.1 Introduction

6.1.1 Background and motivation

The incompatibility of strategy-proofness and non-dictatorship as shown in
theGibbard-Satterthwaite theorem([43], [75])has led researchers toweaken their
assumption that the domain of admissible preferences is unrestricted. Among the
domain restrictions, the single-peaked restriction has attracted special interest due
to its practical appeal. The seminal works of [15], [54], and [86] consider single-
peaked preferences when the set of alternatives are arranged over the real line. A
rich literature has developed around the single-peaked restriction when the set
of alternatives have much more general structural properties (see [9], [29], [76],
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[55], and [56]).
[29] and[27] consider single-peakedpreferenceswhenalternatives are arranged

on a tree.¹ When alternatives are arranged on a tree, a preference is called single-
peaked if it falls when onemoves farther away from its top-ranked alternative along
any path. Both these articles consider maximal single-peaked domains on a tree.
[29] shows that such domains guarantee the existence of a majority winner and
[27] characterizes thenon-manipulable SCFson suchdomains asmediansof dicta-
torial and constant rules. [55] and [56] consider single-peaked domains based on
a general notion of betweenness. They consider rich single-peaked domains which
we find very demanding in the context of trees. A single-peaked domain is rich if
(i) it is top-connected, and (ii) for every path from a junction node to a leaf, there
exists a preference which places the alternatives along the path consecutively at
the top.² Hence, our main motivation is to study the structure of unanimous and
strategy-proof SCFs on arbitrary single-peaked domains on trees so as to widen
the applicability of this framework.

6.1.2 Our contribution

We introduce the notion of top-connected single-peaked domains. Loosely speak-
ing, it requires that for any twoadjacent alternatives, there exists apreferencewhich
places one at the top and the other at the second rank. We show that every unani-
mous and strategy-proof SCF on top-connected single-peaked domains on a tree
satisfies the Pareto property and tops-onlyness. It is worth noting that the tops-
onlyness result does not follow from the sufficient conditions provided in [20] for
a domain to be tops-only. Further, we characterize the unanimous and strategy-
proof SCFs on single-peaked domains that satisfy a stronger requirement called
strong connectedness. A single-peaked domain is called strongly connected if for any
two adjacent alternatives x and y, there exist two preferences such that (i) one
places x at the top and y at the second rank, and the other places y at the top and x

¹An undirected graph with the alternatives as nodes is a tree if there is a unique path connecting
any two alternatives.

²A node is called a junction if its degree is at least 3, and called a leaf if its degree is equal to 1.
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at the second rank, and (ii) the relative ranking of all the other alternatives remains
the same in both of them.

Lastly, we contrast our result with the related result in [55] and [56]. They char-
acterize the unanimous and strategy-proof SCFs on a rich single-peaked domain
with respect to their general notion on betweenness. It is straightforward to see
that both top-connectedness and strong connectedness are weaker than their rich-
ness condition. Therefore, in the context of trees, their results follow as a corollary
of ours.

6.1.3 Remainder

The rest of the chapter is organized as follows. We describe the usual social choice
framework in Section 6.2. Section 6.3 establish a few properties of unanimous
and strategy-proof SCFs on top-connected single-peaked domains and Section 6.4
characterizes such SCFs on strongly connected single-peaked domains. Section
6.5 concludes the chapter.

6.2 Preliminaries

Let N = {1, ..., n} be a set of at least two agents, who collectively choose an ele-
ment from a finite set A = {a, a + 1, . . . , b − 1, b} of at least three alternatives.
For notational convenience, whenever it is clear from the context, we do not use
braces for singleton sets, i.e., we denote sets {i} by i.

A preference PoverA is a complete, transitive, and antisymmetric binary relation
(also called a linear order) defined on A. The upper-contour set (lower-contour set)
of P at an alternative x ∈ A, denoted by U(P, x) (L(P, x)), is given by U(P, x) =
{y ∈ A | yPx} ∪ {x} (L(P, x) = {y ∈ A | xPy} ∪ {x}). We denote byL(A) the
set of all preferences overA. An alternative x ∈ A is called the kth ranked alternative
in a preferenceP ∈ L(A), denoted by rk(P), if |{a ∈ X | aPx}| = k−1. A domain
of admissible preferences, denoted by D, is a subset of L(A). For B ⊆ A and a
domainD,DB = {P ∈ D | r1(P) ∈ B}. An element PN = (P1, . . . , Pn) ∈ Dn is
called a preference profile. The top-set of a preference profile PN, denoted by τ(PN),
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is defined as τ(PN) = {x ∈ A | r1(Pi) = x for some i ∈ N}. A domain D of
preferences is regular if for all x ∈ X, there exists a preference P ∈ D such that
r1(P) = x. All the domains we consider in this chapter are assumed to be regular.

