
Studies on Diagnostic Coverage and
X-Sensitivity in Logic Circuits:

Combinatorial and Machine Learning Approaches

Manjari Pradhan

Advisor

Prof. Bhargab B. Bhattacharya

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Indian Statistical Institute

Kolkata 700108, India

April 2020

Dedicated to

My Parents

Acknowledgements

What seemed to be a long and arduous journey, has indeed transpired to be a beautiful,

enriching and the most cherished one. As I look back to the years that has led to the

completion of this thesis, I realize how fortunate I am to find such kind people around me

to whom I will always be grateful. I would like to take this opportunity to express my

gratitude to them.

I feel blessed to have worked with my supervisor Prof. Bhargab B. Bhattacharya. His

expertise, novel ideas, and above all active participation in research have made this thesis

possible. I am grateful to him for patiently correcting my technical reports and papers and

also for his kind and patient technical interactions and discussions.

I would like to acknowledge Prof. Krishnendu Chakrabarty and Prof. Bhaswar B.

Bhattacharya for their valuable suggestions and guidance. I express my sincere thanks to

Prof. Bhaswar B. Bhattacharya for his valuable discussions and contribution in my thesis.

I am very grateful to all my friends and colleagues of ACMU for making the journey en-

joyable and memorable. Special mention goes to Sudip-da, Sukanta-da, Sandip-da, Manob,

Oishila Di, Animesh, Tapalina and Mr. G. P. Samanta for being such good colleagues dur-

ing the journey of my Ph.D. I would like to specially thank Sudip-da and Animesh for their

kindness and assistance whenever I asked for it.

My Ph.D journey would have been grim without my dear friends Sudipta, Aparajita,

Sanchayan, and Avisek. They have always gone out of their way to help me. I always found

Sudipta around whenever I needed her. Aparajita was ever ready to help me whenever I

struggled with the basics of Machine Learning. She was invariably there to cheer me up

when I needed it and made my stay at hostel a joyful experience. I am grateful to Sanchayan

for being my best friend and my constant companion. He has been by strength and helped

me regain my courage whenever I felt low. Lastly, I would like to thank my friends, seniors,

and juniors of our mess for making the meal times so good and memorable.

Above all, this thesis would not have been completed without the love and support of

my parents. I am indebted to my parents for their patience, sacrifice and their faith in me.

I am also thankful to my brother for his support.

Manjari Pradhan

Abstract

Today’s integrated circuits comprise billions of interconnected transistors assembled on

a tiny silicon chip, and testing them to ensure functional and timing correctness continues to

be a major challenge to designers and test engineers with further downscaling of transistors.

Although substantial progress has been witnessed during the last five decades in the area of

algorithmic test generation and fault diagnosis, applications of combinatorial and machine-

learning (ML) techniques to solve these problems remain largely unexplored till date. In this

thesis, we study three problems in the context of digital logic test and diagnosis. The first

problem is that of fault diagnosis and can be stated as follows. Given the output syndromes

for test responses in a circuit-under-test (CUT), localize the fault (root-cause) in the net-

list; solution to this problem is required in order to fine-tune the process technology and to

improve yield in subsequent production cycles. The second problem deals with the issue of

unknown logic value (X) and answers the following question. Given a CUT and a test set T,

how the fault-coverage of T is impacted when an unknown logic value (X) arrives at one of

its inputs. Is there any computationally efficient mechanism to grade the CUT-inputs based

on their X-sensitivity? A solution to this problem is needed in X-cancellation for optimizing

test costs and to improve reliability. In the third problem, we investigate, given a CUT, how

the structure of the underlying network can be represented in a compact and lossless form,

so as to make them easily readable by ML-tools for test and diagnostic purposes. This

is a classical problem of representing directed graphs that facilitates feature extraction.

We present a combinatorial solution to the first problem, a learning-based technique to

handle the second problem, and a novel solution to the third problem that relies on Prüfer

sequence.

CONTENTS

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation . 2

1.1.1 Fault Diagnosis: Utilizing Test Concept and Data for Diagnosis . . . 6

1.1.2 Present Solutions to the Unknown Value (X) Problem 7

1.1.3 Machine Learning in Circuit Testing 8

1.2 Summary of Contributions . 8

1.2.1 Selecting Diagnostic Vectors from Detection Test Sets for Logic Cir-

cuits: A Combinatorial Solution . 9

1.2.2 Prediction of X-Sensitivity of Circuit-Inputs on Test-Coverage . . . 10

1.2.3 Encoding Large Graphs for Representation of Logic Networks 12

1.3 Organization of the Thesis . 13

2 Literature Review 15

2.1 Overview of Digital Circuit Testing and Diagnosis 15

2.2 Overview of Machine Learning . 18

2.3 Diagnostic Test Generation . 19

2.4 Unknown Value in Digital Circuits . 21

2.5 Machine Learning in VLSI Testing . 24

2.5.1 Analog Circuit Testing . 24

2.5.2 Diagnosis . 25

2.5.3 Test Compression . 33

2.5.4 Circuit Testability . 34

2.5.5 Timing Analysis . 35

2.5.6 Summary, Challenges and Future Directions 35

iii

iv Contents

2.6 Summary . 37

3 Selecting Diagnostic Vectors from Detection Test Sets for Logic Circuits: A

Combinatorial Solution 39

3.1 Introduction . 39

3.2 Background . 40

3.3 Related Work . 41

3.4 Motivational Example . 42

3.5 Proposed Work . 44

3.5.1 Data Structure: Response Matrix . 46

3.5.2 Computing the Equivalence Class of a Test Set T from an |F | × |T |
RR-Matrix . 47

3.5.3 Proposed Algorithms . 48

3.6 Experimental Results . 53

3.7 Conclusion and Future Work . 56

4 Predicting X-Sensitivity of Circuit-Inputs on Test-Coverage: A Machine-Learning

Approach 63

4.1 Introduction . 63

4.2 Problem Statement and a Motivating Example 66

4.3 Structural Features of Logic Circuits . 67

4.3.1 Illustration of Structural Uniqueness of Circuits and Their Inputs . . 69

4.3.2 Circuit Features . 73

4.3.3 Algorithms for Feature Computation 78

4.4 Support Vector Regression (SVR) . 80

4.5 Data Analysis and Methodology . 82

4.6 Experimental Results . 83

4.6.1 Goodness-of-Fit . 84

4.6.2 Predictive Performance . 85

4.6.3 A Metric for Evaluating X-Source Grading 85

4.6.4 Interpreting the Prediction Results 87

4.6.5 Relationship of the Features with DT-loss 90

4.6.6 CPU-Time . 91

4.6.7 Error Bars . 92

4.7 Conclusion and Future Work . 93

5 Encoding Large Graphs for Representation of Logic Networks 95

5.1 Introduction . 95

5.2 Motivation . 97

Contents v

5.3 Methodology . 100

5.3.1 Prüfer-Code . 100

5.3.2 GT -Enhancement and Encoding of g-tree 101

5.4 Tree-Partition Based GT -Enhancement . 101

5.4.1 Proposed Approach . 102

5.4.2 Implementation . 104

5.4.3 Results on Benchmark Circuits . 105

5.5 Improved GT -Enhancement . 106

5.5.1 Seek-Edge (SE) Traversal . 107

5.5.2 Split-On-Revisit (SOR) . 108

5.6 Prüfer Code Selection . 111

5.6.1 Properties of Prüfer Code . 111

5.6.2 Encoding Methods . 113

5.6.3 Learnable Representation . 116

5.7 Conclusion and Future Work . 117

6 Conclusions and Future Work 119

Bibliography 121

Author’s Statement 137

LIST OF FIGURES

1.1 Flow of the yield improvement process. 3

1.2 Test data compression. 4

1.3 Instances where a fault pair is distinguishable by a test set T 6

1.4 X-bounding in LBIST [BS13]. 7

1.5 ML in logic testing. 8

2.1 Digital circuit testing . 16

2.2 Intersecting output cones of two faults. O1, O12 and O2 are the set of output

ports reachable from only f1, both f1 and f2 and, only f2, respectively. . . 17

2.3 Multiple scan with response compactor [MK02]. 17

2.4 Exclusive test generation by running ATPG on circuit constructed by XOR-

ing two copies of the CUT [ABKS03]. 20

2.5 Some examples of X-blocking [WWW06]. 22

2.6 Yield learning phases [HSEL02]. 25

2.7 Automated die-inking [XSRM17]. 26

2.8 Compressing binary failure vectors into an ”integer failure vector” [CLH+19]. 28

2.9 An example of CGNN training-vector [CLH+19]. 28

2.10 Three-output classifiers where X is a feature vector with d elements, and y1,

y2 and y3 are discrete variables denoting the classes [HFMB18]. 29

2.11 Flow for the classification of bridging defects [NTB10]. 30

2.12 Defect classifier [GW16]. 31

2.13 An illustration of the ANN architecture used in [ZCW+11]. 33

2.14 Illustration of the PRPG-selection method [LCP+17]. 34

2.15 Network architecture of GCN. Node embeddings are generated in Layer 1 and

Layer 2. The fully-connected (FC) third layer execute nodes classification

[MRK+19]. 34

vii

viii LIST OF FIGURES

3.1 Example circuit . 42

3.2 Four test sets of the circuit given in Fig. 3.1. The encircled vectors form the

required diagnostic test set. 43

3.3 An example of matrix re-labeling for s27 circuit 46

3.4 Diagnostic tree for DTS of c17. The average depth is 3.65. 50

3.5 Variation of test-equivalent fault-pairs and the number of cumulative test

vectors for two ITC’99 benchmark circuits; the size of the diagnostic test set

(Algorithm 1) is also shown. 55

4.1 A layered, i.e., topologically sorted [Kah62] embedding of ISCAS’89 netlist:

s27 . 67

4.2 Circuit-graph of some ISCAS’89 benchmark circuits. 72

4.3 A diagram of a hypothetical circuit, where an input port (shown in blue color) is set

to an X-value, and the three partitions of the circuit induced by this X-source: P1

(colored blue), P2 (colored brown), and P3 (colored green). The nodes in P1 that

belong to X–depth one (D1) are shown in red. 73

4.4 Scatter plot showing SVR-predicted against true DT-Loss for X-inputs in the train-

ing set.. The number of sample points is 3898. 84

4.5 Scatter plots and grade plots for the circuits in the SVR test set. 89

4.6 Dependence of true DT-loss on various features 90

4.7 2-Standard deviation prediction-error bars for inputs from circuits in the test set. . 92

5.1 Example of Prüfer code of a tree. 97

5.2 Graphs with large number of tree-partitions. Top: (a) Sparse graph with 25

vertices 32 edges and 9 tree partitions ; (b) Dense graph with 5 vertices 8

edges and 4 tree partitions. Bottom: the corresponding g-trees. 98

5.3 An illustration of Prüfer code for the circuit-graph representing the bench-

mark circuit s27, and reconstructing it from the Prüfer code. 99

5.4 Example graph . 103

5.5 g-tree and label-swap operation . 103

5.6 An example of an instance showing a sub-graph where a large number of

pendant vertices can not be label-swapped. 107

5.7 The graph in Fig. 5.4 is redrawn here to show the difference in the sequence

of edge-traversal. Three edges are shaded in (b) to highlight their difference. 108

5.8 SENSOR-tree of the graph in Fig. 5.7(b). 109

5.9 An example of g-tree and Prüfer code of s27 using both the methods 110

5.10 Example of PCC for g-tree of s27. 113

5.11 Example of LCC for g-tree of s27. 115

LIST OF TABLES

1.1 A comparison of our work with previous work; (s): stuck-at, (t): transition 10

1.2 Summary of features . 11

2.1 Summary . 36

3.1 Test-equivalence classes with more than one elements 43

3.2 Analyzing the randomness of ATPG generated test sets for some ISCAS

benchmark circuits. 45

3.3 Number of bits needed for the entries in the original and RR-matrix. 47

3.4 Comparison of results for ISCAS’85 [BF85] benchmark circuits using ATA-

LANTA [LH93] and HOPE [LH96] (BOUND = 50) 57

3.5 Experimental result for ISCAS’89 and ITC’99 benchmark circuits using Syn-

opsys TetraMAX [J-2] and comparison with related previous work (BOUND

= 50). 58

3.6 Total number of diagnostic test vectors for circuits in Table 3.5 59

3.7 CPU time in seconds . 60

3.8 Results for some large circuit of ITC’99 and few circuits of IWLS’05 bench-

mark using Synopsys TetraMAX [J-2] (BOUND = 50). 61

4.1 DT-Loss for s27 . 67

4.2 Depth and X-depth of nodes in X-cone of input G0 of s27 76

4.3 Summary of the parameters . 77

4.4 Features for s27 . 80

4.5 Predictive performance of the regressor . 85

4.6 CPU-time taken by ATPG tool [J-2] and for feature computation for some ISCAS’89

and ITC’99 benchmark circuits. 91

ix

x LIST OF TABLES

5.1 Results on logic circuits in ISCAS’89 and ITC’99 benchmark-suites. 106

5.2 Edge sequence example. 112

CHAPTER

ONE

INTRODUCTION

Digital logic testing relies heavily on automatic-test-pattern generation (ATPG) which has

been well investigated during the last five decades [BA05]. Essentially, the aim of ATPG

is to produce a test set such that each modelled fault f in the circuit-under-test (CUT)

produces an output response (error) which is not identical to the fault-free response for

at least one test vector. Going one step further ahead, if we demand that the output

response in the presence of each fault f , be non-identical to the output responses of the

rest of the non-equivalent faults, for at least one test vector per fault in T , then we would

be able to solve the fault localization problem in the CUT. Alternatively, in some cases,

the ATPG may fail to test f because it cannot predict the value of either one or more

internal lines or some output response bits, that are sensitive to f . The former, is the

aim of a sub-field of digital testing called fault diagnosis. The latter is called the unknown

(X) value problem. The presence of unknowns in the output response severely affects the

testability, fault coverage and diagnosability of the circuit as well. In this thesis, we address

two problems in these domains and propose new solution methodologies. Additionally,

we explore various potentials for applying machine learning to this field. For the fault

diagnosis problem, we propose a new combinatorial approach. For the X-value problem, we

develop a machine-learning based solution for predicting their impact on fault coverage and

grade them depending on their sensitivity. In order to enable better training of samples,

we propose a new encoding scheme for large graphs that captures the structures of logic

circuits. Representation of large graphs for machine learning applications is a challenging

problem. This chapter briefly describes the overall flow of this thesis. The motivation

behind the work is presented in Section 1.1. Section 1.2 describes the overall scope of the

thesis and summarizes our contributions. Finally, Section 1.3 narrates the organization of

the thesis.

1

2 1.1. MOTIVATION

1.1 Motivation

With a history of over five decades, the digital integrated circuit (IC) technology has traveled

through a long path, starting from the invention of transistors in 1954. While the technology

has immensely matured, it has not stopped pushing new boundaries. In fact, the Moore’s

law of 1965 holds true till today, with the current technology reaching less than 5nm. This

rapid downscaling of process technology has given way to enormous level of integration. Such

progress has not only miniaturized the size of digital chips but also improved their speed.

This, in turn, has opened new windows of applications that demand high computation and

memory. The level of miniaturization and the scale of integration, both inevitably have led

to various situations, which pose several challenges to the IC industry.

1. The manufacturing process is required to be fine-tuned for every new technology in

order to obtain good yield. An important step in this process is a logic-level process

called fault diagnosis.

2. Unknown (X) values in circuit nodes appear frequently. Their presence not only

degrade the detectability of the faults in the circuit but also affect test cost.

3. The defect complexity has grown significantly. As a result, the faulty behavior of a

circuit has become probabilistic in nature.

4. The circuit size has increased manifold. This necessitates the need for fast techniques

for circuit testing.

Machine-learning (ML) techniques provide good solutions in the last two situations.

Before a new chip or technology is introduced, many failures are experienced during

the early stages. So, the yield (fraction of good chips) is low. In order to improve the

yield, the manufacturing process needs to be tuned. This requires a study of the limitations

of the present manufacturing process in order to take corrective measures, which is called

yield learning. At the lowest level, it involves physical failure analysis (PFA), wherein the

chip is physically inspected. Since this process is time consuming, failure analysis (FA) is

executed before PFA to locate the faulty block. It is a process of investigating the root-

cause of failure [OY18]. That is, the circuit need to be scanned to pin-point the defective

region, and to classify the defect type. FA is further assisted by a logical level process

called fault diagnosis. It guides and speeds up FA, by analyzing the failure log of a chip.

It then produces a set of faults which are possible candidates for the actual defect. There

are two types of fault diagnosis techniques: those based on cause-effect or effect-cause.

The cause-effect technique relies on a dictionary-based approach whereas the effect-cause

approach follows a simulation-based, inject and evaluate approach. A simple flow of the

yield improvement process [OY18] is given in Figure 1.1.

Note that, fault diagnosis is a logic-level process. It is an extension of the domain of

logic testing. It relies on the fault models defined for logic testing and makes use of the

ATPG test set. The details of this process are discussed in Section 1.1.1. Thus, a logical

1.1. MOTIVATION 3

Fault diagnosis

Fault isolation using

Failure Analysis techniques

Physical Failure Analysis

(set of candidates fauts)

Corrective Measures

Figure 1.1: Flow of the yield improvement process.

testing framework provides solutions to advance technology by aiding the yield improvement

process.

While logical testing solutions contribute to technological upgradations, new technolo-

gies are thrusting fresh challenges to logical testing. One crucial challenge is due to the

increase in the number of unknown (X) sources. These values cannot be handled during

simulation by an ATPG tool. They affect test coverage, diagnostic resolution, and com-

pression quality significantly. X-values create several problem during testing:

1. It is hard to simulate the circuit in the presence of an X value. Generally, pessimistic

simulation approach is followed. Hence such X-signals propagate in the circuit with

much more effect than the actual.

2. The controllability of the lines which have X-values, is lost implying that the faults in

these lines cannot be detected. Thus, it affects the detectability of the circuit, which

might severely affect its fault coverage.

3. The presence of X-values severely affects the response data in the compressor/ de-

compresser (CODEC) environment. In a large circuit, the number of input/output

ports and flip-flops are too huge, and hence, test application time/test data also in-

crease significantly. To alleviate such problems, a scan chain is broken into multiple

chains to decrease test time. The input patterns are supplied in a compressed form

[LLEP07], and are decompressed by a decompresser before they are applied to the

chip. Similarly, test responses are compressed at the output before they are stored.

Such compressor/decompresser architecture is often adopted to reduce the test cost

in VLSI circuits. The compressors are generally built using XOR gates, and the most

4 1.1. MOTIVATION

common type is based on the use of multiple input signature register (MISR). Since

XOR-trees always allow X-values to propagate to their outputs, they may corrupt

a large number of output bits. In fact, it may corrupt the entire response data in

the case of MISRs, where XOR operations are performed with the data arriving in

succeeding scan cycles. An MISR-based compressors requires that the response data

is free from X-values [TGP17]. The CODEC architecture with an X-value in the first

scan chain is shown in the Figure 1.2. To illustrate the effect of X to the scan chain

and the response data, the corrupted data is marked with red color.

TESTER

D
E
C
O
M
P
R
E
S
S
O
R

C
O
M
P
A
C
T
O
R

Compacted
test response

CHIP

Compressed

test patterns

Scan Chains

X

Figure 1.2: Test data compression.

4. In the above architecture, an X-value in a scan chain may corrupt all subsequent

response bits when the test response is scanned out.

5. Fault diagnosis based on such corrupted response is hampered gravely.

Moreover, today’s chip host analog and mixed signal components on a single chip called

SoC (system-on-a-chip). All such factors have increased the number of potential sources for

X-values. These signals affect fault coverage as well as test data compression. The various

X-sources that might affect testing of chip are listed below [MGBK12, WWN08].

• Unmodelled blocks: These include analog or mixed signal components. They are

modelled as X-values.

• Memory issues. In the case of scan-based ATPG, uninitialized RAM-cells may lead

to X-values on reads.

• Specific flip-flops. These are unscannable flip-flops or those which do have set/re-

set. During power-on, these flip-flops are left uninitialized and hence their states are

treated as unknown.

• Multiple clock domains. In a circuit with multiple asynchronous clocks, the signals

from each domain may interfere causing metastability in the flip-flops fed by them,

and cause an X-state [MGBK12].

1.1. MOTIVATION 5

• LBIST. Logical built-in-self-test (LBIST) [BS13] refers to an architecture built for logic

testing of SoCs. They serve the role of the ATE (Automatic Test Equipment). LBIST

generally, partitions the chip into blocks in test mode. While testing a particular block,

the inputs from flip-flops of other partitions are treated as unknown. Thus, they act

as X-sources during partition testing.

• Contention. When multiple signals attempt to drive a net, the signal in the net cannot

be predicted and is considered unknown (X).

• Scan chains. As stated earlier, the X-value in a scan chain increases the number of

X’s per shift.

• Design bug. Various design bugs that could not be corrected during verification

express themselves as unknown (X) during testing.

Thus, it is evident that the X-values may impact a circuit in multiple ways. We will

look at the present solutions used for handling this issue in Section 1.1.2.

Technology scaling also give rise to increased defect complexity and circuit size. Re-

cently, many ML-based solutions have been reported in the literature. Here, we will briefly

look at certain attributes of ML; thereafter, in Section 1.1.3 we will discuss how ML-based

tools are evolving to provide an efficient platform for solving problems in logic testing. The

various aspects of ML that have led to huge popularity and wide acceptance in diverse fields

including VLSI automation tools are as follows.

1. Learn from data. One commonality in various sectors, is the availability of profusion

of data. As a result, data processing and analysis have gained momentum since recent

past. ML has emerged as an integral part of data science, and provides techniques

to extract useful information from the data. This may be in the form of some useful

pattern in the data that could be helpful in deducing certain properties of the system

or may help to build some models that the data represent, which can be used to gain

knowledge from new data. Such models are used either for classification of data or

prediction of an event.

2. Complexity of model learned. ML techniques can learn complex relationships in data

and generate complex models. Thus they are more dynamic than statistical learning

and hence are applicable to a wide range of data.

3. Fast. Once a model is learned, evaluating a new data involves some function eval-

uation. Thus, they provide quick inference. Moreover, with improved computation

power of modern CPU/GPU, the learning (training) of data can be achieved with

high computation speed.

4. Feature learning. One of the biggest challenges in ML is feature deduction. Formu-

lating the features from the unprocessed data would take enormous time and domain

expertise. This process would generally be done manually. However, with new tech-

niques in ML, feature learning has been mostly automated. This gives a new impetus

6 1.1. MOTIVATION

to this field.

5. Application to unstructured data. In most of the applications handled so far, data are

in the form of feature vectors or are structured as in digital images. Unstructured data

like graphs and motifs cannot be expressed easily in the form of vectors. Graphical

data exist in wide range of domains. In fact, the netlist of a circuit can also be

thought of as a graph with a rich source of data. ML-tools towards this direction are

fast maturing.

1.1.1 Fault Diagnosis: Utilizing Test Concept and Data for Diagnosis

As stated earlier, fault diagnosis of a failed chip provides a set of candidate-faults in the

chip based on its failure response. We also saw that this is the first guiding step for yield

improvement. Fault models used in logical testing, capture the effect of some defects in the

chip. Test vectors are generated based on the circuit netlist, and each line in the netlist

represents some wire in the chip. For ATPG algorithms, the primary aim is to produce a

set of test vectors with high fault-coverage. That is, to ensure that the maximum number

of faults in the circuit-under-test (CUT) can be detected. Such test sets also have some

diagnostic power. A fault is said to be diagnosable if it can be distinguished from every

other fault in the fault set F . A fault f1 is said to be distinguishable from a fault f2 by

a test vector t if the corresponding output vector when f1 present, is different is from the

output vector when f2 is present. There are many scenarios where this is possible for a test

vector in a test set T . Two of the scenarios are discussed below and shown in Figure 1.3. In

the first case (Figure 1.3a), the output cones of the faulty lines are independent and hence

are the set of output ports (O1 and O2). Thus, if a test vector t ∈ T , detects one of them,

it is also capable of distinguishing them. Even if t detects both faults, the faulty response

when either of the two faults is present, will be different. Thus, in this case a test set will

f1

f2

o1

o2

CUT

(a) Independent output cones

f1

f2

o12

CUT

t

(b) Intersecting output cones; only one (f1)

of the faults is detected by t ∈ T .

Figure 1.3: Instances where a fault pair is distinguishable by a test set T .

1.1. MOTIVATION 7

always distinguish the faults. In the second case, the output cones totally intersect (Figure

1.3b). There is a possibility that a test set may produce same response for the fault-pairs

to all the test vectors in the test set. However, there are still some possibilities where in

some cases, only one of the faults is detected by a test vector t; in such case they can be

distinguished. Thus the failure response can be used to diagnose the faulty lines.

1.1.2 Present Solutions to the Unknown Value (X) Problem

Various techniques that have been adopted for handling the unknown value problem are

discussed here. There are two ways in which the affect of X is alleviated. The first approach

is to obstruct the value at its source. This method prevents an X-value from entering the

chip. This may not be always possible and it depends on the X-source. All X-sources

may not be accessible for blocking. The most detrimental effect of X is felt in the test

compression environment. In the second approach, one aims to prevent the X-values,

present in the output response captured in scan-cells (flip-flops), from entering the test

compressor. The methods used are listed below.

1. X-bounding. In the BIST environment, extra hardware is added to a circuit to block

the X-source. An X-bounding method for LBIST is shown in Figure 1.4 [BS13].

When the partition L2 of the circuit is under test, the flip-flop signals from the other

two partitions are blocked by adding multiplexers. The X-signal is replaced by a

known signal from a flip-flop in partition L2.

2. Resetting flip-flops. In certain at-speed BIST environments, the X-state of a flip-flop

is replaced by resetting it to a known value by a reset signal [MS08].

3. X-masking. In this scheme, either the X-signal in the response is masked by a known

value [TWE+06], or the scan chain itself is masked [SK17], so that the X-value does

LBIST Partition
L1

D

CK

Q

FF1

D

CK

Q

D

CK

Q

D

CK

Q

D

CK

Q

LBIST Partition
L3

LBIST Partition
L2

FF2

FF3

FF4

pos FF3

CLK

CLK

CLK

CLK

CLK

X-Bound MUX

X-Bound MUX

Figure 1.4: X-bounding in LBIST [BS13].

8 1.2. SUMMARY OF CONTRIBUTIONS

not enter the compressor.

1.1.3 Machine Learning in Circuit Testing

As the advancement of technology brings in new challenges, ML-techniques are gaining more

popularity in the digital test framework. ML-based research and application in testing is

rapidly growing [DED+17, DED19]. Figure 1.5 shows an abstract view the current state-

of-the-art.

ANN

SVM

CNN decision tree

circuit structure

netlist

layout

simulation

test data

historical data

feature engineering

10101..
00100..
11100..
01100..

defect classification

identify defective die

test point insertion

scan chain diagnosis

identify briding faults

X-sensitivity prediction

Data ML-techniques Application

Figure 1.5: ML in logic testing.

Since the failure data obtained during IC-testing is typically of high volume and com-

plex in nature, ML is likely to provide befitting solutions not only because of its ability

to efficiently crunch data but also for its fast solution. Thus, this approach may reduce

“time-to-market” of the product. Another potential data source is the repertoire of circuit

netlists and layout geometry. Such information can be efficiently used for diagnosis and for

guiding ATPG. Simulation tools offer an added advantage for ML applications since the

required amount of data can be generated using them. The main challenge lies in creating

standard data set and automating feature extraction. With such a large repository of data

sources in the area of logic testing, there are many opportunities for solving these problems.

1.2 Summary of Contributions

We present an overview of our contributions in this section. We study three problems in

this thesis. The first one aims at improving fault diagnosis in a combinational or scan-based

sequential circuits. We propose a method for selecting diagnostic vectors using a combi-

natorial approach. The second work is concerned with an analysis of X-sensitivity in logic

circuits. We have developed a predictor, that provides the detectability-loss information of

the circuit due to an X-source. The technique is based on machine learning that utilizes

structural features of the circuit. The third work presents a method for lossless structural

encoding of a digital circuit which can serve as an input to machine learning tools in the

future in order to obviate the need for feature engineering.

1.2. SUMMARY OF CONTRIBUTIONS 9

1.2.1 Selecting Diagnostic Vectors from Detection Test Sets for Logic

Circuits: A Combinatorial Solution

Problem Description

The aim of this work is to generate a diagnostic test set (DTS), which is a set of test

vectors that are capable of distinguishing as many fault pairs as possible in the CUT in

addition to detecting them. Fault diagnosis localizes candidate faults based on the failure

response of DTS. Computing the test vector (distinguishing vector) that distinguishes a pair

of faults, is equivalent to test generation [ZA10], and so the former is a computationally

hard problem like the latter. Also, some fault pairs are functionally equivalent, which means

that no distinguishing vector exists for them. A DTS partitions the fault set in to a set

of faults called test-equivalent sets. Each fault-pair in a partition is indistinguishable by

the test vectors in the DTS. If the average partition size is big, it indicates a large set of

candidates faults during fault diagnosis. So, the quality of DTS determine the efficiency of

fault diagnosis. Although the modern ATPG tools can efficiently produce near-optimal test

sets with high fault-coverage for a CUT, they do not explicitly target fault isolation. Thus,

a lot of distinguishable fault pairs are not distinguished by a detection test set. As a result,

fault diagnosis may produce a poor set of candidate faults, which may be of little help for

failure analysis. So, the construction of DTS is an important and challenging task.

Solution Overview and Results

Various techniques of generating diagnostic test vectors have been proposed earlier. Most of

them aim at adding additional vectors to the detection test set. Several of them are miter

based; they target a fault pair to generate a distinguishing vector and does so by adding

extra circuitry to the CUT. All of them depend on the analysis of the circuit. Similar to

ATPG, techniques targeting diagnostic test generation (DTPG) have also been reported.

In this work, we report a novel technique for selecting a powerful DTS for stuck-at faults.

It does not use any diagnostic test generation, circuit modification, or analysis. Its sole

requirement is the availability of ATPG and simulation tools. Table 1.1 highlights the

scope of our technique against previous work. Overheads associated with these tasks are

not required in our method. We do not explicitly aim at adding more vectors to a detection

test set.

10 1.2. SUMMARY OF CONTRIBUTIONS

Table 1.1: A comparison of our work with previous work; (s): stuck-at, (t): transition
XXXXXXXXXXXWork

Technique Circuit

modify

Circuit

analysis
SAT

Add

tests

Use

ATPG
DTPG

Fault

model

[ZA10], [ZA11] 3 3 3 s, t

[YZHL10] 3 3 3 3 s

[WLL14] 3 3 3 s

[RSRB15] 3 3 3 t

[PR07a] 3 3 3 3 s

[GMK91] 3 3 3 s

[Pom19] 3 3 3 s

proposed 3 3 s

Our method is based on the observation that the detection set of a circuit is not

unique. This is because a fault can be detected by several test vectors at any one of the

outputs where the fault can be propagated. Thus, an ATPG tool has many options to

choose from. In fact, experiment with various tools [LH93, J-2] proves so. The proposed

method works in two phases. In the first phase, an ATPG is invoked to create a pool of test

vectors as follows. In each iteration, the new test set generated by ATPG is merged with

the pool, if the test set distinguishes new fault-pairs. Once we obtain the pool, a set of test

vectors (which form the DTS) is obtained which have the same diagnostic cover (measuring

diagnostic efficiency) as the pool. Two variants of our algorithm are proposed for this

technique. The first algorithm follows a greedy approach, where, once the pool is formed,

in each iteration, a test vector is selected, which is essential and contributes to the maximum

increase in diagnostic and detection coverage of the test vectors so far selected. The second

algorithm is based on partial simulation and can be executed faster. Experimental results

on several combinational and scan-based benchmark circuits demonstrate the effectiveness

of our method in terms of the size of the DTS, diagnostic coverage, and CPU-time.

1.2.2 Prediction of X-Sensitivity of Circuit-Inputs on Test-Coverage

Problem Description

The X-sources of a circuit may influence its detectability to various extent. In this work, we

study the relation of the underlying structural features of a circuit to the detectability-loss

(DT-loss) when its inputs are set to X. The objective of this work is to extract a set of

structural features of a circuit which are related to DT-loss experienced in the presence of

X-inputs. The features also need to capture the structural variations (and the corresponding

DT-losses) among different circuits. Our ultimate aim is to design a regressor that predicts

1.2. SUMMARY OF CONTRIBUTIONS 11

the DT-loss for the X-sources for any given circuit. The prediction can be thought of as

functional evaluation, and a suitable regressor if designed, can be used for instant grading

of input X-sources. Such prediction will be useful for treating the X-sources based on the

DT-loss such that they can be suitably handled during ATPG or test application.

Solution Overview and Results

We carried out an extensive study of the structural feature of benchmark circuits [BBK89,

CRS00] and corresponding values of DT-loss observed on setting their inputs to X-values.

These circuits are diverse in their size, structure and functionality. We observe that a set of

features that explain the DT-loss in a given circuit may not be as good in explaining the

DT-loss observed in some other circuits. Also, the variance of DT-loss within each circuit

is noted to be unique among the circuits. Since the circuits have different sizes, each feature

needs to be suitably normalized. In order to study and formulate the features, we represent

circuit netlist by a graph called circuit-graph, where the logic gates and input/output ports

form the vertex set, and the connections form the edge set. The vertices are identified as

either ‘nodes’ or ‘non-nodes’ vertices. Non-node vertices are those which do not block an X-

signal, e.g., an inverter or buffer. Only the “nodes” are considered for feature computation.

Special attributes for a node are assigned, such as level, depth and X-depth. They roughly

represent the maximum logical delay from the circuit inputs, the proximity to the circuit

inputs and from the X-source, respectively, where the distance (delay) measure is computed

based on nodes only. Finally, we propose a set of twelve structural features as given in Table

1.2. In the table, P1 denotes the output cone of an X-source and P2 denotes the part of the

circuit which influences P1.

Table 1.2: Summary of features

No. Features

1 Number of nodes in P1.

2 Number of nodes in X-depth-1.

3 Average level of nodes in X-depth-1.

4 Maximum level among nodes in X-depth-1.

5 Number of output ports in P1.

6 Normalized sum of levels of output ports in P1.

7 Average X-depth-to-level ratio of output ports in P1.

8 Number of input ports feeding P1.

9 Average depth-to-X-depth ratio of nodes in P1.

10 Number of lines from P2 feeding the nodes in P1.

11 Maximum X-depth among the nodes in P1.

12 Categorical binary variable

12 1.2. SUMMARY OF CONTRIBUTIONS

We performed experiments on circuits in ISCAS’89 [BBK89] and ITC’99[CRS00] bench-

mark suits. The data points here, consist of circuit inputs, which are considered as X-

sources. We have used support vector regressor (SVR) as a ML-tool with (Radial Basis

Function) RBF kernel. Experimental results show a good prediction over test data and

output fare grading of the X-sources. The predictor could clearly distinguish the X-sources

that cause negligible DT-loss. Identifying such X-sources may find good applications while

addressing the issue of X-bounding or initialization, cutting down on hardware overhead

and test cost. Also, X-sources with high value of DT-loss can also be identified by the

predictor. Such results are useful for improving the fault coverage of an ATPG tool, and

this application is demonstrated in our work.

1.2.3 Encoding Large Graphs for Representation of Logic Networks

Problem Description

Although the graph structure of a circuit netlist provides a rich source of data, as discussed

in Section 1.2.2, formulating structural features requires great amount of analysis and time.

Moreover, the relevance of features may differ depending on the problem settings. Our

objective is to devise a representation of a circuit-graph, based on Prüfer sequence, such

that (i) the structure of the entire graph is encoded, and (ii) the encoding has linear-size

with respect to the size of the graph so that it is scalable to large graphs. Such encoding

can be conveniently used to feed the graph directly to ML-tools so that the features can be

learned by the tool. We also study some new properties of Prüfer codes that could make

them interpretable and suitable for ML-based applications.

Solution Overview

Recently, graphs have become the focus in the ML research community because of the

ubiquitous presence of graphical data in many real world scenarios. Due to the inherent

highly unstructured nature of graphs, it is difficult to devise a structured, vector-like rep-

resentation for them that stores all the structure/connectivity information of the graph.

Moreover, due to the large size of real-world graphs, including circuit-graphs, it is difficult

to encode them in a compact form. Here, we present a graph encoding based on Prüfer

sequence [Pru18]. This sequence was first used in 1918 to prove Cayley’s formula, which

was used to count the number of possible spanning trees in a graph with a given number

of vertices. Prüfer sequences offer the following two advantages. Firstly, the size of the

Prüfer sequence is of the order of the number of edges in the tree. We observe that the real

world graphs, especially circuit graphs, though large, are very sparse. Thus, for a graph

G(V,E), E = O(V). So, employing Prüfer sequence to represent the graph would provide

a compact representation. Secondly, Prüfer sequences the preserve structure of the entire

1.3. ORGANIZATION OF THE THESIS 13

tree. However, classical Prüfer sequences are applicable only to trees. So, in this work, we

present a method, called GT -enhancement, to modify a graph to a tree, by augmenting the

vertex set so as to break all the cycles in the graph while keeping the edge-count intact.

We present two methods for GT -enhancement. The first approach is based on partitioning

the graph into trees. This method requires an additional list of labels of some vertices to

preserve the structure of the graph. Experimental results on benchmark circuits show that

this list is much smaller compared to the edge count of the graph. The second approach

gives an improved solution where it is no longer required to store the extra list of labels,

and hence, a single Prüfer sequence is enough to represent the graph. We call this approach

Seek-Edge-aNd-Split-On-Revisit (SENSOR) GT -enhancement. Further, we study the prop-

erties of Prüfer code in order to improve its interpretability. Since current ML tools only

process vector data, we also discuss how it can be used for graph embedding, which provides

a vectorial representation of graph.

