
Price vs Quantity: Essays On Strategic

Choice in Differentiated Oligopoly

Arindam Paul

Indian Statistical Institute





Price vs Quantity: Essays On Strategic Choice
in Differentiated Oligopoly

Arindam Paul

May, 2019

Thesis Supervisor : Professor Manipushpak Mitra

Thesis submitted to the Indian statistical Institute in partial

fulfillment of the requirements for the award of the degree of

Doctor of Philosophy



Acknowledgment

I shall forever be grateful to my supervisor, Professor Manipushpak Mitra for his con-

stant guidance and support. I believe if there is anything interesting in this thesis, it is

solely attributable to him. His motivation and encouragement, has helped me propel

my inquisitiveness and understanding. He never failed to lend me a patient, listening

ear whenever I approached him; specially during those moments of repeated doubt

clarifications which were an interference to his busy schedule. He not only structured

my logical thinking on the subject but also taught the nitty-gritties of writing a paper.

It is an honour for me to get acquainted with his approach towards the subject.

I would like to express my deep appreciation and respect for Professor Arnab

Chakraborty, who helped me to shape up my mathematical understanding. I am

indebted to Professor Rupayan Pal and P. M. Sharada for agreeing to write the first

paper (Chapter 2) along with me and my supervisor Professor Manipushpak Mitra. I

am grateful to Professor Arghya Ghosh for repeated interaction on very diverse topics

relating to industrial organization and for agreeing to write the third paper (Chap-

ter 4) along with me and my supervisor Professor Manipushpak Mitra. I express my

gratitude to Professor Satya Ranjan Chakravarty, Professor Indraneel Dasgupta, Pro-

fessor Tarun Kabiraj, Professor Soumyanetra Munshi and Professor Souvik Roy for

their helpful comments and suggestions.

I am very grateful to my seniors, classmates and juniors at Indian Statistical Insti-

tute. I thank Conan-da, Sattwik-da, Sandip-da, Srikanta-da, Kushal-da, Mridu Prabal-

da, Chandril-da, Debojyoti-da, Parikshit-da, Gopakumar, Tanmoy-da, Mahamitra-da

and many others for their help and encouragement. Special thanks to Sreoshi and

Chayanika for carefully going through the thesis and suggesting many corrections.

Special thanks to Pinaki for improving my understanding of many mathematical con-

cepts. I am thankful to the office staff of Economic Research Unit, especially Satyajit-

da and resourceful Swarup-da who were always there to render any help. Fellowship

from the Indian Statistical Institute is gratefully acknowledged.



Contents

1 Introduction 1

1.1 Equilibrium co-existence of public and private firms and the plausibility of price compe-

tition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bertrand-Cournot comparison for oligopolistic industry with vertically integrated firm . 8

1.3 A strong equivalence result with evolutionary stable conjectural variations . . . . . . . . . 10

2 Equilibrium co-existence of public and private firms and the plausibility of price competition 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The three stage game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Government ownership as a policy instrument . . . . . . . . . . . . . . . . . . . . . 29

2.6.2 Implementation aspect of the policy instrument . . . . . . . . . . . . . . . . . . . . 29

2.6.3 Regulating both firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.4 On the adverse effect of transforming the objective of a public firm towards more

profit orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.5 Deficit financing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Bertrand-Cournot comparison for oligopolistic industry with vertically integrated firm 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Demand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Supply side and welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 The short run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

i



3.3.1 The downstream Cournot competition (ΓC
n ) . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 The downstream Bertrand competition (ΓB
n ) . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 The short run results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 The long run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 The long run results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 A strong equivalence result with evolutionary stable conjectural variations 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Modes of competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Conjectural variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Conjectural variations equilibrium (CVE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Evolutionary stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Equivalence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Chapter 1

Introduction

Industrial economists are often interested in comparing different market structures

which are primarily based on their market outcomes and then try to determine the best

market structure considering either the society’s welfare or the firm’s profit and some-

times considering both1. In this context, the "Cournot-Bertrand comparison" is one

such important comparison that has often been analyzed in the literature of industrial

economics. The main structural difference between Cournot competition and Bertrand

competition arises due to the strategic variable through which firms interact with each

other in the market. To be more specific, in case of Cournot competition, firms com-

pete with quantities while under the Bertrand competition they compete with prices.

The first study with differentiated products was made by Singh and Vives (1984). They

conclude that under Cournot duopoly each firm in the industry produces less, charges

more and earns higher profit than under Bertrand duopoly. Further, they argued that

the latter is efficient than the former in terms of welfare ranking. We refer to these rank-

ings as the standard rankings. Subsequent studies in this literature have mainly con-

centrated in determining the circumstances where these standard rankings are either

partially reversed or fully reversed. One such contribution by Häckner (2000) shows

that the standard rankings are dependent on the duopoly assumption and they get

reversed under sufficient quality differences with increasing number of firms. How-

1 In recent years a new notion of ’market quality’ has emerged that generalizes the notion of so-
cial welfare where the key factors determining market quality are "quality of competition", "quality of
information" and "quality of products" (see Yano (2009) and Dastidar (2017)).
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ever they do not consider the welfare rankings between Cournot and Bertrand. Hsu

and Wang (2005) conclude that the standard rankings hold in case of welfare with any

number of firms. Amir and Jin (2001), have extended the "Cournot-Bertrand compar-

ison" by including the following market indicators:- mark-up output ratio, average

output, average price and Herfindahl index. Except for Singh and Vives (1984), the

aforementioned studies deals with oligopoly market with linear demand. On the other

hand, Vives (1985) and Okuguchi (1987) have worked with oligopoly markets assum-

ing general non-linear demand functions. Subsequent studies by Mukherjee (2005)

and Cellini et al. (2004) for free entry; Symeonidis (2003) and Lin and Saggi (2002)

for endogenous Research & Development expenditure; López and Naylor (2004) for

the wage bargaining provided evidence on partial reversal of the standard rankings.

Arya et al. (2008b) and Alipranti et al. (2014) have shown the complete reversal of

the standard rankings with a vertically related producer along with Ghosh and Mi-

tra (2009) who get the same with mixed market. One important contribution with

homogeneous product is by Dastidar (1997) where it is established that the standard

Bertrand-Cournot rankings are sensitive to the market sharing rules.2

So far the discussion has been primarily based on separate analysis of both Cournot

and Bertrand competition. However, this separate analysis is rigid in the sense that the

strategic variable through which firms compete in the market is exogenously given.

But it may also be possible that firms can endogenously determine their strategic vari-

ables. Consequently, the equilibrium outcome may be one of the following: (i) only

Cournot competition (ii) only Bertrand competition (iii) neither Cournot nor Bertrand

competition. Hence, if the endogenous competition prevails, then the classic com-

parison between Cournot and Bertrand competition does not provide any meaningful

results. This endogenous choice of strategic variables have been modeled by allow-

ing firms to optimally determine the strategic variable through which they compete

in the market before the market competition begins. Like "Cournot-Bertrand compar-

ison" Singh and Vives (1984) have also made their first attempt towards the litera-

2It must also be mentioned in this context that there are papers that address the question on existence
of Bertrand equilibrium with homogeneous commodites (see Dastidar (1995) and Dastidar (2011)).
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ture on endogenous strategy choice. They conclude that with substitute (complement)

goods, Cournot (Bertrand) competition is the unique equilibrium mode of competi-

tion. Cheng (1985) generalizes the result of Singh and Vives (1984) with a weaker set

of assumptions using an elegant geometric approach. Boyer and Moreaux (1987) have

extended the story of endogenous strategy choice from simultaneous interaction to

sequential interaction between firms and conclude that the leader chooses quantity

strategy but the follower is indifferent between choosing price strategy and quantity

strategy in equilibrium. Tanaka (2001) extends the analysis of endogenous choice of

strategic variables given vertical product differentiation and also identifies the con-

ditions on the population distribution for which the result of Singh and Vives (1984)

holds. In another study Tanaka (2001) extends the analysis from duopoly to oligopoly

and has argued that the Cournot competition will always be an equilibrium mode of

competition while the Bertrand competition will not. But the uniqueness of the equi-

librium outcome remains unanswered. Further, Reisinger and Ressner (2009) have

extended this analysis with profit maximizers under uncertain demand function and

conclude that Cournot competition may or may not emerge as an equilibrium out-

come.

Throughout the previous paragraph we have discussed different situation consid-

ering only profit maximizers. Other studies have considered the firms whose objec-

tives are different from profit maximization and analyze the problem of endogenous

strategy choice. One such study by Matsumura and Ogawa (2012) shows that the

emergence of price competition has exogenously allowed co-existence of public and

private firms. Chirco et al. (2014) extend this study with managerial delegation. Sub-

sequent studies analysis of the endogenous strategy choice can be seen in the works

by Chirco and Scrimitore (2013), Manasakis and Vlassis (2014).

This thesis is mainly focused on the above two topics and along with detail discus-

sion of the framework. At the very outset the results of this study are as follows:

(A) Under a differentiated product duopoly where a regulated firm competes with

a private firm and the instrument of regulation is the level of privatization the
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regulator first determines the level of privatization to maximize social welfare.

Both firms then endogenously choose the mode of competition (that is, whether

to compete in price or quantity) and finally, the two firms compete in the market.

Under a very general demand specification, we show that when the products

are imperfect substitutes (complements), there is a co-existence of private and

public (strictly partially privatized) firms. Moreover, in the second stage, the

firms compete in prices.

(B) In a vertically related differentiated product oligopolistic industry where a single

vertically integrated firm supplies a key input not only to its own downstream

division but also to all it’s downstream rivals. The comparison between quantity

competition and price competition in the downstream market with fixed num-

bers of firms reveals that the profit ranking of the downstream firms other than

vertically integrated firm is sensitive to the size of competition that prevails as

well as to the degree of product differentiation. Further, in both these cases the

vertically integrated firm always compensates more for the loss in his profit due

to competition increase than by selling input.

(C) Consider a differentiated product oligopoly market where both the price setting

firms and quantity setting firms co-exist. Further each firm posses a conjectural

variation (linear) about all the other firm’s strategic variable. Suppose this con-

jecture is subject to evolutionary selection, then under evolutionary stable so-

lution the equilibrium price, equilibrium quantity and resulting profits are all

identical across firms. Further, this invariance result is true for all combinations

of price-setting and quantity-setting firms.
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1.1 Equilibrium co-existence of public and private firms

and the plausibility of price competition

In Chapter 2 we incorporate the issue of privatization with the literature on endoge-

nous strategy choice by considering a differentiated product duopoly where a regu-

lated firm competes with a private firm and the instrument of regulation is the level

of privatization. Firms interact through the following sequences. First, the regulator

determines the level of privatization to maximize social welfare. Then, both firms en-

dogenously choose the mode of competition (that is, whether to compete in price or

quantity). Finally, the two firms compete in the market. The existing literature can be

broadly classified into three groups:

(i) Papers where Stage 1 is absent and both firms are private, for example Singh and

Vives (1984).

(ii) Papers where Stage 2 is absent, like Fujiwara (2007) where Cournot competition

is assumed (and we have positive privatization level) and Ohnishi (2010) where

Bertrand competition is assumed (and we have no privatization).

(iii) Papers where Stage 1 is absent but the market is mixed, like Matsumura and

Ogawa (2012) who show that Bertrand competition will emerge regardless of

the types of the goods (where one firm is assumed to be public).

The contribution of Chapter 2 is to develop a model that combines all the three

stages, that is, to apply two stages of endogenization. The first stage endogenization is

the objective function of the partially privatized firm and, like Singh and Vives (1984)

and Cheng (1985), the second stage endogenization is price and quantity strategies.

The first stage endogenization of adding positive weights on welfare in a firm’s objec-

tive function seems natural in the context of partially privatized firms (see, for exam-

ple, the papers in the mixed-oligopoly literature by Anderson et al. (1997), Ghosh and

Mitra (2010), Ghosh and Mitra (2014), Matsumura (1998) and Matsumura and Ogawa

(2012)). This literature focuses on mixed markets where both private and partially pri-
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vatized (or public) firms coexist. In the early stages of industrialization of developing

economies, there is often an upper bound on the extent of private ownership. When

a foreign firm tries to enter a domestic market, the government can ask the foreign

firm to pursue an objective different from profit maximization that includes Corporate

Social Responsibility (for example, taking initiative to assess and take responsibility

for the company’s effects on the environment and impact on social welfare). If we

assume that the government cares about social welfare and private firms’ care about

profit, then it seems plausible to assume that the partially privatized firm maximize

a weighted combination of profit and welfare. Therefore, objectives different from

profit are quite important and prevalent in the industrial organization literature. A pa-

per with a very general objective function that allows for altruism and informational

asymmetry is by Heifetz et al. (2007). However, Heifetz et al. (2007) do not allow for

either privatization based enodogeneity (like Stage 1 of our three stage game) or price-

quantity based endogeneity (like Stage 2 of our three stage game). Even when we

have fully privatized firms, we know from the managerial-delegation literature that

managers maximize a weighted combination of profit and quantity/revenue/welfare

and it is compatible with profit maximization (see Fershtman and Judd (1987), Miller

and Pazgal (2001), Sklivas (1987) and Vickers (1985)).

With quadratic utility function there is a growing literature that studies the coexis-

tence of partially privatized firm and a private firm in a differentiated product market.

With quadratic utility, only Stage 1 endogeneity like ours was addressed by Fujiwara

(2007) and by Ohnishi (2010). In Fujiwara (2007), it is argued that under Cournot com-

petition it is optimal to choose a positive weight (θ > 0) for the partially privatized

firm. In Ohnishi (2010), it was argued that under Bertrand competition it is optimal

to choose zero weight (θ = 0) for the partially privatized firm. Our analysis shows

that, in general, if we also endogenize mode of competition along with privatization

ratio, then Cournot competition (Fujiwara (2007)’s analysis) is never achieved as an

equilibrium outcome. With quadratic utility, only Stage 2 endogeneity like ours was

addressed by Matsumura and Ogawa (2012) with an added assumption that one firm
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is fully public (that is, no privatization is exogenously fixed at 0). Matsumura and

Ogawa (2012) argued that Bertrand competition is the SPNE of the two stage game

regardless of whether goods are substitutes or complements. We show that Bertrand

competition is the SPNE of the three stage game, which allows for endogenous deter-

mination of the level of privatization. Moreover, our results hold for a very general

demand specification.

De Fraja and Delbono (1989) show that, in homogeneous goods Cournot oligopoly

with decreasing returns to scale technology, coexistence of a fully public firm with one

or more private firms results in lower social welfare compared to that in oligopoly with

only private firms. However, full privatization of the public firm is not socially desir-

able either; instead partial privatization of the public firm is socially optimal (see Mat-

sumura (1998)). These results hold true in the case of differentiated products mixed

oligopoly with constant returns to scale technology as well (see Fujiwara (2007)). That

is, when firms compete in quantities, it is inefficient to have a fully public firm in the

industry and this inefficiency in mixed oligopoly can be mitigated by partially priva-

tizing the public firm. On the other hand, when firms compete in prices, coexistence

of a fully public firm with one or more private firms is socially desirable and, thus, pri-

vatization (partial or full) of the public firm looses its appeal under price competition

(see Anderson et al. (1997); Sanjo (2009); Ohnishi (2010)), unless goods are comple-

ments (see Ohnishi (2011)). This paper shows that, the level of privatization of the

public firm has important consequences on the nature of product market competition

and when firms can choose the mode of product market competition, coexistence of a

fully public firm with one or more private firms is socially optimal, except in case of

complementary goods. That is, optimality of partial privatization cannot be sustained

when the nature of product market competition is endogenously determined when

the goods are imperfect substitute. We further show (in Section 5) that this result can

be valid even when the public firm is relatively inefficient (but not “too” inefficient)

compared to its private counterparts.
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1.2 Bertrand-Cournot comparison for oligopolistic in-

dustry with vertically integrated firm

In Chapter 3 we revisit the classic comparison of Cournot competition and Bertrand

competition in a vertically related differentiated oligopolistic industry. The industry

consist of a vertically integrated firm and n downstream firms. Production of final

commodity requires a key input on a one-to-one basis. In case of production of key

inputs upstream division of vertically integrated firm has monopoly. The upstream

division of vertically integrated firm not only supplies the necessary key input to its

own downstream division directly but also to all it’s other downstream rivals through

the upstream market. This upstream interaction is followed by all firm competing in

the downstream market. In case of downstream competition, we separately analyze

both Cournot and Bertrand competitions.

As we have already mentioned, in case of differentiated duopoly, Singh and Vives

(1984) makes their first attempt to compare the equilibrium outcome of Cournot and

Bertrand competition and we call the ranking between Cournot competition and

Bertrand competition they provided as the standard rankings. Thereafter, with ver-

tically related market structure Arya et al. (2008b) show that this standard ranking

gets reversed. Our study is in the spirit of Arya et al. (2008b) but in an oligopolistic

framework. With this vertically related structure we show that the ranking of verti-

cally integrated firm’s profit and welfare is robust with oligopolistic market but the

ranking of the profit of all downstream firms (other than vertically integrated firm) is

sensitive to the prevailing degree of competition. We also show that as the degree of

competition increases, there is a loss in profit for the vertically integrated firm due to

new entry and there is also a gain in profit for the vertically integrated firm due to in-

crease in sales of input to these new entrants. However, the resulting aggregate profit

of the vertically integrated firm goes up since the loss from the downstream market is

less than the gain from the upstream market.

Though there are several papers on vertically related market, the literature spe-
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cific to Cournot-Bertrand comparison in which one vertically integrated firm competes

with other downstream firms is rare. Arya et al. (2008a) assume homogeneous prod-

ucts and quantity competition and analyze the firm’s decision of either to produce the

necessary input of production itself or to outsource it.3 Allowing for product differ-

entiation, but considering only the quantity competition Qing et al. (2017) analyze the

capacity allocation problem of a monopolist supplier under bargaining. Arya and Mit-

tendorf (2013b) analyze the role of discriminatory discloser; Mukherjee and Zanchettin

(2007) study the vertical integration and product innovation as independent strate-

gic choice of vertically related firms and Constantatos and Pinopoulos (2016) discuss

the choice of capacity of input vs choice of input price. On the other hand Kabiraj

and Sinha (2016) establish the fact that under price competition with differentiated

products it may be possible that outsourcing is optimal when in house production is

relatively cheap. Alipranti et al. (2014) assume vertical separation and allow bargain-

ing between input seller and output producer. They compare between the Cournot

and Bertrand duopoly and conclude that the ranking of all key market outcomes pro-

vided by Singh and Vives (1984) get reversed. In this context we see a range of papers

that compare the outcome of Cournot and Bertrand competitions.4 We also have pa-

pers that not only study the Bertrand and Cournot duopoly but also consider general

demand function (for instances see Aguelakakis and Yankelevich (2017), Moresi and

Schwartz (2017) and Moresi and Schwartz). These papers allow endogenous choice

of strategic contract (price strategy and quantity strategy). Lee et al. (2016), Rozanova

(2017), Lee et al. (2016), Lee and Choi (2014), Chang et al. (2018). Tremblay et al. (2013)

3There are also a series of studies contributed to the vertically related market structure assuming
homogeneous product and quantity competition such as Chen et al. (2011),Chen (2011),Chen and Sen
(2015)

4For example Yang et al. (2015) analysis how the product substitutability and brand equality affect
the equilibrium channel structure of manufacturers selling competing products; Lee and Oh (2014)
make a comparison of the Cournot model and the Bertrand model in a vertically related duopoly market
with asymmetric costs between downstream firm. By allowing endogenous R & D, Li and Ji (2010)
revisit the argument on welfare effect of price and quantity competition in the presence of technology
licensing; Arya and Mittendorf (2013a) discuss the role of partial forward integration on the strategic
investment and show how things changes from price to quantity competition; Chen (2010) study the
strategic outsourcing between rival but separately discuss quantity competition with homogeneous
good and price competition with differentiated product; Lee and Choi (2016) consider upstream R & D
investments; Polemis and Eleftheriou (2018) consider regulating upstream monopoly.
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examine the Cournot and Bertrand mixed competition when advertising rotates the

market demand and make a case study for Honda and Scion. Fanti and Scrimitore

(2017) explore the role of managerial delegation when it influences downstream firms’

incentives. They determine the endogenous choice of delegation under both Cournot

and Bertrand in a market where a vertically integrated producer also supplies an es-

sential input to it’s retail rival. Allowing for quality choice Xiao et al. (2014), Miyamoto

(2014) and Bourreau et al. (2007) discusses the issue of outsourcing in case of vertical

product differentiation.

We also have studies that focus on the differentiated oligopolistic market struc-

ture with linear demand function. Assuming vertical separation, Pinopoulos (2011)

consider the long run with free entry and show that input price depends on the down

stream market structure, where as, without free entry input price is independent of the

downstream competition. Our analysis differs from the analysis of Pinopoulos (2011)

in two aspect: firstly we consider existence of vertically integrated firm rather than

vertical separation; secondly, we compare price and quantity competition not only for

input price but also for all other market outcomes such as industrial profit, welfare

etc. Rossini and Vergari (2011) also focus on the oligopolistic industry but for quantity

competition only. They compare input production joint venture (IPJV) and vertical in-

tegration (VI). Moreover, Rossini and Vergari (2011) also deals with doupolistic price

competition but for duopoly. Assuming quantity competition Bourreau and Dogan

(2012) analyze the free entry for broad band service.

1.3 A strong equivalence result with evolutionary stable

conjectural variations

In Chapter 4 we determine the optimal strategy choice of oligopolistic firms under

evolutionary stable conjectural variation (at the aggregate level). Conjectural varia-

tion defines, how any firm in the industry believes about the reaction of all it’s other

rivals, in terms of changing the value of their strategic variable due to change in the
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value of their own strategic variable. Moreover, we consider a differentiated oligopoly

industry with any number of firms and any combination of price choosers and quan-

tity choosers. We develop a model in which each firm’s conjectural variation is re-

garded as it’s type. The types of all the firms thus determined generates an aggregate

function resulting from these conjectures and this aggregate realization is subject to

evolutionary selection. Therefore, our model predicts the nature of long run interac-

tion amongst the firms. Specifically, we try to answer the following questions: Which

society of population will survive in the long run? What is the market outcome of this

society? Does the strategic choice have any role to play in this market outcome?

Given this evolutionary stable selection of the aggregate conjecture we show that

in each mode of competition the market outcomes are identical. That is, for each mode

of competition each firm produces same output, charge same price and earns same

profit. Moreover, this outcome is different from the standard Cournot and Bertrand

outcome. Further, there is no role of the mode of competition in determining the mar-

ket outcomes. Therefore, under evolutionary stable solution each mode of competition

will mimic the symmetric modes of competition that lie on both ends.

The literature on conjectural variations mainly focuses on consistent conjectures

(Bresnahan (1981)), where each firm rightly anticipates rival firms’ reaction. Kamien

and Schwartz (1983) show that Bertrand and Cournot outcomes are identical in a linear

duopoly under consistent conjectures. In a similar setting, Müller and Normann (2005)

show that consistent conjectures are also evolutionarily stable, that is, loosely speak-

ing, conjectural variations that are implied by consistent conjectures constitute best

response. Our model is in the spirit of Müller and Normann (2005) as we also focus

on best responses in conjectural variations space though we go beyond duopoly. Pos-

sajennikov (2015), Possajennikov (2016) establish the evolutionary stability of the con-

sistent conjectural variation with n players without endogenizing the strategy space.

However, our model allows for co-existence of both price-setters and quantity-setters

and thus, in our context, each firm needs to conjecture responses from rival price-

setting firms as well as rival quantity-setting firms. In this chapter we also analyze the
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stability of evolutionary selection of aggregate conjectural variation. This is different

from Dastidar (2000) and Tremblay and Tremblay (2011) where the stability issue for

market outcomes were addressed.
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Chapter 2

Equilibrium co-existence of public and

private firms and the plausibility of

price competition

2.1 Introduction

What happens if, instead of two profit maximizing firms, we consider a regulated

firm and a profit maximizing firm in the duoploy market with differentiated product?

Singh and Vives (1984) and Cheng (1985) considered a two-stage game for a differ-

entiated product duopoly market where both firms are profit maximizers. In the first

stage, the firms credibly announce to play in either quantity or price strategies. If the

goods are substitutes (complements), then it is shown that quantity or Cournot (price

or Bertrand) competition is the SPNE outcome of this two stage game (see Singh and

Vives (1984) and Cheng (1985)). In this chapter we model the co-existence of a regu-

lated firm and a profit maximizing firm and, in particular, we model the objective of

the regulator and then (like Singh and Vives (1984)) allow the firms to decide on the

mode of competition before competing in the market. In a static scenario this calls for

a three stage game which to the best of our knowledge has not been done in the differ-
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entiated product literature.1 Moreover, there are many papers that provide important

results by assuming quadratic utility function or CES utility function of the represen-

tative consumer. We want to come out of this limitation as well and allow for more

general demand specifications to provide our results with the three stage game.

The primary reason for this three-stage game stems from the fact that when the

goods are imperfect substitutes, it is not always the case that we find profit maximiz-

ing firms operating in a market and competing in quantities (like the results in Singh

and Vives (1984) and Cheng (1985) suggest). Objective different from profit maximiza-

tion for imperfect substitutes is a special feature of many markets in many countries.

Examples include the telecom sector, banking industry, airlines, postal services, health

sector, and education sector (see for example Backx et al. (2002), Badertscher et al.

(2013), Doganis (2005) and La Porta et al. (2002)). Even in developed countries we

often find the co-existence of welfare maximizing public firm and profit maximizing

private firms.2 Therefore, one cannot deny the role of regulation in the differentiated

products markets.3

Assuming a market where a private firm competes with a public firm, it was shown

by Matsumura and Ogawa (2012) that, with quadratic utility function of the repre-

sentative consumer, price (Bertrand) competition is the SPNE of the two stage game

regardless of whether goods are substitutes or complements. Therefore, one cannot

unambiguously confirm that quantity competition will always follow in a differenti-

ated product market when at least one firm is not a profit maximizer. However, what

guarantees the co-existence of public firm and private firm in a differentiated product

market? This requires a more careful modeling of the regulatory instrument and it is

also for this reason that our contribution is important.

1All the models in the existing literature either endogenize the mode of competition or endogenize
the objective of the non-profit maximizing firm but not both. Hence, we only have two stage (and not
three-stage) models in the existing literature.

2In case of China after early 1980s we have seen the coexistence of both public and private firms. For
example, in the health sector in urban China we find such a co-existence. In case of USA and England,
we find such a co-existence in both health and education sectors.

