
Dealing with classification

irregularities in real-world

scenarios

Payel Sadhukhan

Computer Vision and Pattern Recognition Unit

Indian Statistical Institute

Kolkata - 700 108, India

Supervisor: Dr. Sarbani Palit

A thesis submitted to Indian Statistical Institute

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

1 July 2020

Dedicated

to

my family

&

late Prof. C. A. Murthy

ACKNOWLEDGEMENTS

From the beginning of my high school days, I wanted to have a research career. I was

not quite sure about my exact passion but I knew that it had to be something logical,

where a series of logical thoughts would lead me to something that I did not know or

something that I knew but did not know why.

I had started my Ph.D in August 2014 under the supervision of late Prof. C. A.

Murthy. He taught us during my M. Tech days at the same institute. His lecturers were

immensely informative and probably one of the best in our country. Besides passing

information to the students, he made them think about how things were working. I was

influenced by him before joining my Ph.D. I had spent three years under his supervision

till his death in March 2018. He taught me how to think, helped me with writing papers

and rendered a fatherly supervision during this entire period.

The sudden death of Prof. Murthy had created a void which shook the very founda-

tion of my Ph.D. Nonetheless, I was determined to continue and complete the unfinished

ones and complete my thesis. In this tumultuous period, my present supervisor, Prof.

Sarbani Palit stood by me as a rock, both academically and emotionally. With her help

and supervision, I have been able to finish the works related to my Ph.D. To be honest, I

don’t know how to thank these two people. I can only say that without you two, I would

not be writing the acknowledgement of this thesis.

My family has been my strength and anchor. My husband was there to support

me from the beginning till the end of this work. My daughter was born during the

early phase of my Ph.D and I could manage my home and work because of our joint

efforts. My daughter has been a source of strength and cheer up and has helped me to

preserve the very meaning of life during the pitfalls of my Ph.D journey. I also beg her

pardon for missing out quite a few moments of her childhood while working towards my

Ph.D (I sincerely hope that she understands my actions when she grows up). On an

unofficial note, this Ph.D is the joint venture of all three of us, so I choose not to thank

them. I would like to thank my parents because they have ensured me a strong academic

foundation which enabled me to complete my higher studies.

I want to express my thankfulness to all the faculty members of my department. I

would also like to acknowledge the support that I have received throughout from the

office staff of our department during the tenure of my PhD. I express my sincere thanks

to the authorities of ISI for the facilities extended to carry out research work and for

providing me every support during this tenure. I want to thank all the others, whom I

might have missed here, for their well wishes and support.

Payel Sadhukhan

ii

List Of Related Articles Of The Author

• P. Sadhukhan and C. A. Murthy, ”Multi-label Learning Through Minimum Span-

ning Tree-Based Subset Selection and Feature Extraction”, Canadian Conference

on AI, Lecture Notes in Computer Science, April 2017. (Chapter 3)

• P. Sadhukhan, ”Learning Minority Class prior to Minority Oversampling”, Inter-

national Joint Conference on Neural Networks (IJCNN), July 2019. (Chapter

2)

• P. Sadhukhan and S. Palit , ”Reverse-nearest neighborhood based oversampling for

imbalanced, multi-label datasets”, Pattern Recognition Letters, Volume 125, 2019.

(Chapter 4)

• P. Sadhukhan and S. Palit, ”Lattice and Imbalance Informed Multi-label Learning”,

IEEE Access, Volume 8, 2020. (Chapter 3 and 4)

• P. Sadhukhan, ”Can Reverse Nearest Neighbors perceive unknowns?”, IEEE Ac-

cess, Volume 8, 2020. (Chapter 5)

• P. Sadhukhan and S. Palit, ”Adaptive learning of minority class prior to minority

oversampling”, Pattern Recognition Letters, Volume 136, 2020. (Chapter 2)

iii

Contents

1 Introduction 1

1.1 Issues in Classification . 3

1.2 Thesis Contribution . 5

1.2.1 Class-imbalance problem in a two-class dataset 5

1.2.2 Learning multi-label datasets — from the perspective of feature

extraction . 6

1.2.3 Multi-label dataset: From the perspective of class imbalance . . . 7

1.2.4 Open set classification . 8

1.3 Organization . 9

2 Class imbalance handling through estimation of minority class 11

2.1 Introduction . 11

2.2 Review of Existing Class Imbalance classifiers 12

2.3 Principles of Set Estimation and estimating the Minority Set 15

2.3.1 Choosing an estimator αn which has constant volume hyperspheres

across all points . 15

2.3.1.1 Choosing a suitable ε . 15

2.3.2 Choosing an αn which has variable volumes of estimated spaces

across xi, i = 1, 2, . . . , n . 17

2.3.2.1 Choosing a suitable set of εi 18

2.3.3 Synthetic minority sample generation from estimated minority set 19

2.4 The Proposed method . 20

2.4.1 First step: Minority set estimation: 20

2.4.2 Second step: Synthetic minority set generation: 21

2.5 Complexity Analysis of the proposed estimation procedures 22

2.6 Experimental Setup . 23

v

2.6.1 Datasets . 24

2.6.2 Evaluation metrics . 25

2.6.3 Comparing methods and Classifiers 25

2.6.4 Statistical Test . 26

2.7 Results and Discussion . 26

2.8 Summary . 29

3 Handling multi-label datasets – from a perspective of feature extrac-

tion 33

3.1 Introduction . 33

3.2 Approach I - A Minimum Spanning Tree (MST) based feature extraction 34

3.2.1 Algorithm . 36

3.3 Proposed Approach II- A Relative Neighborhood Graph (RNG) based

feature extraction . 40

3.4 Algorithm . 42

3.4.1 Datasets . 45

3.4.2 Comparison against State-of-the-art approaches and the experi-

mental settings . 47

3.4.3 Evaluation Metrics . 47

3.4.4 Results and Discussions . 48

3.5 Summary . 50

4 Handling multi-label datasets – addressing imbalance of the labels 51

4.1 Introduction . 51

4.2 Related Work . 53

4.3 Proposed Approach I . 55

4.3.1 Working principles – Principles of reverse nearest neighborhood . . 55

4.3.2 Proposed method . 55

4.4 Proposed Approach – II . 58

4.4.1 Multi-label nature of data, its consequences and our thoughts . . . 58

4.4.2 Handling imbalance further - Cost sensitive classification 59

4.4.3 Algorithm . 60

4.5 Experimental Setup . 61

4.5.1 Second experiment: Competence of the imbalance adaptive mis-

classification cost . 62

4.5.2 Third experiment: Parameter optimization 63

vi

4.5.3 Fourth: Statistical significance test 63

4.6 Results and Analysis . 63

4.7 Summary . 70

5 Open Set Classification 71

5.1 Introduction . 71

5.2 Open set classification . 73

5.3 Literature Review . 74

5.4 Reverse k-nearest neighborhood . 76

5.4.1 Known and unknown space modulation 77

5.4.2 Principles of Reverse k-nearest neighborhood and classification . . 79

5.5 Proposed Work . 79

5.5.1 Approach . 79

5.5.2 The Proposed Method . 80

5.6 Experimental Setup . 83

5.6.1 Datasets . 83

5.6.2 Parameter Optimization . 86

5.6.3 Comparing methods . 87

5.6.4 Evaluating indices . 88

5.7 Results and Discussion . 90

5.7.1 Reporting average (over all opennesses of a dataset) AKUF1 results

of five datasets . 96

5.7.2 Limitations of the proposed scheme 114

5.8 Experiment on parameter tuning . 114

5.9 Summary . 117

6 Conclusion and Scope of Further Research 119

6.1 Future Work . 122

vii

List of Figures

2.1 Locations of synthetic minority points generated by various methods in

Voronoi diagram. 13

4.1 We want to find the RkNNs of point C. We consider k=1. It can be found

visually that the Euclidean distance between A and C is less than between

B and C as well as D and C. If we were to find 1-nearest neighbor of C, A

would have been the answer. Now, let us analyse with respect to RkNN.

Though A is closest to C but C is not closest to A, A has some nearer

points or neighbors in its vicinity. Hence, A is not a RkNN of C. Though

B may seem far off from C, it becomes a RkNN of C because C is nearer

to B than any other given point in the feature space. The same holds for

D also, hence D becomes a RkNN of C. At k value 1, C has 2 RkNNs

{B,D}. RkNN gives a density based neighborhood estimation of the points. 56

4.2 Macro-averaging AUC results of four datasets subject to varying and in-

creasing misclassification costs for the minority class. We have varied the

cost factor between 0.5, 1, 2 and 4. It can be observed that increasing the

cost factor value upto 2 improves the learning of minority classes of each

label. The graphs of these figures indicate a loss of performance on cost

factor beyond 2 on all the four datasets. On using a value beyond 2, the

classifier is getting over-biased towards the minority class. The optimal

cost factor value is 2 for three datasets and equals 1 for one dataset. . . . 65

ix

4.3 Macro-averaging F1 results of four datasets subject to varying and increas-

ing misclassification costs for the minority class. We have varied the cost

factor between 0.5, 1, 2 and 4. The observation and analysis of this figure’s

data is in congruence with our findings from Figure 4.2. On all four cases,

Macro-averaging F1 value increases on increasing the cost factor value up

to 2. It marks the optimal value for learning the given datasets. An in-

crease beyond cost factor value 2 is observed to cause a loss of minority

performance. 66

4.4 Macro-averaging F1 results of four datasets subject to varying number of

lattice points. We have varied the number of positive lattices between

50, 100, 150 and 200. Number of negative lattices is proportional to the

number of positive lattice points and vary accordingly. The figures indicate

that increasing the lattice points result in improvement in macro-averaging

F1 performance. 67

4.5 Macro-averaging AUC results of four datasets subject to varying number

of lattice points. We have varied the number of positive lattices between

50, 100, 150 and 200. Number of negative lattices is proportional to the

number of positive lattice points and vary accordingly. For three datasets

(Enron, Yeast and Slashdot) Macro-averaging AUC scores increase with

increasing the lattice points. We get an exception with Medical dataset,

where the performance degrades as number of lattices. 67

5.1 This figure shows known-unknown subspace for a toy example. 78

5.2 It depicts TP, TN, FP, FN for a toy scenario which has 2 known classes

and an unknown class. Class 1 and class 2 constitute the set of known

classes and U denotes the unknown class. The first two diagonal elements

correspond to the correct predictions for class 1 and class 2 and belonging

to the TP set. The 3rd diagonal cell corresponds to the correct predictions

for the unknown class U and hence is counted as TN. Remaining elements

of row 1 and 2 correspond to the FPs or false predictions into the known

classes. For example, cell(2,1) counts the cases where the actual class is

1 but the prediction has been class 2. For cell(2,U) the actual class of

the instances is unknown class U but class 2 is predicted. Non-diagonal

elements of row 3 correspond to the cases where prediction has been made

into the unknown class U but actual class is a known class (1 or 2). 89

x

5.3 The results indicate the certain superiority of the proposed method over all

competing methods on four out of five datasets. On MNIST dataset, the

proposed method suffers from the issue of high dimensionality of features.

The enhanced performance of the proposed method on Reduced-MNIST

(with reduced feature set) dataset affirms this fact. 97

5.4 AKUF1 results on Dermatology on three openness values. 98

5.5 AKUF1 results on Letter on eleven openness values. 98

5.6 AKUF1 results on MNIST on four openness values. 99

5.7 AKUF1 results on Reduced-MNIST on four openness values. 99

5.8 AKUF1 results on Optdigits on five openness values. 100

5.9 AKUF1 results on Penbased on five openness values. 100

5.10 AKUF1 results on Segment on four openness values. 101

5.11 AKUF1 results on Shuttle on four openness values. 101

5.12 AKUF1 results on Texture on six openness values. 102

5.13 AKUF1 results on Vehicle on two openness values. 102

5.14 AKUF1 results on Vowel on six openness values. 103

5.15 Accuracy results on Dermatology on three openness values. 104

5.16 Accuracy results on Letter on eleven openness values. 104

5.17 Accuracy results on MNIST on four openness values. 105

5.18 Accuracy results on Reduced-MNIST on four openness values. 105

5.19 Accuracy results on Optdigits on five openness values. 106

5.20 Accuracy results on Penbased on five openness values. 106

5.21 Accuracy results on Segment on four openness values. 107

5.22 Accuracy results on Shuttle on four openness values. 107

5.23 Accuracy results on Texture on six openness values. 108

5.24 Accuracy results on Vehicle on two openness values. 108

5.25 Accuracy results on Vowel on six openness values. 109

5.26 F1 results on Dermatology on three openness values. 109

5.27 F1 results on Letter on eleven openness values. 110

5.28 F1 results on MNIST on four openness values. 110

5.29 F1 results on Reduced-MNIST on four openness values. 111

5.30 F1 results on Optdigits on five openness values. 111

5.31 F1 results on Penbased on five openness values. 112

5.32 F1 results on Segment on four openness values. 112

5.33 F1 results on Shuttle on four openness values. 113

xi

5.34 F1 results on Texture on six openness values. 113

5.35 F1 results on Vehicle on two openness values. 114

5.36 F1 results on Vowel on six openness values. 115

5.37 Accuracy results on Dermatology on three openness values and varying k

values. 116

5.38 Accuracy results on Vehicle on two openness values and varying k values. 116

5.39 Accuracy results on Segment on four openness values and varying k values.117

5.40 Accuracy results on Vowel on six openness values and varying k values. . 118

xii

List of Tables

2.1 Description of Datasets . 24

2.2 F1 Results on C4.5 tree . 27

2.3 AUC Results on C4.5 tree . 28

2.4 F1 Results on Regression based classifier 29

2.5 AUC Results on Regression based classifier 30

2.6 This table reports the p value at which we can reject the null hypothesis

and claim that the performance of the proposed method (ALMCMO) is

statistically different (in our case superior than) from that of a competing

method. Lower the p value, more significant is the difference. At p = 0.05

level of significance and employing Bonferroni correction, p = 0.008 is the

decision threshold. ALMCMO has achieved a value lesser than 0.008 in all

the cases.. The cases where we could reject the null hypothesis are written

in bold-face. 31

2.7 This table reports the average time taken to compute the synthetic mi-

nority oversampling by each method on each dataset. All the methods

are executed on same platform (i7 processor, 8 GB RAM, OS - Ubuntu

14.04). Each method has been executed 10 times on each dataset. We

have reported the average time taken by the methods. The unit of time

used here is second (s). We can see that the two proposed methods, ALM-

CMO and LMCMO have taken the least amount of time to generate the

synthetic minority sets. Time taken by LMCMO is the lowest among all

the methods. 31

3.1 Description of Datasets . 45

3.2 Predictive performance of methods in terms of multi-label eval-

uation metrics — ↑ indicates higher is better and ↓ indicates lower is

better, best outcome is indicated in bold-face 46

xiii

4.1 Description of Datasets for experiment on imbalance 61

4.2 This table records the observations of experiment on class-imbalance as-

pect of multi-label dataset (Experiment 2). Result are reported for 2

metrics (Macro-averaging F1 and Macro-averaging AUC), 11 datasets and

9 methods (including LIIML). For both the metrics, a higher value means

better result (as indicated by the ↑). On Macro-averaging F1 and Macro-

averaging AUC, LIIML has achieved best scores among all methods on 8

and 7 datasets respectively. 64

4.3 This table records the results of applying the proposed cost-sensitive learn-

ing paradigm on two first order approaches LIFT and BR. We have used

Macro-averaging F1 and Macro-averaging AUC as the evaluating metrics.

The original results (without added cost), results with enhanced cost and

the corresponding improvement on each dataset are reported in the table.

The instances where the enhanced cost version achieves an improvement

of greater than 20% over the original result are highlighted through dark-

ening of their backgrounds. — ↑ indicates higher is better and ↓ indicates

lower is better, best outcome is indicated in bold-face 68

4.4 This table corresponds to the outcome of statistical tests on results of

Experiment 1 (Table 4.2). It reports the p value at which LIIML’s per-

formance is statistically superior to that of a comparing method for a given

metric. Each row corresponds to a method and each column to a metric.

A lower p value more significant difference in performance. We have se-

lected p = 0.05 as the threshold for statistical significance. Outcomes at

which p < 0.05 are indicated in boldface. On Macro-averaging F1, LIIML

achieves statistical superior performance over 7 out of 8 methods. On

Macro-averaging AUC metric, LIIML’s performance is statistically supe-

rior to 4 out of 7 methods. 69

5.1 Categorization of different problems . 74

5.2 Description of datasets. N, f and C denote the number of instances, fea-

tures and total number of classes in order. ck and cu denote the cardinal-

ities of the known and unknown classes respectively. 87

5.3 Performance on Accuracy. The table gives the summary of the best

performances obtained by each method on each dataset. 92

xiv

5.4 Performance on Average F1 over known and unknown classes (AKUF1).

The table gives the summary of the best performances obtained by each

method on each dataset. 93

5.5 Performance on Known class F1. The table gives the summary of the

best performances obtained by each method on each dataset. 94

xv

Chapter 1

Introduction

Data processing by the human sensory system comes naturally. This processing, com-

monly denoted as pattern recognition and analysis are carried out spontaneously by

humans. In day to day life, in most cases, decision making by humans come without any

conscious effort. From the middle of the past century, humans have shown interest to

render their abstraction capabilities (pattern recognition and analysis) to the machine.

The abstraction capability of the machine is ’machine intelligence’ or ’machine learning’

[87].

The primary goal of machine learning methods is to extract some meaningful infor-

mation from the ’data’. Data refers to the information or attributes that are fed to a

machine learning algorithm or method. The two main types of learning are – i] Sum-

marization and ii] Generalization. An algorithm makes a summarization of the given

information to understand the key components of the data. The algorithm might aim to

learn the key features, key data point which can provide the particulars of the data. The

other aspect of machine learning is generalization of data – extracting the underlying

structure of the data to make correct prediction of upcoming new data. Classification of

data by an algorithm requires it to make a generalization first.

Classification of objects into different categories is a fundamental element of deci-

sion making. The machine learning community has taken a keen interest in developing

competent classification algorithms (classifiers) since it’s outset. Thereupon, diversified

paradigms like naive bayes [77], knn [65], neural networks [35] have emerged to facilitate

effective classification of data. A classifier is modeled through the generalization of the

given data or the training data. The purpose of a good classifier is to make correct

predictions of the future data (or the test data) on the basis of the generated model.

Consequently, the prediction capability of a classifier is dependent on how good one has

1

modeled the classifier. The modeling in turn depends on the training data. To inte-

grate and facilitate the intertwining of efficient modeling and predictions, some standard

assumptions are made by the machine learning community.

Classification algorithms, being mathematical formulations are devised under several

such assumptions on the datasets. The assumptions can be i] the different classes of

a dataset have similar cardinalities (if the standard deviations in class cardinalities

is high, we have the class-imbalance issue), ii] the training and test partitions of a

dataset will have similar attribute profile (same number of classes and distributions),

iii] an instance can belong to one class only, iv] information about all attributes of the

instances are known and more. The continuous and intelligent efforts of the machine

learning community has given (and is still providing) a class of robust classifiers in the

past and present times. However, often, it is observed that a ’potent’ classifier which

gives accurate predictions under a given assumption fails to deliver optimal performance

whenever it is exposed to situations where these assumptions are not fulfilled. To get

admissible performance from the conventional classifiers, it is essential to comply with

the assumptions.