1.3 Organization of the Thesis

• Chapter 2: This chapter describes the background and literature survey on diagnostic

test generation, unknown-value problem, and various machine-learning approaches

used in digital testing.

• Chapter 3: This chapter presents a method to obtain a diagnostic test set based on

combinatorial properties of ATPG test sets.

• Chapter 4: In this chapter, we describe a regressor which predicts the detectability-

loss due to an X-input in a circuit based on its structural features. We present a

method for grading X-sensitive inputs based on machine learning.

• Chapter 5: In this chapter, we present a new technique for efficient encoding of large

graphs representing logical circuits.

• Chapter 6: Finally, in this chapter, we summarize the content of this thesis and

discuss possible future research directions in the area of testing, fault diagnosis and

applications of machine learning to such problems.

CHAPTER

TWO

LITERATURE REVIEW

In this chapter we discuss the basics of digital logic test and diagnosis. We also present

an overview of machine learning (ML) and its relevance to this field. A literature survey

on diagnostic test pattern generation, solutions to handle unknown values, and machine

learning techniques that are used in digital test is summarized here.

2.1 Overview of Digital Circuit Testing and Diagnosis

From an theoretical view, a digital circuit is made up of a combinational component con-

sisting of logic gates, which are interconnected such that the signal flows in one direction

from the input to the output of the circuit, and sequential components that consist of

memory elements called flip-flops (F/F), which may feed the signal both in forward and

reverse directions, and input/output ports. Unlike an analog circuit, signals in a digital

circuit are discrete in nature and assume only two states denoted as ‘0’ and ‘1’. A typical

representation of a digital circuit is shown in Figure 2.1a [ABF02]. The F/Fs may not be

directly observable or controllable, and hence they add more difficulty in testing the circuit-

under-test (CUT). A popular design-for-testability (DFT) mechanism called scan-chain, is

adopted to alleviate this situation, which allows a mechanism where the F/Fs are made

directly controllable (observable) by a scan input (output). The F/F-outputs (inputs) are

called pseudo-inputs (pseudo-outputs) of the circuit.

The basic principle of testing is briefly explained here. There are two aspects in testing:

test generation and test application [BA05]. For a circuit with n inputs, since the input

vector space is explosive (2n), test generation, commonly called ATPG (automatic test

patterns generation), involves devising algorithms to select a set of input vectors, called

a test set, from the input vector space so that maximum possible modelled faults can be

detected at observable outputs, on application of these vectors to the inputs. For this
15

16 2.1. OVERVIEW OF DIGITAL CIRCUIT TESTING AND DIAGNOSIS

Combinational
Circuit

F/F

F/F

Input Output

CLOCK

(CUT)

(a) Canonical structure of a digital circuit

[ABF02].

INPUT PATTERNS OUTPUT PATTERNS

STORED
CORRECT
RESPONSE

TEST RESULT

CUT

COMPARATOR

- - - 11

- - - 00

- - - 01

- - - - -
- - - - -

10 - - -

00 - - -

01 - - -

- - - - -

- - - - -

(b) Test application of input patterns gener-

ated by ATPG, on the chip in the ATE

[BA05].

Figure 2.1: Digital circuit testing

purpose, the defects are modeled as logical faults. Two common fault models are the stuck-

at fault model and the transition fault model. Once we have the test set, during test

application, the chip is tested using ATE [Gro06], where input patterns are applied and its

output patterns are collected. They are then compared to the expected (correct) circuit

outputs to decide if they pass or fail the test. If a test fails, the output response is further

analyzed for diagnosis. A simple flow of test application is shown in Figure 2.1b, although

this does not tell the whole story.

While an ATPG targets to find tests for individual faults, diagnostic test pattern gen-

eration targets a pair of faults f1 and f2. Consider a combinational circuit which produces

an output function Fi(t) at its ith output, for a test pattern t. Let us assume that in the

presence of f1 (f2), the output function becomes Fi(t)f1 (Fi(t)f2). The test vector t, would

distinguish the fault pair, if the following Boolean equation is satisfied [GMK91].

Fi(t)f1 ⊕ Fi(t)f2 = 1 (2.1)

Equation 2.1 implies that t should produce different output values in the presence of

the two faults. This implies that only one of the fault should be detected by t. A test pattern

which can detect both the fault can distinguish the fault pair only if they are detected at

two different outputs. Since a circuit generally has several output ports there are many

ways the fault pair can be distinguished.

2.1. OVERVIEW OF DIGITAL CIRCUIT TESTING AND DIAGNOSIS 17

f1

f2

o1

o12

o2

CUT

Figure 2.2: Intersecting output cones of two faults. O1, O12 and O2 are the set of output ports

reachable from only f1, both f1 and f2 and, only f2, respectively.

In Figure 2.2, if the fault f1 (f2) is propagated to any one output in O1 (O2), by

t, they are distinguishable by it. However, if both faults are propagated to O12, then

they should be propagated to different outputs so as to be distinguished by t. If no input

vector distinguishes the fault pairs then they are called functionally-equivalent fault pairs.

If the diagnostic/detection test vectors do not distinguish a fault pair, then it is called

test-equivalent fault pair. Thus, there are two aspects of diagnostic test generation, iden-

tifying distinguishable fault-pairs along with the distinguishing vector, and identifying the

functionally-equivalent fault pairs. Both help in improving the diagnostic test generation

process.

An important aspect in test application is the test compression environment which is

employed to reduced test cost. It was briefly introduced in Chapter 1, Section 1.1. One

of the features of test compaction environment is the response compactor (Figure 2.3). As

shown in the Figure 2.3, in each scan-cycle, the data from n scan chains is compacted into

m bits where m << n. The compactor can either be a spacial or temporal compactor.

Scan In 1

Scan
Out 1

Out 1

Scan In 2

Scan
Out 2

Scan In n

Scan
Out n

Out 2 Out m

Response Compactor

...

...

Figure 2.3: Multiple scan with response compactor [MK02].

18 2.2. OVERVIEW OF MACHINE LEARNING

In the case of a spacial compactor, the data per cycle is compressed. However, in a

temporal compactor, which uses multiple input signature registers (MISR), the data from

more than one scan cycle is considered for compression. In the case of a temporal compactor,

the number of outputs is generally one. Such a compactor poses two drawbacks. First is the

problem of aliasing which reduces test and fault coverage. The second and most detrimental

drawback is the effect of unknown (X) since they can mask the error bits.

2.2 Overview of Machine Learning

ML, as the name suggests, is a field that aims at “learning” information and knowledge from

data utilizing the computing power of the modern “machine”, namely computers. While

its general aim, that of inference from the data, is similar to that of statistical learning, it

is more liberal in including the methodologies applied and the kind of data for which it is

applicable. Its methodology extends beyond statistical learning, from applying geometry

and computer science to just mimicking biological process of neural networks, which are yet

to be fully understood. The range of data may vary from simple tabular, structured data to

more complex structured data like images and videos, to unstructured data such as motifs

and graphs. Depending on the nature of data, two basic approaches in ML are deployed.

The first approach is to analyze the data for the presence of any pattern, which is called

clustering, and falls under unsupervised learning. In the second approach, each data point

has labels attached to it and the data can be used to approximate some function/model

that the labels are assumed to represent so that any future unlabelled data can be given

a suitable label. This comes under supervised learning. The common techniques used for

unsupervised ML are Bayesian inference, k-means clustering, and spectral clustering. The

popular techniques that are used for supervised learning are decision trees, support vector

machines (SVMs), artificial neural networks (ANNs), Bayesian networks and random forests

(RFs) [HTF09]. Supervised learning is more popular because of the availability of standard

tools, especially SVMs and ANNs.

While supervised learning is often preferred over unsupervised, many a time, labels

are not present or difficult to obtain. Hence, the method has to depend on the kind of the

data available. In the area of digital logic testing, there are many opportunities for applying

supervised learning. Various data sources that have been used or can be potentially used

for ML applications in the field of digital electronic testing are listed below:

1. Manufacturing test response: The failure response patterns of a volume of defective

chips obtained during production testing can be used for diagnosis[HKP04, XPLB13].

2. Simulation : A variety of labelled test data can be generated using simulation with

CAD tools for testing. They can be performed for different fault models or defect

types [GW16, CLH+19].

2.3. DIAGNOSTIC TEST GENERATION 19

3. Historical data on diagnosis : These are labelled data, which consist of the faulty

components responsible (root cause) which were diagnosed during earlier test cycles

and their test failure response/syndromes. This technique is applied especially to

board-level diagnosis [SJX+13, YZCG13, YCZG15].

4. Circuit parameters : Number of input/output port, details of scan-chain[LCP+17].

5. Circuit structure: The logical network structure, represented as a directed graph

provide a rich source data [PBCB18, MRK+19]. The gate-level description of the

netlist also provide functional and state information of the logic circuit.

6. Physical layout [NTB10, GW16]..

Oftentimes, we do not work with the data directly in order to obtain a meaningful

model/inference. (i) The dimensions of the data many be too high, (ii) the data may be

biased, (iii) the data may be noisy, (iv) they may be unstructured. Thus, extensive pre-

processing may be required before we make them suitable for ML-based computation. One

of the major steps in this direction is feature engineering, i.e., formulation of features from

the available data. In some cases, feature selection is also needed. In the case of data such

as graphs, a new method called representation learning [BCV13] is becoming popular.

Once we obtain a set of good data for learning (also called training data), we need to

choose which learning technique to apply. Next, for supervised learning, in order to obtain

a model which has good generalization capability such that it gives good results for yet

unseen data (test data), the various hyper parameters should be carefully selected. An nice

introduction to ML is presented in [LGEC17], while more insights into trends can be found

in [JM15]. A number of guidelines on how to obtain a good model appear in [Dom12] and

electronic design automation (EDA) and test specific discussions in [Wan17b].

2.3 Diagnostic Test Generation

One of the earliest works that aim at generating a diagnostic test is by Gruning et al.

[GMK91]. Similar to ATPG algorithms, they proposed an algorithm for diagnostic test

pattern generation (DTPG). Their approach is based on the observation that generating

a detection test set is similar to generating a diagnostic test set. With respect to the jth

output port POj , to generate a test for a fault, the faulty line need to be sensitized and then

propagated to POj . Similarly, in the case of generating a diagnostic test for a fault pair,

either one of the faults is sensitized and propagated or both is sensitized and only one is

propagated to POj . Moreover, like ATPG algorithms FAN [FS83] and SOCRATES [SA88],

the set of lines which can be uniquely assigned can be similarly identified in each step

of the search process by extensive analysis of circuit connectivity and function. Based on

this observation, they proposed a diagnostic test generation algorithm based on branch-and-

bound method. Instead of formulating a new test generation algorithm to analyze the circuit

20 2.3. DIAGNOSTIC TEST GENERATION

CUT

fault f1

CUT

fault f2

Exclusive
test vector

D
_

Figure 2.4: Exclusive test generation by running ATPG on circuit constructed by XOR-ing two

copies of the CUT [ABKS03].

for generating the distinguishing vectors, a number of work [ABKS03, YZHL10, VCAA04]

aim at reusing ATPG, without modifying it, by using a miter-based technique. Based on

the observation given in Equation 2.1, a method to generate the distinguishing vector is

proposed in [ABKS03]. Such distinguishing test vectors are referred to as exclusive test

vectors since only one of the faults is exclusively detected. Two copies of a single output

circuit, with their output XORed are taken, as shown in Figure 2.4. The first copy of

the circuit is injected with fault f1 and the second copy, by fault f2. The pair of faults

are modeled by a single fault [YAS02] such that a detection test vector of this fault is the

distinguishing test vector of the fault pair. Such duplication of the circuit required the

ATPG to run on a circuit of 2X-size, and hence, increases the overhead. By incorporating

two multiplexers (corresponding to the fault pair) with a common selection line S, to the

circuit, the same technique can be applied without the need for duplication [VCAA04]. The

ATPG for fault, S-stuck-at-0 would give the distinguishing vector. On the other hand, if the

ATPG marked the fault as redundant, then the two faults are equivalent. This method is

simplified and F applied to generate exclusive tests in [ZA10]. They also proposed a method

of fault dropping during diagnostic simulation. While generating exclusive tests, the faults

which have been uniquely distinguished from the rest of the faults, are dropped and not

considered for further simulation. Such circuit-modification based methods target one fault

pair at a time. Hence, each time the circuit is to be modified and an ATPG needs to be run

for each pair. These two aspects are improved in the method presented in [WLL14]. All

fault-pairs that remain indistinguishable by the detection test set, are targeted concurrently.

Thus, the ATPG needs to be run only once. While the above methods dealt with adding

diagnostic tests to distinguished the faults which were not distinguishable by the test set,

authors in [YZHL10] proposed diagnostic test generation that gives a test set with high

diagnostic power. This also follows a miter-based method, which uses ATPG to generate

the distinguishing vector. Their approach is based on the observation that those fault-pairs

which belong a fan-out free region are harder to distinguish than the faults being in different

fan-out free regions. Thus, the fault-pairs belonging to same fan-out free region are targeted

first. The work proposed in [RSRB15] similarly aims to improve the diagnostic power of a

2.4. UNKNOWN VALUE IN DIGITAL CIRCUITS 21

test. They further put constraint on the size of the test set to be not more than the size of

detection test set. They used a SAT-based approach. For a detection set T of size N , the

method works in N iterations, where in each iteration a test vector t in T is taken and a new

vector is added to the improved test set T ′ with same detection power as t but with improved

diagnostic power. A diagnostic test set may not be able to distinguish all the fault pairs.

Such indistinguishable fault pairs are referred to as diagnostic holes in [Pom19]. Based on

the observation that though a pair of single stuck-at fault may not be distinguishable, a

pair of faults in these lines based on different fault model may be distinguishable. So, in

this work, for those stuck-at fault pairs, which are not distinguishable, the corresponding

distinguishable test for the pairs of bridging-faults are added to the test set. Since the

number of indistinguishable fault pairs can be very large, a method to reduce the target

fault pairs is proposed in [PR07a]. It is based on the observation that only targeting a subset

of fault pairs is enough to distinguish all fault pairs. Moreover, based on the observation

that faults located in close proximity are hard to distinguish, it only targets a subset of

fault pairs which are in close neighborhood.

Identifying the equivalent faults helps in diagnostic pattern generation by avoiding the

time wasted in attempting to find distinguishing vectors for them. Several techniques to

identify equivalent faults are proposed in [AFPB03]. These include evaluating the implica-

tion of the faulty values on a common (denominator) gate and function evaluation in this

gate to check for their equivalence. Another method to assist diagnostic test generation is

by identifying those fault-pairs which are guaranteed to be distinguished by the detection

test set [PVRS04]. It is based on the structural property of each fault, like the analysis of

output ports in the output cones and also simulation properties which define the output

where the fault is propagated by a test vector. A third method of reducing the number

of fault pair to be processed by a diagnostic test generation process is fault-pair collapsing

[PR07b]. Here the dominance/equivalence relation defined for faults is extended to fault

pairs such that a fault pair which is dominated by or equivalent to anther fault may not be

exclusively targeted. So, in addition to structural properties, the fault dominance/equiva-

lence properties are used here. For instance, in the case of three faults f1, f2 and f3 such

that f3 dominates f2, and f2 dominates f1, the fault pair (f3,f1) dominates (f2,f1).

2.4 Unknown Value in Digital Circuits

In order to mitigate the effect of unknown (X) values in the circuit, three main approaches

have been proposed. The first approach is aimed at improving ATPG and fault simulation

in the presence of X. The second one is preventing X from entering the CUT before the test

is applied. The third kind of solutions alleviate the effect of X in a test compression based

environment.

Both logic and fault simulation in the presence of an X-value is computationally hard

22 2.4. UNKNOWN VALUE IN DIGITAL CIRCUITS

[CA87, EKR+15]. The n-valued logic has been used to represent X-values in test gener-

ation [Rot66, Mut76]. However, such symbols cannot denote all the states arising due to

correlation of X-values during their reconvergence and this leads to pessimistic simulation.

An accurate logic simulation in presence of X’s is given in [CP89] which uses a three-valued

logic. For improving test pattern generation in the presence of X’s, various methods have

been proposed [EKR+15, SEB16, EKS+13]. Quantified boolean formulas (QBF) can be ap-

plied for accurate computation of signal values [EKR+15]. This allows the representation of

the X-values using universal quantification. A fault which may not be detectable (propagat-

able to output), due to an X in a cycle, may become detectable in multiple cycles [EKS+13].

Thus the fault coverage can be improved in presence of X-sources in environments like par-

tial scan. A SAT-based ATPG for accurate detection of faults in the presence of unknown

is proposed in [SEB16]. A number of work also target [EKS+14, KSR04, HKWB12] fault

simulation. A SAT-based method to compute the test coverage of a test set in the presence

of X is given in [HKWB12, EKS+14]. The process is executed in two steps. Firstly, heuris-

tics are applied to compute the signal whenever possible. For the rest of the lines, exact

computation of signal is computed by using SAT formulation. A method for logic and fault

simulation using indirect implication by applying three-valued logic simulation is proposed

in [KSR04].

The X-blocking/X-bounding technique is used to mask the effects of X-sources by

adding extra hardware to the circuit or the BIST-core [WWW06]. Some of the methods

are shown in Figure 2.5 [WWW06]. An X-bounding method for LBIST is discussed in

X

BIST_mode

(a) 0-control point;

X

BIST_mode

(b) 1-control point;

X

BIST_mode

0

1

from PI or
Internal node

(c) bypass logic

Figure 2.5: Some examples of X-blocking [WWW06].

[XST+01]. Since addition of hardware for X-bounding would affect the timing of the circuit,

a method to mitigate this is proposed in [XST+01]. Another method of preventing X-values,

where the X-sources are memory elements, is by initializing them to fixed values [MS08]. A

method to reset the memory element during at-speed testing such that all the flip-flops are

set to a unknown value without any timing disparity is discussed in [MS08].

Since all the X-sources may not be available for blocking at source, they enter the

circuit. They damage the test response especially if they are compressed. So, various

techniques are employed for alleviating the effect of X’s in different test response compaction

environments. The spacial compacter proposed in [MK02] called the X-compaction, consists

of a network of XOR-gates. The network is designed in such a way so that the X-values can

2.4. UNKNOWN VALUE IN DIGITAL CIRCUITS 23

be handled to some extent. They guarantee that the error in one or two scan chains with one

unknown value in another scan chain in the same scan cycle does not mask the error. An

improved form of compactors which are called convolutional compactors [RTWR03] employ

a hybrid technique of both XOR-network and memory elements, and perform much better

than spacial ones. With advanced architectures [RTWR03, RT05, AFI06], convolutional

compactor can mask more than one X-value in the same scan cycle. A method based on

scan-chain switching is employed in [WWW+10] to handle unknowns before they enter

the space compactor. The scan chain that carry error bits that could be masked by X is

assigned to different scan compactor cone such that the scan chain containing the X-value

does not affect it. A novel method of output compaction based on output-bit selection

is proposed in [LLH11]. Here a small subset of bits are selected using an extra hardware

such the fault coverage can be maintained. So, the X-values in the scan chain implicitly

do not affect the output. A counter-based implementation of the response-bit selector is

proposed in [LLH+13]. Although an MISR is the most efficient compactor, the response

signatures become completely invalid in presence of X’s. A method for X-canceling in MISR

compactors is proposed in [YT12]. Using symbolic simulation and Gaussian elimination,

the X-values captured in the MISR is reduced.

The above methods belong to the class of X-tolerant compactor since they do not aim

at masking the effect of X. The other class of compactors follow the X-masking approach

[WSRW09, CKSF05, NPRK03]. A masking logic along with its synthesis technique in BIST

environment is proposed in [PKR02]. An X-logic that are also allowed to mask some known

bits reduces the area cost of the making logic [TWE+06]. Masking of few known bits do

not affect fault coverage since a fault is generally detected by many patterns in the test

set. While it is generally not taken into account, a circuit may have a significant number of

faults which produce X-values in the response even though the fault-free response does not

contain any X [Pom14b]. Also such X may be produced in significant proportion [Pom14b].

Taking this fact into consideration, a masking technique is proposed to mask such X values

[Pom14b].

Along with the above methods, the effect of X’s can further be reduced by assigning all

the scan cells, capturing X’s with high probability, to special scan chains. Such assignment

is possible due to observation that the distribution of X in the response among the scan

cells is not random. Based on the circuit structure and test set, a subset of scan cells can

be identified which have high probability of capturing the X-values [WYL18]. Thus the

compactor can be suitably optimized to handle such scan chains. Similar observation is

also made in [WWN08], where such scan cells are identified by using various parameters

and random pattern simulation. Special compactors have also been proposed such that each

scan chain can be uniquely observed.

24 2.5. MACHINE LEARNING IN VLSI TESTING

2.5 Machine Learning in VLSI Testing

In this section, we walk through the different problem settings in the context of digital

logic testing where ML-techniques have been applied and to focus on the various features

and modeling approaches that have been used. Most of the problems in this area are

novel and there are ample scopes for improving the effectiveness of the solutions. What is

important to note is that ML provides automated tools to handle many hard test problems,

which otherwise would not have been easy to tackle. A majority of ML based digital test

applications belong to the area of diagnosis. In the industrial domain, there have been

some efforts to apply ML to circuit testing [LAP19]. A major bottleneck in this area is

the unavailability of useful data. Additionally, unlike other fields where ML tools have

been thoroughly investigated and successfully applied, their modeling in the area of digital

testing is quite new and only a few studies have been reported so far in the literature.

In the rest of the section, firstly, a note on ML in the field of analog circuit testing is

briefly presented. We discuss applications of ML to diagnosis in Section 2.5.2. ML-based

test compression is discussed in Section 2.5.3. In Section 2.5.4, studies related to circuit

testability, are reviewed. Applications to timing analysis are discussed in Section 2.5.5.

Finally, the possible future directions and challenges of circuit testing in the perspective of

ML are highlighted in Section 2.5.6.

2.5.1 Analog Circuit Testing

An electronic chip consists of both analog and digital components. However, the two vary

widely in their working principle and complexity and hence their testing. Analog operations

are much more complex compared to digital operations and testing of analog circuits is much

more challenging [Hat17, Mil98]. Unlike digital circuits, the signals in analog circuits are not

discrete in nature, and thus, it is not easy to consider a suitable fault model that captures

all error patterns while testing them. Furthermore, they exhibit non-linear behaviour and

their outputs are very sensitive to various circuit and environment parameters. Most of the

test techniques used for analog circuits are parameter-based, and it is difficult to design a

deterministic test method. Various statistical and ML approaches have been explored in

this area [Wan17b, Str18, BND16]. The good side is that analog circuits are small in size

and they constitute only around 10% of the chip [KKH11].

On the other hand, testing of digital circuits has been extensively studied over several

decades and is now well understood. The components used in a digital circuit are much

simpler and fault models therein are well defined. Automated tools for test generation, fault

simulation, and DfT insertion are available, which provide further options for designing

efficient test strategies. Nonetheless, various technological advancements have added newer

challenges to digital logic testing [KMG04]. A number of ML based approaches have recently

been developed in this evolving area. We will review some of them and discuss future

2.5. MACHINE LEARNING IN VLSI TESTING 25

challenges in this direction.

2.5.2 Diagnosis

Rapidly scaling technology demands the manufacturing process to be intricate and precise.

Since manufacturing processes only improves over time, there is a low yield (fraction of

good chips) in the initial phase. Yield learning [Ait12] has thus become a crucial step for

the yield ramp up during volume production. Yield learning involves understanding the

failures, locating the defects, and thereafter applying corrective measures to improve the

manufacturing process. Figure 2.6 shows the various stages in yield learning [HSEL02].

Yield

Time

Mature phase

Intermediate phase

Early phase

Figure 2.6: Yield learning phases [HSEL02].

The method of defect location utilizes a feedback mechanism called diagnosis. As

the IC technology scales down and the level of integration scales up, the number and

variety of defects inevitably escalates. Understanding these defects is an integral step in

improving the manufacturing process. Traditionally, defects are located using a physical-

level process called Physical Failure Analysis (PFA) [LHCL13, ZGC+18]. However, the

intricacy and multitude of defects has not only made this process challenging but also very

time consuming and costly. In order to guide PFA, a common technique is to deploy a logic-

level process called fault diagnosis. Given the failure response and the circuit netlist, fault-

diagnosis produces a set of candidate faults (root cause) responsible for the failed response.

Fault diagnosis follows either a cause-effect (dictionary based) or an effect-cause (inject

and evaluate based) approach. There are also techniques to analyze the response for useful

inference before fault diagnosis (pre-processing) and after fault diagnosis to improve PFA

(post-processing). One drawback of these methods is that they are inefficient for diagnosis of

a variety of unmodelled defects, which are common in the sub-micron technology. Recently,

a new method called volume diagnosis has been studied and also integrated in the diagnosis

process, to guide PFA. The failure response of a volume of defective chips is analyzed to

understand the defects and their root cause [TMR+07a]. Hence, volume diagnosis may be

a suitable arena for exploring ML applications.

26 2.5. MACHINE LEARNING IN VLSI TESTING

Note that both combinational and memory components may be affected by defects.

Thus, while conducting manufacturing test, the flip-flops are tested first and diagnosed for

defects, if any, through a process called scan-chain diagnosis [HGCL08]. Thereafter, the

faults in the rest of the circuit, are diagnosed. Diagnosis is carried out hierarchically. In

this section, we look at various ML-approaches that have been used for diagnosis at different

levels of circuit hierarchy: wafer-level, scan-chain level, chip-level (fault diagnosis, pre- and

post-diagnosis, and volume diagnosis), and board-level.

Wafer-Level Diagnosis

As mentioned earlier, the intricacies involved in the modern manufacturing process have

made it challenging to maintain good yield during the fabrication of IC-chips. Also, the

production of silicon wafers requires a long time-cycle [SNW17]. It is therefore important to

identify the defects in the wafer early in the manufacturing process so that the process can

be improved to reduce time and yield loss. It has been observed that the defects generally

occur in clusters in a wafer in certain locations [OSK+10]. A kernel-based method to detect

such clusters is proposed in [SNW17].

Die inking is a process of marking those dies which have latent defects. Burn-in tests are

also generally applied for detecting such latent defects. However, burn-in tests are difficult

because of the cost and the complexity involved [XSRM17]. A method to automate this

process using ML has been reported in [XSRM17]. Faulty dies, which are close to defective

clusters in a wafer, are inked manually while training the model. During the test phase, a

binary classifier is used to decide whether or not a die is defective. An SVM with a radial

basis function (RBF) kernel is used, which is one of the most common kernels used in the

literature that uses Gaussian function for distance computation. Morphological operations

consisting of erosion/dilation are used to remove noise. A feature vector based on the

distance of the die from defective clusters is used during classification. The corresponding

flow diagram is shown in Figure 2.7.

1

1

11

1 1

11

00

00

0

02

2

2

2

22

8

3 3

3

...

...

...

...

...

Training Phase

Production

Manually Inked
Set of Wafer/
Post Burn-in
Failure maps

Feature Extraction Model Training

New Wafer Specification Testing Automated Inking Inked Wafer

Figure 2.7: Automated die-inking [XSRM17].

2.5. MACHINE LEARNING IN VLSI TESTING 27

One of the main reasons behind chip failure is process variation. There are numerous

process parameters which contribute to such defect distributions. The values of these pa-

rameters may vary from wafer to wafer, and also within the same wafer. A major objective

in testing is to select appropriate parameters that take care of most of the failures. in

[TSS+14], a canonical correlation analysis (CCA) is used to determine the correlation by

noting measurements over several samples. It also discusses the correlation of parameters

corresponding to two different locations (inner and outer) of a wafer.

Scan-Chain Diagnosis

Scan-chain diagnosis aims at locating the faulty scan cells. The presence of a defective scan

cell might affect a large number of response bits. Some defects, called permanent faults,

are known to be easy-to-model since they always produce a fixed failure response pattern

for a given test vector. These faults can be diagnosed by heuristic based techniques. The

remaining scan-chain defects are due to intermittent or hard-to-diagnose faults since they

do not produce a fixed failure response pattern during the production test. A method based

on Bayesian learning [Tip04] is proposed in [HBK+17] to identify the faulty scan cells in the

presence of such defects. Given a test set and the failure log for a faulty scan-chain, for each

scan cell i, two kinds of bit-count are considered: sbiti is the count of patterns for which the

cell i is supposed to capture a failure bit (sensitive bit) differing from the fault-free response

bit; fbitsi is the count of bits out of sbiti which actually fail in the production test. For a

given faulty chain, the probability that a scan cell i captures fbitsi faulty bits is computed

by assuming a binomial distribution. Diagnosis is then facilitated using the Bayes formula.

In the above-mentioned technique, Bayesian learning is used for clustering which is

an unsupervised learning technique. It relies on the unknown priors which may not be

always readily available. The problem of scan-chain diagnosis for intermittent faults is

modelled following a supervised learning method [CLH+19] using another ML-tool based

on artificial neural network (ANN). An ANN mimics the working principles of a biological

neural network. Its architecture consists of several layers of nodes called perceptrons, where

each node computes a linear combination of the inputs feeding it from the preceding layer.

A non-linear component is added by incorporating a non-linear activation function at each

node. The weights attached to the edges incident on each node are updated and learned

during the training phase by a method called back-propagation. [CLH+19] employs a multi-

stage ANN for diagnosis of faults following a coarse-to-fine approach. Each data point,

called the modelled faults, represents a fault type, the faulty cell and fault intermittency

(probability that a fault is activated by the test patterns). In the first stage, called Coarse-

Global Neural Network (CGNN), the binary response vectors for the test set are reduced

to a single vector called integer failure vector (IFV). It is computed by performing bitwise

addition of the binary response vectors. For illustrations, the figure from [CLH+19] is

28 2.5. MACHINE LEARNING IN VLSI TESTING

redrawn in Figure 2.8. The input to the ANN is an IFV whose length is determined the

1 0 0 0

1 1 0 1

1 0 0 1

3 1 0 2

Binary Failure Vector FV1

Binary Failure Vector FV2

Binary Failure Vector FV3

Integer Failure Vector IFV

+

+

Figure 2.8: Compressing binary failure vectors into an ”integer failure vector” [CLH+19].

0

1

0

Input Layer Output Layer

Simulated IVF

One modelled fault

Eg,. (stuck-at-0, cell #2, 50%)

Expectd ON-vector

(to highlight Cell #2)

intermittency

Figure 2.9: An example of CGNN training-vector [CLH+19].

number of scan-cells, and each node in the output layer represents a scan-cell of a particular

scan-chain for which the ANN is being trained. Such an ANN gives a candidate faulty scan-

cell as output called the center cell. An example of CGNN training vector given in Figure

2.9. In the subsequent stages, called RLNN (Refined Local Neural Networks), an affine

group is computed over those scan-cells whose IFV is close to that of the center cell in

terms of Euclidean distance. The ANN is built for each scan-cell based on its affine group.

In these stages, instead of compressing the binary response vectors to a single IFV, they are

concatenated sequentially to form a single vector. Its length can be reduced by removing

the bits at certain positions based on the affine group and the new vector is called reduced

cascaded vector (RCV). So, the ANN in these stages is also a two-layer network where the

number of nodes of the first layer is equal to the length of RCV, and the number of nodes

in the output layer is equal to the number of cells in the affine group. It is shown that with

this supervised technique, the diagnostic accuracy could be increased by 20%.

Fault Diagnosis: Pre-Processing

The failure log of defective chips can provide useful information that could guide the fault

diagnosis process. The entire failure data may not be available for diagnosis because data

collection is expensive and time consuming [WPY+12]. Since only a small fraction of the

2.5. MACHINE LEARNING IN VLSI TESTING 29

total response data is available, it usually leads to poor diagnosis. To alleviate this problem,

a method is proposed in [WPY+12] to determine the minimal number of test responses that

are required for proper diagnosis. The method utilizes a binary classifier that decides when

the response collection process should be stopped. When a test response is collected, the

classifier decides whether or not to continue to the next response. The features are based

on the output response of the chip up to the application of the last test pattern. They have

reported results for various classifiers such as kNN, SVM, and decision tree.

success

failure
type

runtime

fail log
features
x = [x1 ... xd]

no, y1 = 0
yes, y1 = 1

scan-chain, y2 = 0
functional logic, y2 = 1

short, y3 = 0
long, y3 = 1

c1

c2

c3

Figure 2.10: Three-output classifiers where X is a feature vector with d elements, and y1, y2 and y3
are discrete variables denoting the classes [HFMB18].

The work in [HFMB18] introduces a classifier to predict the following: (i) whether the

failure log is at all useful for diagnosis, (ii) the location of defects: scan-chain or functional

logic, and (iii) the time needed for diagnosis. They have presented a set of features based on

the failure log and used random forest to design the classifier. This is illustrated in Figure

2.10.

Fault Diagnosis: Post-Processing

Although fault diagnosis plays a major role in guiding the process of PFA, it is conducted at

the abstract level. Moreover, the number of candidate faults reported (diagnostic resolution)

is generally large. Many methods have been proposed to fine-tune the results of fault

diagnosis based on ML techniques. They are usually concerned with two objectives: (i)

defect identification, that is, mapping the diagnosed fault to a defect. This is challenging

especially when it is based only on the failure response of the circuit [NTB10, GW16,

GCI+17]; (ii) improving diagnostic resolution, where the candidate faults are analyzed so

as to further prune the set in order to improve the diagnostic resolution [XPLB13]. The

features used in both approaches are derived from the layout and logical information of the

circuit and the output response of the failing chip.

Defect Identification: The problem of identifying bridging defects in a failing circuit has

been addressed in [NTB10]. Such information is helpful for estimating defect density and

size distribution (DDSD), which is required in yield learning [NZD+06]. Since a bridging

defect represents a short between two signal lines, for each candidate fault involving line

A, a set of bridging faults is considered involving its neighboring lines (B,X, Y) which

are {(A,B), (A,X), (A, Y)}. The logical information of the circuit is expressed as Boolean

30 2.5. MACHINE LEARNING IN VLSI TESTING

features. For example, the feature called ”feedback” checks whether there is a structural

path between the pair of lines of a bridging fault. Under the fault, such a path might create

a latch or induce an oscillating behavior affecting the test result. Hence, these sites could be

disregarded as a possible candidate bridging fault. Similarly, other Boolean features are used

for checking whether the lines drive a parity gate or same gates or have logical correlation.

The test-dependent features are formulated by analyzing the correlation between the tester

output and the simulated response of the circuit in the presence of the candidate defect

under various bridging fault models [WWW06]. These faults are processed by a rule-based

classifier followed by decision-tree based classification. The faults that possess high scores

of both logical and test-based features are classified as bridge faults. Similarly, non-bridge

fault are identified by rule-based classification and the remaining faults are then classified

by a decision tree [RM14]. The flow of the classification scheme [NTB10] is shown in Figure

2.11. The training set is created by using SPICE simulation as well as from the results of

defect diagnosis obtained by PFA.

1

1 1

1 10

0 0 0 0

00...

...

1

1 1

1 10

0 0 0 0

00...

...

A X
A Y
A B
B X
B Y
C Z

A X
A Y
A B
B X
B Y
C Z

A X
A Y
A B
B X
B Y
C Z

A X
A Y
A B
B X
B Y
C Z

A X
A Y
A B
B X
B Y
C Z

A X
A Y
A B
B X
B Y
C Z

A X
1
3
YKH
42
0.7

A X
1
3
YKH
42
0.7

A X
1
3
YES
42
0.7

A X
1
6
NO
19
0.7

A X
1
6
NO
19
0.7

A X
1
6
NO
19
0.7

Faulty chips

Test results

Test results

Net pairs

Net pairs

Features

Features

Chip classification
Rules

Decision forest

Weak
behaviour

Strong
behaviour

?

Bridges

Non-bridges

Training

Spice-simulated,
or PFA defects

Figure 2.11: Flow for the classification of bridging defects [NTB10].

A neural-network based defect classifier for various faults is proposed in [GW16]. This

can be used to classify defects at the early stages of volume diagnosis without using any

special diagnostic test patterns. The network provides a warning signal as soon as the

frequency of certain defects crosses a threshold. A candidate fault may be classified as

various defect types, e. g., crosstalk induced delay, dominant-and(-or) bridge, Byzantine

bridge, slow-to-rise or slow-to-fall bridge. Thirteen different features are computed based on

the simulation of failing patterns in the presence of the faulty candidate. The features are

expressed as the proportion of the number of failing patterns exhibiting certain properties.

For example, one feature is defined as the proportion of failing patterns which set logic value

0 at the victim line. This is used for identifying dominant-or-bridging. Furthermore, layout

information is used to find the neighborhood geometry, which helps to define a feature that

characterizes cross-talk induced faults. The scheme for this ANN-based classifier is shown

in Figure 2.12. Two sets of data are used in the experiments. First, the simulated data

for a circuit is used to classify the faults in the same circuit. Second, the simulated data

for a group of circuits is used to classify faults in a new circuit. The latter experimental

2.5. MACHINE LEARNING IN VLSI TESTING 31

setup seems to be more practical value. This is because, generating the training data by

simulation for every new circuit is time consuming and may not be feasible. However, this

would require rich training datasets, which are still a challenge to collect.

Failing patterns
(test)

Feature extractor (logic sim)

Fault Classifier

Classifier (ANN)

Location site
(diagnosis)

Fault
class

Figure 2.12: Defect classifier [GW16].

Another set of faults which are targeted for classification consists of transient and

intermittent faults [GCI+17]. Both types produce similar test results and it is difficult to

distinguish them. While intermittent faults lead to the degradation of the chip, transient

faults contribute to unnecessary yield loss [GCI+17]. A tool based on Bayesian classifier is

proposed in [GCI+17] to distinguish these two types of faults.