3In case of the aviation sector in India, Air India is a government regulated enterprise competing
with other private enterprise such as Jet Airways, IndiGo etc. In the Indian banking sector there are
nationalized (regulated) banks such as State Bank of India that competes with other private banks such
as Axis Bank.
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We first add an earlier (first) stage to the two-stage game of Singh and Vives (1984)

and Cheng (1985). In the first stage, a (regulator) government decides how much

weight the partially privatized firm must attach to its own profit and social welfare

assuming that the competing firm is a profit maximizer. We show that in such a set-

up, when the goods are substitutes we uniquely end up in the co-existence of welfare

maximizing public firm and profit maximizing private firms, that is, no privatization

Bertrand equilibrium is the SPNE outcome of this game where the government sets

zero (full) weight to profit (social welfare) of the partially privatized firm and both

firms compete in prices (that is, Bertrand competition). When the goods are comple-

ments we uniquely end up in an SPNE outcome which we call strictly partial privati-

zation Bertrand equilibrium where, in Stage 1, the government adds non-zero weights

to both Firm 1’s own profit and social welfare and, in Stage 2, firms play price strate-

gies.

The first stage regulatory instrument of the government is the weight θ (lying in

the closed interval [0, 1]) attached to the profit of the partially privatized firm and

the residual weight (1− θ) attached to the welfare of the society. According to Vives

(1985), when both firms are profit maximizers, then, with Cournot competition, there is

less of a profit loss with price under-cutting than with Bertrand competition. However,

when we have one partially privatized firm, then there exists a critical value of weight

(θ ∈ (0, 1)) such that for each weight below this critical weight, there exists a critical

price of Firm 2 below which Vives (1985)’s argument holds and, more importantly,

above this critical price the reverse argument holds, that is, with Bertrand competition

there is less of a profit loss with price under-cutting than with Cournot competition. It

is precisely this feature that drives our main result when the goods are substitutes.

Our results hold under very general demand specifications. Moreover, our results

are true even when the quantity reaction functions transformed in the price space are

non-monotonic. In particular, for substitute goods, our result hold under the set of

assumptions made by Cheng (1985) and with an additional assumption on welfare

which is general enough and was used in Ghosh and Mitra (2014). To prove our re-
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sults we have at times made use of Cheng (1985)’s geometric approach and, to prove

one lemma, we have also used the line integral techniques similar to the one used in

Ghosh and Mitra (2010), Ghosh and Mitra (2014). Specifically, to find the exact cut-

off weight (θ) for the optimal choice of mode of competition for Firm 2 changes we

use line integral techniques and then we apply Cheng (1985)’s geometric approach to

sequentially eliminate possibilities other than the price competition.

The chapter 2 is organized as follows. In Section 2.2, we introduce the basic frame-

work, our assumptions with imperfect substitute goods and we explain the three stage

game. In Section 2.3, we present our main theorem with imperfect substitutes. In Sec-

tion 2.4, we present the result with complement goods. In Section 2.5, we address

the robustness of our game with quadratic utility and we also address the issue of

cost asymmetry. In Section 2.6 we provide our conclusions followed by an appendix

section (Section 2.7) where we provide the proofs of all the results.

2.2 Preliminaries

We consider an economy with a competitive sector producing the numéraire good

(money) y and with a imperfectly competitive sector where two firms operate. Each

firm produces a differentiated good. For any firm i ∈ {1, 2}, let pi and qi denote Firm

i’s price and quantity respectively. For convenience we define the following notations.

Let<+ represent the non-negative orthant of the real line<. For any x = (x1, x2) ∈ <2
+

and any y = (y1, y2) ∈ <2
+, x 6= y means either x1 6= y1 or x2 6= y2, x ≥ y means

x1 ≥ y1 and x2 ≥ y2, and, x >> y means x1 > y1 and x2 > y2. We assume a

representative consumer who maximizes U (q, y) := U(q) + y subject to p1q1 + p2q2 +

y ≤ M where q = (q1, q2) ≥ (0, 0), p = (p1, p2) >> (0, 0) and M denotes income of

the representative consumer. For any function G : <2
+ → <, define for any i ∈ {1, 2},

∂iG(x) := (∂G(x)/∂xi), ∂iiG(x) := (∂2G(x)/∂x2
i ) and for any i, j ∈ {1, 2} such that

i 6= j, ∂ijG(x) := (∂2G(x)/∂xj∂xi) and ∂ijG(x) = ∂jiG(x).

ASSUMPTION 2.1 For i, j = 1, 2 (i 6= j) and any q >> (0, 0), (i) ∂iU(q) > 0, (ii)
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∂iiU(q) < 0, (iii) ∂ijU(q) < 0 and (iv) |∂iiU(q)| > |∂ijU(q)|.

Given U (q, y) is quasi-linear, there is no income effect and hence the representa-

tive consumer’s optimization is to select q to maximize U(q) − p1q1 − p2q2. Utility

maximization yields the inverse demand function pi = ∂iU(q) := FQQ
i (q) for all

q ≥ (0, 0) and for each i ∈ {1, 2}. Using Assumption 2.1 it follows that ∂iF
QQ
i (q) =

∂iiU(q) < 0 and ∂jF
QQ
i (q) = ∂ijU(q) < 0 for i 6= j. From Assumption 2.1(iv)

we know that the demand system is invertible. Therefore, given any price vector

p = (p1, p2) >> (0, 0), we get the direct demand function qi = FPP
i (p) for each

i ∈ {1, 2}. Let |D| := ∂11U(q)∂22U(q) − (∂12U(q))2 > 0. Given Assumption 2.1, it

also follows that ∂iFPP
i (p) = ∂jjU(q)/|D| < 0 and ∂jFPP

i (p) = −(∂ijU(q)/|D|) > 0

for i, j ∈ {1, 2} with i 6= j. For any i ∈ {1, 2}, any quantity qi ≥ 0, the level set

Qi(qi) = {p | p >> (0, 0), FQQ
i (p) = qi} generates iso-quantity curve for Firm i in the

price space. Due to Assumption 2.1, the slope of the iso-quantity curve at qi = qi is
dpj
dpi
|qi
= −(∂iFPP

i (p)/∂jFPP
i (p)) > 0. By Assumption 2.1, own effect dominates cross

effect implying that Q1 is steeper than Q2 in the price space (see Cheng (1985)). We

assume identical total cost of both the firms and it is given by C(y) = my where m > 0

and y ≥ 0. When both firms choose quantity as a strategic variable, profit of Firm i is

given as πQQ
i (q) = (FQQ

i (q)−m)qi for i, j = 1, 2 with i 6= j. The profit function of Firm

i when both chooses price as a strategic variable is given by πPP
i (p) = (pi −m)FPP

i (p)

for all i, j = 1, 2 with i 6= j. The constant m > 0 is the marginal cost of production.

ASSUMPTION 2.2 For i, j = 1, 2 (i 6= j) and any q >> (0, 0), (i) ∂ijπ
QQ
i (q) < 0 and (ii)

∂iiπ
QQ
i (q) + |∂ijπ

QQ
i (q)| < 0.

ASSUMPTION 2.3 For i, j = 1, 2 (i 6= j) and any p >> (0, 0), (i) ∂ijπ
PP
i (p) > 0 and (ii)

∂iiπ
PP
i (p) + |∂ijπ

PP
i (p)| < 0.

Assumption 2.1, Assumption 2.2 and Assumption 2.3 are very standard and these

are satisfied by any standard demand function when products are imperfect substi-

tutes (see Cheng (1985) and Vives (2001)). Let CS = U − p1q1 − p2q2 denote the
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consumer surplus and π = π1 + π2 = (p1 − m)q1 + (p2 − m)q2 denote the aggre-

gate profit with π1 (π2) representing profit of Firm 1 (Firm 2). The (social) welfare

is given by W = CS + π = U − m(q1 + q2). The welfare function when both firms

choose quantity as a strategic variable is given by WQQ(q) = U(q)−m(q1 + q2) with

∂iWQQ(q) = FQQ
i (q)−m, ∂iiWQQ(q) = ∂iF

QQ
i (q) < 0, and, ∂ijWQQ(q) = ∂jF

QQ
i (q) <

0. The welfare function when both firms choose price as a strategic variable is given by

WPP(p) = WQQ(FPP
1 (p), FPP

2 (p)) = U(FPP
1 (p), FPP

2 (p)) − m(FPP
1 (p) + FPP

2 (p)) with

∂iWPP(p) = (pi −m)∂iFPP
i (p) + (pj −m)∂iFPP

j (p).

ASSUMPTION 2.4 For i, j = 1, 2 and (p1, p2) ≥ (m, m), (i) ∂iiWPP(p) < 0 and (ii)

∂iiWPP(p) + ∂ijWPP(p) < 0.

An assumption similar to Assumption 2.4 was used in Ghosh and Mitra (2014).

Assumption 2.4 (i) is necessary to satisfy the second order condition of any welfare

maximizing firm. We consider two very standard utility specifications. Suppose that

the utility function of the representative consumer is given by

U(q) = a(q1 + q2)−
1
2
(q2

1 + q2
2 + 2γq1q2), (2.1)

where a (> m) is a preference parameter, γ (−1 < γ < 1) is the product differentiation

parameter (see Dixit (1979) and Singh and Vives (1984)). A positive (negative) value

of γ indicates substitute (complement) goods. We first restrict attention to substitute

goods case. One can show that the quadratic utility function given in (2.1) satisfies

all our assumptions (that is, Assumption 2.1 to Assumption 2.4) when the goods are

substitutes. Suppose that the utility function of the representative consumer is given

by

U(q) = [qs
1 + qs

2]
γ, sγ, γ, s ∈ (−∞, 1), (2.2)

where σ = 1
1−s measure the elasticity of substitution (see Dixit and Stiglitz (1977) and

Vives (2001)). Goods are substitute if γ, s ∈ [0, 1] and complement if γ, s ∈ [−∞, 0].

We first restrict attention to substitute goods case. One can show that the CES utility

function satisfies the first three assumptions (that is, Assumption 2.1 to Assumption
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2.3). If 1− 2s + γs2 > 0, then Assumption 2.4 is satisfied by the CES utility functions

given in (2.2).

REMARK 2.1 It is important to note that we consider a weaker set assumptions than

what is required for the stability of the equilibrium according to Dixit (1986).

2.2.1 The three stage game

We assume that Firm 1 is partially privatized (maximizing a weighted sum of welfare

and its own profit) and Firm 2 is a private firm (maximizing its own profit). Therefore,

the payoff function of Firm 1 is V1 := θπ1 + (1 − θ)W where θ is the privatization

ratio (see Matsumura (1998)) and that of Firm 2 is π2. Specifically, if Firm 1 is a public

(private) firm, then θ = 0 (θ = 1) and Firm 1 maximizes social welfare (its own profit).

For any given weight θ ∈ (0, 1), Firm 1 maximizes the weighted sum of its own profit

and social welfare. We consider a three stage game Γ and the stages of the game are as

follows.

• Stage1: The government decides the level of privatization (θ ∈ [0, 1]) in order to

maximize social welfare.

• Stage 2: Each firm decides (simultaneously and independently) whether to

adopt a price strategy (call it P) or a quantity strategy (call it Q). See Table 1.

• Stage 3: Firm 1 and Firm 2 compete in the market.

We solve the game using backward induction. Given the first stage choice of θ,

let the optimal price and quantity of Firm i be pXY
i (θ) and qXY

i (θ) assuming Firm 1

adopts strategy X and Firm 2 adopts strategy Y where X, Y ∈ {P, Q}. We denote the

consequent profit of Firm i at the optimal choice and contingent on XY by πXY
i (θ) =

πQQ
i (qXY

1 (θ), qXY
2 (θ)) = πPP

i (pXY
1 (θ), pXY

2 (θ)). Similarly, the consequent welfare at

this optimal choice and contingent on XY is WXY
(θ) = WQQ(qXY

1 (θ), qXY
2 (θ)) =

WPP(pXY
1 (θ), pXY

2 (θ)). So the optimal pay-off of Firm 1 and Firm 2 contingent on XY

are VXY
1 (θ) = θπXY

i (θ) + (1− θ)WXY
(θ) and πXY

2 (θ) respectively. With this specifica-

tion, in the second stage firms play the following stage game.
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Table 2.1: Stage 2 of Γ
XXXXXXXXXXXXFirm 1

Firm 2 Price Quantity

Price VPP
1 (θ), πPP(θ) VPQ

1 (θ), πPQ
2 (θ)

Quantity VPQ
1 (θ), πPQ

2 (θ) VQQ
1 (θ), πQQ

2 (θ)

Sub-game perfect equilibrium of Γ: For any X, Y ∈ {P, Q}, any x1 ∈

{p1, q1}, any y2 ∈ {p2, q2}, and, any θXY ∈ [0, 1], a profile of strategies

(θXY, (X, xXY
1 (θXY)), (Y, yXY

2 (θXY))) is a sub-game perfect Nash equilibrium (SPNE)

of Γ if it induces a Nash equilibrium in every sub-game of Γ. First, in Stage 3, given

θXY and given XY, (xXY
1 (θXY), yXY

2 (θXY)) is a Nash equilibrium choice vector (that is,

xXY
1 (θXY) and yXY

2 (θXY) are respectively the optimum choice of X by Firm 1 given

yXY
2 (θXY) and the optimum choice of Y by Firm 2 given xXY

1 (θXY)). Second, in Stage 2,

given θXY, X is a best response of Firm 1 against Y of Firm 2 and Y is a best response of

Firm 2 against X of Firm 1. Finally, θXY induces XY in Stage 2 and maximizes WXY
(θ)

in Stage 1. Moreover, there does not exist θ that induces a mode of competition Z1Z2

(with Zi ∈ {P, Q} for i = 1, 2) and yields a higher welfare than WXY
(θXY).

We define four possible types of equilibria of Γ.

(i) Let (θPP, (P, pPP
1 (θPP)), (P, pPP

2 (θPP))) be a Bertrand equilibrium with equilib-

rium weight θPP. If θPP = 0, then we call it the no privatization Bertrand equi-

librium. If θPP ∈ (0, 1), then we call it the strictly partial privatization Bertrand

equilibrium.

(ii) Let (θQQ, (Q, qQQ
1 (θQQ)), (Q, qQQ

2 (θQQ))) be a Cournot equilibrium with equilib-

rium weight θQQ.

(iii) Let (θPQ, (P, pPQ
1 (θPQ)), (Q, qPQ

2 (θPQ))) be a Type 1 equilibrium with equilib-

rium weight θPQ.

(iv) Let (θQP, (Q, qQP
1 (θQP)), (P, pQP

2 (θQP))) be a Type 2 equilibrium with equilib-

rium weight θQP.
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2.3 The main result

THEOREM 2.1 Suppose Assumption 2.1, Assumption 2.2, Assumption 2.3 and As-

sumption 2.4 hold. The strategy combination (θPP = 0, (P, pPP
1 (θPP)), (P, pPP

2 (θPP))),

that is, no privatization Bertrand equilibrium, is the unique SPNE outcome of Γ.

Before going to the proof of Theorem 2.1 we illustrate the relevant reaction func-

tions that will be helpful for our analysis. If both firms compete in prices, then for any

θ ∈ [0, 1], let SVPP
1 (θ) = {p | p >> (0, 0), ∂1VPP

1 (p, θ) = 0} be the reaction function

of Firm 1 in the price space. Given, Assumption 2.3 and Assumption 2.4, SVPP
1 (θ) is

invertible. Hence, we can represent it as p1 = SVPP
1 (p2, θ). In Figure 2.1, we repre-

sent p1 = SVPP
1 (p2, 0) by the SPP

1 SPP′
1 curve and we represent p1 = SVPP

1 (p2, 1) by the

RPP
1 RPP′

1 curve and, for any θ ∈ (0, 1), the curve p1 = SVPP
1 (p2, θ) must lie between the

curves p1 = SVPP
1 (p2, 0) and p1 = SVPP

1 (p2, 1) (since by Assumption 2.3 and Assump-

tion 2.4 one can show that ∂11VPP
1 < 0). The reaction function of Firm 2 is the locus

of all points in the set RPP
2 = {p | p >> (0.0), ∂2πPP

2 (p) = 0}. By Assumption 2.3,

we know that RPP
2 is a positively sloped curve with slope less than unity (see Cheng

(1985)) hence it is invertible. Therefore, we can represent it as p2 = RPP
2 (p1). In Figure

2.1, we represent p2 = RPP
2 (p1) by the RPP

2 RPP′
2 curve.

Suppose that both firms are competing in quantities. For any θ ∈ [0, 1], the re-

action function of Firm 1 is the locus of all points in the set SVQQ
1 (θ) = {q | q >>

(0, 0), ∂1VQQ
1 (q, θ) = 0}. By Assumption 2.1 and Assumption 2.3, it is possible to

show that ∂11VQQ
1 (q, θ) < 0, ∂12VQQ

1 (q, θ) < 0 and |∂11VQQ
1 (q, θ)| > |∂12VQQ

1 (q, θ)|.

Hence, in the (q1, q2) plane, the SVQQ
1 curve is negatively sloped and its slope is more

than unity in absolute sense. Therefore, we can represent it as q1 = SVQQ
1 (q2, θ).

The reaction function of Firm 2 is locus of all points in the set RQQ
2 = {q | q >>

(0, 0), ∂2πQQ
2 (q) = 0}. By Assumption 2.2 the reaction function RQQ

2 (in the (q1, q2)

plane) is strictly decreasing with slope less than unity in absolute sense (see Cheng

(1985)) and hence is invertible. Therefore, we can represent it as q2 = RQQ
2 (q1).

The graphs of RQQ
2 and SVQQ

1 (θ) in price space are respectively P(RQQ
2 ) = {p |

∂2πQQ
2 (q) = 0 and qi = FPP

i (p) ∀ i = 1, 2} and P(SVQQ(θ)) = {p | ∂1VQQ
1 (q, θ) =
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0 and qi = FPP
i (p) ∀ i = 1, 2} and their respective equations in implicate form are

FPP
1 (p) − SVQQ

1 (FPP
2 (p), θ) = 0 and FPP

2 (p) − RQQ
2 (FPP

1 (p)) = 0. In Figure 2.1, the

set of points in P(SVQQ
1 (0)) is represented by the line p1 = m. Like Cheng (1985),

one can show that the set of points P(RQQ
2 ) must lie above the RPP

2 RPP′
2 . One such

representation is the r2r′2 curve in Figure 2.1.

o
p1

p2 p1 = p2
p1 = m

p2 = m
RPP

2

RPP′
2

RPP
1

RPP′
1

SPP
1

SPP′
1

SPP
2

SPP′
2

B C

D

r2

B′

r′2
A′

Figure 2.1: The case of imperfect substitutes

LEMMA 2.1 For any weight θ ∈ (0, 1), ∂1πPP
1 (pPP

1 (θ), pPP
2 (θ)) > 0 and for any Firm i

with i ∈ {1, 2}, ∂iWPP(pPP
1 (θ), pPP

2 (θ)) < 0.

Lemma 2.1 states that with price competition and given any θ ∈ (0, 1), at any

equilibrium price vector (pPP
1 (θ), pPP

2 (θ)) it is always optimal for Firm 1 to increase

(decrease) price given Firm 2’s price remains at pPP
2 (θ) when Firm 1 is a profit (welfare)

maximizer.

LEMMA 2.2 For any θ ∈ (0, 1),

(i) ∂θqQQ
1 (θ) < 0 and ∂θqQQ

2 (θ) > 0.

(ii) ∂θ pQQ
1 (θ) > 0, and, for any i = 1, 2, ∂θ pPP

i (θ) > 0 and ∂θ pPQ
i (θ) > 0.
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Lemma 2.2 provides the standard comparative static results.

LEMMA 2.3 (i) There exists a unique θ1 ∈ (0, 1) such that πPP
2 (θ) R πPQ

2 (θ) if and

only if θ Q θ1.

(ii) There exist θ3 ∈ (0, 1) such that VPP
1 (θ3) = VQP

1 (θ3) and, for any θ ∈ (0, θ3),

VPP
1 (θ) > VQP

1 (θ).

(iii) There exist a unique θ4 ∈ (0, 1) such that πQP
2 (θ) R πQQ

2 (θ) if and only if θ Q θ4.

Assume that Firm 1 chooses price strategy. Lemma 2.3 (i) states that there exist a

unique θ1 ∈ (0, 1) for which Firm 2 is indifferent between choosing price strategy and

quantity strategy. Moreover, if θ < θ1, then price strategy is optimal for Firm 2, and, if

θ > θ1, then quantity strategy is optimal for Firm 2. Next, assume that Firm 2 chooses

price strategy. Lemma 2.3 (ii) states that there exist θ3 ∈ (0, 1) for which Firm 1 is in-

different between choosing price or quantity strategy. Moreover, if θ < θ3, then Firm 1

chooses price strategy. Lemma 2.3 (iii) states that when Firm 1 chooses quantity strat-

egy, there exist an unique θ4 ∈ (0, 1) for which Firm 2 is indifferent between choosing

price strategy and quantity strategy. For any θ < θ4, price strategy is optimal and, for

any θ > θ4, quantity strategy is optimal. The cut-off point θ1 (θ4) is associated with the

case where Firm 1 chooses price (quantity) strategy. These cut-off points in Lemma 2.3

(i) and (iii) reflects the reversal in the cost of adopting price strategy for Firm 2 com-

pared to quantity strategy. For the privatization weights below these cut-off points the

reverse intuition of Vives (1985) holds. To prove Lemma 2.3 (i) and Lemma 2.3 (iii)

we use the line integral technique which is the two-variable asymmetric version of the

one used in Ghosh and Mitra (2010), Ghosh and Mitra (2014).

LEMMA 2.4 Under price competition in Stage 2, the resulting welfare WPP
(θ) is maxi-

mized at θ = 0. Moreover, at θ = 0, the government can uniquely induce price strategy

for both firms.

Lemma 2.4 indicates that no privatization Bertrand equilibrium is a possible SPNE

outcome of Γ. Specifically, if we can rule out the other modes of competition (that

23



is, if we can rule out both firms choosing quantity strategy and if we can rule out

one firm choosing price strategy and the other firm choosing quantity strategy), then

from Lemma 2.4 it will follow that the no privatization Bertrand equilibrium is the

unique SPNE outcome of Γ. The remaining lemmas together rule out other modes of

competition and completes the proof of Theorem 2.1. Lemma 2.5 and Lemma 2.6 that

follows rule out the possibilities of Type 1 and Type 2 equilibria.

LEMMA 2.5 There is no θPQ ∈ [0, 1] such that (θPQ, (P, pPQ
1 (θPQ)), (Q, qPQ

2 (θPQ))) is

an SPNE outcome of Γ.

LEMMA 2.6 There is no θQP ∈ [0, 1] such that (θQP, (Q, qQP
1 (θQP)), (P, pQP

2 (θQP))) is

an SPNE outcome of Γ.

Finally, to rule out the possibility of quantity competition, let us first generate the

Cournot equilibrium path in the (p1, p2) space by varying θ from 0 to 1 and plotting the

corresponding price vector. See the path B′A′ in Figure 2.1 where B′ corresponds to

(pQQ
1 (0), pQQ

2 (0)) and A′ corresponds to (pQQ
1 (1), pQQ

2 (1)). The next lemma captures

the exact behavior of the Cournot equilibrium path as we vary θ.

LEMMA 2.7 Let (pQQ
1 (θ), pQQ

2 (θ)) and (pQQ
1 (θ′), pQQ

2 (θ′)) be any two points on the

Cournot equilibrium path. If (pQQ
1 (θ), pQQ

2 (θ)) is closer to (pQQ
1 (1), pQQ

2 (1)) than

(pQQ
1 (θ′), pQQ

2 (θ′)) in terms of arch length of the path, then θ > θ′.

Lemma 2.7 can be explained in terms of the B′A′ segment of the r2r′2 in Figure

2.1. For each point in the segment B′A′, we can associate a (pQQ
1 (θ), pQQ

2 (θ)) vector.

Lemma 2.7 states that as we move along the B′A′ segment of the r2r′2 curve (starting

from B′ and ending at A′), the underlying θ increases. Finally, to complete the proof

of Theorem 2.1, we need to eliminate the possibility of quantity competition. Given

Lemma 2.7 identifies the properties of the Cournot equilibrium path in terms of θ,

we can use this path along with the cut-off point θ4 (identified in Lemma 2.3 (iii)) to

establish the impossibility of quantity competition. Hence, we have Lemma 2.8.

LEMMA 2.8 There is no θQQ ∈ [0, 1] such that (θQQ, (Q, qQQ
1 (θQQ)), (Q, qQQ

2 (θQQ))) is

an SPNE outcome of Γ.
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2.4 Complements

To obtain the equilibrium outcome when the goods are complement we use the fol-

lowing assumptions.

ASSUMPTION 2.5 For i, j = 1, 2 (i 6= j) and any q >> (0, 0), (i) ∂iU(q) > 0, (ii)

∂iiU(q) < 0, (iii) ∂ijU(q) > 0 and (iv) |∂iiU(q)| > |∂ijU(q)|.

ASSUMPTION 2.6 For i, j = 1, 2 (i 6= j) and any q >> (0, 0), (i) ∂ijπ
QQ
i (q) > 0 and (ii)

∂iiπ
QQ
i (q) + |∂ijπ

QQ
i (q)| < 0.

ASSUMPTION 2.7 For i, j = 1, 2 (i 6= j) and any p >> (0, 0), (i) ∂ijπ
PP
i (p) < 0 and (ii)

∂iiπ
PP
i (p) + |∂ijπ

PP
i (p)| < 0.

ASSUMPTION 2.8 For i, j = 1, 2, i 6= j and any p >> (0, 0) such that pi ≤ c ≤ pj, (i)

∂iiWPP(p) < 0 and (ii) ∂iiWPP(p)− ∂ijWPP(p) < 0.

Assumption 2.5, Assumption 2.6 and Assumption 2.7 are very standard and these

are satisfied by any standard demand function when the goods are complements (see

Singh and Vives (1984) and Vives (2001)). Assumption 2.8 (i) is necessary to satisfy

the second order condition of any welfare maximizing firm. With the quadratic (CES)

utility function given by condition (2.1) (condition (2.2)), Assumption 2.5, Assumption

2.6, Assumption 2.7 and Assumption 2.8 are satisfied.

Before going to our result we explain the implications of Assumption 2.5, As-

sumption 2.6, Assumption 2.7 and Assumption 2.8 in terms of reactions functions

in the price plane using Figure 2.2. In particular, we are interested in the function

p2 = RPP
2 (p1), the set P(RQQ

2 ) for Firm 2 and, for θ ∈ {0, 1}, we are interested in

the function p1 = SVPP
1 (p2, θ) and the set P(SVQQ

1 (θ)) for Firm 1. In Figure 2.2,

the curve R2R′2 represents the reaction function of Firm 2 when Firm 1 chooses price

strategy, that is, p2 = RPP
2 (p1). By Assumption 2.7, it is decreasing in p1 with an ab-

solute slope less than unity. Given Assumption 2.7 (ii), ∂22πPP
2 (p) < 0 implying that

in the region above the R2R′2 curve ∂2πPP
2 (p) < 0 and in the region below the R2R′2

curve we have ∂2πPP
2 (p) < 0. Therefore, given ∂1πPP

2 (p) = (p2 − m)∂1FPP
2 (p) < 0,
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in the region above the R2R′2 curve, the iso-profit curve of Firm 2 is decreasing and

in the region below the R2R′2 curve, the iso-profit curve of Firm 2 is increasing. In

each point in the set P(RQQ
2 ), Firm 2 maximizes profit πPP

2 (p) subject to q1 = FPP
1 (p).