Real-world data from diversified domains like medical, biology, security, banking,

social networking, web-data, news articles show breaches of several of these assumptions.

The weakness of the machine learning algorithm in failing to generalize becomes all the

more clear when tried on the real word datasets. In current state of time, the involvement

of machine learning in our day-to-day life has increased to an remarkable extent. To

maintain and escalate its relevance, the classification paradigms have to be robust to

the breach of the assumptions which exist in the real world data. In datasets from

medical domain, a quantitative disparity exists in the cardinalities of different classes.

A class may contain a significantly higher number of instances than another. Such

a disproportion in the dataset biases the classifier towards the quantitatively abundant

class. As a consequence, at the test phase, the instances from the under-represented class

goes go vastly undetected by a regular classifier and we get suboptimal performance for

that class.

The goal of this thesis is to address some of these data deviations in a classification

context. In this thesis, we handle three such deviations and propose solutions to the

problems. While analyzing the data deviations we have observed that at times two or

more irregularities are intertwined with each other. In such a scenario, solving one gives

an elegant solution to the other. In the following section, we discuss the motivation and

the three types of deviation that we focus in this thesis. In the next subsection, Section

2

1.1, we discuss the problems that we address in this thesis. A more concise articulation

of the research statements and research questions are presented in Section 1.2 .

1.1 Issues in Classification

As we have discussed above, data from a real-world domain has naturally occurring

deviations or breaches of assumptions. Various types of deviation already exist and with

time more such deviations are emerging from different fields. In this thesis, we have

approached three types of deviations. These three deviations are – i] Class-imbalanced

data, ii] Multi-label data and iii] Unknown class labels. We briefly discuss the technical

aspects of these three deviations in the following paragraphs.

Class-imbalanced data: While modeling a conventional classifier for a given dataest,

it is assumed that the cardinality of the different classes in the data are somewhat equal.

A diverging scenario with largely varying class sizes is seen in data from domain like

medical and fraud detection. In standard medical data [82], the ratio of the number of

afflicted persons to that of healthy persons is highly skewed. We have greater number

of healthy persons than diseased ones. A similar scenario is observed in fraud detection

data in the banking sector [60]. The number of genuine transactions highly outnum-

ber the fraudulent ones. Several other real-world domain are pertinent sources of such

skewed or imbalanced data. A standard term for such data is ”class-imbalanced data”.

In a class-imbalanced dataset, the number of examples in the possible classes differs by

a noteworthy amount, affecting the functioning of a conventional classifier. In a two-

class dataset, the quantitatively abundant and the under-represented classes are termed

as majority class and minority class respectively. Conventional classifiers get biased to-

wards the majority class of a class-imbalanced data. Though a good accuracy score is

obtained on such data, such classifiers often fail to detect the minority class instances.

In this thesis, we aim to achieve improvement in performance on the detection of both

the majority class and the hard-to-learn minority instances.

Multi-label data: In a conventional classifier, the data points (examples) belong to

exactly one of the possible classes. Data sources like a newspaper article can belong to one

or more classes simultaneously. For example, a newspaper article (text categorization)

can be classified as belonging to sports and entertainment together. Some other article

may be classified as a piece on politics and entertainment. Similar classes of datasets are

obtained from the domain of image, medical, tag recommendation systems and video.

These data are characterized by the membership of their points in more than one overlap-

3

ping classes. Such datasets are termed as multi-label data. The classes of a multi-label

dataset are transformed into two or more overlapping labels. Each label represents a cat-

egory and an instance is classified as 0 or 1 according to it’s membership (belongingness)

to a category. This process is repeated over the entire label set to get the information

of the instance. Let us denote a multi-label dataset by D = {(xi,Yi), i = 1 , 2 , . . . ,n}
and the label set cardinality be L. Yi = {yi1, yi2, . . . , yiL}. We assume that each la-

bel has exactly two classes positive (1) and negative (0) that is Yij can be either 1 or 0,

j = 1, 2, . . . ,L. The goal of the classifier is to rightfully classify xi into either the positive

(1) or the negative (0) class for L labels. In general, a conventional classification system

does not provide for learning of multi-label data. This motivates a need for sophisti-

cated classifiers which can accommodate multi-label learning. In this thesis, we analyze

multi-label data and work on two aspects to provide competent multi-label learners.

Unknown class classification/ Open Set Recognition: Since the primal days

of machine learning, a classifier is designed to efficiently classify the objects/ examples

from classes that it has seen. Synchronizing with this aspect, a fascinating assumption

is made. While modeling a classifier, it is assumed that the training data and test data

has same number of classes. Technically, this assumption suggests that there is nothing

unknown to the classifier. But this aspect does not conform to the characteristics of prac-

tical data. To develop an automated and self-sufficient system, we have to focus and fill

up this critical gap. Besides regular (or known class classification), we have to facilitate

unknown class detection. In machine learning context, Open set recognition/ classifi-

cation is the detection of unknown (unseen during training) class instances and known

class classification in an open world of known and unknown classes. Fraud detection

[93], fingerprint spoof detection [71], impostor detection [31] constitute pertinent context

for unknown class detection in real world domain. Open set classification is principally

conducted in a multi-class framework. In the training or classifier modeling phase, we

have one or more known classes on the basis of which the classifier is modeled. In the

test phase, apart from the known classes seen during training, we encounter instances

from some other classes unseen during training. The job of the classifier is to correctly

classify the seen class instances to their rightful class and classify the unseen instances

as belonging to the unknown class. In this thesis, we have presented a classifier which

facilitates unknown class classification besides regular known class classification.

4

1.2 Thesis Contribution

In the previous section, we have presented a brief technical portrayal of three particular

types of data irregularities – i] imbalanced data, ii] multi-label data and iii] open set

classification. To obtain an efficacious performance on these classes of data, we need

to provide special attention to them. These three types of data deviations are in three

different directions and are largely different from each other in terms of technicalities.

To have a potent learning and classification approach, we analyze the three types of

data separately and work on the critical aspects of each of them. We have further

noticed that multi-label data is by and large plagued by class-imbalance of the labels

also. Consequently, we have added a study which deals with issue of class-imbalance in

multi-label problems. Four specific research questions are raised and answered in the

thesis. The specific research questions addressed in different sections of this thesis are

presented in the following section.

1.2.1 Class-imbalance problem in a two-class dataset

In a class-imbalanced dataset, when we have exactly two classes, the class with higher

and lower number of points are termed as majority and minority classes respectively.

Class-imbalance ratio is ratio of points in the majority class to those of the minority

class of a dataset. In a class-imbalanced dataset, the difference in cardinalities of the

majority and minority classes are significant enough to affect the proper learning of such

data. The minority instances get largely undetected in a regular classification framework.

This problem is handled by the machine learning community using various diversified

techniques. The solutions to this problem can be classified into two types — i] data

modification or ii] modifying the classifier to accommodate class-imbalance of data. The

principal goal of the data modification techniques is to equate the cardinalities of the

majority and the minority classes of the training data before building the classifier.

There can be two ways of achieving this. The first way is to undersample the majority

class– removing points from the majority class. The other way is to oversample or

increase the minority class by adding synthetic minority points. Starting from SMOTE,

the oversampling techniques have given incremental and commendable improvement in

minority class performance over the years.

The objective of a class-imbalance focused learner is to improve the performance of

the minority class instances. The techniques involving minority class oversampling have

satisfied this criteria to some extent, often at the expense of majority class results. These

5

learners shift the decision boundary away from the minority class instances and towards

the majority class instances. This results in the detection of borderline minority instances

but the majority class instances in the same region get misclassified into the minority

class. Consequently, the classifiers focused towards minority class improve the F1 scores

of the minority class but the accuracy (taken together for both the classes) goes down in

most of the cases. Accuracy goes down because the majority class instances are more in

number. Yet, the betterment in minority class performance cannot be an affirmation to

the true classes of the synthetic instances. This aspect raised the following question.

• How to generate a synthetic minority point at the rightful location?

• Our Answer : Estimate the minority set from the given points and generate the

synthetic minority points from the estimated space.

We propose two schema for estimating the minority spaces. The first scheme proposes

an estimation procedure where the volumes of estimated spaces are constant around the

existing minority points. The second scheme has a layer of refinement over the first as it

estimates an adaptive volume of space around different minority points. In both cases,

the synthetic minority points are generated from the estimated spaces. We have carried

out our experiments on more than 20 real-world class-imbalanced datasets. We have

tried the oversampled datasets from the proposed and state-of-the-art methods on two

base classifiers – C4.5 decision tree and logistic regression based classifier. Our empirical

study shows that the proposed set estimation prior to generation model gives comparable

to superior performance over the existing minority oversamplers.

1.2.2 Learning multi-label datasets — from the perspective of feature

extraction

In a multi-label dataset, an instance belongs to more than one overlapping class. If the

label set cardinality is L, each instance has L membership values, one for each label. In a

two class multi-label dataset of L labels, for an instance, each label membership can take

exactly one of two values – 0 or 1. 0 and 1 denote negative and positive memberships

respectively. In a multi-label dataset, the set of feature points are shared by all labels.

Despite sharing the feature points, the memberships of the instances vary from label

to label. This leads to a variable class partition and geometries for different labels. A

multi-label dataset has exactly one instance set with different positive and negative class

partitions for different labels. In this scenario, simply modeling a set of regular classifiers,

one for each label will not provide for learning.

6

• Question: How to properly learn a multi-label dataset?

• Answer: Extract the label-specific class geometries of a multi-label dataset.

A meaningful learning of data characteristics is required in the context of each label.

In order to achieve that, we learn the positive and negative lattice points for each label.

Lattice points are key structural points of a dataset – we use them to learn the underlying

class boundary of the dataset. The class-partition of a dataset varies across labels for

a multi-label dataset, hence the set of lattice points will vary across the labels. We use

two separate techniques for selecting the lattice points among the given feature points/

examples. One involves Minimum Spanning Tree and the other is based on Relative

Neighborhood Graph. Finally, the lattice points obtained from the graphs are used to

extract a label-specific feature set, one for each label. A single representation (of each

instance) for all labels is transformed to a set of feature mappings, one for each label.

Our experimental study has affirmed the utility of label-dedicated feature set in learning

the multi-label datasets. We have employed 10 real-world datasets and five existing

multi-label learners in the comparative study of our work.

1.2.3 Multi-label dataset: From the perspective of class imbalance

Another prominent characteristic of multi-label datasets is the class-imbalance of the

labels. This is more compounded with the variable class partition across the labels. In

a multi-label dataset, varying class partitions lead to varying number of points in the

positive and negative classes of different labels. As a consequence, we get differing class

imbalance ratio values for different labels.

• Question: What are the ways of handling differential degrees of class-

imbalance in a multi-label dataset?

• Answer 1: Set varying costs of misclassification of minority instances for different

labels.

• Answer 2: We can employ an imbalance adaptive oversampling for different labels.

In this piece of work, we propose two solutions to the critical problem of varying

imbalance ratios. The first solution works on the aspect of modifying the classifier.

A standard solution for handling class-imbalance problem is cost-sensitive learning. To

counter the bias of a regular classifier towards the quantitatively abundant majority class,

the misclassification cost of the minority instances is increased as compared to that of

7

the majority instances. We extend this paradigm in context of multi-label datasets. We

calculate the imbalance ratios of different labels. We select a set of misclassification

cost values of the minority class, one for each label. This cost is made adaptive to the

imbalance ratios. Between two labels with differing degree of imbalance, we set a higher

misclassification penalty for the one with higher imbalance than that of the other.

In our second solution, we propose an imbalance-adaptive oversampling of the multi-

label dataset. As we have said earlier, the minority-majority class configuration of the

points and the imbalance ratios vary from label to label. To counter these two prob-

lems, we select different number of synthetic minority points for different labels. We

add more synthetic minority points to a label with a higher imbalance ratio than that of

another with a lower value. To select the locations of oversampling, we use the principles

of reverse-nearest neighborhood. The neighborhood estimation given by reverse-nearest

neighbor principles is adaptive to the density and distribution of the points. This takes

care of the differential partitions of the positive and negative classes while generating

the synthetic minority points. Empirical study indicates the contribution of the pro-

posed techniques in handling class-imbalance issue multi-label learning and rendering

admissible solutions.

1.2.4 Open set classification

Open set classification calls for the classification of seen (known) instances as well as

the class of instances which are not seen (unknown and not used during training) by

the classifier. A common mistake made by a conventional classifier is to mis-classify the

unknown instances into one of the known classes. In such a scenario, it is required that

the classifier should know what it does not know. To design a good open set classifier,

one needs to balance and do well in both unknown class detection and known class

classification.

• Question: How to handle open set classification in an elegant fashion?

• Answer: The classifier should have room for an open answer. By ”open answer”

we mean that – the classifier should have an option to say ”I don’t know” or ”not

among the ones seen” when encountered with unknown instances. We propose a

reverse-nearest neighborhood based solution for dealing with open set classification.

We propose a scheme which simultaneously perform known class classification and

unknown class detection. In the training phase, we will have instances from a certain

number of known classes (seen during training). Let that number be c and let us have

8

instances from these particular c classes only at training. During the test phase, the

classifier can encounter instances from these c classes or from some other class/es also to

which the classifier was not exposed in the training phase. We denote the unknown class

by c+1. We note that there can be more than one unseen class, which we should not

know because technically that information should be unknown also. Hence, we consider

exactly one unknown class which we consider as (c + 1). Hence, at training we do not

have instances from (c+1)th class. The duty of the classifier is to correctly classify the

instances from the seen c classes along with the detection of instances belonging to the

unknown classes.

Following principles of reverse k-nearest neighborhood (RkNN), the neighbors of p

are those points in whose nearest neighborhood p lies. It is easy to note that in a

search space with cardinality n, the reverse nearest neighbor count of p can range from

0 to n. Unlike kNN, RkNN possesses an intrinsic capability to handle unknown class

detection through it’s zero neighbor count. The non-zero neighbor count of 1 to n can

accommodate the known class classifications. The zero neighborhood property of RkNN

gives the backbone for unknown class detection. We integrate two pieces of information –

i] number of reverse nearest neighbors and ii] the distance of the nearest reverse neighbor

(if at all present) to predict the class information of a test instance. Empirical study

over 10 datasets and five competing methods indicate the capability of the proposed

technique to address open set classification.

1.3 Organization

The rest of this thesis is organized as follows.

• Chapter 2 deals with the class-imbalance problem of machine learning in a generic

context. We suggest that looking at the density and distribution prior to synthetic

minority point generation can provide a better dataset for learning the minority

class.

• In Chapter 3, we deal with multi-label datasets. We specifically work on the fea-

ture extraction perspective and suggest two schemes for extracting label-dedicated

feature sets.

• Chapter 4 is also dedicated towards an effective learning of multi-label datasets.

Here, we study the class-imbalance problem in multi-label datasets and propose

two distinct solutions to this issue.

9

• We discuss the problem of open set classification in Chapter 5. An elegant solution

to this problem is derived from the principles of reverse-nearest neighborhood.

• Chapter 6 concludes this thesis. We highlight our key observations and present the

directions of future study.

10

Chapter 2

Class imbalance handling through

estimation of minority class

2.1 Introduction

In this work, we address the class-imbalance problem prevailing in data analysis on

the principles of set estimation. Learning a model of the minority class instances of an

imbalanced dataset is often a difficult proposition. The minority class is the class with the

least share of instances. The relative disparity in the instance shares of the minority class

and its conjugate majority class biases a conventional classifier towards the quantitatively

abundant majority class — minority instances mostly get undetected in such a scenario.

Practical applications of class-imbalance learning are numerous and significant in present

day context. Automated medical investigation [70], [57], customer classification [97],

remote sensing [6], oil spill detection [46], fraud detection in banking and telephone calls

[93] [22], text mining [113], [51], customer churn prediction [8], software defect prediction

[39] constitute some relevant sources of class-imbalanced data.

So far, diversified techniques have been applied in the field of class imbalance learning

approaches. The primary objective of a class imbalance classifier is to obtain better

classification results for the minority class without perturbing majority class performance

as much as possible. Several methods in the recent past have focused on generating

synthetic minority samples from the information of the given minority instances. For

generating the synthetic minority instances, the existing methods follow a general outline

– they consider the original minority instances and their minority neighborhood.

Starting with SMOTE [12], such techniques involving synthetic minority instance gen-

11

eration namely ADASYN [33], Borderline-SMOTE [32], NCN-SMOTE [26], MWMOTE

[3] have given incredible improvement in minority class performance, which is the ulti-

mate goal. Yet betterment in minority class performance cannot be an affirmation of the

correctness of the class information of the synthetic data. Now the question is whether

the minority instances are generated at their correct locations? So far, there is no clear

answer given in the domain of class-imbalance learning and we address this in our work.

We have used a Voronoi diagram to analyze the locations of synthetic minority points.

Voronoi diagram of a set of objects is the decomposition of the space into a cell per

object, such that cell associated with an object consists of all points that are closer to

the object than any other given object. With reference to Figure 2.1, we have seen that

the synthetic minority points generated by the existing oversamplers often lie within the

Voronoi cell of an original majority point. This indicates that such synthetic minority

points are encroaching the majority class spaces.

Our work is motivated to address this aspect by minority set estimation. A judicious

estimation of the minority spaces and oversampling the minority points from those spaces

will result in a sound synthetic minority set. It is important to note that minority

instances alone are not sufficient to define the minority class spaces. Mutual separation

of the majority and minority classes can help us define the minority spaces. We estimate

the minority class spaces in light of this information. In this research work, we propose

two procedures for estimating the minority spaces. The synthetic minority samples are

generated from the estimated minority spaces. The original set of instances and the

synthetic minority set is employed in class-imbalance learning.

We have evaluated the competence of the proposed techniques, over five related

methods namely SMOTE, ADASYN, NCN-SMOTE, Cluster-SMOTE and MWMOTE

through empirical evaluations on 23 real-life datasets on two diversified metrics, AUC

and minority class F1.

2.2 Review of Existing Class Imbalance classifiers

The class-imbalance problem has intrigued the data science community for more than

a decade and substantial developments have been made in this domain. One approach

concentrates on modifying the classifier for detecting those minority instances which

remain unsighted by the regular classifiers. Cost sensitive learning was one of the foremost

approaches in this domain. In this learning paradigm, the misclassification costs for

different classes are set according to their shares of instances and importance. The main

12

(a) Original Points (b) Voronoi Diagram of the points

(c) SMOTE (d) ADASYN

(e) Cluster-SMOTE (f) MWMOTE (g) NCN-SMOTE

(h) LMCMO (i) ALMCMO

Figure 2.1: Locations of synthetic minority points generated by various methods in Voronoi diagram.
Fig (a) illustrates a synthetic dataset, consisting of points from two classes. The green and blue points represent

minority and majority points respectively. 50 majority points come from a Gaussian distribution with
µ = [20, 20] and Σ =

(
50 0
0 50

)
respectively. 10 minority points belong to a Gaussian distribution with µ = [30, 10]

and Σ =
(
500 0
0 500

)
. Fig (b) shows the Voronoi diagram for the given set of points. Voronoi diagram of a set of

objects is the decomposition of the space into a cell per object, such that cell associated with a object consists of
all points that are closer to the object than any other given object. In our case, the set of majority and minority

points taken together constitute the set of objects. In Figures (c)-(i), we show the locations of the synthetic
minority points (represented by red) generated by the methods. The name of the generating algorithm is

indicated in the corresponding figure. It is easy to note that a number of synthetic minority points generated
between figures (c)-(g) are lying in the Voronoi cells of the majority class. Figures (h) and (i) illustrate the
synthetic minority points generated by LMCMO and ALMCMO. In these two cases, the synthetic minority

points lie within the minority Voronoi cells only. In LMCMO, the synthetic minority points are concentrated
around the original minority point. But, in ALMCMO, the synthetic minority points are distributed in the entire

Voronoi cell. The minority points generated by LMCMO and ALMCMO maintain the
non-encroachment into the majority class spaces (majority Voronoi cells) for all datasets.