Improving Diagnostic Resolution: As discussed in Section 2.5.2, the second approach

towards fault diagnosis aims at processing the candidate faults to improve the diagnostic

resolution. Most of the diagnostic tools produce a larger number of candidate faults com-

pared to the actual number of faults [XPLB13]. The efficiency of the ensuing steps of defect

identification and PFA are thus impeded. In order to improve the diagnostic resolution, we

need to pare down the set of candidate faults. A classification-based method similar to that

in [NTB10] is proposed in [XPLB13] to label each candidate fault as either good or bad.

A set of features is identified and thereafter the classification is performed in two steps: (i)

the first one is rule-based, which identifies some bad candidates; (ii) the rest of the faults

are analyzed by an SVM-based classifier. For the purpose of training, the labelled data

available from PFA were not found to be so useful because of the fact that they are sparse

and furthermore, being some kind of ”old data”, they may introduce error when applied

to new circuits. In order to alleviate these problems, the authors in [XPLB13] proposed a

method to generate labelled data for each circuit: the defective chips, for which fault diag-

nosis yields a single candidate fault, are used to mark “good” candidate class. The chips

for which the fault diagnosis provides a large number of candidate faults (greater than a

threshold value), are used to mark “bad” candidate class. It is, however, observed that

the number of faults in the “bad” class is generally much larger than those in the ”good

class”. As a result, the problem of managing unbalanced classes arises, which is handled by

oversampling the faults from the “good” class.

32 2.5. MACHINE LEARNING IN VLSI TESTING

Volume Diagnosis

Although today’s diagnostic tools for handling faults in a digital circuit can achieve high

accuracy, they still suffer from several drawbacks. To mention a few, they are often unable

to distinguish functionally equivalent faults; they do not take into account the entire layout

information on which the likelihood of defects is highly dependent. Feature-based systematic

defects now impact deep sub-micron technology significantly. Available tools are incapable

of diagnosing them. Even the yield learning methods such as PFA may not be suitable for

handling them. In order to detect such defects, drawing inference from fail-logs of a large

number of chips, has become imperative. This process is called volume diagnosis. Since it

involves analysis of huge amount of data, the method needs to be time-efficient.

One of the crucial needs of the yield-learning process is the ability to identify system-

atic defects in the chips and to distinguish them from random defects [Mut14, HKP04]. A

signature for each defective chip is created based on its failure response. Based on these

signatures, the chips are clustered using the furthest-neighbor method [DG84]. Such clus-

tering would help to analyze whether the chips in a cluster are failing due to a similar

defect. Thus, it can be used to determine whether or not the defect is systematic. Another

classification-based method for volume diagnosis is proposed in [WW09]. This classifier

goes further and detects the location of the defect in terms of the fan-out free region. This

is based on the observation that faults in a fan-out free region affect the same set of outputs.

The CUT is decomposed into fan-out free regions, and each region is considered as a defect

class. Defect classification is performed based on the failure outputs using an SVM. When

a large number of chip failures occur due to a particular class, the presence of a system

defect is inferred.

Volume diagnosis generally reports multiple failure features for each chip. A statistical-

learning based approach is presented [TMR+07a] to estimate the failure feature probabili-

ties. Another method based on Bayesian network is described in [CTR17].

A method to assist PFA by narrowing down the possible set of defects is discussed in

[SBP+17]. A defect can have various signatures called ”defective modes”. During volume

diagnosis, χ2 independence test is applied to check whether the defects and the ”defective

modes” are related. Using the data obtained from layout-aware scan diagnosis, and test

results, the values of χ2 test are found. The p-values for the ”defective modes” are used to

rank them.

Board-Level Diagnosis

The technology of printed circuits boards has made it possible to integrate diverse compo-

nents like application-specific integrated circuits (ASIC), memory, and I/O in a single board

by using printed interconnections, and consequently testing and diagnosis is needed at the

board level as well. It has been experienced that though the individual components pass the

2.5. MACHINE LEARNING IN VLSI TESTING 33

manufacturing test in the ATE, they fail the board-level functional test. This is primarily

due to difference in the real testing environment from that of ATE and the components are

marked as no trouble found (NTF). This is a dreaded problem in industry which needs care-

ful management to ensure reliability of digital systems and for their regular maintenance.

Board-level functional fault diagnosis follows a reasoning based approach. The knowledge

regarding the root cause of failure-syndromes for an initial set of boards which, could be

repaired, is used as training data to predict defective components for new boards. The

syndromes are gathered from the failure information of the components under a test set.

These syndromes lead to a set of features and the underlying root-cause instances that are

diagnosed serve as labels in the training set. A number of approaches based on various

ML techniques such as ANN [OME05, ZCW+11], SVM [ZGX+12, YZCG14], and decision

trees have been proposed in this direction [SJX+13, YZCG13, YCZG15]. In the ANN based

approach [ZCW+11], the inputs are fed with different syndromes and the outputs denote

the components. In order to handle large-size board-level diagnosis problems, [ZCW+11]

applies a group of two-layer, single-output ANNs (Figure 2.13), where the output node

represent a component and classify it as whether it is the root cause of failure or not.

S1 S1 S1

S2 S2 S2

S500 S500 S500

a1 a2 a100

Figure 2.13: An illustration of the ANN architecture used in [ZCW+11].

The major concern of most of the ML applications in this area is dependence of training

sets on historical data, which are often limited. Apart from having limited access to past

data, the size of the feature vector is usually large as the test-set size is large, leading to

over-fitting at the time of training. In order to overcome this, a scheme called syndrome

merging was used to reduce the size of the feature vector [SJX+15]. Note that some type

of syndromes may not be observable or computable. For such cases, another technique

was proposed in [JYZ+16] to process the training set including those based on nave Bayes

classifiers.

2.5.3 Test Compression

The test-cost is measured in terms of the test data volume, and test time. In scan-based test

environment, one way to reduce test-cost is the adoption of the compressor/decompressor

architecture (CODEC). A pseudo-random pattern generator (PRPG), sometime along with

a decompressor, is used to load the scan-chains. Similarly, the test-response data is com-

34 2.5. MACHINE LEARNING IN VLSI TESTING

{Features,
L2}

{Features,
L1}

{Features,
L3}

{Features,
Ln}

Test-data predictor Test-time predictorSVR-based Predictor

Given design Feature
extraction

Predicted
cost 1

Predicted
cost 2

Predicted
cost 3

Predicted
cost n

Cost
analysis

PRPG
selection

...

...

Exhuastive
searching

Figure 2.14: Illustration of the PRPG-selection method [LCP+17].

pressed by using a multiple-input-signature-register (MISR). It has been shown that besides

various circuit parameters, the length of the PRPG greatly affects the test-cost [LCP+17].

While the problem of designing the pattern generator can be resolved exhaustively by run-

ning ATPG, it may become infeasible because of the time needed. A predictor-based on

SVR (support vector regressor) is proposed to tackle this problem [LCP+17]. A number of

features are extracted from the ATPG log-file from which suitable features are selected.

An illustration for selecting the length of PRPG is given in Figure 2.14. Two separate

predictors, one for test time and the other for test-data volume are trained. For each choice

of the length of PRPG, test-cost is predicted, and the length corresponding to the minimum

cost is selected.

2.5.4 Circuit Testability

0

0 0

1 1

1

Layer 1 Layer 2 FC Layer

Prediction

Figure 2.15: Network architecture of GCN. Node embeddings are generated in Layer 1 and Layer 2.

The fully-connected (FC) third layer execute nodes classification [MRK+19].

The problem of test-point insertion in a logic circuit has been studied in [MRK+19]

from ML perspective and a classifier has been built. This is the first time where a deep-

learning based technique has been deployed in handling a test problem. Moreover, attempts

have been made to learn from circuit-graphs; this is a challenge because ML-tools are more

2.5. MACHINE LEARNING IN VLSI TESTING 35

suited for structural/vector data, whereas a graph mostly comprise unstructured infor-

mation. The authors in [MRK+19] propose a neural network called graph convolutional

network (GCN) to analyze graphical data. The nodes of the graphs representing the circuit

netlist are classified as either easy-to-observe or difficult-to-observe points. Graphical fea-

tures are represented through a node embedding method. A number of attributes related

to testability obtained using the tool SCOAP [GT80], are attached to each node. Based on

these attributes and the local neighborhood information of a node, an embedding of each

node is produced by the GCN. The overall flow of the classifier is shown in Figure 2.15.

2.5.5 Timing Analysis

Timing analysis of a circuit is required to determine the clock frequency of the circuit. The

timing of a circuit depends on many static as well as dynamic (input pattern dependent)

characteristics.

Power supply noise (PSN) affects the input voltage reaching the gates and hence the

propagation delay. It is one of the factors that influences dynamic timing analysis (DTA) of

the circuit. In order to speed up DTA, a ML approach to predict the circuit timing, taking

into account the PSN-effect is given in [LHLL17]. The prediction of circuit delay due to

voltage droop is proposed in [YFY+16] using SVM.

2.5.6 Summary, Challenges and Future Directions

A summary of the relevant literature is given in Table 2.1. Next, we will look at the various

challenges and future directions. Although there are many scenarios concerning digital

logic testing where ML has been or could be applied, they still appear to be fragmented

and unorganized. The success of ML-based techniques strongly relies on the availability of

sufficient data with good quality and volume. Whilst some potential data sources can be

accessed as enlisted in Section 2.2, standard ML-databases in regard to integrated circuit

testing are yet to be prepared, and thus, their unavailability stands as major impediment

towards the adoption of ML-tools. Some of the reasons behind this bottleneck are listed

below:

1. Absence of industrial time-series test data: Most of the databases on the failure log

collected during production testing of ICs along with the corresponding diagnostic

information, are not available in the public domain. Such data would serve as a rich

source for updating training models and help guide future diagnosis processes for

IC-chips.

2. Complexity in simulation: The generation of simulated data is a very time consuming

process. A general repository of simulated data would serve as a good data source

and may strengthen ML-based tools.

36 2.5. MACHINE LEARNING IN VLSI TESTING

Table 2.1: Summary

Work Problem Data Method

Wafer level diagnosis

[SNW17] Identifying defect clusters FD Clustering

[XSRM17] Automated die inking Historical data SVM

[TSS+14] Correction of failure and param-

eters

FD Statistical Correlation

Scan-chain diagnosis

[HBK+17] Targeting hard-to-model faults FD Bayesian method

[CLH+19] - SD Multi-Stage ANN

Fault diagnosis pre-processing

[WPY+12] Regulation of test data volume FD Classification

[HFMB18] Inferring diagnostic efficiency FD Random Forest

Fault diagnosis post-processing

[GW16] FI: Defect classification SD ANN

[NTB10] FI: Identifying bridging defects SD & FD Decision Tree

[GCI+17] FI: Transient and intermittent

faults

SD Bayesian Network

[XPLB13] Improving diagnostic resolution SD SVM

Volume diagnosis

[WW09] VD of unmodelled faults SD SVM

[CTR17] VD for root cause identification Volume FD Bayesian Network, MLE

[HKP04] Identification of systematic de-

fects

FD Clustering (Furhest Neigh-

bour)

Board level diagnosis

[SJX+13, YZCG13,

YCZG15]

Fault isolation Historical data SVM/ANN/Decision tree

[SJX+15] Syndrome merging - -

[JYZ+16] Missing syndrome computation - Naive Bayes

Test compression

[LCP+17] Test cost optimization SD SVR

Circuit testability

[PBCB18] Prediction of X-sensitivity SF &SD SVR

[MRK+19] Test Point Insertion SFs, SCOAP, SD GCN

Timing analysis

[LHLL17] Based on PSN SD Multiple tools

FI: Fault identification; SD: Simulated data; FD: Failure data; VD: Volume diagnosis; SF: Structural feature

2.6. SUMMARY 37

3. Absence of baseline: There are no benchmark circuits for evaluating ML-approaches

to test problems. The circuit structure can, however, be extracted from the netlist

of the benchmark circuits. They can serve as a potential source of data from which

structural as well as functional features can be derived. The benchmark suits currently

available [BF85, BBK89, CRS00, Alb05] are not meant for ML studies. Among them,

there is a lack of diversity and volume. In order to create such data, a number of large

benchmark circuits having variety in their interconnection structure and functionality

are to be built. Such a repository may be built by collecting industrial circuits or by

unbiased synthesis.

4. Feature extraction from circuits: It is evident that feature engineering is a crucial

step in most of the settings. In the context of digital logic testing, there is an urgent

need for automatic feature extraction from circuit net-lists. It is also required to avoid

over-fitting and to filter out noisy data (in the case of output response data from a

circuit-under-test). Note that circuit-data are not always in learnable or structured

format (e.g., logical interconnection or physical layout data). Hence, a significant

amount of time and effort is lost in this process. Also the features are rarely reusable,

because most of the time, a new feature set is required for every different test problem.

As manual feature engineering is a cumbersome process, automated feature extraction

from circuits is highly needed. This is still an open problem in the area of logic testing

albeit there have been many such endeavors in other fields such as pattern recognition

and image analysis. Deep learning has been applied successfully on image and video

data where the underlying features, instead of being separately extracted/selected,

are implicitly utilized during learning and testing, based on convolutional techniques.

Also, new methods such as representation learning are emerging to handle unstruc-

tured data, which prepares the data for direct application of ML-tools. The work

proposed in [MRK+19] has pioneered efforts in this direction, with the introduction

of graph convolutional network (GCN) for node embedding of a graph, representing

the netlist of a circuit.

All the techniques discussed above for feature extraction require a large volume of

data, which are not available in the domain of IC-testing and fault diagnosis. Solutions

to these challenges of data generation and automated feature engineering will kick off the

adoption of ML-approaches to chip testing in the future. Needless to say, there remains

enough scope for data generation and representation techniques for digital circuits that will

enrich industrial as well as academic research in the area of ML driven test.

2.6 Summary

This chapter provides the background of our research. In this chapter we have presented

the basic of digital testing and diagnosis. We have also discussed the basics of machine

38 2.6. SUMMARY

learning. We have presented a review of diagnostic test generation and solutions to the

problem due to an unknown logic value. Lastly, we have reviewed the state-of-the-art of

ML applications in this field.

CHAPTER

THREE

SELECTING DIAGNOSTIC VECTORS
FROM DETECTION TEST SETS FOR

LOGIC CIRCUITS: A COMBINATORIAL
SOLUTION

3.1 Introduction

The increasing complexity of VLSI circuits necessitates nano-scale device miniaturization

as well as an intricate manufacturing process for their fabrication. This, however, has

led to greater process variation, and higher probability of defects, and consequently, has

worsened yield. As a result, the diagnosis problem has not only surfaced as being more

difficult but also more important since the reason for low yield needs to be ascertained at

the netlist level, and necessary corrections be made in the manufacturing process so as to

enhance the yield. Diagnosis is also needed to enable the use of partially defective chips,

on the basis of the location of defects. Various methods for faulty-site location that are

employed during yield ramp-up such as the traditional Physical Failure Analysis (PFA) and

volume diagnosis [TMR+07b], depend on logic-level processing called fault diagnosis. This

refers to the process of logically analyzing the failed chip and isolating a candidate fault

or a set of faults that best explains the cause of erroneous response when the production

test patterns are applied. Several earlier research work [Pom15, AA13, KPC+13, Pom16,

LLC07, Pom14a, KJC+14, TCG+11, YB08] aimed at increasing the accuracy of fault or

defect diagnosis. There are two approaches to diagnosing a failed chip: cause-effect analysis

[ZA10] and effect-cause analysis [LLC07, Pom14a, KJC+14, TCG+11, YB08].

Various ATPG tools available today [LH93, J-2], employ powerful heuristics and are

39

40 3.2. BACKGROUND

capable of generating efficient and compact test sets for a circuit-under-test (CUT). These

tools provide tests with high fault-coverage, and identify redundant faults in the CUT to

a large extent, even though the underlying problem is known to be computationally hard.

However, the production tests are primarily aimed only for fault detection, and they may

not be very efficient for diagnosis. Note that a fault is usually detected in more than one

outputs of the CUT for a given test; also, there are several test vectors that can detect

the same fault. ATPG tools aim to minimize the size of the test set and maximize fault-

coverage. Needless to say, the test sets, thus generated, are not unique, and their diagnostic

ability, measured in terms of diagnostic coverage (DC) as defined later in Section 3.2, may

also be diverse.

In this work, we consider single stuck-at fault model and address the diagnosis prob-

lem from a different perspective. Our solution is based on the diversity of the test sets

that is observed when an ATPG tool is invoked multiple times on a given circuit netlist.

Our method is simple and needs only input/output experiment with a pool of detection test

sets, and a fault simulator [LH96], [J-2]. We do not require to run diagnostic ATPG [ZA10],

or adopt any circuit-modification [WLL14], SAT-based approaches [YZHL10, RSRB15] or

miter-based techniques [YZHL10]. The proposed method is purely combinatorial in nature

- that of finding a cover of a response-matrix, which is obtained by invoking an ATPG and

fault simulation tools multiple times on the CUT netlist. We propose a compact represen-

tation of the response matrix so as to reduce computational time and space complexity.

We propose two variants of an algorithm, both based on the same framework. Algorithm

1 generates a response matrix for the entire test pool and aims at finding a diagnostic test

cover following a greedy approach. Algorithm 2 runs faster as it performs partial simulation

of the test pool while determining diagnostic test cover. Experimental results on several

combinational and scan-based benchmarks reveal the effectiveness of the proposed method

compared to prior art in terms of DC or the number of test-equivalent pairs, the number of

test patterns, and CPU-time.

The rest of the chapter is organized as follows. Section 3.2 outlines the preliminaries

on circuit diagnosis. Section 3.3 presents a review of earlier work. In Section 3.3, we show

a motivating example. Section 3.5 describes the proposed technique. Experimental results

are reported in Section 3.6. Concluding remarks and open problems appear in Section 3.7.

3.2 Background

The following preliminary concepts are needed while determining a DTS.

• Distinguishable fault-pair : A fault-pair is said to be distinguishable if there exists a

test vector that detects one fault but not the other at some output, or if it detects

both faults at different outputs. Such a test vector is called distinguishing test vector.

3.3. RELATED WORK 41

• Functionally-equivalent (FE) class: If no distinguishing vector exists for a fault-pair,

the two faults are said to be functionally equivalent [ZA10] or equal [YZHL10]. Faults

belonging to a functionally-equivalent class are indistinguishable, and they can be col-

lapsed to a single representative fault. A pair of faults belonging to different equivalent

classes are distinguishable [ABKS03]. Early studies on equivalent faults appeared in

a classic paper [MC71].

• Test-equivalent (TE) class: A class of faults that cannot be distinguished from each

other by applying a set T of test vectors, are said to be test-equivalent with respect

to T . Each fault belonging to a TE-class having more than one element is called

undiagnosed fault. A fault belonging to a TE-class with only one fault is said to be

diagnosed since the test set can uniquely identify it.

• Diagnostic simulation (DS): Given a test set T for a number of faults in a circuit,

DS performs fault simulation for each test vector in T and partitions the faults into

minimum number of groups based on their output values such that all faults belonging

to a group are equivalent with respect to T . DS enables us to discover the TE-classes

among the set of faults.

• Diagnostic coverage (DC): This metric is quite similar to one defined in [ZA10]:

DC =
total number of TE-classes
total number of FE-classes

Thus, DC indicates the diagnostic efficiency of a test set. When the number of TE-

classes becomes equal to the number of FE-classes, DC becomes 100%.

3.3 Related Work

All related prior work aim at generating additional vectors so as to improve the diagnostic

coverage that is achieved by the detection test set. Gruning et al. [GMK91], proposed a tool

for diagnostic test pattern generation (DTPG) based on a branch-and-bound technique for

circuit traversal. A miter-based technique to generate distinguishing test vectors using two

copies of the circuit was proposed in [ABKS03]. Based on the observation that the faults in

the same fan-out free region are harder to distinguish than the faults being in different fan-

out free regions, a method for diagnostic test pattern generation is proposed in [YZHL10].

A miter-based circuit is considered for test pattern generation and a module “SA1” is used

to inject a pair of faults to the circuit such that the fault-pair is injected if the selection line

of the model is set at 1. Unlike [YZHL10], which uses two copies of a circuit for generating a

test, the method proposed in [VCAA04] shows that similar result can be obtained by using

only a single circuit. This technique is used in [ZA10] to generate exclusive tests for faults,

if any, by inserting two multiplexers per fault-pair. It proposes a simple diagnostic metric

and also discusses a method called dictionary-based fault diagnosis. The work presented

42 3.4. MOTIVATIONAL EXAMPLE

in [WLL14] provides an improved result using one exclusive test to distinguish many pairs

of faults when they have non-intersecting output cones. A DTPG tool based on fault-pair

collapsing is proposed in [PR07a]. It relies on certain kind of structural analysis of the

circuit, and diagnostic test sets are generated using a method of test elimination [PR98].

A SAT-based technique to generate a test set with high diagnostic power is also reported

[RSRB15].

Efficient fault collapsing makes DTPG more effective. Previous efforts in this direction

include collapsing of equivalent faults [AFPB03], identification of fault-pairs that are guar-

anteed to be distinguished by the fault detection test set [PVRS04], or fault-pair collapsing

[PR07b, PR07a].

3.4 Motivational Example

In this section, we present a motivational example to illustrate the proposed method. Con-

sider the circuit as shown in Fig. 3.1. The circuit has six inputs (1, 8, 2, 3, 4, 5) and three

outputs. It has 38 structurally collapsed (based on the dominance and equivalence relation

of the faults)[APA03] stuck-at faults: {121, 61, 120, 10a1, 2a1, 11, 20, 21, 101, 100, 7a1, 81,

70, 2b1, 71, 31, 131, 111, 130, 10b1, 7b1, 4a1, 40, 41, 161, 151,1 41, 160, 5b1, 9b1, 10c1, 9a1,

90, 5a1, 4b1, 91, 51, 50}, all of which are detectable. It has three FE fault-pairs {{5b1,10c1},
{9b1, 91}, {160,90}}, as depicted in the figure. The total number of FE-classes in this circuit

is 35. Hence, in order to achieve 100% diagnostic coverage, we need to generate a test set

that produces 35 TE-classes.

1

2

3

4

5

14

15

16

7

8

6

10

12

13

s-a-1

s-a-1

s-a-1

s-a-1
s-a-0

s-a-0

2a

2b

4a

4b

5a

5b

7a

7b

9
9a

9b

10a

10b

10c
11

Figure 3.1: Example circuit

3.4. MOTIVATIONAL EXAMPLE 43

Table 3.1: Test-equivalence classes with more than one elements

Test Test-equivalent (TE) Equivalent classes of the

set classes union so far

T0 {{5b1,10c1},{9b1, 9a1,91}, {{5b1,10c1},{9b1, 9a1,91},
{7a1,71},{160,90},{4b1,151}} {7a1,71} ,{160,90}, {4b1,151}}

T1 {{5b1,10c1},{160,90},{5a1,141}, {{5b1,10c1}, {7a1,71},
{9b1, 9a1,91},{7a1,71,7b1,20}} {9b1, 9a1,91},{160,90}}

T2 {4b1,151},{160,90},{5b1,10c1}, {{5b1,10c1},{7a1,71} ,

{7a1,71},{9b1,91}} {9b1,91},{160,90}}
T3 {{34,37},{4b1,151},{5b1,10c1}, {{5b1,10c1},{9b1, 91},

{160,90},{9b1, 9a1,91},{7b1,71}} {160,90}}

001111

100110

011011

011111

101000

110000

101100

010001

100100

111001

101010

110110

111111

100011

110001

010100

000101

010101

001010
T0

T2

T3

T1

DC0 =
32
35

= 91.43%

DC2 =
33
35
= 94.29%

DC3 =
31
35 = 88.57%

DC1 =
30
35

= 85.71%

Figure 3.2: Four test sets of the circuit given in Fig. 3.1. The encircled vectors form the required

diagnostic test set.

We generate a number of test sets using an ATPG tool successively. Fig. 3.2 shows the

four selected test sets. As shown in the diagram, none of these test sets is exclusive i.e., each

of them has some test vectors common to other sets. Also, the test sets contain different

number of vectors. In this example, each of test set provides 100% detection coverage.

Initially, a test set T0 with seven vectors is generated. Diagnostic simulation of T0

resulted in 32 test-equivalent classes, and thus, DC0 = 32
35 = 91.43%. Table 3.1 shows the

test-equivalent classes. The equivalent classes that contain a single fault are not shown. We

keep on adding test sets till the diagnostic coverage increases. The next test set to be selected

should increase the diagnostic coverage, i.e., further partition the current test-equivalent

classes. The second test set T1 consists of six test vectors and has DC1 = 30
35 = 85.71%.

44 3.5. PROPOSED WORK

The third column of Table 3.1 shows the test-equivalent classes for T = T0 ∪ T1 consisting

of 12 vectors, it produces 33 test-equivalent classes with DC = 33
35 = 94.29%. The test set

T1 is responsible for distinguishing the fault-pair {4b1,151}. Next, test set T2 that consists

of six test vectors and provides DC2 = 33
35 = 94.29% is added, which now distinguishes

fault 9a1. The test set T = T0 ∪ T1 ∪ T2 consists of 16 vectors and produces 34 test-

equivalent classes; thus, DC = 34
35 = 97.14%. Finally, a test set T3 with six test vectors and

DC3 = 31
35 = 88.57%, is added. It distinguishes the pair {7a1,71}. Now, T , the union of the

above four test sets, consists of 19 vectors and provides 100% DC with 35 test-equivalent

classes.

Interestingly, out of 19 test vectors thus obtained, we observe that only eight test

vectors (encircled in Fig. 3.2) are sufficient to provide 100% DC, and that too preserving

the same fault-detection coverage of 100% as with each of four test sets. Also, the size of

this DTS or “diagnostic test cover” is just one more than the maximum size of these test

sets. Thus, a suitably selected cover of a few detection test sets may provide a small-size

DTS with high value of DC.

3.5 Proposed Work

We now formulate the combinatorial problem for determining a diagnostic test cover as-

suming the stuck-at fault model. Our approach is based on the following observations:

Observation 1. The detection-test set of a circuit obtained by ATPG tools for a particular

fault model is, in general, quite diverse in nature.

Note that for a given fault, there may exist a number of vectors that can detect the fault

and this fact is true for most of the faults, excepting the hard-to-detect faults. An ATPG

tool experiences various options while selecting the smallest detection test set. Different

test sets produced by an ATPG tool, may provide the same fault coverage. Table 3.2 shows

the result, where five test sets have been generated using two ATPG tools: ATALANTA

[LH93] and Synopsys TetraMAX [J-2] for a few ISCAS’85 [BF85] and ISCAS’89 [BBK89]

circuits. By setting an initial random seed, it is possible to generate different test sets

in ATALANTA. In TetraMAX, we can obtain different test sets by randomly filling the

‘don’t cares’ in each pattern. In order to demonstrate this variability, we have generated

five different test sets. Let T denote the set of these five sets: T = {T1, T2, T3, T4, T5}. For

each test set Ti ∈ T , we define Ci = Ti∩ ∼ {
5⋃
j=1

Tj | j 6= i}, which denotes the set of test

vectors that are exclusive in Ti, i.e., they are included in Ti but not in the union of the

remaining other test sets. Each entry in Table 3.2 shows the value of |Ti|/|Ci|. Note that

except for the small circuits c17 and s27, each of the test sets, thus generated, comprise

mostly exclusive vectors.

3.5. PROPOSED WORK 45

Table 3.2: Analyzing the randomness of ATPG generated test sets for some ISCAS benchmark cir-

cuits.

Circuit ATALANTA [LH93] TetraMAX [J-2]

|T1|/|C1| |T2|/|C2| |T3|/|C3| |T4|/|C4| |T5|/|C5| |T1|/|C1| |T2|/|C2| |T3|/|C3| |T4|/|C4| |T5|/|C5|
c17 4/1 6/3 6/5 6/3 6/2 5/1 6/2 5/0 6/3 5/0

c432 49/48 47/46 48/47 51/50 51/50 50/50 49/49 52/52 48/48 50/50

c880 51/51 51/51 53/53 48/48 60/60 36/36 35/35 37/37 34/34 33/33

c1908 120/120 118/118 118/118 117/117 116/116 40/40 42/42 37/37 40/40 37/37

c3540 149/149 155/155 148/148 154/54 149/149 99/99 109/109 107/107 104/104 111/111

c6288 34/34 26/26 35/35 25/25 30/30 30/30 29/29 33/33 40/40 36/36

s27 7/2 7/4 6/3 7/3 6/5 9/6 9/3 7/2 8/3 6/1

s382 34/34 34/34 32/32 36/36 33/33 29/29 30/30 32/32 31/31 31/31

s526 61/61 64/64 65/65 62/62 66/66 61/61 60/60 58/58 56/56 59/59

s832 111/108 114/114 110/110 111/110 112/109 110/110 111/111 101/101 106/106 106/106

s1494 130/109 121/105 126/111 123/101 125/107 117/95 119/92 121/105 116/97 121/101

Observation 2. The union of two test sets is likely to increase DC.

A test set containing a larger number of vectors is likely to have a higher DC than the

one with fewer vectors. For two different test sets having the same DC, their union often

leads to an increase in DC, whenever they have different TE-classes, i.e., when they distin-

guish different sets of faults. This is demonstrated in the motivational example discussed

earlier.

Observation 3. If two faults in a circuit that are detected independently (one at a time)

by a test vector produce different output vectors, they are distinguishable.

This observation leads to a combinatorial formulation of the diagnosis problem. A

distinguishing test vector ought to produce two different output responses for two faults.

The TE-classes for a test vector can be computed by comparing fault simulation outcomes.

The response vector (R) for a fault is an m-bit binary string, where m denotes the

number of circuit outputs (primary and scan-outputs for sequential circuits). The output

bits of R are set to 1 where the error is observed. Thus, if the response vectors of a test

pattern are different for two faults, they are distinguishable.

In our experiment, the primary output pins are considered in a fixed sequence such

that the corresponding binary string consisting of observed values can be fairly compared.

For scan-based circuits, the flip-flop states, after each test cycle, are also observed similarly,

following the primary-output pins. Thus, the output vector reflects a fixed sequence of

response bits that appear at the primary and secondary outputs.

46 3.5. PROPOSED WORK

3.5.1 Data Structure: Response Matrix

For large circuits, especially for scan-based circuits, the value of m is large. Instead of

comparing two large binary strings for checking distinguishability of two faults, we may

consider the unsigned integer of these binary strings. Hence, instead of constructing a

three-dimensional (|F | × |T | × m) binary response matrix, we consider an |F | × |T | two-

dimensional integer response matrix, where F is a set of detectable structurally-collapsed

faults and T is a set of test vectors. However, this would entail a new problem of memory

overflow. Typically, a large benchmark circuit may have more than thousand outputs. The

unsigned integer representation of such large binary stings would be very large. In order

to tackle this problem, we propose a method called matrix relabeling. Note that in order

to check whether a test vector distinguishes two faults, their output vectors/ integer values

should be different; their actual magnitudes are of no significance. So, for each test vector,

the output integer values for all faults can be re-labeled with smaller values preserving their

distinguishability. In other words, each entry in a column of the 2D Response Matrix can

be relabeled with smaller values (see Fig. 3.3).

We construct a relabeled response (RR) matrix M , of dimension |F |× |T |. Each entry

M [fi, tj] of the matrix consists of relabeled value of the unsigned integer representation of

the output vector when test tj is applied in the presence of fault fi. In our experiment,

we have relabeled incrementally starting from integer 1, for each test vector, and use the

same label if the corresponding integer appears earlier in the column. So, the maximum

value in a column is at most |F | (the bound is achieved when all faults are distinguished by

the corresponding test vector). Note that during relabelling, the binary strings need to be

stored temporarily in a dictionary for comparison.

Figure 3.3: An example of matrix re-labeling for s27 circuit

3.5. PROPOSED WORK 47

Fig. 3.3 shows an example of 2D-Response Matrix and RR-matrix for s27, an ISCAS’89

circuit [BBK89], corresponding to a detection test set with 9 test vectors generated by

TetraMAX. For simplicity, only 15 faults (rows) out of 36 structurally-collapsed faults are

shown in the figure. An extra row corresponds to the fault-free response (first row in shade

with all 0’s) is shown in the figure. Such an additional row is needed in our algorithm

to ensure the detectability of all faults; this is explained in the next sub-section. The 16

× 9 matrix on the left (Fig. 3.3) is a response matrix where the output binary vectors

are represented as unsigned integer. An example of an output vector corresponding to the

sixth fault for the second test vector is also shown. Circuit s27 has one primary output and

three flip-flops, so the first ‘1’ is the value observed at the primary output and the following

string ‘110’ represents the states of three flip-flops. The unsigned integer value of [1110],

i.e., 14 appears as the corresponding entry of the matrix. The matrix shown on the right is

called Re-labeled Response (RR) Matrix. Note that in each column, the maximum value is

reduced. For example, the maximum value among the elements in the matrix is 14, whereas

in the relabeled matrix it is 4. As shown in the encircled row, the values in each columns

have been replaced by smaller values. In general, the maximum value of an element in

RR-matrix will be |F |, whereas in the output matrix it is 2m − 1 where m is the number

of output bits. The number of bits representing an element in RR-matrix is, therefore,

log2 |F |. This reduction is more evident for large circuits, especially for scan-based circuits

(refer Table. 3.3).

Table 3.3: Number of bits needed for the entries in the original and RR-matrix.

Circuit #bits in output string log2|F |
s15850 648 14

s35932 2048 16

s38417 1742 16

Observation 4. Each row in the |F |× |T | RR-matrix becomes distinct only if all faults are

found to be distinguishable by the test set T .

The distinctness of each row implies that for every fault in F , there exists at least

one entry in it, which is different from an entry in the same column of another row, and

such an entry in its row exists for every other row. The corresponding test vector is the

distinguishing test vector for the fault-pair.

3.5.2 Computing the Equivalence Class of a Test Set T from an |F | × |T |
RR-Matrix

Identification of equivalent classes of faults can be accomplished by reordering the rows

such that the faults having identical outputs in the RR-matrix for the test vectors in T are

48 3.5. PROPOSED WORK

placed together. Starting from the first test vector in the matrix, all rows are reordered such

that the faults having same values in the first column are kept in the same class. This gives

us the TE-class for the first vector. Next, each class is considered separately, and further

classes found by reordering the rows considering the second column within each class. This

is continued till the last vector is processed. The final set of classes gives the TE-classes of

T .

3.5.3 Proposed Algorithms

This section describes the techniques for constructing a DTS and two variants of the pro-

posed algorithm. The algorithms consist of two phases:

Phase I. Test Set Selection: The aim of this phase is to augment the current pool of test

vectors with those in the new test sets, so as to maximize DC. A number of different

test vectors are generated by randomly filling the don’t-care bits in a test vector

obtained by an ATPG tool. Each time a new test set is generated, it is chosen only if

it leads to an increase in the number of TE-classes.

Phase II. Test Vector Selection: The aim of this phase is to obtain DTS, diagnostic test cover

of the pool of test vectors selected in Phase I.

Observation 5. If we add a row corresponding to the fault-free response in an |F | × |T |
RR-matrix then the distinctness of rows will guarantee detection of all faults.

In other words, if we consider a pseudo-fault f
′
, which has the same output as that

of a fault-free circuit, then the existence of a TE-class, which contains only the fault f
′
,

guarantees that all other faults are detectable by T . An example is shown in Fig. 3.3 where

the RR-matrix of the circuit, s27 is shown. The row corresponding to the fault-free response

is shown shaded.

We remove the redundant and aborted faults (reported by ATPG tools) from the list

of structurally-collapsed faults before invoking our algorithm. Let F be the total number

of detectable structurally-collapsed faults and Ta be its detection test set. We decide the

distinguishability of two faults by Ta based on Observation 3. Let the pool of test sets

selected be stored in T .

Greedy election of diagnostic test set (DTS)

The pseudocode of the procedure is given in Algorithm 1. The variable ET stores the TE-

classes attained so far. Initially, ET contains only one class containing all faults in F . In

each iteration of the while loop in line 1, a test set Ta for F is generated by calling an ATPG

tool. An RR-matrix (u × |Ta|) is constructed to check whether new classes are formed by

Ta, where u denotes the number of undiagnosed faults. If so, Ta is chosen and added to

3.5. PROPOSED WORK 49

the pool T . The number of allowable trials is controlled by the value of BOUND, which

is user-specified. The algorithm can terminate earlier if all faults have been diagnosed. At

the end of Phase I, the variable ET stores TE-classes of the pool indicating the maximum

number of partitions attained by our algorithm, and provides the numerator component of

DC. The test-collapsed faults, i.e, the set of representative faults from each class in ET of

this pool T , is stored in FDTS . It also contains a pseudo-fault f
′

for the fault-free response

(Observation 5).

Algorithm 1

Input:

circuit, F, T ← φ,ET ← {F}

. Phase I: Test Set Selection

1: while BOUND > 0 and some faults in F are not diagnosed do

2: Generate a test set Ta for F by invoking an ATPG tool

3: if new test set Ta split any TE-classes in ET then

4: T ← T ∪ Ta. Update ET . Reset BOUND.

5: else

6: Decrement BOUND.