Definition 6.2.1 A social choice function (SCF) f onDn is a mapping f : Dn → A.

Definition 6.2.2 An SCF f : Dn → A is unanimous if for all PN ∈ Dn such that
r1(Pi) = x for all i ∈ N and some x ∈ A, we have f(PN) = x.

Definition 6.2.3 An SCF f : Dn → A is manipulable if there exists i ∈ N, PN ∈
Dn, and P

′

i ∈ D such that f(P
′

i , PN\i)Pif(PN). An SCF f is strategy-proof if it is not
manipulable.

Definition 6.2.4 An SCF f : Dn → A is called group manipulable if there is a pref-
erence profile PN, a non-empty coalition C ⊆ N, and a preference profile P′

C ∈ D|C|

of the agents in C such that f(P′
C, PN\C)Pif(PN) for all i ∈ C. An SCF f : Dn → A is

called group strategy-proof if it is not group manipulable.

Definition 6.2.5 An SCF f : Dn → A is called dictatorial if there exists i ∈ N such
that for all PN ∈ Dn, f(PN) = r1(Pi).

Definition 6.2.6 A domain D is called dictatorial if every unanimous and strategy-
proof SCF f : Dn → A is dictatorial.

Definition 6.2.7 Two preference profiles PN, P′
N ∈ Dn are called tops-equivalent if

r1(Pi) = r1(P′
i) for all agents i ∈ N.

Definition 6.2.8 AnSCF f : Dn → A is called tops-only if for any two tops-equivalent
PN, P′

N ∈ Dn, f(PN) = f(P′
N).

Definition 6.2.9 A domain D is called tops-only if every unanimous and strategy-
proof SCF f : Dn → A is tops-only.

Definition 6.2.10 An SCF f : Sn → A satisfies the Pareto property if for all PN ∈
SN such that xPiy for all i ∈ N and some x, y ∈ X, we have f(PN) ̸= y.
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Definition 6.2.11 An SCF f : Sn → A satisfies uncompromisingness if for all PN ∈
Sn, all i ∈ N, and all P′

i ∈ S such that {r1(Pi), r1(P′
i)} ∈ E,

(i) r1(P′
i) ∈ (r1(Pi), f(PN)] or r1(Pi) ∈ (r1(P′

i), f(PN)] implies f(P′
i, PN\i) =

f(PN), and

(ii) r1(P′
i) ∈ (f(PN), r1(Pi)] or r1(Pi) ∈ (f(PN), r1(P′

i)] implies f(P′
i, PN\i) =

f(PN).

Next, we introduce a graph structure on the set of alternatives. A collection
E ⊆ {{a, b} | a, b ∈ A, a ̸= b} is an undirected graph. The elements of E
are called edges. The degree of a ∈ A is the number of edges to which it belongs,
i.e., the number |{{x, y} ∈ E | a ∈ {x, y}}|. For a, b ∈ A a path [a, b] is a
sequence of nodes (a1, . . . , ak) such that a1 = a, ak = b, and (ai, ai+1) ∈ E for
all i = 1, . . . , k − 1. In this case, by (a, b] we denote the sequence (a2, . . . , ak),
and by (a, b) the sequence (a2, . . . , ak−1). Whenever it is clear from the context,
the notations [a, b], (a, b], and (a, b) will also be used to denote the sets of nodes
(instead of the sequences) that appear in the path.

A graph E is a tree if for all a, b ∈ A there is a unique path [a, b]. Throughout
this chapter, we assume that E is an arbitrary but fixed tree. ByAL ⊆ A, we denote
the set of alternatives with degree 1 (also called leafs), and by AJ ⊆ A, we denote
the set of alternatives with degreemore than two (also called junction nodes). Thus,
the alternatives in A are partitioned into three sets: the leafs, the junction nodes,
and the nodes with degree exactly two.

Definition 6.2.12 A preference P is single-peaked if for all distinct x, y ∈ A with
y ̸= r1(P),

x ∈ [r1(P), y] =⇒ xPy.

A domain S is single-peaked if each preference in it is single-peaked.