13

goal is to bias the classifier towards identifying the minority samples. Cost-sensitive

neural networks, and cost-sensitive decision trees are two principal variants. Two other

important variants are Active learning and Kernel-based methods. Querying the dataset

to yield a balanced training set for learning the classifier through active learning has been

done to address the class-imbalance issue [21]. In Kernel-based methods, the original

dimensions are mapped to other dimensions better separating the instances to improve

the minority class learning. A few examples are class-boundary alignment [94], kernel

target alignment [95] and margin calibration [99].

The other way of achieving fair recognition of the minority class of a class-imbalanced

dataset is to modify the dataset to equate the majority and minority class cardinalities.

This can be realized in either way — through under-sampling of the majority class or

by oversampling the minority class . Both under-sampling or oversampling can also be

involved. A naive way has been to perform random under-sampling of the majority

class instances or random duplication of the minority class instances [48]. Tomek link

information is employed to undersample the majority class in a number of works [47],

[18]. Cluster-based undersampling has been implemented in [100]. The other way is to

increase the number of minority points by oversampling the minority class.

SMOTE came as a breakthrough in the domain of minority oversampling. It gener-

ated synthetic minority samples using minority neighbourhood information of the minor-

ity points. Variants in this regard have been borderline-SMOTE, ADASYN, RAMOBoost

[13]. ADASYN presents a similar scheme with a different number of synthetic points be-

ing generated at different locations according to the minority densities. NCN-SMOTE

is another small but significant increment in this regard. It identifies the symmetric

centroid neighbourhood of each minority point and generates the synthetic points from

those locations. A recent method MWMOTE, aims to learn the hard-to-learn minority

samples through clustering of minority instances.

Apart from the approaches discussed above, mixed or hybrid paradigms have also

been employed to facilitate class-imbalance learning in recent years. One example is [36]

which uses quintuplet sampling followed by deep learning to recognize minority instances.

Class-imbalance learning is also attempted through ensemble classifiers [25].

14

2.3 Principles of Set Estimation and estimating the Minor-

ity Set

In the first part of this section, we elaborate on some parameters for estimating a set

from a given number of finite points. Next, in Section 2.3.1 and Section 2.3.2, we

propose two techniques for estimating the minority class.

Let x1,x2, . . . ,xn be the given collection of points belonging to a pattern class in

RM , where M ≥ 2. Let the probability density function for the class be represented by

f . Our objective is to estimate the set from this information. To be precise we want to

get the support of f , namely α.

Suppose the estimated set is αn. We will estimate it from the set of instances x1, ..,xn.

For a good αn and a given α, the set inconsistencies between the two should ap-

proach to zero and the symmetric difference between the two should be as less possible.

The estimator αn should converge to the original set α as the instance set cardinality

approaches infinity [31].

2.3.1 Choosing an estimator αn which has constant volume hyper-

spheres across all points

We want to estimate αn corresponding to the set, x1,x2, . . . ,xn.

αn =

n⋃
i=1

{y ∈ RM : ‖xi − y‖ ≤ ε} (2.1)

The above defined αn set defines a space around each xi, i = 1, 2, . . . , n. It is the

union of hyper-spheres of radius ε centered at xi, i = 1, 2, . . . , n. When the ε value is 0,

we get the set {xi, i = 1, 2, . . . , n} itself as the estimated set αn. With increasing ε value,

we include a larger volume of neighborhood into the estimated space.

We have to select a suitable ε that would estimate the minority set from the mixed

space of minority and majority instances. A too small ε value will add redundant syn-

thetic minority points in the later stage while a large value will cause the estimated

minority set to encroach upon the majority class. The procedure for selection of ε value

is discussed next.

2.3.1.1 Choosing a suitable ε

While estimating the minority set from the mixed space of majority and minority in-

stances, one important characteristic should be to preserve the boundary of the two

15

classes. Our ultimate goal is to bridge the gap between the cardinalities of the majority

and the minority class but not at the cost of encroachment into the majority class region.

We should not over-estimate the minority class into the majority class space. We would

like to insist that while proposing an estimator for the minority class we have not delved

into the consistency of the estimated set. We cannot really claim that we propose a

consistent estimator of the minority class. As a result, in cases where we have a small

dataset, we do not have adequate information to formulate a firm boundary separating

the two classes. In such a case, it is difficult to assign a region to either the minority

class or the majority class. Under the given circumstances, using our scheme, we may

land up with an over-estimation or an under-estimation of the minority class.

Minimum Spanning Tree (MST) is an efficient (though computationally intensive)

tool for studying the shape and the structure of a set of instances. MST edges show

the connection of the instances to their respective neighborhood. Homogeneous edges or

the edges between two instances from the same class show the connected or continuous

regions of class-membership. On a similar note, a heterogeneous edge signifies a switching

or transition region from one class to the other. The heterogeneous edge weights give

a quantitative idea of the separation of the two classes. Minimum heterogeneous edge

weight gives the minimum separation between the two classes.

As stated in the above section, at ε value 0, the estimated minority set is the set of

minority points only. A non-zero ε (ε > 0) includes an adjoining neighborhood of the

minority points into the estimated minority set. The volume of the estimated minority set

increases with increasing ε value. Let dmin be the minimum heterogeneous edge weight

of the MST. Since dmin is the minimum heterogeneous edge weight, the majority points

are at least dmin distance away from the the set of minority instances. For ε >= dmin,

the estimated minority set will encroach upon the neighborhood of at least one majority

point. ε value should be strictly less than dmin to prevent overestimation into the majority

class. ε just less than dmin gives an over-the-fence estimation of the minority class where

we include the entire heterogeneous edge length into the minority class hypersphere (and

shadows the majority class spaces). ε = dmin/2 is a fair choice as it allows to include

exactly half of the edge length instead.

Hence, we select, ε= dmin /2 and use this in (2.1) to estimate the minority set.

General remarks:

• Minimum Spanning Tree construction is not required for calculating the proposed ε

value: Though the proposed ε calculation is theoretically motivated by Minimum

Spanning Tree (MST) construction, MST implementation is not required for finding

16

the minimal heterogeneous edge weight. Finding the minimum distance between

the instances of the majority class and minority class is sufficient for calculating

ε. Since MST is a connected graph with minimal edge weight sum, the minority

and majority instances have to be connected by the least distance between the two

(minority and majority) sets. Not creating a MST adds on to the improved time

complexity as well.

• Choices of ε: In the previous paragraph, we have proposed a choice for ε, in light

of which this scheme is presented. A number of other solutions can also be possible

in this regard. Construction of the Minimum Spanning Tree of the entire training

set followed by average edge weight calculations of the heterogeneous edges with

ε=0.5* average heterogeneous edge weight is another possible solution. Unlike the

previous choice, this would require the creation of a Minimum Spanning Tree and

hence has added time complexity.

2.3.2 Choosing an αn which has variable volumes of estimated spaces

across xi, i = 1, 2, . . . , n

In the above defined αn, the estimated space around each given point is same for the entire

set of points. It is equal to the volume of a hypersphere of radius ε. The distribution

and density of the points vary from location to location, it may be useful to vary the

estimated space for different points. Hence, we want to vary this estimated volume across

the point set by selecting a specific radius for each point. For xi, we select a specific

radius εi, i = 1, 2, . . . , n. This adaptive estimation bears some relevance to our task of

minority set estimation and consequent oversampling. We present the details in the next

subsection. We re-define the estimated set αn as ᾱn with a varying ε as follows.

ᾱn =
n⋃
i=1

{y ∈ RM : ‖xi − y‖ ≤ εi} (2.2)

εi is a dedicated value for instance xi. ᾱn is union of hyperspheres of variable volumes

around the minority points. Let εj > εk for two points xj and xk. xj spans a larger

volume of estimated space than that of xk by virtue of it’s larger radius. The motivation

and protocol for selection of εi is discussed in the following subsection.

17

2.3.2.1 Choosing a suitable set of εi

A properly estimated minority set (in the mixed space of majority and minority instances)

should adhere to the boundary of the two classes. If the estimated minority set encroaches

on the majority classes, it will be an over-estimation (which is undesirable).

In the first estimation procedure, we have presented a Minimum Spanning Tree based

estimation of the minority class. We have constructed a Minimum Spanning Tree (MST)

of the entire point set consisting of majority and minority points. Let dmin be the

minimum heterogeneous edge weight of the MST. We have selected ε equal to half of

dmin. We had a constant radius for all minority points and we have selected blobs of

constant volumes around all minority points.

Depending on the dataset, it may be appropriate to have a varying volume of esti-

mated space across different minority points. A minority point which has it’s neighbor-

ing point at a farther location can span a larger volume of estimated space than that

of another with a denser neighborhood. In this dissertation, we design our estimation

procedure in this light. Our estimation procedure is such that we select a varying volume

across different minority points. Our goal is to compute a dedicated radius εi for each

minority point xi. We first construct a Relative Neighborhood Graph (RNG) from the

training points where the edge-weight between two points is represented by the euclidean

distance between them. RNG shows the accessibility and connectivity of a data point or

vertex to its adjoining neighborhood and gives an overall structure of the feature points.

A RNG of a given set of points is an undirected graph where any two points ai and aj

are connected whenever there is no third point ak such that d(ai,ak) < d(ai,aj) and

d(aj ,ak) < d(ai,aj). For a given set of points, it’s MST is a subgraph of it’s RNG.

A non-zero εi (εi > 0) includes an adjoining neighborhood of the minority point

xi into the estimated minority set. The volume of estimated minority set around xi

increases with increasing εi value. Let ei be the minimum edge weight of instance xi

in the Relative Neighborhood Graph (RNG). In the RNG, x′is nearest neighbor can be

a majority point. If so, the nearest majority point is at least ei distance away from

minority instance xi. If we select εi >= ei, the estimated minority set corresponding to

xi can encroach upon the neighborhood of that majority point. Value of εi should be

strictly less than ei to prevent overestimation into the majority class spaces. The εi just

less than ei gives an over-the-fence estimation of the minority class where we include the

entire edge length into the minority class hypersphere (and shadows the majority class

spaces). εi = ei/2 is a fair choice as it allows to include exactly half of the edge length

18

into the estimated minority spaces. Hence we select εi as follows.

εi = ei/2 (2.3)

Additionally, this protocol allows us to select a varying radius across different points.

Let us have two points xi and xj with minimum edge weights ei and ej respectively such

that (ei > ej). The nearest neighbor of xi is at a greater distance than that of xj . Hence,

xi has a greater volume of neighborhood at its disposal than that of xj . Consequently,

the estimated volume of minority space will be larger around xi than that of xj . The εi

selection protocol in Equation (2.3) also reflects the same.

Essential Remark: Outlier minority points can give negative results on the above

given scheme of εi selection. They can encompass a large volume of feature space as the

estimated minority space. In order to prevent that, we detect singleton minority points

with just one edge in the RNG as outlier and do not let them participate in the estimation

and subsequent oversampling. In a highly imbalanced and small sized dataset, we will

have very few minority points. In this case, it is quite possible that a good fraction of

minority points are having just one-edge and are seemingly outliers. In such a scenario,

we suggest to construct the RNG with k > 1, till an admissible result is achieved.

2.3.3 Synthetic minority sample generation from estimated minority

set

Through minority set estimation, we transform the discrete minority point set to a set

of continuous blobs around the minority points. A blob is a hypersphere of a specified

radius around each minority point. The estimated minority sets αn and ᾱn are the union

of all such possible blobs respectively. Each blob has an infinite number of minority

points (considering real feature space). We perform random and uniform sampling of

each blob to generate elements of the synthetic minority set. By sampling, we refer to

selection of individual observations. By uniform sampling we mean that the sampling is

not biased towards a blob of any particular minority instance and random refers to the

selection of any random point of the blob or the hypersphere. We propose two schema

for generating the synthetic minority instances – the first one is from αn and the second

one is from ᾱn.

19

2.4 The Proposed method

Given an instance set D, let us partition it randomly into a training set, Dtr and a test

set Dte. LMCMO consists of two steps, minority set estimation followed by selection

of minority instances set Sminor from the estimated set. Augmented training set Atr is

obtained by combining the original training set Dtr and the synthetic minority set Sminor.

Learning is wrapped up by mandatory classifier modeling from the augmented training

set Atr and classification of test set Dte.

2.4.1 First step: Minority set estimation:

Estimation of constant volume around all minority points: Dtr is the input of

this stage and we want to compute ε as the output. Dtr consists of the class information

of instances also. Initially, we partition Dtr into the majority instance set, Omajor and

minority instance set, Ominor, according to their class labels. For this work, we have pre-

fixed ε equal to dmin/2. For calculating dmin implementation of the Minimum Spanning

Tree is not required. Calculating the minimum distance between the members of Omajor

and the members of Ominor gives dmin.

Now, ε= dmin/2.

ε and Ominor together defines the precise locations of minority set. The estimated

minority set is the union of the hyperspheres of radius ε around each member of Ominor.

Algorithm 1 Minority Set Estimation: constant volume across all minority points
Input: Training set Dtr

Output: ε

1: Partition Dtr into Ominor, Omajor acc. to class labels.
2: Calculate the set of distances

D={distance(i, j) : i ∈ Omajor, j ∈ Ominor}
3: Calculate dmin=minimum value of D
4: Calculate ε = dmin/2
5: Construct a hypersphere of radius ε around each minority point of Ominor. Estimated minority

set is the union of all such blobs.

Adaptive estimation of minority spaces around the minority points:

Dtr consisting of the original training points is the only input of this stage. We will

compute the set of a dedicated radii εi for a non-singleton minority point xi as the output.

Dtr consists of the class information of instances also. Initially, we partition Dtr into the

majority instance set, Omajor and minority instance set, Ominor, according to their class

labels. In ALMCMO, we will generate a relative neighborhood graph (RNG) from the

20

majority and minority instances of Dtr. From the RNG, we will compute a radius for

each minority point of the RNG. We will ignore singleton minority points with exactly

one edge. The reason for this is stated in the remarks of previous section. For each

minority point xi, we will find and store it’s minimum edge weight as ei. The dedicated

radius corresponding to xi is denoted by εi and it’s value is selected as ei/2.

Now, εi= ei/2.

εi and xi together defines estimated minority space (an hypersphere) around xi. The

estimated minority set is the union of the variable volumes of hyperspheres of radius εi

around each non-singleton minority instance xi.

Algorithm 2 Minority Set Estimation: volume adaptive to the local configuration of a
point
Input: Training set Dtr

Output: εi for each non-singleton minority instance xi

1: Partition Dtr into Ominor, Omajor acc. to class labels.
2: Construct the Relative Neighborhood Graph (RNG) of the entire training set Dtr

Let G=RNG(Dtr)
3: ei=Minimum edge weight of xi, xi ∈ Ominor and xi has more than one edge in G
4: Calculate εi= ei/2
5: Construct a hypersphere of radius εi around each non-singleton minority point xi. Estimated

minority set is the union of all such hyperspheres.

2.4.2 Second step: Synthetic minority set generation:

In the first part of this algorithm, we have defined the minority set as the union of

the union of hyperspheres of variable volumes around the non-singleton minority points.

Now, we will generate the synthetic minority set Sminor by selecting random points from

these hyperspheres. Depending on the method of estimation (fixed volume or vari-

able volume), we will have two methods for generating the synthetic minority instances.

Technically, the methods of point generation are the same in both cases.

The locations of the estimated minority set are given by the locations of non-singleton

minority points in the feature space and their respective radii. This set of radii is the

same in the case of Algorithm 1 and has a set of variable values in Algorithm 2. A

synthetic minority point is generated by selecting an original non-singleton minority

point and drawing a random point ”New” from its respective hypersphere. An unbiased

oversampling is done by drawing ‖Sminor‖ number of synthetic points ”New” sequentially

from the entire set of non-singleton minority points. Algorithm 3 articulates the steps

for generating the synthetic minority instances from the estimated set corresponding to

21

Algorithm 1. In Algorithm 4, we describe the scheme on an estimated set with adaptive

volumes of estimated space around the points.

The next concern is about selecting the synthetic minority points. We know the

locations of the estimated minority set which is a collection of a hypersphere around

each minority training point. The center of a hypersphere is a minority point itself and

its radius is equal to ε or εi. A synthetic minority point is generated by selecting a

minority point and drawing a random point ”New” from its respective hypersphere. An

unbiased oversampling is done by drawing ‖Sminor‖ number of synthetic points ”New”

sequentially from the entire minority instance set.

Sminor is the collection of all such synthetic minority points. The members of Sminor

are generated from different minority points.

Atr is obtained by taking union of Ominor, Omajor and Sminor.

Atr = Ominor ∪Omajor ∪ Sminor.

Classifier model, CM is modeled on Atr and CM is invoked to classify the test set Dte

in Rete.

Algorithm 3 Synthetic minority point generation (followed by training and testing) on
estimated set corresponding to Algorithm 1
Input: Minority training set Ominor, Majority Training set Omajor, Test set Dte, ε
Output: Synthetic minority set Sminor, Predicted test set Rete

1: ‖Sminor‖= 0.5 ∗ (‖Omajor‖ − ‖Ominor‖)
2: Sminor = ∅
3: p=1; . p is used to loop over the entire minority point set
4: for i=1 to ‖Sminor‖ do
5: Generate a random point New from the respective hypersphere centered at xp at a radius
r, 0 < r < ε

6: p = ((p+ 1)mod‖Ominor‖) + 1 Selecting the next minority point
7: Sminor = Sminor ∪New
8: end for
9: Augmented training set,

Atr = Ominor ∪Omajor ∪ Sminor

10: Model classifier CM over Atr

11: Classification result, Rete = CM(Dte) . Predicts test set Dte invoking CM

2.5 Complexity Analysis of the proposed estimation pro-

cedures

We have proposed two minority set estimation procedures. The first procedure gives an

estimated set, denoted by αn. αn is estimated from the Minimum Spanning Tree of the

22

Algorithm 4 Synthetic minority point generation (followed by training and testing)
from estimated set corresponding to Algorithm 2
Input: Minority training set Ominor, Majority Training set Omajor, Test set Dte, εi i = 1, 2, . . .
for each xi

Output: Synthetic minority set Sminor, Predicted test set Prediction

1: ‖Sminor‖= (‖Omajor‖ − ‖Ominor‖)
2: Sminor = ∅
3: p=1; . p is used to loop over the entire minority point set
4: for i=1 to ‖Sminor‖ do
5: Check if xp has just one edge,

if true, p = ((p+ 1)mod‖Ominor‖) + 1 and goto step 5 . Ignoring minority points which
can be a possible outliers

6: Generate a random point New from the respective hypersphere centered at xp at a random
radius r, 0 < r < εi

7: p = ((p+ 1)mod‖Ominor‖) + 1 Selecting the next minority point
8: Sminor = Sminor ∪New
9: end for

10: Augmented training set,
Atr = Dtr ∪ Sminor

11: Model classifier CM over Atr

12: Classification result, Prediction = CM(Dte) . Predicts test set Dte invoking CM

given set of points. The estimation depends on the minimum heterogeneous edge weight

of the minimum spanning tree. The actual implementation of the Minimum Spanning

Tree is not needed in this case. It reduces to calculating the minimum distance of the two

sets (minority and majority). For n points, the worst case time-complexity of calculating

the minimum distance is O(n log n) and the best case is O(n). So the time-complexity

of αn is between these two intervals.