7: end if

8: end while

9: FDTS ← the set with a fault from each class in ET ∪ f
′

10: DTS ← essential test vectors in the last selected Ta
11: T ← T \DTS

. Phase II: Test Vector Selection . FDTS : set of faults undiagnosed by DTS

12: Compute EDTS . Set of TE-classes of FDTS for DTS

13: while FDTS ! = φ do

14: C
′ ← the set of faults in the smallest class of EDTS

15: Tc ← {all t|max
t∈T

(no. of TE-classes of C
′
)}

16: tmax ← {t|max
t∈Tc

{(no. of TE-classes of FDTS for DTS ∪ t) + (no. of faults in FDTS detected by t and not by

DTS)}}
17: DTS ← DTS ∪ tmax, T ← T \ tmax

18: update EDTS and FDTS

19: end while

In Phase II we attempt to find a reduced-sized DTS, which covers the pool, i.e.,

diagnoses all faults in FDTS . It is updated iteratively, by including one test in each iteration.

In each iteration, the set FDTS is updated to contain only the faults undiagnosed by the

tests in DTS obtained so far. Similarly, EDTS is updated to contain the set of equivalent

classes of FDTS . DTS initially contains essential vectors from the last updated set in Phase

I.

Since test vectors are selected from T , the initial test vectors in DTS are removed

from T . In each iteration, the test vector that is selected is added to DTS and removed

from the set T . An RR-matrix M(FDTS × T) is used to guide Phase II. It is dynamically

constructed while dropping the rows for diagnosed faults in each iteration. This allows us

to reduce the space and processing complexity since we do not have to deal with all faults

initially contained in FDTS . In order to ensure that all faults are detected, M contains

50 3.5. PROPOSED WORK

Figure 3.4: Diagnostic tree for DTS of c17. The average depth is 3.65.

a row for the fault-free response corresponding to f
′

in FDTS . From Observation 5, the

element f
′

is completely distinguished when all faults are detected. A test vector is selected

in two steps in order to lessen computational cost. First, a set of candidate test vectors

Tc is selected. If a class in EDTS contains exactly two faults, one of the test vectors that

splits them should be included in DTS. Hence, Tc contains those test vectors, which can

further split the smallest class, namely, C
′

(usually of size two). If the size of C
′

is greater

than two, then the test vectors that provide maximum splitting of C
′

are kept in Tc. Next,

we evaluate each test vector in Tc. The one that contributes to the maximum increase in

detection and diagnostic coverage of the vectors already chosen, is selected. This phase

stops when the tests in DTS distinguish all fault-pairs in FDTS .

Since we elect those vectors which are not only essential but also enhance the cumula-

tive diagnostic coverage of the vectors so far chosen, the sequence of vectors thus selected

naturally leads to a compact diagnostic tree. This is illustrated for circuit c17 in Fig. 3.4.

Each node of the tree at depth i denotes the number of faults in a TE-class for the test

vectors t1 to ti. In this example, the size of DTS is seven and the average number of test

vectors required (average tree-depth) to perform diagnosis is 3.65. Since at each iteration,

a test vector has been added to the DTS based on the maximum incremental diagnostic

coverage, the same sequence of test vectors can be used to construct a good diagnostic tree.

Complexity Analysis for Algorithm 1: Let τ denote the size of the largest test set

Ta, generated by ATPG calls during Phase-1. For the fault set F , let the maximum time

required among the calls made to the ATPG tool and fault simulator for simulating a test set,

be tATPG and tfsim, respectively. Let η be the number of test sets selected in Phase-1 that

comprise the pool T . Hence, the time for constructing the RR-matrix is O(|F |×τ); the time

required for TE-class formation will be O(η×|F |ln|F |× τ) = O(|T |× |F |ln|F |). Therefore,

3.5. PROPOSED WORK 51

the worst-case running time for Phase I will be: {η×BOUND×(tATPG+ tfsim)}+O(|T |×
|F |ln|F |). The time complexity of Phase II will be O(|DTS| × (|FDTS |(|T | + ln|FDTS |))),
where DTS is the set of diagnostic test vectors obtained by our algorithm and FDTS is

the set of TE-collapsed faults for DTS. Note that because of fault dropping of diagnosed

faults in both phases, the actual running time will be much smaller. Additionally, many

iterations for selecting test sets cycle through only B times, where B << BOUND. The

space complexity of the algorithm is O(|F | × |T |). Some temporary data structures for

storing integers are also required during matrix relabeling, the space and time complexity

of which is ignored.

Election of minimal DTS

Note that Algorithm 1 needs full fault simulation for each test vector of the test sets selected

in Phase I, and hence, it may take a large amount of CPU-time. In order to improve this,

we next propose a variant of selecting diagnostic test vectors. The minimum cover of an

RR-matrix can be obtained by dropping the maximum number of columns such that the

resulting matrix still have distinct rows. Since this is a hard problem, we aim at finding a

minimal cover instead of the minimum. One of the methods to obtain a minimal cover is

to start from one end of the matrix and check each vector sequentially while moving to the

other end. If the deletion of a vector does not affect the distinctness of each row, then it is

dropped. However, checking for distinctness of each row in a large matrix is computationally

expensive. The method proposed in Algorithm 2 solves this problem efficiently.

If a column in an RR-matrix distinguishes two rows which could not have been distin-

guished by any column to its left, then this column is said to dominate all the columns to its

left. The RR-matrix is said to hold the Left-dominance property if this is true for all columns.

The corresponding ordered test set is said to be Left-dominance (LD) ordered. Similarly,

we can define the Right-dominance property of an RR-matrix and Right-dominance (RD)

ordered test set. A test set which is both LD-ordered and RD-ordered is minimal because

each test vector dominates every other test vector in the set. In other words, each vector

distinguishes at least one unique fault-pair, which is not distinguished by any other vector

in the set. Algorithm 2 is based on the above property.

We can obtain an ordered and minimal DTS using the proposed framework as de-

scribed below.

Phase I (Test set selection): In this phase, the pool of test sets is maintained as a

LD-ordered pool. Thus, once a test set is selected (unlike Algorithm 1), all vectors in the

test set are not added to the pool. Only the constituent test vectors that contributed to the

selection of the test set are added. Moreover, LD-ordering of such test vectors is maintained

while adding them to the pool.

52 3.5. PROPOSED WORK

Algorithm 2

Input:

circuit, F ← F ∪ f ′
, T ← φ,ET ← {F}

. Phase I: Test Set Selection (LD-ordered test generation)

1: while BOUND > 0 and some fault in F are not diagnosed do

2: Generate a test set Ta for F by invoking an ATPG tool

3: if new test set Ta split any TE-classes in ET then

4: Add essential LD-ordered tests in Ta to the right of T

5: Update ET . Reset BOUND.

6: else

7: Decrement BOUND.

8: end if

9: end while

10: FDTS ← the set with a fault from each class in ET (including f
′
)

. Phase II: Test Vector Selection (RD-ordered test generation)

11: EDTS ← {FDTS}
12: for i = |T | to 1 do

13: Update EDTS for ti
14: if ti does not increase classes in EDTS then

15: drop ti
16: end if

17: if |EDTS | = |FDTS | then
18: Drop tests ti−1 to t1
19: Stop

20: end if

21: end for

22: DTS ← T

Phase II (Test vector selection): In this phase, we drop tests from the pool such that

the remaining tests in the pool is RD-ordered as well.

The pseudocode of the proposed method is given in Algorithm 2. The pseudo-fault

f
′

is included in the set F . Initially, ET contains only one class containing all faults in

F . In Phase I, each new test set, Ta is evaluated to check whether it forms new classes

in ET following the method described in Section 3.5.2. We analyze an RR-matrix M
′

(

α× |Ta|), where α is the number of undiagnosed faults in F , so far, starting from the first

vector on the left. Thus, if any test vector is found to split some classes in ET , it is added

to pool T , as the right-most vector. Since this vector is able to distinguish at least two

rows in the matrix, which could not be distinguished by the vectors already present in the

pool, the pool is LD-ordered. Phase II is simpler than the previous algorithm. The set

FDTS is a set of test-collapsed faults of ET (including f
′
) as in Algorithm 1. The set EDTS

initially contains a single class containing faults in FDTS . A static RR-matrix, M , of size

(|FDTS | × |T |) is used for computation. Starting from the right-most vector (to ensure the

right-dominance property), we follow the same method for computing EDTS by re-ordering

of the matrix M . We drop the test vectors if they do not contribute to new classes in EDTS .

This phase stops when the cover is obtained, that is, EDTS is split into |FDTS | classes by

3.6. EXPERIMENTAL RESULTS 53

the test vectors selected so far. The remaining vectors to the left, if present, are dropped.

Finally, the vectors in T form the cover, DTS, which is also minimal, i.e., no other test

vector can be removed from DTS without degrading DC.

The time complexity of Phase I and the space complexity of Algorithm 2 are of the

same order as those for Algorithm 1. However, the actual running time and memory re-

quirement reduce significantly because of smaller size of T . The time complexity of Phase

II is O(|FDTS |ln(|FDTS |)× |T |).

3.6 Experimental Results

We have implemented the proposed algorithms in C++ programming language to build

our diagnostic toolkit COMEDI. The experiments were carried out on Intel Xeon(R) 3.00

GHz × 4 processor with 8GB memory.

Comparative results for ISCAS’85 [BF85] circuits. The experimental results for

Algorithm 1 on ISCAS’85 [BF85] circuits are shown in Table 3.4. We have used ATALANTA

[LH93] as the ATPG tool and HOPE [LH96] for fault simulation. Columns 1 and 2 denote

the circuit name and the number of collapsed faults, respectively. Column 3 gives the

number of equivalent fault-pairs obtained by a DTPG process proposed in [GMK91] and

the test-equivalent fault-pairs of the DTS obtained by applying Algorithm 1. Since in

[GMK91], the initial fault set is formed by equivalence collapsing of faults in each fan-out

free region, the result in Column 3 does not include equivalent fault-pairs in the fan-out

free region. This could be the reason that the equivalent fault-pairs reported in [GMK91]

is lesser than ours for some circuits. In [GMK91], the authors have proposed a diagnostic

ATPG system based on the method of a different ATPG system CONTEST [MGOD90].

Columns 4 and 5 give the number of test vectors and diagnostic coverage, respectively, and

the results are compared with [ZA10]. The diagnostic coverage used here is the one define

in [ZA10], that if ratio of number of TE − class and the number of structural collapsed

faults. Column 6 gives the number of test sets selected, and Column 7 shows the number

of ATPG-calls. Columns 8 and 9 show the CPU-time in seconds required in Phase II, and

the total running time of algorithm, respectively. Note that we have obtained the same

diagnostic coverage as in [ZA10] with a fewer number of vectors. The parameter BOUND

provides a mechanism to trade-off DC with CPU-time. We have set its value to 50 in our

experiment, as this value is seen to provide a fair trade-off for all the benchmark circuits.

Comparison of results for ISCAS’89 [BBK89] and ITC’99 [CRS00] circuits.

The experimental results for ISCAS’89 [BBK89] and ITC’99 [CRS00] circuits obtained using

Synopsys TetraMAX ATPG tool, are given in Table 3.5. All results shown in this table are

same for both the proposed algorithms. Column 1(7) gives the circuit name, Columns 2(8)

54 3.6. EXPERIMENTAL RESULTS

and 3(9) give the number of faults and the number of equivalent fault-pairs, respectively.

The result of the two algorithms vary only in the number of test vectors as reported in

Table 3.6. In our experiments, we have used the same ATPG Tool, (TetraMAX) as used

in [YZHL10], and compared our results with theirs. In Column 3(9), the number of test-

equivalent fault-pairs obtained by our algorithm is compared with the number of equal

(functionally-equivalent) fault-pairs as reported in [YZHL10]. Note that in [YZHL10], in

order to obtain FE fault pairs, the authors analyzed the fault-pairs in two ways: (i) firstly,

they aim to distinguish the faults pairs using a miter-based method, and (ii) the fault-

pairs that are yet to be distinguished, are targeted using a SAT-solver. Our approach is

passive, i.e., we do not target any fault-pair to generate a distinguishing vector for them.

We just report the test-equivalent set of our DTS. Although we do not follow any additional

exhaustive method or aim to target any fault-pair, for most of the circuits, our results are

comparable to those of [YZHL10]; the number TE fault-pairs obtained by DTS is equal

to the number of FE fault-pairs. For the majority of cases, we have been able to identify

all FE pairs/classes and report the diagnostic test vectors. In some cases, we obtain fewer

test-equivalent pairs, which might have arisen because of differences in the synthesized

netlist. In Column 4(10), we have reported the number of TE-classes. The information

about equivalent classes are more useful for diagnosis rather than the number of fault-pairs.

Note that the faults are collapsed on the basis of their classes, and not pair-wise. When the

circuit is checked for actual defect location, the class-wise collapsed fault set is considered.

Lastly, Columns 5(11) and 6(12) give the number of test sets selected by our algorithm,

and the total number of ATPG calls, respectively. Since for most of the circuits, we are

able to obtain DTS that distinguishes all faults, which are not functionally-equivalent, we

conclude that for the rest of the circuits, the pairs which could not be distinguished are

very hard-to-distinguish. As mentioned in [ZA10], FE faults are mostly located in close

physical vicinity on the chip regardless of their size. Since the pairs that are missed are

very hard-to-distinguish, these faults are likely to have originated from close proximity in

the netlist structure, and thus the need for distinguishing them may not be of much concern

for the purpose of defect localization.

Table 3.6 compares the number of test vectors; Column 1(3) gives the circuit name. In

Column 2(4), the first sub-column gives the total number of test vectors for [YZHL10], the

second and third sub-columns show the size of DTS, for Algorithm 1 and 2, respectively.

The size of DTS of Algorithm 1 is larger than [YZHL10] for large circuits mostly because

we have selected them from random test vectors. For smaller circuits, the results are com-

parable. For Algorithm 2, the test size of DTS obtained is larger; however it is guaranteed

to be a minimal set.

3.6. EXPERIMENTAL RESULTS 55

The CPU time in seconds for Phase I, Phase II and total time are given in Table 3.7

for both algorithms. The time taken by Phase II is just a few seconds. The time for Phase I

shown in the first sub-column of Column 2(3) includes the time needed for fault simulation

and ATPG calls. Since in Algorithm 2, fewer number of test vectors are simulated for all

faults, the CPU-time is lesser. This fact is more evident for larger circuits as shown in the

table. Previous work [PR07a, WLL14] also dealt with diagnostic test generation; however,

we have not compared the size of the DTS obtained by our method with theirs as they

used different ATPG tools.

 50

 75

 100

 125

 150

 175

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 0

 79
 126

 200

 400

 600

 800

 1000

 1200

 1400

N
u
m

b
e
r

o
f
T

E
 f
a
u
lt
 p

a
ir
s

N
u
m

b
e
r

o
f
te

s
t
v
e
c
o
tr

s

Union of test sets

126 tests selected out of 1305

79 tests selected out of 949

b11

b11b12

b12

b11: Size of test cover
No. of fault pairs

Size of test set union
b12: Size of test cover

No. of fault pairs
Size of test set union

Figure 3.5: Variation of test-equivalent fault-pairs and the number of cumulative test vectors for

two ITC’99 benchmark circuits; the size of the diagnostic test set (Algorithm 1) is also

shown.

For circuits b11 and b12, the results of Algorithm 1 are shown in Fig. 3.5. The

horizontal axis indicates the successive progression of test sets as they are selected. The

vertical axis shows the cumulative number of test-equivalent fault-pairs (left side), and the

cumulative number of test vectors (right side) corresponding to the successive inclusion

of new test sets. It can be seen from the curves marked with spots, that the number of

fault-pairs that have been distinguished decreases as more test sets are added. The function

saturates when we are left with hard-to-diagnose faults. The smooth lines show the increase

in the number of test vectors as new tests are added. Since the plots are almost linear, we

conclude that every additional test set contributes exclusive tests vectors to the cumulative

DTS. Also, the final size of the diagnostic test cover is shown (126 for b12 and 79 for b11).

Experiment result for large circuits of ITC’99 benchmark suit and a few circuits of

IWLS’05 benchmark suit [Alb05] is given in Table 3.8. This experiment was performed on

56 3.7. CONCLUSION AND FUTURE WORK

a 4-core 3GHz Intel Xeon processor with 32GB RAM. Column 1 gives the circuit name.

Column 2 reports the number of TE-fault pairs of the detection test set and our DTS. From

the smaller value for our DTS, it is clear that a significant number of fault pairs could be

distinguished by our DTS compared to the detection test set. Column 3 reports the size

of DTS for Algorithm 1 and Algorithm 2. Columns 4 and 5 report the number of test sets

selected and number of ATPG calls respectively. Columns 6 and 7 report the CPU-time in

seconds taken by Algorithm 1 and Algorithm 2 respectively.

3.7 Conclusion and Future Work

A combinatorial test-selection method for stuck-at fault diagnosis is proposed, which relies

solely on the analysis of output responses of the circuit to different test sets. The procedure

is simple as no circuit modification or miter-based diagnostic test generation is involved. It

utilizes the diversity and randomness of detection-test sets delivered by the standard ATPG-

tools, and extracts the diagnostic power hidden in the ensemble. An efficient covering of

the response-matrix is proposed to determine a test set with high diagnostic resolution.

Experimental results on ISCAS-85, ISCAS-89, ITC-99 and IWLS-05 benchmark circuits

show the effectiveness of our approach in terms of various metrics. The technique can be

extended seamlessly to handle transition faults as well. Since the selection of test vectors

is based only on the output response, in general, it can be applied to any modeled fault if

an ATPG and fault simulation tools for the fault model are available. However, like other

diagnostic test generation methods, which are based on modeled faults, this method does not

target multiple faults. Nonetheless, the test vectors obtained can be used for multiple fault

diagnosis following an effect-cause approach [LLC07, Pom14a, KJC+14, TCG+11, YB08].

Our study establishes that a simple ATPG-based procedure is capable of producing a DTS

with decent diagnostic coverage. In order to improve DC further, if needed, SAT-based or

other targeted methods can be employed to handle the remaining few hard-to-distinguish

fault-pairs. As an open problem, it will be interesting to search for properties that may

help expedite the algorithm used for RR-matrix covering. Characterization of hard-to-

diagnose faults and efficient selection of a few additional test vectors also require further

investigation. Moreover, efficient methods for storing the response matrix and performing

diagnostic simulation can expedite the process so that it can be effectively applied to large

industrial circuits.

3.7. CONCLUSION AND FUTURE WORK 57

T
ab

le
3.

4:
C

om
p

ar
is

on
of

re
su

lt
s

fo
r

IS
C

A
S

’8
5

[B
F

85
]

b
en

ch
m

a
rk

ci
rc

u
it

s
u

si
n

g
A

T
A

L
A

N
T

A
[L

H
9
3
]

a
n

d
H

O
P

E
[L

H
9
6
]

(B
O

U
N

D
=

5
0
)

C
ir

cu
it

#
C

o
ll
a
p

se
d

#
In

d
is

t.
fa

u
lt

-p
a
ir

s
#

T
es

t
v
ec

to
rs

D
ia

g
n

o
st

ic
co

v
er

a
g
e

#
T

es
t

#
A

T
P

G
P

h
a
se

2
T

o
ta

l

fa
u

lt
s

[G
M

K
9
1
]

o
u

rs
[Z

A
1
0
]

o
u

rs
[Z

A
1
0
]

o
u

rs
se

ts
ca

ll
s

ti
m

e
in

se
c.

ti
m

e
in

se
c.

c1
7

2
2

0
0

8
7

1
0
0

1
0
0

2
2

0
.2

0
.2

6

c4
3
2

5
2
0

1
3

1
3

6
9

5
0

9
7
.5

1
9
7
.5

1
2

1
1
6

0
.3

3
1
3
.1

6

c4
9
9

7
5
0

1
2

1
2

5
3

5
4

9
8
.4

0
9
8
.4

2
5
2

0
.2

6
1
.1

5

c8
8
0

9
4
2

5
5

5
5

7
0

4
5

9
4
.1

6
9
4
.1

6
3

5
3

0
.2

7
2
.4

9

c1
3
5
5

1
5
6
6

7
4
0

7
4
0

8
7

8
7

5
9
.3

8
5
9
.3

9
4

5
4

1
.3

1
1
4
.8

9

c1
9
0
8

1
8
7
2

2
9
5

3
0
2

1
3
4

1
2
1

8
6
.4

6
8
6
.3

8
6

6
1

0
.7

8
1
6
.4

5

c2
6
7
0

2
6
3
2

4
6
8

4
9
3

1
5
0

1
2
4

8
6
.4

2
8
6
.4

7
1
0

6
4

1
.2

7
6
8
.4

8

c3
5
4
0

3
2
9
7

5
3
1

5
4
0

1
7
4

1
4
1

8
9
.6

9
9
8
.6

9
7

6
3

1
.7

0
3
1
.5

4

c5
3
1
5

5
2
9
1

4
4
7

4
4
7

-
1
2
6

-
9
2
.2

7
6
0

2
.4

5
4
1
.0

0

c6
2
8
8

7
7
1
0

1
0
1
3

1
0
1
3

1
3
7

3
9

8
6
.8

7
8
6
.8

9
5

5
6

0
.8

0
2
3
.7

0

c7
5
5
2

7
4
1
8

1
1
1
8

1
1
2
8

2
9
6

1
8
8

8
6
.8

5
8
6
.9

4
8

6
7

5
.3

1
1
8
3
.7

1

58 3.7. CONCLUSION AND FUTURE WORK

T
a
b

le
3
.5

:
E

x
p

erim
en

tal
resu

lt
fo

r
IS

C
A

S
’89

an
d

IT
C

’9
9

b
en

ch
m

a
rk

circu
its

u
sin

g
S

y
n

op
sy

s
T

etraM
A

X
[J

-2]
an

d
com

p
arison

w
ith

related

p
rev

io
u

s
w

o
rk

(B
O

U
N

D
=

50).
C

ircu
it

#
F

a
u

lts
#

E
q
u

.
fa

u
lt-p

a
irs

#
E

q
u

.
#

T
est

#
A

T
P

G
C

ircu
it

#
F

a
u

lts
#

E
q
u

.
fa

u
lt-p

a
irs

#
E

q
u

.
#

T
est

#
A

T
P

G

[Y
Z

H
L

1
0
]

o
u

r
[Y

Z
H

L
1
0
]

o
u

r
cla

sses
sets

ca
lls

[Y
Z

H
L

1
0
]

o
u

r
[Y

Z
H

L
1
0
]

o
u

r
cla

sses
sets

ca
lls

IS
C

A
S

’8
9

B
en

ch
m

a
rk

circu
its

[B
B

K
8
9
]

s3
4
4

3
4
2

3
4
4

5
5

3
3
9

5
5
6

s3
4
9

3
4
8

3
5
0

1
0

1
0

3
4
1

7
5
8

s3
8
2

3
9
9

3
9
1

2
3

2
3

3
6
8

5
6
4

s3
8
6

3
8
4

3
7
9

0
0

3
7
9

5
1
4

s4
2
0

4
3
0

4
4
0

1
3

3
3

4
0
7

5
7
7

s4
4
4

4
6
0

4
5
2

9
9

9
9

3
6
9

4
5
7

s5
1
0

5
6
4

5
6
1

0
2

5
5
9

3
5
3

s5
2
6

5
5
4

5
3
6

3
4

3
4

5
0
5

4
6
5

s6
4
1

4
6
7

4
8
7

7
7

4
8
0

3
5
3

s7
1
3

5
4
3

5
6
3

1
7
4

1
7
4

4
7
6

2
5
2

s8
2
0

8
5
0

8
4
8

4
2

4
4

8
1
1

1
2

9
1

s8
3
2

8
5
6

8
5
4

4
7

5
2

8
1
1

1
0

7
4

s8
3
8

8
5
7

9
0
0

2
4

6
5

8
3
5

5
8
5

s9
5
3

1
0
7
9

1
0
9
5

3
3

1
0
9
2

4
5
4

s1
1
9
6

1
2
4
2

1
2
4
7

1
4

1
4

1
2
3
3

9
1
0
5

s1
2
3
8

1
2
8
6

1
2
8
9

3
8

3
8

1
2
5
4

7
7
4

s1
4
2
3

1
5
0
1

1
4
5
2

1
4
7

1
4
7

1
3
1
1

8
7
7

s1
4
8
8

1
4
8
6

1
4
8
3

2
3

2
3

1
4
6
2

8
6
3

s1
4
9
4

1
4
9
4

1
4
9
1

2
7

2
7

1
4
6
6

1
0

6
9

s5
3
7
8

4
5
6
3

4
5
1
8

5
2
3

5
2
2

4
1
4
2

1
4

9
0

s9
2
3
4

6
4
7
3

6
4
0
1

1
2
2
9

1
2
2
9

5
4
0
1

2
8

1
5
4

s1
3
2
0
7

9
6
6
4

9
6
4
7

2
0
3
4

2
0
3
4

8
0
2
0

1
3

6
6

s1
5
8
5
0

1
1
3
3
6

1
0
9
6
3

2
8
0
1

2
7
6
7

9
0
9
1

9
5
9

s3
5
9
3
2

3
5
1
1
0

3
3
7
0
5

1
2
8
9
3

1
2
8
9
3

2
3
7
8
3

1
7

7
4

s3
8
4
1
7

3
1
0
1
5

3
1
1
8
4

3
3
7
2

3
3
6
7

2
8
6
2
4

1
4

9
8

s3
8
5
8
4

3
4
7
9
4

3
3
4
6
6

2
6
9
6

2
6
8
8

3
1
1
5
8

1
9

1
3
6

IT
C

’9
9

B
en

ch
m

a
rk

circu
its

[C
R

S
0
0
]

b
0
3

3
9
0

3
5
9

2
2

3
5
7

6
1
0
4

b
0
4

1
5
0
4

1
4
2
7

5
2

5
2

1
3
8
3

6
6
2

b
0
6

1
5
7

1
5
9

4
4

1
5
5

1
5
1

b
0
7

1
1
3
2

1
0
8
4

2
9

2
9

1
0
5
6

2
5
2

b
0
8

4
4
9

4
2
4

5
0

5
0

4
0
0

1
3

7
8

b
0
9

4
1
9

3
9
0

1
6

2
4

3
6
6

3
5
3

b
1
0

5
0
2

4
9
0

6
6

4
8
4

6
6
4

b
1
1

1
2
9
1

1
2
5
9

1
2
0

1
2
0

1
1
7
0

1
4

1
1
5

b
1
2

2
7
9
6

2
6
9
0

4
0

4
0

2
6
5
1

1
4

7
5

b
1
3

8
3
1

7
7
9

4
4

4
4

7
4
8

5
5
6

b
1
4

1
2
5
3
6

1
2
2
9
3

4
8
3

6
1
0

1
1
8
1
4

2
5

9
1

b
1
5

2
3
0
1
5

2
2
5
5
2

1
3
3
7

1
6
8
0

2
1
4
6
9

1
5

1
0
1

3.7. CONCLUSION AND FUTURE WORK 59

Table 3.6: Total number of diagnostic test vectors for circuits in Table 3.5
Circuit #Total Vec. Circuit #Total Vec.

[YZHL10] Algo1 Algo2 [YZHL10] Algo1 Algo2

ISCAS’89 Benchmark circuits [BBK89]

s344 23 23 24 s349 19 25 25

s382 35 33 34 s386 80 69 76

s420 63 78 81 s444 32 29 31

s510 73 62 64 s526 63 59 62

s641 39 36 38 s713 42 35 36

s820 131 121 131 s832 129 120 127

s838 116 159 160 s953 96 87 90

s1196 166 148 162 s1238 176 155 160

s1423 55 50 62 s1488 145 135 138

s1494 144 131 144 s5378 144 150 150

s9234 235 229 294 s13207 278 292 304

s15850 172 171 200 s35932 31 68 83

s38417 137 204 230 s38584 168 265 316

ITC’99 Benchmark circuits [CRS00]

b03 26 25 26 b04 66 54 66

b06 17 16 16 b07 53 49 48

b08 56 61 62 b09 43 32 34

b10 50 47 50 b11 91 79 91

b12 105 126 135 b13 34 35 39

b14 679 459 521 b15 523 484 567

60 3.7. CONCLUSION AND FUTURE WORK

Table 3.7: CPU time in seconds

Circuit Algorithm 1 Algorithm 2

phase1 phase2 total phase1 phase2 total

ISCAS’89 Benchmark Circuit [BBK89]

s344 21.039 0.003 21.042 21 0.001 21.001

s382 24.884 0.005 24.889 24.708 0.001 24.709

s420 33.829 0.012 33.841 32.451 0.001 32.452

s444 29.081 0.005 29.086 23.987 0.001 23.988

s510 20.53 0.011 20.541 20.576 0.001 20.577

s526 27.569 0.009 27.578 26.091 0.001 26.092

s641 20.461 0.003 20.464 20.298 0.001 20.299

s713 23.352 0.003 23.355 23.164 0.001 23.165

s820 47.087 0.082 47.169 42.79 0.003 42.793

s832 39.25 0.064 39.314 35.526 0.003 35.529

s838 53.451 0.053 53.504 50.176 0.004 50.18

s953 26.28 0.029 26.309 23.676 0.003 23.679

s1196 59.641 0.104 59.745 50.967 0.006 50.973

s1238 47.817 0.091 47.908 40.759 0.006 40.765

s1423 50.715 0.033 50.748 45.694 0.003 45.697

s1488 37.979 0.078 38.057 31.687 0.006 31.693

s1494 44.188 0.085 44.273 35.512 0.006 35.518

s5378 464.709 0.566 465.275 184.973 0.02 184.993

s9234 2011.852 1.091 2012.943 973.505 0.045 973.55

s13207 3197.469 1.554 3199.023 2115.646 0.074 2115.72

s15850 1646.117 0.445 1646.562 1268.252 0.067 1268.319

s35932 4507.632 1.003 4508.635 4071.811 0.154 4071.965

s38417 9820.922 4.197 9825.119 6848.716 0.229 6848.945

s38584 9656.091 7.887 9663.978 3400.794 0.401 3401.195

ITC’99 Benchmark Circuit [CRS00]

b03 36.015 0.002 36.017 36.295 0.001 36.296

b04 39.341 0.022 39.363 32.495 0.003 32.498

b06 17.479 0.001 17.48 18.059 0 18.059

b07 22.437 0.005 22.442 2.827 0.002 2.829

b08 31.684 0.017 31.701 31.819 0 31.819

b09 19.937 0.003 19.94 20.634 0.001 20.635

b10 24.4 0.01 24.41 24.552 0.001 24.553

b11 69.342 0.067 69.409 63.205 0.003 63.208

b12 111.229 0.264 111.493 46.965 0.01 46.975

b13 23.423 0.006 23.429 24.767 0.001 24.768

b14 3513.275 7.74 3521.015 1488.186 0.141 1488.327

b15 9164.734 10.402 9175.136 4269.476 0.192 4269.668

3.7. CONCLUSION AND FUTURE WORK 61

T
ab

le
3.

8:
R

es
u

lt
s

fo
r

so
m

e
la

rg
e

ci
rc

u
it

of
IT

C
’9

9
an

d
fe

w
ci

rc
u

it
s

o
f

IW
L

S
’0

5
b

en
ch

m
a
rk

u
si

n
g

S
y
n

o
p

sy
s

T
et

ra
M

A
X

[J
-2

]
(B

O
U

N
D

=
5
0
).

C
ir

cu
it

#
T

E
-f

a
u

lt
p

a
ir

s
S

iz
e

o
f

D
T

S
#

T
es

t
#

A
T

P
G

C
U

T
-t

im
e

in
se

c.
(A

lg
o

1
)

C
U

T
-t

im
e

in
se

c.
(A

lg
o

2
)

A
T

P
G

D
T

S
A

lg
o

1
A

lg
o

2
se

ts
ca

ll
s

P
h

a
se

1
P

h
a
se

2
T

o
ta

l
P

h
a
se

1
P

h
a
se

2
T

o
ta

l

b
1
7

5
3
3
3

4
8
7
3

6
2
6

6
9
6

1
7

1
2
4

8
2
0
8
1
.6

6
3
9
.1

3
8
2
1
2
0
.7

9
4
1
7
5
4
.2

4
0
.6

5
4
1
7
5
4
.9

0

b
2
0
s

2
4
0
0

1
5
2
8

4
9
5

5
9
5

3
2

1
0
8

1
5
7
5
1
.0

3
1
8
.7

4
1
5
7
6
9
.7

7
4
7
1
5
.7

7
0
.2

1
8

4
7
1
5
.9

b
2
1
s

2
7
9
9

2
1
3
4

5
0
0

5
7
4

2
7

1
4
1

1
6
6
7
8
.1

9
1
8
.1

4
1
6
6
9
6
.3

4
7
4
0
3
.0

7
0
.2

2
7
4
0
3
.3

0

b
2
2
s

3
8
0
8

2
6
7
6

5
6
3

6
6
8

3
7

1
1
7

4
2
5
2
2
.5

2
2
0
6
.1

0
4
2
7
2
8
.6

3
1
3
0
2
9
.2

0
0
.5

5
1
3
0
2
9
.7

5

a
c9

7
ct

rl
1
2
5
7

7
3
4

1
6
4

1
7
4

1
1

1
0
5

5
5
0
3
.5

3
1
.7

3
5
5
0
5
.2

7
2
8
8
7
.9

8
0
.2

1
2
8
8
8
.1

9

m
em

ct
rl

4
1
2
4

3
5
9
5

2
7
5

3
4
5

1
4

1
8
7

1
1
5
1
1
.2

1
4
.1

6
1
1
5
1
5
.3

7
7
2
9
9
.5

8
0
.1

4
7
2
9
9
.7

2

p
ci

b
ri

d
g
e3

2
1
0
1
2
3

8
5
6
4

4
7
9

5
7
0

4
7

2
4
2

1
7
9
5
6
1
.8

6
3
7
.9

3
1
7
9
5
9
9
.7

9
5
0
3
2
2
.1

0
0
.5

3
5
0
3
2
2
.6

4

CHAPTER

FOUR

PREDICTING X-SENSITIVITY OF
CIRCUIT-INPUTS ON TEST-COVERAGE:

A MACHINE-LEARNING APPROACH

4.1 Introduction

During functional or test operation, unknown (X) values may appear at different circuit

nodes in a digital system. There are various sources that cause an X to appear such as

unspecified inputs or the presence of tri-state elements, IP-cores used as black boxes in the

design, unknown states of sequential elements, uncertain timing, clock-domain interface, bus

contention, or signal conversion over analog-to-digital boundaries, to name a few [EKR+15].

X-values may also surface out during the post-silicon-validation phase because of underlying

design bugs [LHF+12, Goe17].

The presence of X-values strongly impacts the controllability and observability of cir-

cuits, severely restraining the capability of automatic test pattern generation (ATPG) sys-

tems, fault simulation and test-response compaction. In other words, the testability of

faults in the circuit is badly compromised, leading to loss of fault coverage and diagnos-

ability. The unknown values that propagate to the circuit-outputs also influence the design

for compactors and logic Built-in-Self-Test (BIST). In order to circumvent the former prob-

lem, specially designed ATPG techniques are employed to improve fault coverage in the

presence of X’s [EKR+15, SEB16], or certain X-masking techniques are employed at the

cost of additional hardware and performance degradation, for mitigating the latter class

of problems [PKR02, MK02, TWE+06]. In this chapter, we deal with static X-sources as

described earlier in the literature [WWN08].

During post-silicon validation [CHJC13] of a manufactured chip, several X-sources

63

64 4.1. INTRODUCTION

often show up exposing design bugs. In order to reduce full silicon re-spin cost, metal-

only engineering-change-order (ECO) processes are performed to correct these bugs. A

metal-only ECO can be carried out by changing only a few metal interconnects in the

design, which is a very common practice in semiconductor industry now-a-days. Typically,

redundant standard cells are sprinkled on the chip-floor as spares, and some of them are

allocated to correct the bugs in the design by rewiring a few nets using the spare cells

[LHF+12, Goe17, hCMB08, CJC14, CJC13].

From the viewpoint of testability, the presence of X-sources has many implications. As

stated earlier, it badly affects the performance of ATPG tools, as X-values invalidate fault

excitation and propagation resulting in the degradation of fault coverage. Fault simulation,

which has otherwise polynomial-time complexity in a circuit, may become NP-complete in

the presence of unknowns [CA87]. Several prior work addressed the problem of efficient

test pattern generation [EKR+15, SEB16] and fault simulation [CP89, EKS+14, KSR04,

KKM+11] in the presence of X-values. Unknown values at circuit-outputs badly affect the

test-compaction ratio since X’s corrupt the errors while traveling through the compressor

network. In the case of temporal compaction, X’s may even corrupt the entire signature.

Various methods to overcome the effect of X’s on output-data compression have been pro-

posed. The X-blocking technique is used to mask the effects of X-sources by adding extra

hardware to the circuit [WWW06]. A few other techniques handle X’s when they are

captured in scan cells. Spatial X-compaction can be accomplished using a network of XOR-

gates [MK02]. Convolutional compactors use memory elements in the XOR-network to

reduce aliasing [RTWR03, RT05, AFI06]. X-tolerant test-compaction techniques based on

output-bit selection [LLH11] or design of multiple-input signature register (MISR) exploit-

ing X-canceling have also been studied [YT12]. A counter-based circuit was deployed to

implement the compactor proposed in [LLH11], [LLH+13]. A method based on scan-chain

switching is employed in [WWW+10] to handle unknowns before they feed a compactor. In

X-masking, the unknowns in the scan outputs are blocked before forwarding them to the

test compactor [WSRW09]. Other techniques for masking and response compaction in a

faulty circuit with unknown values when fault-free outputs are known, have also been stud-

ied [Pom14b]. Based on the observation that only a subset of scan cells always capture the

X-values, the work proposed in [WYL18], groups such scan cells into separate scan chains

so as to reduce their effect during output compaction of test responses.