Hence, each point in the set P(RQQ
2 ) is a point of tangency between the iso-profit

curve of Firm 2 and the iso-quantity curve of Firm 1. By Assumption 2.5, the iso-

quantity curve of Firm 1 is negatively sloped implying that the tangency of the iso-

quantity curve of Firm 1 with the iso-profit curve of Firm 2 must lie above the R2R′2

curve. Therefore the set of points in P(RQQ
2 ) lie above the R2R′2 curve. Finally, as we

move along the R2R′2 curve towards the p2 axis, the profit of the Firm 2 increases since

dπPP
2 (p1, RPP

2 (p1))/dp1 = ∂1πPP
2 (p1, RPP

2 (p1)) < 0. In Figure 2.2, the R1R′1 curve is the

reaction function of Firm 1, that is, p1 = SVPP
1 (p2, 1) for θ = 1. By Assumption 2.7, it

is decreasing and the slope is greater than unity. One can also show that each point in

the set P(SVQQ
1 (1)) lies to the right of the R1R′1 curve. By definition, p1 = c represents

the set of points in the set P(SVQQ
1 (0)). In Figure 2.2, the S1S′1 curve represents the

function p1 = SVPP
1 (p2, 0) and it satisfies the following condition.

(p1 −m)∂1FPP
1 (p) + (p2 −m)∂1FPP

2 (p) = 0. (2.3)

By Assumption 2.5, ∂1FPP
1 (p) < 0, ∂1FPP

2 (p) < 0 and |∂1FPP
1 (p)| > |∂1FPP

2 (p)| and

hence using (2.3) it follows that the S1S′1 curve must lie between the p1 = m line and

the p1 + p2 = 2m line (see line PP′ in Figure 2.2). Similarly, the S2S′2 curve represents

the locus of points satisfying ∂2WPP(p) = 0 and this curve lies between the p2 = m

and the PP′ lines. In Figure 2.2, point B is the intersection point between the R1R′1

curve and the R2R′2 curve representing the Bertrand equilibrium point for θ = 1. Since

both firm are facing symmetric demand and identical cost conditions, point B lies on

the p1 = p2 line. Point A is the point of intersection between the S1S′1 curve and the

R2R′2 curve representing the Bertrand equilibrium for θ = 0. Given any θ ∈ [0, 1], the

function p1 = SVPP
1 (p2, θ) lies between the S1S′1 curve and the R1R′1 curve. Therefore,

for any θ, the equilibrium price vector (pPP
1 (θ), pPP

2 (θ)) must belong to the segment

AB of the R2R′2 curve.
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Figure 2.2: The case of complements

PROPOSITION 2.1 Suppose Assumption 2.5, Assumption 2.6, Assumption 2.7 and As-

sumption 2.8 hold. There exists θPP ∈ (0, 1) such that the strictly partial privatization

Bertrand equilibrium strategy combination (θPP, (P, pPP
1 (θPP)), (P, pPP

2 (θPP))) is the

unique SPNE outcome of Γ.

2.5 Robustness

Following Kreps and Scheinkman (1983) argument on the importance of game form,

we first check how important our three stage game Γ is in driving Theorem 2.1 and

Proposition 2.1. We do this robustness check with quadratic utility function given by

(2.1).

(a) Firstly, if we interchange Stage 1 and Stage 2 of Γ, then, in case of imperfect
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substitutes, we have no privatization Bertrand equilibrium as the unique SPNE

outcome, and, in case of complements, we have strictly partial privatization

Bertrand equilibrium with θPP = −γ(1 + γ)/(4 + 3γ) ∈ (0, 1) as the unique

SPNE outcome.

(b) Keeping everything else unchanged, suppose in Stage 1 of Γ we replace the ob-

jective function of the government by V1 := θπ0 + (1− θ)W where θ ∈ [0, 1]. For

both imperfect substitutes and complements, no privatization Bertrand equilib-

rium is the unique SPNE outcome.

(c) We check the importance of our symmetric cost assumption. Suppose Ci(q) =

miqi is the total cost function of Firm i for i = 1, 2 and assume that m1 6= m2. If

the difference in the marginal costs of the two firms is ‘large enough’, then re-

sults can change for imperfect substitutes (see Zanchettin (2006)). Keeping the

game Γ unchanged, if we assume cost asymmetry, then, with quadratic utility

function given by (2.1), we have the following results. In case of imperfect sub-

stitutes, if γ(3− γ2)/2 < α1/α2 < 1/γ, then we have no privatization Bertrand

equilibrium as the unique SPNE outcome of Γ where αi = a − mi > 0 for all

i = 1, 2. In case of complements, for any γ ∈ (−1, 0), we have the strictly par-

tial privatization Bertrand equilibrium as the unique SPNE outcome of Γ with

θPP = −γ(1− γ2)(α2 − γα1)/
[
(4− 3γ2)(α1 − γα2)− γ(α2 − γα1)

]
∈ (0, 1).

(d) If we have one regulated firm and more than one profit maximizing firms com-

peting in a differentiated product market, then, by taking a general form of the

quadratic utility function given by (2.1), we can show that in this three stage

game it is optimal to select zero weight on profit of the regulated firm under

price competition. However, in this scenario it was established by Haraguchi

and Matsumura (2016) that one cannot always induce price competition. Specif-

ically, Haraguchi and Matsumura (2016) show that for any given number of pri-

vate firms greater than one, we always have a cut-off value of the substitution

parameter γ below which one can induce price competition but above which one
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cannot.

Thus, even in an oligopoly framework, co-existence of a fully public firm and many

profit maximizing firms is a possible equilibrium outcome under symmetric cost con-

ditions and with sufficiently low values of the substitution parameter γ.

2.6 Conclusions

2.6.1 Government ownership as a policy instrument

Efficiency of a market crucially depends on the nature of strategic interaction among

firms in the market. For example, unless firms are capacity constrained, price competi-

tion among firms results in higher social welfare than competition in terms of quantity.

However, it is often difficult for a social planner to find appropriate policy instrument

to influence the nature of firms’ strategic interaction. Analysis of this paper reveals

that, when firms are free to choose the strategic variable–price contract vis-á-vis quan-

tity contract, the equilibrium modes of competition depends on the level of privatiza-

tion of the public firm. It implies that the level of government ownership of one of the

firms operating in a market is an effective policy instrument to influence the nature of

strategic interaction among firms in that market in favor of the social planner.

2.6.2 Implementation aspect of the policy instrument

One can question the implementability aspect of regulating weight on profit of a par-

tially privatized firm. The difficulty of implementability is a valid criticism if, as a

policy, one has to sustain a weight on profit of the partially privatized firm which is

neither zero nor one (like our SPNE outcome with complements). Specifically if, as a

policy, the regulator has to maintain an exact weight θ ∈ (0, 1) on profit of the par-

tially private firm, then it is difficult to implement it if the existing weight on profit

of the partially private firm is θ′ 6= θ since the transition to θ calls for redistribution

of private and public shares of the firm which may be difficult and costly. Moreover,
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there may be other legal difficulties in the form of upper bounds on private shares.

However, by completely disallowing private stakeholders (that is, by retaining only

government shares as a rule) in a partially privatized firm, the regulator can transform

a partially privatized firm to a public firm. In that sense our result on imperfect substi-

tute that prescribes the co-existence of a purely private firm and a purely public firm

is easy to implement relative to our result on complement goods. However, the need

for regulation to change the mode of competition is absent for complement goods.

2.6.3 Regulating both firms

If the government simultaneously regulates both the firms in an otherwise three stage

game like ours, then we get marginal cost pricing implying that the equilibrium social

welfare is higher than the social welfare associated with our SPNE outcome. More-

over, under such regulation, the mode of competition is also irrelevant. However, in

reality we rarely see more than one regulated firm in a differentiated product duopoly

(oligopoly) market. In that sense our approach to regulate only one firm is more real-

istic.

2.6.4 On the adverse effect of transforming the objective of a public

firm towards more profit orientation

A public firm may choose to go private either for significant financial gain of the share-

holders and CEOs’ and/or to reduced regulatory requirements in order to focus on

long-term goals. However, in developed countries (like the USA and the UK), the

harmful effects of transition of a public firm towards private firm on the stakeholders

was pointed out by Greenfield (see Greenfield (2008)).4 It is also argued that a public

firm going private may induce more overall efficiency in the long-run. Specifically, the

4According to Greenfield (see Greenfield (2008)), “There may be somewhat more freedom for pri-
vate firms to operate with a view toward stakeholder interests, but the impact is likely to be marginal.
And that freedom could cut the other way, giving private firms the ability to insulate themselves from
stakeholder interests and public oversight, making them even more profit-oriented and less concerned
about the public interest”.
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English government has radically restructured its school system under an assumption

that school autonomy delivers benefits to schools and students. However, the paper

by Eyles et al. (2017) shows that there is no evidence of improvement either in pupil

performance or in teaching quality resulting from this conversion. The harmful short-

run effects of more profit orientation in a differentiated product oligopoly market was

pointed out by Anderson et al. (1997) (when only price competition is admissible and

with CES utility function of the representative consumer). Our paper adds to this

harmful effects argument of more profit orientation from the social welfare angle for

the differentiated product market under symmetric cost conditions. From a policy per-

spective, our result suggests that if for some reason (other than welfare maximization)

the regulator wants to change the orientation of the public firm (in a market with im-

perfect substitutes) towards more profit (by allocating non-zero weight on profit of the

partially private firm), then we can have two types of welfare losses. Not only there

is a certain welfare loss due to the increase in profit orientation of the partially private

firm, there is a further chance of welfare loss due to a shift in the mode of competi-

tion from price to something else.5 Since our results hold under very general demand

specifications, when the goods are substitutes, the policy prescription is to try not to

make a public firm more profit oriented.

2.6.5 Deficit financing

Often in many developing countries, government faces cash constraints due to bud-

get deficit. In such a situation government can finance this deficit (totally or par-

tially) from its public revenue. In our context, this means that given any privati-

zation ratio θ ∈ [0, 1], the government can retain (1 − θ)π1(θ) of total profit for

deficit financing. The government’s optimization problem then is to maxθ∈[0,1] W(θ)

subject to (1 − θ)π1(θ) ≥ D. Observe that the government can finance at most

D̄ = (1/4)(2− γ)3(γ + 2)(2− γ2)(a− m)2/(γ4 − 6γ2 + 8)2 amount of deficit (since

this amount is the unconstrained maximum of (1− θ)π1 in our three stage model).

5For complements, the first type of welfare loss is present but the second type of welfare loss is
absent since price competition is a dominant strategy.
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Therefore, we assume that D ≤ D̄. With quadratic utility of the representative con-

sumer, one can show that if γ ∈ (0, 3/4), then price competition will continue to

emerge as the SPNE outcome with an equilibrium choice θD > 0. If, however,

γ ∈ (0.9, 1) and D is close enough to D̄, then it is possible to induce quantity com-

petition in equilibrium with optimum privatization level θ∗(> θD).

The government’s motivation behind privatization may include the possibility to

use receipts from privatization for debt financing. It may be interesting to extend the

analysis to include such a possibility. Intuitively, we can say that if the government’s

objective function is a weighted average of social welfare and debt financing, then, for

any given mode of competition, the optimal privatization will be higher than the social

welfare maximizing level. However, it is not straight forward to infer the equilibrium

outcomes in the case of endogenous mode of competition. We leave that analysis for

future research.

Finally, a limitation of our work is that it rules out income effect. Specifically, de-

mand for many products such as high-end cosmetics, apparel etc. sold by the firms in

an oligopolistic market is likely to be sensitive to income. Since the analysis is likely

to be significantly different and interesting, we plan to model such instances in the

future.

2.7 Appendix

Proof of Lemma 2.1: We use two steps to prove the result.

Step 1: Given any weight θ ∈ [0, 1] in Stage 1 and given that firms compete in prices

in Stage 2, the Stage 3 optimum choice (pPP
1 (θ), pPP

2 (θ)) is unique.

Proof of Step 1: In Stage 3, given p2, Firm 1 chooses p1 to maximizing VPP
1 (p, θ) =

θπPP
1 (p) + (1 − θ)WPP(p) and, given p1, Firm 2 chooses p2 to maximize πPP

2 (p) =

(p2 − c)FPP
2 (p). The first order conditions are the following:

∂1VPP
1 (p, θ) = θFPP

1 (p) + (p1 −m)∂1FPP
1 (p) + (1− θ)(p2 −m)∂1FPP

2 (p) = 0, (2.4)

32



and

∂2πPP
2 (p) = FPP

2 (p) + (p2 −m)∂2FPP
2 (p) = 0. (2.5)

Using Assumption 2.3 (ii) and Assumption 2.4 (i) it follows that ∂11VPP
1 < 0 and

∂22πPP
2 < 0. Therefore, second order conditions for maximization are satisfied.

Since ∂12πPP
2 > 0, Firm 2’s reaction function is increasing in (p1, p2). Moreover,

|∂22πPP
2 | > |∂12πPP

2 | implies that the slope of the reaction function of the Firm 2 is

less than unity. The sign of ∂12VPP
1 can be anything. If for some (pPP

1 (θ), pPP
2 (θ)),

∂12VPP
1 > 0, then by Assumption 2.4 (ii), the slope of the reaction function of the Firm

1 must be greater than unity implying that the intersection of this reaction function

with Firm 2’s reaction function is unique since, along the ∂1VPP
1 (p) = 0 curve, given

any p2 we have only one p1, the locus of the function ∂1VPP
1 (p) = 0 will never inter-

sect Firm 2’s reaction function twice. If for some (pPP
1 (θ), pPP

2 (θ)), ∂12VPP
1 = 0, then

at that point Firm 1’s reaction function has a slope of ∞. Given that the slope of the

reaction function of Firm 2 is increasing (and is less than unity), we have a unique

best response for Firm 1 given any p2 implying uniqueness of the equilibrium point.

Finally, if for some (pPP
1 (θ), pPP

2 (θ)), ∂12VPP
1 < 0, then it is obvious that we will have a

unique intersection.

Step 2: ∂1πPP
1 (pPP

1 (0), pPP
2 (0)) > 0.

Proof of Step 2: At θ = 0, the equilibrium price vector (pPP
1 (0), pPP

2 (0)) satisfy following

first order conditions

(pPP
1 (0)−m)∂1FPP

1 (pPP
1 (0), pPP

2 (0)) + (pPP
2 (0)−m)∂1FPP

2 (pPP
1 (0), pPP

2 (0)) = 0, (2.6)

and

(pPP
2 (0)−m)∂2FPP

2 (pPP
1 (0), pPP

2 (0)) + FPP
2 (pPP

1 (0), pPP
2 (0)) = 0. (2.7)

By definition qPP
2 (0) := FPP

2 (pPP
1 (0), pPP

2 (0)) > 0 and, by Assumption 2.1,

∂2FPP
2 (pPP

1 (0), pPP
2 (0)) < 0. Therefore, from (2.7) we have pPP

2 (0) > m. Given

pPP
2 (0) > m, and, ∂1FPP

2 (pPP
1 (0), pPP

2 (0)) > 0 and ∂1FPP
1 (pPP

1 (0), pPP
2 (0)) < 0 (by

Assumption 2.1), from (2.6) we get pPP
1 (0) > m. By Assumption 2.1 we also have
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∂1FPP
2 (pPP

1 (0), pPP
2 (0)) = ∂2FPP

1 (pPP
1 (0), pPP

2 (0)) < |∂1FPP
1 (pPP

1 (0), pPP
2 (0))|. Hence,

from condition (2.6) we get pPP
2 (0) > pPP

1 (0) > m. Using pPP
2 (0) > pPP

1 (0) > m and

using the fact that the demands are symmetric with own effect dominant cross effect

we have,

FPP
1 (pPP

1 (0), pPP
2 (0)) > FPP

1 (pPP
1 (0), pPP

1 (0)) = FPP
2 (pPP

1 (0), pPP
1 (0)) > FPP

2 (pPP
1 (0), pPP

2 (0)).

(2.8)

Finally,

∂1πPP
1 (pPP

1 (0), pPP
2 (0)) = (pPP

1 (0)−m)∂1FPP
1 (pPP

1 (0), pPP
2 (0)) + FPP

1 (pPP
1 (0), pPP

2 (0))

= −(pPP
2 (0)−m)∂1FPP

2 (pPP
1 (0), pPP

2 (0)) + FPP
1 (pPP

1 (0), pPP
2 (0))

> (pPP
2 (0)−m)∂2FPP

2 (pPP
1 (0), pPP

2 (0)) + FPP
1 (pPP

1 (0), pPP
2 (0))

> (pPP
2 (0)−m)∂2FPP

2 (pPP
1 (0), pPP

2 (0)) + FPP
2 (pPP

1 (0), pPP
2 (0))

= 0.

Here the first equality is by definition, the second equality is due to (2.6), the first

inequality follows from the fact −∂1FPP
2 (pPP

1 (0), pPP
2 (0)) > ∂2FPP

2 (pPP
1 (0), pPP

2 (0)) and

last inequality is due to (2.8). This proves Step 2.

To complete the proof we also use Figure 2.3. Given any θ, its (unique) corre-

sponding equilibrium price vector (pPP
1 (θ), pPP

2 (θ)) is the intersection of the reac-

tion function of Firm 1 p1 = SVPP
1 (p2, θ), and the reaction function of the Firm 2

p2 = RPP
2 (p1). By condition (2.5), RPP

2 (m) > m and 0 < dRPP
2 (p1)/dp1 < 1 implying

that p2 = RPP
2 (p1) must intersect the p1 = p2 line from above (see Figure 2.3). Thus,

to the left of the p1 = p2 line along Firm 2’s reaction function p2 = RPP
2 (p1) we have

p2 > p1. Moreover, by symmetry of the firms, at θ = 1 we have pPP
1 (1) = pPP

2 (1).

Hence, the intersection point of the curve p2 = RPP
2 (p1) and the line p1 = p2 is also

the intersection point of the curves p2 = RPP
2 (p1) and p1 = SVPP

1 (p2, 1). By Step

2, the intersection point of p2 = RPP
2 (p1) and p1 = SVPP

1 (p2, 0) must lie to the left

of p1 = SVPP
1 (p2, 1) and, for any θ ∈ (0, 1), p1 = SVPP

1 (p2, θ) is bounded between

p1 = SVPP
1 (p2, 0) and p1 = SVPP

1 (p2, 1) (given Assumption 2.3 and Assumption
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2.4(i)). As a result, every equilibrium price vector (pPP
1 (θ), pPP

2 (θ)) must belongs to

the segment of p2 = RPP
2 (p1) that lie between intersection of p1 = SVPP

1 (p2, 0) and

p1 = SVPP
1 (p2, 1), that is, the over braced segment PP′ in Figure 2.3.

p1o

p2 p1 = p2RPP′
1

RPP′
2

p2 = m

p1 = m SPP′
1

SPP
1 RPP

1

RPP
2

PPP
P′

Figure 2.3: Region of potential Bertrand equilibria

The PP′ segment in Figure 2.3 lies to the left of p1 = SVPP
1 (p2, 1) implying

πPP
1,1 (pPP

1 (θ), pPP
2 (θ)) > 0. Moreover, the PP′ segment also lies to the right of

p1 = SVPP
1 (p2, 0) implying WPP

1 (pPP
1 (θ), pPP

2 (θ)) < 0. Finally, for p2 > p1 > m,

the PP′ segment in Figure 2.3 must lie completely above the p1 = p2 line implying

W2(pPP
1 (θ), pPP

2 (θ)) < 0.

Proof of Lemma 2.2: To prove ∂θqQQ
1 (θ) < 0 and ∂θqQQ

2 (θ) > 0, we differentiate

the conditions ∂1VQQ
1 (qQQ

1 (θ), qQQ
2 (θ), θ) = 0 and ∂2πQQ

2 (qQQ
1 (θ), qQQ

2 (θ)) = 0 with

respect to θ and then solve for ∂θqQQ
1 (θ) and ∂θqQQ

2 (θ). This results in

∂θqQQ
1 (θ) = −

∂22πQQ
2 (qQQ(θ))∂1θVQQ

1 (qQQ(θ), θ)

|AQQ| ,

and

∂θqQQ
2 (θ) =

∂12πQQ
2 (qQQ(θ))∂1θVQQ

1 (qQQ(θ), θ)

|AQQ| ,

where for any θ ∈ [0, 1], qQQ(θ) := (qQQ
1 (θ), qQQ

2 (θ)), ∂1θVQQ
1,1 (qQQ(θ), θ) =
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∂1πQQ
1 (qQQ(θ)) − ∂1WQQ(qQQ(θ)) = qQQ

1 (θ)∂1FQQ
1 (qQQ(θ)) < 0 and |AQQ| =

∂11VQQ
1 (qQQ(θ), θ)∂22πQQ

2 (qQQ(θ))− ∂12VQQ
1 (qQQ(θ), θ)∂12πQQ

2 (qQQ(θ)) > 0. Hence,

we have ∂θqQQ
1 (θ) < 0 and ∂θqQQ

2 (θ) > 0.

Note that ∂θ pQQ
1 (θ) = ∂1FQQ

1 (qQQ(θ))∂θqQQ
1 (θ) + ∂2FQQ

1 (qQQ(θ))∂θqQQ
2 (θ)

and that ∂θqQQ
2 (θ)/∂θqQQ

1 (θ) = −∂12πQQ
2 (qQQ(θ))/∂22πQQ

2 (qQQ(θ)) =

dRQQ
2 (qQQ

1 (θ))/dq1. From Assumption 2.1 and Assumption 2.2

we have ∂1FQQ
1 (qQQ(θ)) + ∂2FQQ

1 (qQQ(θ))(dRQQ
2 (qQQ

1 (θ))/dq1) < 0.

Hence, using the earlier result ∂θqQQ
1 (θ) < 0, we get ∂θ pQQ

1 (θ) =(
∂1FQQ

1 (qQQ(θ)) + ∂2FQQ
1 (qQQ(θ))(dRQQ

2 (qQQ
1 (θ))/dq1)

)
∂θqQQ

1 (θ) > 0.

For any θ ∈ [0, 1], define pPP(θ) := (pPP
1 (θ), pPP

2 (θ)). To show ∂θ pPP
i (θ) > 0

for i = 1, 2, we first differentiate the functions ∂1VPP
1 (pPP

1 (θ), pPP
2 (θ), θ) = 0 and

∂2πPP
2 (pPP

1 (θ), pPP
2 (θ)) = 0 with respect to θ and then solving for ∂θ pPP

1 (θ) and

∂θ pPP
2 (θ). This results in

∂θ pPP
1 (θ) =

∂22πPP
2 (pPP(θ))(∂1WPP(pPP(θ))− ∂1πPP

1 (pPP(θ)))

|APP| ,

and

∂θ pPP
2 (θ) =

∂12πPP
2 (pPP(θ))(∂1πPP

1 (pPP(θ))− ∂1WPP(pPP(θ)))

|APP| .

The term |APP| = ∂11VPP
1 (pPP(θ))∂22πPP

2 (pPP(θ))− ∂12VPP
1 (pPP(θ))∂12πPP

2 (pPP(θ)) is

positive due to Assumption 2.3 and Assumption 2.4. Given Lemma 2.1, for every θ ∈

(0, 1), ∂1πPP
1 (pPP

1 (θ), pPP
2 (θ))− ∂1WPP(pPP

1 (θ), pPP
2 (θ)) > 0. Hence, for each θ ∈ (0, 1),

∂θ pPP
1 (θ) > 0 and ∂θ pPP

2 (θ) > 0.

Next, we prove that ∂θ pPQ
i (θ) > 0 for i = 1, 2. Suppose, given

qPQ
2 (θ), Firm 1 chooses p1 to maximize VPQ

1 (p1, qPQ
2 (θ)) = θπPQ

1 (p1, qPQ
2 (θ)) +

(1 − θ)WPQ(p1, qPQ
2 (θ)) and, given pPQ

1 (θ), Firm 2 chooses q2 to maximize

πPQ
2 (pPQ

1 (θ), q2) = (FPQ
2 (pPQ

1 (θ), q2) − m)q2 where, for i = 1, 2, FPQ
i (p1, q2)

is the demand function of Firm i. The first order condition of Firm 1 is
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∂1VPQ
1 (pPQ

1 (θ), qPQ
2 (θ)) = 0 which results in

θFPQ
1 (pPQ

1 (θ), qPQ
2 (θ)) + (pPQ

1 (θ)−m)∂1FPQ
1 (pPQ

1 (θ), qPQ
2 (θ)) = 0.

Similarly the first order condition of Firm 2 is ∂2πPQ
2 (pPQ

1 (θ), qPQ
2 (θ)) = 0, which re-

duced to

(FPQ
2 (pPQ

1 (θ), qPQ
2 (θ))−m) + qPQ

2 (θ)∂2FPQ
2 (pPQ

1 (θ), qPQ
2 (θ)) = 0.

Observe that the reaction function of Firm 1 can be written as p1 =

FQQ
1 (SVQQ

1 (q2, θ), q2) for all θ ∈ [0, 1] and that of Firm 2 is q2 = FPP
2 (p1, RPP

2 (p1)).

For any θ ∈ [0, 1], pPQ
1 (θ) − FQQ

1 (SVQQ
1 (qPQ

2 (θ), θ), qPQ
2 (θ)) = 0 and qPQ

2 (θ) −

FPP
2 (pPQ

1 (θ), RPP
2 (pPQ

1 (θ))) = 0. Differentiating the reaction function with respect to θ

and then solving for ∂θ pPQ
1 (θ) and ∂θqPQ

2 (θ) we get,

∂pPQ
1 (θ) =

∂1FQQ
1 (FPQ

1 (pPQ
1 (θ), qPQ

2 (θ)), qPQ
2 (θ))∂θSVQQ

1 (qPQ
2 (θ), θ)

|APQ| ,

and

∂θqPQ
2 (θ) =

 ∂1FQQ
1 (qPQ

1 (θ), qPQ
2 (θ))∂θSVQQ

1 (qPQ
2 (θ), θ)(

∂1FPP
2 (pPQ

1 (θ), pPQ
2 (θ)) + ∂2FPP

2 (pPQ
1 (θ), pPQ

2 (θ))
dRPP

2 (pPQ
1 (θ))

dp1

)


|APQ| ,

where qPQ
1 (θ) = FPQ

1 (pPQ
1 (θ), qPQ

2 (θ)), pPQ
2 (θ) = FPQ

2 (pPQ
1 (θ), qPQ

2 (θ))

|APQ| = 1−


(

∂1FQQ
1 (qPQ

1 (θ), qPQ
2 (θ))

∂SVQQ
1 (qPQ

2 (θ),θ)
∂q2

+ ∂2FQQ
1 (qPQ

1 (θ), qPQ
2 (θ))

)
(

∂1FPP
2 (pPQ

1 (θ), pPQ
2 (θ)) + ∂2FPP

2 (pPQ
1 (θ), pPQ

2 (θ))
dRPP

2 (pPQ
1 (θ))

dp1

)
 > 0

and ∂θSVQQ
1 (qPQ

2 (θ), θ) = −qPQ
1 (θ)(∂1FQQ

1 (qPQ
1 (θ), qPQ

2 (θ))/∂11VQQ
1 (qPQ

1 (θ), qPQ
2 (θ))) <
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0.6 Hence, given ∂1FQQ
1 (qPQ

1 (θ), qPQ
2 (θ)) < 0, we get ∂θ pPQ

1 (θ) > 0 . Finally,

∂θqPQ
2 (θ)/∂θ pPQ

1 (θ) =

(
∂2FPP

1 (pPQ
1 (θ), pPQ

2 (θ)) + ∂2FPP
2 (pPQ

1 (θ), pPQ
2 (θ))

dRPP
2 (pPQ

1 (θ))
dp1

)
implies that ∂θ pPQ

2 (θ) = (dRPP
2 (pPQ

1 (θ))/dp1)∂θ pPQ
1 (θ) > 0.