In the second estimation scheme, we propose an adaptive estimation procedure for

which we need to implement the Relative Neighborhood Graph of the given set of points.

The complexity of implementing Relative Neighborhood Graph of n points is O(n log n)

[85]. Hence, the time-complexity of implementing ᾱn is O(n log n).

2.6 Experimental Setup

We describe the layout of our empirical study in this section. The four integral com-

ponents of the study — i] description of datasets, ii] evaluation metrics, iii] parameter

configuration of proposed and comparing methods, the choice of classifiers for evaluating

the class-imbalance classifiers and iv] Statistical test are provided as follows.

23

2.6.1 Datasets

We have carried out the experiments on 36 real-world, class-imbalanced datasets. In Ta-

ble 2.1, we summarize their basic statistics consisting of instances cardinality, imbalance

ratio and number of features. In our study, we have considered two-class datasets only.

Datasets possessing diversified parameters – instances cardinality ranging from 106 to

19020, number of features from 3 to 34 and imbalance ratio lying in the range 1.38-85.88

have been employed to test the relative efficacies of the class-imbalance classifiers. They

are obtained from Keel repository [1]. Apart from these datasets, we have used a syn-

thetic two dimensional dataset to analyze the issue that this work addresses. Please refer

to Figure 2.1.

Table 2.1: Description of Datasets

Dataset Number of instances Number of attributes Imbalance ratio

Abalone9 18 731 8 16.40
Appendicitis 106 8 4.05

Bands 365 19 1.70
Bupa 345 6 1.38

Cleveland-0vs4 177 13 12.62
Cleveland12vs345 297 13 2.34

Dermatology-6 358 34 16.9
Ecoli2 336 7 5.46
Ecoli3 336 7 8.60
Glass0 214 9 2.06
Glass1 214 9 1.82

Haberman 306 3 2.78
Heart 270 13 1.25

Ionosphere 351 33 1.79
Magic 19020 10 1.84

New-thyroid1 215 5 5.14
Page-blocks 5472 10 8.79

Phoneme 5404 5 2.41
Pima-indians 768 8 1.87
Poker-8vs6 1477 10 85.88
Poker-89vs5 2075 10 82.00
Segment0 2308 19 6.02
Vehicle1 846 18 2.9
Vehicle2 846 18 2.88
Vowel0 988 13 9.98
Wdbc 569 30 1.64

Winequality-red-8vs6 656 11 35.44
Winequality-white-3vs7 900 11 44.00
Winequality-white-39vs5 1482 11 58.28

Wisconsin 683 9 1.86
Yeast-0256vs3789 1004 8 9.14
Yeast-0359vs78 506 8 9.12

Yeast1 1484 8 2.46
Yeast3 1484 8 8.1
Yeast4 1484 8 28.1
Yeast5 1484 8 32.73

24

2.6.2 Evaluation metrics

For evaluating a conventional classification task, accuracy is a primary choice. On the

contrary, to evaluate a class-imbalance classifier, accuracy alone is not sufficient and we

need to consider a number of other aspects. We employ minority class F1 and AUC

for evaluating our work and the comparing class-imbalanced classifiers. For each of the

metric, higher the value we obtain, the better the performance.

2.6.3 Comparing methods and Classifiers

The interest of the proposed work lies with the synthetic minority oversampling genre

of class-imbalance learning – six comparable methods chosen from the same field. Their

technical configurations are detailed below. For fair-play, the cardinality of the synthetic

minority set is kept constant across all methods and the proposed method. It is equal to

the cardinality difference of the majority and the minority class that is |Smajor−Sminor|.
SMOTE [12]: It is a base method in the field of class-imbalance learning. SMOTE uses

random distances for minority sample generation and neighbourhood cardinality k is 5.

ADASYN technique generates differential number of minority samples at different loca-

tions on the basis of minority density. It aims at learning hard-to-learn minority samples

through decision boundary shifting. The only parameter is the number in neighborhood,

k which is set to 5. MWMOTE [3] identifies the boundary and interior minority samples

followed by clustering of the minority instances. Minority instances from the cluster

are employed in adding the synthetic points. Parameter settings are as follows: For

MWMOTE, the values for different parameters are, k1 = 5, k2 = 3, k3 =0.5 × Smin/2;

Cp = 3; Cf (th) = 5, and CMAX = 2. These values are recommended in their paper.

Surrounding neighborhood SMOTE [26] computes surrounding centroid neighborhood of

each minority point to generate the synthetic points. k is kept 5 as in the previous meth-

ods in order to maintain an equivalence across the comparing methods. We have set the

parameters of Cluster-SMOTE [15] according to their recommendations in their paper.

The two proposed schemes are named as –i] Learning Minority Class prior to Mi-

nority Oversampling (LMCMO) [79] and ii] Adaptive Learning of Minority Class prior

to Minority oversampling (ALMCMO). The schemes of LMCMO and ALMCMO do not

have any user-provided parameter.

We have used two classifiers C4.5 Decision Tree and Logistic Regression based clas-

sifier. Both these classifiers are used in their default MATLAB settings.

25

2.6.4 Statistical Test

To test the difference in performance of two methods statistically, we have employed

the Wilcoxon Signed Rank Test. We have conducted the tests for a pair of methods

— proposed method, ALMCMO and a competing method. The null hypothesis in our

case is as follows — the median difference of the scores on evaluation metrics (F1) or

AUC between the two methods is 0. If we fail to reject the null hypothesis, the result

is statistically comparable performance of the two methods. If the medians of the two

methods are different, we can reject the null hypothesis and infer that the performance of

the two algorithms are statistically different. Depending on the evaluation, the method

with lower rank sum emerges as the superior one. We have considered the level of

significance as p = 0.05. According to this significance and Bonferroni correction, the

decision p value is set to 0.008.

2.7 Results and Discussion

We have randomly equi-partitioned each dataset into a training set and a test set. These

two sets are mutually exclusive. We have organized the results in the following fashion.

For each dataset, we have conducted 20 independent runs and reported the mean values.

Tables 2.2 and 2.3 report the comparative performance on F1 and AUC respectively for

C4.5 Decision Tree classifier. Similarly, Tables 2.4 and 2.5 report the results on F1 and

AUC scores respectively for the Regression-based classifier. Table 2.6 reports the findings

of the statistical testing. Table 2.7 reports the time taken by the methods for computing

the synthetic minority sets (for each dataset).

As reported in Table 2.2, ALMCMO has achieved the best F1 scores on C4.5 Decision

Tree classifier for 69.44% (25 out of 36) datasets. The remaining best scores are shared by

Cluster-SMOTE (3 out of 36) datasets, NCN-SMOTE (1 dataset), ADASYN, SMOTE

and MWMOTE (1 dataset for each), and LMCMO (4 datasets). For AUC, ALMCMO

has obtained best scores on 63.89%(23 out of 36 datasets). The remaining thirteen

top scores are shared by LMCMO (6 datasets), Cluster-SMOTE, SMOTE, ADASYN (2

datasets each) and NCN-SMOTE (1 dataset).

The performance of the proposed method on Regression-based classifier is similar to

the above scenario. On F1, ALMCMO has achieved best scores on 66.67% (24 out of 36

) datasets. The remaining twelve best scores on F1 are shared by LMCMO (3 datasets),

SMOTE (3 datasets), ADASYN (3 dataset) and MWMOTE (3 datasets). ALMCMO has

On AUC, ALMCMO has obtained best scores on 72.22% (26 out of 36) cases. The best

26

Table 2.2: F1 Results on C4.5 tree

Methods
Dataset ALMCMO LMCMO SMOTE Cluster-SMOTE ADASYN MWMOTE NCN-SMOTE

Abalone9-18 0.912 0.898 0.876 0.863 0.883 0.902 0.883
Appendicitis 0.784 0.746 0.736 0.772 0.768 0.674 0.771

Bands 0.632 0.625 0.621 0.615 0.628 0.627 0.618
Bupa 0.643 0.638 0.632 0.629 0.616 0.631 0.612

Cleveland0vs4 0.484 0.431 0.445 0.427 0.400 0.347 0.333
Cleveland12vs345 0.655 0.619 0.630 0.623 0.624 0.617 0.635

Dermatology-6 0.944 0.918 0.940 0.938 0.933 0.940 0.910
Ecoli2 0.931 0.925 0.913 0.918 0.914 0.912 0.920
Ecoli3 0.898 0.907 0.895 0.889 0.903 0.895 0.888
Glass0 0.815 0.768 0.755 0.746 0.755 0.794 0.791
Glass1 0.756 0.722 0.738 0.744 0.720 0.700 0.697

Haberman 0.680 0.646 0.643 0.641 0.628 0.661 0.637
Heart 0.756 0.732 0.742 0.736 0.702 0.730 0.735

Ionosphere 0.896 0.887 0.858 0.854 0.860 0.885 0.864
Magic 0.823 0.810 0.805 0.803 0.799 0.808 0.816

Newthyroid1 0.936 0.944 0.960 0.968 0.966 0.936 0.951
Page-blocks 0.965 0.962 0.958 0.959 0.958 0.961 0.949

Phoneme 0.835 0.830 0.835 0.838 0.829 0.822 0.844
Pima 0.711 0.679 0.686 0.700 0.684 0.686 0.682

Poker8vs6 0.253 0.388 0.403 0.282 0.262 0.320 0.343
Poker89v5 0.097 0.087 0.032 0.029 0.020 0.057 0.055
Segment0 0.975 0.970 0.967 0.970 0.969 0.967 0.973
Vehicle1 0.691 0.683 0.675 0.693 0.657 0.672 0.685
Vehicle2 0.868 0.889 0.875 0.876 0.886 0.891 0.875
Vowel0 0.970 0.972 0.975 0.977 0.970 0.968 0.969
Wdbc 0.935 0.928 0.918 0.929 0.926 0.929 0.923

Wine-red-8vs6 0.135 0.229 0.139 0.149 0.151 0.155 0.168
Wine-white-3vs7 0.382 0.342 0.158 0.147 0.119 0.276 0.282
Wine-white-39v5 0.137 0.176 0.060 0.059 0.071 0.083 0.154

Wisconsin 0.951 0.942 0.941 0.942 0.932 0.947 0.945
Yeast-0256vs3789 0.521 0.544 0.499 0.497 0.495 0.408 0.493
Yeast-0359vs78 0.381 0.364 0.317 0.321 0.330 0.283 0.367

Yeast1 0.490 0.504 0.514 0.512 0.518 0.496 0.516
Yeast3 0.743 0.731 0.676 0.696 0.716 0.681 0.689
Yeast4 0.378 0.346 0.284 0.289 0.322 0.282 0.303
Yeast5 0.689 0.675 0.647 0.673 0.661 0.671 0.658

scores on the remaining datasets are obtained by Cluster-SMOTE (2 datasets), SMOTE

(3 dataset), ADASYN (4 datasets) and MWMOTE (1 dataset).

The above summarized results indicate a certain superiority of the proposed method,

ALMCMO over other competing methods. It is also interesting to note that ALMCMO

has also surpassed the performance of it’s precursor LMCMO. To study and establish

the statistical superiority of ALMCMO, we have conducted the Wilcoxon Signed Rank

Sum test. We have 2 metrics and 2 classifiers. So, we have conducted 4 sets of such tests

and reported the set of p values. We have carried out the statistical tests as described in

the above section. At p = 0.05, we could reject the null hypothesis for all four cases. To

be precise, the proposed method ALMCMO’s performance was statistically superior to

27

Table 2.3: AUC Results on C4.5 tree

Methods
Dataset ALMCMO LMCMO SMOTE Cluster-SMOTE ADASYN MWMOTE NCN-SMOTE

Abalone9-18 0.654 0.610 0.679 0.713 0.675 0.610 0.671
Appendicitis 0.761 0.719 0.648 0.692 0.651 0.656 0.730

Bands 0.611 0.601 0.605 0.596 0.603 0.595 0.601
Bupa 0.652 0.632 0.619 0.616 0.603 0.627 0.604

Cleveland-0vs4 0.778 0.769 0.699 0.673 0.676 0.664 0.660
Cleveland12vs345 0.593 0.560 0.588 0.579 0.558 0.562 0.584

Dermatology-6 0.975 0.985 0.977 0.975 0.972 0.977 0.964
Ecoli2 0.881 0.856 0.851 0.841 0.868 0.846 0.868
Ecoli3 0.783 0.766 0.747 0.733 0.761 0.762 0.739
Glass0 0.787 0.737 0.735 0.737 0.744 0.782 0.784
Glass1 0.738 0.712 0.726 0.725 0.722 0.685 0.686

Haberman 0.604 0.583 0.592 0.594 0.564 0.593 0.586
Heart 0.762 0.731 0.738 0.732 0.698 0.729 0.735

Ionosphere 0.889 0.878 0.852 0.844 0.853 0.876 0.855
Magic 0.806 0.797 0.794 0.795 0.793 0.790 0.799

Newthyroid1 0.918 0.920 0.922 0.938 0.930 0.911 0.920
Page-blocks 0.929 0.896 0.923 0.924 0.908 0.910 0.923

Phoneme 0.824 0.808 0.822 0.828 0.809 0.812 0.830
Pima 0.689 0.653 0.664 0.682 0.655 0.668 0.657

Poker-8vs6 0.681 0.683 0.725 0.676 0.677 0.679 0.653
Poker-89vs5 0.548 0.536 0.506 0.512 0.501 0.519 0.520
Segment0 0.989 0.988 0.985 0.986 0.986 0.978 0.985
Vehicle1 0.742 0.725 0.738 0.739 0.737 0.734 0.728
Vehicle2 0.930 0.942 0.922 0.928 0.932 0.926 0.921
Vowel0 0.944 0.950 0.928 0.929 0.901 0.912 0.927
Wdbc 0.931 0.928 0.916 0.926 0.922 0.927 0.923

Winequality-red-8vs6 0.570 0.619 0.591 0.596 0.591 0.583 0.589
Winequality-white-3vs7 0.687 0.692 0.626 0.614 0.598 0.642 0.647
Winequality-white-39vs5 0.570 0.602 0.546 0.542 0.554 0.542 0.567

Wisconsin 0.951 0.939 0.938 0.938 0.928 0.946 0.941
Yeast-0256vs3789 0.714 0.722 0.749 0.724 0.743 0.703 0.699
Yeast-0359vs78 0.658 0.649 0.640 0.642 0.652 0.617 0.651

Yeast1 0.649 0.657 0.662 0.638 0.666 0.646 0.664
Yeast3 0.869 0.852 0.825 0.828 0.843 0.809 0.822
Yeast4 0.677 0.659 0.675 0.684 0.693 0.655 0.632
Yeast5 0.881 0.866 0.831 0.845 0.832 0.847 0.830

all the competing methods for the two classifiers (Regression-based classifier and C4.5

Decision Tree classifier) for the two metrics.

We have carried out the statistical tests as described in the previous section. After

the Bonferroni correction, p = 0.008, we can reject the null hypothesis for all twenty-four

cases when directly comparing our approaches against the others for the two learning

algorithms. Besides obtaining a p-value less than 0.008, the lower rank sum is obtained

by ALMCMO in all 24 cases. These data establish that ALMCMO’s performance is

statistically superior to all the competing methods for the two classifiers (Regression-

based classifier and C4.5 Decision Tree classifier) over the two evaluation metrics. Table

2.6 records these findings.

28

Table 2.4: F1 Results on Regression based classifier

Methods
Dataset ALMCMO LMCMO SMOTE Cluster-SMOTE ADASYN MWMOTE NCN-SMOTE

Abalone9-18 0.924 0.908 0.877 0.879 0.898 0.915 0.883
Appendicitis 0.807 0.792 0.800 0.805 0.797 0.798 0.781

Bands 0.660 0.637 0.638 0.638 0.611 0.643 0.596
Bupa 0.668 0.654 0.661 0.661 0.642 0.663 0.620

Cleveland-0vs4 0.415 0.492 0.446 0.364 0.407 0.294 0.295
Cleveland12vs345 0.703 0.656 0.652 0.645 0.637 0.686 0.623

Dermatology-6 0.961 0.949 0.909 0.912 0.920 0.903 0.930
Ecoli2 0.941 0.932 0.934 0.935 0.929 0.936 0.903
Ecoli3 0.927 0.925 0.907 0.903 0.919 0.930 0.881
Glass0 0.825 0.796 0.817 0.811 0.818 0.819 0.773
Glass1 0.773 0.782 0.752 0.753 0.773 0.769 0.702

Haberman 0.789 0.765 0.754 0.767 0.757 0.778 0.716
Heart 0.817 0.777 0.782 0.778 0.751 0.780 0.736

Ionosphere 0.906 0.905 0.909 0.896 0.892 0.885 0.864
Magic 0.858 0.847 0.838 0.835 0.842 0.852 0.804

Newthyroid1 0.968 0.955 0.959 0.959 0.960 0.943 0.953
Page-blocks 0.972 0.968 0.967 0.969 0.978 0.976 0.951

Phoneme 0.889 0.870 0.877 0.871 0.872 0.873 0.840
Pima 0.738 0.726 0.735 0.725 0.732 0.731 0.694

Poker8vs6 0.438 0.378 0.589 0.517 0.461 0.528 0.542
Poker89vs5 0.118 0.129 0.080 0.084 0.076 0.039 0.077
Segment0 0.965 0.975 0.969 0.970 0.972 0.975 0.973
Vehicle1 0.775 0.760 0.770 0.760 0.766 0.767 0.717
Vehicle2 0.934 0.930 0.905 0.902 0.918 0.893 0.927
Vowel0 0.982 0.977 0.978 0.976 0.976 0.975 0.976
Wdbc 0.955 0.936 0.941 0.942 0.936 0.944 0.934

Wine-red-8vs6 0.204 0.156 0.121 0.124 0.129 0.144 0.138
Wine-white-3vs7 0.369 0.249 0.090 0.104 0.126 0.173 0.314
Wine-white-39vs5 0.171 0.148 0.070 0.073 0.043 0.115 0.098

Wisconsin 0.953 0.958 0.965 0.962 0.961 0.955 0.938
Yeast-0256vs3789 0.576 0.553 0.470 0.482 0.463 0.446 0.518
Yeast-0359vs78 0.414 0.408 0.298 0.291 0.334 0.239 0.245

Yeast1 0.501 0.519 0.543 0.529 0.569 0.549 0.462
Yeast3 0.954 0.955 0.944 0.947 0.950 0.957 0.932
Yeast4 0.239 0.303 0.281 0.264 0.330 0.313 0.257
Yeast5 0.985 0.982 0.982 0.980 0.981 0.984 0.974