Example 6.2.1 Let A = {a1, a2, a3, a4} be a set of alternatives arranged over the tree
in Figure 6.2.1. The alternatives a1,a2, and a3 form the leaves of this tree and the alter-
native a4 form the only junction node. Therefore, AL = {a1, a2, a3} and AJ = {a4}. A
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preference P over A such that a1Pa4Pa2Pa3 is single-peaked whereas preference P′ over
A such that a1P′a2P′a4P′a3 is not. This is because the alternative a4 comes before a2 in
the path [a1, a2] and hence, in any single-peaked preference which places a1 at the top,
a4 must be preferred to a2. Note that single-peakedness does not place any restriction
on a preference which places a4 at the top as the alternatives a1,a2, and a3 are on differ-
ent paths from a4. More generally, single-peakedness does not place any restriction in
the preference over the alternatives belonging to two different paths from the top-ranked
alternative.

a1

a2 a3

a4

Figure 6.2.1 A tree graph

6.3 Pareto Property and Tops-onlyness

In this section, we introduce the notion of top-connected single-peaked domains
on trees and establish a few important properties of unanimous and strategy-proof
SCFs on such domains like the Pareto property and tops-onlyness.

Definition 6.3.1 A single-peaked domain S is called top-connected if for all distinct
x, y ∈ A such that {x, y} ∈ E, there exists P, P′ ∈ S such that r1(P) = r2(P′) = x
and and r2(P) = r1(P′) = y.

Example 6.3.1 Let A = {a1, a2, a3, a4} be a set of alternatives arranged over the tree
in Figure 6.2.1. Then, the set of single-peaked preferences in Table 6.3.1 is top-connected.
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Notice that the maximal single-peaked domain based on this tree would have 6 pref-
erences with the top-ranked alternative a4 whereas the domain in Table 6.3.1 contains
only three such preferences.

P1 P2 P3 P4 P5 P6 P7

a4 a1 a1 a4 a2 a4 a3
a1 a4 a4 a2 a4 a3 a4
a2 a2 a3 a1 a3 a1 a2
a3 a3 a2 a3 a1 a2 a1

Table 6.3.1 A top-connected single-peaked domain based on the tree in Figure
6.2.1

The following theorem shows that unanimity and the Pareto property are equiv-
alent under strategy-proofness on top-connected single-peaked domains.

Theorem 6.3.1 Let S be a top-connected single-peaked domain. Every unanimous
and strategy-proof SCF f : Sn → A satisifies Pareto property.

Proof: Assume for contradiction that f(PN) = y for some PN ∈ SN such that xPiy
for all i ∈ N and some x, y ∈ X. Let u ∈ ∩i∈N[r1(Pi), y] be such that u, y ∈ E.
Such an alternative u exists becauseS is a single-peaked domain on a tree and xPiy
for all i ∈ N. Consider agent 1 and consider the preference P′

1 ∈ S such that
r1(P′

1) = u and r2(P′
1) = y. Since uP1y, by strategy-proofness, f(P′

1, PN\1) = y. By
sequentially moving agents i from Pi to P′

i such that r1(P′
i) = u and r2(P′

i) = y and
by applying strategy-proofness at each stage, it follows that f(P′

N) = y. However,
since r1(P′

i) = u for all i ∈ N, this contradicts unanimity of f. This completes the
proof of the theorem. ■

The following theorem shows that top-connected single-peaked domains are
tops-only.

Theorem 6.3.2 Let S be a top-connected single-peaked domain. Every unanimous
and strategy-proof SCF f : Sn → A is tops-only.
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Proof: LetPN ∈ Sn, i ∈ N, andP′
i ∈ S be such that r1(Pi) = r1(P′

i). It is enough to
show that f(PN) = f(P′

i, PN\i). Suppose not. Let f(PN) = x ̸= y = f(P′
i, PN\i). By

strategy-proofness of f, xPiy and yP′
ix. Therefore, y /∈ [r1(Pi), x] and x /∈ [r1(Pi), y].

Let [x, y] = (x, u1, . . . , uk, y). Let S ⊆ N be such that j ∈ S implies r1(Pj) ∈
[b, uk] for all b ∈ AL such that uk ∈ [b, y]. Similarly, let T ⊆ N be such that
j ∈ T implies r1(Pj) ∈ [b, y] for all b ∈ AL such that y ∈ [b, uk].³ Construct the
profile P̄N from PN such that r1(P̄j) = uk and r2(P̄j) = y if j ∈ S, r1(P̄j) = y and
r2(P̄j) = uk if j ∈ T, and r1(P̄j) = r1(Pj) if j ∈ N \ (S ∪ T).

Claim 1. f(PN) = x implies f(P̄N) = uk.