Although various techniques have been developed in the past for the mitigation of

X-effects on test-compaction, no systematic attempt has been carried out so far to inves-

tigate the effects (sensitivity) of X-inputs on circuit-testability or fault-coverage. More

importantly, no efficient and fast method is known that can be used to grade or rank the

circuit-inputs with respect to X-sensitivity. Ranking X-sensitive inputs in a logic circuit

has a number of applications. In the presence of hardware and other constraints, the most

sensitive X-inputs (those causing significant loss of test-coverage) should be prioritized for

4.1. INTRODUCTION 65

X-masking/elimination not only from the viewpoint of enhancing testability but also for

re-wiring certain components so that the design bugs causing the X-sources can be rectified

during post-silicon validation through the execution of minimal ECO.

Techniques for X-grading will also find some applications to test-time reduction in

digital systems. A common practice of handling the X-sources in test environments such

as at-speed fault testing [MS08], is to initialize the flip-flops or memory elements to known

values so as to prevent the unknowns from entering into the circuit. A good amount of test

time is lost in such pre-processing. A possible solution to reducing testing time would be

select the flip-flops/memories that have negligible effect on test-coverage, and allow them

to remain in unknown states, thereby limiting state-initializations only to a few X-sensitive

flip-flops/memory elements.

In this chapter, we propose a method for grading the X-sources in a circuit-under-

test in terms of “loss of fault coverage with respect to a test set”, using machine-learning

techniques. Since X-sources strongly influence testability issues as well as re-spin cost,

our analysis would be helpful to a chip designer while making a choice for pre-silicon X-

masking (for improving testability or output compaction), or for post-silicon X-correction

(for restoring desired functionality and improving reliability of the circuit by ECO).

When an input line of a circuit-under-test (CUT) is set to X, fault coverage reduces

and the amount of loss often varies for various inputs. One way to estimate the loss for

different X-sources would be to run an ATPG, setting each of the inputs to X. However, this

would be computationally time consuming, and more so, because the ATPG needs to be

run for every such potential input/X-source. We propose a method here for predicting the

effect of X-sources on the loss of fault coverage in negligible time compared to ATPG. Our

method is based on a completely different approach: since X-propagation strongly depends

on the underlying network structure, we extract certain structural parameters of the circuit

and build machine-learning based assessment system using support vector regressor (SVR)

that can predict the loss quite effectively for most of the X-inputs. Hence, without the aid of

traditional testability measures [DDS92, SPA85, SBA86, GT80] or running any simulation

tool, both of which would additionally require the functional features of a circuit, the

regressor predicts the detectability loss due to an X-source, solely based on the proposed set

of structural features. Note that the objectives of ATPG-tools and X-sensitivity predictors

are quite different. The primary purpose of ATPG and fault simulation tools is test-set

generation, and we use such tools to train our regressor. Apart from various applications

of the proposed regressor listed earlier, it can also be used to improve fault coverage of

ATPG-tools as discussed in Section 4.6.4. X-sensitivity prediction is also different from

testability analysis [DDS92, SPA85, SBA86, GT80] as the former estimates the loss of

detectability in the circuit as a whole with respect to a test-set, whereas the latter provides a

measure of controllability/observability of a particular line or a subset of lines. To reiterate,

while our regressor uses only the structural information of a CUT, traditional ATPG tools,

66 4.2. PROBLEM STATEMENT AND A MOTIVATING EXAMPLE

random testing, and testability-analyzers require complete structural and functional/gate

information of its netlist.

The rest of the chapter is organized as follows. In Section 4.2, the motivation behind

the proposed work along with the problem statement is presented. Section 4.3 describes the

circuit-parameters that are used for training the regressor and for prediction. Section 4.4

introduces the Support Vector Regressor (SVR) that is used as predictor, and Section 4.5

provides the details of the data analysis and methodology. Section 4.6 reports experimental

results. Conclusion and discussions on future work appear in Section 4.7.

4.2 Problem Statement and a Motivating Example

The objective of this work is to investigate the influence of circuit-structure on the loss

of detectability in a digital circuit arising due to the presence of one or more X-sources.

Furthermore, we would also like to explore whether, instead of deploying traditional and

computationally-intensive simulation approaches, a powerful training-based machine-learning

regressor (predictor) can be developed to assess the detectability-loss caused by various X-

sources, and rank them in the decreasing order of test-coverage regardless of its functionality.

Interestingly, our study reveals that a regressor can be designed that relies purely on cer-

tain structural features of the circuit. We describe below a set of features (parameters) that

capture a number of structural characteristics of the CUT, which influence the testability

of stuck-at faults, and consequently, the fault-coverage of a test set produced by ATPG.

Selecting a set of features that are minimally-overlapping and representative of various char-

acteristics of the data, always poses a challenge while building a machine-learning system.

Also, the total time required for computing the circuit parameters (feature-computation)

and predicting the detectability-loss (DT-Loss) of test coverage due to X-sources should be

negligible compared to exhaustive simulation.

In our analysis, for simplicity, we have considered single stuck-at fault model, though

it can be easily extended to include other fault models such as transition faults. Consider

a set of faults F , reported as the set of detectable faults by an ATPG tool. On setting a

particular X-source si to ‘X’, the ATPG reports a set of faults Fi as detectable. So, the set

UFi = F \ Fi is the subset of faults that become undetectable when input si is set to X.

The X-sensitivity of an X-source si, i.e, the loss of detectability due to the presence of

an X-value at si is denoted by DT-Loss(si).

DT-Loss(si) =
|UFi|
|F |

× 100% (4.1)

In order to demonstrate the impact of various X-sources on DT-Loss in a logic cir-

cuit and its dependence on the network structure, we consider an example with ISCAS’89

benchmark s27 [BBK89], which is shown in Fig. 4.1. Assuming each input port as an X-

source, DT-Loss for each of them is computed by running TetraMAX [J-2] and the results

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 67

are shown in Table 4.1. With seven X-sources, the maximum DT-Loss is 27.42% for G5

while the minimum is 4.84% for G2.

It is interesting to note that although both input-ports G5 and G2 have similar-size

output cones in the netlist, the DT-Loss caused by setting an X-value to each of them alone,

differ significantly. The level of the nodes (in the sense of topological ordering [Kah62]) in

the output cones as marked in Fig. 4.1, reveals certain structural dissimilarity between G5

from G2. Note that G5 affects the nodes lying at higher levels (which eventually are likely to

have bigger-size input cones), compared to those influenced by G2. Furthermore, G5 affects

more number of outputs. We observe that for this circuit, DT-loss can be predicted quite

satisfactorily based on a few structural features alone. Needless to say, both the functional

and structural attributes of the sub-network that is affected by an X-input, determine the

DT-Loss in a circuit. In our analysis, we identify certain features of the circuit that are

most likely to affect the DT-Loss when an input is set to X. The features we have chosen

are purely structural and do not use any functional information. Thereafter, we will build

a learning-based regressor and use it for predicting the DT-Loss for an X-input.

Figure 4.1: A layered, i.e., topologically sorted [Kah62] embedding of ISCAS’89 netlist: s27

Table 4.1: DT-Loss for s27

Port G2 G6 G3 G1 G7 G0 G5

DT-Loss 4.84 9.68 9.68 12.9 12.9 16.13 27.42

4.3 Structural Features of Logic Circuits

The training set for the proposed regressor comprises a number of sample points, each

representing an X-source, and is drawn from different benchmark circuits. We choose various

68 4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS

sample circuits from the ISCAS’89 [BBK89] and ITC’99 [CRS00] benchmark suites having

a wide range of functional and structural diversity. Note that the sizes (i.e., the number

of gates, lines) of these circuits also widely vary. Hence, in order to select independent,

discriminative, and representative features amidst such variability of circuit-parameters, we

need to study not only structural properties of the circuit but also apply certain kind of

normalization to obfuscate the relative influence of scale on these characteristic features.

1. A set of structural features that influence the variation of DT-Loss for different X-

sources in a particular circuit, may not be good enough to explain to the variation

of DT-Loss for an X-input of another circuit. This is because each circuit may have

certain unique structural features. This necessitates the inclusion of several structural

characteristics of the circuits in the feature set.

2. Since the circuit-size may vary, each feature of the circuit needs to be normalized

so that the features of X-sources drawn from different circuits become comparable.

Hence, for each circuit-feature, we need to compute a suitable normalization factor.

Since our objective is to explore the impact of X-sources on test-coverage, we focus on

certain structural characteristics of the CUT to serve as potential features that influence

the detectability of faults in Fi, and invalidate the detectability of faults that lie in the set

UFi, when an input si to the CUT is set to an unknown value. In this chapter, we use the

following terminology to define circuit-features:

1. Node. In a circuit, the inverters, buffers, and the logic gates, ‘XOR’ and ‘XNOR are

X-insensitive. That is, they let an X-signal to pass whenever it appears at their input.

Hence, such elements may be ignored from the viewpoint of detectability-loss while

analyzing a circuit structure. A gate/cell that does not belong to the above category

is called a node.

2. Circuit-graph. Let I, O and LG represent the set of input ports, output ports, and

gates of a circuit, respectively. A circuit netlist can be represented by a directed

graph G(E,V), where the vertex set V = {I ∪ LG ∪O} and the edge set E is the set

of directed edges representing a signal connection in the circuit between two vertices

in V .

3. X-cone. The output cone of an X-source in a circuit is called the X-cone of the X-

source. Given an X-source of a circuit with circuit-graph G, an X-cone is thus a

subgraph of G that can be obtained by exploring G starting from the X-source in the

sense of signal reachability.

4. Level of a vertex. The level of a vertex v, level(v), of a circuit-graph G is defined

as the length of the longest path through which it is reachable from any input port.

Note that while calculating the path length, only the vertices corresponding to the

nodes are considered. The vertex itself is considered in the path if it represents a

node. The input ports are assumed to be at level 0. The maximum level of a vertex in

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 69

the G is denoted by L. Levelizing a circuit essentially means embedding of the netlist

in a topologically sorted order [Kah62], considering the fact that the vertices, which

do not represent a node, do not contribute to the level. One such embedding for an

ISCAS’89 benchmark circuit, s27, is shown in Fig. 4.1, where the levels are depicted

with different shades. Note that in the diagram, two inverters are present and they

are in the same level as their preceding vertex.

5. Depth of a vertex. The depth of a vertex v, depth(v), is defined as the length of the

shortest path to it from any input port.

6. X-depth of a vertex. Quite similar to the above two definitions, the X-depth of a

vertex v, X-depth(v) in an X-cone is defined as the length of the shortest path to it

from the X-source. While the level and depth of a vertex are defined over all input

ports, the X-depth is defined with respect to a particular X-source only.

4.3.1 Illustration of Structural Uniqueness of Circuits and Their Inputs

Before we present the proposed structural features, in this section we illustrate a few circuit-

graphs of the circuit from ISCAS’89 [BBK89] benchmark suit in order show a visual demon-

stration the structural uniqueness of the circuits. Figure 4.2 shows the circuit-graphs of s713

(Figure 4.2a), s838 (Figure 4.2b) and s1494 (Figure 4.2c). In order to view the graph we

have used a graph visualization tool [SMO+03]. The figures show a hierarchical layout

of the circuit-graph, where the vertices belonging to the same graph-level are horizontally

aligned. The vertices representing the output ports are marked in red. The rest of the

vertices appear in blue. The vertices in the first horizontal alignment are the input vertices

(X-sources). Figure 4.2a shows that the circuit-graph of s713 has a heterogeneous structure.

The output vertices are scattered in different levels. Each of the X-cone of input vertices

are unique. Also, the graph-level seem to be larger compared to the node density of the

circuit. As opposed to s713, the circuit-graph of s838, shown in Figure 4.2b, shows a

pattern. It has an iterative structure. This affects the X-cone of the inputs also, whose size

uniformly varies as we move from the left most to the right most. The third circuit-graph is

that of s1494, shown in Figure 4.2c. It can be clearly seen from this graph-layout that this

circuit has many high fan-out points, both at the input vertices and at the internal vertices.

Thus, we can see that each circuit and each of its X-cones may have a unique structure.

70 4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS

(a) A heterogeneous structure: s713

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 71

(b
)

A
n

it
er

at
iv

e
st

ru
ct

u
re

:
s8

38

72 4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS

(c
)

H
ig

h
fa

n
-o

u
t

st
ru

ct
u

re
:

s1
49

4

Figure 4.2: Circuit-graph of some ISCAS’89 benchmark circuits.

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 73

4.3.2 Circuit Features

X-source

Figure 4.3: A diagram of a hypothetical circuit, where an input port (shown in blue color) is set to

an X-value, and the three partitions of the circuit induced by this X-source: P1 (colored

blue), P2 (colored brown), and P3 (colored green). The nodes in P1 that belong to

X–depth one (D1) are shown in red.

Given an X-source si in a CUT, we analyze its structural influence by partitioning the

circuit into three disjoint sets of vertices with respect to it: (i) Partition P1 - consists of

X-cone of si, (ii) Partition P2 - the sub-circuit that can propagate a signal to the X-cone,

and (iii) Partition P3 - the rest of the circuit. An illustration of partitions of a hypothetical

circuit is shown in Fig. 4.3. Note that an X-source can prevent both sensitization and

propagation of faults in P1. On the other hand, it can only prevent propagation of faults

in P2 to the output port in P1. However, the faults in P2 can be propagated to the output

ports in P3. Clearly, the X-source will have no effect on P3. Hence, partitions P1 and

P2 determine the effect of an X-source on detectability-loss. Moreover, an X-source can

degrade the detectability of faults in P1 in a more predominant fashion than those in P2.

The set of nodes (D1) in P1 at X-depth = 1 is shown in red in the figure and is referred to

later in this section. For the circuit s27 as shown in Fig. 4.1, we set an X-value to input

port G0 and the corresponding three partitions are as follows:

Partition P1 = {N1, AN1, OR1, OR2, ND1, NR3, N2, NR4, G11, G17, G10};
Partition P2 = {G1, G7, G6, G3, G5, NR1};
Partition P3 = {G2, NR2, G13}.

The task of finding suitable circuit parameters involves the discovery of certain struc-

tural features that capture the behavioral attributes of P1 and P2 as much as possible,

particularly for Partition P1. By analyzing a number of benchmark circuits, we have stud-

ied the variation in the partitions within a circuit for different X-sources, and also variations

across different circuits, and based on that, we have proposed the following set of empirical

74 4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS

circuit-parameters. Each of these parameters is illustrated with reference to the X-input G0

of s27, although all the proposed parameters may not be applicable for this circuit. Let the

set of nodes and the set of output ports in P1 be denoted by P1nodes
and P1op , respectively.

Number of nodes in P1 (nP1nodes
)

The normalization factor for this parameter is chosen as the total number of nodes in the

circuit. Thus, the normalized parameter indicates the proportion of nodes in P1, i.e, the

relative size of P1 with respect to the size of the CUT. Such normalization also serves

an additional purpose of providing a relative measure of the size of P1 with respect to the

different partitions. Note that the size of P1 may not always increase linearly with DT-Loss,

because this would mean that each of the X-sources will have similar effect on the nodes

in the circuit. Most circuits have X-sources that have many structural variations in their

X-cones and will be taken care by other parameters explained below. Nonetheless, this

parameter gives us an estimate of the size of partition P1, and a small size would generally

mean small DT-Loss.

Example: nP1nodes
for G0: In circuit s27, there are ten logic gates. Out of them, two

are ‘NOT’ gates, so the number of nodes in the circuit is eight, which is the normalization

factor. Similarly, the number of nodes in partition P1 is 6. So, the value of the normalized

parameter for input G0 is 6/8 = 0.75.

Number (nD1) of nodes in X-depth-1 (D1)

This gives the number of fanouts from an X-source. If any inverter or ‘XOR’/‘XNOR’

gate or buffer is adjacent to the X-source, then the number fanouts from such a gate is

also counted. This gives us a measure of the extent to which an X-source directly affects

its X-cone. A large value of nD1 in general, suggests a large value of DT-Loss. In this

case, we choose the total number of input ports as the normalization factor. The next two

parameters add more information to this feature in terms of the levels of nodes in nD1 .

Example: nD1 for G0: The nodes in the set D1 is AN1 and NR4. The total number of

input ports in the circuit is 7. So, the normalized parameter for G0 is 2/7 = 0.286.

Average level (AD1) of nodes in X-depth-1 (D1)

The normalization factor for this parameter is chosen as the average level of the output

ports in the X-cone.

Example: AD1 for G0: The level of gate AN1 is 1 and of gate NR4 is 5, so the average

level is (1+5)/2 = 3. The average level of output ports in the X-cone is (4+4+5)/3 = 4.33.

So the normalized parameter for G0 is 3/4.33 = 0.69.

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 75

Maximum level (MD1) of the nodes in X-depth-1 (D1)

The normalization factor is chosen as the maximum level among the output ports belonging

to in the X-cone of the concerned input.

Example: MD1 for G0: The maximum level among gates AN1 and NR4 is 5 and the

maximum level of a gate in s27 is 5. So the normalized parameter for G0 is 5/5 = 1.

Number of outputs ports (nP1op) in P1

The normalization factor is chosen as the number of output ports in the circuit. Thus, the

normalized parameter gives an idea of the maximum fraction of output ports that could be

rendered unobservable because of an X-value at this input.

Example: nP1op of G0: The total number of output ports in the circuit is 4 and the

number of output ports in X-cone(G0) is 3. Thus, nP1op = 3/4 = 0.75.

Normalized sum of levels (NP1op) of the output ports in an X-cone

The levels of different output ports play an important role in determining the loss in de-

tectability. Note that an output port lying at a low level is likely to contribute less in the

size of X-cone or Partition P2. The normalized parameter is defined as,

NP1op =

∑
v∈P1op

level(v)∑
u∈M level(u)

(4.2)

where M is a subset of the set of output ports of the circuit such that |M| = nP1op and

among all the output ports in the circuit, the output ports ∈ M have the highest levels.

Example: NP1op for G0: Among the four output ports in the circuit, the output ports

lying at the top 3 levels are same as the output ports in the X-cone. So the parameter is

given by (4 + 4 + 5)/(4 + 4 + 5) = 1.

X-depth-level ratio (DLRO) of output ports in an X-cone

DLRO =

∑
v∈P1op

X-depth(v)/level(v)

nP1op

(4.3)

Empirical evidence shows that this parameter is useful in leveraging the effect of variation

in the structure of different circuits when samples from these circuits are drawn to form

a training set, particularly the variation observed in the level (L) of the circuits. This

parameter is implicitly normalized.

DLRO for G0: The X-depth of the three output ports G11, G17 and G10 is 4, 4, and

1, respectively, and level is 4, 4 and 5, respectively. Hence, DLRO = (4/4 + 4/4 + 1/5)/3 =

2.2/3 = 0.73.

76 4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS

Number of input ports (nIP1) influencing an X-cone

It is expressed as the total number of input ports in P2. The normalization factor is the total

number of input ports in the circuit (nI). Hence, it is a reflection of the size of partition

P1 ∪ P2.

Example: nIP1 for G0: Five out of the seven input ports feed X-cone(G0), so the

normalized parameter is 5/7 = 0.71

Average ratio of depth-to-X-depth (CoP2)

This parameter is given by the expression

CoP2 =

∑
v∈P1nodes

depth(v)/X-depth(v)

nP1nodes

, (4.4)

It gives a measure of the controllability due to input ports in P2 on the nodes in P1. For

a node v, the ratio depth(v)/X-depth(v) is 1 when an X-source reaches the node through

a path shorter than any input in P2, otherwise the ratio is smaller than 1. CoP2 gives

the average ratio among all the nodes. A small the value of CoP2 implies high controlla-

bility of the input ports possibly leading to small DT-Loss%. This parameter is implicitly

normalized.

Example: CoP2 for G0: For the nodes in the X-cone of G0, the depth and X-depth

values are given in the Table 4.2 below. From this the value of CoP2 is computed to be

(1/1 + 2/2 + 1/2 + 2/3 + 1/4 + 1/1)/6 = 0.736.

Table 4.2: Depth and X-depth of nodes in X-cone of input G0 of s27

Node AN1 OR1 OR2 ND1 NR3 NR4

depth 1 2 1 2 1 1

X-depth 1 2 2 3 4 1

Influence of P2 on the X-cone (lP2)

Let the total number of gate-input ports of the nodes in P1 be given by ngip. Among

them, let lP2 be the number of lines from P2 that feed the nodes in P1. So, the influence

of P2 on the X-cone can be quantified using lP2 , and the normalization factor is chosen as

ngip. A small normalized value of lP2 for a large-size P1 implies that the X-cone has huge

reconvergent lines, and the effect of X-signal is reachable up to greater depths of the circuit.

Example: lP2 for G0: There are six nodes in the X-cone and each of them has two

input ports, so the total number of gate-input ports is 12. Among them, one input of AN1,

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 77

OR1, OR2 and NR3 each, is fed from outside the X-cone. So, the normalized parameter is

4/12 = 0.33.

Maximum X-depth (MP1) among the nodes in an X-cone

The influence of an X-source is likely to decrease with the X-depth of a node. An X-cone

with large maximum depth could imply that the DT-Loss would be small even if the size of

P1 is large. We do not normalize this parameter because, firstly, this is mostly independent

of the size of the circuit in terms of the number of gates in the CUT, and secondly, this

parameter does not vary widely for different circuits.

Example: MP1 for G0: Maximum X-depth among the nodes in the X-cone is that of

gate NR3, the value of which is 4.

Categorical feature (CF)

It is observed that some circuits netlist possess an iterative structure. Hence, the X-cones

of these circuits might have similar structures even though of different size. The DT-Loss

due to the presence of an X-source is affected differently due to their iterative structure.

Hence, it is important to discriminate such circuits from the rest. We add a categorical

binary feature-flag to represent them. Categorical features are generally encoded as dummy

variables in the feature set; all sample data that represent X-sources taken from a iterative

circuit is encoded as 0 for this feature, and for the rest of sample data, it is encoded as

1. The information of whether or not a circuit has an iterative structure is assumed to be

known.

Table 4.3: Summary of the parameters

No. Name Description

1 nP1nodes
Number of nodes in P1.

2 nD1
Number of nodes in X-depth-1.

3 AD1
Average level of nodes in X-depth-1.

4 MD1
Maximum level among nodes in X-depth-1.

5 nP1op Number of output ports in P1.

6 NP1op Normalized sum of levels of output ports in P1.

7 DLRO Average X-depth-to-level ratio of output ports in P1.

8 nIP1 Number of input ports feeding P1.

9 CoP2 Average depth-to-X-depth ratio of nodes in P1.

10 lP2
Number of lines from P2 feeding the nodes in P1.

11 MP1 Maximum X-depth among the nodes in P1.

12 CF Categorical binary variable

78 4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS

Example: Since s27 does not have an iterative structure, the value of this parameter

is 1 for G0.

A brief description of the parameters (features) is given in Table 4.3. Note that all these

features are based exclusively on the structural information of the circuit. No functional

information of the netlist such as gate type, is utilized for defining features.

4.3.3 Algorithms for Feature Computation

Algorithm 3 computes the level and depth of the vertices in a circuit-graph. Thereafter, the

features for each X-source are computed using Algorithm 4. These algorithms are based

on the traversal techniques implicit in Kahns algorithm [Kah62] and breadth-first-search

(BFS) [CSRL01] (starting from the X-source) respectively. Slight modifications of these

algorithms are needed as in our case, a circuit-graph may contain some vertices (called

non-nodes), which do not effectively contribute to the count of level, depth or X-depth of

the nodes. The normalization factor of nP1nodes
(the total nodes in the circuit) can also be

determined by Algorithm 3.

Algorithm 3 : Computing level and depth of vertices of a circuit-graph G(E,V)

1: Initialize level(v)← 0 ∀v ∈ V and depth(v)←∞ ∀v ∈ V \ I
2: Initialize depth(v)← 0 ∀v ∈ I

3: Enqueue(v) on queue Q1 ∀v ∈ I

4: while Q1 not Empty do

5: v ← Dequeue(Q1)

6: for Each children w of v do

7: Remove edge {v → w}
8: if w is a node then

9: level(w)← max(level(w), level(v) + 1)

10: depth(w)← min(depth(w), depth(v) + 1)

11: else

12: level(w)← max(level(w), level(v))

13: depth(w)← min(depth(w), depth(v))

14: end if

15: if indegree of w is 0 then

16: Enqueue(w)

17: end if

18: end for

19: end while

20: Restore edges

While computing nIP1, for each vertex representing an output port, an input-port-list

is maintained. The input-port-list is a list containing those input ports from which the

vertex is reachable. This list is also computed during the execution of Algorithm 3. An

input-port-lists is maintained for each vertex, and is updated each time it is discovered

through a new parent vertex during the traversal. These lists can be deleted once all its

4.3. STRUCTURAL FEATURES OF LOGIC CIRCUITS 79

children have been updated. nIP1 is computed by finding the union of input-port-lists of

the output ports in the X-cone.

For calculation of parameter lP2 , for each node v, let l(v) be the number of inputs

from P2 feeding v, l(v)1 be number of times it is discovered while executing Algorithm

3, and l(v)2 be number of times it is discovered while executing in Algorithm 4. Then

l(v) = l(v)1 − l(v)2 and lP2 =
∑

v∈P1nodes
l(v). The normalization factor is computed as

ngip =
∑

v∈P1nodes
l(v)1.

Algorithm 4 is based on a variant of BFS and can be used to find the X-depth of each

vertex. Note that as the X-cone is traversed by Algorithm 4, the sets P1nodes
, P1op and D1

are obtained. So, the features can be easily computed.

Algorithm 4 : Computing X-depth of vertices in the X-cone of an X-source si
1: Enqueue(si) on queue Q2

2: X-depth(si)← 0

3: while Q2 not Empty do

4: q ← Dequeue(Q2)

5: SUB BFS(q,Q2)

6: end while

7: procedure SUB BFS(q,Q2)

8: for Each children r of q do

9: if r is not visited then

10: Visit r

11: if r is a node then

12: X-depth(r)← X-depth(q) + 1

13: Enqueue(r)

14: else

15: X-depth(r)← X-depth(q)

16: SUB BFS(r,Q2)

17: end if

18: end if

19: end for

20: end procedure

We modify the BFS-algorithm by incorporating a sub-function called SUB BFS as

given in Algorithm 4. A non-node vertex is never enqueued. Instead, a new SUB BFS

traversal is invoked when a non-node vertex is visited, and stops only if the visited vertex

is a node, and the enqueue operation is executed accordingly.

80 4.4. SUPPORT VECTOR REGRESSION (SVR)

Table 4.4: Features for s27
PPPPPPPparameter

port
G0 G1 G2 G3 G5 G6 G7

1 nP1nodes
6/8 6/8 1/8 4/8 2/8 6/8 6/8

2 nD1
2/7 1/7 1/7 1/7 1/7 1/7 1/7

3 AD1
3/4.33 1/3.75 2/2 2/4.3 4/4.3 1/4.3 1/3.75

4 MD1
5/5 1/5 2/2 2/5 4/5 1/5 1/5

5 nP1op 3/4 4/4 1/4 3/4 3/4 3/4 4/4

6 NP1op 1 1 0.4 1 1 1 1

7 DLRO 0.73 1 0.5 0.77 0.3 1 1

8 nIP1 5/7 6/7 2/7 5/7 5/7 5/7 6/7

9 CoP2 0.736 0.602 1 0.645 0.75 0.602 0.602

10 lP2
4/12 6/12 1/2 4/8 2/4 5/12 6/12

11 MP1 4 5 1 4 2 5 5

12 CF 1 1 1 1 1 1 1

Time Complexity: The time complexity for computing the features from an X-source

is O(|E| + |V |). Note that given a circuit and its X-sources, the full circuit needs to be

traversed only once to calculate the level and depth. Once the levels and depths of all the

vertices are computed, only the X-cone needs to be traversed, for each X-source.

The various features for the circuit s27 are given in Table 4.4. Each entry is of the

form (i/j) where i denotes the feature value and j denotes its normalization factor.

4.4 Support Vector Regression (SVR)

In this section, we set up the problem of predicting the DT-Loss of an X-input in a circuit,

using the features extracted in the previous section, as a regression problem [DCM12]. To

this end, suppose our training data has N inputs (obtained by pooling together all the

inputs from the different circuits), and denote by yi the value of DT-Loss of the i-th input,

and let xi ∈ Rp denote the vector of features corresponding to that input. In our case,

p = 12, corresponding to 11 numerical features and 1 categorical binary feature, which is

0 or 1 depending on whether the circuit has an iterative structure or not, respectively (see

Table 4.3). Thus, we will have a 12-dimensional feature space. In regression analysis yi is

related to a function of xi as follows: yi = f(xi) + εi, where f : Rp → R is some unknown

function and {εi : 1 ≤ i ≤ N} are independent mean-zero random variables, which reflect

measurement errors [CH06]. In general, the unknown function f is estimated by minimizing

some loss-function on the training data {(xi, yi) : 1 ≤ i ≤ N}, over a class of functions.

The simplest choice is to assume that the function f is linear f(x) = xTβ + β0. This

is the classical multiple regression model, where the parameters β and β0 are estimated by

minimizing the error in sum-of-squares. Even though multiple regression is very easy to

4.4. SUPPORT VECTOR REGRESSION (SVR) 81

implement and the estimated coefficient β̂ has a natural interpretability, the relationship

between the DT-Loss of an input and its associated features is quite complex, and a sim-

ple linear function is not enough to capture this dependency. To address this issue and

to improve our predictive performance, we use a support vector regression (SVR) model,

which a powerful machine-learning method commonly used to model non-linear depen-

dencies between variables [SS04]. SVR is an extension of the well-known binary classifier

support vector machines (SVM) adapted for regression with a qualitative response. In the

following, we briefly discuss the popular variant ε-SVR [Vap95, SS04], which fits the func-

tion f(x) = xTβ + β0, where β and β0 are chosen according to the following optimization

problem (given tuning parameters C and ε),

min
β,β0,ζ,ζ′

1

2
‖β‖2 + C

N∑
i=1

(ζi + ζ ′i)

subject to


yi − xTβ − β0 ≤ ε+ ζi,

xTβ + β0 − yi ≤ ε+ ζ ′i,

ζi, ζ
′
i ≥ 0, for 1 ≤ i ≤ N.

(4.5)

Note that by the introduction of the tuning parameter ε, we ignore the points with residuals

|yi− xTβ − β0|, which are less than ε. The dual formulation of (4.5) is given by (see [SS04]

for details)

max
α,α′

 −1

2

∑N
i,j=1 (αi − α′i)(αj − α′j)xTj xi

−ε
∑N

i=1 (αi + α′i) +
∑N

i=1 yi(αi − α′i)

subject to
N∑
i

(αi − α′i) = 0 and αi, α
′
i ∈ [0, C],

(4.6)

where α = (α1, α2, . . . , αN) and α′ = (α′1, α
′
2, . . . , α

′
N) are the dual variables.

The SVR procedure described above can be easily extended to include non-linear

functions, by enlarging the feature space using basis functions. Once a set of basis functions

h = (h1, h2, . . . , hm) (these correspond to different transformations of the selected features)

is chosen, we can fit an SVR using the input features h(x1), h(x2), . . . , h(xN). This fits

a non-linear function f(x) = h(x)Tβ + β0, where the parameters β and β0 are chosen by

solving the optimization problem (4.5) on the transformed data. Note that (4.5) involves

the function h(x) only through inner product h(x)Th(y), that is, to fit a non-linear function

using SVR, we only require the knowledge of the kernel function K(x, y) = h(x)Th(y).

Therefore, given a general kernel function K(x, y), the parameters β and β0 in the SVR

82 4.5. DATA ANALYSIS AND METHODOLOGY

with kernel K, are obtained by solving the following optimization problem:

max
α,α′

 −
1

2

∑N
i,j=1 (αi − α′i)(αj − α′j)K(xi, xj)

−ε
∑N

i=1 (αi + α′i) +
∑N

i=1 yi(αi − α′i)

subject to

N∑
i

(αi − α′i) = 0 and αi, α
′
i ∈ [0, C].

(4.7)

We will apply (4.7), with the commonly used Gaussian kernel K(x, y) = exp(−γ||x− y||2),

for predicting the DT-Loss of an X-input based on the selected features (see Section 4.5

below for details). The Gaussian kernel is translation invariant, and defines a function

space, which is much larger than linear or polynomial kernels. The parameter γ can be

used to control the influence of a single training sample in the model, with low values

meaning ‘far’, and high values meaning ‘close’.

4.5 Data Analysis and Methodology

We consider a number of circuits from the ISCAS’89 and ITC’99 benchmark suites for

preparing our dataset. A sample point in the dataset represents an input (primary or

pseudo) of a circuit belonging to it. A preliminary analysis of the circuits reveals that

they vary widely in their sizes and structural characteristics. In order to maintain some

uniformity and avoid issues with outliers and skewness, we prune a few circuits that are very

small or very large. Big-size circuits contribute a large number of sample points, and for

some of them, most of the inputs cause very small DT-loss when set to X-value; they tend to

add only skewness to the data. Following the pruning step, we consider a subset of circuits

ranging from s349 (smallest) to b22s (largest), and we divide them into the training set and

the test set as follows: the samples in the test set should conform to some representative

data in the training set. Conventionally, the sample points in a dataset are randomly split

into training and test sets to ensure fair representation. In our case, we need to grade the

X-sources of a circuit, and hence, we need to select circuits rather than the X-sources. To

ensure fair representation of the circuit that are chosen for the SVR test set, in the training

set, we perform the following classification based on the functionality of ISCAS89 circuits:

(a) Category 1 (multiplier): s344, s349, s420, s838, (b) Category 2 (controllers): s382,

s386, s400, s444, s510, s526, s953, s1488, s1494, (c) Category 3 (PLD devices): s641, s713,

s820, s832, (d) Category 4 (combinational circuits with randomly inserted flip-flops): s1196,

s1238, (e) Category 5 (real chip-based circuits): s9234, s13207, s15850, s38417, s38584, and

(f) Category 6: (function not classified): s35932. Among them, some circuits (s344, s382,

s641, s820, s1196, s1488) are re-synthesized versions of some other circuits (s349, s400, s713,

s832, s1238, s1494) obtained after removing redundancy. Finally, we consider some of the

circuits in the ITC99 benchmark suite as Category 7, the largest among the data set being

4.6. EXPERIMENTAL RESULTS 83

b22s. From each category, we consider a representative circuit of large size in our test set.

To summarize, the training and test set consist of inputs from the following circuits:

Training set : {s344, s349, s382, s386, s400, s444, s420, s510, s526, s641, s820, s832,

s953, s1196, s1423, s1488, s5378, s9234, s13207, s15850, s38417, b03, b04s, b05s, b06,

b07s, b08, b09, b10, b11s, b12, b13s, b14s, b15s, b20s, b21s}
Test set : {s713, s838, s1238, s1494, s35932, s38584, b22s}.

The DT-Loss for large circuits is found to be small for most of the X-sources. As

a result, the distribution of DT-Loss in the population is observed to be very skewed,

and thus the performance of the regression model becomes sensitive to the choice of the

function f . For example, multiple linear regression was unable to accurately predict the

DT-Loss for most of the test circuits (see Table 4.5 in the next section). This motivates

us to use non-linear regression functions based on more sophisticated machine-learning

techniques. In our dataset, we use the support vector regression (SVR) method [SS04],

using the Gaussian kernel, as explained in the previous section. Recall, in the notation

of Section 4.4, the training data is of the form (x1, y1), (x2, y2), . . . , (xN , yN), where yi is

the value of the DT-Loss of an X-input, and xi ∈ R12 is the corresponding feature vector

in the 12-dimensional feature space. Note that this model has three tuning parameters

C, ε, γ, which control the generalizability of SVR [CM04]; the parameter ε determines the

maximum deviation that is allowed between the predicted and true value of any point, the

parameter C controls the trade-off between the amount to which deviations greater than

ε is permitted and the model complexity in (4.5), and the kernel parameter γ controls the

reach of a single point in the training set. The selection of these parameters based is on the

minimum error in the training set leads to the well-known problem of over-fitting. This is

avoided by adopting a technique called K-fold cross-validation [HTF09, Chapter 7], where

the training data is divided into K equal parts/folds, and then training is performed on

K − 1 folds, whereas testing is executed on the remaining fold. This process is repeated

K times where each fold is considered in the test set once, and the parameters are chosen

by minimizing the average test error of the K test errors. In our data set, we have used

3-fold cross-validation to choose the parameters, using the mean-squared-error to measure

test errors. The parameters for the SVR model in our dataset are selected as: ε = 0.01,

C = 100 and γ = 0.1.

4.6 Experimental Results

The experiments were carried out on an Intel Xeon 3.00-GHz × 4 processor with 8GB

memory. We used Synopsys TetraMAX [J-2] as the ATPG tool for computing the DT-Loss.

For the construction and manipulation of graphs, we used the Python module, graph-tool

[Pei14], which implemented in C++. We used scikit-learn [ea11] as the machine learning

tool-kit. For each circuit in the training set as well as in the test set, all the input ports are

84 4.6. EXPERIMENTAL RESULTS

considered as X-sources. However, in training set, the input ports that have similar values

for true DT-Loss and parameter values are removed to make sure that each sample point is

unique.

4.6.1 Goodness-of-Fit

The first step to assessing the performance of the SVR model is to check whether it fits

the training data well. To this end, let f̂(x) be the regression function estimated by the

SVR method, and ŷi = f̂(xi) the DT-Loss predicted by the model for the ith input point in

the training set. Therefore, yi − ŷi is the difference between the actual and the predicted

DT-Loss. It is common to use the coefficient of determination (CD), which is a relative

measure of goodness-of-fit obtained by comparing the squared-RMSE (Root Mean Squared

Error) with total variance of the training data: CD = 1−
∑N

i=1(yi−ŷi)2∑N
i=1(yi−ȳ)2

, where ȳ = 1
N

∑N
i=1 yi

is the mean of the DT-Loss in the training set. Note that CD ≤ 1 by definition (in case of

multiple regression CD is equal to the well-known multiple R2 [CH06]), and a value of CD

close to 1 indicates a good fit.