2.8 Summary

Our works, ALMCMO and LMCMO have presented a scheme of minority set estimation

which acts as a subspace for synthetic minority oversampling. The novelty of this work

lies with the estimation of the example minority set. The goal of ALMCMO is to adap-

tively estimate the minority class by allowing a varying volume of estimated minority

spaces around different minority points. The relative distribution and densities of the

points are taken into account while selecting the varying radii and volumes. This con-

cept is an addition to what was proposed in LMCMO which followed a strictly constant

estimated volume across all minority points. In ALMCMO, we have used a very simple

29

Table 2.5: AUC Results on Regression based classifier

Methods
Dataset ALMCMO LMCMO SMOTE Cluster-SMOTE ADASYN MWMOTE NCN-SMOTE

Abalone9-18 0.661 0.618 0.707 0.718 0.656 0.608 0.672
Appendicitis 0.717 0.687 0.693 0.702 0.698 0.695 0.688

Bands 0.607 0.580 0.618 0.601 0.585 0.624 0.574
Bupa 0.671 0.653 0.650 0.662 0.630 0.657 0.620

Cleveland-0vs4 0.789 0.761 0.740 0.733 0.689 0.675 0.708
Cleveland12vs345 0.600 0.580 0.563 0.575 0.563 0.596 0.575

Dermatology6 0.988 0.976 0.967 0.959 0.963 0.961 0.982
Ecoli2 0.893 0.862 0.861 0.859 0.841 0.867 0.820
Ecoli3 0.845 0.815 0.799 0.788 0.814 0.794 0.762
Glass0 0.811 0.786 0.801 0.795 0.814 0.809 0.761
Glass1 0.731 0.731 0.713 0.718 0.747 0.731 0.682

Haberman 0.772 0.754 0.745 0.758 0.741 0.765 0.702
Heart 0.812 0.771 0.780 0.772 0.744 0.775 0.734

Ionosphere 0.895 0.889 0.889 0.882 0.879 0.873 0.849
Magic 0.840 0.834 0.829 0.828 0.822 0.837 0.798

Newthyroid1 0.955 0.903 0.906 0.904 0.898 0.932 0.878
Page-blocks 0.941 0.910 0.941 0.946 0.926 0.920 0.933

Phoneme 0.870 0.839 0.858 0.856 0.851 0.860 0.826
Pima 0.715 0.699 0.704 0.706 0.686 0.699 0.678

Poker-8vs6 0.702 0.673 0.772 0.743 0.730 0.733 0.728
Poker-89vs5 0.571 0.567 0.521 0.508 0.541 0.515 0.533
Segment0 0.988 0.987 0.984 0.982 0.984 0.985 0.984
Vehicle1 0.719 0.714 0.707 0.708 0.675 0.673 0.676
Vehicle2 0.963 0.958 0.934 0.927 0.944 0.925 0.954
Vowel0 0.979 0.972 0.947 0.955 0.945 0.947 0.960
Wdbc 0.954 0.933 0.937 0.940 0.933 0.944 0.938

Wine-red-8vs6 0.603 0.569 0.571 0.553 0.570 0.578 0.532
Wine-white-3vs7 0.685 0.626 0.552 0.578 0.563 0.559 0.623
Wine-white-39vs5 0.546 0.560 0.564 0.588 0.561 0.521 0.536

Wisconsin 0.945 0.952 0.961 0.956 0.955 0.952 0.928
Yeast-0256vs3789 0.744 0.723 0.721 0.718 0.713 0.701 0.710
Yeast-0359vs78 0.667 0.664 0.624 0.631 0.653 0.587 0.593

Yeast1 0.664 0.673 0.682 0.674 0.701 0.693 0.642
Yeast3 0.902 0.890 0.871 0.881 0.891 0.874 0.859
Yeast4 0.595 0.628 0.682 0.669 0.712 0.692 0.596
Yeast5 0.892 0.855 0.808 0.817 0.773 0.799 0.765

yet effective Relative Neighborhood Graph to get the neighborhood relations and con-

figuration of the points. The performance of the proposed methods indicate superiority

over all other competing methods on C4.5 Decision Tree and Regression-based classifier.

It indicates that the estimation of minority set followed by generation of the synthetic

minority points from these estimated spaces gives better guarantee of their classes. The

results of empirical study also indicate the same. In future, we aim to formulate more

refined strategies for estimating the minority sets which will in turn enable us to sample

a good and prospective synthetic minority set.

30

Table 2.6: This table reports the p value at which we can reject the null hypothesis and claim that the
performance of the proposed method (ALMCMO) is statistically different (in our case superior than)
from that of a competing method. Lower the p value, more significant is the difference. At p = 0.05 level
of significance and employing Bonferroni correction, p = 0.008 is the decision threshold. ALMCMO has
achieved a value lesser than 0.008 in all the cases.. The cases where we could reject the null hypothesis
are written in bold-face.

LMCMO SMOTE Cluster-SMOTE ADASYN MWMOTE NCN-SMOTE
C4.5 Decision Tree based classifier

F1
ALMCMO 0.02045 0.00014 0.00014 0.00006 0.00028 0.00009

AUC
ALMCMO 0.00099 0.00079 0.00033 0.00024 0.00001 0.00002

Regression based classifier
F1

ALMCMO 0.00196 0.00150 0.00013 0.00045 0.00075 0.00001
AUC

ALMCMO 0.00003 0.00264 0.00167 0.00026 0.00027 0.00001

Table 2.7: This table reports the average time taken to compute the synthetic minority oversampling
by each method on each dataset. All the methods are executed on same platform (i7 processor, 8 GB
RAM, OS - Ubuntu 14.04). Each method has been executed 10 times on each dataset. We have reported
the average time taken by the methods. The unit of time used here is second (s). We can see that the
two proposed methods, ALMCMO and LMCMO have taken the least amount of time to generate the
synthetic minority sets. Time taken by LMCMO is the lowest among all the methods.

Methods
Dataset ALMCMO LMCMO SMOTE Cluster-SMOTE ADASYN MWMOTE NCN-SMOTE

Abalone9-18 0.0036 0.0021 0.1497 0.1729 0.0403 0.0081 0.1656
Appendicitis 0.0014 0.0003 0.0155 0.0244 0.0068 0.0040 0.0211

Bands 0.0049 0.0007 0.0263 0.1437 0.1058 0.0270 0.0301
Bupa 0.0023 0.0004 0.0172 0.0860 0.1187 0.0252 0.0196

Cleveland0vs4 0.0016 0.0006 0.0358 0.0429 0.0043 0.0030 0.0861
Cleveland12vs345 0.0019 0.0005 0.0296 0.0752 0.0498 0.0154 0.0329
Dermatology-6 0.0032 0.0022 0.0733 0.0896 0.0160 0.0053 0.0903

Ecoli2 0.0021 0.0008 0.0608 0.0893 0.0376 0.0102 0.0582
Ecoli3 0.0020 0.0008 0.0665 0.0854 0.0207 0.0066 0.0736
Glass0 0.0017 0.0003 0.0177 0.0558 0.0410 0.0121 0.0194
Glass1 0.0016 0.0003 0.0173 0.0517 0.0449 0.0119 0.0201

Haberman 0.0027 0.0004 0.0314 0.0894 0.0571 0.0156 0.0343
Heart 0.0018 0.0004 0.0094 0.0692 0.0770 0.0219 0.0111

Ionosphere 0.0027 0.0012 0.0247 0.0921 0.2316 0.0238 0.0294
Magic 0.2780 0.1289 14.8876 71.3316 256.2103 4.7601 4.9004

Newthyroid1 0.0017 0.0005 0.0369 0.0644 0.0157 0.0065 0.0405
Page-blocks 0.0015 0.0004 0.0322 0.0519 0.0167 0.0066 0.0366
Phoneme 0.0430 0.0314 1.4952 2.8799 3.0597 0.1664 1.5722

Pima 0.0281 0.0131 1.2426 5.0769 23.1231 0.5376 0.7028
Poker-8vs6 0.0036 0.0009 0.0656 0.2317 0.3933 0.0505 0.0595
Poker-89vs5 0.0125 0.0066 0.3355 0.3503 0.0442 0.0076 0.4559
Segment0 0.0114 0.0081 0.4755 0.4984 0.0709 0.0117 0.5711
Vehicle1 0.0212 0.0115 0.3927 0.6042 1.0085 0.0781 0.4297
Vehicle2 0.0048 0.0020 0.0938 0.1974 0.3095 0.0449 0.1009
Vowel0 0.0045 0.0019 0.0878 0.2010 0.3443 0.0469 0.0946
Wdbc 0.0052 0.0031 0.1828 0.2327 0.1181 0.0190 0.2012

Winequality-red-8vs6 0.0035 0.0010 0.0349 0.1643 0.2548 0.0447 0.0489
Winequality-white-3vs7 0.0046 0.0023 0.0147 0.1263 0.0196 0.0050 0.2285
Winequality-whitw-39vs5 0.0047 0.0033 0.2113 0.2082 0.0212 0.0059 0.2751

Wisconsin 0.0087 0.0055 0.3269 0.3389 0.0370 0.0089 0.4110
Yeast-0256vs3789 0.0057 0.0008 0.0585 0.2157 0.4219 0.0442 0.0550
Yeast-0359vs78 0.0054 0.0024 0.1892 0.2667 0.1578 0.0196 0.1936

Yeast1 0.0028 0.0011 0.0913 0.1194 0.0389 0.0091 0.0998
Yeast3 0.0070 0.0028 0.2009 0.5636 1.5725 0.0923 0.1635
Yeast4 0.0070 0.0037 0.2890 0.4091 0.3353 0.0299 0.2817
Yeast5 0.0070 0.0043 0.3191 0.3573 0.0971 0.0119 0.3379

31

Chapter 3

Handling multi-label datasets –

from a perspective of feature

extraction

3.1 Introduction

Multi-label datasets differ from traditional datasets by virtue of the membership of in-

stances to more than one overlapping label. In a regular dataset, an instance belongs

to exactly one class. Hence, in regular datasets, the question of the multi-label nature

of membership does not arise. Likewise, traditional classifiers dealing with single label

data expect the instances to arise from a single and known class distribution.

In multi-label datasets, a single instance in a given input space can belong to one or

more of the possible class labels. The need for efficient processing of multi-label data

is backed by the availability of datasets with multi-label characteristics from several

real-world applications. Beginning with text categorization [42] and [28], data with

multi-label characteristics have emerged from different genres namely images [5] [63],

music [50], bioinformatics [4], chemical data analysis [55], tag recommendation systems

[44] and video [68]. Consequently, multi-label classification and learning grabbed the

attention of the data science community.

Let a multi-label dataset be denoted by D = {(xi,Yi), i = 1 , 2 , . . . ,n} and the label

set cardinality be L. The label set of xi is Yi = {yi1, yi2, . . . , yiL}. Let us assume that

each label has exactly two classes positive (1) and negative (0) that is Yij can be either

1 or 0, j = 1, 2, . . . ,L. An instance xi has to be rightfully classified into either positive

33

(1) or negative (0) class for L labels.

In a multi-label dataset, a single set of instances possess the same representation

across all labels. But their positive or negative class memberships vary from label to

label. This leads to a variable class partition of the same instance set across different

labels. An efficient way of handling this problem is by generating label-specific features.

For L labels, a single representation of an instance is given L different mappings, one

for each label. A supervised feature extraction framework which relies on the label

specific class information has proved to be a very effective tool for learning the multi-

label datasets. In recent years, quite a number of works have focused on selecting or

extracting dedicated features for tackling the multi-label problem. Label specific feature

extraction was proposed in LIFT [105]. In LIFT, following the clustering of the positive

and negative classes of each label, the authors extract a label-specific feature set.Works

dealing with feature extraction and selection from multi-label datasets include [98] and

[49]. A detailed account and comparative analysis of the extant works in multi-label

feature extraction and selection in first-order framework can be found in [83]. Joint

feature selection and classification (JFSC) [37] and [102] performs label-correlated feature

selection of multi-label datasets.

In this work, we propose two techniques of dedicated feature set extraction for differ-

ent labels of a multi-label dataset. In the previous chapter, we have used the techniques

of Minimum Spanning Tree (MST) and Relative Neighborhood Graph (RNG) for esti-

mating the minority class spaces. In this chapter, we use these same two techniques in a

different context, for extracting the dedicated features.

3.2 Approach I - A Minimum Spanning Tree (MST) based

feature extraction

A feature extraction scheme can be effective if it can competently capture the dissimi-

larities which separates the different classes of an instance set. A multi-label dataset has

a single instance set with varying (likely to be different) partitions for different labels.

To be precise, it has dissimilar positive class and negative class structures for different

labels (considering two-class multi-label datasets). Here, we present a feature extraction

scheme which banks on this characteristic of such datasets to generate a discriminative

feature set for each label by initially selecting a shape-related discriminative subset of

instances per label. In this work, we follow a first-order approach of multi-label learning

where we learn a single classifier for each label. The discriminative feature sets obtained

34

by our schema are used to learn the classifiers. The following three steps are sequentially

performed for each label to obtain its corresponding distinctive feature set.

• Shape of the classes: Different partitions of the same instance set for different labels

is the motivation of our schema. We obtain the shapes of both positive as well as

negative classes of a label following this step twice, once for each. Here, we assume

that the set of all points in a class (i.e, not only the given points belonging to the

class, but also all those points which belong to the class but are not given) is a

connected set. Note that we are given finitely many points from a class, even though

the original set is uncountable (considering real space). The minimal connected set

that can be obtained from the given points in the class is the Minimal Spanning

Tree of the given points, where the edge weight is taken as the distance between

the points. We consider Minimal Spanning Tree (MST) to represent the geometry

or shape of the class.

• Key Point Subset / lattice of a shape: Once we have the positive and negative class

geometries of a label, we would like to select the ’key points or lattice’ of their

respective geometries. In a graph, a node or point can be denoted important if

its removal along with its connected neighbors results in substantial distortion to

the original geometry. By this rationale, it is evident that the potential candidates

for the Key Point Subset are the higher degree vertices of the MST. We select

the higher degree vertices of the both the positive class MST and negative class

MST individually into the Key Point Subset for a label (till they cover a predefined

fraction of edges). Selection of the points is done from the actual set of instances.

Hence, from a single instance set for all labels we select a dedicated set of instances

for each label.

• Feature extraction: An instance is likely to be closer to the members of the class to

which it belongs than it is to the members of the other class. A natural extension

of this is followed by extracting a distance-based feature vector for each instance.

The transformed feature vector of an instance for a label is obtained by calculating

its distance from the Key Point Subset members of that label. If there are k labels,

an instance gets k transformations, one for each label.

The transformed feature set for the training instance set with respect to a label is em-

ployed to model its corresponding classifier and this process is repeated across all labels.

While classifying a test instance over a label, its transformed mapping (extracted feature

vector) is obtained by calculating its distance from the Key Point Subset of that label

35

and it is fed to the respective label classifier to obtain the class prediction. The action

is repeated across all labels to obtain classification over the entire label set.

3.2.1 Algorithm

Proposed Method I has two stages. First stage is the the feature extraction and classifier

modelling step, where we derive the transformed feature set for each label from a single

instance set. In this stage, we employ the set of training instances to select the Key

Point Subset for each label from both positive and negative Minimum Spanning Trees

followed by extraction of a distance based feature set. Next, we model a set of classifiers,

one for each label, modelled upon the distance-based feature set. In the second stage,

classification of a test point is done according to its new set of mapping for each label

and feeding it to the respective label classifier.

• First stage: We shall assume that we are given a set of n training examples. Let

xi denote the ith training sample point, i = 1, 2, ..., n. Let the maximum number

of labels to be attributed to a point be k. Let Yij denote membership of ith point

to jth label. That is

Yij = 1, if ith point has jth label

= −1, if ith point does not take the jth label
(3.1)

Initially, for each label j, we segregate data points in the training set into positive

and negative sets Pj and Nj respectively according to their membership to class j.

Pj = {xi : Yij = 1} j = 1, 2, .., k (3.2)

Nj = {xi : Yij = −1} j = 1, 2, .., k (3.3)

Once we have the segregated positive and the negative sets of label j, we construct

two Minimum Spanning Trees (MSTs) corresponding to positive set and negative

set for the concerned label j where edge-weight of an edge joining two nodes a1, a2

is the Euclidean distance between them. For nominal data, we considered the

Hamming Distance between the points as the edge weight.

TreePj = MST(Pj) (3.4)

36

Algorithm 5 Proposed Method I

Input: Training attribute set S, Training label set Y , covG
Output: Classifiers – C1, C2, ..., Ck, Key Point Sets – KPS1,KPS2, ..,KPSk

1: procedure Training(S, Y , covG)
2: for each label j → 1, k do
3: Segregate Pj , Nj as in Eqn (1)
4: Form TreePj , T reeNj as in Eqn (2)
5: Sort elements of Pj , Nj into Pj sorted, Nj sorted according to norm degree val-

ues as in Eqn (3)
6: Select KPSjp ,KPSjn as in Eqn (4)
7: Obtain KPSj by taking union of KPSjp and KPSjn as in Eqn (5)
8: Transformed training feature set with respect to label j, βj(S) is obtained

from KPSj as in Eqn (6)
9: Classifier Cj is modelled on βj(S) and Y

10: end for
11: end procedure

—————————————————————- Input: Classifier – C1, ..., Ck, Key
Point Sets – KPS1, ..,KPSk, test point p
Output: Predicted labels for p

12: procedure Test(C1, C2, ..., Ck, KPS1,KPS2, ..,KPSk, p)
13: for each label j → 1, k do
14: βj(p) is obtained
15: Cj is fed with βj(p) to get the jth label prediction for p
16: end for
17: end procedure

37

TreeNj = MST(Nj) (3.5)

The degrees of data points of Pj , Nj in TreePj , TreeNj are used in selection of KPS

(Key Point Subset) for positive and negative sets respectively. Degree of the nodes

is normalized with respect to the number of edges in the MST to get norm degree

value.

Node centrality of a node is its degree value normalized with respect to the number

of edges of the network .

norm degree(Pj)i = degree((Pj)i)/(|Pj | − 1) (3.6)

i = 1, 2, ..|Pj |, where (Pj)i denotes ith element of set Pj .

norm degree((Nj)i) = degree((Nj)i)/(|Nj | − 1); (3.7)

i=1,2,..,|Nj | and (Nj)i denotes ith element of set Nj .

The data points with higher degrees are more relevant candidate points of the

subset. In order to select such points sequentially, we sort the elements of Pj in

decreasing order according to their degree norm degrees in TreePj into Pj sorted.

Pj sorted = sort decreasing degree(Pj) (3.8)

Similarly,

Nj sorted = sort decreasing degree(Nj) (3.9)

Based on Pj sorted and Nj sorted, Key Point Subset(KPS) is selected for label j,

for which we first construct KPSjp for positive set and KPSjn for negative set

respectively. Elements of Pj sorted are included in KPSjp sequentially starting

from (Pj sorted)1 till the cumulative sum of norm degree values of the included

points equals or just exceeds the edge coverage value, covG. covG is the only user-

specified parameter used in the algorithm and its value is generally 0.6.

Let the first N nodes of Pj sorted be selected.

n∑
i=1

norm degree(Pj sorted)i ≥ covG (3.10)

38

n−1∑
i=1

norm degree(Pj sorted)i < covG (3.11)

KPSjn is constructed in similar fashion.