Proof:[Proof of Claim 1] Consider the profile P̃1
N ∈ Sn such that r1(P̃1

j) = x if
r1(Pj) ∈ [b, x] for all b ∈ AL such that x ∈ [b, u1] and P̃1

j = Pj otherwise. Since
f(PN) = x, we have f(P̃1

N) = x. Next, consider the profile P̃2
N ∈ Sn such that

r1(P̃2
j ) = u1 and r2(P̃2

j ) = x if r1(P̃1
j) ∈ [b, u1] for all b ∈ AL such that u1 ∈

[b, u2] and P̃2
j = P̃1

j otherwise. By moving agents one-by-one from P̃1
N to P̃2

N and
applying unanimity and strategy-proofness at each step, we have f(P̃2

N) ∈ {x, u1}.
By Theorem 6.3.1, f(P̃2

N) ̸= x, and therefore, f(P̃2
N) = u1. Next, consider the

profile P̃3
N ∈ Sn such that r1(P̃3

j ) = u2 and r2(P̃3
j ) = u1 if r1(P̃2

j ) ∈ [b, u2] for all
b ∈ AL such that u2 ∈ [b, u3] and P̃3

j = P̃2
j otherwise. By moving agents one-by-

one from P̃2
N to P̃3

N and applying unanimity and strategy-proofness at each step, we
have f(P̃3

N) ∈ {u1, u2} and by Theorem 6.3.1, f(P̃3
N) = u2.

Continuing in this manner, consider the profile P̃k+1
N ∈ Sn such that r1(P̃k+1

j ) =

uk and r2(P̃k+1
j ) = uk−1 if r1(P̃k+1

j ) ∈ [b, uk] for all b ∈ AL such that uk−1 ∈ [b, uk]

and P̃3
j = P̃2

j otherwise. Using the same arguments as before, wehave f(P̃k+1
N ) = uk.

Observe that yP̃k
j u

k for all j ∈ T. Now,move agents from the profile P̃k+1
N to P̄N one-

by-one and by applying strategy-proofness at each stage, we have f(P̄N) = uk. This
completes proof of Claim 1. ■

Claim 2. f(P′
i, PN\i) = y implies f(P̄N) = y.

Proof:[Proof of Claim 2] Consider the profile P̂1
N ∈ Sn such that r1(P̂1

j) = y and

³The sets S and T are defined with respect to the profile PN. However, the same could also be
defined with respect to the profile (P′

i , PN) as the profiles PN, (P′
i , PN) are tops-equivalent.
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r2(P̂1
j) = uk if r1(Pj) ∈ [b, y] for all b ∈ AL such that y ∈ [b, uk] and P̂1

j = Pj

otherwise. Since f(P′
i, PN\i) = y, we have f(P̂1

N) = y. Observe that ukP̂1
jy for all

j ∈ S. Next, move agents from the profile P̂1
N to P̄N one-by-one and by applying

strategy-proofness at each stage,wehave f(P̄N) = y. This completes proof ofClaim
2. ■

Since uk ̸= y, Claim1 contradictsClaim2. This completes proof of the theorem.
■

6.4 Main Result

In this section, we introduce the notion of strongly connected single-peaked do-
mains on trees and characterize the unanimous and strategy-proof SCFs on it.

Definition 6.4.1 A single-peaked domain S is called strongly connected if for all dis-
tinct x, y ∈ A such that {x, y} ∈ E

(i) there exists P, P′ ∈ S such that r1(P) = r2(P′) = xandand r2(P) = r1(P′) =

y, and

(ii) rk(P) = rk(P′) for all k ∈ {3, . . . ,m}.

Example 6.4.1 Let A = {a1, a2, a3, a4} be a set of alternatives arranged over the
tree in Figure 6.2.1. Then, the set of single-peaked preferences in Table 6.4.1 is strongly
connected. Strong connectedness requires that for any pair of alternatives, there exists
two preferences which places these alternatives at the top two ranks and these preferences
restricted to other alternativesmust be the same. Therefore, strong connectedness imposes
a stronger restriction on the domain as opposed to top-connectedness. To see this, observe
that for the pair of alternatives a2 and a4, the restriction of the preferences P4 and P5

to the set of alternatives {a1, a3} is not the same for the top-connected single-peaked
domain in Example 6.3.1, and hence, it is not strongly connected.
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P1 P2 P3 P4 P5 P6 P7

a4 a1 a1 a4 a2 a4 a3
a1 a4 a4 a2 a4 a3 a4
a2 a2 a3 a1 a1 a2 a2
a3 a3 a2 a3 a3 a1 a1

Table 6.4.1A strongly connected single-peaked domain based on the tree in Figure
6.2.1

The following theorem shows that uncompromisingness is a necessary condi-
tion for anSCF tobeunanimous and strategy-proof on a strongly connected single-
peaked domain.