Proof of Lemma 2.3: To prove part (i) and part (iii) of this result we use an appli-

cation of the Fundamental (Gradient) Theorem of Line Integrals that states the fol-

lowing: Consider any function f : <2
+ → < which is twice differentiable. For any

a = (a1, a2) >> (0, 0), a′ = (a′1, a′2) >> (0, 0) and for any scalar t ∈ [0, 1] such that

a(t) = (a1(t), a2(t)) = (ta′1 + (1− t)a1, ta′2 + (1− t)a2) >> (0, 0),

f (a′)− f (a) = (a′1 − a1)

1∫
0

∂ f (a(t))
∂a1(t)

dt + (a′2 − a2)

1∫
0

∂ f (a(t))
∂a2(t)

dt. (2.9)

Condition (2.9) specifies that given any smooth path a(t) connecting points a and a′

in the domain of a function f , the line integral through the gradient of the function f

equals the difference in its scalar at the endpoints (that is, f (a′)− f (a)) (see Apostol

(1969) for a more detailed discussion on line integrals).

Proof of (i): In the price space, given any θ ∈ (0, 1), if Firm 2 chooses price strategy,

then Firm 1’s reaction function is p1 = SVPP
1 (p2, θ), and, if Firm 2 chooses quantity

strategy, then Firm 1’s reaction function is the set of points P(SVQQ
1 (θ)) and can be

written in implicit form as FPP
1 (p) − SVQQ

1 (FPP
2 (p), θ) = 0. Given Firm 1 chooses

price strategy, Firm 2’s reaction function is p2 = RPP
2 (p1). Fix a θ ∈ [0, 1]. Consider

p1(t) = tpPP
1 (θ) + (1− t)pPQ

1 (θ) defined for each t ∈ [0, 1]. Applying the condition

(2.9) on the function ∂2πPP
2 (p) with endpoints (pPP

1 (θ), pPQ
2 (θ)) and (pPQ

1 (θ), pPQ
2 (θ))

6Specifically, |APQ| = 1−


(

∂1FQQ
1 (qPQ

1 (θ), qPQ
2 (θ))

dSVQQ
1 (qPQ

2 (θ),θ)
dq2

+ ∂2FQQ
1 (qPQ

1 (θ), qPQ
2 (θ))

)
(

∂1FPP
2 (pPQ

1 (θ), pPQ
2 (θ)) + ∂2FPP

2 (pPQ
1 (θ), pPQ

2 (θ))
dRPP

2 (pPQ
1 (θ))

dp1

)


=

∂11U(qPQ
1 (θ), qPQ

2 (θ))

 ∂22U(qPQ
1 (θ), qPQ

2 (θ)) + ∂11U(qPQ
1 (θ), qPQ

2 (θ))

∣∣∣∣ dRPP
2 (pPQ

2 (θ))
dp1

∣∣∣∣ ∣∣∣∣ ∂SVQQ
1 (qPQ

2 (θ),θ)
∂q2

∣∣∣∣
−∂12U(qPQ

1 (θ), qPQ
2 (θ))

∣∣∣∣ ∂SVQQ
1 (qPQ

2 (θ),θ)
∂q2

∣∣∣∣− ∂12U(qPQ
1 (θ), qPQ

2 (θ))
RPP

2 (pPQ
1 (θ))

dp1


|D|

>
∂11U(qPQ

1 (θ),qPQ
2 (θ))∂12U(qPQ

1 (θ),qPQ
2 (θ))

(
1−

dRPP
2 (pPQ

1 (θ))

dp1

)(
1−
∣∣∣∣∣ dSVQQ

1 (qPQ
2 (θ))

dq2

∣∣∣∣∣
)

|D| > 0.
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we get

∂2πPP
2 (pPP

1 (θ), pPQ
2 (θ))− ∂2πPP

2 (pPQ
1 (θ), pPQ

2 (θ))

= (pPP
1 (θ)− pPQ

1 (θ))
∫ 1

0 ∂12πPP
2 (p1(t), pPQ

2 (θ))dt.

The point (pPQ
1 (θ), pPQ

2 (θ)) is on p2 = RPP
2 (p1) implying ∂2πPP

2 (pPQ
1 (θ), pPQ

2 (θ)) = 0.

As a result we have

∂2πPP
2 (pPP

1 (θ), pPQ
2 (θ)) = (pPP

1 (θ)− pPQ
1 (θ))

∫ 1

0
∂12πPP

2 (p1(t), pPQ
2 (θ))dt.

From Assumption 2.3 (i) it follows that
∫ 1

0 ∂12πPP
2 (p1(t), pPQ

2 (θ))dt > 0. Therefore,

pPP
1 (θ) R pPQ

1 (θ) if and only if ∂2πPP
2 (pPP

1 (θ), pPQ
2 (θ)) R 0. Observe first that

lim
θ→0

∂2πPP
2 (pPP

1 (θ), pPQ
2 (θ)) = ∂2πPP

2 (pPP
1 (0), pPQ

2 (0)) > 0. (2.10)

Condition (2.10) holds since from the first order condition of profit maximization and

welfare maximization we have m = pPQ
1 (0) < pPP

1 (0) < pPP
2 (0) and since RPP

2 is

increasing, that is, pPQ
2 (0) < pPP

2 (0) therefore (pPP
1 (0), pPQ

2 (0)) lie below the RPP
2 hence

implies (2.10). Also observe that

lim
θ→1

∂2πPP
2 (pPP

1 (θ), pPQ
2 (θ)) = ∂2πPP

2 (pPP
1 (1), pPQ

2 (1)) < 0. (2.11)

Condition (2.11) holds since pPP
1 (1) = pPP

2 (1) < pPQ
2 (1) implies that the point

(pPP
1 (1), pPQ

2 (1)) lies above the RPP
2 . Conditions (2.10) and (2.11) implies that there

exist θR,θS with θR ≤ θS such that for any θ ∈ (0, θR) and any θ ∈ (θS, 1) we have

pPP
1 (θ) > pPQ

1 (θ) and pPP
1 (θ) < pPQ

1 (θ) respectively. Thus, ∂2πPP
2 (pPP

1 (θS), pPP
2 (θS))−

∂2πPP
2 (pPP

1 (θR), pPP
2 (θR)) = 0 and applying condition (2.9) to this equality with end

points (pPP
1 (θS), pPP

2 (θS)) and (pPP
1 (θR), pPP

2 (θR)) we get

 (pPP
1 (θS)− pPP

1 (θR))
∫ 1

0 ∂12πPP
2 (p1(t), p2(t))dt

+(pPP
2 (θS)− pPP

2 (θR))
∫ 1

0 ∂22πPP
2 (p1(t), p2(t))dt

 = 0. (2.12)
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By Assumption 2.3 and Lemma 2.2 (ii) it follows that for condition (2.12) to hold we

must have pPP
1 (θS) > pPP

2 (θS) > pPP
2 (θR) > pPP

1 (θR) if θR < θS. But for each θ ∈ [0, 1]

we have pPP
2 (θ) ≥ pPP

1 (θ). Therefore, pPP
1 (θS) > pPP

2 (θS) is a contradiction, hence we

have θS = θR = θ1. Thus, there exists a unique θ1 ∈ (0, 1) such that pPP
1 (θ) R pPQ

1 (θ) if

and only if θ Q θ1.

Along Firm 2’s reaction function p2 = RPP
2 (p1), π̂PP

2 (p1) := πPP
2 (p1, RPP

2 (p1)).

Given RPP
2 (p1) − m > 0 and ∂1FPP

2 (p1, RPP
2 (p1)) > 0, (dπ̂PP

2 (p1)/dp1) =

∂1πPP
2 (p1, RPP

2 (p1)) = (RPP
2 (p1) − m)∂1FPP

2 (p1, RPP
2 (p1)) > 0. Therefore, along

the reaction function p2 = RPP
2 (p1), Firm 2’s profit increases in p1. For any θ ∈

[0, θ1), pPP
1 (θ) > pPQ

1 (θ) holds. Hence, πPP
2 (θ) = πPP

2 (pPP
1 (θ), RPP

2 (pPP
1 (θ))) >

πPP
2 (pPQ

1 (θ), RPP
2 (pPQ

1 (θ))) = πPQ
2 (θ). Thus, if Firm 1 chooses price strategy, then

Firm 2 optimally chooses price strategy. When θ = θ1, if Firm 1 chooses price strategy,

pPP
1 (θ1) = pPQ

1 (θ1) implying πPP
2 (θ1) = πPQ

2 (θ1) and Firm 2 is indifferent between

price and quantity strategies. When θ ∈ (θ1, 1], if Firm 1 chooses price strategy, then

pPP
1 (θ) < pPQ

1 (θ) and by similar reasoning we can show that πPP
2 (θ) < πPQ

2 (θ) so that

it is always optimal for Firm 2 to choose quantity strategy.

Proof of (ii): Consider the difference VPP
1 (θ) − VQP

1 (θ) evaluated at θ = 0.

It is quite easy to observe that VPP
1 (0) − VQP

1 (0) = WPP(pPP
1 (0), pPP

2 (0)) −

WPP(pQP
1 (0), pQP

2 (0)) > 0. In particular, whatever be the shape of the locus of

∂1WPP(p) = 0, starting from the point (m, m) as we move along that locus by in-

creasing p2, the welfare has to fall (see Figure 2.4) and, since the transformed reaction

function (∂1πQQ
1 (q) = 0) of Firm 1 in price space must lie above p1 = RPP

2 (p2), we

have pPP
2 (0) > pQP

2 (0) and (pPP
1 (0), pPP

2 (0)) and (pQP
1 (0), pQP

2 (0)) lie on the locus of

∂1WPP(p) = 0.

Consider VPP
1 (θ) − VQP

1 (θ) at θ = 1. We have, VPP
1 (θ = 1) − VQP

1 (θ = 1) =

πPP
1 (pPP

1 (θ = 1), pPP
2 (θ = 1))− πQP

1 (pQP
1 (θ = 1), pQP

2 (θ = 1)) < 0 since for a profit

maximizing firm quantity strategy strictly dominates price strategy. Since VPP
1 (θ) −

VQP
1 (θ) is a continuous function of θ the result follows.

Proof of (iii): For this proof we restrict our attention to the quantity space (q1, q2). Given
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{p | ∂1WPP(p) = 0}

Figure 2.4: Welfare reaction function in price space

any θ ∈ (0, 1), if Firm 2 chooses quantity strategy, then Firm 1’s reaction function is

q1 = SVQQ
1 (q2, θ). If Firm 2 chooses price strategy, then Firm 1’s reaction function is

p1 = SVPP
1 (p2, θ). If we transform p1 = SVPP

1 (p2, θ) to the quantity space, then we

can be write it implicitly as FQQ
1 (q) − SVQQ

1 (FQQ
2 (q), θ) = 0. Given Firm 1 chooses

quantity strategy, Firm 2’s reaction function is q2 = RQQ
2 (q1).

Fix a θ ∈ [0, 1]. Consider q(t) = tqQP
1 (θ) + (1 − t)qQQ

1 (θ) defined for each

t ∈ [0, 1]. Applying the condition (2.9) on the function ∂2πQQ
2 (q) with end points

(qQP
1 (θ), qQQ

2 (θ)) and (qQQ
1 (θ), qQQ

2 (θ)) we have

∂2πQQ
2 (qQP

1 (θ), qQQ
2 (θ))− ∂2πQQ

2 (qQQ
1 (θ), qQQ

2 (θ))

= (qQP
1 (θ)− qQQ

1 (θ))
∫ 1

0 ∂12πQQ
2 (q1(t), qQQ

2 (θ))dt.

The point (qQQ
1 (θ), qQQ

2 (θ)) is on q2 = RQQ
2 (q1) implying ∂2πQQ

2 (qQQ
1 (θ), qQQ

2 (θ)) = 0.

Hence

∂2πQQ
2 (qQP

1 (θ), qQQ
2 (θ)) = (qQP

1 (θ)− qQQ
1 (θ))

∫ 1

0
∂12πQQ

2 (q1(t), qQQ
2 (θ))dt. (2.13)

Using Assumption 2.2 (i) it follows that
∫ 1

0 ∂12πQQ
2 (q1(t), qQQ

2 (θ))dt < 0 and hence we

have qQP
1 (θ) Q qQQ

1 (θ) if and only if ∂2πQQ
2 (qQP

1 (θ), qQQ
2 (θ)) R 0. Let rPP

1 (q1) be the

transformed price reaction of Firm 1. Given qQP
2 (1) < qQQ

2 (1), we have rPP
1 (qQP

2 (1)) >
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RQQ
1 (qQP

2 (1)) > RQQ
1 (qQQ

2 (1)) implying qQP
1 (1) > qQQ

1 (1). Hence (qQP
1 (1), qQQ

2 (1))

must lie above the RQQ
2 curve. Thus, we have

lim
θ→1

∂2πQQ
2 (qQP

1 (θ), qQQ
2 (θ)) = ∂2πQQ

2 (qQP
1 (1), qQQ

2 (1)) < 0. (2.14)

Also observe that

lim
θ→0

∂2πQQ
2 (qQP

1 (θ), qQQ
2 (θ)) = ∂2πQQ

2 (qQP
1 (0), qQQ

2 (0)) > 0 (2.15)

Condition (2.15) holds since the price welfare reaction function of the Firm 1 in the

quantity space must intersect the RQQ
2 curve to the left of FQQ

1 (q) = m. There-

fore, (qQP
1 (0), qQQ

2 (0)) lies below the RQQ
2 curve. Condition (2.14) and (2.15) im-

plies that there exist θ′R, θ′S with θ′R ≤ θ′S such that for all θ ∈ (0, θ′R) and θ ∈

(θ′S, 1) we have qQQ
1 (θ) > qQP

1 (θ) and qQQ
1 (θ) < qQP

1 (θ) respectively. Therefore,

∂2πQQ
2 (qQQ

1 (θ′S), qQQ
2 (θ′S)) − ∂2πQQ

2 (qQQ
1 (θ′R), qQQ

2 (θ′R)) = 0 and applying the condi-

tion (2.9) to this equality with end points (qQQ
1 (θ′S), qQQ

2 (θ′S)) and (qQQ
1 (θ′R), qQQ

2 (θ′R))

yields  (qQQ
1 (θ′S)− qQQ

1 (θ′R))
∫ 1

0 ∂12πQQ
2 (q1(t), q2(t))dt

+(qQQ
2 (θ′S)− qQQ

2 (θ′R))
∫ 1

0 ∂22πQQ
2,22(q1(t), q2(t))dt

 = 0. (2.16)

By Assumption 2.2 and Lemma 2.2 (i), it follows that for condition (2.16) to hold with

θ′R < θ′S, we must have qQQ
1 (θ′R) > qQQ

2 (θ′S) > qQQ
2 (θ′R) > qQQ

1 (θ′S). But we know that

for all θ ∈ [0, 1], qQQ
2 (θ) < qQQ

1 (θ) and we have a contradiction. As a result we must

have θ′S = θ′R = θ4. Thus, there exists a unique θ4 ∈ (0, 1) such that qQP
1 (θ) Q qQQ

1 (θ)

if and only if θ Q θ4.

Along Firm 2’s reaction function q2 = RQQ
2 (q1) we have π̂QQ

2 (q1) =

πQQ
2 (q1, RQQ

2 (q1)). Given that RQQ
2 (q1) > 0 and ∂1FQQ

2 (q1, RQQ
2 (q1)) < 0 (by Assump-

tion 2.1), (dπ̂QQ
2 (q1)/dq1) = ∂1πQQ

2 (q1, RQQ
2 (q1)) = RQQ

2 (q1)∂1FQQ
2 (q1, RQQ

2 (q1)) < 0.

Therefore, along q2 = RQQ
2 (q1), Firm 2’s profit decreases in q1. For any θ ∈ [0, θ4),

qQQ
1 (θ) > qQP

1 (θ) holds. Hence, we obtain πQQ
2 (θ) = πQQ

2 (qQQ
1 (θ), RQQ

2 (qQQ
1 (θ))) <

πQQ
2 (qQP

1 (θ), RQQ
2 (pQP

1 (θ))) = πQP
2 (θ). Thus, if Firm 1 chooses quantity strategy, then
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Firm 2 optimally chooses price strategy. When θ = θ4, if Firm 1 chooses quantity strat-

egy, qQQ
1 (θ4) = qQP

1 (θ4) implying πQQ
2 (θ4) = πQP

2 (θ4) and Firm 2 is indifferent be-

tween price and quantity strategies. When θ ∈ (θ4, 1], if Firm 1 chooses price strategy,

then qQQ
1 (θ) < qQP

1 (θ) and by similar reasoning we can show that πQQ
2 (θ) > πQP

2 (θ)

so that it is always optimal for Firm 2 to choose quantity strategy.

Proof of Lemma 2.4: If we assume price competition in Stage 2, then, in Stage

1, the government chooses θ ∈ [0, 1] to maximize welfare. Given WPP
(θ) =

WPP(pPP
1 (θ), pPP

2 (θ)), differentiating WPP
(θ) with respect to θ we get,

∂θWPP
(θ) = ∂1WPP(pPP(θ))∂θ pPP

1 (θ) + ∂2WPP(pPP(θ))∂θ pPP
2 (θ). (2.17)

By Lemma 2.2 (ii), ∂θ pPP
i (θ) > 0 and, by Lemma 2.1, ∂iWPP(pPP(θ)) < 0. Therefore,

from equation (2.17), we get ∂θWPP
(θ) < 0 for all θ ∈ (0, 1). Since WPP

(θ = 0) >

WPP
(θ = 1), the optimal choice of θ in Stage 1 under price competition is θ = 0.

If θ = 0 is the optimal choice of Stage 1, then, given θ = 0 < θ1, it is optimal for

Firm 2 to choose price strategy when Firm 1 chooses price strategy (Lemma 2.3 (i)).

Moreover, since θ = 0 < θ4, it is optimal for Firm 2 to choose price strategy even when

Firm 1 chooses quantity strategy (Lemma 2.3 (iii)). Therefore, with θ = 0, choosing

price is the dominant strategy for Firm 2 in Stage 2. Moreover, since θ = 0 < θ3 and

since choosing price is the dominant strategy for Firm 2, it is optimal for Firm 1 to

choose price strategy (Lemma 2.3 (ii)). Hence, given θ = 0, in Stage 2 it is optimal

for both firms to choose price strategy and it is the unique Nash equilibrium of the

sub-game of Γ starting from Stage 2.

Proof of Lemma 2.5: We prove Lemma 2.5 using the following figure.

In Figure 2.5, the curve RPP
1 RPP′

1 represents the function p1 = SVPP
1 (p2, 1).7 By

Assumption 2.3 the curve RPP
1 RPP′

1 is increasing in the price plane with slope greater

than unity and hence must lie to the right of the p1 = m line. Since SPP
1 SPP′

1 represents

the function p1 = SVPP
1 (p2, 0), it must lie between the p1 = m and p1 = p2 lines.

7In this Figure 2.5, we draw all curves as straight line just for simplicity of exposition.
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Figure 2.5: Impossibility of Type I equilibrium

Similarly, RPP
2 RPP′

2 represents the function p2 = RPP
2 (p1) and, by Assumption 2.3, it

is always increasing in the price plane with slope less than unity and hence must lie

above the p2 = m line. Therefore, the intersection point of RPP
1 RPP′

1 and RPP
2 RPP′

2 is the

Bertrand equilibrium point C for θ = 1 and by Assumption 2.3 this point is unique.

Since firms have identical cost and symmetric demand conditions, point C must lie on

the p1 = p2 line. By Assumption 2.3 and Assumption 2.4, the intersection of RPP
2 RPP′

2

and SPP
1 SPP′

1 is the Bertrand equilibrium point (B) for θ = 0 and, by Step-2 of the

Lemma 2.1, the point B must lie to the left of point C on RPP
2 . We do not impose

any restriction on the locus of P(SVQQ
1 (1)) implying that it can take any shape and

can intersect the curve RPP
2 RPP′

2 more than ones. But the locus of P(SVQQ
1 (1)) must

lie to the left of the RPP
1 RPP′

1 curve (see Cheng (1985)). Hence, any intersection point

between RPP
2 RPP′

2 and the locus of P(SVQQ
1 (1)) must lie to the right of point C on the

RPP
2 RPP′

2 curve.

The line p1 = m is the locus of P(SVQQ
1 (0)). If Firm 1 select price strategy, then

Firm 2’s optimal reaction is to react along the RPP
2 RPP′

2 curve (see Singh and Vives

(1984)) in the price space. Again, given some θ ∈ [0, 1], if Firm 2 select quantity

strategy, then Firm 1 optimally reacts (in terms of prices) according to the locus of

P(SVQQ
1 (θ)) in the price space. Since P(SVQQ

1 (θ)) must lie between the line p1 = m

and the locus of P(SVQQ
1 (1)), for any given θ, when Firm 1 chooses price strategy and
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Firm 2 chooses quantity strategy, the equilibrium point must lie on the RPP
2 RPP′

2 curve

and it must also lie on or to the right of point A.

By Lemma 2.3 (i), when Firm 1 chooses price strategy, there exist a θ1 ∈ (0, 1)

at which Firm 2 is indifferent between choosing price strategy and quantity strat-

egy, and, for θ < (>)θ1, it chooses price (quantity) strategy. Hence, at θ1 the

Bertrand equilibrium price vector (pPP
1 (θ1), pPP

2 (θ1)) and Type-1 equilibrium price vec-

tor (pPQ
1 (θ1), pPQ

2 (θ1) induces same profit for Firm 2. The point (pPP
1 (θ1), pPP

2 (θ1)) is

the intersection point of RPP
2 RPP′

2 and the locus of p1 = SVPP
1 (p2, θ1) and the point

(pPQ
1 (θ1), pPQ

2 (θ1)) is intersection point of RPP
2 RPP′

2 and locus of P(SVQQ
1 (θ1)) in the

price space. Since along the RPP
2 RPP′

2 curve, any two distinct points generate distinct

profits, we must have pPP
i (θ1) = pPQ

i (θ1). Hence, at (pPP
1 (θ1), pPP

2 (θ1)), the locus of

p1 = SVPP
1 (p2, θ1) and the locus of P(SVQQ

1 (θ1)) intersect on the RPP
2 RPP′

2 curve in

the price space and the intersection point is unique by Lemma 2.3 (i). Since the locus

of p1 = SVPP
1 (p2, θ1) must lie between SPP

1 SPP′
1 and RPP

1 RPP′
1 and since θ1 ∈ (0, 1), the

point (pPP
1 (θ1), pPP

2 (θ1)) must lie at the interior on the segment BC of the RPP
2 curve.

Without loss of generality, let E be that point. By Lemma 2.2 (ii) ∂θ pPQ
i (θ) > 0, any

point on the segment AE excepting point E corresponds to θ < θ1. Hence, we cannot

find any selection θ in Stage 1 for the government that can induce any (p1, p2) combi-

nation that lie in this segment of AE (except point E). Finally, the government won’t

induce any point on or to the right of E since each such point (on the RPP
2 RPP′

2 ) gener-

ates less welfare than at point B. Since the point B can be induced by choosing θ = 0

(by Lemma 2.4), the result follows.

Proof of Lemma 2.6: Consider Figure 2.6. In Figure 2.6 we introduce two new curves.

The first one is the iso-welfare curve corresponding to welfare level of point B (that

is, the welfare level WPP
(0)). The second one is the SPP

2 SPP′
2 curve which is the locus

of WPP
2 (p) = 0. Point B is Bertrand equilibrium for θ = 0 and, by Lemma 2.4, this

point can be uniquely induced by choosing θ = 0. If the resulting welfare from any

strategy associated with Type II equilibrium yields a welfare less than the welfare level

corresponding to point B, then the possibility of Type-II equilibrium is ruled out. By
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Figure 2.6: Impossibility of Type II equilibrium

Assumption 2.4 (i), in the regions above and below both SPP
1 SPP′

1 and SPP
2 SPP′

2 curves,

the iso-welfare curve is upward sloping and in the region lying between these curves,

the iso-welfare curve is downward sloping. The Bertrand equilibrium point at θ = 0

(that is, point B) lies on the SPP
1 SPP′

1 curve and is located above the SPP
2 SPP′

2 curve.

Therefore, to the left of point B the iso-welfare curve is increasing and to the right

of point B it is decreasing. Since a consequence of welfare maximization in terms

of quantity choice yields (p1 = m, p2 = m) as the resulting price vector, it is the

global maximum of WPP(p). Therefore, the upper contour set ΩPP
W = {p | WPP(p) ≥

WPP
(0)} of B is the region shaded in gray in Figure 2.6 that always includes point

(m, m) as an interior point. When Firm 1 chooses quantity strategy and Firm 2 chooses

price strategy, then the reaction function of Firm 1 is the locus of p1 = SVPP
1 (p2, θ)

lying between the RPP
1 RPP′

1 and the SPP
1 SPP′

1 curves. The reaction function of Firm

2 is the locus of the set P(RPP
2 ) that lies completely above the RPP

2 RPP′
2 . Therefore,

any potential Type II equilibrium point must belong to the region lying between the

RPP
1 RPP′

1 curve and the SPP
1 SPP′

1 curve and must also lie above the RPP
2 RPP′

2 as shown

in the Figure 2.6 by the dotted region (where the boundary is not included for the BC

segment). Hence, the set in which the Type II equilibrium can occur is EQP = {p |

∂2πPP
2 (p) > 0, ∂1WPP(p).∂1πPP

1 (p) ≤ 0}. Since, due to Assumption 2.4, the SPP
1 SPP′

1
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curve can never bend back and since the only intersection of the closure of EQP and

the ΩPP
W is point B and B is not in EQP, the set ΩPP

W and the set EQP must be disjoint.

Hence, for any price vector associated with Type II equilibrium, the resulting welfare is

always less than the welfare corresponding to point B. Therefore, Type II equilibrium

is ruled out.