Let mjp , mjn be the cardinalities of KPSjp , KPSjn respectively.

KPSj is constructed by combining KPSjp and KPSjn . Hence we get consistent

edge-coverage of positive and negative classes in the Key Point Subset. Let mj be

the cardinality of KPSj .

(KPS)j = (KPS)jp ∪ (KPS)jn (3.12)

Since KPSjp and KPSjn are mutually exclusive,

|(KPS)j | = |(KPS)jp |+ |(KPS)jp |

= mjp +mjn

= mj

(3.13)

• Second stage: For each label we will construct transformed feature set from its

corresponding KPS. Each KPS is derived from its respective MSTs which is built

upon inter-point distances between elements of set. So, for each label we construct

the transformed feature set by taking distance of training points from the respective

KPS.

Transformed feature inherent to label j for a training sample point x is as follows:

βj(x) = [d(x,KPSj1), d(x,KPSj2), ..., d(x,KPSjmj)] (3.14)

where j = 1, 2,, k

where KPSj1 denotes the 1st element of KPSj and d(x,KPSj1) denotes euclidean

distance between x and 1st element of KPSj .

• Second stage: We will train k single-label classifiers, C1, C2, ..., Ck for k labels

from β, label-based transformed features by invoking the respective KPS. Classi-

fication and learning of an unknown instance follows a similar label-specific path.

Initially,for a label j, label-specific α is calculated for the test instance from KPSj .

Based on that, the classification result is obtained by invoking classifier Cj .

39

Remarks:

• Complexity of Proposed Method I: Initially, we have to implement the MST

of all points of a dataset. The complexity for MST implementation of n points

is O(n log n). In feature extraction step, we have to extract the lattice points

followed by distance computation. For each label and n feature points,the number

of lattices is at most n. Hence, the overall complexity of feature extraction for L
labels is O(n× L).

3.3 Proposed Approach II- A Relative Neighborhood Graph

(RNG) based feature extraction

• Extracting the class geometries of labels

Our first goal is to extract the positive and negative class geometry of each label.

To perceive the geometry, we generate a Relative Neighborhood Graph (RNG) of

the entire set of training dataset where the edge weights are the distance between

the points. RNG shows the connectivity of a data point or vertex to its adjacent

neighborhood and the interconnectivity of the points gives the overall anatomy of

the feature points. A RNG of G is an undirected graph defined from G where xi and

xj are connected whenever there is no third point xk such that d(xi,xk) < d(xi,xj)

and d(xj ,xk) < d(xi,xj). For a given set of points, it’s MST is a subgraph of

it’s RNG. We may note that this tree will be same for all the labels. But the

membership of the vertexes or the data points vary from label to label and leads to

different positive and negative class structures for the labels. Let X = {x1, . . . ,xn}
be the training data and Yi = {yi1, . . . , yiL} be the class label vector associated

with instance xi. We have assumed that there are L labels in the dataset.

We will extract the positive and negative class geometries (with respect to each

label) from the RNG. To extract the above-said, we need to look at the membership

of the vertexes to each label. For a label, the membership of a vertex can be either

positive (1) - if it belongs to that label or negative (0) - if it does not belong to that

label. The class-memberships of the data points will likely vary across the labels.

Let us consider an edge eij between two vertices, vi and vj . If the class-membership

of xi and xj with respect to label k are the same (both 0 or both 1), we call edge

eij a homogeneous edge. If yik and yjk (the memberships of xi and xj) are both 1,

we term eik to be a positive homogeneous edge. If the class-memberships (yik and

40

yjk) are 0, we call it negative homogeneous edge. So, for each label, we will have

a set of homogeneous edges which is a subset of the RNG edges. We can further

partition this homogeneous edge set into two mutually exclusive sets of positive

homogeneous edges and negative homogeneous edges. For each label, we will have

a set of positive homogeneous edges and a set of negative homogeneous edges which

is described in the next paragraph. We will extract the positive and negative class

lattices of the label from its respective sets of homogeneous edges. Homogeneous

edges lie in the regions of the same class memberships.

A homogeneous edge (belonging to a certain class) with smaller weight will likely

be a better representative of that class than another with higher weight. It is be-

cause, with increasing edge weight, the vertexes (associated with the edge) become

sparser in the feature space and eventually overlap with the vertexes associated

with a different class. But a vertex associated with a shorter edge will have an-

other vertex near its vicinity which affirms its class-membership. Hence, to get the

positive class lattice (for a label), we arrange the positive homogeneous edges in

increasing order of their weights. For a certain label k, we select a NPk number of

positive homogeneous edges in increasing order of their weights and compute their

midpoints. The set of NPk midpoints represents the positive lattice of label k.

Similarly, we compute NNk lattice points to represent the negative lattice of label

k. In case of extreme imbalance when we do not get any positive homogeneous

edge, we select the positive points themselves to represent the positive lattices.

We determine the values of NPk and NNk in light of the degree of class-imbalance

of label k. Let the degree of imbalance of label k be imbk , which is the ratio of

the cardinality of the negative class of label k to that of the positive class of label

k. For the negative class (generally the majority class) of label k, we select the

value of NNk as NPk*(log2(imbk) + 1). The logarithm function allows us to add

deviations in the NNk cardinalities in a controlled manner. Let us consider two

scenarios to analyse this aspect. If there is no imbalance in two classes of label k,

that is imbk = 1, (log2(imbk) + 1) will be 1 and we will select NPk points as the

negative class. On the contrary, if imbk is 16 (dataset is highly imbalanced with

respect to label k), (log2(imbk) + 1) will be 5 and we will select 5× NPk points to

represent the negative class. We can also select different figures of NPk and NNk.

We present a discussion in Remarks 1 at the end of this section.

• Extracting the features

41

Now, we extract the features for each label. For that, we obtain the distance of a

data point from the sets of positive and negative lattice points of a label. In order

to make the positive information stand out in a pool of negative data, we multiply

the distances from the positive lattices with the respective class imbalance ratio of

that label. The above computed distances give the imbalance-informed mapping

of a data point for that label. The set of NPk positive distances and NNk negative

distances gives the transformed mapping of x with respect to label k.

Remarks:

1. Values of NPk and NNk: The number of lattice points for the positive class and

the negative class are given by NPk and NNk respectively. The extracted feature

set cardinality will increase with the increase in the number of lattice points. In-

creasing the number of lattice points will give better discernible and classification

capabilities to the classifier. But this is accompanied with an increase in compu-

tational complexity. While setting the values of NPk and NNk, we have to make

a trade-off between complexity and performance. Experiment 4 in the empirical

study explores this aspect.

2. Distance function used: We have used Euclidean distance and Hamming dis-

tance functions for numeric and nominal datasets respectively.

3.4 Algorithm

Let the multi-label dataset be denoted by D and the number of class labels for D be L.

D = {(xi,Yi), |1 ≤ i ≤ n , Yi denotes class label vector of xi}. Yi = {yi1, yi2, . . . , yil}.
yij is 1 when label j is positive for instance xi, otherwise the value of yij is 0. Let each

xi ∈ Rp. We randomly equi-partition D into a training set, Dtr and a test set, Dte. Let

X be the set of training instances (without the label information).

X = {xi, i=1, 2,. . . , n} (3.15)

We calculate class-imbalance ratio of each label j, j = 1, 2, . . . , l denoted by imbj .

imbk =
Number of negative training instances for label k

Number of positive training instances for label k

⇒ imbk =
||{xi such that Yik = 0, i = 1, 2, . . . , n}||
||{xi such that Yij = 1, i = 1, 2, . . . , n}||

(3.16)

42

In multi-label datasets, we have a single set of observations covering all labels. We

construct a Relative Neighborhood Graph (RNG) whose vertices are represented by the

members of X .

Tree = RNG(X) (3.17)

To extract more refined information about the class structures, we have to extract

a label-specific lattice from these graphs. Firstly, we extract the homogeneous edges of

the graph. As explained earlier, homogeneous edge for which both vertices belong to the

same class, there are two classes of homogeneous edges, positive and negative.

Let xi denote the ith vertex of the graph and cj(xi) denote the class-membership of

xi to label j.

cj(xi) =

1 if yij = 1

0 else
(3.18)

Let an edge of Tree between two vertices xi and xk be represented by eik. wik denotes

the edge-weight of eik.

eik = {(xi,xk), wik}, i, k = 1, 2, . . . , n, i 6= k (3.19)

Spj and Snj are the sets of positive and negative homogeneous edges of label j re-

spectively.

For each label j, j = 1, 2, . . . ,L,

Spj = {eik, cj(xi) = cj(xk) = 1} (3.20)

Similarly,

Snj = {eik, cj(xi) = cj(xk) = 0} (3.21)

We arrange the elements of Spj and Snj in increasing order of their edge-weights to get

the ranks of their respective elements. Let, for an edge eik, its rank in its respective

set (the set where it belongs) be denoted by R(eik). We obtain the ranks of the edges

because we will select the lattice points from the shorter homogeneous edge weights.

Shorter homogeneous edges have lower ranks than longer edges.

The mid-points of edges in Spj are stored in Mpj . Mnj stores the mid-points of Mnj .

Let NPj and NNj denote the number of negative and positive lattice points of label j

43

respectively.

Mpj =
⋃

eik∈Spj
R(eik)≤Npj

xi + xk
2

(3.22)

Mnj =
⋃

eik∈Snj
R(eik)≤Nnj

xi + xk
2

(3.23)

Let the representations of Mpj and Mnj be as follows.

Mpj = {m1j , m2j , . . . , mkpj} (3.24)

Mnj = {m′
1j , m

′
2j , . . . , m

′
knj
} (3.25)

m1j , m2j , . . . , mkpj represent the individual members of Mpj .

Similarly, m
′
1j , m

′
2j , . . . , m

′
knj

represent the elements of Mnj . It is easy to note that the

number of elements of Mpj and Mnj depend on data distribution and are likely unequal.

We have represented their cardinalities by kp and kn respectively.

The transformed mapping of instance xi with respect to label j denoted by zij is as

follows:

zij = fj(xi) = {d(xi,m1j), . . . , d(xi,mkpj), d(xi,m
′
1j), . . . , d(xi,m

′
knj)} (3.26)

zij is a kp+kn dimensional vector and it serves as the transformed feature point (ith) for

label j. Its first kp components are generated by taking distance from the midpoints of

the positive homogeneous edges and multiplying them with the imbalance ratio of label

j. The remaining kn components by taking distance from the negative homogeneous

edges.

Let Zj={zij , i = 1, 2, . . . , n}. Zj represents the transformed feature mapping of the

training instances in Dtr for label j.

For each label j, we train a classifierWj by invoking Zj . For classifying a test instance

t with respect to label j, we first obtain its transformed mapping for label j and invoke

Wj to predict it’s class. We have used a linear SVM classifier implementation of LIBSVM

([11]) for modeling and classification.

Remarks

44

• Complexity of Proposed Method II: Let us assume that the dataset has n

instances and L labels. The first step of the scheme is RNG implementation of

the given points and we need to implement it just one time (for all labels). The

complexity for RNG implementation of n points is O(n log n) The complexity of

feature generation for each label is of O(n). So, the overall complexity of feature

extraction for all labels is O(n× L).

3.4.1 Datasets

Two principal categories of real-life multi-label datasets are used: five datasets with

numeric attributes and five datasets containing nominal attributes. In each of these

data sets, for every instance, there is a positive or negative labeling with respect to every

category in the data set. That is for each label, we have exactly one two class classification

problem. Multi-label datasets are described in terms of standard parameters like domain,

number of instances, attribute types, number of attributes, number of labels as well as

two additional multi-label parameters, label cardinality and label density which give

average number of labels per example and normalized label cardinality with respect to

the possible number of labels respectively.

The description of the ten benchmark datasets is given in Table 3.1. The parameters

associated with the datasets are explained as follows – D denotes the cardinality of a

dataset. L and F denote the cardinalities of the label set and feature set respectively.

The average number of positive labels across all points of a dataset is is given by L.Card.

L.Uniq gives the number of unique label combinations in a dataset.

Table 3.1: Description of Datasets

Dataset domain att.type (D) (L) (F) (L.Card) (L.Uniq)

Corel5k image nominal 5000 374 499 3.522 3175
Enron text nominal 1702 53 1001 3.378 753

Lang Log text nominal 1460 75 1004 1.180 286
medical biology nominal 978 45 1449 1.245 94
Slashdot text nominal 3782 22 1079 1.181 156
CAL500 music numeric 502 174 68 26.044 502
Image image numeric 2000 5 294 1.236 20
Music music numeric 592 6 72 1.869 27
Scene image numeric 2407 6 294 1.047 15
Yeast biology numeric 2417 14 103 4.037 198