Theorem 6.4.1 LetS bea strongly connected single-peakeddomain. Then, every unan-
imous and strategy-proof SCF f : Sn → A is uncompromising.

Proof: Let S be a strongly connected single-peaked domain. Consider PN ∈ Sn,
i ∈ N, and P′

i ∈ S such that {r1(Pi), r1(P′
i)} ∈ E and r1(P′

i) ∈ (r1(Pi), f(PN)].
It is sufficient to prove that f(P′

i, PN\i) = f(PN). Let r1(Pi) = x, r1(P′
i) = y, and

f(PN) = z.
Since f is tops-only (Theorem6.3.2),weassumewithout lossof generality, r1(Pi) =

x and r2(Pi) = y. Let P̄i ∈ S such that r1(P̄i) = y, r2(P̄i) = x and rk(P̄i) = rk(Pi).
If z = y, then by strategy-proofness, we have f(P̄i, PN\i) = z. Suppose z ̸= x, y.
Since rk(P̄i) = rk(Pi), by strategy-proofness, f(P̄i, PN\i) = z. Since f is tops-only
(Theorem 6.3.2), f(P′

i, PN\i) = f(P̄i, PN\i) = z. This completes the proof of the
theorem. ■

6.5 Concluding remarks

In this chapter, we have considered single-peaked domains when alternatives are
arranged on a tree. We have shown that when such domains satisfy top-connecte-
dness, then every unanimous and strategy-proof SCFs on these domains satisfy
the Pareto property and tops-onlyness. Further, when such domains are strongly
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connected, we have characterized all unanimous and strategy-proof rules as un-
compromising rules.
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7
Epilogue

In a standard social choice setting, the present thesis is concerned with studying
domain restrictions when designing unanimous and strategy-proof social choice
functions. The thesis contains 7 chapters (including the present chapter). In what
follows, we provide a brief summary of the main results in each chapter:

(i) Chapter 1 introduces the strategy-proof social choice literature, provides
motivation to theproblems studies in the thesis andprovides abrief overvie-
w of the subsequent chapters.

(ii) Chapter 2 contributes to the literature on dictatorial domains where we in-
troduce the notion of top-circular domains and provide two sufficient con-
ditions for it to be dictatorial.

(iii) Chapter 3 considers arbitrary single-peaked domains and shows that, un-
dermild conditions, everyunanimous and strategy-proof social choice func-
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tion definedon suchdomains satisfy thePareto property and tops-onlyness.
This chapter further provides a domain characterization of a special class of
social choice functions called the min-max rules as top-connected single-
peaked domains.

(iv) Chapter 4 considers partially single-peaked domains, domains where pref-
erences violate single-peakedness over a subset of alternatives. This chapter
characterizes the unanimous and strategy-proof social choice functions and
provides (almost) necessary and sufficient conditions on the admissible do-
main of preferences for this characterization to hold.

(v) Chapter 5provides a general characterizationof theunanimous and strategy-
proof social choice functionon arbitrary (not necessarily top-connecteddo-
mains) single-peaked domains as weak uncompromising rules.

(vi) Chapter 6 considers single-peaked preferences when the set of alternatives
are arranged on a tree and characterizes the unanimous and strategy-proof
social choice functions on strongly connected single-peaked domains as un-
compromising rules.

We discuss a few interesting open problems for future research. A long stand-
ing open problem in the literature on domain restrictions in strategy-proof social
choice is the characterization of dictatorial domains. A partial answer is provided
in [70] who answers this question for the case of social choice functions satsfying
the Pareto property.

A few other related open problems are: (i) characterizing domains where every
strategy-proof rules are tops-only, and (ii) domains where the notions of strategy-
proofness and group strategy-proofness are equivalent. [20] partially answers (i)
by providing sufficient conditions on domains for it to be tops-only. However,
the present thesis shows that several practical domain restrictions such as arbitrary
single-peaked domains, partially single-peaked domains, etc. do not satisfy their
conditions. [7] partially answers (i) byproviding sufficient conditions ondomains
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for it to be tops-only. However, partially single-peaked domains and single-peaked
domains based on trees do not satisfy their sufficient conditions.

121



References

[1] Alcalde-Unzu, J. and M. Vorsatz (2015): “Strategy-proof location of
public facilities,” Working Paper.

[2] Anderberg, D. (1999): “Determining the mix of public and private provi-
sion of insurance bymajority rule,” European Journal of Political Economy, 15,
417–440.

[3] Arribillaga, R. P. and J.Massó (2016): “Comparing generalizedmedian
voter schemes according to their manipulability,” Theoretical Economics, 11,
547–586.