Proof of Lemma 2.7: Consider Figure 2.7 where in Figure 3.4a we consider the

quantity space and in Figure 2.7b we consider the price space. In Figure 3.4a, the

curves R1R′1, RC and R2R′2 corresponds respectively to the function q1 = SVQQ
1 (q2, 1),

q1 = SVQQ
1 (q2, 0) and q2 = RQQ

2 (q1). Each curve is negatively sloped and both R1R′1

and R1C curves have an absolute slope of more than unity and the R2R′2 curve has an

absolute slope of less than unity. If θ = 1, then firms are symmetric and hence we

have qQQ
1 (1) = qQQ

2 (1). Hence, the intersection point of R1R′1 and R2R′2 must lie on

the q1 = q2 line (see point A in Figure 3.4a). For any point on the R1C curve we have

p1 = m and for any point on the R1R′1 curve we have p1 > m excepting at point R1

where we have q1 = 0 and hence we also have p1 = m. Since by Assumption 2.1

own effect on indirect demand is negative, the R1C curve must lie to the right of the

R1R′1 curve . Consider point B (in Figure 3.4a) which is the point of intersection be-

tween the R1C and the R2R′2 curves. Point B must lie to the right of point A and both

A and B are on R2R′2. Point B is the Cournot equilibrium vector (qQQ
1 (0), qQQ

2 (0)).

Firstly, by Lemma 2.2, ∂θqQQ
1 (θ) < 0 and ∂θqQQ

2 (θ) > 0. Secondly, one can show that

∂θqQQ
2 (θ) =

dRQQ
2 (qQQ

1 (θ))
dq1

∂θqQQ
1 (θ) (see the proof of Lemma 2.2 (i)). Thirdly, for any

θ ∈ [0, 1], the equilibrium point (qQQ
1 (θ), qQQ

2 (θ)) must lie on the R2R′2 curve. Hence,

for all θ ∈ [0, 1], (q1 = qQQ
1 (θ), q2 = qQQ

2 (θ)) is the parametric representation of the AB

segment of R2R′2 with A (B) representing the quantity vector corresponding to θ = 1

(θ = 0). As θ varies from 0 to 1 we move from point B to point A along R2R′2 as shown

by the arrows in Figure 3.4a.

Consider Figure 2.7b and let the curve r2r′2 represent the set P(RQQ
2 ). Point A′ and

B′ in Figure 2.7b correspond to the points A and B respectively of Figure 3.4a. Since

for any Cournot equilibrium the resulting price vector must satisfy p2 ≥ p1 ≥ m,
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Figure 2.7: Quantity reaction function in the quantity and price space

the segment B′A′ must lie between the p1 = m line and the p1 = p2 line and above

the RPP
2 RPP′

2 curve (see Cheng (1985)). By Assumption 2.1 and Assumption 2.2, the

Cournot equilibrium quantity vector (qQQ
1 (θ), qQQ

2 (θ)) is unique for each θ implying

that (pQQ
1 (θ), pQQ

2 (θ)) is also unique. Therefore, for the segment B′A′, given any p1 we

must get a single p2 and this segment can be represented as a function p2 = rQQ
2 (p1)

defined for p1 ∈ [m, pQQ
1 (1)]. For each p1, rQQ

2 (p1) is always well-defined and given

continuity of AB segment, the B′A′ segment is also continuous. Starting from B′ if we

move towards A′ along the segment B′A′, the underlying θ increases since the B′A′

segment has a functional representation it cannot be backward bending. Hence, given

∂θ pQQ
1 (θ) > 0, pQQ

1 (θ) increases along the segment B′A′ when we start from B′.

Proof of Lemma 2.8: Consider Figure 2.8. Given any θ ∈ [0, 1], if qQQ(θ) is

Cournot equilibrium quantity vector, then qQQ
2 (θ) = RQQ

2 (qQQ
1 (θ)) and qQQ

1 (θ) =

SVQQ
1 (qQQ

2 (θ), θ) and the resulting price of Firm i is pQQ
i (θ) = FQQ

i (qQQ(θ)) imply-

ing that the price vector (pQQ
1 (θ), pQQ

2 (θ)) ∈ P(RQQ
2 ) ∩ P(SVQQ

1 (θ)). The graph

P(RQQ
2 ) must lie above RPP

2 in the price space and P(SVQQ
1 (θ)) is bounded be-

tween p1 = m and the graph P(SVQQ
1 (1)). Again, since the firms face identi-

cal demand and cost conditions, the Cournot equilibrium price vector must lie in

EQQ = {p | ∂1πPP
1 (p) > 0, p1 > m and p2 ≥ p1}. Therefore, the region A in Fig-

ure 2.8 represents the set EQQ ∩ΩPP
W . This region A represents the set of points where
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Cournot equilibrium can occur and resulting welfare is higher compared to point B. If

P(RQQ
2 ) ∩ΩPP

W = ∅, then, in Stage 1, the government’s optimal choice of θ can never

induce Cournot competition since, by choosing θ = 0, the government can improve

the level of welfare.
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Figure 2.8: Case 1

If P(RQQ
2 ) ∩ΩPP

W 6= ∅, then can the government induce quantity competition by

choosing θ in such a way that the resulting price vector (pQQ
1 (θ), pQQ

2 (θ)) ∈ EQQ ∩

ΩPP
W ? Consider the sets EQQ

≥ = {p | p ∈ EQQ and p1 ≥ pPP
1 (0)} and EQQ

< = {p | p ∈

EQQ and p1 < pPP
1 (0)}. Observe that EQQ

≥ ∩ EQQ
< = ∅ and EQQ

≥ ∪ EQQ
< = EQQ. We

consider two exhaustive cases.

Case 1: EQP ∩ EQQ
< = ∅.

Case 2: EQP ∩ EQQ
< 6= ∅

For Case 1, EQP lies to the right of the vertical line p1 = pPP
1 (0) (see Figure

2.8). Since EQP ⊂ EQQ, we must have EQP ⊂ EQQ
≥ . Given EQP ∩ P(RQQ

2 ) 6= ∅,

EQP ∩ ΩPP
W = ∅ (by Lemma 2.6) and the continuity of the graph of P(RQQ

2 ) in the
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price plane, there exists exactly one compact set SP(⊂ P(RQQ
2 )) such that (a) the inte-

rior of SP is contained in the complement set of EQP ∩ΩPP
W , (b) we can find (p1, p2)

in the intersection of the boundaries of the sets SP and ΩPP
W , and, (c) we can find

another (p1, p2) in the intersection of the boundaries of the sets SP and EQP. Using

Lemma 2.7 we can now say that each θ for which (pQQ
1 (θ), pQQ

2 (θ)) in the interior of

SP is higher compared to every θ such that (pQQ
1 (θ), pQQ

2 (θ)) ∈ ΩPP
W ∩ P(R

QQ
2 ) and is

lower compared to every θ such that (pQQ
1 (θ), pQQ

2 (θ)) ∈ EQP ∩ P(RQQ
2 ). By Lemma

2.3 (iii), (pPP
1 (θ4), pPP

2 (θ4)) ∈ EQP. Hence, for every θ such that (pQQ
1 (θ), pQQ

2 (θ)) ∈

ΩPP
W ∩ P(R

QQ
2 ), θ < θ4. Thus, it is impossible for the government to induce Cournot

competition by choosing θ such that resulting price vector belongs to ΩPP
W ∩ P(R

QQ
2 ).

For Case 2, the entire EQP does not lie to the right of the vertical line p1 = pPP
1 (0)

(see Figure 2.9). Consider the set EQP
< = {(p1, p2) | (p1, p2) ∈ EQP, p1 < pPP

1 (0)}. If

EQP
< ∩ P(R

QQ
2 ) = ∅, then the analysis is similar to Case 1 and Cournot competition

cannot be sustained. Finally, if EQP
< ∩ P(R

QQ
2 ) 6= ∅, then given P(RQQ

2 ) ∩ΩPP
W 6= ∅,

ΩPP
W ∩ EQP = ∅ and continuity of the graph of P(RQQ

2 ) in the price plane, we can

find at least one SP ⊂ P(RQQ
2 ) for which we have three mutually exclusive sets SPa,

SPb and SPc such that SPa ∪ SPb ∪ SPc = SP, SPa ⊂ EQP, SPb ⊂ <2
++ \ {ΩPP

W ∪ EQP}

and SPc ⊂ ΩPP
W . Assume that there are M such SPs’. Denote a representative SP as

SP
m where m ∈ {1, 2, ...., M}. Therefore, for each SP

m we have a set SP′
m ⊂ EQP. Can

we find (pQQ
1 (θ4), pQQ

2 (θ4)) ∈ SPa
m ? The following argument shows that the answer

is no. By Lemma 2.7, along the graph of the set SPa
m in the price plane, p1 is increas-

ing (along the segment B′A′ in Figure 2.7b) and it must contain at least two points

in the boundary of EQP each of which corresponds to Type I equilibrium price vec-

tor for θ = 0. Along the graph SPa
m , the behavior of pQP

1 (θ) is shown in Figure 2.10.

Suppose (pQQ
1 (θ4), pQQ

2 (θ4)) ∈ SPa
m . By Lemma 2.3 (ii) θ4 is unique and by Lemma

2.2, pQQ
1 (θ) is increasing in θ. Therefore (pQQ

1 (θ4), pQQ
2 (θ4)) is unique. Hence, if

(pQQ
1 (θ4), pQQ

2 (θ4)) ∈ SPa
m , then there dose not exist any k ∈ {1, 2, ...., M} with k 6= m

such that (pQQ
1 (θ4), pQQ

2 (θ4)) ∈ SPa
k .

Let OT denote the length of the OT segment in Figure 2.10. Given
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(pQQ
1 (θ4), pQQ

2 (θ4)) ∈ SPa
m , θ4 > OT is not possible. If θ4 = OT, then for pQQ

1 (θ) =

pQP
1 (θ) at θ = θ4 either pQQ

1 (θ) has slope of ∞ at θ4 (which is impossible since

∂11VQQ
1 ∂22πQQ

2 − ∂12VQQ
1 ∂12πQQ

2 6= 0) or pQQ
1 (θ) should intersect pQP

1 (θ) twice which

is again a contradiction due to uniqueness of θ4 (see Lemma 2.3 (iii)). If θ4 < OT, then

(given pQQ
1 (θ) = pQP

1 (θ) holds for at most one θ) the only possibility is that pQQ
1 (θ) is

tangent to the lower segment of pQP
1 (θ) at θ = θ4 which is again a contradiction since,

in that case, we can find at least one θ > θ4 such that pQP
1 (θ) > pQQ

1 (θ).

Proof of Proposition 2.1: We use four steps to prove the result.

Step (i): The value of θ that maximizes WPP
(θ) must belongs to (0, 1).

Proof of Step (i): The first order condition of Stage 1 under the assumption that firms

select price strategy in Stage 2 is given by

∂θWPP
(θ) = ∂1WPP(pPP(θ))∂θ pPP

1 (θ) + ∂2WPP(pPP(θ))∂θ pPP
2 (θ). (2.18)

Like Lemma 2.2, when goods are complement one can show that ∂θ pPP
1 (θ) > 0,
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∂θ pPP
2 (θ) < 0, and, ∂θ pPP

2 (θ) =
dRPP

2 (pPP
1 (θ))

dp1
∂θ pPP

1 (θ). Therefore, from condition (2.18)

we get,

∂θWPP
(θ) =

(
∂1WPP(pPP(θ)) +

dRPP
2 (pPP

1 (θ))

dp1
∂2WPP(pPP(θ))

)
∂θ pPP

1 (θ). (2.19)

At θ = 0, the price vector (pPP
1 (0), pPP

2 (0)) corresponds to point A in the Figure

2.2. At A ∂1WPP(pPP
1 (0), pPP

2 (0)) = 0 (since, point A must lie on the S1S′1 curve),

∂2WPP(pPP
1 (0), pPP

2 (0)) < 0 (since, point A must lie above PP′) and, by Assump-

tion 2.7, we also have (dRPP
2 (pPP

1 (θ))/dp1) < 0. Hence, at θ = 0, ∂θWPP
(θ) =

dWPP
(θ)

dθ > 0. At θ = 1, the price vector (pPP
1 (1), pPP

2 (1)) corresponds to point B in

the Figure 2.2 where we have ∂1WPP(pPP
1 (1), pPP

2 (1)) < 0 (since point B must lie to

the right of S1S′1), ∂2WPP(pPP
1 (1), pPP

2 (1)) < 0 (since point B must lie above S2S′2),

∂1WPP(pPP
1 (1), pPP

2 (1)) = ∂2WPP(pPP
1 (1), pPP

2 (1)) (since point B must lie on p1 = p2

line and the welfare function is symmetric) and (applying Assumption 2.7) we also

have −1 < (dRPP
2 (p1)/dp1) < 0. Thus, at θ = 1, ∂θWPP

(θ) = dWPP
(θ)

dθ < 0. Given
dWPP

(θ)
dθ > 0 at θ = 0 and dWPP

(θ)
dθ < 0 at θ = 1, and, given the second order condition

d2WPP
(θ)

dθ2 < 0, it follows that the optimal stage 1 choice of θ is some θ∗ that lies in the

open interval (0, 1). Hence, at θ = θ∗ the equilibrium price vector (pPP
1 (θ∗), pPP

2 (θ∗))

must belong to the interior of the segment AB (say some point like D in Figure 2.2)
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where the iso-welfare curve is tangent to the R2R′2 curve.

Step (ii): On the (p1, p2) plane, for any given θ ∈ [0, 1], all points in SVPP
1 (θ) must lie

to the left all points in P(SVQQ
1 (θ)).

Proof of Step (ii): In Stage 2, if Firm 2 chooses price strategy, then Firm 1’s reaction

function is given by

∂1VPP
1 (p, θ) = (p1 −m)∂1FPP

1 (p) + θFPP
1 (p) + (1− θ)∂1FPP

2 (p) = 0. (2.20)

In Stage 2, if Firm 2 chooses quantity strategy, then Firm 1’s reaction function is

∂1VQQ
1 (q, θ) = FQQ

1 (q)−m + θq1∂1FQQ
1 (q) = 0. (2.21)

If p̂ = ( p̂1, p̂2) is a solution to (2.21), then p̂1 − m +

θFPP
1 ( p̂1, p̂2)∂1FQQ

1 (FPP
1 ( p̂1, p̂2), FPP

2 ( p̂1, p̂2)) = 0 implying that p̂1 − m =

−θFPP
1 ( p̂1, p̂2)∂1FQQ

1 (FPP
1 ( p̂1, p̂2), FPP

2 ( p̂1, p̂2)). At ( p̂1, p̂2), ∂1VPP
1 ( p̂1, p̂2, θ) =

( p̂1 − m)∂1FPP
1 + θFPP

1 + (1 − θ)∂1FPP
2 = θ

(
1− ∂1FPP

1 ( p̂)∂1FQQ
1 (q̂)

)
FPP

1 + (1 −

θ)∂1FPP
2 ( p̂) < 0. Therefore, given any θ ∈ [0, 1], we have SVPP

1 ( p̂2, θ) < p̂1, that is, all

points satisfying p1 = SVPP
1 (p2, θ) must lie to the left of all points in P(SVQQ

1 (θ)).

Step (iii): In Stage 2, choosing price is the dominant strategy for Firm 2.

Proof of Step (iii): When Firm 1 chooses price strategy, the curve R2R′2 is the reaction

function of Firm 2. Therefore, the singleton set SVPP
1 ∩RPP

2 must lie to the left of all

points in the set P(SVQQ
1 (θ))∩RPP

2 . Therefore, at any given θ, if Firm 1 chooses price

strategy, then it is always optimal for Firm 2 to choose price strategy. When Firm 1

chooses quantity strategy, the set of points P(RQQ
2 ) represent the reaction function of

Firm 2 in terms of prices. Again, like Lemma 2.7, one can show that if we generate the

Cournot equilibrium path in the price space by changing θ from 0 to 1 and plotting the

corresponding price vector, then, along that Cournot equilibrium path, as we move

from price vector (pQQ
1 (0), pQQ

2 (0)) to price vector (pQQ
1 (1), pQQ

2 (1)) the underlying θ

increases. Like Lemma 2.2(ii), one can also show that ∂θ pQQ
1 (θ) > 0. Hence, along that

Cournot equilibrium path, p1 also increases. By Assumption 2.5, ∂1πQQ
2 (q) > 0 and
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∂1FPP
1 < 0 implying dπQQ

2 (FPP
1 (p), RQQ

2 (FPP
1 (p)))/dp1 = ∂1πQQ

2 (q1)∂1FPP
1 (p) < 0 .

Therefore, along the Cournot equilibrium path, the profit of the Firm 2 decreases as we

move from (pQQ
1 (0), pQQ

2 (0)) to (pQQ
1 (1), pQQ

2 (1)). Since, by Step (ii) for any θ the set of

point SVPP
1 (θ) lie to the left of the set of points in P(SVQQ

1 (θ)), the profit associated

with the point in the singleton set P(SVQQ
1 (θ)) ∩ P(RQQ

2 ) is less than profits from

all point in the set SVPP
1 (θ) ∩ P(RQQ

2 ). Therefore, at any given θ, if Firm 1 chooses

quantity strategy, then also it is optimal for Firm 2 to choose price strategy.

Step (iv): In Stage 2, if Firm 2 chooses price strategy, then Firm 1 also chooses price

strategy.

Proof of Step (iv): On the region lying above the set T := {p | p2 ≥ m, p1 + p2 ≥ 2m},

∂2VPP
1 (p, θ) = θ∂2πPP

1 (p) + (1− θ)∂2WPP(p) < 0. Therefore, VPP
1 (p, θ) is decreasing

in p2 for all points in the set SVPP
1 (θ) ∩ T . Again, the reaction function of Firm 2

given Firm 1 chooses price (that is, the R2R′2 curve in Figure 2.2) lies above the line

p2 = m and each point in this reaction function lies below all points in the set P(RQQ
2 ).

Moreover, all points on the AB segment in Figure 2.2 is contained in T and for all

points on the AB segment we have dVPP
1 (SVPP

1 (p2, θ), p2)/dp2 < 0. Therefore, at the

intersection point of the R2R′2 curve and the p1 = SVPP
1 (p2, θ) curve, we value of

VPP
1 (p, θ) is higher compared to all points in the set SVPP

1 ∩ P(R
QQ
2 ). Hence, given

Firm 2 chooses price strategy, it is always optimal for Firm 1 to choose price strategy.

Hence, Step (iv) follows.

Step (iii) and Step (iv) shows that given any θ ∈ [0, 1], price competition is the

only Nash equilibrium of the sub-game starting from Stage 2. By Step (i), at some

θ∗(∈ (0, 1)), the government maximizes welfare under price competition. Therefore,

the strategy combination (θPP = θ∗, (P, pPP
1 (θPP)), (P, pPP

2 (θPP))) is the unique SPNE

of Γ.

54



Chapter 3

Bertrand-Cournot comparison for

oligopolistic industry with vertically

integrated firm

3.1 Introduction

An important contribution in the Bertrand-Cournot comparison literature is by Arya

et al. (2008b). Arya et al. (2008b) consider a vertically related duopoly market with

imperfect substitutes that consists of one vertically integrated producer and a down-

stream rival firm. In the retail market, firms compete with each other while in the

upstream market the vertically integrated firm is a monopolist. The vertically inte-

grated firm supplies a necessary input to its downstream division and the vertically

integrated firm also supplies the same input to its downstream rival. They show that

the standard Bertrand-Cournot rankings (of Singh and Vives (1984)) get reversed.

There are many real life situations where firms compete through a vertically related

market. In the gasoline market, gasoline refiners supply key input to its retail competi-

tor. Under e-commerce, the manufacturers are in direct competition with its retailers

(Arya et al. (2008b)). In telecommunication market, firms often purchase and rent

their network to their competitor(s) (Weisman and Kang (2001)) and simplilar type of
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competition is also found in case of wireless telecommunication market (Banerjee and

Dippon (2009)). In case of smart phone market, Samsung electronics not only acts as a

subsidiary of Samsung smart phone manufacturer but also supplies microprocessors

to Apple Inc to produce iPhone (Qing et al. (2017)).

In this chapter we extent the duopoly structure of Arya et al. (2008b) to oligopoly.

Specifically, we consider a vertically related differentiated product industry where a

vertically integrated firm acts as a monopolist supplying a necessary input not only

to it’s downstream division but also to all its downstream rivals. Given this market

structure, we separately analyze both the short run and the long run outcomes of the

industry under price and quantity competitions. Our first result shows that the rank-

ing of profit of each downstream rival of the vertically integrated firm under price and

quantity competitions (as provided in Arya et al. (2008b)) is sensitive to the degree

of downstream competition. We also analyze how the results of Arya et al. (2008b)

are affected with this change in the degree of competition. Our short run analysis not

only provides some interesting facts about the equilibrium behavior of the vertically

integrated firm but it also highlights some fundamental differences between price and

quantity competition in this context. Our long run analysis shows that price competi-

tion always gives higher profit to the vertically integrated firm compared to quantity

competition though the welfare ranking depends on the entry cost of the rival firms.

The chapter is organized as follows. In Section 3.2, we introduce the preliminaries

of the chapter. In Section 3.3, we analyzes the short run of the model. In Section 3.4 we

analyzes the long run of the model. Finally in Section 3.5 we have the appendix which

contains all prove of this chapter.

3.2 Preliminaries

In this study we consider an economy consisting of a competitive sector and a verti-

cally related sector. The former sector producing a numéraire good (money) y while

the latter not only produces a imperfect substitute product (as a final commodity) but

also the necessary input that is required to produce that final commodity. The ver-
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tically related sector, containing both the upstream market/ input market where the

necessary input is traded and the downstream market/ retail market where the final

commodity is traded. The vertically related sector consists of a set N = {0, D1, . . . , Dn}

of firms where firm 0 is a vertically integrated firm (VIP) whose upstream division U0

has monopoly in the upstream market/ input market and suppling input not only to

its own downstream division D0 but also to all its n downstream rivals D1, . . . , Dn.

The set ND = {D1, . . . , Dn} denotes the set of all downstream rivals of VIP. We as-

sume that the input is traded through the upstream market and is used to produce

final commodity on a one-to-one basis, that is, one unit of necessary input is required

to produce one unit of the final output. Figure 3.1 below illustrates the market struc-

ture of vertically related sector where arrows depicts the flow of input from U0 to all

the rival firms of the vertically integrated firms. The vertical box refers to the fact

that U0 and D0 are vertically integrated. Finally, the horizontal box refers all the rival

firms of VIP operating in the downstream market. For each firm i ∈ N, the quantity

D0

U0

D1 . . . . . . . . . . . . . . . . . . Dn

V
IP

Down stream rivals

Figure 3.1: Market Structure

produced is denoted by qi and the price charged is denoted by pi.

3.2.1 Demand side

We assume that the utility function of the representative consumer is quasi-linear and

of the form U (q, y) = U(q) + y where q = (q0, q1, . . . , qn) is the vector of outputs.
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Specifically, we assume that U(q) is quadratic and is of the following form:

U(q) = a ∑
k∈N

qk −
1
2

(
∑

k∈N
q2

k + s ∑
k∈N

∑
k′<k

qkqk′

)
, (3.1)

where a > 0 is the taste parameter and s ∈ (0, 1) indicates the common degree of

substitutability across the firm specific commodities. The representative consumer

maximizes U (q, y) = U(q) + y by choosing q and y subject to the budget constraint

∑k∈N pkqk + y ≤ I where I be the income of the representative consumer. Due to

quasi-linear specification of the utility function, the consumer’s problem reduces to

maximize consumer surplus CS = U(q̃) − ∑k∈N pkqk. The first order condition of

consumer’s optimization gives us the inverse demand functions of each firm i ∈ N

and has the following form:

Pi(q) = a− qi − s ∑
k∈N\{i}

qk. (3.2)

Given the inverse demand system resulting from the use of condition (3.2) for each

i ∈ N, one can obtain the direct demand function of each i ∈ N and it is given by

Di(p) =
a

1 + ns
+

1 + (n− 1)s
(1− s)(1 + ns)

pi +
s

(1− s)(1 + ns) ∑
j∈N\{i}

pj. (3.3)

The expression for the consumer surplus after incorporating conditions (3.1) and

(3.2) yields

CS(q) =

∑
k∈N

q2
k + s ∑

k∈N
∑

k′∈N\{k}
qkqk′

2
. (3.4)

3.2.2 Supply side and welfare

Let m0 denote the constant marginal cost of production of the final commodity for firm

0 and m denote the common constant marginal cost of all the rival firms. Further the

production of the final commodity requires no fixed cost. Suppose z is the input price

that VIP charges for each unit of input it sales in the upstream market to each of its
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downstream rivals. Therefore, the cost of firm 0 to produce q0 unit of final commodity

is C0(q0) = m0q0 and that of any firm i ∈ ND to produce qi unit of final commodity

is Ci(qi) = (m + z)qi. We also assume that firm 0 has cost advantage over all its

downstream rivals, that is, m0 < m < a. Therefore, the profit of Firm 0 is

π0 = (p0 −m0)q0 + z ∑
j∈ND

qj, (3.5)

where (p0 − m0)q0 is the profit earned from the downstream market by selling final

good and z ∑j∈ND
qj is the profit earned from the upstream market by selling necessary

input of production. The profit of each rival firm i ∈ ND is

πi = (pi − z−m)qi. (3.6)

Define the joint profit from the industry as π J := ∑
k∈N

πi and again using condition

(3.2) we get

π J = (a−m0)q0 + (a−m) ∑
k∈ND

qk −

∑
k∈N

q2
k + s ∑

k∈N
∑

k′∈N\{k}
qkqk′

 . (3.7)

Finally, the welfare of the society is W := CS + π J and using conditions (3.4) and

(3.7) we get

W(q) = (a−m0)q0 ++(a−m) ∑
k∈ND

qk −
1
2

∑
k∈N

q2
k + s ∑

k∈N
∑

k′∈N\{k}
qkqk′

 . (3.8)

3.3 The short run

In this section, we analyze the short run interaction amongst the firms. By short run

we mean that the number of firms in the market is fixed. We restrict our analysis to

two very fundamental market games: First, the market where we have quantity com-

petition in the downstream market which we call downstream Cournot competition

and we denote it by ΓC
n . Second, the market where we have price competition in the
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downstream market which we call downstream Bertrand competition and we denoted

it by ΓB
n . Though ΓC

n and ΓB
n differ in terms of the strategy space, they share the same

stages which are defined below:

Stage-I: In this stage there is interaction only in the upstream market and the VIP

decides at what common price it will sell the necessary input to all it’s down-

stream rivals.

Stage-II: In this stage firms compete in the downstream market. In particular, in

case of ΓC
n (ΓB

n ) firms compete in quantity (price).

Before stating and elaborating our results, we briefly discuss all the stages of both

downstream Cournot competition and downstream Bertrand competition.