0 20 40 60 80
True DT−loss

0

20

40

60

80

Pr
ed

ic
te

d
D
T
−
l
o
s
s

Figure 4.4: Scatter plot showing SVR-predicted against true DT-Loss for X-inputs in the training

set.. The number of sample points is 3898.

The CD value for the SVR is 0.96, which indicates that this fits the training data well,

and far better than multiple regression, which has CD = 0.62. Fig. 4.4 shows a scatter

plot of the predicted values of the SVR against the actual values of the DT-loss in the

training set. The horizontal axis represents the actual and the vertical axis represents the

predicted DT-loss, the points plotted are (y1, ŷ1), (y1, ŷ2), . . . , (yN , ŷN), and the dotted red

diagonal line represents the equation y = x, that is, the points where predicted values are

same as the true values. We observe that most of the points are in the neighborhood of the

diagonal line, indicating that the SVR model fits well to the training data. The CPU-times

for training multiple regression and SVR are 0.08 seconds and 11.22 seconds, respectively.

4.6. EXPERIMENTAL RESULTS 85

4.6.2 Predictive Performance

Recall that we have n = 7 circuits in the test set. Suppose the j-th circuit (where 1 ≤ j ≤ 7)

has nj possible inputs, with DT-Loss yj1, . . . , yjnj , and the corresponding feature vectors

xj1, . . . , xjnj . To measure how well our SVR model predicts the DT-Loss of the j-th circuit

we define the (predictive) CD of the j-th circuit as follows:

CDj = 1−
∑nj

i=1(yji − ŷji)2∑nj

i=1(yji − ȳj)2
,

where yji = f̂(xji) is the predicted value, and ȳj = 1
nj

∑nj

i=1 yji the mean of the actual

DT-Loss of the inputs of the j-th circuit. As before, the predictive CD is scale independent,

and, therefore, can be used to compare the results for different test circuits regardless of

the range of the DT-Loss for each circuit.

Table 4.5: Predictive performance of the regressor

Circuit Linear Regressor SVR

s713 0.28 0.42

s838 0.48 0.94

s1238 0.64 0.90

s1494 0.21 0.99

s35932 0.63 0.85

s38584 0.75 0.83

b22s -0.16 0.81

The CD values for the different circuits are shown in Table 4.5. As expected, the SVR

has better CD than the multiple regression for all the circuits. In particular, for circuits

s1494 and b22s we see marked improvement of the CD values from 0.21 to 0.99 and -0.16

to 0.81, respectively. Moreover, the CD values for SVR of all circuits (expect s713) is more

than 0.8 which indicates that SVR is able to effectively predict the DT-Loss values in these

circuits. (Possible reasons for inaccurate predictions in circuit s713 are discussed in Section

4.6.4.) The scatter plot of the values predicted by the SVR model versus the actual values,

for all the 7 circuits in the test set, are shown in Fig. 4.5. We will discuss these results,

together with how well the SVR model predicts the ordering of the DT-Loss, in detail in

Section 4.6.4.

4.6.3 A Metric for Evaluating X-Source Grading

As discussed in section 4.1, grading of the X-sources based on their X-sensitivity i.e, ranking

them in the decreasing order of DT-loss, has many applications. However, the DT-loss

86 4.6. EXPERIMENTAL RESULTS

for some X-sources may be very close to each other and hence grading them may not be

so useful compared to other X-sources of the same circuit with high DT-Loss. Hence, we

consider the top 10 X-sources in terms of DT-Loss to demonstrate the efficiency of our

ranking scheme. The true DT-Loss of a set of X-sources yield a particular grading (a

ranking from the largest to the smallest based on DT-Loss) of the X-sources. Similarly, the

predicted DT-Loss yield another grading of the X-sources. If these two gradings are the

same, then we say that the model could grade all the X-sources correctly, even though the

model might not predict the actual value of the DT-loss so accurately. In general, these

two gradings will not be identical, and to measure how well a grading is correctly predicted

by the model, we define a notion of distance between gradings. We estimate this based

on the well-known Kendall’s tau distance [FKS03, DG77], which is a measure of disarray

between two permutations, as defined below: Given two rankings/permutations σ1 and σ2

of a set of elements S = {l1, l2, . . . , lm}, the Kendall’s tau distance is the fraction of pairs,

(li, lj), i < j, of elements of S that appear in opposite orders in the two rankings, i.e., either

σ1(li) > σ1(lj) ∧ σ2(li) < σ2(lj) or σ1(li) < σ1(lj) ∧ σ2(li) > σ2(lj).

Given a circuit j ∈ {1, 2, . . . , 7} in the test set with bj different X-sources, denote by

Sj = {s1, s2, . . . , sbj} the set of its X-sources. Let η(si) and η̂(si) be the true and predicted

(using SVR) values of the DT-Loss for the X-source si ∈ Sj , respectively. To evaluate

the how well the model predicts grading of the X-sources among the highest DT-Loss, we

consider the top M (we use M = 10 in our experiments) values from each of the sets

{η(s1), η(s2), . . . , η(sbj)} and {η̂(s1), η̂(s2), . . . , η̂(sbj)}. However, the DT-Loss in these two

sets may correspond to different X-sources, so we cannot directly compare the rankings

using the Kendall’s tau distance. To circumvent this issue, we combine the X-sources from

these two sets to make them identical, and then compute the distance between the actual

and predicted grading. This is explained in the steps below:

1. Compute the set S(M) of X-sources with the top M actual DT-Loss, that is, X-sources

corresponding to the largest M values from the set {η(s1), η(s2), . . . , η(sbj)}.
2. Compute the set Ŝ(M) of X-sources with top M predicted DT-Loss.

3. Define SM = S(M)

⋃
Ŝ(M).

4. Compute set T of all pairs (si, sj), with si, sj ∈ SM , such that

• η(si) > η(sj) and η̂(si) < η̂(sj) or η(si) < η(sj) and η̂(si) > η̂(sj), and

• |η(si)− η(sj)| > δ.

5. Define the δ-Kendall’s tau distance (between the actual and the predictive orderings)

as the proportion of such pairs, that is, τδ := |T |
(|SM |

2)
.

Choosing δ = 0 corresponds to the actual Kendall’s tau distance (which simply counts

the number of pairwise mismatches) between the actual and predicted gradings of the X-

sources in the set SM defined above. We introduce the tuning parameter δ, which ignores a

pairwise mis-grading when the difference between the actual DT-Loss of the pair is close (less

4.6. EXPERIMENTAL RESULTS 87

than δ). Therefore, by definition, τδ lies between 0 and 1, and τδ decreases as δ increases.

In Fig. 4.5 we show a grade plot for the each circuit in the test set, which plots the values

τδ, as δ is varied from 0 to 10. Finally, note that the presence of one or a few X-sources in

SM which has large under-prediction or over-prediction, can significantly increase the value

of τδ. This can happen when the model predicts extreme points inaccurately, and inclusion

of these X-sources might not reflect the quality of the predicted grading for the rest of the

inputs. In order to deal with this, we can remove r �M elements from SM which has the

highest difference between the actual and predicted DT-Loss%, and then compute the τδ.

We call this r-eliminated δ-Kendall’s tau distance.

4.6.4 Interpreting the Prediction Results

Fig. 4.5 shows two plots for each circuit in the test set. The first (top) figure shows the

scatter plot and the second (bottom) figure shows the grade plot. The number of inputs

for each circuit is given in the scatter plot. The maximum value of true DT-Loss is given

in the grade plot.

Among the circuits in the test set, circuit s713 (Fig. 4.5a) is least effectively predicted

by the SVR model, as seen from the CD value in Table 4.5. One reason for this, can be

because that each X-source of this circuit has a large structural variation in the partition P2,

unlike most of the other circuits. Though the feature nIP1 is able to capture such variation,

since the number of such circuits in the population is small, the predictive performance is

not good. However, the scatter plot show that many inputs are accurately predicted and

the grading plot shows that the grading of the X-sources in SM is quite fair even for δ = 0.

Circuit s838 has an iterative structure and so the scatter graph shows that the X-

sources have uniformly varying DT-Loss. Though nearly all the sample points are under

predicted (Fig. 4.5b), the points are quite close to the diagonal line. Only one X-source of

this circuit is seen to have large under prediction. From the grade plot, it can be seen that

τδ is very small for δ = 0 and becomes 0 for δ = 1, indicating that the grading is very well

predicted by the SVR model.

The scatter plot for circuit s1238 (Fig. 4.5c) shows that the sample points with small

DT-Loss are predicted well. However, there are a number of sample points with true DT-Loss

between 10% to 50%, which have not been very accurately predicted. This effects grading

of the X-sources as seen from the large values of τδ (the grade plot and the 1-eliminated

and the 2-eliminated are also given in Fig. 4.5c).

For circuit s1494 (Fig. 4.5d), the scatter plot shows that the true DT-Loss values vary

in a wide range with the maximum being 78.35%. Almost all of them have been accurately

predicted. Consequently, the grading is good, with τδ nearly 0 when δ < 3 and τδ becoming

0 when δ = 4 (which is a very small threshold given that the sample points are spread

between 0% to 80%).

88 4.6. EXPERIMENTAL RESULTS

#Sample points = 52

0 2 4 6 8 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

τ δ

Max True DT−loss = 16.98%

(a) s713

#Sample points = 66

0 2 4 6 8 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

τ δ

Max True DT−loss = 49.07%

(b) s838

#Sample points = 30

0 2 4 6 8 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

τ δ

Max True DT−loss = 48.87%
0-eliminated
1-eliminated
2-eliminated

(c) s1238

#Sample points =14

0 2 4 6 8 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

τ δ

Max True DT−loss = 78.35%

(d) s1494

4.6. EXPERIMENTAL RESULTS 89

#Sample points = 1453

0 2 4 6 8 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

τ δ

Max True DT−loss = 62.94%

(e) s38584

#Sample points = 767

0 2 4 6 8 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

τ δ

Max True DT−loss = 24.83%
0-eliminated
1-eliminated
2-eliminated

(f) b22s

Figure 4.5: Scatter plots and grade plots for the circuits in the SVR test set.

Circuit s38584 (Fig. 4.5e) is a large circuit of the benchmark. It is has one X-source

with large DT-Loss. The remaining X-sources of this circuit have very small DT-Loss. Even

though the prediction of the DT-Loss is not accurate for the X-source with large DT-Loss,

it can be seen that the prediction result could clearly distinguish it. Also, since the rest of

the X-sources have very close true DT-Loss values, τδ becomes 0 for δ = 3.

Lastly, in circuit b22s (Fig. 4.5f), most of the X-sources have negligible DT-Loss, all

of which have been successfully predicted. A number of X-sources have DT-Loss which lie

in a small range (less than 15%). It is seen that the structural difference between these

X-sources are very small and so it is quite difficult to grade them minutely by prediction.

A group of X-sources have DT-Loss more than 20%. These could be distinguished from the

rest of X-sources expect for two cases. This is due to inadequacy of distinguishing features

in our model. The predictions for these inputs can potentially be improved if we can find

a structural uniqueness which distinguish these two X-sources. Moreover, we see from the

scatter plot that these two X-sources have high under-prediction. The grade plots for the

1-eliminated and 2-eliminated of the τδ are shown in Fig. 4.5f.

In the following we summarize our observations from Fig. 4.5 and the above discussion:

• For all the circuits in the test set, most input points are near the diagonal line.

90 4.6. EXPERIMENTAL RESULTS

This implies that the features selected and the SVR model effectively captures the

relationship between the circuit features and the detectability loss.

• For most of the circuits, a large fraction of sample points have true DT-Loss very close

to 0. For all such sample points, the predicted values are quite accurate. Therefore,

the proposed model can successfully identify the X-sources in a circuit which have

small effect on the detectability loss.

• The grade plots show that for 4 out of the 6 test circuits, τδ is 0 for δ ≤ 4. This means,

for these circuits each pair of the X-sources, could be graded successfully assuming

that a maximum of 4% difference in true DT-Loss is overlooked.

The regressor may also find applications in augmenting an ATPG tool. For an illus-

tration, we consider an ISCAS’89 benchmark circuit (s1494) and run ATPG to generate a

test set and its fault-coverage is noted. The regressor predicts high X-sensitivity for one of

its input ports with a DT-loss of 69% (its real DT-loss is 71%). Once this information is

known, we set a constant value (say logic 0) to this input. When we run ATPG again on this

circuit, we observe that fault-coverage of the test set produced by it increases significantly.

Incidentally, DT-loss reduces to 17% when a constant value is set to the sensitive input.

4.6.5 Relationship of the Features with DT-loss

The proposed features have been envisioned in order to intuitively capture the structural

diversity of the circuits in the dataset. As discussed in Section V, the circuits in the test

data have been chosen such that each of them is a representative of some functional circuits

that constitute the training set. This is important because, we are primarily interested

in discovering the relation between DT-loss and structural features, and this can only be

reflected by choosing the circuits in the test set following the criterion stated above. On

plotting the standardized values of individual feature against true DT-loss for the circuit in

the test set, it is seen that a unique subset of features often plays a crucial role for a given

circuit. A few of the plots have been shown in the Fig. 4.6.

0.0 0.2 0.4 0.6 0.8 1.0
nP1op

0

10

20

30

40

50

Tr
ue

 D
T
−
l
o
s
s

(a) s838

0.0 0.2 0.4 0.6 0.8 1.0
CoP2

5

0

5

10

15

20

25

Tr
ue

 D
T
−
l
o
s
s

(b) b22s

Figure 4.6: Dependence of true DT-loss on various features

4.6. EXPERIMENTAL RESULTS 91

• s838: Many features vary almost linearly with DT-loss. One such plot for nP1op is

shown in Fig. 4.6(a).

• b22s: Two features nP1nodes
and MP1 are seen to distinguish the samples with small

DT-loss. For the rest of the sample points, feature lP2 and in particular, CoP2 are

seen to discern minute DT-loss variations. The plot for CoP2 is shown in Fig. 4.6(b).

Feature nD1 provides good explanation for high DT-loss. While the importance of

DLRO is not apparent from the its plots, it helps improving the prediction quality

for several circuits as discussed earlier in Section 4.3.

4.6.6 CPU-Time

We present here, data for CPU-time required by the SVR method for grading the DT-Loss

of X-inputs of a circuit. The prediction time is mostly spent on feature computation for the

X-sources, so we report the feature extraction time. As mentioned earlier, our primary aim

is to grade all X-sources of a given circuit within a short time. In order to justify the efficacy

of the proposed method, we report the total prediction time for all inputs of a circuit. Note

that an ATPG tool can also be used for computing the DT-Loss for each input port when

it is set to an X-value. We compare below, the performance of our regressor with that of

an ATPG-based tool.

We report the CPU-time for some large circuits from ISCAS’89 and ITC’99 suites

in Table 4.6: Column 1(4) gives the circuit name, columns 2(5) and 3(6) report the total

CPU-time required for running ATPG and for feature computation, respectively. From the

table we can see that the overall procedure runs within a few minutes for all the circuits,

and the time required for feature computation is almost negligible compared to the time

required to run ATPG.

Table 4.6: CPU-time taken by ATPG tool [J-2] and for feature computation for some ISCAS’89 and

ITC’99 benchmark circuits.

Circuit CPU-time (sec) Circuit CPU-time (sec)

ATPG Feature ATPG Feature

computation computation

ISCAS’89 Benchmark circuits [BBK89]

s15850 296.96 25.6 s35932 1015.36 22.38

s38417 1341.46 54.34 s38584 1338.92 37.52

ITC’99 Benchmark circuits [CRS00]

b14s 485.07 42.044 b15s 1987.53 145.51

b21s 2002.49 112.22 b22s 4521.06 169.58

92 4.6. EXPERIMENTAL RESULTS

4.6.7 Error Bars

To understand how the predicted DT-Loss estimate the actual values, we need to under-

stand the variability of the estimates with respect to the measurement error. Error bars

are graphical representations of the variability of estimates, which show the precision of

estimates and how far away are the estimates from the values. We use the method of non-

parametric bootstrap [ET93] for computing the 2-standard deviation error bar as described

below:

Figure 4.7: 2-Standard deviation prediction-error bars for inputs from circuits in the test set.

1. SampleN points uniformly with replacement from the training set (x1, y1), . . . , (xN , yN).

Denote this sample by (x′1, y
′
1), . . . , (x′N , y

′
N).

2. Estimate the regression function f using the data (x′1, y
′
1), . . . , (x′N , y

′
N) as the new

training set. Denote the function estimated by f̂ ′, and the new predicted value by

ŷ′0 = f̂ ′(x0).

3. Repeat steps 1 and 2, B times, which givesB different predicted values: ŷ′01, ŷ
′
02, . . . , ŷ

′
0B.

4. The 2-standard deviation prediction error bar, for predicting y0, is [µ̂x0 − 2σ̂x0 , µ̂x0 +

2σ̂x0], where µ̂x0 = 1
B

∑B
j=1 ŷ

′
0j is the mean, and σ̂2

x0 = 1
B

∑B
j=1(ŷ′0j − µ̂x0)2 is the

variance of the B bootstrap estimates.

In our experiments we have taken B = 100 bootstrap resample. Fig. 4.7 shows the

2-standard deviation error bars of 10 randomly selected inputs from each circuit in the

test set. For every circuit, we randomly choose inputs, 5 with DT-Loss greater than 5%

and 5 inputs with DT-Loss less than 5%. However, few circuits have less than 5 inputs

with DT-Loss greater than 5%, in which case, the rest of the inputs are chosen from those

having DT-Loss less than 5%. Fig. 4.7 shows that for most of the inputs the actual values

(blue points) are within the error bars, which means that the actual DT-Loss is always

within 2-standard deviations of the predicted value. Moreover, the lengths of the bars are

quite small for most of the inputs, showing accuracy of prediction. There are a few cases,

particularly for inputs from circuit s838, where the true values are outside the 2-standard

4.7. CONCLUSION AND FUTURE WORK 93

deviation error bars. This is expected because our model under-predicts the DT-Loss for

nearly all the sample points in that circuit (see Fig. 4.5b). This might be due to the lack

of inputs with similar features in the training set.

4.7 Conclusion and Future Work

In this work, we have proposed, for the first time, a technique for predicting the sensitivity

of X-sources in a circuit with regard to the loss of test-coverage. Instead of using ATPG

and fault simulation tools, which may fare badly in the presence of unknowns, we have

used a machine-learning predictor based on linear regression and support vector regression.

The proposed circuit features used for prediction use only the structural information of

the circuit and no functional information. Experimental results show that even based on

structural information alone, the detectability-loss for the most influential X-sources in

a circuit can be fairly graded using a support vector regressor. The CPU-time for feature

computation is found to be very less compared to that needed by ATPG and fault simulator

tools.

Another popular method for learning non-linear regression functions is artificial neural

networks (ANN). This has been applied extremely successfully in various disciplines, espe-

cially when there is a large amount of data. However, when the data is limited or skewed,

ANN gives limited performance, because it involves a highly non-convex optimization which

might get stuck at a local optimum (see [BM17, ABF07] for recent work on these issues).

On the other hand, SVM/SVR solves a convex (quadratic) optimization problem, which

always returns the global optima and can be easily implemented. In our case, where the

size of the data set is moderate and the dimension is small, we have chosen the SVR method

to design our predictor.

In this work, we have considered the case where only one X-source is present at a

time. This work can be extended to predict detectability-loss when multiple X-sources are

simultaneously present. For such a case, we may consider, equivalently, a single virtual

X-source that feeds the given subset of multiple X-sources. However, in order to obtain

good prediction results, more elaborate training experiments need to be designed. Also, for

a given k, finding the k-subset of X-sources that causes maximum detectability-loss, could

be a future direction of research. In this work, we did not perform prediction for IWLS’05

benchmarks, since setting a single input to an unknown value may not affect the DT-Loss

significantly as the circuits are large. So for such circuits, a subset of inputs need to be set

to X. This may be studied as a future research problem.

CHAPTER

FIVE

ENCODING LARGE GRAPHS FOR
REPRESENTATION OF LOGIC

NETWORKS

5.1 Introduction

Given the pervasiveness of X-sources in modern electronic chips, the prediction of X-

sensitivity of a circuit will have potential applications in circuit testing and test genera-

tion. We discussed them in the previous chapter (Chapter 4). We also noted that a logic

circuit network can be represented by an acyclic directed graph, and one can predict the

X-sensitivity based on the structural properties of this graph. The results on the prediction

accuracy for the benchmark circuits have led to the conviction that the structural features

of the circuit play a crucial role in determining the effect of X-sources on the testability

of the circuit. Feature engineering, that is, the formulation of features, however, demands

huge time and effort. Indeed, selecting and extracting suitable structural features for X-

sensitivity prediction involves in-depth analysis of the circuit structure. This is one of major

overheads that limits graph-based predictions. One solution to this problem is to deploy an

automated feature-learning mechanism. In fact, there exist a number of machine-learning

tools, such as artificial neural network (ANN) [Ben09], where such automated learning have

been successfully incorporated. However, for graph-based data, it is still a challenge; es-

pecially, learning those features which are capable of capturing the intricacies of the full

structure. In this chapter, we look at the challenges and present a method to represent a

logic network such the structure of the entire circuit is preserved.

In fact, the present trend in ML research community is towards the exploitation of

graph-based data. This is no wonder because graphs are found in a wide range of real-

95

96 5.1. INTRODUCTION

world environments ranging from social and distribution networks to biological networks,

such as neuronal networks, to VLSI circuits. In such environments, either the data naturally

occur as graphs, or the interactions are modelled through graphs. The structure of the

underlying graph is a repository of the properties of the system it represents. Graphs

are being explored as a potential data source in machine-learning frameworks to predict

various parameters of the system or classify different systems. Studies show that the prime

challenge here is to design an efficient representation. Note that such graphs are usually

large and hence computationally expensive to handle and secondly, they represent highly

unstructured data. Data in ML applications are considered in the form of vectors called

feature vectors [FM12]. Structured data such as those representing images can also be

considered as vectors. However, graphs do not naturally correspond to vectors. Most of the

graph-based ML approaches aim at capturing maximum relevant information in a structured

format. Research in graph based-data can be classified based on (i) the approaches and (ii)

the problem setting. A number of surveys are available in the literature which focus on three

basic methods: (i) graph embedding [CZC18, FM12], (ii) representation learning [HYL17],

and (iii) geometric deep learning [BBL+17]. Graph embedding aims at representing the

graph as a vector [FM12] or as a set of vectors [CZC18]. The properties are based on local

proximity, which are either manually defined or extracted in a automated fashion. The

latter belongs to the class of representation learning frameworks where feature formulation

is automated using ML or matrix factorization [HYL17]. Geometric deep-learning tools for

graphs are based on convolutional neural nets (CNN) or recurrent neural network (RNN).

Vector representations have mostly been used in a node-centric setting where a node is

represented by a low-dimensional vector. They are mostly used for node classification or link

prediction [GL16, TQW+15]. A few works aim at capturing full graph embedding/learning,

e.g., graph kernel or graph neural network (GNN) [SGT+09]. However, none of these

preserve the graph structure, or are applicable to large graphs.

Most of the published literature in geometric deep learning [BBL+17] are based on

one of the two techniques, spectral [DBV16] or spatial approach [NAK16]. Tools such as

CNNs that use spectral analysis have the following major drawbacks: (i) they are valid

only for undirected graphs, (ii) applicable only to graphs with similar size and structure,

and (iii) learning is mostly based on the weights of the graphs. Structural features that

are embedded in a graph cannot be learned so easily as far as the current state-of-the-art

in graph-representation is concerned. Although CNNs based on spatial analysis have been

used to handle arbitrary graphs, complete structure preservation is still a concern [NAK16].

Recently, in the field of integrated circuits, various methods have been employed for

efficient application ML and deep learning tools [Wan17a, HCS+18, DB17, MRK+19]. In

this chapter, we present a new representation of circuit-graphs (which are directed acyclic

graphs (DAG) for combinational or scan-based logic circuits). A major contribution is that

the entire structure of the graph is preserved in the proposed representation. We introduce

5.2. MOTIVATION 97

a novel encoding technique for this purpose. The encoding is lossless and is based on a very

old but not fully explored, graph theoretic concept known as Prüfer sequence [Pru18]. This

sequence was first used in 1918 to prove Cayley’s formula, which was used to count the

number of possible spanning trees in a graph with a given number of vertices. The classical

Prüfer code can be used for encoding trees only; however we are concerned with graphs.

For encoding of a graph, we need to represent it with a tree. In this chapter, we propose

a technique called graph-to-tree enhancement (GT -enhancement), for this purpose. We call

such a tree, which represents a graph through GT -enhancement, a g-tree. We present two

approaches for GT -enhancement. Further, we report new properties of Prüfer codes and

discuss methods for improving interpretability and preserving the edge directions. We also

discuss Prüfer codes in the light of making them learnable.

The rest of the chapter is organized as follows. The motivation and methodology

appear in Section 5.2 and Section 5.3, respectively. Section 5.4 and Section 5.5 report the

two methods that can be used to obtain a g-tree. Section 5.6 provides a discussion on the

selection of Prüfer code. Conclusions and future work appear in Section 5.7.

5.2 Motivation

We will discuss the motivation highlighting three aspects. First, effectiveness of Prüfer codes

in representing large graphs. Second, the efficiency of GT -enhancement for representing a

graph as a single tree. Third, the capability of a Prüfer sequence to preserve the entire

structure of a circuit-graph.

As mentioned before, the graphs that appear in real world are large, and typically,

they are sparse graphs. Hence, for a graph G(V,E), where V is the vertex set and E is

the edge set of G, |E| � |V |2. In general, in sparse graphs |E| = O(|V |). In fact, for

most of the digital test benchmark circuits [BBK89, CRS00], |E| is not more that 2× |V |.
Prüfer codes can be exploited to store a graph in terms of its edges as follows. The Prüfer

encoding represents a labeled tree of n nodes (and hence having n− 1 edges) by a string of

vertex-labels whose length is n− 2. So, the size of the code is same as the number of edges

(neglecting the difference of one). Figure 5.1 shows an example of a Prüfer code of a tree.

1

2

3 4

5

6

(a) Example labeled tree.

3344

(b) Prüfer code of the

tree in Figure 5.1a

Figure 5.1: Example of Prüfer code of a tree.

98 5.2. MOTIVATION

A labeled tree with six vertices is shown in Figure 5.1a and its corresponding Prüfer code

is shown in Figure 5.1b. The size of the code is four. The algorithm for encoding the tree

and decoding it is discussed in the next section. The GT -enhancement of G preserves the

number of edges of G in g-tree. Thus, the size of the Prüfer code of a g-tree is |E − 1|.

(a) (b)

Figure 5.2: Graphs with large number of tree-partitions. Top: (a) Sparse graph with 25 vertices 32

edges and 9 tree partitions ; (b) Dense graph with 5 vertices 8 edges and 4 tree partitions.

Bottom: the corresponding g-trees.

A simple way of representing a graph G using Prüfer codes would be to represent it

as a union of trees so that the graph can be represented as the corresponding set of Prüfer

codes for individual trees. However, the problem of partitioning the edge set E of a graph

G into minimum number (k) of trees is known to be NP-hard [BB07]. Moreover for sparse

graphs, even k can be very large (Figure 5.2(a)). Also if the (sub) graphs are dense, the

number of trees could be large (Figure. 5.2(b)). For a complete graph Kn, the minimum

number of tree-partitions is dn/2e. So, if the number of tree-partitions is comparable to

|V |, then the method would not be beneficial. In contrast, the proposed GT -enhancement

provides a nice solution to this problem, in which the graph can be represented by just a

single tree at the cost of adding E + 1− V vertices thus forming the g-tree.

An illustration on structure preservation and reconstruction of a circuit-graph is given

in Figure 5.3 with the help of an ISCAS’89 [BBK89] benchmark circuit s27. The netlist and

the corresponding circuit diagram is shown in Figure 5.3(a) and Figure 5.3(b), respectively.

The circuit-graph generated from the netlist is given in Figure 5.3(c). Note that the graph

has two cycles. GT -enhancement, which adds two vertices 81 and 101, creates the g-tree

shown in Figure 5.3(d). The tree is then encoded by a Prüfer sequence as shown in Figure

5.3(e). The tree structure can be completely reconstructed as shown in Figure 5.3(f).

In summary, we propose a new encoding scheme for digital networks based on Prüfer

sequence which has the following useful properties:

1. it is lossless, i.e., captures the structure of the entire graph;

2. it is memory efficient; the size of encoding is O(|V |);

5.2. MOTIVATION 99

module s27(G0,G1,G2,G3,G17);
input G0,G1,G2,G3;
output G17;

 wire G5,G10,G6,G11,G7,G13,G14,
 G8,G15,G12,G16,G9;

 FD1 DFF_0(G5,G10);
 FD1 DFF_1(G6,G11);
 FD1 DFF_2(G7,G13);
 IV N1(G14,G0);
 IV N2(G17,G11);
 AN AN1(G8,G14,G6);
 OR OR1(G15,G12,G8);
 OR OR2(G16,G3,G8);
 ND ND1(G9,G16,G15);
 NR NR4(G10,G14,G11);
 NR NR3(G11,G5,G9);
 NR NR1(G12,G1,G7);
 NR NR2(G13,G2,G12);

endmodule

(a) netlist

(b) circuit diagram

G2

G1

G7

G0

G6

G3

G5

G10

G17

G11

G13

G2

G1

G7

G0

G6

G3

G5

N1

N2

G11

G17

G10

G13

OR1

OR2

NR1

AN1

NR2

NR3

NR4

ND1

2

1

6

5

3

4

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

(c) circuit-graph

GT -enhancement

3

2

1

7

6

4

5

81

9

101

11

12

13

14

15

16 17

18

19

20

21
8

10

(f) decoded tree

G2

G1

G7

G0

G6

G3

G5

N1

N2

G11

G17

G10

G13

OR1

OR2

NR1

AN1

NR2

NR3

NR4

ND1

2

1

6

5

3

4

81

101

11

12

13

14

15

16 17

18

19

20

21

N1

7

10
AN1

8

9

(d) g-tree

81 9 11 13 16 10 9 18 101 13 12 15 11 9 12 15 16 16 17 16 18

(e) Prüfer code

Figure 5.3: An illustration of Prüfer code for the circuit-graph representing the benchmark circuit

s27, and reconstructing it from the Prüfer code.

3. the representation can be expressed as a single string of vertex labels;

4. it provides an efficient 1-D representation suitable for machine-learning tools;

5. the encoding can be computed in time linear in the size of the circuit.

100 5.3. METHODOLOGY

6. the directions on edges, especially for DAGs, are preserved.

5.3 Methodology

In this section we will briefly look at the Prüfer encoding of a tree. We will also introduce

the g-tree and show how Prüfer encoding can be applied to it.

5.3.1 Prüfer-Code

Consider a tree, T , with n vertices. Prüfer encoding is based on the following assumptions

concerning the labels attached to the nodes:

Assumption 1. The vertices of T are labelled sequentially as {‘1’, ‘2’, · · · ‘n’}.

Assumption 2. The vertices of T are comparable such that {‘1’ < ‘2’ < · · · < ‘n’}.

The steps to encode T is given in Procedure 5.

Procedure 5 Encoding: tree-to-code

1: Fetch a single degree vertex, v, with the smallest label. Delete v.

2: Write the label of the neighbour of v to the right of the code.

3: Repeat Step 2 until only two vertices remain in the tree.

Consider a Prüfer code of T : c1, c2, · · · , cm; we make the following observation:

Observation 6. n = m+ 2.

Observation 7. The degree of a vertex is one more than the number of times the label of

a vertex appears in the code.

Corollary 1. Labels of single-degree vertices do not appear in the code.

Corollary 2. Labels of non-pendant vertices appear in the code.

The steps for decoding Prüfer code are given in Procedure 6.

Procedure 6 Decoding: code to tree [GJRR01]

1: Initialize a variable k to 1.

2: Compute: n← m+ 2; labels ← {1 · · ·n}. . Observation 6.

3: Compute the degree of each node. . Observation 7.

4: Fetch a single-degree vertex, v, with the smallest label. Set (v, ck) as an edge of the tree.

5: Decrement the degree of v and ck; increment k.

6: Repeat Step 4 and Step 5 until all vertices have degree 0, except a pair with degree 1. . These

form the last edge of the tree.

5.4. TREE-PARTITION BASED GT -ENHANCEMENT 101

A linear-time encoding and a decoding algorithm for Prüfer sequence are given in

[WWW09]. During decoding, the labels of the vertices can be easily obtained from the

value of n (Step 2, Procedure 6) on the basis of Assumption 1. However, when the labels

of a tree do not hold this assumption, they cannot be similarly extracted. The decoding

of labels is the most critical step for analyzing such trees. In order to handle these cases,

we decode the labels as follows. The labels of non-pendant vertices can be obtained from

the code (Observation 7). Unfortunately, since the labels of the rest of the vertices do not

appear in the code (Corollary 1), they can not be inferred and so an additional list L of extra

vertices will be required. Next, we will introduce the concept of g-tree and its encoding.

5.3.2 GT -Enhancement and Encoding of g-tree

GT -enhancement of a graph G(V,E) produces a tree called g-tree, denoted as Tg(V
T , ET).

GT -enhancement adds a set R of new vertices, in order to remove the cycles in G. This is

done by splitting the vertices which are a part of a cycle in the graph. So, if vertex v is

split/replicated by adding one more vertex v1, then a sub-set of edges that were incident

on v are now incident on v1, such that these edges no longer form a cycle. This method

is elaborated further in Section 5.4. So, V T = V ∪ R and |ET | is equal to |E|. Since,

Tg has |E| edges, so the number of vertices, |V T | = n = |E| + 1. Let n1 = |V |. Thus

|R| = n2 = |E| + 1 − |V |. So, n = n1 + n2. In Tg, the vertices in V are labelled as {‘1’

· · · ‘n1’}. The vertices in R are added to G by replicating some vertices in V (explained

in the next section). When a vertex v with label l, where l in an integer, is replicated into

k additional vertices, they are labelled as l1, l2, · · · , lk. While encoding Tg with a Prüfer

code, the labels of these vertices are considered in the order l < l1 < l2 < · · · < lk <L + 1

(Assumption 2). Assumption 1 partially holds for Tg since it is true only for n1 vertices.

If n1 is known, the labels of these vertices can be computed. For decoding Tg, in the list

L, only the single degree vertices from R need to be stored, and n1 can be computed as

follows. From the code, we compute n (Observation 6). With the help of L, we can obtain

the labels of the vertices in R. Once we obtain n2 and n, n1 can be directly computed.

Next, we propose two methods to generate a g-tree. The two methods differ in the way

the graph is traversed and the way the vertices in the graph is split. The first method aims

at reducing the list L such that |L| � |E|. The second method produces the g-tree where

all the additional vertices are of degree two and so no extra list is required; the Prüfer code

thus obtained completely represents the graph.

5.4 Tree-Partition Based GT -Enhancement

In this method, representing an undirected graph by a tree is realized by partitioning the

edges of the graph into trees. Thereafter, the individual trees are joined to from a single

102 5.4. TREE-PARTITION BASED GT -ENHANCEMENT

tree.

5.4.1 Proposed Approach

Since the problem of finding a minimum tree-partition of a graph G is hard [BB07], we

follow a greedy approach based on depth-first search (DFS) [CSRL01] traversal of G. DFS

of an undirected graph produces a spanning tree TDFS ; the edges of this tree called are

tree-edges and they form the primary partition. The rest of the edges of the subgraph

Gc = G\TDFS are called back edges. While the DFS spanning tree is implicitly constructed

during the traversal, the residual graph Gc is often found to be disconnected. The secondary

partitions, which are formed by the back edges of Gc, are called be-trees and belong to one

of the following:

1. Class-1 back-edge tree (be-tree-1): These are trees formed by the back edges between

the vertices, which have already been visited once.

2. Class-2 back-edge tree (be-tree-2): These are trees formed by the back edges between

the vertices, which have already been visited twice: by the DFS-tree and also by a

be-tree-1.

3. qth class back-edge tree (be-tree-q): The trees formed by the back edges between the

vertices that have already been revisited q − 1 times, are called be-tree-q.

Note that the DFS-traversal usually yields a number trees for each class. For a given

class i, all trees in be-tree-i are independent to each other since they have no vertex in

common. The be-trees that are non-independent to a given kth be-tree-1, are said belong to

the same family, fk. Thus, the edges of the graph are partitioned into a spanning DFS-tree

and a set of families of non-independent trees.

Example: Figure 5.4(a) shows an example graph, where the DFS-tree is shown in red.

The decomposition consists of one family of be-trees with two classes: be-tree-1 (blue) and

be-tree-2 (green). Also note that in Figure 5.2(a), the graph has eight families of be-trees.

Reducing the number of be-tree classes

Consider a pair of vertices, u and v, of G such that they are connected by an edge e and also

by two paths pdfs and pbe1. Suppose DFS exploration, traverses the path pdfs, including it

in the DFS-tree, such that v is visited before u. Let pbe1 be assigned to be-tree-1, b1. We

define two special edges:

Cycle-edge: At some instant during the traversal when vertex u is being processed, let edge

e be a back edge from u to v. Since it will introduce a cycle in b1, it is assigned to be-tree-2.

Such an edge is called a cycle-edge.

Swap-edge: Now, suppose there exists a tree-edge es, in the path pdfs, which does not form

a cycle with any be-tree-1. Then the edge es is swapped with e; es is then called a swap-edge

for the cycle-edge e.

5.4. TREE-PARTITION BASED GT -ENHANCEMENT 103

Edge-swap: An edge-swap between the cycle-edge e and its swap-edge es enables e being

assigned to a tree-edge and es being assigned to be-tree-1. A new class of be-tree for the

cycle-edge e is thus avoided by an edge-swap operation. Note that an edge-swap, modifies

the DFS-tree, without disconnecting it.