[4] Arrow, K. J. (1950): “ADifficulty in theConcept of SocialWelfare,” Journal
of Political Economy, 58, 328–346.

[5] ———(1969): “Tullock and anExistenceTheorem,” Public Choice, 6, 105–
111.

[6] Aswal, N., S. Chatterji, and A. Sen (2003): “Dictatorial domains,” Eco-
nomic Theory, 22, 45–62.

[7] Barberà, S., D. Berga, and B.Moreno (2010): “Individual versus group
strategy-proofness: When do they coincide?” Journal of Economic Theory,
145, 1648 – 1674.

[8] Barberà, S., D. Berga, and B. Moreno (2012): “Domains, ranges and
strategy-proofness: the case of single-dipped preferences,” Social Choice and
Welfare, 39, 335–352.

[9] Barberà, S., F. Gul, and E. Stacchetti (1993): “Generalized Median
Voter Schemes and Committees,” Journal of Economic Theory, 61, 262 – 289.

122



[10] Barberà, S. andM. O. Jackson (2004): “Choosing How to Choose: Self-
StableMajorityRules andConstitutions,”TheQuarterly Journal of Economics,
119, 1011–1048.

[11] Barberà, S., J. Massò, and A. Neme (1999): “Maximal domains of prefer-
ences preserving strategy-proofness for generalized median voter schemes,”
Social Choice and Welfare, 16, 321–336.

[12] Barberà, S. and B. Peleg (1990): “Strategy-proof voting schemes with
continuous preferences,” Social Choice and Welfare, 7, 31–38.

[13] Barzel, Y. (1973): “Private schools and public school finance,” Journal of
Political Economy, 81, 174–186.

[14] Bearse, P., G. Glomm, and E. Janeba (2001): “Composition of Govern-
ment Budget, Non-Single Peakedness, and Majority Voting,” Journal of Pub-
lic Economic Theory, 3, 471–481.

[15] Black, D. (1948): “On the Rationale of Group Decision-making,” Journal
of Political Economy, 56, 23–34.

[16] Borda, J. d. (1784): “Mémoire sur les élections au scrutin parM. de Borda,”
Mémoires de l’Académie Royale des Sciences année 1781, 331–342.

[17] Border, K. C. and J. S. Jordan (1983): “Straightforward Elections, Una-
nimity and Phantom Voters,” The Review of Economic Studies, 50, 153–170.

[18] Chatterji, S. and J. Massó (2018): “On strategy-proofness and the
salience of single-peakedness,” International Economic Review, 59, 163–189.

[19] Chatterji, S., R. Sanver, and A. Sen (2013): “On domains that admit
well-behaved strategy-proof social choice functions,” Journal of Economic
Theory, 148, 1050 – 1073.

[20] Chatterji, S. and A. Sen (2011): “Tops-only domains,” Economic Theory,
46, 255–282.

[21] Chatterji, S., A. Sen, and H. Zeng (2014): “Random dictatorship do-
mains,” Games and Economic Behavior, 86, 212 – 236.

[22] Chatterji, S. and H. Zeng (2018): “On random social choice functions
with the tops-only property,” Games and Economic Behavior, 109, 413 – 435.

123



[23] Chhibber, P. and R. Verma (2014): “The BJP’s 2014 ‘Modi Wave’: An
Ideological Consolidation of the Right,” Economic and Political Weekly, 49,
50–56.

[24] Ching, S. (1997): “Strategy-proofness and “median voters”,” International
Journal of Game Theory, 26, 473–490.

[25] Condorcet,N. d. (1785): Optimality and informational efficiency in resource
allocation processes, Paris.

[26] Coombs, C. H. (1950): “Psychological scaling without a unit of measure-
ment,” Psychological review, 57, 145.

[27] Danilov, V. I. (1994): “The structure of non-manipulable social choice
rules on a tree,” Mathematical Social Sciences, 27, 123–131.

[28] Davis, O. A.,M. J. Hinich, andP. C.Ordeshook (1970): “An Expository
Development of a Mathematical Model of the Electoral Process,” American
Political Science Review, 64, 426–448.

[29] Demange, G. (1982): “Single-peaked orders on a tree,”Mathematical Social
Sciences, 3, 389 – 396.

[30] ——— (1994): “Intermediate preferences and stable coalition structures,”
Journal of Mathematical Economics, 23, 45 – 58.

[31] Denzau, A. T. and R. J. Mackay (1981): “Structure-induced equilib-
ria and perfect-foresight expectations,” American Journal of Political Science,
762–779.