3.3.1 The downstream Cournot competition (ΓC
n )

Stage-II choice of ΓC
n : In case of downstream Cournot competition (ΓC

n ), if in the

Stage-I the upstream division of Firm 0 charges the input price z, then, in the Stage-

II, the downstream division of Firm 0 along with all it’s downstream rivals compete

in the downstream market by producing optimal quantity of their respective retail

output. Formally in Stage-II, Firm 0 chooses q0 to maximize it’s profit πC
0 (q) =

(P0(q)−m0)q0 + z ∑j∈ND
qj given the output of all it’s downstream rivals ND and each

rival firm Di ∈ ND chooses qi to maximize πC
i (q) = (Pi(q)− z−m)qi given the retail

output of the Firm 0 and the output of all other downstream firms. Let the Stage-II op-

timal output vector be qC(z, n) = (qC
0 (z, n), qC

1 (z, n), . . . , qC
n (z, n)). Then qC(z, n) must

satisfy the first order condition ∂0πC
0 (q

C(z, n)) = 0 for Firm 0 and ∂iπ
C
i (q

C(z, n)) = 0

for each firm Di ∈ ND. Since all rival are symmetric, we get equal optimal choice of

quantity across these firms, that is, qC
j (z, n) = qC(z, n) for all j ∈ ND. Optimization

exercise gives

qC
0 (z, n) =

(2− s)(a−m0) + ns(m−m0) + nsz
(2− s)(2 + ns)

(3.9)

and

qC(z, n) =
(a−m) + Ḡ− 2z
(2− s)(2 + ns)

, (3.10)
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where Ḡ := (a−m)− s(a−m0). Hence the resulting two-stage profit of Firm 0 is

πC
0 (q

C(z, n)) =
(

qC
0 (z, n)

)2
+ nzqC(z, n) (3.11)

and that of any firm Di ∈ ND is

πC
i (q

C(z, n)) =
(

qC(z, n)
)2

. (3.12)

The Stage-I choice of ΓC
n : In this stage upstream division of Firm 0 choose it’s op-

timum input price zC(n) to maximizes it’s stage-II profit given by (3.11). Therefore

zC(n) we must satisfy the first order condition, ∂zπC
0
(
qC(zC(n), n)

)
= 0. The solution

is

zC(n) =
a−m

2
− ns2Ḡ

2 [4 (2 + (n− 1)s)− 3ns2]
. (3.13)

3.3.2 The downstream Bertrand competition (ΓB
n)

Stage-II choice of ΓB
n : Given the stages of the downstream Bertrand competition (ΓB

n ),

if in the Stage-I, the upstream stream division of Firm 0 charges the input price z from

it’s downstream rivals, then, given this value of z, in Stage-II, the downstream di-

vision of Firm 0 along with all it’s downstream rivals compete in the downstream

market by optimally selecting price to be charged for their respective retail com-

modity. Specifically, in Stage II, Firm 0 chooses p0 to maximize it’s profit πB
0 (p) =

(p0−m0)D0(p) + z ∑j∈ND
Dj(p) taking the price of all it’s downstream rivals as given

and each firm Di ∈ ND chooses it’s price pi to maximize πB
i (p) = (pi − z−m)Di(p)

given the price of Firm 0 and the price of all others downstream firms. Let the Stage-

II optimal price vector be pB(z, n) = (pB
0 (z, n), pB

1 (z, n), . . . , pB
n(z, n)). Then pB(z, n)

must satisfy the following set of first order conditions: ∂πB
0 (pB(z, n))/∂p0 = 0 for
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Firm 0 and ∂πB
i (pB(z, n))/∂pi = 0 for each Di ∈ ND. Optimal solution gives:

pB
0 (z, n) = m0 +

 (2 + (n− 1)s)(1− s)(1 + ns)(a−m0)− ns(1 + (n− 1)s)Ḡ

+ns(3 + 2(n− 1)s)z


2(1 + (n− 1)s)(2 + (n− 1)s)− ns2

(3.14)

and

pB(z, n) = z + m +
(1− s)(1 + ns)(a−m) + (1 + (n− 1)s)Ḡ− 2(1− s)(1 + ns)z

2(1 + (n− 1)s)(2 + (n− 1)s)− ns2 .

(3.15)

The resulting quantity of Firm 0 is

qB
0 (z, n) := D0(pB(z, n)) =

(1 + (n− 1)s)(pB
0 (z, n)−m0)

(1− s)(1 + ns)
(3.16)

and the resulting quantity of each downstream rival is

qB(z, n) := Di(pB(z, n)) =
(1 + (n− 1)s)(pB(z, n)−m− z)

(1− s)(1 + ns)
. (3.17)

Thus, the resulting aggregate profit of Firm 0 (given z) is

πB
0 (pB(z, n)) =

(1 + (n− 1)s)(pB
0 (z, n)−m0)

2 − nsz(pB
0 (z, n)−m0)

(1− s)(1 + ns)
+ nzqB(z, n)

(3.18)

and that of any firm Di ∈ ND is

πB
i (pB(z, n)) =

(1 + (n− 1)s)
(

pB(z, n)−m− z
)2

(1− s)(1 + ns)
. (3.19)

Stage-I choice of ΓB
n In Stage-I, Firm 0 selects the input price zB(n) to maximizes it’s

Stage-II profit given by (3.18). Therefore, the optimal zB(n) must satisfy following first

order condition ∂zπB
0 (pB(zB(n), n)) = 0 and solving for zB(n) we get,

zB(n) =
a−m

2
− ns2Ḡ

2
[
4 (1 + (n− 1)s)2 (2 + (n− 1)s) + ns2

] . (3.20)
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3.3.3 The short run results

In this subsection we present all our short run results. The first one is relating to

the foreclosure condition. Since Firm 0 is sole supplier of the input it has the ability

to foreclose all other downstream rival and become an monopolist in the downstream

market. However, foreclosure also terminates Firm 0’s sales of input to its downstream

rivals. Therefore, when wholesale profit by selling input is ‘high’ enough, Firm 0 will

not foreclose. The non-foreclosure condition is stated in the next Lemma 3.1

LEMMA 3.1 Under both ΓB
n and ΓB

n , the vertically integrated firm forecloses all its

downstream rivals if and only if Ḡ = (a−m)− s(a−m0) ≤ 0 or (a−m)/(a−m0) ≤ s.

The foreclosure condition states that if products are sufficiently heterogeneous, then

Firm 0 will never forecloses it’s downstream rivals. Note that the foreclosure condition

in 3.1 is identical to the foreclosure condition stated in the Lemma 1 of Arya et al.

(2008b). Therefore, the foreclosure condition stated by Arya et al. (2008b) is robust

for oligopolistic framework as well. Like Arya et al. (2008b), we also assume that the

non-foreclosure condition holds, that is, we assume

Ḡ = (a−m)− s(a−m0) > 0. (NF)

Given (NF) one can show that, the ranking of the equilibrium profit of Firm 0 and the

welfare of the society, between ΓC
n and ΓC

n , as provided by Arya et al. (2008b) are also

true for any number of firms. Like Arya et al. (2008b) (see Lemma 2 in Arya et al.

(2008b)), in our context Firm 0 always sets higher input price under ΓB
n than under

ΓC
n , that is, zB(n) > zC(n) for all n ≥ 1. But there are some fundamental differences

between ΓB
n and ΓC

n which to the best of our knowledge is not available in the earlier

literature. The Lemma 3.2 below show one of such difference.

LEMMA 3.2 For any positive integer n ≥ 1, the following holds:

(i) zC(n) is monotonically decreasing in n and zC
∞ := limn→∞ zC(n) = (a−m)/2−

(sḠ/(8− 6s)).
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(ii) If max{1, n̂(s)} = 1, then for all n ≥ 1, zB(n) is increasing in n. If max{1, n̂(s)} >

1, then, for all n > n̂(s), zB(n) is increasing in n, and, for all n < n̂(s), zB(n)

is decreasing in n where n̂(s) := [(−(2− s) +
√
(2− s)(10− 9s))/4s]. Further

zB
∞ := limn→∞ zB(n) = (a−m)/2.

Lemma 3.2 states how the equilibrium input price behaves with n and establishes a

fundamental difference between ΓC
n and ΓB

n . Specifically, Lemma 3.2 states that Firm

0 always induces its rivals to produce more under ΓC
n as n increases by reducing the

per-unit cost for the rivals and induces to produce less under ΓC
n as n increases by

increasing the per-unit cost of the rivals. Therefore, under ΓB
n , Firm 0 becomes more

protective to its downstream division as competition in the downstream market in-

creases but, under ΓC
n , Firm 0 becomes less protective to its downstream division as

competition in the downstream market increases. In Figure 3.2, we illustrate the exact

no

zB(n), zC(n)

zC
∞

zB
∞

n = 1

zB(n)

zC(n)

Figure 3.2: Pattern of zB(n) and zC(n).

pattern of zC(n) and zB(n) with respect n as explain by Lemma 3.1. Although given

any number of firm, the ranking of equilibrium profit of Firm 0 and the equilibrium

welfare between ΓC
n and ΓC

n are same as the ranking provided by Arya et al. (2008b),
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the ranking of the profit of each downstream rival depends on both size of the down-

stream competition and degree of product differentiation.

PROPOSITION 3.1 Under both ΓB
n and ΓC

n , the equilibrium profit of any downstream

rival is decreasing in size of the number of firms competing in the downstream market.

Further, the relative ranking of the equilibrium profit of any downstream rival under

ΓB
n and ΓC

n is sensitive to the degree of substitution s as well as n.

Specifically, if ((a− m)/(a− m0)) ≥ 8/9 holds for all s ∈ (0, 8/9), then there exist a

ñ(s) such that (a) for all n > ñ(s), ΓC
n yields higher profit of any rival firm compared

to ΓB
n and (b) for all n < ñ(s), the reverse holds. If s ∈ [8/9, ((a − m)/(a − m0))),

then ΓB
n always yields higher profit of any rival firm compared to ΓC

n . Finally, if ((a−

m)/(a−m0)) < 8/9, then for all s ∈ (0, ((a−m)/(a−m0))) there always exist a ñ(s)

such that for all n > ñ(s), ΓC
n yields higher profit of any rival firm compared to ΓB

n .

Proposition 3.1 suggests that for large n, the ranking of the equilibrium profit of any

rival, as provided by Arya et al. (2008b) may change. In Figure 3.5, the shaded region

shows all possible combinations of (s, n) for which there is a ranking reversal relative

to Arya et al. (2008b) (only in terms of profit of the rivals). In Figure 3.5, the thick curve

is the implicit locus of the (s, n) for which the profit of any downstream firm under ΓC
n

is equal to that under ΓB
n .

Ranking
Reverse

Figure 3.3: Region of reversal.

In Lemma 3.2 we show that when competition increases, Firm 0 becomes more

protective of it’s own downstream division under ΓB
n by charging higher input price
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where as under ΓC
n as competition increases Firm 0 charges lower input price. Hence,

given any s and after a certain level of competition, the cost of outsourcing under ΓB
n is

significantly more than that under ΓC
n . As a result profit ranking gets reversed. Figure

3.4 helps in explaining Proposition 3.1.

o n

ΠC(n), ΠB(n)

ΠB(n)
ΠC(n)

n̂(s)

K̄
A

(a) For s ∈ (0, 8/9)

o n

ΠC(n), ΠB(n)

ΠB(n)
ΠC(n)

(b) For s ∈ [8/9, (a−m)/(a−m0))

Figure 3.4: Behavior of downstream profit.

In Proposition 3.2 that follows we show that as the degree of competition increases,

there is a loss in profit for the vertically integrated firm due to new entry and there is

also a gain in profit for the vertically integrated firm due to increase in sales of input to

these new entrants. The resulting aggregate profit of the vertically integrated firm goes

up since the loss from the downstream market is less than the gain from the upstream

market.

PROPOSITION 3.2 In case of both ΓB
n and ΓC

n , the equilibrium profit of Firm 0 in in-

creasing in n.

Proposition 3.2 is a consequence of two effects. First, new entry enhances profit at

the pre-entry input price (since the profit curve shifts upwards at the relevant stretch).

Second, new entry will allow Firm 0 to increase its profit even further by adjusting the

input price optimally (that is, due to optimal shift along the new profit curve).

Under ΓB
n , as n goes to (n + 1), in equilibrium zB(n) increases to zB(n + 1). As

a consequence the revenue that results for Firm 0 from the upstream market more
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than compensates for the loss from downstream market (due to more entry) thereby

increasing the aggregate profit of Firm 0. Unlike ΓB
n , in ΓC

n , as n goes to (n + 1), in

equilibrium zC(n) decreases to zC(n + 1). However, despite the fall in the per-unit

price of inputs there is a more than offsetting rise in the total input sold and as a result

the upsteam market revenue earned by Firm 0 increases so as to outweigh the loss in

profit from the downstream market thereby increasing the aggregate profit of Firm 0.

This is the qualitative difference in the profit rise of Firm 0 under ΓB
n and ΓC

n .

3.4 The long run

In this section, we analyze the long run interaction amongst the firms. By long run we

mean that any firm in the downstream market can enter by incurring a fixed entry cost

K > 0. Like the short run analysis, we restrict our analysis to two very fundamental

market games: First, where all firms compete in quantity in the downstream market

which we call downstream Cournot competition with entry and we denote it by ΓC
K.

Second, where all firms compete in prices in the downstream market which we call

downstream Bertrand competition with entry and we denote it by ΓB
K. Although ΓC

K

and ΓB
K differ in terms of the strategy space, they share the same stages as defined

below:

Stage-I In this stage the numbers of downstream rivals are determine using zero

profit condition.

Stage-II In this stage there is interaction in the upstream market. Specifically,

Firm 0 decides the common price at which it will sell the necessary input to all

it’s downstream rivals.

Stage-III In this stage firms compete in the downstream market. Specifically, for

ΓC
K (ΓB

K) all firms compete with quantity (price).

Before getting into the details of our results, we briefly discuss all the stages of both

the downstream Cournot competition with free entry and downstream Bertrand com-
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petition with free entry. Observe that the final two stages of ΓC
K (ΓB

K) are identical to ΓC
n

(ΓB
n ). Only difference is the analysis of the Stage-I for which we requires a zero profit

condition for both ΓC
K and ΓB

K. To find this zero profit condition one needs to substitute

(3.13) in (3.12) which gives the equilibrium profit that any firm Di ∈ ND earns under

Stage-II of ΓC
K and it is given by

ΠC(n) := πC(qC(zC(n), n)) =
4Ḡ2

[4(2 + (n− 1)s)− 3ns2]
2 . (3.21)

Similarly, by substituting (3.20) in (3.19) we get the equilibrium profit of any firm Di ∈

ND earns under Stage-II of ΓB
K and it is given by

ΠB(n) := πB(pB(zB(n), n)) =
(1 + (n− 1)s)[2 (1 + (n− 1)s)2 + ns2]2Ḡ2

(1− s)(1 + ns)[4 (1 + (n− 1)s)2 (2 + (n− 1)s) + ns2]2
.

(3.22)

Suppose nC and nB respectively denote the equilibrium number of firms under ΓC
K and

ΓB
K. Then the zero profit condition can be written as

ΠC(nC) = K = ΠB(nB). (3.23)

By substituting the expression of ΠC(nC) and ΠB(nB) in (3.23) and then solving for nC

one obtains the following relation between nC and nB:

nC(nB) = − 4(2− s)
s(4− 3s)

+
2A(s, nB)

[
4(1 + (nB − 1)s)2(2 + (nB − 1)s) + nBs2]

s(4− 3s) [2(1 + (nB − 1)s)2 + nBs2]
(3.24)

where A(s, nB) =
√
[(1− s)(1 + nBs)]/[(1 + (nB − 1)s)]. Observe that dnC/dnB =

(∂ΠB(zB(n), n)/∂n)/(∂ΠC(zC(n), n)/∂n) > 0 since ∂ΠB(zB(n), n)/∂n < 0 and

∂ΠC(zC(n), n)/∂n < 0, that is, nC is positively related to nB and one can also show

that nC increases at an increasing rate with nB. For the remaining analysis we restrict

ourselves to situation where in equilibrium at least one firm survives. This means that

we put an upper bound over entry cost K such that under both Cournot and Bertrand

competitions there is at least one down stream rival firm. Specifically, we restrict our

attention to the set SnB = {(s, nB) | nB ≥ 1, 0 < s < 1, nC(nB) ≥ 1} which is shown in
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the Figure 3.5.

Feasible Region

Figure 3.5: Feasible values of nB for Long Run.

3.4.1 The long run results

LEMMA 3.3 Following can be said about the relation between nB and nC:

(i) If either (a− m)/(a− m0) < 8/9 holds or if, (a− m)/(a− m0) ≥ 8/9 and s ∈

(0, 8/9), holds, then there always exist a K̄ such that for all K > K̄ we have

nB > nC and for all K < K̄ we have nB < nC.

(ii) If (a− m)/(a− m0) ≥ 8/9 and s ∈ [8/9, (a− m)/(a− m0)) holds, then for all

K > 0 we have nB > nC.

The explanation of Lemma 3.3 (i) follows from Figure 3.4 (a) where we have added a

horizontal line representing the fixed cost of magnitude OK̄ that represents the case

nB = nC. For any fixed cost K > K̄, we have nB > nC and for any fixed cost K < K̄, we

have nB < nC. The explanation for Lemma 3.3 (ii) follows from Figure 3.4 (b) where

no matter what fixed cost we take, nB > nC.

PROPOSITION 3.3 If for both ΓC
K and ΓB

K, at least one firm can survive in equilibrium,

then we have following:

(i) Firm 0 always earns higher aggregate profit under ΓB
K than under ΓC

K.
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(ii) If m = m0, then there exists a range of (s, nB) such that ΓB
K yields higher welfare

than ΓC
K.

(iii) In case of both ΓC
K and ΓB

K we have excess entry in the long run than the optimal

numbers of entry that maximizes the social welfare.

The first part of Proposition 3.3 (i) is an extension of Arya et al. (2008b) and Propo-

sition 3.3 (ii) suggests a reversal of Arya et al. (2008b)’s result for welfare ranking.

Proposition 3.3 (i) is an extension of Arya et al. Arya et al. (2008b) by allowing free

entry. From Proposition 3.2 we know that the equilibrium profit of VIP is increasing

in n for both ΓC
n and ΓB

n . Moreover, for any n, profit of VIP under ΓB
n is more than that

under ΓC
n . Therefore, when entry cost is large enough the equilibrium profit of VIP is

higher under ΓB
K than under ΓC

K (using using Lemma 3.3). Even when the entry cost

is small, profit of VIP under ΓB
K continues to be larger than that of the VIP under ΓC

K.

The reason being that even if the equilibrium number of firms under ΓC
K is larger than

that under ΓB
K, it fails to generate large enough input selling profit such that aggregate

equilibrium profit of VIP under ΓC
K can dominate the aggregate equilibrium profit of

VIP under ΓB
K. Proposition 3.3 (ii) is a reversal of Arya et al. (2008b)’s result in terms of

welfare rankings when entry cost is large enough. Using Lemma 3.3 we can conclude

that if the entry cost is large enough then the number of firm that survives under ΓB
K

is higher than that under ΓC
K. Therefore, given entry cost is large enough, we have

larger aggregate equilibrium output and consumer surplus under ΓB
K than under ΓC

K.

Furthermore, the increase in equilibrium consumer surplus dominates the decrease in

profit of VIP under ΓB
K in comparison to that under ΓC

K. Hence, aggregate welfare is

higher under ΓB
K than under ΓC

K. Finally, one can show that the set of equilibrium out-

comes under ΓC
n and ΓB

n satisfies all the assumptions of Mankiw and Whinston (1986).

Consequently, we have negative business-stealing effect and hence excess entry under

free entry equilibrium.
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3.5 Conclusion

In this paper, we have identified a fundamental difference between Cournot and

Bertrand competition in the presence of a vertically integrated firm that uses the uni-

form input pricing strategy. In case of the Cournot competition, input price charged by

the vertically integrated firm decreases with the number of downstream firms. How-

ever, in case of Bertrand competition the optimal input price is increasing with the

number of downstream firms only after a threshold level. This difference actually de-

termines the ranking reversal of profit of each downstream rival between these two

market competition relative to Arya et al. (2008b) when number of downstream firms

is large enough. Given the above mentioned ranking reversal, we have interesting

long-run consequences. There exists a critical entry cost level below (above) which we

have more (less) equilibrium number of firm under ΓC
K than under ΓB

K. It is precisely

due to this aspect that we have streches of ranking reversal as well as non-reversal

relative to Arya et al. (2008b) in terms of social welfare.

3.6 Appendix

Proof of the Lemma 3.1: By substituting (3.13) in (3.10) we obtained the equilibrium

quantity of output,

qC(zC(n), n) =
2Ḡ

[4(2 + (n− 1)s)− 3ns2]
,

that any rival firm Di ∈ ND produces under ΓC
n . Since 4(2+(n− 1)s)− 3ns2 > 0 for all

n ≥ 0 and s ∈ (0, 1), for qC(zC(n), n) to be positive it is necessary that Ḡ > 0. Hence,

for ΓC
n non-foreclosure condition is Ḡ > 0. Similarly, by substituting (3.20) in (3.17) we

get the equilibrium quantity of output,

qB(zB(n), n) =
(1 + (n− 1)s)[2(1 + (n− 1)s)2 + ns2]Ḡ

(1− s)(1 + ns)[4(1 + (n− 1)s)2(2 + (n− 1)s) + ns2]
,
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that any rival firm Di ∈ ND produces under ΓB
n . Again, since for all n ≥ 0 and for all

s ∈ (0, 1), (a) (1 + (n− 1)s)/(1− s)(1 + ns) > 0 and (b) the denominator 4(1 + (n−

1)s)2(2 + (n− 1)s) + ns2 > 0, from (a) and (b) we can conclude that qB(zB(n), n) > 0

implies that Ḡ > 0. Therefore the non-foreclosure condition for both ΓC
n and ΓB

n is

Ḡ > 0. Hence the result.

Proof of Lemma 3.2: Proof of (i): To prove the result, we differentiate the equation

(3.13) with respect to n to get,

∂nzC(n) = − 2s2(2− s)Ḡ

[4(2 + (n− 1))− 3ns2]
2 . (3.25)

Clearly, the right hand side of the equation (3.25) is negative, therefore we have

∂nzC(n) < 0 implying that zC(n) is monotonically decreasing in n. Finally from equa-

tion (3.13) we have

zC
∞ =

a−m
2
− lim

n→∞

s2Ḡ

2
[

4(2−s)
n + 4s− 3s2

] =
a−m

2
− sḠ

8− 6s
.

Proof of (ii): To prove the result we differentiate equation (3.20) with respect to n we get

∂nzB(n) = −
2s2(1 + (n− 1)s)

[
(1− s)(2− s)− s(2− s)n− 2n2s2] Ḡ

[4(1 + (n− 1)s)2(2 + (n− 1)s) + ns2]
2 . (3.26)

Given (3.26), ∂nzB(n) > 0 if and only if (1− s)(2− s)− s(2− s)n− 2n2s2 < 0 implying

n > n̂(s) = [−(2− s) +
√
(2− s)(10− 9s)]/4s. Therefore, if max{1, n̂(s)} = 1, then

n ≥ n̂(s) (since n ≥ 1) and hence zB(n) is increasing in n. If max{1, n̂(s)} > 1, then for

all 1 ≤ n < n̂(s), we have zB(n) is decreasing in n and for all n > n̂(s), we have zB(n)

is increasing in n. Again form condition (3.20) one can show that

zB
∞ =

a−m
2
− s2Ḡ

2
[

lim
n→∞

4(1 + (n− 1)s)2
(

2
n + (1− 1

n )s
)
+ s2

] =
a−m

2
.

Proof of the Proposition 3.1: Given non-foreclosure condition (NF), both ΠC(n) and

ΠB(n) are decreasing in n (see conditions (3.21) and (3.22)). Consider the difference
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∆(n) := ΠC(n)−ΠB(n). Then

∆(n) =
n
[

6
∑

i=0
Ci(s)ni

]
Ḡ2

(1− s)(1 + ns)[4 (1 + (n− 1)s)2 (2 + (n− 1)s) + ns2]2 [4(2 + (n− 1)s)− 3ns2]
2 ,

(3.27)

where C0(s) := 32s2(2− s)(4− 2s− s2)(1− s)3 > 0 for all s ∈ (0, 1), C1(s) := 4s3(1−

s)(9s5 − 60s4 + 42s3 + 276s2 − 520s + 256) > 0 for all s ∈ (0, 1), C2(s) := 4s4(36s5 −

183s4 + 177s3 + 386s2− 796s+ 384) > 0 for all s ∈ (0, 1), C3(s) := s5(−261s4 + 985s3−

708s2 − 936s + 992) > 0 for all s ∈ (0, 1), C4(s) := s6(261s3 − 732s2 + 408s + 160) > 0

for all s ∈ (0, 1), C5(s) := −12s7(12s2 − 23s + 8) R 0 for all s R 23−
√

145
24 , and, C6(s) :=

4s8(8− 9s) R 0 for all s R 8/9. The denominator of condition (3.27) is positive and all

Ci(s) are finite for any given s ∈ (0, 1). Therefore, we have to deal with the following

three intervals on the substitution parameter s:

Case-I: For s ∈ [8/9, 1), Ci(s) > 0 for all i = 0, . . . , 5 and C6(s) ≥ 0. Therefore, given

n ≥ 1, λ(n, s) =
6
∑

i=0
Ci(s)ni > 0 and we have ∆(n) > 0.

Case-II For s ∈ [(23 −
√

145)/24, 8/9), Ci(s) > 0 for all i = 0, . . . , 5 though C6(s) <

0. Therefore for any n ≥ 1 we must have ∑5
i=0 Ci(s)ni > 0 but C6(s)n6 < 0.

Moreover, for sufficiently large n, the absolute value of C6(s)n6 will dominates

the absolute value of ∑5
i=0 Ci(s)ni implying that ∆(n) < 0 for sufficiently large n.

Case-III For s ∈ (0, (23 −
√

145)/24), Ci(s) > 0 for all i = 0, . . . , 4 though C5(s) < 0

and C6(s) < 0. Therefore for any n ≥ 1 we must have ∑4
i=0 Ci(s)ni > 0 but

C5(s)n5 + C6(s)n6 < 0. Therefore, for sufficiently large n, the absolute value

of C5(s)n5 + C6(s)n6 will dominates the absolute value of ∑4
i=0 Ci(s)ni implying

that ∆(n) < 0 for sufficiently large n.

From the non-foreclosure condition (NF) we know that s ∈ (0, (a−m)/(a−m0)).

Therefore, given Case-I, Case-II and Case-III, we have the following possibilities:

Possibility-A: If ((a−m)/(a−m0)) ≥ 8/9, then for all s ∈ (0, 8/9), there exist a ñ(s)

such that given any n > ñ(s), ∑6
i=0 Ci(s)ni < 0. Hence, for n large enough ∆(n) < 0.

However, for all s ∈ [8/9, ((a−m)/(a−m0))), we always have ∆(n) > 0.
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Possibility-B: If ((a−m)/(a−m0)) < 8/9, then, for all s ∈ (0, ((a−m)/(a−m0))),

there exists ñ(s) such that for all n > ñ(s), we have ∑6
i=0 Ci(s)ni < 0. Hence, for n

large enough ∆(n) < 0.