45

T
a
b
le

3
.2

:
P
re

d
ic
tiv

e
p
e
rfo

rm
a
n
c
e
o
f
m
e
th

o
d
s
in

te
rm

s
o
f
m
u
lti-la

b
e
l
e
v
a
lu
a
tio

n
m
e
tric

s
—

↑
in

d
ica

tes
h
ig

h
er

is
b

etter
a
n
d
↓

in
d
ica

tes
low

er
is

b
etter,

b
est

o
u
tco

m
e

is
in

d
ica

ted
in

b
o
ld

-fa
ce

C
o
rel5

k
E

n
ro

n
L

L
O

G
M

ed
ica

l
S

la
sh

C
A

L
5
0
0

Im
a
g
e

M
u

sic
S

cen
e

Y
ea

st
H
a
m

m
in

g
L
o
ss
↓

m
ea

n
±

std
m

ea
n
±

std
m

ea
n
±

std
m

ea
n±

std
m

ea
n±

std
m

ea
n±

std
m

ea
n±

std
m

ea
n±

std
m

ea
n±

std
m

ea
n±

std
B
R

0
.0

1
0±

0
.0

0
1

0
.0

6
0±

0
.0

0
2

0
.0

1
7±

0
.0

0
2

0
.0

1
3±

0
.0

0
1

0
.0

5
0±

0
.0

0
1

0
.1

3
8±

0
.0

0
3

0
.1

8
7±

0
.0

0
7

0
.2

8
6±

0
.0

0
2

0
.1

0
8±

0
.0

0
4

0
.2

0
2±

0
.0

0
5

C
L

R
0
.0

1
1±

0
.0

0
1

0
.0

5
5±

0
.0

0
1

0
.0

1
8±

0
.0

0
1

0
.0

3
8±

0
.0

0
2

0
.0

5
2±

0
.0

0
1

0
.1
3
7±

0
.0

0
3

0
.1

8
5±

0
.0

0
6

0
.2

7
2±

0
.0

0
2

0
.1

0
6±

0
.0

0
4

0
.2

0
1±

0
.0

0
5

L
IF

T
0
.0

1
0±

0
.0

0
1

0
.0

4
7±

0
.0

0
1

0
.0
1
5±

0
.0

0
2

0
.0

1
4±

0
.0

0
1

0
.0
4
0±

0
.0

0
1

0
.1

3
8±

0
.0

0
3

0
.1

6
6±

0
.0

0
4

0
.1

9
4±

0
.0

0
1

0
.0

8
3±

0
.0

0
2

0
.1

9
8±

0
.0

0
3

M
L

K
N

N
0
.0

1
0±

0
.0

0
1

0
.0

5
4±

0
.0

0
3

0
.0

1
6±

0
.0

0
2

0
.0

1
7±

0
.0

0
2

0
.0

4
6±

0
.0

0
1

0
.1

4
0±

0
.0

0
3

0
.1

8
1±

0
.0

0
4

0
.2

0
9±

0
.0

0
2

0
.0

9
3±

0
.0

0
2

0
.1

9
7±

0
.0

0
4

R
A

K
E

L
0
.0

1
3±

0
.0

0
1

0
.0

7
5±

0
.0

0
3

0
.0

1
8±

0
.0

0
3

0
.0
1
2±

0
.0

0
1

0
.0

4
7±

0
.0

0
1

0
.1

9
8±

0
.0

0
4

0
.1

7
2±

0
.0

0
8

0
.2

9
9±

0
.0

0
1

0
.1

4
1±

0
.0

0
3

0
.2

0
1±

0
.0

0
6

P
ro

p
o
sed

M
eth

o
d

I
0
.0
0
9±

0
.0

0
1

0
.0

4
8±

0
.0

0
2

0
.0
1
5±

0
.0

0
1

0
.0
1
2±

0
.0

0
1

0
.0
4
0±

0
.0

0
1

0
.1
3
7±

0
.0

0
3

0
.1

5
6±

0
.0

0
2

0
.1

9
0±

0
.0

0
1

0
.0
8
1±

0
.0

0
2

0
.1

9
2±

0
.0

0
3

P
ro

p
o
sed

M
eth

o
d

II
0
.0
0
9±

0
.0

0
1

0
.0
4
5±

0
.0

0
2

0
.0

1
7±

0
.0

0
2

0
.0
1
2±

0
.0

0
3

0
.0
4
0±

0
.0

0
1

0
.1

3
8±

0
.0

0
3

0
.1
5
2±

0
.0

0
2

0
.1
7
6±

0
.0

0
1

0
.0
8
1±

0
.0

0
2

0
.1
9
0±

0
.0

0
3

A
v
e
r
a
g
e
P
r
e
c
isio

n
↑

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

m
ea

n
std

B
R

0
.1

1
5±

0
.0

0
2

0
.4

2
7±

0
.0

0
9

0
.1

8
4±

0
.0

0
9

0
.7

8
5±

0
.0

0
7

0
.5

6
4±

0
.0

0
4

0
.4

9
3±

0
.0

0
3

0
.7

1
3±

0
.0

0
5

0
.7

4
1±

0
.0

0
2

0
.7

8
2±

0
.0

0
4

0
.5

6
8±

0
.0

0
2

C
L

R
0
.2

7
5±

0
.0

0
3

0
.6

7
3±

0
.0

0
8

0
.3

6
8±

0
.0

0
7

0
.5

0
2±

0
.0

0
4

0
.6

7
2±

0
.0

0
3

0
.4

9
8±

0
.0

0
4

0
.7

8
6±

0
.0

0
4

0
.7

3
6±

0
.0

0
1

0
.8

4
4±

0
.0

0
3

0
.6

5
2±

0
.0

0
1

L
IF

T
0
.2
8
7±

0
.0

0
4

0
.6

8
3±

0
.0

1
0

0
.3
8
2±

0
.0

0
7

0
.8

4
3±

0
.0

0
4

0
.6

7
0±

0
.0

0
3

0
.4

9
2±

0
.0

0
3

0
.8

1
2±

0
.0

0
4

0
.8

0
8±

0
.0

0
1

0
.8

7
6±

0
.0

0
2

0
.7

6
2±

0
.0

0
1

M
L

K
N

N
0
.2

3
9±

0
.0

0
2

0
.6

0
9±

0
.0

0
8

0
.2

9
0±

0
.0

0
6

0
.7

7
7±

0
.0

0
7

0
.5

8
9±

0
.0

0
4

0
.4

8
4±

0
.0

0
3

0
.7

7
4±

0
.0

0
4

0
.7

8
9±

0
.0

0
2

0
.8

5
3±

0
.0

0
3

0
.7

5
8±

0
.0

0
2

R
A

K
E

L
0
.1

2
4±

0
.0

0
3

0
.5

5
6±

0
.0

0
8

0
.1

9
2±

0
.0

1
0

0
.7

7
7±

0
.0

0
6

0
.6

0
9±

0
.0

0
4

0
.3

8
3±

0
.0

0
4

0
.7

9
4±

0
.0

0
5

0
.7

2
2±

0
.0

0
2

0
.8

4
7±

0
.0

0
2

0
.6

2
2±

0
.0

0
3

P
ro

p
o
sed

M
eth

o
d

I
0
.2

6
5±

0
.0

0
3

0
.6

5
6±

0
.0

0
8

0
.3

2
8±

0
.0

1
2

0
.8
6
3±

0
.0

0
3

0
.6

6
7±

0
.0

0
3

0
.4

9
7±

0
.0

0
4

0
.8
2
4±

0
.0

0
3

0
.8

1
6±

0
.0

0
1

0
.8
8
2±

0
.0

0
2

0
.7
6
9±

0
.0

0
2

P
ro

p
o
sed

M
eth

o
d

II
0
.2

6
8±

0
.0

0
2

0
.6
8
4±

0
.0

0
6

0
.3

4
1±

0
.0

1
0

0
.8

4
3±

0
.0

0
3

0
.6
8
1±

0
.0

0
3

0
.4
9
9±

0
.0

0
4

0
.8

2
0±

0
.0

0
3

0
.8
4
8±

0
.0

0
2

0
.8
8
2±

0
.0

0
3

0
.7

6
8±

0
.0

0
3

C
o
v
e
r
a
g
e
↓

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

B
R

0
.8

9
4±

0
.0

0
4

0
.5

8
2±

0
.0

0
7

0
.4

2
5±

0
.0

0
5

0
.0
4
4±

0
.0

0
5

0
.1

1
7±

0
.0

0
5

0
.9

5
2±

0
.0

0
8

0
.2

9
6±

0
.0

0
2

0
.3

6
2±

0
.0

0
1

0
.1

1
1±

0
.0

0
1

0
.6

2
6±

0
.0

0
2

C
L

R
0
.3

1
6±

0
.0

0
8

0
.2
2
3±

0
.0

0
9

0
.1
5
4±

0
.0

0
8

0
.0

8
8±

0
.0

0
6

0
.1
0
8±

0
.0

0
3

0
.7

6
3±

0
.0

0
5

0
.1

8
5±

0
.0

0
4

0
.3

4
8±

0
.0

0
2

0
.1

2
8±

0
.0

0
2

0
.4

7
2±

0
.0

0
4

L
IF

T
0
.3

1
9±

0
.0

0
7

0
.2

4
5±

0
.0

0
8

0
.1

9
4±

0
.0

0
6

0
.0

5
8±

0
.0

0
5

0
.1

1
1±

0
.0

0
4

0
.7

6
2±

0
.0

0
4

0
.1

8
1±

0
.0

0
3

0
.2

9
1±

0
.0

0
2

0
.0

7
0±

0
.0

0
2

0
.4

5
6±

0
.0

0
3

M
L

K
N

N
0
.3

1
6±

0
.0

0
9

0
.2

6
3±

0
.0

1
1

0
.1

8
2±

0
.0

1
1

0
.0

7
5±

0
.0

0
6

0
.1

8
6±

0
.0

0
5

0
.7

6
2±

0
.0

0
5

0
.2

0
7±

0
.0

0
4

0
.3

1
1±

0
.0

0
3

0
.0

8
4±

0
.0

0
2

0
.4

5
8±

0
.0

0
6

R
A

K
E

L
0
.8

8
2±

0
.0

0
2

0
.5

2
7±

0
.0

0
7

0
.4

3
8±

0
.0

0
4

0
.0

8
1±

0
.0

0
5

0
.1

9
6±

0
.0

0
4

0
.9

6
7±

0
.0

0
4

0
.2

1
2±

0
.0

0
2

0
.3

8
9±

0
.0

0
2

0
.1

1
8±

0
.0

0
2

0
.5

2
6±

0
.0

0
3

P
ro

p
o
sed

M
eth

o
d

I
0
.2
8
9±

0
.0

0
6

0
.2

5
1±

0
.0

0
7

0
.1

6
5
±

0
.0

0
5

0
.0

5
0±

0
.0

0
4

0
.1

1
3±

0
.0

0
4

0
.7
5
6±

0
.0

0
4

0
.1

6
8±

0
.0

0
3

0
.2

8
8±

0
.0

0
2

0
.0

6
7±

0
.0

0
2

0
.4
4
9±

0
.0

0
3

P
ro

p
o
sed

M
eth

o
d

I
0
.3

1
0±

0
.0

0
8

0
.2

4
5±

0
.0

0
6

0
.1

7
4
±

0
.0

0
5

0
.0

5
1±

0
.0

0
5

0
.1

2
2±

0
.0

0
5

0
.7

5
7±

0
.0

0
3

0
.1
6
5±

0
.0

0
3

0
.2
6
4±

0
.0

0
3

0
.0
6
5±

0
.0

0
2

0
.4

5
3±

0
.0

0
4

O
n
e
E
r
r
o
r
↓

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

B
R

0
.8

2
9±

0
.0

1
3

0
.5

0
6±

0
.0

1
4

0
.8

5
6±

0
.0

1
1

0
.2

5
2±

0
.0

1
2

0
.5

0
2±

0
.0

0
9

0
.2

8
3±

0
.0

1
0

0
.4

0
8±

0
.0

0
9

0
.3

5
7±

0
.0

1
1

0
.3

4
6±

0
.0

1
4

0
.2

4
8±

0
.0

1
2

C
L

R
0
.7

0
8±

0
.0

1
2

0
.2

6
5±

0
.0

1
0

0
.7

1
8±

0
.0

0
8

0
.3

8
6±

0
.0

0
7

0
.4

3
3±

0
.0

0
9

0
.1

2
4±

0
.0

1
0

0
.3

2
9±

0
.0

0
9

0
.2

7
6±

0
.0

1
1

0
.2

5
2±

0
.0

0
8

0
.2

2
8±

0
.0

1
0

L
IF

T
0
.6

8
7±

0
.0

1
1

0
.2

5
3±

0
.0

1
0

0
.7
0
4±

0
.0

1
3

0
.1

9
1±

0
.0

1
2

0
.4

2
5±

0
.0

1
3

0
.1

2
3±

0
.0

1
1

0
.2

8
6±

0
.0

0
8

0
.2

5
4±

0
.0

1
0

0
.2

0
8±

0
.0

0
9

0
.2

3
5±

0
.0

1
1

M
L

K
N

N
0
.7

4
4±

0
.0

1
4

0
.3

3
0±

0
.0

1
2

0
.8

1
6±

0
.0

1
2

0
.3

1
2±

0
.0

0
8

0
.6

4
2±

0
.0

1
0

0
.1

2
5±

0
.0

1
1

0
.3

4
5±

0
.0

0
9

0
.2

8
3±

0
.0

1
3

0
.2

4
7±

0
.0

1
4

0
.2

2
9±

0
.0

0
9

R
A

K
E

L
0
.8

2
3±

0
.0

1
2

0
.4

0
6±

0
.0

1
4

0
.8

4
5±

0
.0

1
4

0
.2

5
4±

0
.0

0
9

0
.4

6
2±

0
.0

1
0

0
.3

1
2±

0
.0

1
2

0
.3

0
3±

0
.0

1
5

0
.3

8
8±

0
.0

0
8

0
.2

4
7±

0
.0

0
9

0
.2

5
3

0
.0

1
3

P
ro

p
o
sed

M
eth

o
d

I
0
.7

0
6±

0
.0

1
0

0
.2

4
0±

0
.0

0
8

0
.7

6
5±

0
.0

1
1

0
.1
7
0±

0
.0

1
0

0
.4

4
1±

0
.0

1
2

0
.1

1
8±

0
.0

0
9

0
.2

7
0±

0
.0

1
1

0
.2

5
1±

0
.0

1
0

0
.1
9
8±

0
.0

0
9

0
.2
1
8±

0
.0

0
9

P
ro

p
o
sed

M
eth

o
d

II
0
.6
6
0±

0
.0

0
9

0
.2
3
2±

0
.0

0
7

0
.7

6
8±

0
.0

1
0

0
.1

9
8±

0
.0

1
0

0
.4
1
3±

0
.0

1
0

0
.0
9
9±

0
.0

0
8

0
.2
6
5±

0
.0

0
8

0
.1
9
3±

0
.0

0
6

0
.2

0
2±

0
.0

0
5

0
.2

2
9±

0
.0

0
9

R
a
n
k
in

g
L
o
ss
↓

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

m
ea

n±
std

B
R

0
.6

2
4±

0
.0

0
4

0
.2

4
8±

0
.0

0
5

0
.2

4
4±

0
.0

0
6

0
.0

4
0±

0
.0

0
5

0
.1

5
8±

0
.0

1
0

0
.4

1
2±

0
.0

0
5

0
.2

9
3±

0
.0

0
4

0
.2

3
2±

0
.0

0
3

0
.1

6
8±

0
.0

0
6

0
.3

0
9±

0
.0

0
5

C
L

R
0
.1
1
8±

0
.0

0
3

0
.0

7
8±

0
.0

0
4

0
.1
3
4±

0
.0

0
7

0
.0

5
2±

0
.0

0
4

0
.0
9
6±

0
.0

0
5

0
.1

8
2±

0
.0

0
3

0
.1

7
3±

0
.0

0
3

0
.2

2
9±

0
.0

0
4

0
.0

7
6±

0
.0

0
4

0
.1

7
1±

0
.0

0
2

L
IF

T
0
.1

3
2±

0
.0

0
3

0
.0

8
6±

0
.0

0
4

0
.1

8
4±

0
.0

0
4

0
.0
3
5±

0
.0

0
5

0
.0

9
8±

0
.0

0
4

0
.1

8
9±

0
.0

0
3

0
.1

5
7±

0
.0

0
3

0
.1

5
4±

0
.0

0
2

0
.0

6
8±

0
.0

0
4

0
.1

7
1±

0
.0

0
3

M
L

K
N

N
0
.1

3
8±

0
.0

0
2

0
.1

0
0±

0
.0

0
6

0
.1

7
5±

0
.0

0
3

0
.0

4
2±

0
.0

0
6

0
.1

7
2±

0
.0

0
6

0
.1

8
4±

0
.0

0
5

0
.1

9
2±

0
.0

0
2

0
.1

7
5±

0
.0

0
3

0
.0

8
6±

0
.0

0
3

0
.1

6
8±

0
.0

0
4

R
A

K
E

L
0
.6

0
3±

0
.0

0
4

0
.2

2
6±

0
.0

0
7

0
.3

2
5±

0
.0

0
6

0
.0

7
8±

0
.0

0
5

0
.2

8
5±

0
.0

0
3

0
.4

6
7±

0
.0

0
8

0
.1

9
2±

0
.0

0
3

0
.2

5
2±

0
.0

0
1

0
.1

0
3±

0
.0

0
4

0
.2

2
6±

0
.0

0
6

P
ro

p
o
sed

M
eth

o
d

I
0
.1

2
4±

0
.0

0
3

0
.0

9
1±

0
.0

0
5

0
.1

5
6±

0
.0

0
7

0
.0

3
6±

0
.0

0
3

0
.1

0
1±

0
.0

0
4

0
.1

8
2±

0
.0

0
4

0
.1
4
3±

0
.0

0
3

0
.1

4
8±

0
.0

0
2

0
.0

6
5±

0
.0

0
3

0
.1
6
3±

0
.0

0
3

P
ro

p
o
sed

M
eth

o
d

II
0
.1

3
5±

0
.0

0
3

0
.0
7
6±

0
.0

0
5

0
.1

5
8±

0
.0

0
7

0
.0

3
6±

0
.0

0
3

0
.1

0
4±

0
.0

0
5

0
.1
7
9±

0
.0

0
4

0
.1

4
8±

0
.0

0
3

0
.1
2
3±

0
.0

0
2

0
.0
6
3±

0
.0

0
3

0
.1

6
6±

0
.0

0
3

46

3.4.2 Comparison against State-of-the-art approaches and the experi-

mental settings

We have considered five popular diversified multi-label schemes for empirical comparison

with the proposed methods. The methods are as follows – i] Binary Relevance (BR)

– a first order approach, ii] Calibrated Label Ranking (CLR) – second order approach,

iii] LIFT – a feature transformation approach with r=0.1, iv] MLKNN – an algorithm

adaptation approach with k=10,11 or 12 and v] RAKEL – a higher order approach

following parameter settings k=3 and number of subsets equal to twice the number of

labels.

The two proposed methods are implemented in the framework of Binary Relevance

(BR), that is one classifier for each label. LIBSVM [11] implementation of linear SVM

is used as the base classifier. Euclidean distance is considered for numeric datasets and

for nominal datasets Hamming distance is taken. In Proposed Method I, the only user

supplied parameter is covG and its value is set to 0.6 for all datasets. This value is chosen

via a two-fold cross-validation (Hold Out setting). The set of values explored was {0.3,

0.4, 0.5, 0.6, 0.7}. We have split each dataset into a training set and a test set. For each

value of covG in the above given range, we performed 10 such runs and noted the results.

We chose covG=0.6 as it gave superior performance on most datasets. Proposed Method

II has just one user-provided parameter — number of positive lattice points (NPk) which

is used for mapping the features.

3.4.3 Evaluation Metrics

Evaluation metrics: Five metrics namely Hamming Loss, Coverage, One Error, Rank-

ing Loss, Average Precision are employed to evaluate the relative efficacies of all methods

[91]. Let xi, i=1,2,. . . ,N be the set of N test instances and Yi be the L-dimensional label

vector of xi. Let Yi be the complement label set of xi. Let αi be the label prediction

vector for xi. We denote the label specific predicted score of xi for label j by fj(xi).

• Hamming Loss: It measures the fraction incorrect predictions for all instances

across the entire label set. Lower the value achieved by a classifier, better is its

performance.

Hamming Loss =
1

NL

N∑
i=1

Yi ⊕ αi (3.27)

47

• Average Precision: It calculates the fraction of relevant labels ranked higher

(predicted) than a particular label[105]. ri(j) denotes the rank of label j for xi

instance predicted by a classifier.

Average Precision =
1

N

N∑
i=1

1

|Yi|
∑
γ∈Yi

|{γ ∈ Yi : ri(γ) ≤ ri(γ′)}|
ri(γ)

(3.28)

• One-Error: One error counts the number of instances for which the predicted

top-rank label is not present in the actual label set. Lower the value of one-error,

better is the performance of the classifier.

One Error =
1

N

N∑
i=1

[arg maxlabelj∈αi fj(xi) /∈ Yi] (3.29)

• Coverage: Let us consider an ordered list of predicted labels for each instance,

where the top-ranked label is the label number one. Coverage evaluates the number

of steps we need to move down the list to get the set of all true labels of the

instance. It can easily be intuited that the lesser the value of coverage the better

is the performance. Let lj be the jth label. Let rank(xi, lj) be the rank of jth label

w.r.t. instance xi.

Coverage =
1

L
(

1

N

n∑
i=1

maxlj∈αi rank(xi, lj)− 1) (3.30)

• Ranking Loss: Ranking Loss calculates the average percentage of mis-ordered
pairs of labels. Lower value of ranking loss is desirable for a classifier. The numer-
ator of the following term represents the number of mis-ordered label pairs. Let us
assume, xi has positive label k and negative label j. But, the classifier has wrongly
assigned more confidence (membership score f) to the jth label than that of kth

label of xi. Such a situation contributes to the Ranking Loss. The numerator
calculates the number of such mis-ordered pairs.

Ranking loss =
1

N

N∑
i=1

|{(lk, lj), fk(xi) ≤ fj(xj), (lk, lj) ∈ Yi × Y i}|
|Yi||Y i|

(3.31)

3.4.4 Results and Discussions

Comparisons in terms of five evaluation metrics is done for the proposed method, and

five other baseline approaches. For each dataset, 50 percent of the samples are randomly

selected and used as the training set while the remaining samples are used as the test

48

set. Mean and standard deviation values on the metric outputs are computed over ten

independent runs and reported in the table. Table 3.2 presents the performance of the

methods on accuracy-based, ranking-based and label-based metrics in sequence. The

estimated mean values for ten runs as well the corresponding standard deviations are

also given. The best performance on each dataset is indicated in bold face in the column

for the corresponding method. From Table 3.2, the number of best outcomes achieved by

each method (comparing and proposed) is calculated. Note that there should essentially

be 50 best scores for 5 metrics and 10 datasets. But on Hamming Loss and Average

Precision, on more than one occasion the best score is shared by two or more methods.

As a consequence the total number of best scores obtained is 59. The summarization

shows the competence of the two proposed methods. Proposed Method I and Proposed II

achieve 18 and 26 best results. Together they obtain 44 out of 59 best scores (74.57%).

CLR and LIFT obtain 7 and 6 best scores respectively. RAKEL and BR achieve one best

score. The above stated results require some more analysis with respect to individual

performances on each of the seven evaluation metrics to provide a vivid picture.

The two proposed methods have shown better performance with respect to the other

competing methods on metrics like Hamming Loss, Average Precision and One Error.

On three of these metrics, either or both of these two methods (Proposed I and Proposed

Method II) have achieved best scores on 80-100% of the datasets. The remaining two

metrics, Ranking Loss and Coverage deal with the correct ranking of labels. The results

indicate that on these two metrics, the efficaciousness of the two proposed techniques is

not as superior as that of the previous case. On each of these metrics, Proposed method

I and Proposed Method II achieve best scores on 60% datasets. CLR (which operates

on the ranking of the labels) achieves best scores on 30% of the remaining datasets and

remaining cases are shared by LIFT and BR.

In the previous paragraph, we have discussed the performance of the two proposed

techniques in a unified fashion. We may note that the performance of Proposed method II

is slightly better than that of Proposed method I. On Hamming Loss, Average Precision

and Coverage, the performance of the two methods are comparable. But on One Error

and Ranking Loss, Proposed Method II achieves twice the number of best scores with

respect to Proposed method I. Hence, overall we can say that Proposed Method II is a

better technique than that of Proposed Method I.

49

3.5 Summary

In this chapter of the thesis, we have focused on multi-label datasets, where the instances

belong to more than one overlapping labels. We have tackled this problem by introduc-

ing a couple of schemes for dedicated feature extraction. We have used graph based

techniques MST and RNG to find the differential class structures (varying over labels)

followed by label-specific feature extraction. The two proposed schemes have delivered

competent to superior performance on 10 real-world multi-label datasets.

Distinct positive and negative class geometries for different labels is a typical char-

acteristic of multi-label datasets. In addition to this, the multi-label datasets are also

found to be class-imbalanced. Coupling these two attributes leads to another important

property – differential class-imbalance ratio of labels. In the next chapter, Chapter 4 of

this thesis, we work on that aspect to achieve a fruitful learning of multi-label datasets.

50

Chapter 4

Handling multi-label datasets –

addressing imbalance of the labels

4.1 Introduction

Multi-label datasets have gained the attention of the machine learning community in the

past two decades. A multi-label dataset is characterized be the membership of an instance

to more than one overlapping label. Let D be a multi-label dataset, D = {(xi,Yi) : i =

1, 2, . . . , n}, where xi denotes the ith instance and Yi represents its label vector. If a

dataset D has L labels, Y = {yi1, yi2, . . . , yiL}, yij denotes the jth label membership

of instance xi. We have considered two class multi-label problems, each label can take

exactly one of two values, 0 (negative) or 1 (positive). Inception of multi-label research

was with text categorization [28]. Other real-world multi-label sources include music

[50], images [63] [5], bioinformatics [4], codebook construction [19] and medical [92].