Example: Consider the graph in Figure 5.4(a); edge (7-4) and edge(5-6) would be a

cycle-edge and swap-edge, respectively. The resulting graph is shown in Figure 5.4(b).

0

1

2 4

5

6

7

8

3

(a) Partitions with be-trees

0

1

2 4

5

6

7

8

3

(b) Edge-swap

Figure 5.4: Example graph

GT -enhancement

Given a graph G(V,E) and the set P of secondary partitions, for each partition in P , a

join vertex (vjoin) is specified. G is decomposed into a g-tree, Tg, based on P and their

join vertices. Each vertex in V , belongs to the primary partition. For every vertex v that

belongs to some secondary partition Pj , a vertex-split operation (refer to Figure 5.5(a)) is

performed. The vertex v is split into a replica vPj for every partition Pj where it belongs

to, such that the edges of G that belong to Pj and were incident on v, become incident

on vPj . However, if this vertex is a join-vertex of a partition, its replica for that partition

is not created. Thus, the tree Tg is formed by the trees for each partition in P , each tree

sharing a common vertex with the spanning tree at its join vertex. We called this tree

DFS-Partition-tree and denote it as TDPG . The labeling methodology for the new vertices

was described before in Section 5.3.

l l

l1 l1
l2

l

(a) Vertex split with label-swap

0

1

2 4

5

6

7

8

3

61

41

21

11
71

11 71 2 3 4 7 21 41 61 5 4 7

(b) Example tree for the graph in Figure 5.4(b) & its Prüfer sequence

Figure 5.5: g-tree and label-swap operation

104 5.4. TREE-PARTITION BASED GT -ENHANCEMENT

Example: On performing tree decomposition on the graph in Figure 5.4(b), we obtain

the resulting graph as shown in Figure 5.5(b).

Once we obtain the partitions though DFS-traversal, there is a scope of further reducing

the list L by taking care of how we form g-tree. Reducing L means transforming as many

labels in R (the set of new vertices) that represent pendant vertices, to point to non-pendant

vertices. In order to do such transformation, we perform the following operations:

1. Choice of join-vertex : It is so chosen that it becomes a pendant vertex of the be-tree

and the DFS-tree (if possible);

2. Label-swap: The replicas of a vertex in v have similar labels; so exchanging the labels

does not change the structure of G. The operation label-swap is applicable to a pair

of vertices (v, vr) with corresponding label (l, lr), where vr is a replica vertex of v,

v is a non-pendant vertex and vr is a pendant vertex. In such case their labels are

swapped. So, the label lr now points to a non-pendant vertex and hence it does not

need to be stored (Corollary 2). So, this operation decreases the size of L.

3. Edge-swap: The number of replicas for a vertex is equal to the number of be-tree

classes that it belongs to. Edge-swap reduces the number of replicas of a vertex.

Also, the number of labels that needs to be possibly stored, is reduced.

Example: The Figure 5.5(a) depicts label-swap. Also in Figure 5.5(b), label-swap is per-

formed for the vertex with label “1”. The vertex with label “5” is chosen as join-vertex

since it is pendant in both the trees it belongs to. Hence, after all operations, the list L

reduces to φ. The corresponding Prüfer sequence is shown in the figure.

5.4.2 Implementation

In this section, we discuss the outline of our implementation on benchmark integrated cir-

cuits [BBK89, CRS00]. Since scan-based circuits are envisaged as directed acyclic graphs, we

first label their nodes in topologically-sorted order [Kah62] and run a single DFS-traversal,

considering it as an undirected graph (directions can be retrieved from the labels). Also,

the successors of each vertex are visited in the increasing order of their labels. When an

edge e(u, v) is discovered, it is (i) assigned to a particular partition by an operation called

add-edge (described later), or (ii) added to the list of cycle-edges, or (iii) assigned to a

partition (add-edge) if it is already marked as a cycle-edge and has not yet been swapped.

When an edge is backtracked, we check whether it is suitable for swapping with a swap-edge

in the list. Lastly, once all the edges emanating from a vertex are processed, vertex-splitting

along with label-swap is performed on it if needed.

During each successive iteration of the DFS-traversal, search is made to explore an

unvisited vertex, and if found, the connecting edge is added to the DFS-tree. Similar

implicit exploration cannot, however, be performed to extract be-trees. A pair of edges in

a be-tree, or the edges of the successive classes in a family of be-trees, could be discovered

5.4. TREE-PARTITION BASED GT -ENHANCEMENT 105

during two independent iterations. Thus, to keep track of be-trees, we record the following

entities, which are updated whenever a new back-edge is discovered: (i) tree index : every

back-edge that does not share a common vertex with any other be-tree formed so far, or form

a cycle with the adjacent be-trees, is considered a new be-tree with one-higher index; (ii)

vertex-attribute for each vertex v (tree-index list Tv): a ordered tuple of indices of different

classes of be-trees to which the vertex belongs, and (iii) edge-attribute for each edge e (ce):

the be-tree class index. Tv[ce] gives the tree-index of the cthe class.

add-edge: When a unvisited back edge e(u, v) is encountered with tree-index lists Tv
and Tu, ce is computed from the two lists such that it does not form a cycle with any of the

trees to which v and u belong. Thereafter, it is assigned to a be-tree by updating the lists

depending on the following three cases; (i) union of two be-trees: Suppose e connects two

back-edges e1(v, w1) and e1(w2, u), each belonging to distinct be-trees with tree-indexes i1

and i2, respectively, but both having the same tree-class. In such a case, the three edges are

assigned to a single be-tree having tree-index i1. This is done by treating the tree-indices

as disjoint sets. Using the disjoint-set data structure, we perform union(i1, i2); (ii) if only

one of the two vertices belongs to a unique class of be-tree, the edge e is assigned to that

be-tree; (iii) lastly, if it does not fall into the above two cases, it creates a new be-tree as

explained above.

The time complexity of the algorithm is O(|V |+ |E|).

5.4.3 Results on Benchmark Circuits

Results for ISCAS’89 and ITC’99 benchmark-suites are shown in Table 5.1. The experi-

ments were carried out on an Intel Xeon 3.00-GHz × 4 processor with 8GB memory. Each

of the benchmark circuits corresponds to the netlist of a digital logic circuit, where the

input-ports/output-ports, logic gates, and memory cells are represented as vertices, and the

interconnections among them, as edges, of a directed acyclic graph. The circuit-name, the

number of vertices, and edges are given in Columns 1, 2 and 3, respectively. These graphs

are very sparse as the edge-count is just around two times of the vertex-count. The length

of Prüfer code is given in Column 4. The required number of extra-labels (L) is given in

Column 5, which is much less than the number of edges. The highest-index of be-trees

is given in Column 6, and the number of edge-swaps is given in Column 7. The number

of vertex-splits is shown in Column 8, and out of it the number of vertices whose labels

are swapped, is shown in Column 9. The CPU-time needed to encode the circuit using

Prüfer-sequence is reported in Column 10, in seconds.

106 5.5. IMPROVED GT -ENHANCEMENT

Table 5.1: Results on logic circuits in ISCAS’89 and ITC’99 benchmark-suites.

Circuit #vertices #edges Prüfer code #extra #be #edge #vertex #label CPU-time

length labels (|L|) trees swap split swap in sec.

ISCAS’89 benchmark circuits [BBK89]

s713 489 635 634 3 2 7 147 62 1.07

s820 336 781 780 142 3 2 446 193 4.06

s832 334 793 792 173 4 1 460 173 4.25

s838 545 820 819 11 1 8 276 139 1.5

s953 492 818 817 12 2 6 327 165 1.6

s1196 593 1043 1042 38 2 18 451 225 2.36

s1238 572 1075 1074 41 2 19 504 264 2.56

s1423 827 1245 1244 57 2 5 419 202 2.68

s1488 692 1412 1411 242 4 1 721 302 7.82

s1494 686 1418 1417 209 4 6 733 354 8.16

s5378 3206 4435 4434 27 2 1 1230 606 7.76

s9234 6094 8235 8234 292 4 25 2142 1048 15.29

s13207 9441 12048 12047 450 4 14 2608 1184 24.56

s15850 11067 14380 14379 568 4 10 3314 1594 28.74

s38417 25585 33969 33968 1202 4 4 8385 4535 77.78

s38584 22447 34497 34496 2325 4 5 12051 5628 125.77

ITC’99 benchmark circuits [CRS00]

b11s 512 972 971 39 3 4 461 185 2.23

b12 1155 2022 2021 65 2 10 868 434 4.71

b13s 392 601 600 0 2 7 210 111 1.12

b14s 5020 9862 9861 1324 3 26 4843 1881 40.88

b15s 9343 19068 19067 2534 3 39 9726 3909 87.38

b17s 25615 52447 52446 7282 3 42 26833 10175 307.35

b20s 9909 19555 19554 2739 3 21 9647 3620 98.39

b21s 10293 20300 20299 2387 3 46 10008 3871 104.73

b22s 15836 31304 31303 4105 3 11 15469 5856 158.33

5.5 Improved GT -Enhancement

The above tree-partition based method for constructing GT -enhancement has the following

drawbacks:

1. The list L needed in addition to the Prüfer code in order to decode the graph. A single

string would be more convienient for good representation of data from ML point of

view.

2. Many operations need to be handled in order to reduce the size of L.

3. In the cases where a vertex has high degree and that of the most of its neighbors are

two, then the number of single-degree nodes which cannot be label-swapped could

be large. An instance of this is shown in the Figure 5.6 which shows a sub-graph.

The edges belonging to the DFS-tree is shown in red and the edges belonging to a

5.5. IMPROVED GT -ENHANCEMENT 107

be-tree are shown in blue. The vertex va has high degree with four (va, vb, vc, vd) of

its adjacent vertices of degree two. Considering that the ve is the join-vertex, the

rest of the three vertices, va, vb, vc, are split into a pairs of pendant vertices during

GT -enhancement, and hence cannot be label-swapped. However, there exists another

g-tree (shown in dotted-green) for this sub-graph, where the three vertices need not

be split.

va

vb

vc

vd

ve

Figure 5.6: An example of an instance showing a sub-graph where a large number of pendant vertices

can not be label-swapped.

In the light of above scenario, a second method of GT - enhancement is proposed here,

which overcomes these shortcomings. We call this method Seek-Edge-aNd-Split-On-Revisit

(SENSOR) GT -enhancement. This method implicitly maintains that any new vertex that

is added during GT -enhancement is of degree two. Thus, this method obviates the need for

the list L. Thus, g-tree can be represented by a single Prüfer code. Futhermore, the method

is much simpler to implement. The SENSOR GT -enhancement follows two operations.

1. Seek-edge graph traversal

2. Vertex-split-on-revisit during traversal.

5.5.1 Seek-Edge (SE) Traversal

Conventional graph-traversal algorithms such as DFS and BFS (breadth-first- search) follow

an exploration method that is vertex-centric; the term “search” refers to visiting the vertices

sequentially, and the search technique is either “depth-first” or “breadth-first”. In contrast,

our purpose is to arrive at a graph-encoding scheme that captures its information in terms

of edges. We therefore require a traversal scheme which is rather edge-centric; where the

exploration will be guided by edges rather than vertices. Towards this end, we propose an

edge-centric graph-traversal method called Seek-Edge (SE) traversal. The SE-algorithm of

108 5.5. IMPROVED GT -ENHANCEMENT

a graph G starting from a vertex v ∈ G is as follows. An unvisited edge adjacent to v,

e1(v, w) is visited (flagged). Iteratively, the next unvisited edge adjacent to w is visited.

During the traversal, if no unvisited adjacent-edge is available from the current vertex u,

then the algorithm backtracks to its parent vertex up. If there is any unvisited edge adjacent

to up, it is iteratively visited, and the process is continued until all edges in G are flagged.

The central idea of this traversal algorithm is that whether a vertex is discovered for

the first time or is revisited, in both the cases, the vertex is processed in the same manner.

So, the traversal is controlled by the edges and not by the vertices. An example of the

traversal on the graph in Fig. 5.4 is given in Fig. 5.7. The graph is redrawn for clarity.

The edge-labels depict the sequence number in which the edges are traversed. The arrow

heads show the direction of traversal. Fig. 5.7(a) shows the DFS traversal sequence and

Fig. 5.7(b) shows the SE-sequence. Since the adjacent edges of a vertex can be chosen for

traversal in any order, we assume that this order is same for both traversals for the sake of

comparison. So, the edge sequence is identical up to 10. The 10th edge is (7,2), which is

incident on vertex 2. The next unvisited edge adjacent to 2 is (2,4.) So, in SE, the 11th edge

traversed is (2,4). Note that, although the edge (2,4) is readily traversable, DFS does not

allow traversal of this edge, and instead backtracks. In fact, DFS processes the edge (2,4)

in the end after processing (4,6) and (4,7). Thus, SE is more convienient for systematic

exploration of edges.

1

2
3

4

5

6
7

8

0

1

2
3

4
5

6
7

8
910

1112

13

(a) DFS

1

2
3

4

5

6
7

8

0

1

2
3

4
5

6

7

8
910

11

1213

(b) SE

Figure 5.7: The graph in Fig. 5.4 is redrawn here to show the difference in the sequence of edge-

traversal. Three edges are shaded in (b) to highlight their difference.

5.5.2 Split-On-Revisit (SOR)

In this section, we explain the mechanism for vertwx-splitting during the SE traversal of the

graph employing a technique similar to the previous approach. During the traversal, if a

5.5. IMPROVED GT -ENHANCEMENT 109

vertex v with label l is revisited through an edge ecycle, it implies that it is a part of a cycle.

To break the cycle, v is split as follows: a new a vertex v1, labeled l1, is created. During

the previous visit to v, let ein be the edge through which it was visited and let eout be its

adjacent edge which was next traversed. Obviously, eout is also a part of the cycle. So, the

pair of edges (ein, eout) is now connected to v1 instead of v. The edge ein maintains the

connectivity to the edges traversed up to it while the edge eout contributes to disconnecting

the cycle and the maintenance of connectivity to the rest of the edges. We call (ein, eout)

the split-pair edges of v. On every successive revisits to v, it is split similarly, and the ith

revisit will produce a replica which is labeled as li. Thus, the degree of v is reduced by two

in every revisit. Such a traversal breaks all the cycles while maintaining the connectivity

of the graph turning it into a tree. We call this method Split-On-Revisit or SOR and the

g-tree obtained is called SENSOR-tree. The SENSOR-tree of the graph in Fig. 5.7(b) is

shown in Fig. 5.8. The five instances of vertex-splits are circled in pink shade in the figure.

For vertex 1, it is split into vertex 11 with the split-pair being ((0,1),(1,2)). Similarly, we

can observe other split-pairs which are marked red in the figure.

121
3

41

5

61
7

8

0

1

2
3

4
5

6
7

8
910

11

1213

4

2

71
6

11

Figure 5.8: SENSOR-tree of the graph in Fig. 5.7(b).

The pseudocode for the algorithm is given in Algorithm 7.

Algorithm 7 SENSOR(v)

1: if v is visited earlier then

2: split v

3: end if

4: visit v

5: while edge(w, v) in unvisited adjacent edge-list of v do

6: SENSOR(w)

7: end while

SOR

SE

A SENSOR transformation of a graph G(E, V) splits a subset of vertices in V . In the

110 5.5. IMPROVED GT -ENHANCEMENT

SENSOR-tree thus obtained, the vertices fall into three categories, where a vertex is given

a denotation reflecting its category. A vertex ∈ V that is split, leading to its degree being

decremented, is denoted as s-vertex. A vertex belonging to the set of remaining vertices

∈ V , which are not split, is denoted as g-vertex. A replica vertex created by vertex-split

is denoted as r -vertex. We make the following observations about a SENSOR-tree. (i) An

r -vertex is of degree two, (ii) An s-vertex may be of degree one or more. (iii) If an s-vertex

is pendant then its degree in G is odd.

So, only the r -vertices carry the new labels. From the first observation, we conclude

that the new labels always appear in the Prüfer code of the SENSOR-tree for any given

graph. Hence, the Prüfer code alone is enough to infer the labels of the vertices following

the method described in Section 5.3.2, thus decoding the tree.

G2

G1

G7

G0

G6

G3

G5

N1

N2

G11

G17

G10

G13

OR1

OR2

NR1

AN1

NR2

NR3

NR4

ND1

3

2

1

7

6

4

5

81

9

101

11

12

13

14

15

16 17

18

19

20

21

N1
8

10
AN1

Prüfer code:
81 9 11 13 16 10 9 18 101 13 12 15 11 9 12 15 16 16 17 16 18

(a) Tree-partition based method

G2

G1

G7

G0

G6

G3

G5

N1

N2

G11

G17

G10

G13

OR1

OR2

NR1

AN1

NR2

NR3

NR4

ND1

2

1

6

5

3

4

81

101

11

12

13

14

15

16 17

18

19

20

21

N1

7

10
AN1

8

9

Prüfer code:
81 9 11 13 16 101 9 18 101 13 12 15 11 9 12 15 16 16 17 16 18

(b) SENSOR-based method

Figure 5.9: An example of g-tree and Prüfer code of s27 using both the methods

The g-trees and the corresponding Prüfer sequences for s27 obtained using the two

approaches is given in Figure 5.9. The two new replica vertices added are 81 and 101.

Figure 5.9a shows the g-tree for the tree-partition-based method. There are two be-trees,

marked in blue. The new vertices are pendant and so the vertex-label is swapped for both

of them, making the list of extra vertices L empty. However this is not the case with most

of the benchmark circuits as depicted in Table 5.1. The SENSOR-tree for s27 is given in

Figure 5.9b. It can be seen that both the r-vertices are of degree two. As discussed, this

method implicitly produces r-vertices of degree two for any given circuit-graph.

In the next section, we will discuss a few methods that lead to further improvement

of the attributes of the Prüfer code.

5.6. PRÜFER CODE SELECTION 111

5.6 Prüfer Code Selection

We observed that the structure of a tree can be fully preserved by its Prüfer code. However,

we will show that the Prüfer code for a tree may not be unique. In fact, a tree can be encoded

with several Prüfer codes. To elucidate this, we discuss some of their properties. One has an

option to choose a suitable code to represent a g-tree such that the chosen code (i) exhibits

good interpretability, (ii) preserves the attributes of the graph such as the directions of

edges, and (iii) it is learnable. We present three such codes for g-tree. Lastly, we discuss

about the learnability of such codes.

5.6.1 Properties of Prüfer Code

Consider an unlabelled tree T with n vertices. A Prüfer code of T has the following prop-

erties:

1. A Prüfer encoding induces an edge sequence.

A Prüfer encoder monitors the list of pendant vertices. Let us call this list Pen List.

In each iteration, Pen List is updated. From Procedure 5, we recall that the basic

operation in each iteration of encoding (decoding) T into a Prüfer sequence is: “choose

the pendant vertex (u) with the smallest label, encode the label lv of its adjacent vertex

(v) as the next element of the code, and remove the vertex u from Pen List. If v is

now a pendant vertex, add it to Pen List. Thus, in each iteration, an edge (u, v) is

encoded. Although Prüfer code comprises a string of vertex labels, each label lv in the

code actually represents an edge (u, v). Hence, a Prüfer code represents a sequence of

edges rather than vertices. Out of the set, Edge Seq, of all possible edge-sequences in a

tree, a Prüfer encoding induces a sub-set, Edge Seq Prüfer, of the set of edge-sequences.

we next look at this sub-set, Edge Seq Prüfer.

For an edge to be selected in a particular iteration, one of its end-vertices should satisfy

two conditions:

a) it should belong to Pen List, and

b) it should have the smallest label among them.

Hence, in order to obtain a desired edge sequence, we need to take care of the above

two conditions. The first condition is mostly affected by the structure of tree and hence,

we have little control over it. However, the second condition depends on the labeling of

vertices. Edge Seq Prüfer is the subset of Edge Seq, where an edge is prioritized on the

basis of creating a pendant vertex. An example to demonstrate this is given in Table

5.2. Edges e1 and e3 of the tree can be named interchangeably because of the symmetry

of the tree structure. Note that, the size of the set Edge Seq is three, and its elements

are listed in the first column; first two sequences can be encoded with Prüfer code and

so belong to Edge Seq Prüfer. The third sequence cannot be encoded by a Prüfer code.

112 5.6. PRÜFER CODE SELECTION

Table 5.2: Edge sequence example.

Example tree

e1 e2 e3

Edge-Sequence Vertex labelling Prüfer code

e1 − e2 − e3 1 2 3 4
e1 e2 e3

2 3

e1 − e3 − e2 1 3 4 2
e1 e2 e3

3 4

e2 − e1 − e3 does not exists Not possible

2. The vertex-labels of T determine the nature of the Prüfer code.

This is an important property and follows from the above discussion of Property 1.

3. T can be encoded to a set, ST , of distinct Prüfer codes.

From Property 2, every relabeling of T furnishes a Prüfer code unique to that labeling.

Thus, given an unlabeled T , it can be represented by several Prüfer codes that make up

the set ST . The number of such codes is determined by the number of unique labeling

of the vertices of T .

4. Every Prüfer code in ST decodes to the tree structure of T .

On applying the decoding algorithm on a Prüfer code in ST , the structure of T is recon-

structed.

5. Prüfer sequences induce a partition on S which is the set of Prüfer codes of labeled trees

with n vertices.

The Cayley’s formula, nn−2, gives the number of labeled trees with n vertices [Sho95].

Prüfer codes provide a bijective proof of Cayley’s formula and so the size of |S| is exactly

equal to the number of labeled trees with n vertices. For a given n, the number of

unlabeled trees is less than the size of S because there exist several labeled trees for a

given unlabeled tree. From Property 3, each unlabeled tree T , of size n can be represented

by a Prüfer code in ST . Also, from Property 4, each of them uniquely reconstructs the

original tree T . Hence, they are mutually exclusive. Furthermore, since every Prüfer

code among the nn−2 codes reconstructs to some tree of size n. The union of the sets ST

for all unlabeled trees is thus collectively exhaustive. Therefore, they induce a partition.

5.6. PRÜFER CODE SELECTION 113

5.6.2 Encoding Methods

We have seen how the tree Tg(V
T , ET) can be obtained by invoking by SENSOR on the

graph G(V,E). We select any code (Property 3 and Property 4) from the partition ST

(Property 5) to represent the structure of Tg. Here we present three codes that are generated

based on graph relabeling, label reordering, and tree relabeling.

1. Direction-centric code (DCC). For directed acyclic graphs (DAG), a topological

ordering of vertices preserves the direction of the edges. So, in this method, the vertices

of a graph are labeled in a topological order. Each pair of vertices (v1, v2), with the edge

directed from v1 to v2, is labeled such that label of v1 is smaller than that of v2. Since

combinatorial logic networks are represented as DAGs, DCC completely preserves the

structure of logic networks.

2. Path-centric code (PCC). In PCC, the labeling scheme is same as DCC, so it preserves

the direction of the edges. While in DCC, the edges are not directly interpretable,

in PCC, we make the edges interpretable by introducing a change in the ordering of

vertices keeping their labels intact. We assume that the vertex-labels also determine

G2

G1

G7

G0

G6

G3

G5

N1

N2

G11

G17

G10

G13

OR1

OR2

NR1

AN1

NR2

NR3

NR4

ND1

2

1

0

6

5

3

4

71

8

91

10

11

12

13

14

15 16

17

18

19

20

N1
7

9
AN1

p1

p2

p3

p4
p10

p5

p6 p11

p7

p8

p9

(a) Path partitions of the graph for circuit s27.

20 19 18 13 7 6 5 4 3 2 1 0

(b) Sequence of single pendant vertices derived from the above code

17 16 15 15 10 17 15 8 9 12 15 14 12 14 11 10 8 8 11 91 71
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

(c) Prüfer code

Figure 5.10: Example of PCC for g-tree of s27.

114 5.6. PRÜFER CODE SELECTION

their ordering, smaller label meaning higher order. We relax the assumption only for

the leaf nodes of Tg. Let the set of leaf nodes of Tg be V T
leaf . Here, we assume that the

order of vertices in V T
leaf is higher than those of non-leaf vertices (V T \ V T

leaf). When

this constraint in ordering is satisfied, the vertices in the set V T \ V T
leaf that appear in

Pen List are processed before those in V T
leaf during encoding/decoding (Refer Section

5.6.1 under Property 1). This has the following implication: For a leaf vertex uleaf of Tg

we define two terms: (i) junction point (um), the first vertex, of degree greater than two,

reachable from uleaf , (ii) path-vertices, the set of two-degree vertices that lie between

uleaf and its junction point. In the Prüfer code, the path-vertices appear consecutively,

in the same sequence as in the path, uleaf ; um, followed by the junction vertex um.

Thus, each of the leaf node, except the last one, induces a path. Also, the order of paths

follows that of the corresponding leaf-nodes.

The edges can be easily reconstructed from their labels if we mark the vertices cor-

responding to the junction points. They can be marked by traversing the code from

right-to-left, and marking those vertex labels which have already appeared (Observation

7).

An example of PCC for circuit s27 is given in Figure 5.10. The tree along with eleven

paths is shown in Figure 5.10a. Note that the vertices in V T
leaf are considered in reverse

order; higher label means higher order (Figure 5.10b). The Prüfer code with marked

junction points is shown in Figure 5.10c. For example, the leaf-node 3 induces Path

p9, whose path-vertices {12,14} and vertex at junction point, vertex labeled 11 appear

sequentially in the code.

3. Leaf-centric code (LCC). Although the edges can be reconstructed directly from

PCC, the leaf-node needs to be computed beforehand. LCC is a fully edge-interpretable

code. The index of a label gives the label of its adjacent vertex. This is possible because

each vertex-label in the code represents an edge (Property 1). This is accomplished

by complete relabeling of Tg, denoted by T 1
lcc, which is done as follows: The nodes are

partitioned into sets called leaf-stage. The leaves of Tg are assigned to the set representing

the first stage, LS1. Next, on removing the nodes in leaf-stage-1, the leaves of the new

tree T 2
lcc are assigned to LS2. Iteratively, the partitions are formed until the entire tree

is processed. The final leaf-stage, LSk, consists of either a node or a pair of nodes, and is

called the tree center [Har71]. The labeling is done iteratively as follows. Vertices of LS1

are labeled from 1 to |LS1|. Iteratively, the vertices in kth set is labeled
∑k

1 |LS(i−1)|+1

to
∑k

1 |LSi|. Consider a set REP ⊂ V T , where the vertices in REP were formed by

splitting a particular vertex in G. Let their labels be l1 · · · lm. Let v ∈ REP have the

smallest label (l′m). For each vertex u in REP , with label lu, their label is modified as

l
l′m
u . The additional index is used to store the replica information and does not affect the

ordering of vertices while encoding. Such labeling strategy will enforce the label and its

index to preserve an edge. Also, the edges belonging to a leaf-stage appear consecutively

5.6. PRÜFER CODE SELECTION 115

in LCC.

There are scope for further improving the interpretability of LCC by adjusting the labels

within each leaf-stage. The labels in a leaf-stage subsequence can be made to appear in

an ascending order. Considering the tree to be rooted at its center, the vertices can be

assigned to different levels progressively. The labeling starts from the vertex (vertices)

in the root (level 0). The first vertex is labeled n and subsequent labeling is processed

in a decremental order. The labeling is done while moving from lower-level to higher-

level nodes, while prioritizing them based on the leaf-stage (higher leaf-stage first). The

vertices within a level and belonging to the same leaf-stage are prioritized based on the

label of their parents (vertex with higher-labeled parent first).

Lastly, the direction of the edges can be encoded by marking the labels which represent

the edges that are directed one way (converging or diverging) and leaving the edges in the

opposite direction unmarked. Thus, besides DAG any directed graph can be encoded.

2

1

0

6

5

3 471

8 91

10

11

12

13

14

15

1617 18

19207

9

1 2 3 4 5 6 7

8 9 10 11 1213 145 15 16 17

18 1915 20 21

22 23

13
1

13
2

145
3

15
4

16
5

16
6

17
7

18
8

18
9

20
10

21
11

21
12

1915
14

20
15

21
16

21
17

22
18

22
19

18
13

23
20

23
21

(a) Relabeled tree of s27 for LCC. The original label is shown in small font.

Leaf-stage of vertices is color coded. Vertices with the same level appear

horizontally.
2

1

0

6

5

3 471

8 91

10

11

12

13

14

15

1617 18

19207

9

1 2 3 4 5 6 7

8 9 10 11 1213 145 15 16 17

18 1915 20 21

22 23

13
1

13
2

145
3

15
4

16
5

16
6

17
7

18
8

18
9

20
10

21
11

21
12

1915
14

20
15

21
16

21
17

22
18

22
19

18
13

23
20

23
21

(b) LCC and the index

Figure 5.11: Example of LCC for g-tree of s27.

An example of LCC for s27 is given in Figure 5.11. Figure 5.11a shows the tree where

the root is the edge with vertices marked in red. The new labels are shown in the Figure

5.11a. Also, the labeling of vertices within each stage is taken care of so as to improve

interpretability. This is reflected in the LCC given in Figure 5.11b. Here, the label of

116 5.6. PRÜFER CODE SELECTION

the vertex with the corresponding edge incident on it, is marked in orange and one with

corresponding edge divergent from it is marked in blue.

5.6.3 Learnable Representation

Data samples are commonly represented as vectors not only in statistical inference but also

in ML, where they are called feature vector. Image data can be viewed as vectors since they

are regularly structured on a rectangular lattice. Such representation offers computational

ease and lends strong mathematical foundation [FM12] where huge repository of operations

have been defined for vectors. Thus, there are numerous algorithms available that can be

used for analyzing vector data in ML. Graphs, however, comprise highly unstructured data

and hence cannot naturally be represented as vectors. Although an adjacency matrix can

be viewed as structured data, it has several issues which render it difficult to be used as

feature vectors. Firstly, for large graphs, the size (|V |2) is too large for implementation.

Secondly, in scenarios such as graph classification where a single graph is a data sample,

it required that the graphs be of similar size. Lastly, even if they are of same size, we

need a method to order the nodes so as to induce some correspondence among the nodes of

different sample graphs.

Graph embedding has presently emerged as a common solution to above mentioned

problems. It captures a certain properties of the graph in the form of vectors. There are of

two kinds: (i) node embedding, where each node is represented by a vector. They are used

mostly for node classification and link prediction of a graph. They are mostly dependent

on the neighborhood information and first/second degree proximity. Some of the examples

are Node2Vec [GL16], LINE [TQW+15], DeepWalk [PARS14]; (ii) whole graph embedding.

Here the entire graph is represented by a vector which captures some of its properties. They

are mostly applicable for graph classification. Such related work includes graph kernels

[YV15] and Subgraph2Vec [NCC+16].

Since the aim of our representation is to capture the structural properties of the entire

circuit-graph, it needs whole-graph type embedding. However, the existing methods capture

only abstracted properties of graph. For example, graphlet-based kernels represent the

counts of different kinds of graphlets as a vector. More than just graph classification,

we aim to learn structural features from the graph. The proposed Prüfer code captures

the structure of the entire graph, and it can handle the scalability issue mentioned earlier.

However, the other two issues need to be addressed to make it suitable for graph embedding.

The second issue can be handled if the assumption on the size of the graphs (the number

of edges in this case), holds, i.e., they are of same order. For graphs representing logical

circuits, we can synthesize similar-sized circuits to form the training data. Any difference

in their sizes can be handled augmenting them with pseudo-vertices/edges as in [NAK16].

For node correspondence, ordering of the nodes can be accomplished using some special

5.7. CONCLUSION AND FUTURE WORK 117

properties [NAK16] such as node-degree. Besides that, other properties of the circuit such

as level or depth (discussed in Chapter 4) can also be used.

Once we obtain an ordering of the vertices of the graph G(V,E), we can follow this or-

dering while traversing the graph following SENSOR in order to obtain the tree Tg(V
T , ET).

Hence, Tg will be a unique tree of the graph based on vertex ordering. Since the topological

ordering of a DAG is not unique, in the case of DCC or PCC, the independent vertices that

have the same level in the graph can be labeled following the ordering of nodes. Also, in

the case of LCC, the ordering can be followed for the vertices, which belong to the same

tree-level, leaf-stage, or have the same parent.

5.7 Conclusion and Future Work

In this work, we have demonstrated a proof-of-concept for lossless and compact encoding

of large graphs using just a linear-size sequence of vertex labels. In order to encode graphs

with Prüfer codes, we have proposed a method called GT -enhancement, to represent a

graph by a tree. We have proposed two techniques for GT -enhancement, and the second

technique called SENSOR, allows such tree to be represented by a single code. The focus of

the encoding is to capture the structural property of a graph representing a digital circuit,

which is essentially a DAG. Among various graph-representation methods used for machine-

learning framework, a major issue is to ensure lossless encoding of the structure of the graph.

The method based on Prüfer codes completely overcomes this issue. Moreover, we have

proposed a labeling technique that preserves the direction of the edges and improves their

interpretability. We have discussed the learnability of the code and how they can be used

for graph embedding. Application of this code to facilitate the prediction of X-sensitivity

in logic circuits is left as future work. In general, a learnable representation of the code

can potentially be applied for geometric deep learning. Additionally Prüfer code offers a

1-D representation of the graph, which is often a requirement for geometric deep learning

[BBL+17]. Besides, in the case of g-trees generated from graphs with ordered vertices, the

interpretable codes such as LCC bring certain structuredness in the representation, which

is required for such applications. Use of such codes in deep learning framework like RNN

or CNN can be explored in the future.

CHAPTER

SIX

CONCLUSIONS AND FUTURE WORK

In this thesis, we report combinatorial and machine learning based techniques to address

some of the challenges in the field of logic test and diagnosis. These problems arise as

outcome of large scale integration and process complexity. While this has led to new levels

of complex integration on the product end, it demands intricate process technology at the

manufacturing end.

The first problem we studied is related to fault diagnosis. This refers to the process of

defect localization in failed chips, which, in turn, is needed to improve the manufacturing

process. A critical factor that determines the accuracy of fault diagnosis is the power of

diagnostic test patterns. The aim of diagnostic test pattern generation is to distinguish

as many faults pairs as possible. We presented a combinatorial solution to this problem.

While the previous approaches employed circuit analysis or circuit modification techniques,

our approach is based on a novel concept which only relies on ATPG and fault simulation

tools and do not require any explicit interaction with the circuit. Based on the experimental

observation that the test sets produced by ATPG tools are diverse, we proposed a combina-

torial test-selection method for growing the diagnostic test set. Experimental results show

that such a method is equally good at distinguishing the fault pairs like previous methods

and the diagnostic test set size is also comparable.

Our second problem is concerned with the study of X-sensitivity of circuit-inputs.

An inevitable consequence of the complexity of integration in IC-chips is the presence of

unknown logic values (X) in the circuit. Unknown values severely hamper the fault coverage

and test cost. The present solutions to this problem incur various hardware and time

overhead. We have built a predictor, based on support vector regressor, that estimates the

impact of the X-sources on the fault coverage of the test set of any given circuit. We showed

that such ML-based predictor can be used to grade the X-sources of a circuit conveniently

so that the X-sources can be prioritized before handling them in order to avoid unnecessary

119

120

overhead. While an ATPG tool could also fulfill this, it would have taken huge time. In

contrast, the proposed predictor just needs a function evaluation for such estimate, and so

the grading can be obtained instantly. A noteworthy aspect of our predictor is that, it is

based solely on the structural features of the circuit network. These have been formulated

so as to take care of the variations in circuit size and structural diversity of different circuits.

The predictor can thus be generalized for a large class of circuits.

While circuit networks provide a rich source of data, the need to mine features from

such graphs has to be addressed first before they may be fed to machine learning tools. In

our third problem, we present a compact and lossless encoding of graphs in order to make

them readable by machine learning tools. Our method is based on Prüfer sequences which

encode the structure of a tree. In order to apply them to general graphs, we have proposed

a technique to modify a graph to a tree (g-tree), called GT -enhancement. We have proposed

two methods based on this technique. The second method, SENSOR, forms a g-tree which

can be fully encoded into a single Prüfer sequence. We have shown that it is possible to

preserve the direction (signal flow) of the graph.

As a future work, it would be interesting to study the Prüfer encoding of graphs in

the setting of predicting the impact of X-sources. While only single X-source has been

considered in our work, its extension to multiple X-sources using the graph-encoding as

input, can be explored. From the survey reported in Chapter 2, it was observed that

machine learning is being adopted as a potential solution in this field. This is because of the

availability of data in profusion and variety and also because the errors due to new defects

are becoming more and more probabilistic. So, the application of encoding to other problem

settings can be explored. Fault diagnosis, especially multiple fault diagnosis, would also be

a potential area of future ML-research since algorithmic approaches are difficult. Lastly,

each of the methods proposed in this thesis can be applied to large industrial circuits by

more efficient implementation of the response matrix for DTS generation and by considering

multiple X-sources for X-sensitivity prediction.

BIBLIOGRAPHY

[AA13] Chidambaram Alagappan and Vishwani D. Agrawal. Defect diagnosis of digital

circuits using surrogate faults. In Proc. VDAT, pages 376–386, 2013.

[ABF02] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital Sys-

tems Testing and Testable Design. IEEE Press, NJ, 2002.

[ABF07] H. Altun, A. Bilgil, and B.C. Fidan. Treatment of multi-dimensional data

to enhance neural network estimators in regression problems. Expert Systems

with Applications, 32(2):599 – 605, 2007.

[ABKS03] V.D. Agrawal, Dong Hyun Baik, Yong Chang Kim, and K.K. Saluja. Exclusive

test and its applications to fault diagnosis. In Proc. VLSI Design, pages 143–

148, 2003.