Proof of Proposition 3.2: By substituting (3.13) in (3.11), the equilibrium profit of Firm

0 is under ΓC
n is

ΠC
0 (n) := πC

0 (q
C(zC(n), n)) =

(a−m0)
2

4
+

nḠ2

4(2 + (n− 1)s)− 3ns2 .

Similarly by substituting (3.20) in (3.18) the equilibrium profit of Firm 0 under ΓB
n is

ΠB
0 (n) := πB

0 (pB(zB(n), n))

=
(a−m0)

2

4
+

n(1 + (n− 1)s)3Ḡ2

(1− s)(1 + ns) [4(1 + (n− 1)s)2(2 + (n− 1)s) + ns2]
.

Moreover,

∂nΠC
0 (n) =

8Ḡ2 (s− 2) s (3 s− 4)

(3 ns2 − 4 sn + 4 s− 8)2 > 0,

and,

∂nΠB
0 (n) =

Ḡ2(1 + (n− 1)s)2

 8s4n4 + 2s3(16− 11s)n3 + s2(48− 74s + 29s2)n2

+16s(2− s)(1− s)2n + 4(2− s)(1− s)3


(1− s)(1 + ns)2 [8 + 4(n− 1)3s3 + (16− 31n + 16n2)s2 + 20(n− 1)s]2

> 0.

Hence the result follows.

Proof of the Proposition 3.3: Proof of (i): The long run difference in profit for Firm 0,

that is, ∆(Π0) := ΠB
0 (n

B)−ΠC
0 (n

C) gives

∆(Π0) =

 4nB(1 + (nB − 1)s)2 [4(1 + (nB − 1)s)2(2 + (nB − 1)s) + nBs2]
−nC [2(1 + (nB − 1)s)2 + nBs2]2 [4 (1 + (nC − 1)s

)
− 3nCs2]

K

4 [2(1 + (nB − 1)s)2 + nBs2]
2

(3.28)
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Substituting (3.24) in (3.28) one can show that

∆(Π0) =
nBs2

1 + (nB − 1)s
P(s, nB) + 2(2− s)h(s, nB)

[√
A(s, nB)− A(s, nB)

]

where P(s, nB) =
(
1 + (nB − 1)s

)2 [nBs− 3(1− s)
]
+ (1 − s)(4 − 3s)(1 + nB) and

h(s, nB) = 2(1 + (nB − 1)s)2 + nBs2. Given, s ∈ (0, 1), and, h(s, nB) > 0 for ev-

ery s ∈ (0, 1) and n ≥ 1, 2(2 − s)h(s, nB)[
√

A(s, nB) − A(s, nB)] > 0. Therefore,

if we can show that P(s, nB) > 0, then we will have ∆(Π0) > 0. Observe that

P(s, 0) = (1− s)(1 + 2s− 2s2) + s3 > 0 and for all s ≥ (−1 +
√

13)/6,

∂nB P(s, nB) = s
[
3(nB − 1)2s2 + 2(4s− 1)(nB − 1)s + (3s2 + s− 1)

]
> 0.

However, if s < (−1 +
√

13)/6, then P(s, nB) ≥ P(s, n∗) > 0 where P(s, n∗) is the

minimum of P(s, nB) for any s < (−1 +
√

13)/6. Hence, P(s, nB) is always positive

which implies that ∆(Π0) > 0.

Proof of (ii): To prove this consider the difference ∆(W) := WC(nC)−WB(nB) (long

run welfare difference between downstream Cournot competition with free entry and

downstream Bertrand competition with free entry) when there is no cost difference

then m0 = m. It follows that

∆(W) =
[
nC + 2G1(nB)

] s
√

K
2

a−m
2

+

[
nC (u(nC)− 4

)
8

− nBG2(nB)

]
K, (3.29)

G1(nB) = (2nB(1 − s)(1 + nBs)g(s, nB)/2h(nB)), G2(nB) = (1 + (nB −

1)s)2[12(1 + (nB − 1)s)3 + 8(1 + (nB − 1)s)2 + 4nBs2(1 + (nB − 1)s) +

3nBs2]/2{h(s, nB)}2, g(s, nB) =
√
(1 + (nB − 1)s)/(1− s)(1 + nBs) and

u(s, nC) = 3
[
4(2 + (nC − 1)s− 3nCs2)

]
. Using ΠB(nB) = K we get

a−m
2

=

√
1 + nBs

(1− s)(1 + (nB − 1)s)
v(s, nB)

h(s, nB)

√
K, (3.30)

where v(s, nB) = 2(2 − s)h(nB) + nBs
[
4(1 + (nB − 1)s)2 − s(4− 3s)

]
. Using condi-
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tions (3.24) and (3.30) in (3.29) we get

∆(W) =
P(nB, s)K

2s(4− 3s)(1 + (nB − 1)s){h(s, nB)}2 . (3.31)

Therefore, if P(nB, s) T 0, thenWC(nC) TWB(nB). From the implicit plot P(nB, s) =

0 one can show that P(nB, s) < 0 for (nB, s) below the U-shaped curve (see Figure 3.6).

Hence the result.

Ranking

Reverse

Figure 3.6: Welfare ranking.

Table 3.1: Few evidences of long-run results

Entry Cost (K) nB nC ∆W
5.54 2 1 -4.5

4.208 3 2 -2.9
3.3 4 3 -1.67
2.2 6 5 0.5
1.35 9 9 2.67
0.5 18 19 6.26

Table 3.1 provides evidence of all kinds of possibilities in terms of welfare differ-

ence obtain by assuming a = 20, s = 0.5 and m = m0 = 0.

Proof of (iii) The derivative of the long run welfare function with respect to the number

of firms is
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∂nWC(n) = ΠC(n)−K + n(pC−m)∂nq̂C + (pC
0 −m0)∂nq̂C

0 − (pC− zC(n))qC(zC(n), n)

where pC = Pi(qC(zC(n), n)), pC
0 = P0(qC(zC(n), n)), ∂nq̂C = ∂nqC(zC(n), n) +

∂zqC(zC(n), n)∂nzC(n) and ∂nq̂C
0 = ∂nqC

0 (z
C(n), n) + ∂zqC

0 (z
C(n), n)∂nzC(n). Given

∂nq̂C < 0, ∂nq̂C
0 < 0 and each downstream firm produces positive output and earns

nonnegative profit, we have the business-stealing effect given by

B(n) := n(pC −m)∂nq̂C + (pC
0 −m0)∂nq̂C

0 − (pC − zC(n))qC(zC(n), n) < 0.

Hence, at the free entry equilibrium we have ∂nWC(nC) = B(nC) < 0. Finally, using

∂nΠC(n) < 0 we conclude that nC > nC∗ where ∂nWC(nC∗) = 0. The proof of the

Bertrand competition is similar and hence omitted.
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Chapter 4

A strong equivalence result with

evolutionary stable conjectural

variations

4.1 Introduction

Equilibrium outcomes in oligopoly depends on action space of firms (for example,

whether the firm is a price-setter or quantity-setter) as well as on conjectural variations

(each firm’s conjectures regarding responses of its rival firms). For example, under

zero conjectural variation where each firm anticipates that rivals do not respond to

their actions, profits are higher and welfare is lower when all firms choose quantity

rather than price (Singh and Vives (1984); Vives (1985); Cheng (1985)). This finding,

obtained in a symmetric oligopoly environment, underpins the widely held notion

that Bertrand is less profitable but more efficient than Cournot competition.1

We consider a differentiated oligopoly market comprise of n profit maximizing

firm. Each firm can be either price chooser or quantity chooser. Each firm posses

a linear conjectural variation to the other firms behavior with respect to his strate-

1Several authors have shown that this finding may not necessarily hold in different contexts like in
the presence of cost asymmetry (Häckner (2000); Zanchettin (2006)); in the presence of endogenous R &
D possibilities (Qiu (1997)), in the context of licensing (Fauli-Oller and Sandonis (2002)) and in mixed
markets (Ghosh and Mitra (2009).
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gic variation. Our objective is to capture the long run interaction among the firms

and we want to understand what type of conjecture will survive or has better fit in

the long run. For this purpose we assume that each firm’s conjecture is subject to

an evolutionary selection. Like Müller and Normann (2005), we use static concept of

evolutionary stability. Given this framework with a linear demand specification we

establish a strong equivalence result in terms of market outcome that illustrates the

fact that in a differentiated oligopoly model, the equilibrium outcomes are same for all

combinations of price-setting and quantity-setting firms including the two extremes:

Bertrand-where all firms are price-setters - and Cournot-where all firms are quantity-

setters. Maintaining zero conjectural variation, Miller and Pazgal (2001) show that

Bertrand and Cournot outcomes are the same in the presence of managerial delegation

if owners have access to a rich choice set for managerial contracts. Our paper provides

a complementary reasoning for equivalence- namely, evolutionary stable selection of

conjectural variation.

In reality we find many example where firms compete for a very long period and

after a certain point of time they charge almost same price consistently for a long pe-

riod of time. For example, in soft-drink market the price difference between the Co-

cacola and Pepsi are almost zero. In case of health drink market we also observe the

stability of price difference for Complan and Horlicks. Our result shows why such

stability in price difference persists in the long run.

The literature on conjectural variations mainly focuses on consistent conjectures

(Bresnahan (1981)), where each firm rightly anticipates rival firms’ reaction. Kamien

and Schwartz (1983) show that Bertrand and Cournot outcomes are identical in a lin-

ear duopoly under consistent conjectures. In a similar setting, Müller and Normann

(2005) show that consistent conjectures are also evolutionarily stable, that is, loosely

speaking, conjectural variations implied by consistent conjectures constitute best re-

sponse. Our model is in the spirit of Müller and Normann (2005) as we also focus

on best responses in conjectural variations space though we go beyond duopoly. In

addition, our model allows for co-existence of both price-setters and quantity-setters.
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The chapter 4 is organized as follows. In the next section the basic framework.

Then in Section 4.3, we discuss the conjectural variation equilibrium. After that in Sec-

tion 4.4 we make a discussion of evolutionary stability and obtained the evolutionary

stable solution. In Section 4.5 we present our equivalence result. Finally we end the

chapter with discussion (Section 4.6) of our results followed by an appendix section

(Section 4.7) where we provide the proofs of all the results.

4.2 Preliminaries

We consider an imperfectly competitive industry where a set of N = {1, . . . , n} profit

maximizing firms operate. For each i ∈ N, let pi and qi denote firm i’s price and

quantity respectively. The inverse demand function for firm i ∈ N is given by

pi(q) = a− qi − s ∑
k∈N\{i}

qk, i ∈ N, (4.1)

where a is the intercept and s ∈ (0, 1) is the substitution parameter.2 Each firm has a

constant marginal cost m and zero fixed cost. Profit of a firm i ∈ N is πi ≡ (pi −m)qi.

4.2.1 Modes of competition

Suppose a set B ⊆ N of firms select price-setting strategy and the complement set

C = N \ B of firms select quantity-setting strategy. We assume that b and c respectively

denote the numbers of firm in B and C. Let Q = ∑k∈N qi be the total output and for

i ∈ N and let Q−i = ∑k∈N\{i} qk be the total output of all firms but i. Let QB = ∑ρ∈B qρ

and let QC = ∑τ∈C qτ. For r ∈ B, let Q−r = ∑ρ∈B\{r} qρ, and, for t ∈ C, let Q−t =

∑τ∈C\{t} qτ. Summing all the the inverse demand functions (given by the condition

2This inverse demand function can be derived from the quadratic utility function given by U(q) =
a ∑k∈N qk − 1

2

(
∑k∈N q2

k + s ∑k∈N ∑k′∈N\{k} qkqk′
)

.
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(4.1)) of the firms in the set B and then solving for QB we get

QB =

ba− ∑
k∈B

pk − sbQC

[1 + (b− 1)s]
(4.2)

Then by substituting in the inverse demand function of any firm t ∈ C we get the

demand function that any firm t ∈ C faces,

DC
t

(
qC, pB, b

)
=

(1− s)a− (1− s)(1 + bs)qt − s(1− s)QC
−t + s ∑

ρ∈B
pρ

1 + (b− 1)s
, (4.3)

where qC = (qτ)τ∈C and pB =
(

pρ

)
ρ∈B. The demand function that any firm r ∈ B

faces,

DB
r

(
qC, pB, b

)
=

(1− s)a− (1 + (b− 2)s) pr − s(1− s)QC + s ∑
ρ∈B\{r}

pρ

(1− s) (1 + (b− 1)s)
. (4.4)

The profit function of any t ∈ C is given by

πC
t

(
qC, pB, b

)
=
(

DC
t

(
qC, pB, b

)
−m

)
qt. (4.5)

Similarly, the profit function of any r ∈ B given by

πB
r

(
qC, pB, b

)
= (pr −m)Dr

(
qC, pB, b

)
. (4.6)

4.2.2 Conjectural variations

Conjectural variation captures any firm i’s conjecture regarding the reaction of each of

its rival firm j ∈ N \ {i} (in terms of changing the value of j’s strategic variable) due to

a unit change in the value of firm i’s own strategic variable. Given any partition b, for

any t, τ ∈ C, vCC
tτ := dqτ

dqt
is the conjectural variation of firm t about firm τ’s output. Also

for any t ∈ C and ρ ∈ B, vCB
tρ := dpρ

dqt
is the conjectural variation of firm t about firm

ρ’s price. Similarly given any partition b for any r, ρ ∈ B, vBB
rρ := dpρ

dpr
is the conjectural
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variation of firm r about firm ρ’s price. Also for any r ∈ B and τ ∈ C, vBC
rτ := dqτ

dpr
is the

conjectural variation of firm r about firm τ’s output. The vector of conjectural variation

parameters for any t ∈ C is denoted by vC
t = ((vCC

tτ )τ∈C\{t}, (vCB
tρ )ρ∈B) = (vCC

t , vCB
t )

and that of any r ∈ B is denoted by vB
r = ((vBC

rτ )τ∈C, (vBB
rρ )ρ∈B\{r}) = (vBC

r , vBB
r ).

Let v = ((vC
τ )τ∈C, (vB

ρ )ρ∈B) = (vC, vB) denote the vector of all conjectural variation

parameters with vC and vB are respectively the vector of conjectural variation pa-

rameters for quantity setters and price setters. We also denote for any firm t ∈ C,

vC
−t = (vτ)τ∈C\{t} be the vector of conjectural variation parameters of all firms in the

set C but not t and for any firm r ∈ B, vB
−r = (vρ)ρ∈B\{r} be the vector of conjectural

variation parameters of all firms in the set B but not r.

4.3 Conjectural variations equilibrium (CVE)

Given any v, the optimum strategy choice vector of this oligopoly industry,

(qC(v), pB(v)) := ((qC
τ (v))τ∈C, (pB

ρ (v))ρ∈B) is obtained by simultaneously solving the

set of n conditions(dπB
ρ (qC(v), pB(v), b|vB

ρ )

dpρ
= 0

)
ρ∈B

,

(
dπC

t (q
C(v), pB(v), b|vC

τ )

dqτ
= 0

)
τ∈C

 .

Specifically, in equilibrium, output of a quantity-setting firm and price of a price-

setting firm respectively are:

qC
t (v) =

(1− s)(a−m)

Xt(vt)[1 + s(1− s)HC(vC)− sHB(vB)]
, ∀t ∈ C, (4.7)

pB
r (v) = m +

(1− s)(a−m)

Yr(vr)[1 + s(1− s)HC(vC)− sHB(vB)]
, ∀r ∈ B, (4.8)

where

Yr(vr) = 2(1 + (b− 2)s) + s(1− s) ∑
τ∈C

vBC
rτ (b)− s ∑

ρ∈B\{r}
vBB(b)

rρ + s,

83



Xt(vt) = 2(1− s)(1 + bs) + s(1− s) ∑
τ∈C\{t}

vCC
tτ (b)− s ∑

ρ∈B
vCB

tρ (b)− s(1− s),

and HC(vC) = ∑τ∈C(1/Xτ(vτ)), HB(vB) = ∑ρ∈B(1/Yρ(vρ)).

The resulting profit of any firm r ∈ B is

ΠB
r (v) := πB

r (q
C(v), pB(v)) =

(
Yr(vr)− (1 + (b− 1)s)
(1− s)(1 + (b− 1)s)

)(
pB

r (v)−m
)2

, (4.9)

and that of any firm t ∈ C is

ΠC
t (v) := πC

t (q
C(v), pB(v)) =

(
Xt(vt)− (1− s)(1 + (b− 1)s)

1 + (b− 1)s

)(
qC

t (v)
)2

. (4.10)

LEMMA 4.1 If Stage 1 choice of conjectural variation vector is v and if Stage 2 optimal

choice vector (qC(v), pB(v)) satisfies the second order conditions, then

(i) Xt(vt) > (1− s)(1 + (b− 1)s), and

(ii) Yr(vr) > (1 + (b− 1)s).3

OBSERVATION 4.1 Observe that the conjectural variation equilibrium choice of all

firms, given by the set of equations (4.7), depends only on the aggregate value vec-

tor ((Yρ(vB
ρ ))ρ∈B, (Xτ(vC

τ ))τ∈C). In particular, if the conjectural variation vectors v1 =

((vB1
ρ )ρ∈B, (vC1

τ )τ∈C) and v2 = ((vB2
ρ )ρ∈B, (vC2

τ )τ∈C) are such that the aggregateted

numbers Xt(vC1
t ) and Xt(vC2

t ) are equal for all t ∈ C and the aggregateted numbers

Yr(vC1
r ) and Yr(vC2

r ) are also equal for all r ∈ B, then both v1 and v2 yields same conjec-

tural variation equilibrium. Hence the effectiveness of any conjectural variation vector

v, in case of determining the conjectural variation equilibrium, depends on the resul-

tant aggregate value vector ((Yρ(vB
ρ ))ρ∈B, (Xτ(vC

τ ))τ∈C). Again these aggregates (that

is, Yr(vB
r ) for all r ∈ B and Xt(vC

t ) for all t ∈ C) depends only on each firm’s own con-

jectural variations vector. Hence in determining the conjectural variations equilibrium

and profit of each firm, only the role of ((Yρ(vB
ρ ))ρ∈B, (Xτ(vC

τ ))τ∈C) which we call ef-

fective conjecture is important for our analysis. For brevity, we write ((Yρ)ρ∈B, (Xτ)τ∈C)

instead of ((Yρ(vB
ρ ))ρ∈B, (Xτ(vC

τ ))τ∈C).

3See Appendix 2.
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4.4 Evolutionary stability

Suppose that the effective conjecture of each firm as its type and is subject to evolu-

tionary selection. Under evolutionary selection of firm’s effective conjecture (derived

from their actual conjecture), the effective conjectures are not a resultant of consciously

selection but is either inherited behavior from their forebears or are assigned through

mutation. Therefore, we are focusing on the long run interaction across firms. The

effective conjectures that survive through this evolutionary selection is supposedly a

better fit for the society. We first determine firms’ choice given their effective con-

jectures. Since their effective conjectures determine profits (success value), they also

determine reproductive success, and we can study the evolutionary selection of the

effective conjectures in a next step. The underlying assumption is that if firms differ in

evolutionary success, the individual characteristics of more successful firm will spread

within the population more quickly than the characteristics of the less successful ones.

This leads to a dynamic process that determines distribution of individual character-

istics within an economy. Therefore to obtain the evolutionary stability of the effective

conjecture we have to consider each firm’s resulting profits or their success function

given by the conditions (4.5) and (4.6) as the function of this aggregates, that is on

(Yρ)ρ∈B and (Xτ)τ∈C. Given Observation 4.1, the set of all actual conjecture vectors

for which the resultant aggregates are identical, has same reproductive success since

the profits (or success value) are identical. Therefore, each success function is now in

terms of aggregates only. These success functions are the following: For any r ∈ B,

Π̄B
r (Y , X) =

(1− s)(Yr − (1 + (b− 1)s))(a−m)2

(1 + (b− 1)s)Y2
r [1 + s(1− s)H̄C − sH̄B]

2 , (4.11)

and, for any t ∈ C,

Π̄C
t (Y , X) =

(1− s)2(Xt − (1− s)(1 + (b− 1)s))(a−m)2

(1 + (b− 1)s)X2
t [1 + s(1− s)H̄C − sH̄B]

2 , (4.12)
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where H̄C = (1/ ∑
τ∈C

Xτ) and H̄B = (1/ ∑
ρ∈B

Yρ). Given (4.7) for some (Y , X), the

equilibrium choices can be written as

q̄C
t (Y , X) =

(1− s)(a−m)

Xt[1 + s(1− s)H̄C − sH̄B]
, ∀t ∈ C, (4.13)

p̄B
r (Y , X) = m +

(1− s)(a−m)

Yr[1 + s(1− s)H̄C − sH̄B]
, ∀r ∈ B, (4.14)

In general, the evolutionary stable solution defined for symmetric game is the follow-

ing. Consider a game Γ =
〈
N , {Si}i∈N , {ui : Πi∈N Si → <}i∈N

〉
where N is the set

of players, for each i ∈ N , Si is the set of strategies available to player i and ui(.) is

the pay-off function of player i. The game Γ is symmetric if Si = S and ui = u for all

i ∈ N .

DEFINITION 4.1 A strategy profile (s∗, . . . , s∗) for a symmetric game Γ is an evolution-

ary stable solution (ESS) if

(i) either u(s∗, s∗, . . . , s∗︸ ︷︷ ︸
n−1

) > u(s, s∗, . . . , s∗︸ ︷︷ ︸
n−1

) for any s 6= s∗.

(ii) or when u(s∗, s∗, . . . , s∗︸ ︷︷ ︸
n−1

) = u(s, s∗, . . . , s∗︸ ︷︷ ︸
n−1

), then there exist k∗ ∈ {0, . . . , n − 1}

such that for all k ∈ {k∗ + 1, . . . , n − 1}, if we have u(s∗, s∗, . . . , s∗︸ ︷︷ ︸
k

, s, . . . , s︸ ︷︷ ︸
n−k−1

) =

u(s, s∗, . . . , s∗︸ ︷︷ ︸
k

, s, . . . , s︸ ︷︷ ︸
n−k−1

), then u(s∗, s∗, . . . , s∗︸ ︷︷ ︸
k∗

, s, . . . , s︸ ︷︷ ︸
n−k∗−1

) > u(s, s∗, . . . , s∗︸ ︷︷ ︸
k∗

, s, . . . , s︸ ︷︷ ︸
n−k∗−1

).

Definition 4.1 implies that any evolutionary stable solution is either a strict Nash equi-

librium (condition (i)) or if there exists another strategy s 6= s∗ of any firm which yields

the same payoff as s∗ given the strategy s∗ for all other firms, then s is not a mutation

against s∗. In our context, it is natural to require that for any evolutionary stable ef-

fective conjectural variation vector the resulting choice of strategic variable (that is,

prices and quantities) must be a conjectural variation equilibrium choice (see Müller

and Normann (2005)). In our context, given the success function this is always true.

Moreover, Definition 4.1 is applicable only when the game is symmetric, that is, when

b = 0 (Cournot competition) and when b = n (Bertrand competition). Though for all

other intermediate cases (b = 1, . . . , n− 1) we cannot use Definition 4.1, to determine
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the evolutionary stable selection of effective conjecture for these intermediate cases

we can consider Nash equilibrium in terms of effective conjectures which is a neces-

sary condition to guarantee evolutionary stability. The following Lemma 4.2 gives a

complete characterization of the Nash equilibrium choice when firms are allowed to

choose their effective conjecture.

LEMMA 4.2 If each r ∈ B is allowed to choose its effective conjecture Yr and each

t ∈ C is allowed to choose its effective conjecture Xt with their respective success

functions (given by (4.11) and (4.12)) and if the vector (Y∗, X∗) = ((Y∗ρ )ρ∈B(Xτ)τ∈C) is

the resulting Nash equilibrium choices, then we have the following:

(i) (Y∗, X∗) must be partition symmetric, that is, Y∗r = Y∗ for all r ∈ B and X∗t = X∗

for all t ∈ C.

(ii) (1 + (b− 1)s)(X∗ + (1− s)Y∗) = X∗Y∗,

(iii) The Nash equilibrium choice vector (Y∗, X∗) is unique strict Nash equilibrium

with X∗ = (1 + (b− 1)s)F(n, s) and Y∗ = (1 + (b− 1)s)G(n, s) with F(n, s) :=

[(2 − ns) +
√
(2− ns)2 + 8s(1− s)(n− 1)]/2 and G(n, s) := F(n, s)/[F(n, s) −

(1− s)].

(iv) If s ∈ (0, 0.9], then (Y∗, X∗) is also stable.

PROPOSITION 4.1 Fix any b ∈ {0, 1, . . . , n}. The selection of effective conjecture vector

(Y∗, X∗), such that Y∗r = Y∗ for all r ∈ B and X∗t = X∗ for all t ∈ C, is evolutionary

stable solution for partition b.

Proof of Proposition 4.1: By Lemma 4.2 (iii), the conjecture vector (Y∗, X∗) with the

propety that Y∗r = Y∗ for all r ∈ B and X∗t = X∗ for all t ∈ C is unique strict

Nash equilibrium under conjecture selection. Therefore, by condition (i) of Defini-

tion 4.1, the effective conjecture vector X∗(0) := (X∗i (0))i∈N such that X∗i (0) :=

(1 − s)F(n, s), and, the effective conjecture vector Y∗(n) := (Y∗i (n))i∈N such that

Y∗i (n) = (1 + (n − 1)s)G(n, s), are respectively evolutionary stable solution for par-

tition 0 and partition n. Now consider any intermediate partition b ∈ {1, . . . , n− 1}
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and suppose that the effective conjecture vector (Y∗, X∗) is not a evolutionary stable

selection for this partition. Then, either there exist r ∈ B such that Yr 6= Y∗ is a best

reply against (Y∗−r, X∗) and this firm act with its Yr acts as a mutant against Y∗, or

there exist t ∈ C such that Xt 6= X∗ is a best reply against (Y∗, X∗−t) and this firm

with Xt acts as a mutant against X∗. Given (Y∗, X∗) is a strict Nash equilibrium such

mutations are ruled out.

4.5 Equivalence result

THEOREM 4.1 Fix any b ∈ {0, 1, . . . , n}. Under the evolutionary stable solution (ESS),

all firms produce same quantities, charge same prices and earn same profits. Further,

this evolutionary stable outcome is invariant across all b ∈ {0, 1, . . . , n}.

Proof Of Theorem 4.1: One can show that in Stage 1, the equilibrium quantity of any

t ∈ C is

q̄C(Y∗, X∗) =
(1− s)(a−m)

X∗DE

where DE := 1 + (s(1− s)(n− b)/X∗) − (sb/Y∗). The equilibrium quantity of any

r ∈ B is

q̄B(Y∗, X∗) =
(Y∗ − (1 + (b− 1)s)) (1− s)(a−m)

(1− s)(1 + (b− 1)s)Y∗DE .

Therefore, the difference in these two equilibrium quantities is

q̄C(Y∗, X∗)− q̄B(Y∗, X∗) =
(1− s)(a−m) [(1 + (b− 1)s) {X∗ + (1− s)Y∗} − X∗Y∗]

(1− s)(1 + (b− 1)s)DE .