[32] Egan, P. J. (2014): ““Do Something” Politics and Double-Peaked Policy
Preferences,” The Journal of Politics, 76, 333–349.

[33] Elkind, E., P. Faliszewski, andP. Skowron (2014): “ACharacterization
of the Single-Peaked Single-Crossing Domain,” in AAAI, vol. 14, 654–660.

[34] Enelow, J.M. andM. J.Hinich(1983): “Voter expectations inmulti-stage
voting systems: an equilibrium result,” American Journal of Political Science,
820–827.

[35] Epple, D. and G. J. Platt (1998): “Equilibrium and Local Redistribution
in an Urban Economy when Households Differ in both Preferences and In-
comes,” Journal of Urban Economics, 43, 23–51.

124



[36] Epple, D., R. Romano, and H. Sieg (2006): “Admission, Tuition, and Fi-
nancial Aid Policies in the Market for Higher Education,” Econometrica, 74,
885–928.

[37] Epple,D. andR.E.Romano(1996a): “Public Provisionof PrivateGoods,”
Journal of Political Economy, 104, 57–84.

[38] Epple, D. and T. Romer (1991): “Mobility and Redistribution,” Journal of
Political Economy, 99, 828–858.

[39] Epple, D., T. Romer, andH. Sieg (2001): “Interjurisdictional Sorting and
Majority Rule: An Empirical Analysis,” Econometrica, 69, 1437–1465.

[40] Feigenbaum, I. and J. Sethuraman (2014): “Strategyproof Mechanisms
for One-Dimensional Hybrid and Obnoxious Facility Location,” CoRR,
abs/1412.3414.

[41] Feld, S. L. and B. Grofman (1988): “Ideological consistency as a collec-
tive phenomenon,” American Political Science Review, 82, 773–788.

[42] Fernandez, R. and R. Rogerson (1995): “On the Political Economy of
Education Subsidies,” The Review of Economic Studies, 62, 249–262.

[43] Gibbard, A. (1973): “Manipulation of Voting Schemes: AGeneral Result,”
Econometrica, 41, 587–601.

[44] Hamada, K. (1973): “A simplemajority rule on the distribution of income,”
Journal of Economic Theory, 6, 243–264.

[45] Hettich, W. (1979): “A Theory of Partial Tax Reform,” The Canadian Jour-
nal of Economics / Revue canadienne d’Economique, 12, 692–712.

[46] Hotelling, H. (1929): “Stability in Competition,” The Economic Journal,
41–57.

[47] Hurwicz, L. (1960): Optimality and informational efficiency in resource allo-
cation processes, Stanford University Press.

[48] ——— (1972): “On informationally decentralized systems,” Decision and
organization.

[49] Ireland,N. J. (1990): “Themix of social andprivate provision of goods and
services,” Journal of Public Economics, 43, 201 – 219.

125



[50] Kim, K. H. and F. W. Roush (1980): “Special domains and nonmanipula-
bility,” Mathematical Social Sciences, 1, 85 – 92.

[51] Kung, F.-C. (2006): “An Algorithm for Stable and Equitable Coalition
Structures with Public Goods,” Journal of Public Economic Theory, 8, 345–
355.

[52] Manjunath, V. (2014): “Efficient and strategy-proof social choice when
preferences are single-dipped,” International Journal ofGameTheory, 43, 579–
597.

[53] Meltzer, A. H. and S. F. Richard (1981): “A RationalTheory of the Size
of Government,” Journal of Political Economy, 89, 914–927.

[54] Moulin, H. (1980): “On strategy-proofness and single peakedness,” Public
Choice, 35, 437–455.

[55] Nehring,K.andC.Puppe(2007a): “Thestructureof strategy-proof social
choice — Part I: General characterization and possibility results on median
spaces,” Journal of Economic Theory, 135, 269 – 305.

[56] ——— (2007b): “Efficient and strategy-proof voting rules: A characteriza-
tion,” Games and Economic Behavior, 59, 132 – 153.

[57] Niemi, R.G. (1969): “Majority decision-makingwith partial unidimension-
ality,” American Political Science Review, 63, 488–497.

[58] Niemi, R. G. and J. R.Wright (1987): “Voting cycles and the structure of
individual preferences,” Social Choice and Welfare, 4, 173–183.

[59] Pappi, F. U. and G. Eckstein (1998): “Voters’ party preferences in multi-
party systems and their coalitional and spatial implications: Germany after
unification,” in Empirical Studies in Comparative Politics, ed. by M. J. Hinich
and M. C. Munger, Boston, MA: Springer US, 11–37.