[AFI06] M. Arai, S. Fukumoto, and K. Iwasaki. Expansion of convolutional compactors

over Galois field. In Proc. ATS, pages 401–408, Nov 2006.

[AFPB03] M.E. Amyeen, W.K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence

identification in combinational circuits using implication and evaluation tech-

niques. IEEE Trans. CAD, 22(7):922–936, July 2003.

[Ait12] R. Aitken. Yield learning perspectives. IEEE DTC, 29(1):59–62, Feb 2012.

[Alb05] C. Albrecht. IWLS 2005 benchmarks. In International Workshop on Logic

Synthesis, June 2005.

[APA03] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre. Fault collapsing via

functional dominance. In Proc. ITC, pages 274–280, Sept 2003.

[BA05] M. Bushnell and Vishwani Agrawal. Essentials of Electronic Testing for Digi-

tal, Memory and Mixed-Signal VLSI Circuits. Springer Publishing Company,

Incorporated, Dordrecht, Netherlands, 2005.
121

122 BIBLIOGRAPHY

[BB07] Therese Biedl and Franz J. Brandenburg. Partitions of graphs into trees. In

Proc. Graph Drawing, pages 430–439, 2007.

[BBK89] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential

benchmark circuits. In Proc. ISCAS, pages 1929–1934, 1989.

[BBL+17] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geo-

metric deep learning: Going beyond Euclidean data. IEEE Signal Processing

Magazine, 34(4):18–42, July 2017.

[BCV13] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review

and new perspectives. IEEE PAMI, 35(8):1798–1828, Aug 2013.

[Ben09] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends

in Machine Learning, 2(1):1–127, 2009.

[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark

circuits and a target translator in Fortran. In Proc. ISCAS, 1985.

[BM17] Mohammad Bataineh and Timothy Marler. Neural network for regression

problems with reduced training sets. Neural Networks, 95:1 – 9, 2017.

[BND16] K. M. Butler, A. Nahar, and W. R. Daasch. What we know after twelve years

developing and deploying test data analytics solutions. In Proc. ITC, pages

1–8, Nov 2016.

[BS13] Vijay Bhargava and Harkaran Singh. Handling X-bounding in LBIST

designs. https://www.edn.com/design/integrated-circuit-design/4418773/

Handling-X-bounding-in-LBIST-designs, July 2013.

[CA87] H. P. Chang and J. A. Abraham. The complexity of accurate logic simulation.

In Proc. ICCAD, pages 404–407, 1987.

[CH06] Samprit Chatterjee and Ali S. Hadi. Regression Analysis by Example. Wiley,

Hoboken, New Jersey, 2006.

[CHJC13] S. Y. Chen, M. Y. Hsiao, W. B. Jone, and T. F. Chen. A configurable bus-

tracer for error reproduction in post-silicon validation. In Proc. VLSI-DAT,

pages 1–4, April 2013.

[CJC13] H. Y. Chang, I. H. R. Jiang, and Y. W. Chang. ECO optimization using metal-

configurable gate-array spare cells. IEEE Trans. CAD, 32(11):1722–1733, Nov

2013.

[CJC14] H. Y. Chang, I. H. R. Jiang, and Y. W. Chang. Functional ECO using metal-

configurable gate-array spare cells. In Proc. DAC, pages 1–6, 2014.

 https://www.edn.com/design/integrated-circuit-design/4418773/Handling-X-bounding-in-LBIST-designs
 https://www.edn.com/design/integrated-circuit-design/4418773/Handling-X-bounding-in-LBIST-designs

BIBLIOGRAPHY 123

[CKSF05] T. Clouqueur, Kamran Zarrineh, K. K. Saluja, and H. Fujiwara. Design and

analysis of multiple weight linear compactors of responses containing unknown

values. In Proc. ITC, pages 10 pp.–1108, Nov 2005.

[CLH+19] Mason Chern, Shih-Wei Lee, Shi-Yu Huang, Yu Huang, Gaurav Veda, Kun-

Han (Hans) Tsai, and Wu-Tung Cheng. Improving scan chain diagnostic ac-

curacy using multi-stage artificial neural networks. In Proc. ASPDAC, pages

341–346, New York, NY, USA, 2019. ACM.

[CM04] Vladimir Cherkassky and Yunqian Ma. Practical selection of SVM parameters

and noise estimation for SVM regression. Neural Networks, 17(1):113 – 126,

2004.

[CP89] S. J. Chandra and J. H. Patel. Accurate logic simulation in the presence of

unknowns. In Proc. ICCAD, pages 34–37, Nov 1989.

[CRS00] F. Corno, M.S. Reorda, and G. Squillero. RT-level ITC’99 benchmarks and

first ATPG results. IEEE Design and Test of Computers, 17(3):44–53, Jul

2000.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, Cambridge, 2nd

edition, 2001.

[CTR17] W. Cheng, Yue Tian, and S. M. Reddy. Volume diagnosis data mining. In

Proc. ETS, pages 1–10, May 2017.

[CZC18] H. Cai, V. W. Zheng, and K. C. Chang. A comprehensive survey of graph

embedding: Problems, techniques, and applications. IEEE Transactions on

Knowledge and Data Engineering, 30(9):1616–1637, Sept 2018.

[DB17] Y. Dai and R. K. Braytont. Circuit recognition with deep learning. In Proc.

HOST, pages 162–162, 2017.

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Proc. NIPS,

pages 3844–3852. Curran Associates, Inc., 2016.

[DCM12] G. Geoffrey Vining Douglas C. Montgomery, Elizabeth A. Peck. Introduction

to Linear Regression Analysis. Wiley, New York, NY, USA, 5th edition, 2012.

[DDS92] Xiang Dong, Wei Daozheng, and Chen Shisong. Probabilistic models for es-

timation of random and pseudo-random test length. Journal of Computer

Science and Technology, 7(2):164–174, Apr. 1992.

124 BIBLIOGRAPHY

[DED+17] H. Dhotre, S. Eggersgl, M. Dehbashi, U. Pfannkuchen, and R. Drechsler. Ma-

chine learning based test pattern analysis for localizing critical power activity

areas. In Proc. International Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT), pages 1–6, Oct 2017.

[DED19] H. Dhotre, S. Eggersgl, and R. Drechsler. Cluster-based localization of ir-drop

in test application considering parasitic elements. In Proc. LATS, pages 1–4,

March 2019.

[DG77] Persi Diaconis and R. L. Graham. Spearman’s footrule as a measure of dis-

array. Journal of the Royal Statistical Society, Series B (Methodological),

39(2):262–268, 1977.

[DG84] William R. Dillon and Matthew Goldstein. Multivariate Analysis Methods and

Applications. John Wiley & Son, New York, 1984.

[Dom12] Pedro Domingos. A few useful things to know about machine learning. Com-

mun. ACM, 55(10):78–87, October 2012.

[ea11] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

[EKR+15] D. Erb, M. A. Kochte, S. Reimer, M. Sauer, H. J. Wunderlich, and B. Becker.

Accurate QBF-based test pattern generation in presence of unknown values.

IEEE Trans. CAD, 34(12):2025–2038, Dec 2015.

[EKS+13] D. Erb, M. A. Kochte, M. Sauer, H. Wunderlich, and B. Becker. Accurate

multi-cycle atpg in presence of x-values. In Proc. ATS, pages 245–250, Nov

2013.

[EKS+14] Dominik Erb, Michael A. Kochte, Matthias Sauer, Stefan Hillebrecht, Tobias

Schubert, Hans-Joachim Wunderlich, and Bernd Becker. Exact logic and fault

simulation in presence of unknowns. ACM Trans. Des. Aut. Electr. Sys.,

19(3):28:1–28:17, June 2014.

[ET93] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap.

Chapman & Hall/CRC, New York, 1993.

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In

Proc. SODA, pages 28–36, 2003.

[FM12] Yun Fu and Yunqian Ma. Graph Embedding for Pattern Analysis. Springer

Publishing Company, Incorporated, New York, 2012.

BIBLIOGRAPHY 125

[FS83] Fujiwara and Shimono. On the acceleration of test generation algorithms.

IEEE TOC, C-32(12):1137–1144, Dec 1983.

[GCI+17] L. Rodrguez Gomez, A. Cook, T. Indlekofer, S. Hellebrand, and H.J. Wunder-

lich. Adaptive bayesian diagnosis of intermittent faults. JETTA, 30(5):527–

540, 2017.

[GJRR01] Jens Gottlieb, Bryant A. Julstrom, Günther R. Raidl, and Franz Rothlauf.

Prüfer numbers: A poor representation of spanning trees for evolutionary

search. In Proc. GECCO, pages 343–350, 2001.

[GL16] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for

networks. In Proc. KDD, pages 855–864. ACM, 2016.

[GMK91] T. Gruning, U. Mahlstedt, and H. Koopmeiners. DIATEST: A fast diagnostic

test pattern generator for combinational circuits. In Proc. ICCAD, pages 194–

197, Nov 1991.

[Goe17] Richard Goering. How metal-only ECOs save full silicon respins.

https://community.cadence.com/cadence_blogs_8/b/ii/archive/2010/11/

23/user-interview-how-metal-only-ecos-save-full-silicon-respins, April

2017.

[Gro06] Ian A. Grout. Automatic Test Equipment (ATE) and Production Test, pages

257–266. Springer London, London, 2006.

[GT80] L. H. Goldstein and E. L. Thigpen. SCOAP: Sandia controllability/observ-

ability analysis program. In Proc. DAC, pages 190–196, June 1980.

[GW16] L. R. Gmez and H. Wunderlich. A neural-network-based fault classifier. In

Proc. ATS, pages 144–149, Nov 2016.

[Har71] F. Harary. Graph Theory. Addison Wesley Series in Mathematics. Addison-

Wesley, Boston, 1971.

[Hat17] A. A. Hatzopoulos. Analog circuit testing. In Proc. IMSTW, pages 1–6, July

2017.

[HBK+17] Y. Huang, B. Benware, R. Klingenberg, H. Tang, J. Dsouza, and W. Cheng.

Scan chain diagnosis based on unsupervised machine learning. In Proc. ATS,

pages 225–230, Nov 2017.

[hCMB08] Kai hui Chang, Igor L. Markov, and Valeria Bertacco. Reap what you sow:

Spare cells for post-silicon metal fix. In Proc. ISPD, pages 103–110, 2008.

https://community.cadence.com/cadence_blogs_8/b/ii/archive/2010/11/23/user-interview-how-metal-only-ecos-save-full-silicon-respins
https://community.cadence.com/cadence_blogs_8/b/ii/archive/2010/11/23/user-interview-how-metal-only-ecos-save-full-silicon-respins

126 BIBLIOGRAPHY

[HCS+18] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. Ssstrunk, and

G. De Micheli. Deep learning for logic optimization algorithms. In Proc ISCAS,

pages 1–4, 2018.

[HFMB18] Q. Huang, C. Fang, S. Mittal, and R. D. S. Blanton. Improving diagnosis

efficiency via machine learning. In Proc. ITC, pages 1–10, Oct 2018.

[HGCL08] Y. Huang, R. Guo, W. Cheng, and J. C. Li. Survey of scan chain diagnosis.

IEEE DTC, 25(3):240–248, May 2008.

[HKP04] L. M. Huisman, M. Kassab, and L. Pastel. Data mining integrated circuit fails

with fail commonalities. In Proc. ITC, Oct 2004.

[HKWB12] S. Hillebrecht, M. A. Kochte, H. Wunderlich, and B. Becker. Exact stuck-at

fault classification in presence of unknowns. In Proc. ETS, pages 1–6, May

2012.

[HSEL02] C. Hora, R. Segers, S. Eichenberger, and M. Lousberg. An effective diagnosis

method to support yield improvement. In Proc. ITC, pages 260–269, Oct 2002.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning: Data Mining, Inference and Prediction. Springer, New

York, 2nd edition, 2009.

[HYL17] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning

on graphs: Methods and applications. CoRR, abs/1709.05584, 2017.

[J-2] TetraMAX (TM) J-2014. Synopsys advanced pattern generation.

https://www.synopsys.com/implementation-and-signoff/test-automation/

testmax-atpg.html.

[JM15] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and

prospects. Science, 349(6245):255–260, 2015.

[JYZ+16] S. Jin, F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu. Efficient board-level

functional fault diagnosis with missing syndromes. IEEE TCAD, 35(6):985–

998, June 2016.

[Kah62] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–

562, Nov. 1962.

[KJC+14] Subhadip Kundu, Aniket Jha, Santanu Chattopadhyay, Indranil Sengupta,

and Rohit Kapur. Framework for multiple-fault diagnosis based on multiple

fault simulation using particle swarm optimization. IEEE Trans. VLSI Syst.,

22(3):696–700, 2014.

https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html
https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html

BIBLIOGRAPHY 127

[KKH11] Mouna Karmani, Chiraz Khedhiri, and Belgacem Hamdi. Design and test

challenges in nano-scale analog and mixed cmos technology. VLSICS, 2, June

2011.

[KKM+11] M. A. Kochte, S. Kundu, K. Miyase, X. Wen, and H. Wunderlich. Efficient

BDD-based fault simulation in presence of unknown values. In Proc. ATS,

pages 383–388, Nov 2011.

[KMG04] S. Kundu, T. M. Mak, and R. Galivanche. Trends in manufacturing test

methods and their implications. In Proc. ITC, pages 679–687, Oct 2004.

[KPC+13] S. Kundu, S. Pal, S. Chattopadhyay, I. Sengupta, and R. Kapur. A metric

for test set characterization and customization toward fault diagnosis. IEEE

TCAD, 32(11):1824–1828, Nov 2013.

[KSR04] Seiji Kajihara, Kewal K. Saluja, and Sudhakar M. Reddy. Enhanced 3-valued

logic/fault simulation for full scan circuits using implicit logic values. In Proc.

ETS, pages 108–113, 2004.

[LAP19] MARK LAPEDUS. Finding defects in chips with machine learning. https:

//semiengineering.com/finding-defects-with-machine-learning/, MARCH

2019.

[LCP+17] Z. Li, J. E. Colburn, V. Pagalone, K. Narayanun, and K. Chakrabarty. Test-

cost optimization in a scan-compression architecture using support-vector re-

gression. In Proc. VTS, pages 1–6, April 2017.

[LGEC17] A. LHeureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz. Machine

learning with big data: Challenges and approaches. IEEE Access, 5:7776–7797,

2017.

[LH93] H.K. Lee and D.S. Ha. ATALANTA: An efficient ATPG for combinational

circuits. In Technical Report, pages 93–12, Dept of Electrical Eng., Virginia

Polytechnic Institute and State University, Blacksburg, Virginia, 1993.

[LH96] Hyung Ki Lee and Dong Sam Ha. HOPE: an efficient parallel fault simulator

for synchronous sequential circuits. IEEE Trans. CAD, 15(9):1048–1058, Sep

1996.

[LHCL13] Shih-Yuan Liu, Ying-Chin Hou, Chih-Chung Chang, and Jian-Chang Lin. Sige

profile inspection by using dual beam fib system in physical failure analysis.

In Proc. IPFA, pages 490–492, July 2013.

[LHF+12] D. Lin, T. Hong, F. Fallah, N. Hakim, and S. Mitra. Quick detection of difficult

bugs for effective post-silicon validation. In Proc. DAC, pages 561–566, 2012.

https://semiengineering.com/finding-defects-with-machine-learning/
https://semiengineering.com/finding-defects-with-machine-learning/

128 BIBLIOGRAPHY

[LHLL17] Y. Liu, C. Han, S. Lin, and J. C. Li. PSN-aware circuit test timing prediction

using machine learning. IET Computers Digital Techniques, 11(2):60–67, 2017.

[LLC07] Yung-Chieh Lin, Feng Lu, and Kwang-Ting Cheng. Multiple-fault diagnosis

based on adaptive diagnostic test pattern generation. IEEE Trans. CAD,

26(5):932–942, May 2007.

[LLEP07] A. Larsson, E. Larsson, P. Eles, and Z. Peng. Optimized integration of test

compression and sharing for soc testing. In Proc. DATE, pages 1–6, April

2007.

[LLH11] Kuen-Jong Lee, Wei-Cheng Lien, and Tong-Yu Hsieh. Test response com-

paction via output bit selection. IEEE Trans. CAD, 30(10):1534–1544, Oct

2011.

[LLH+13] Wei-Cheng Lien, Kuen-Jong Lee, Tong-Yu Hsieh, K. Chakrabarty, and Yu-

Hua Wu. Counter-based output selection for test response compaction. IEEE

Trans. CAD, 32(1):152–164, Jan 2013.

[MC71] E. J. McCluskey and F. W. Clegg. Fault equivalence in combinational logic

networks. IEEE Transactions on Computers, C-20(11):1286–1293, Nov 1971.

[MGBK12] Deepak Mahajan, Aniruddha Gupta, Deepak Kumar Behera, and Naren-

der Kaushik. Understanding the concept of X in SOC design

flow. https://www.edn.com/design/integrated-circuit-design/4392245/2/

Understanding-the-concept-of-X-in-SOC-design-flow-, August 2012.

[MGOD90] U. Mahlstedt, T. Gruning, C. Ozcan, and W. Daehn. CONTEST: A fast

ATPG tool for very large combinational circuits. In Proc. ICCAD, pages 222–

225, Nov 1990.

[Mil98] L. S. Milor. A tutorial introduction to research on analog and mixed-signal

circuit testing. IEEE TCAD, 45(10):1389–1407, Oct 1998.

[MK02] S. Mitra and Kee Sup Kim. X-compact: an efficient response compaction

technique for test cost reduction. In Proc. ITC, pages 311–320, 2002.

[MRK+19] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo,

Karthikeyan Natarajan, and Bei Yu. High performance graph convolutional

networks with applications in testability analysis. In Proc. DAC, pages 1–6,

Jun 2019.

[MS08] V.C. Mushirabad and R. Shettigara. Automatic fault-testing of logic blocks

using internal at-speed logic-BIST, July 2008. US Patent 7,398,443.

https://www.edn.com/design/integrated-circuit-design/4392245/2/Understanding-the-concept-of-X-in-SOC-design-flow-
https://www.edn.com/design/integrated-circuit-design/4392245/2/Understanding-the-concept-of-X-in-SOC-design-flow-

BIBLIOGRAPHY 129

[Mut76] Peter Muth. A nine-valued circuit model for test generation. IEEE TOC,

C-25(6):630–636, June 1976.

[Mut14] Ann Steffora Mutschler. Yield ramp challenges increase. https://

semiengineering.com/yield-ramp-challenges-increase/, DECEMBER 2014.

[NAK16] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning con-

volutional neural networks for graphs. In Proc. ICML, pages 2014–2023, 2016.

[NCC+16] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu,

and Santhoshkumar Saminathan. subgraph2vec: Learning distributed repre-

sentations of rooted sub-graphs from large graphs. CoRR, abs/1606.08928,

2016.

[NPRK03] M. Naruse, I. Porneranz, S. M. Reddy, and S. Kundu. On-chip compression

of output responses with unknown values using lfsr reseeding. In Proc. ITC,

volume 1, pages 1060–1068, Sep. 2003.

[NTB10] J. E. Nelson, W. C. Tam, and R. D. Blanton. Automatic classification of

bridge defects. In Proc. ITC, pages 1–10, Nov 2010.

[NZD+06] J. E. Nelson, T. Zanon, R. Desineni, J. G. Brown, N. Patil, W. Maly, and

R. D. Blanton. Extraction of defect density and size distributions from wafer

sort test results. In Proc. DATE, volume 1, pages 1–6, March 2006.

[OME05] C. O’Farrill, M. Moakil-Chbany, and B. Eklow. Optimized reasoning-based

diagnosis for non-random, board-level, production defects. In Proc. ITC, pages

7–179, Nov 2005.

[OSK+10] M. P. Ooi, E. Kwang Joo Sim, Y. C. Kuang, L. Kleeman, C. Chan, and

S. Demidenko. Automatic defect cluster extraction for semiconductor wafers.

In Proc. IMTCP, pages 1024–1029, May 2010.

[OY18] Ankush Oberai and Jiann-Shiun Yuan. Efficient fault localization and failure

analysis techniques for improving ic yield. Electronics, 7(3), 2018.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning

of social representations. In Proc. KDD, pages 701–710. ACM, 2014.

[PBCB18] M. Pradhan, B. B. Bhattacharya, K. Chakrabarty, and B. B. Bhattacharya.

Predicting x-sensitivity of circuit-inputs on test-coverage: A machine-learning

approach. IEEE TCAD, page (Accepted), 2018.

[Pei14] Tiago P. Peixoto. The graph-tool python library. http://figshare.com/

articles/graph_tool/1164194, 2014.

https://semiengineering.com/yield-ramp-challenges-increase/
https://semiengineering.com/yield-ramp-challenges-increase/
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194

130 BIBLIOGRAPHY

[PKR02] I. Pomeranz, S. Kundu, and S. M. Reddy. On output response compression in

the presence of unknown output values. In Proc. DAC, pages 255–258, 2002.

[Pom14a] I. Pomeranz. OBO: An output-by-output scoring algorithm for fault diagnosis.

In Proc. IEEE Computer Society Annual Symposium on VLSI, pages 314–319,

July 2014.

[Pom14b] I. Pomeranz. Unknown output values of faulty circuits and output response

compaction. IEEE Trans. CAD, 33(2):323–327, 2014.

[Pom15] I. Pomeranz. Improving the accuracy of defect diagnosis by considering re-

duced diagnostic information. In Proc. VTS, pages 1–6, 2015.

[Pom16] Irith Pomeranz. A test selection procedure for improving the accuracy of defect

diagnosis. IEEE Trans. VLSI Syst., 24(8):2759–2767, 2016.

[Pom19] I. Pomeranz. Diagnostic test generation that addresses diagnostic holes. IEEE

TCAD, 38(2):335–344, Feb 2019.

[PR98] I. Pomeranz and S.M. Reddy. A diagnostic test generation procedure for

synchronous sequential circuits based on test elimination. In Proc. ITC, pages

1074–1083, Oct 1998.

[PR07a] I. Pomeranz and S.M. Reddy. Diagnostic test generation based on subsets of

faults. In Proc. ETS, pages 151–158, 2007.

[PR07b] I. Pomeranz and S.M. Reddy. Equivalence and dominance relations between

fault pairs and their use in fault pair collapsing for fault diagnosis. In Proc.

VLSI Design, pages 498–503, Jan 2007.

[Pru18] H. Prufer. Neuer beweis eines satzes uber permutationen. Arch. Math. Phys.,

27:742–744, 1918.

[PVRS04] I. Pomeranz, S. Venkataraman, S.M. Reddy, and B. Seshadri. Z-sets and z-

detections: circuit characteristics that simplify fault diagnosis. In Proc. DATE,

pages 68–73, 2004.

[RM14] Lior Rokach and Oded Maimon. Data Mining With Decision Trees: Theory

and Applications. World Scientific Publishing Co., Inc., River Edge, NJ, USA,

2nd edition, 2014.

[Rot66] J. P. Roth. Diagnosis of automata failures: A calculus and a method. IBM

Journal of Research and Development, 10(4):278–291, July 1966.

BIBLIOGRAPHY 131

[RSRB15] Andreas Riefert, Matthias Sauer, Sudhakar Reddy, and Bernd Becker. Im-

proving diagnosis resolution of a fault detection test set. In Proc. VTS, pages

1–6, 2015.

[RT05] J. Rajski and J. Tyszer. Synthesis of X-tolerant convolutional compactors. In

Proc. VTS, pages 114–119, May 2005.

[RTWR03] J. Rajski, J. Tyszer, Chen Wang, and S. M. Reddy. Convolutional compaction

of test responses. In Proc. ITC, volume 1, pages 745–754, Sept 2003.

[SA88] M. H. Schulz and E. Auth. Advanced automatic test pattern generation and

redundancy identification techniques. In Proc. ISFTC, pages 30–35, June 1988.

[SBA86] S. C. Seth, B. B. Bhattacharya, and V. D. Agrawal. An exact analysis for

efficient computation of random pattern testability in combinational circuits.

In Digest of Papers, International Symposium on Fault-Tolerant Computing

Systems (FTCS), pages 318–323, July 1986.

[SBP+17] C. Shan, P. Babighian, Y. Pan, J. Carulli, and L. Wang. Systematic defect

detection methodology for volume diagnosis: A data mining perspective. In

Proc. ITC, pages 1–10, Oct 2017.

[SEB16] K. Scheibler, D. Erb, and B. Becker. Accurate CEGAR-based ATPG in pres-

ence of unknown values for large industrial designs. In Proc. DATE, pages

972–977, March 2016.

[SGT+09] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The

graph neural network model. IEEE Trans. NN, 20(1):61–80, Jan 2009.

[Sho95] Peter W Shor. A new proof of cayley’s formula for counting labeled trees.

Journal of Combinatorial Theory, Series A, 71(1):154 – 158, 1995.

[SJX+13] Z. Sun, L. Jiang, Q. Xu, Z. Zhang, Z. Wang, and X. Gu. Agentdiag: An agent-

assisted diagnostic framework for board-level functional failures. In Proc. ITC,

pages 1–8, Sep. 2013.

[SJX+15] Z. Sun, L. Jiang, Q. Xu, Z. Zhang, Z. Wang, and X. Gu. On test syndrome

merging for reasoning-based board-level functional fault diagnosis. In Proc.

ASP-DAC, pages 737–742, Jan 2015.

[SK17] Jyotirmoy Saikia and Rohit Kapur. Scheme for masking output of scan chains

in test circuit, March 2017. US Patent 9,588,179 B2.

132 BIBLIOGRAPHY

[SMO+03] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T.

Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker.

Cytoscape: a software environment for integrated models of biomolecular in-

teraction networks. Genome Res., 13(11):2498–2504, Nov 2003.

[SNW17] N. Sumikawa, M. Nero, and L. Wang. Kernel based clustering for quality

improvement and excursion detection. In Proc. ITC, pages 1–10, Oct 2017.

[SPA85] Sharad Seth, Lilu Pan, and Vishwani Agrawal. PREDICT–Probabilistic esti-

mation of digital circuit testability. In Digest of Papers, International Sym-

posium on Fault-Tolerant Computing Systems (FTCS), pages 220 – 225, June

1985.

[SS04] Alexander J. Smola and Bernhard Schölkopf. A tutorial on support vector

regression. Statistics and Computing, 14(3):199–222, 2004.

[Str18] H. Stratigopoulos. Machine learning applications in ic testing. In Proc. ETS,

pages 1–10, May 2018.

[TCG+11] X. Tang, W. T. Cheng, R. Guo, H. Tang, and S. M. Reddy. Diagnosis of

multiple faults based on fault-tuple equivalence tree. In Proc. DFTS, pages

217–225, Oct 2011.

[TGP17] D. Tille, B. Gottinger, and U. Pfannkuchen. A lightweight x-masking scheme

for iot designs. In Proc. ITC-Asia, pages 77–82, Sep. 2017.

[Tip04] Michael E. Tipping. Bayesian Inference: An Introduction to Principles and

Practice in Machine Learning, pages 41–62. Springer Berlin Heidelberg, 2004.

[TMR+07a] H. Tang, S. Manish, J. Rajski, M. Keim, and B. Benware. Analyzing volume

diagnosis results with statistical learning for yield improvement. In Proc. ETS,

pages 145–150, May 2007.

[TMR+07b] Huaxing Tang, S. Manish, J. Rajski, M. Keim, and B. Benware. Analyzing

volume diagnosis results with statistical learning for yield improvement. In

Proc. ETS, pages 145–150, 2007.

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

LINE: large-scale information network embedding. CoRR, abs/1503.03578,

2015.

[TSS+14] J. Tikkanen, S. Siatkowski, N. Sumikawa, L. Wang, and M. S. Abadir. Yield

optimization using advanced statistical correlation methods. In Proc. ITC,

pages 1–10, Oct 2014.

BIBLIOGRAPHY 133

[TWE+06] Yuyi Tang, H. J. Wunderlich, Piet Engelke, I. Polian, B. Becker, J. Schloffel,

F. Hapke, and M. Wittke. X-masking during logic bist and its impact on

defect coverage. IEEE Tran. VLSI, 14(2):193–202, Feb 2006.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer,

New York, 1st edition, 1995.

[VCAA04] A. Veneris, R. Chang, M.S. Abadir, and M. Amiri. Fault equivalence and

diagnostic test generation using ATPG. In Proc. ISCAS, pages V–221–V–224,

2004.

[Wan17a] Gang Wang. A novel neural network model specified for representing logical

relations. CoRR, abs/1708.00580, 2017.

[Wan17b] L. Wang. Experience of data analytics in eda and testprinciples, promises,

and challenges. IEEE TCAD, 36(6):885–898, June 2017.

[WLL14] Cheng-Hung Wu, Kuen-Jong Lee, and Wei-Cheng Lien. An efficient diagnosis

method to deal with multiple fault-pairs simultaneously using a single circuit

model. In Proc. VTS, pages 1–6, 2014.

[WPY+12] H. Wang, O. Poku, X. Yu, S. Liu, I. Komara, and R. D. Blanton. Test-data

volume optimization for diagnosis. In Proc. DAC, pages 567–572, June 2012.

[WSRW09] Wei-Che Wang, James C.-M. Lim Yi-Chih Sung, Amy Rao, and Laung-Terng

Wang. Test response compaction in the presence of many unknowns. In Proc.

VTTW, 2009.

[WW09] S. Wang and W. Wei. Machine learning-based volume diagnosis. In Proc.

DATE, pages 902–905, April 2009.

[WWN08] P. Wohl, J. A. Waicukauski, and F. Neuveux. Increasing scan compression by

using X-chains. In Proc. ITC, pages 1–10, Oct 2008.

[WWW06] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. VLSI Test Princi-

ples and Architectures: Design for Testability (Systems on Silicon). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, July 2006.

[WWW09] Xiaodong Wang, Lei Wang, and Yingjie Wu. An optimal algorithm for prufer

codes. JSEA, 2:111–115, 01 2009.

[WWW+10] Zhigang Wang, Laung-Terng Wang, Shianling Wu, Xiaoqing Wen, Boryau

Sheu, and Zhigang Jiang. Compacting test responses using X-driven com-

pactor, Aug. 2010. US Patent 7,779,322 B1.

134 BIBLIOGRAPHY

[WYL18] Sying-Jyan Wang, Kuan-Ting Yeh, and Katherine Shu-Min Li. Exploiting

distribution of unknown values in test responses to optimize test output com-

pactors. Integration, the VLSI journal, 2 2018.

[XPLB13] Y. Xue, O. Poku, X. Li, and R. D. Blanton. Padre: Physically-aware diagnostic

resolution enhancement. In Proc. ITC, pages 1–10, Sept 2013.

[XSRM17] C. Xanthopoulos, P. Sarson, H. Reiter, and Y. Makris. Automated die inking:

A pattern recognition-based approach. In Proc. ITC, pages 1–6, Oct 2017.

[XST+01] Xinli Gu, Sung Soo Chung, F. Tsang, J. A. Tofte, and H. Rahmanian. An

effort-minimized logic bist implementation method. In Proc. ITC, pages 1002–

1010, Nov 2001.

[YAS02] Yong Chang Kim, V. D. Agrawal, and K. K. Saluja. Multiple faults: modeling,

simulation and test. In Proc. ASP-/DAC/VLSI Design, pages 592–597, Jan

2002.

[YB08] X. Yu and R. D. Blanton. An effective and flexible multiple defect diagnosis

methodology using error propagation analysis. In Proc. ITC, pages 1–9, Oct

2008.

[YCZG15] F. Ye, K. Chakrabarty, Z. Zhang, and X. Gu. Self-learning and adaptive

board-level functional fault diagnosis. In Proc. ASP-DAC, pages 294–301, Jan

2015.

[YFY+16] F. Ye, F. Firouzi, Y. Yang, K. Chakrabarty, and M. B. Tahoori. On-chip droop-

induced circuit delay prediction based on support-vector machines. IEEE

TCAD, 35(4):665–678, April 2016.

[YT12] Joon-Sung Yang and Nur A. Touba. X-canceling MISR architectures for

output response compaction with unknown values. IEEE Trans. CAD,

31(9):1417–1427, 2012.

[YV15] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proc. ACM

SIGKDD, pages 1365–1374, New York, NY, USA, 2015. ACM.

[YZCG13] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu. Board-level functional fault diag-

nosis using artificial neural networks, support-vector machines, and weighted-

majority voting. IEEE TCAD, 32(5):723–736, May 2013.

[YZCG14] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu. Board-level functional fault

diagnosis using multikernel support vector machines and incremental learning.

IEEE TCAD, 33(2):279–290, Feb 2014.

BIBLIOGRAPHY 135

[YZHL10] Jing Ye, Xiaolin Zhang, Yu Hu, and Xiaowei Li. Substantial fault pair at-a-

time (SFPAT): An automatic diagnostic pattern generation method. In Proc.

ATS, pages 192–197, Dec 2010.

[ZA10] Yu Zhang and Vishwani D. Agrawal. A diagnostic test generation system. In

Proc. ITC, pages 1–9, Nov 2010.

[ZA11] Yu Zhang and V.D. Agrawal. Reduced complexity test generation algorithms

for transition fault diagnosis. In Proc. ICCD, pages 96–101, Oct 2011.

[ZCW+11] Z. Zhang, K. Chakrabarty, Z. Wang, Z. Wang, and X. Gu. Smart diagnosis:

Efficient board-level diagnosis and repair using artificial neural networks. In

Proc. ITC, pages 1–9, Sept 2011.

[ZGC+18] L. Zhao, S. Goh, Y. Chan, B. Yeoh, H. Hu, M. Thor, A. Tan, and J. Lam.

Prediction of electrical and physical failure analysis success using artificial

neural networks. In Proc. IPFA, pages 1–5, July 2018.

[ZGX+12] Z. Zhang, X. Gu, Y. Xie, Z. Wang, Z. Wang, and K. Chakrabarty. Diagnostic

system based on support-vector machines for board-level functional diagnosis.

In Proc. ETS, pages 1–6, May 2012.

AUTHOR’S STATEMENT

The thesis is based on the following publications of the author.

• Journal publications

(J3) M. Pradhan and B. B. Bhattacharya, A Survey of Digital Circuit Testing in the

Light of Machine Learning, WIREs Data Mining and Knowledge Discovery, pp.

1-18, 2020 (DOI: 10.1002/widm.1360).

(J2) M. Pradhan, B. B. Bhattacharya, K. Chakrabarty, and B. B. Bhattacharya, Pre-

dicting X-Sensitivity of Circuit-Inputs on Test-Coverage: A Machine-Learning

Approach, IEEE Trans. CAD, vol. 38, no. 12, pp. 2343-2356, Dec. 2019.

(J1) M. Pradhan and B. B. Bhattacharya, COMEDI: Combinatorial Election of Di-

agnostic Vectors From Detection Test Sets for Logic Circuits, IEEE Tran. VLSI,

vol. 25, no. 4, pp. 1467-1476, April 2017.

• Conference publications

(C1) M. Pradhan and B. B. Bhattacharya, A Prufer-Sequence Based Representation

of Large Graphs for Structural Encoding of Logic Networks, in Proc. ACM

CoDS-COMAD, 293-296, 2019.

137

	List of Figures
	List of Tables
	Introduction
	Motivation
	Fault Diagnosis: Utilizing Test Concept and Data for Diagnosis
	Present Solutions to the Unknown Value (X) Problem
	Machine Learning in Circuit Testing

	Summary of Contributions
	Selecting Diagnostic Vectors from Detection Test Sets for Logic Circuits: A Combinatorial Solution
	Prediction of X-Sensitivity of Circuit-Inputs on Test-Coverage
	Encoding Large Graphs for Representation of Logic Networks

	Organization of the Thesis

	Literature Review
	Overview of Digital Circuit Testing and Diagnosis
	Overview of Machine Learning
	Diagnostic Test Generation
	Unknown Value in Digital Circuits
	Machine Learning in VLSI Testing
	Analog Circuit Testing
	Diagnosis
	Test Compression
	Circuit Testability
	Timing Analysis
	Summary, Challenges and Future Directions

	Summary

	Selecting Diagnostic Vectors from Detection Test Sets for Logic Circuits: A Combinatorial Solution
	Introduction
	Background
	Related Work
	Motivational Example
	Proposed Work
	Data Structure: Response Matrix
	Computing the Equivalence Class of a Test Set T from an |F||T| RR-Matrix
	Proposed Algorithms

	Experimental Results
	Conclusion and Future Work

	Predicting X-Sensitivity of Circuit-Inputs on Test-Coverage: A Machine-Learning Approach
	Introduction
	Problem Statement and a Motivating Example
	Structural Features of Logic Circuits
	Illustration of Structural Uniqueness of Circuits and Their Inputs
	Circuit Features
	Algorithms for Feature Computation

	Support Vector Regression (SVR)
	Data Analysis and Methodology
	Experimental Results
	Goodness-of-Fit
	Predictive Performance
	A Metric for Evaluating X-Source Grading
	Interpreting the Prediction Results
	Relationship of the Features with DT-loss
	CPU-Time
	Error Bars

	Conclusion and Future Work

	Encoding Large Graphs for Representation of Logic Networks
	Introduction
	Motivation
	Methodology
	Prüfer-Code
	GT-Enhancement and Encoding of g-tree

	Tree-Partition Based GT-Enhancement
	Proposed Approach
	Implementation
	Results on Benchmark Circuits

	Improved GT-Enhancement
	Seek-Edge (SE) Traversal
	Split-On-Revisit (SOR)

	Prüfer Code Selection
	Properties of Prüfer Code
	Encoding Methods
	Learnable Representation

	Conclusion and Future Work

	Conclusions and Future Work
	Bibliography
	Author's Statement