(4.15)

Using Lemma 4.1(i) in (4.15) it follows that q̄C(Y∗, X∗) = q̄B(Y∗, X∗), that is, firms

playing price strategy produce the same equilibrium quantity as firms playing quan-

tity strategy. Thus from the demand system we can also conclude that each firm in the

industry charges the same price and earns the same profit. One can also show that the
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specific form of the equilibrium profit Π̄C(Y∗, X∗) of any firm t ∈ C is

ΠC(Y∗, X∗) =
(X∗ − (1− s)(1 + (b− 1)s)) (1− s)2(a−m)2

(1 + (b− 1)s){X∗}2 {DE}2

and the specific form of the equilibrium profit ΠB(Y∗, X∗) of any firm r ∈ B is

ΠB(Y∗, X∗) =
(Y∗ − (1 + (b− 1)s)) (1− s)2(a−m)2

(1− s)(1 + (b− 1)s){Y∗}2 {DE}2 .

Using X∗ and Y∗ from Lemma 4.2(iii) in the profit expressions one can show that

Π̄C(Y∗, X∗) =
[F(n, s)− (1− s)] {G(n, s)}2(a−m)2

[F(n, s) + (1 + ns)G(n, s)]2
, (4.16)

and

Π̄B(Y∗, X∗) =
[G(n, s)− 1] {F(n, s)}2(a−m)2

(1− s) [F(n, s) + (1 + ns)G(n, s)]2
. (4.17)

Since the profit expressions (4.16) and (4.17) are independent of b (that is, independent

of the number of price-setting firms and hence is also independent of the number of

quantity-setting firms) it follows that the market outcomes corresponds to evolution-

ary stable selection are invariant across b.

4.6 Discussions

Our approach is in the spirit with Müller and Normann (2005) but there are two dif-

ferences:

1. First, unlike Müller and Normann (2005), we consider the evolutionary stability

of the aggregates not the actual conjecture. There exists a lots of research pa-

pers that deals with such indirect conjecture under the aggregative-games and

semi-aggregative-games (see Possajennikov (2015), Possajennikov (2016)). In our

approach, we also use this indirect conjecture approach, but not assuming con-

jecture on firm’s aggregate or their personalize aggregate directly, rather we try

to give some foundation such that the link between two approaches can be ex-
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plained. According to our result corresponding to aggregate which is evolution-

ary stable we have infinite number of actual conjecture vectors which can weakly

invade each others but no invasion can be strict.4 Therefore, all the actual conjec-

ture vector of a firm that have the same resultant evolutionary stable aggregate

are neutrally stable solution under actual conjecture selection.

2. Second, we consider the asymmetric case also. In general, the evolutionary stable

solution of any asymmetric game is determined by strict Nash equilibrium only

(see Possajennikov (2016)). Here we also use the stability issue to capture the out

of equilibrium convergence of conjecture selection.

Interpretation of the aggregates: Fix any b ∈ {0, 1, . . . , n} and consider the total

change of any firm’s resulting market variable with respect to his own strategic vari-

able given his actual conjecture. For any r ∈ B it gives

αB
r :=

dDB
r (pB, qC, b)

dpr

∣∣∣∣
vB

r

= −−(1 + (b− 1)s) + Yr(vB
r )

(1− s)(1 + (b− 1)s)
, (4.18)

and for any t ∈ C it gives

αC
t :=

dDC
t (pB, qC, b)

dqt

∣∣∣∣
vC

t

= −−(1− s)(1 + (b− 1)s) + Xt(vC
t )

(1 + (b− 1)s)
. (4.19)

Condition (4.18) implies that αB
r is one-to-one with Yr and condition (4.19) implies

that αC
t is one-to-one with Xt. Therefore, evolutionary stable selection of aggregates

is nothing but evolutionary selection of these conjecture over firms resulting market

variables.
4One can show that at (Y∗, X∗) we also have(∂ΠB

r (v∗)
∂vBC

rτ

= 0
)

τ∈C
,

(
∂ΠB

r (v∗)
∂vBB

rρ
= 0

)
ρ∈B\{r}

 ,

for all r ∈ B and (∂ΠC
t (v

∗)

∂vCC
tτ

= 0

)
τ∈C\{t}

,

(
∂ΠC

t (v
ES
t , v−t)

∂vCB
tρ

= 0

)
ρ∈B

 .

for all t ∈ C where v∗ is some actual vector of conjectural variation for which the resultant aggregate
vector is (Y∗, X∗)
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4.7 Appendix

Proof of Lemma 4.1: Proof of (i): If Stage 2 choice vector (qC(v), pB(v)) satisfies the

second order conditions, then, for any firm t ∈ C

d2ΠC
t (q

C(v), pB(v))
dq2

t
= −

2

[
(1− s)(1 + bs) + s(1− s) ∑

τ∈C\{t}
αtτ − s ∑

ρ∈B
λtρ

]
1 + (b− 1)s

< 0.

Hence, (1− s)(1 + bs) + s(1− s)∑τ∈C\{t} αtτ − s ∑ρ∈B λtτ > 0 which in turn implies

Xt(vt)− (1− s)(1 + (b− 1)s) > 0 and the result follows.

Proof of (ii): If Stage 2 choice vector (qC(v), pB(v)) satisfies the second order conditions,

then, for any firm r ∈ B

d2ΠB
r (qC(v), pB(v))

dp2
r

= −
2

[
(1 + (b− 2)s) + s(1− s) ∑

τ∈C
µrτ − s ∑

ρ∈B\{r}
σrρ

]
(1− s)(1 + (b− 1)s)

< 0.

Hence, we have (1 + (b− 2)s) + s(1− s)∑τ∈C µrτ − s ∑ρ∈B\{r} σrρ > 0 from which it

follows that Yr(vr)− (1 + (b− 1)s) > 0 and the we get the result.

Proof of Lemma 4.2: If (Y∗, X∗) is Nash equilibrium choice vector then for any firm r,

Y∗r can obtained by solving the problem

max
Yr

, Π̄B
r (Yr, Y∗−r, X∗)

and similarly for any firm t, X∗t can obtained by solving the problem

max
Xt

, Π̄C
t (Y

∗, Xt, X∗−t)

Then (Y∗, X∗) must satisfy the following set of n first order conditions:

((
∂ρΠ̄B

ρ (Y
∗, X∗) = 0

)
ρ∈B

,
(

∂τΠ̄C
τ (Y

∗, X∗) = 0
)

τ∈C

)
,
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The first order condition of any Firm r ∈ B can be reduced to the following:

[
1 + s(1− s)H̄C∗ − sH̄B∗

−r

]
[Y∗r − 2(1 + (b− 1)s)] = −s, (4.20)

where H̄C = (1/ ∑
τ∈C

) H̄B∗
−r = ∑ρ∈B\{r}(1/Y∗ρ ). Similarly, the first order condition of

any Firm r ∈ B can be reduced to the following:

[
1 + s(1− s)H̄C∗

−t − sH̄B∗
]
[X∗t − 2(1− s)(1 + (b− 1)s)] = s(1− s), (4.21)

where H̄C∗
−t = ∑τ∈C\{t}(1/X∗τ) and H̄B∗

−r = ∑ρ∈B(1/Y∗ρ ).

Proof of (i): Taking equation (4.21) for firms t′, t′′ ∈ C and then subtracting these equa-

tions we get

(X∗t′ − X∗t′′)
[

1 + s(1− s)H̄C∗ − sH̄B∗ − 2s(1− s)2(1 + (b− 1)s)
X∗t′X

∗
t”

]
= 0. (4.22)

If X∗t′ 6= X∗t′′ , then (4.22) implies

1 + s(1− s)H̄C∗ − sH̄B∗ =
2s(1− s)2(1 + (b− 1)s)

X∗t′X
∗
t′′

. (4.23)

Substituting (4.23) in (4.21) for firm t′ and then simplifying it we get

{X∗t′ −A} {X
∗
t′′ −A} = −(A)

2. (4.24)

where A := (1 − s)(1 + (b − 1)s) > 0. Therefore, the right hand side of (4.24) is

negative but, given Lemma 4.1 (i) (that requires X∗t > A for all t ∈ C), the left hand

side of (4.24) is positive. This is not possible and hence we must have X∗t′ = X∗t”

implying X∗t = X∗ for all t ∈ C. Similarly, using (4.20) and Lemma 4.1(ii) one can also

show that Y∗r = Y∗ for all r ∈ B.

Proof of (ii) Simplifying (4.21) and (4.20) we get

1 + s(1− s)H̄C∗ − sH̄B∗ =
2s(1− s) [X∗t − (1− s)(1 + (b− 1)s)]

X∗t [X
∗
t − 2(1− s)(1 + (b− 1)s)]

, (4.25)
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and

1 + s(1− s)H̄C∗ − sH̄B∗ = − 2s [Y∗r − (1 + (b− 1)s)]
Y∗r [Y∗r − 2(1 + (b− 1)s)]

, (4.26)

respectively. Given part (i) of this Lemma X∗t = X∗ for all t ∈ C and Y∗r = Y∗ for all

r ∈ B, (4.25) and (4.26) yields

[X∗Y∗ − (1 + (b− 1)s) {X∗ + (1− s)Y∗}] [X∗ + (1− s)Y∗ − 2(1− s)(1 + (b− 1)s)] = 0.

(4.27)

From the Lemma 4.1 we know that (A) X∗ − (1 − s)(1 + (b − 1)s) > 0 and we

also know that (B) Y∗ − (1 + (b − 1)s) > 0. Conditions (A) and (B) gives (C)

X∗ + (1− s)Y∗ − 2(1− s)(1 + (b− 1)s) > 0. Using (C) in (4.27) we get X∗Y∗ − (1 +

(b− 1)s){X∗ + (1− s)Y∗} = 0.

Proof of (iii): Substituting X∗t = X∗ for all t ∈ C and Y∗r = Y∗ for all r ∈ B in (4.20) and

(4.21) we get two equations in two unknowns X∗ and Y∗. We get two real roots for

both X∗ and Y∗. However, the second order condition for optimization holds only for

X∗ = (1 + (b− 1)s)F(n, s) and Y∗ = (1 + (b− 1)s)G(n, s). Hence the result.

Proof of (iv) To check the stability of the conjecture selection (Y∗, X∗) we need to check

the negative definiteness of the matrix

H =

 ∂Y Π̄B ∂XΠ̄B

∂Y Π̄C ∂XΠ̄C


at (Y∗, X∗) where ∂Y Π̄B = [∂rρΠ̄B

r ]b×b, ∂XΠ̄B = [∂rτΠ̄B
r ]b×(n−b), ∂Y Π̄C =

[∂tρΠ̄B
t ](n−b)×b and ∂XΠ̄C = [∂tτΠ̄C

t ](n−b)×(n−b). One can show that for each r ∈ B,

∂rrΠ̄B
r = − [F(n, s) + s(1− s)(n− 1)] [F(n, s)− (1− s)]3 (a−m)2

(1− s)2(1 + (b− 1)s)2F(n, s) [F(n, s) + ns]3
< 0,

for each pair (r, ρ) ∈ B2,

∂rρΠ̄B
r =

s [F(n, s)− 2(1− s)] [F(n, s)− (1− s)]4 (a−m)2

(1− s)2(1 + (b− 1)s)2{F(n, s)}2 [F(n, s) + ns]3
> 0,
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and for any (r, τ) ∈ B× C, we have

∂rτΠ̄B
r = − s [F(n, s)− 2(1− s)] [F(n, s)− (1− s)]2 (a−m)2

(1− s)(1 + (b− 1)s)2{F(n, s)}2 [F(n, s) + ns]3
< 0.

One can show that for each t ∈ C,

∂ttΠ̄C
t = − [F(n, s) + s(n− 1)] (a−m)2

(1 + (b− 1)s)2F(n, s) [F(n, s) + ns]3
< 0,

for each pair (t, τ) ∈ C2 we have

∂tτΠ̄C
t =

s [F(n, s)− 2(1− s)] (a−m)2

(1 + (b− 1)s)2{F(n, s)}2 [F(n, s) + ns]3
> 0,

and for any (t, ρ) ∈ C× B, we have

∂tρΠ̄C
t = − s [F(n, s)− 2(1− s)] [F(n, s)− (1− s)]2 (a−m)2

(1− s)(1 + (b− 1)s)2{F(n, s)}2 [F(n, s) + ns]3
< 0.

Therefore, the partition matrix ∂Y Π̄B and ∂XΠ̄C are symmetric and ∂XΠ̄B = ∂Y Π̄C.

Hence H is a symmetric matrix. Since H have all negative diagonal elements therefore

it is sufficient to check H is diagonally dominated. Given F(n, s)− 2(1− s) > 0, if (1−

s)− [F(n, s)− (1− s)]2 > 0, then we have |∂rρΠ̄B
r | < |∂rτΠ̄B

r | = |∂tρΠ̄C
t | < |∂tτΠ̄C

t |. If

s ∈ (0, 0.9], then |∂rrΠ̄B
r | − (n− 1)|∂rτΠ̄B

r | > 0 and |∂ttΠ̄C
t | − (n− 1)|∂tτΠ̄C

t | > 0 holds

and the selection is a stable one. Moreover, given F(n, s)− 2(1− s) > 0, if (1− s)−

[F(n, s)− (1− s)]2 < 0, then it follows that |∂rρΠ̄B
r | > |∂rτΠ̄B

r | = |∂tρΠ̄C
t | > |∂tτΠ̄C

t |.

Again, if s ∈ (0, 0.9], then |∂rrΠ̄B
r | − (n− 1)|∂rρΠ̄B

r | > 0 and |∂ttΠ̄C
t | − (n− 1)|∂tρΠ̄C

t | >

0 holds and we get stability in this case as well.
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M. Bourreau, P. Doğan, and M. Manant. Working papers in economics and social

sciences. 2007.

M. Boyer and M. Moreaux. On stackelberg equilibria with differentiated products: The

critical role of the strategy space. The Journal of Industrial Economics, pages 217–230,

1987.

T. F. Bresnahan. Duopoly models with consistent conjectures. The American Economic

Review, 71(5):934–945, 1981.

R. Cellini, L. Lambertini, and G. I. Ottaviano. Welfare in a differentiated oligopoly

with free entry: a cautionary note. Research in Economics, 58(2):125–133, 2004.

R.-Y. Chang, J.-L. Hu, and Y.-S. Lin. The choice of prices versus quantities under out-

sourcing. The BE Journal of Theoretical Economics, 18(2), 2018.

Y. Chen. Strategic outsourcing between rivals. Annals of Economics and Finance, 11(2):

301–311, 2010.

Y. Chen. Strategic sourcing for entry deterrence and tacit collusion. Journal of Eco-

nomics, 102(2):137–156, 2011.

Y. Chen and D. Sen. Strategic outsourcing under economies of scale. Bulletin of Eco-

nomic Research, 67(2):134–145, 2015.

Y. Chen, P. Dubey, and D. Sen. Outsourcing induced by strategic competition. Interna-

tional Journal of Industrial Organization, 29(4):484–492, 2011.

96



L. Cheng. Comparing bertrand and cournot equilibria: a geometric approach. The

RAND Journal of Economics, 16(1):146–152, 1985.

A. Chirco and M. Scrimitore. Choosing price or quantity? the role of delegation and

network externalities. Economics Letters, 121(3):482–486, 2013.

A. Chirco, C. Colombo, and M. Scrimitore. Organizational structure and the choice

of price versus quantity in a mixed duopoly. The Japanese Economic Review, 65(4):

521–542, 2014.

C. Constantatos and I. N. Pinopoulos. Accommodation effects with downstream

cournot competition and upstream selling capacity! 2016.

K. G. Dastidar. On the existence of pure strategy bertrand equilibrium. Economic

Theory, 5(1):19–32, 1995.

K. G. Dastidar. Comparing cournot and bertrand in a homogeneous product market.

Journal of Economic Theory, 75(1):205–212, 1997.

K. G. Dastidar. Is a unique cournot equilibrium locally stable? Games and Economic

Behavior, 32(2):206–218, 2000.

K. G. Dastidar. Existence of bertrand equilibrium revisited. International Journal of

Economic Theory, 7(4):331–350, 2011.

K. G. Dastidar. Oligopoly, Auctions and Market Quality. Springer, 2017.

G. De Fraja and F. Delbono. Alternative strategies of a public enterprise in oligopoly.

Oxford Economic Papers, 41(2):302–311, 1989.

A. Dixit. A model of duopoly suggesting a theory of entry barriers. J. Reprints Antitrust

L. & Econ., 10:399, 1979.

A. Dixit. Comparative statics for oligopoly. International economic review, 27(1):107–122,

1986.

A. K. Dixit and J. E. Stiglitz. Monopolistic competition and optimum product diversity.

The American Economic Review, 67(3):297–308, 1977.

R. Doganis. Airline business in the 21st century. Routledge, 2005.

A. Eyles, S. Machin, and S. McNally. Unexpected school reform: Academisation of

primary schools in england. Journal of Public Economics, 155:108–121, 2017.

97



L. Fanti and M. Scrimitore. The endogenous choice of delegation in a duopoly with

input outsourcing to the rival. Dipartimento di Economia e Management, Università di

Pisa, Discussion Paper, (219), 2017.

R. Fauli-Oller and J. Sandonis. Welfare reducing licensing. Games and Economic Behav-

ior, 41(2):192–205, 2002.

C. Fershtman and K. L. Judd. Equilibrium incentives in oligopoly. The American Eco-

nomic Review, 77(5):927–940, 1987.

K. Fujiwara. Partial privatization in a differentiated mixed oligopoly. Journal of Eco-

nomics, 92(1):51–65, 2007.

A. Ghosh and M. Mitra. Comparing bertrand and cournot outcomes in the presence

of public firms. 2009.

A. Ghosh and M. Mitra. Comparing bertrand and cournot in mixed markets. Economics

Letters, 109(2):72–74, 2010.

A. Ghosh and M. Mitra. Reversal of bertrand–cournot rankings in the presence of

welfare concerns. Journal of Institutional and Theoretical Economics JITE, 170(3):496–

519, 2014.

K. Greenfield. The impact of going private on corporate stakeholders. Brook. J. Corp.

Fin. & Com. L, 3:75, 2008.

J. Häckner. A note on price and quantity competition in differentiated oligopolies.

Journal of Economic Theory, 93(2):233–239, 2000.

J. Haraguchi and T. Matsumura. Cournot–bertrand comparison in a mixed oligopoly.

Journal of Economics, 117(2):117–136, 2016.

A. Heifetz, C. Shannon, and Y. Spiegel. What to maximize if you must. Journal of

Economic Theory, 133(1):31–57, 2007.

J. Hsu and X. H. Wang. On welfare under cournot and bertrand competition in differ-

entiated oligopolies. Review of Industrial Organization, 27(2):185–191, 2005.

T. Kabiraj and U. B. Sinha. Strategic outsourcing with technology transfer under price

competition. International Review of Economics & Finance, 44:281–290, 2016.

M. I. Kamien and N. L. Schwartz. Conjectural variations. Canadian Journal of Economics,

98



16(2):191–211, 1983.

D. M. Kreps and J. A. Scheinkman. Quantity precommitment and bertrand competi-

tion yield cournot outcomes. The Bell Journal of Economics, pages 326–337, 1983.

R. La Porta, F. Lopez-de Silanes, and A. Shleifer. Government ownership of banks. The

Journal of Finance, 57(1):265–301, 2002.

D. Lee and K. Choi. A note on bertrand and cournot competition in a vertically related

duopoly. 2014.

D. Lee and K. Choi. Bertrand vs. cournot competition with upstream firm investment.

Bulletin of Economic Research, 68(S1):56–65, 2016.

D. Lee and J. Oh. Price versus quantity competition with asymmetric costs in a verti-

cally related duopoly. In Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th

International Conference on and Advanced Intelligent Systems (ISIS), 15th International

Symposium on, pages 873–878. IEEE, 2014.

D. Lee, K. Choi, and T. Nariu. Endogenous choice of price or quantity contract with

upstream r&d investment: Linear pricing and two-part tariff contract with bargain-

ing. 2016.

C. Li and X. Ji. Innovation, licensing, and price vs. quantity competition. Economic

Modelling, 27(3):746–754, 2010.

P. Lin and K. Saggi. Product differentiation, process r&d, and the nature of market

competition. European Economic Review, 46(1):201–211, 2002.

M. C. López and R. A. Naylor. The cournot–bertrand profit differential: a reversal

result in a differentiated duopoly with wage bargaining. European Economic Review,

48(3):681–696, 2004.

C. Manasakis and M. Vlassis. Downstream mode of competition with upstream mar-

ket power. Research in Economics, 68(1):84–93, 2014.

N. G. Mankiw and M. D. Whinston. Free entry and social inefficiency. The RAND

Journal of Economics, pages 48–58, 1986.

T. Matsumura. Partial privatization in mixed duopoly. Journal of Public Economics, 70

(3):473–483, 1998.

99



T. Matsumura and A. Ogawa. Price versus quantity in a mixed duopoly. Economics

Letters, 116(2):174–177, 2012.

N. H. Miller and A. I. Pazgal. The equivalence of price and quantity competition with

delegation. RAND Journal of Economics, pages 284–301, 2001.

Y. Miyamoto. Strategic outsourcing and quality choice: Is a vertical integration model

sustainable? Technical report, Mimeo, University of Osaka, 2014.

S. Moresi and M. Schwartz. Centralization vs. delegation by a firm that supplies to

rivals.

S. Moresi and M. Schwartz. Strategic incentives when supplying to rivals with an

application to vertical firm structure. International Journal of Industrial Organization,

51:137–161, 2017.

A. Mukherjee. Price and quantity competition under free entry. Research in Economics,

59(4):335–344, 2005.

A. Mukherjee and P. Zanchettin. Vertical integration and product innovation. 55:25–57,

2007.

W. Müller and H.-T. Normann. Conjectural variations and evolutionary stabil-

ity: a rationale for consistency. Journal of Institutional and Theoretical Economics

(JITE)/Zeitschrift für die gesamte Staatswissenschaft, 161(3):491–502, 2005.

K. Ohnishi. Partial privatization in price-setting mixed duopoly. Economics Bulletin, 30

(1):309–314, 2010.

K. Ohnishi. Partial privatization in price-setting mixed duopolies with complementary

goods. Modern Economy, 2(01):45–46, 2011.

K. Okuguchi. Equilibrium prices in the bertrand and cournot oligopolies. Journal of

Economic Theory, 42(1):128–139, 1987.

I. N. Pinopoulos. Input pricing by an upstream monopolist into imperfectly competi-

tive downstream markets. Research in Economics, 65(3):144–151, 2011.

M. Polemis and K. Eleftheriou. To regulate or to deregulate? the role of downstream

competition in upstream monopoly vertically linked markets. Bulletin of Economic

Research, 70(1):51–63, 2018.

100



A. Possajennikov. Conjectural variations in aggregative games: An evolutionary per-

spective. Mathematical Social Sciences, 77:55–61, 2015.

A. Possajennikov. Cedex discussion paper series issn 1749-3293. 2016.

Q. Qing, T. Deng, and H. Wang. Capacity allocation under downstream competition

and bargaining. European Journal of Operational Research, 261(1):97–107, 2017.

L. D. Qiu. On the dynamic efficiency of bertrand and cournot equilibria. Journal of

economic theory, 75(1):213–229, 1997.

M. Reisinger and L. Ressner. The choice of prices versus quantities under uncertainty.

Journal of Economics & Management Strategy, 18(4):1155–1177, 2009.

G. Rossini and C. Vergari. Input production joint venture. The BE Journal of Theoretical

Economics, 11(1), 2011.

O. Rozanova. The possibility to renegotiate the contracts and the equilibrium mode of

competition in vertically related markets. Economics Bulletin, 37(3):1573–1580, 2017.

Y. Sanjo. Bertrand competition in a mixed duopoly market. The Manchester School, 77

(3):373–397, 2009.

N. Singh and X. Vives. Price and quantity competition in a differentiated duopoly. The

RAND Journal of Economics, 15(4):546–554, 1984.

S. D. Sklivas. The strategic choice of managerial incentives. The RAND Journal of

Economics, pages 452–458, 1987.

G. Symeonidis. Comparing cournot and bertrand equilibria in a differentiated

duopoly with product r&d. International Journal of Industrial Organization, 21(1):39–

55, 2003.

Y. Tanaka. Profitability of price and quantity strategies in a duopoly with vertical

product differentiation. Economic Theory, 17(3):693–700, 2001.

C. H. Tremblay and V. J. Tremblay. The cournot–bertrand model and the degree of

product differentiation. Economics Letters, 111(3):233–235, 2011.

V. J. Tremblay, C. H. Tremblay, and K. Isariyawongse. Cournot and bertrand compe-

tition when advertising rotates demand: The case of honda and scion. International

Journal of the Economics of Business, 20(1):125–141, 2013.

101



J. Vickers. Delegation and the theory of the firm. The Economic Journal, 95:138–147,

1985.

X. Vives. On the efficiency of bertrand and cournot equilibria with product differenta-

tion. Journal of Economic Theory, 36(1):166–175, 1985.

X. Vives. Oligopoly pricing: old ideas and new tools. MIT press, 2001.

D. L. Weisman and J. Kang. Incentives for discrimination when upstream monopolists

participate in downstream markets. Journal of Regulatory Economics, 20(2):125–139,

2001.

T. Xiao, Y. Xia, and G. P. Zhang. Strategic outsourcing decisions for manufacturers

competing on product quality. Iie Transactions, 46(4):313–329, 2014.

S. Yang, V. Shi, and J. E. Jackson. Manufacturers’ channel structures when selling

asymmetric competing products. International Journal of Production Economics, 170:

641–651, 2015.

M. Yano. The foundation of market quality economics. The Japanese Economic Review,

60(1):1–32, 2009.

P. Zanchettin. Differentiated duopoly with asymmetric costs. Journal of Economics &

Management Strategy, 15(4):999–1015, 2006.

102


	Introduction
	Equilibrium co-existence of public and private firms and the plausibility of price competition
	Bertrand-Cournot comparison for oligopolistic industry with vertically integrated firm
	A strong equivalence result with evolutionary stable conjectural variations

	Equilibrium co-existence of public and private firms and the plausibility of price competition
	Introduction
	Preliminaries
	The three stage game

	The main result
	Complements
	Robustness
	Conclusions
	Government ownership as a policy instrument
	Implementation aspect of the policy instrument
	Regulating both firms
	On the adverse effect of transforming the objective of a public firm towards more profit orientation
	Deficit financing

	Appendix

	Bertrand-Cournot comparison for oligopolistic industry with vertically integrated firm
	Introduction
	Preliminaries
	Demand side
	Supply side and welfare

	The short run
	The downstream Cournot competition (nC)
	The downstream Bertrand competition (nB)
	The short run results

	The long run
	The long run results

	Conclusion
	Appendix

	A strong equivalence result with evolutionary stable conjectural variations
	Introduction
	Preliminaries
	Modes of competition
	Conjectural variations

	Conjectural variations equilibrium (CVE)
	Evolutionary stability
	Equivalence result
	Discussions
	Appendix