[60] Peremans, W. and T. Storcken (1999): “Strategy-proofness on single-
dipped preference domains,” in Proceedings of the international conference,
logic, game theory, and social choice, 296–313.

[61] Peters, H., S. Roy, A. Sen, and T. Storcken (2014): “Probabilistic
strategy-proof rules over single-peaked domains,” Journal of Mathematical
Economics, 52, 123 – 127.

126



[62] Pramanik, A. (2015): “Further results on dictatorial domains,” Social
Choice and Welfare, 45, 379–398.

[63] Puppe, C. (2018): “The single-peaked domain revisited: A simple global
characterization,” Journal of Economic Theory, 176, 55 – 80.

[64] Rabinowitz, G. (1978): “On the Nature of Political Issues: Insights from
a Spatial Analysis,” American Journal of Political Science, 22, 793–817.

[65] Rabinowitz, G. and S. E. Macdonald (1989): “A Directional Theory of
Issue Voting,” American Political Science Review, 83, 93–121.

[66] Rabinowitz, G., J. W. Prothro, and W. Jacoby (1982): “Salience as a
Factor in the Impact of Issues on Candidate Evaluation,” The Journal of Poli-
tics, 44, 41–63.

[67] Reffgen, A. (2015): “Strategy-proof social choice on multiple and multi-
dimensional single-peaked domains,” Journal of Economic Theory, 157, 349 –
383.

[68] Roberts, K.W. (1977): “Voting over income tax schedules,” Journal of Pub-
lic Economics, 8, 329–340.

[69] Romer, T. and H. Rosenthal (1979): “Bureaucrats Versus Voters: On
the Political Economy of Resource Allocation by Direct Democracy,” The
Quarterly Journal of Economics, 93, 563–587.

[70] Roy, S. and T. Storcken (2016): “Unanimity, Pareto optimality and
strategy-proofness on connected domains,” Working Paper.

[71] Sanver, M. R. (2007): “A characterization of superdictatorial domains for
strategy-proof social choice functions,”Mathematical Social Sciences, 54, 257
– 260.

[72] Saporiti, A. (2009): “Strategy-proofness and single-crossing,” Theoretical
Economics, 4, 127–163.

[73] ——— (2014): “Securely implementable social choice rules with partially
honest agents,” Journal of Economic Theory, 154, 216 – 228.

[74] Sato, S. (2010): “Circular domains,” Review of Economic Design, 14, 331–
342.

127



[75] Satterthwaite, M. A. (1975): “Strategy-proofness and Arrow’s condi-
tions: Existence and correspondence theorems for voting procedures and
social welfare functions,” Journal of Economic Theory, 10, 187 – 217.

[76] Schummer, J. andR.V.Vohra (2002): “Strategy-proof Location on aNet-
work,” Journal of Economic Theory, 104, 405 – 428.

[77] Sen, A. (2001): “Another direct proof of the Gibbard–Satterthwaite Theo-
rem,” Economics Letters, 70, 381 – 385.

[78] Shepsle, K. A. (1979): “Institutional Arrangements and Equilibrium in
Multidimensional Voting Models,” American Journal of Political Science, 23,
27–59.

[79] Slesnick, D. (1988): “The political economy of redistribution policy,” Un-
published University of Texas Working Paper.

[80] Stiglitz, J. E. (1974): “The demand for education in public and private
school systems,” Journal of Public Economics, 3, 349–385.

[81] Stokes, D. E. (1963): “Spatial Models of Party Competition,” American Po-
litical Science Review, 57, 368–377.

[82] Sukhtankar, S. and M. Vaishnav (2014): “Corruption in India: bridg-
ing academic evidence and policy options,” in India Policy Forum.

[83] Thomson, W. (2008): “Where should your daughter go to college? An ax-
iomatic analysis,” Tech. rep., Mimeo University of Rochester.

[84] Tullock,G. (1967): “TheGeneral Irrelevance of theGeneral Impossibility
Theorem,” The Quarterly Journal of Economics, 81, 256–270.

[85] Westhoff, F. (1977): “Existence of equilibria in economies with a local
public good,” Journal of Economic Theory, 14, 84–112.

[86] Weymark, J. A. (2011): “A unified approach to strategy-proofness for
single-peaked preferences,” SERIEs, 2, 529–550.

128


	Prologue
	Dictatorship on Top-circular Domains
	On Single-peaked Domains and Min-max Rules
	Strategy-proof Rules on Partially Single-peaked Domains
	On Strategy-proofness and Uncompromisingness
	Social Choice on Domains based on Trees
	Epilogue
	References