For effective handling of multi-label datasets, we have to analyze the intrinsic charac-

teristics of the multi-label datasets. A prevalent characteristic of multi-label datasets is

class imbalance of the labels. In imbalanced datasets, quantitative disproportion exists

in the distribution of different classes. If we consider a two-class dataset, the quantita-

tively abundant class and the quantitatively scarce class are termed as majority class and

minority class respectively. Let imb be the imbalance ratio a dataset. It is the ratio of

number of instances in the majority class of a dataset to the number of instances in it’s

minority class. In regular datasets we have exactly one label, hence we have a single im-

balance ratio. In a multi-label dataset, class-membership of the instances vary from label

to label. Different labels deal with differing aspects associated with a dataset. As we have

51

discussed in Chapter 3 of this thesis, this leads to different positive and negative class

cardinalities for different labels. Consequently different imbalance ratios are obtained for

different labels. Generally speaking, for most of the labels of the multi-label datasets,

the positive class remains under-represented and becomes the minority class. But at

times, in a few cases, the negative class also becomes the minority class. The differential

imbalance ratios coupled with the above stated class-switching for different labels makes

the class imbalance problem more critical as well as interesting. For example, in the

yeast dataset [20] (with 14 labels), the minimum imbalance ratio and maximum ratio is

1.32 (for label 12) and 50.74 (for label 14) respectively. A single framework with a single

set of parameters may not work well across the two diversified labels. In recent years, a

few works like COCOA [103] and [17] have given attention to this pertinent aspect.

In this chapter, we present two different and distinct techniques to address the prob-

lem of class imbalance in multi-label datasets. The techniques are i] label-specific mi-

nority class oversampling for different labels and ii] an imbalance adaptive cost-sensitive

learning framework.

Oversampling the minority class has been a popular technique for handling imbalance

of datasets and learning the minority instances. Starting with SMOTE [23], several and

diversified oversampling techniques have been developed over the years to address the

issue of imbalance of datasets. In oversampling, synthetic points are added to increase

the cardinality as well as representation of the under-represented minority class. In this

paper, we introduce an imbalance-adaptive oversampling scheme for multi-label datasets.

We oversample a set of label-specific synthetic minority points, one for each label and

use them (along with original training set) to train a set of first-order classifiers. The

novelty of our scheme lies with the use of reverse-nearest neighborhood or reverse k-

nearest neighborhood (RkNN) exploration. Reverse k-nearest neighbor of an instance p

are all those instances which have p as one of their k-nearest neighbors. The number

of RkNNs of p is not necessarily k and its value is auto-regulated by the local density

and distribution of points around p. Reverse nearest neighborhood principles are used to

demarcate the neighborhood as well as neighbors of a candidate minority point. Selecting

an existing minority point as the seed point, a synthetic minority point is oversampled in

it’s reverse nearest neighborhood. In regular SMOTE and SMOTE-inspired oversampling

techniques, a generic ’k’ value or neighborhood size is selected across the entire dataset.

Reverse nearest neighborhood allows us an adaptive neighborhood size for performing

the oversampling. For each label, the synthetic minority points are oversampled from

the reverse-nearest neighborhood of the minority instances. To cope with the differential

52

imbalance problem of multi-label datasets, we oversample a dedicated set of synthetic

instances for each label. For each label we train a classifier using the original set of

instances and the label specific synthetic minority set. We have presented and compared

our results with several state-of-the-art multi-label classifiers as well as class-imbalance

handling classifiers.

Cost-sensitive learning [34] was one of the fundamental techniques for tackling the is-

sue of class-imbalance and consequently detecting the ’hard-to-learn’ positive or minority

instances. To nullify the natural bias of the classifier towards the quantitatively abun-

dant majority class, a higher mis-classification penalty is set for the quantitatively scare

minority class. The main goal is to bias the classifier towards identifying the minority

samples. In the second solution proposed in this research, to address differential class-

imbalance further, we adopt a cost-sensitive learning scheme where the misclassification

cost adapts to the imbalance ratio of the labels. A multi-label dataset has differing values

of imbalance ratio across the labels. In such a situation, selecting a single misclassifica-

tion cost for the minority class across will not yield proper learning. Instead, we select

a set of misclassification cost values of the minority (positive) class, one for each label.

Between two labels with differing degree of imbalance, we set a higher misclassification

penalty for the one with higher imbalance than that of the other.

4.2 Related Work

Multi-label learning methods are broadly classified into two types –Problem transforma-

tion approach (PT) and Algorithm Adaptation Approach (AA) [27]. On the other hand,

studies such as the one in [61] differentiate the multi-label classifiers into three groups,

namely Problem transformation, Algorithm Adaptation and Ensemble of multi-label clas-

sifiers.

Problem transformation approaches modify or decompose a multi-label dataset to fit

it in a framework of regular decomposition. Depending on the number of decompositions

and number of labels involved in a classifier, this class of classifiers are further sub-divided

into first order, second order and higher order paradigms [107]. In first-order PT, only

one label is involved in a classifier while for second-order and higher-order approaches,

two and more number of labels are involved in a classifier respectively. Notable problem

transformation approaches are namely Binary Relevance [54], power set of labels [5],

pruned problem transformation[73] and calibrated label ranking [24]. Binary relevance,

(BR) is the most primitive form of PT approach, where a series of binary classifiers is

53

generated, one for each label. Though computationally sound (linear with label cardi-

nality), BR is criticized for its inability to capture label correlations [89]. The solution

proposed in [5] accommodated label correlations by employing Label Powerset. It gen-

erated 28 = 256 classifiers for learning 8 labels. Despite involving label correlations, the

scheme lacked computational feasibility as it generated an exponential number of clas-

sifiers. A more feasible approach was given in RAKEL [88], which considered random

subsets of labels. Calibrated Label ranking [24] scheme provided multi-label outputs on

the basis of pair-wise classification, considering a synthetic label to distinguish the rele-

vant and irrelevant groups of labels. Ensemble of classifiers like RAKEL [88], ensembles

of classifier chains [72] [14] [74] and ensembles of pruned sets are also popular and effective

in learning multi-label datasets. In addition to these, a number of feature selection and

extraction methods transform the features in context of each label and follow first-order

approach to complete the learning. They are discussed in the detail in the next para-

graph. In Algorithm-Adaptation approach, an existing classifier is adapted in the context

of a multi-label scenario. Quite a number of classifier paradigms like k-nearest neigh-

borhood classifier [106], naive bayes algorithm [104], back-propagation neural networks

[108] are adapted to facilitate multi-label learning. In [106], the k-nearest neighbors of

a test point are identified. Following that, their label configurations and the principles

of maximum posteriori are used to determine the label predictions of the test instance.

In [108], the usual back-propagation algorithm is used with small modifications to ac-

commodate the multi-label characteristics. The error function of the back-propagation

algorithm is replaced with a ranking loss minimization function which operates on the

fact that a relevant label of an instance is ranked higher than another label to which the

instance does not belong. Another scheme [62] uses the cross-entropy error function in

back-propagation neural network for facilitating multi-label learning.

Apart from the above, multi-label datasets are analyzed from newer perspectives

like feature or dataset preprocessing and class distribution of the labels. Label specific

feature extraction was proposed in LIFT [105]. In LIFT, following the clustering of the

positive and negative classes of each label, the authors extract a label-specific feature set.

Feature selection is also done by a number of works on the basis of class characteristics

of the labels. Works dealing with feature extraction and selection of multi-label datasets

include [98] and [49]. A detailed account and comparative analysis of the extant works in

multi-label feature extraction and selection in first-order framework can be found in [83].

Joint feature selection and classification (JFSC) [37] and [102] performs label-correlated

feature selection of multi-label datasets. Class distribution of a multi-label dataset is a

54

veritable data mine and gives a number of pertinent information. As said earlier, multi-

label datasets are class-imbalanced and often differently imbalanced. COCOA [103] has

addressed the imbalance issue in their work by considering an ensemble of classifiers using

pair-wise label correlation. A few more works, [96] and [38] have used a cost-adaptive

paradigm to address multi-label problems. In [76], authors have integrated the data

gravitational model with a multi-label lazy classifier for improving the minority class

performance of imbalanced multi-label datasets. Several other techniques like convex

relaxation [29], ensembles of random graph [84] and graph classification [45] have also

been employed to address multi-label classification.

4.3 Proposed Approach I

4.3.1 Working principles – Principles of reverse nearest neighborhood

Definition 1 : Given a set of instances X = {x1,x2, . . . ,xn} (X ⊂ IRN) and a point p

(p ∈ IRN), a Reverse Nearest Neighbor query concerning p in search space X retrieves

all the points xi ∈ X that have p as their nearest neighbor. Thus, a Reverse k-Nearest

Neighbor (RkNN) search returns all those points xi ∈ X (i = 1, 2, . . . , n) whose k-nearest

neighborhood contain p.

In k-nearest neighborhood of a point, exactly k points can be present in its neigh-

borhood. These k points are closest to p than other points in the search space. On the

contrary, when the cardinality of the search space is n, reverse k-nearest neighborhood

of p can contain 0 to n points. RkNN does not define any fixed number of neighbors

around query point p. The number of neighbors around a point varies from location to

location and it depends on the relative configuration of the query point and the points

in the search space. The RkNN count of p is adaptive to the density and distribution of

points around p and gives a more versatile estimation of neighborhood than k-nearest

neighborhood based scheme. An example is illustrated in Figure 4.1.

4.3.2 Proposed method

Motivated to handle the differential class imbalance of multi-label learning, we present

an oversampling scheme which generates a dedicated set of synthetic minority instances

for each label. A dedicated set of synthetic minority instances for each label is more

effectual than a single synthetic minority set for all labels. We can generate the minority

set according to the requirement of a label. It allows us to set the size of the synthetic

minority set of a label in consonance with the imbalance ratio of that label. Let us

55

Figure 4.1: We want to find the RkNNs of point C. We consider k=1. It can be found visually that the
Euclidean distance between A and C is less than between B and C as well as D and C. If we were to
find 1-nearest neighbor of C, A would have been the answer. Now, let us analyse with respect to RkNN.
Though A is closest to C but C is not closest to A, A has some nearer points or neighbors in its vicinity.
Hence, A is not a RkNN of C. Though B may seem far off from C, it becomes a RkNN of C because
C is nearer to B than any other given point in the feature space. The same holds for D also, hence D
becomes a RkNN of C. At k value 1, C has 2 RkNNs {B,D}. RkNN gives a density based neighborhood
estimation of the points.

have two labels a and b with different imbalance ratios imb1 and imb2 respectively

(where imb1 < imb2). We need to add more points in the synthetic minority set of

b than that of a in order to equate the cardinalities of their respective majority and

minority classes. We assume that the positive class is the minority class across all labels.

The number of synthetic minority points we generate is dependent on the difference in

cardinality between the majority (negative) and minority (positive) sets. If the number

of points in the positive class is more than or equal to the number of points in the

negative class for a label, we consider the imbalance ratio to be 1 and do not add any

synthetic minority points for that label. Our scheme is somewhat motivated by SMOTE,

but the neighborhood exploration of our scheme is entirely different from SMOTE [12].

SMOTE relies on k-nearest neighborhood of points whereas our scheme uses a more

versatile reverse-nearest neighborhood principles to identify the neighborhood of points.

(We have included SMOTE in the comparative study. RkNN principles accommodate

a varying number of neighbors for different points in a dataset. The RkNN count of a

point depends on its proximity or presence in the neighborhood of remaining points in

the search space. The significant improvement delivered by RkNN-based neighborhood

exploration over k-NN based SMOTE is manifested there.)

Here, we describe the scheme for one label, say j. Let D be the training set. For L
labels, the procedure is repeated L times to generate L sets of synthetic minority points,

one for each label. Let Majorityj and Minorityj be the sets of majority and minority

56

instances of label j respectively.

D = Majorityj ∪Minorityj (4.1)

Let Nj be the cardinality difference of Majorityj and Minorityj .

Nj = |Majorityj | − |Minorityj | (4.2)

To equate the cardinalities of the majority and minority sets, we will add Nj points in

the synthetic minority set of label j. Here, Sj denotes the synthetic minority set of label

j.

• Reverse k-nearest neighbors of original minority points: For each (minor-

ity) point xi in Minorityj , we will find its RkNN from the same set. Let Rj(xi)

and RCj(xi) denote the set of reverse k-nearest neighbors of xi and its cardinality

respectively.

Rj(xi) = {xk,xk is a RkNN of xi, xk ∈Minorityj} (4.3)

RCj(xi) = |Rj(xi)| (4.4)

Since we are querying the minority points in context of Minorityj , the RkNN

count of each query point will be at least 1. We will mark the points whose RkNN

count is exactly 1. Such points are isolated from the other points in the search

space and do not have any RkNN other than itself. Let the set of such points for

label j be Mj .

Mj = {xi,xi ∈Minorityj and RCj(xi) = 1} (4.5)

As each member of Mj lies all by itself (without any minority neighbors in the

vicinity) in the feature space, they do not serve as good candidates for adding the

synthetic minority points and we do not consider them as seed points for adding

the synthetic minority points. In a random dataset, it is quite possible that

the original minority points do not find any minority reverse-nearest neighbor.

In such a situation, we suggest to increase the value neighborhood size k and

perform the operation. However, for all the datasets that we have included in the

empirical study, we have not encountered this situation. Let Aug Minorityj be

the set of points around which we will perform the oversampling. We compute

57

Aug Minorityj by removing the elements of Mj from Minorityj .

Aug Minorityj = Minorityj \Mj (4.6)

• Generating synthetic minority points: To generate a synthetic minority point,

we random select a point from Aug Minorityj , q (say) and find its RkNNs. We

randomly select one of the RkNN of q. Let that point be r. We must maintain

q 6= r, otherwise an original minority point will be selected in the synthetic minority

set. Let d(q,r) be the euclidean distance between q and r. We generate a random

value v such that 0 < v < d(q, r). The synthetic point, new is generated at a

random distance v from q on the direction vector of q and r.

new = q + (r− q) ∗ v (4.7)

We generate Nj number of such points to form Sj , the synthetic minority set of

label j. While selecting each synthetic point, we sequentially consider each point

of Aug Minorityj . This is done to maintain the uniformity of locations of the

synthetic minority points. The same procedure is repeated across the entire label

set to select L sets of synthetic minority points S1, S2, . . . ,SL.

• Classifier modeling: We run the classifiers in first-order setting, one classifier for

each label. For each label j, we get the oversampled instance set, Oj taking the

union of original instance sets Majorityj and Minorityj along with the synthetic

minority set Sj .

Oj = Majorityj ∪Minorityj ∪ Sj (4.8)

We train a Linear SVM classifier for label j using Oj to get the classifier model Mj.

The label predictions of test set corresponding to label j are obtained by invoking

Mj. The procedure is repeated over L labels.

4.4 Proposed Approach – II

4.4.1 Multi-label nature of data, its consequences and our thoughts

A multi-label dataset is characterized by the membership of a set of feature points to more

than one label. A class-imbalanced dataset is typified by the quantitative disproportion

in the number of instances representing its classes. Multi-label datasets are often found

to be class-imbalanced. In this work, we deal with binary multi-label dataset where each

58

label can take exactly one of the two classes (1 - positive class and 0 - negative class).

Typically, class 1 and class 0 are the minority and majority classes respectively. The class

membership of each instance varies from label to label. An instance which is positive

for some label A can be negative for some other label B. A similar phenomenon for all

the instances will lead to a different combinations of positive and negative sets for each

label (even though the union of the positive and negative set of instances is same for all

labels). The quantitative consequence of this phenomenon is the variable degree of class

imbalance across the labels. The key idea of this approach is to design an imbalance-

informed scheme. For each label, we set an imbalance adaptive mis-classification cost

framework different labels. The issue of differential class geometry is already taken care

of in the previous section. We may note that the integration of the information of

class geometry and imbalance of the labels gives the best outcomes. We have

included this study in the empirical evaluation section later in this chapter.

4.4.2 Handling imbalance further - Cost sensitive classification

Cost-sensitive learning is one of the ways of handling imbalanced data. As stated earlier,

in multi-label datasets, the degree of imbalance varies across labels. After generating the

imbalance-informed representations for each data point, we proceed with a cost-sensitive

linear SVM based classification. Let the misclassification cost of a minority instance to

the majority class for label k be denoted by Costk. We denote the imbalance ratio of label

k as imbk To improve the detection of minority class (generally the positive class), for

label k, Costk value is fixed to cf × (log2(imbk) + 1). cf is a cost-factor whose increasing

value gives increasing misclassification cost for the minority class. Remark 5 discusses

the details on choice of cf . The misclassification cost of a majority instance to the

minority class is set to 1 for all labels. The misclassification cost Costk value increases

with increase in imbalance value of a label and is adaptive to various and diversified

ranges of imbalance values in a single dataset. For a label which has no imbalance or the

imbalance ratio is 1, the misclassification costs of both classes (no class is minority or

majority to be precise) is 1. For an imbalanced label with Costk > 1, the misclassification

cost of the minority instances to the majority class is greater than 1 and it increases with

increase in imbalance value. Hence, we have an imbalance-informed misclassification cost

for each label. The log2 function allows us restrict the misclassification costs within an

admissible yet varying limit depending on the imbalance ratios.

59

4.4.3 Algorithm

Let the multi-label dataset be denoted by D and the number of class labels for D be L.

D = {(xi,Yi), |1 ≤ i ≤ n , Yi denotes class label vector of xi}. Yi = {yi1, yi2, . . . , yil}.
yij is 1 when label j is positive for instance xi, otherwise the value of yij is 0. Let each

xi ∈ Rp. We randomly equi-partition D into a training set, Dtr and a test set, Dte. Let

X be the set of training instances (without the label information).

X = {xi, i=1, 2,. . . , n} (4.9)

We calculate class-imbalance ratio of each label j, j = 1, 2, . . . , l denoted by imbj .

imbj =
Number of negative training instances for label j

Number of positive training instances for label j

⇒ imbj =
||{xi such that Yij = 0, i = 1, 2, . . . , n}||
||{xi such that Yij = 1, i = 1, 2, . . . , n}||

zij is a kp+kn dimensional vector or feature. Its first kp components are generated by

taking distance from the midpoints of the positive homogeneous edges and multiplying

them with the imbalance ratio of label j. The remaining kn components are computed

by taking distances from the negative homogeneous edges.

Let Zj={zij , i = 1, 2, . . . , n}. Zj represents the transformed feature mapping of the

training instances in Dtr for label j.

Let Min and Maj be the minority and majority classes of a label respectively. Let

Costj(Min, Maj) and Costj(Maj, Min) denote the misclassification costs of a minority

instance to the majority class for label j and vice versa. For each label, Costj(Min,Maj)

is equal to the product of a cost factor (cf) and logarithm of the it’s imbalance ratio. In

this work, we have fixed the value of cf to 1.

For each label j,

Costj(Min, Maj) = cf×max((log2(imbj) + 1), 1) (4.10)

Costj(Maj, Min) = 1, i = 1, 2, . . . , n (4.11)

For each label j, we train a classifier Wj by invoking the original feature set X

60

and the above defined cost function for label j. For classifying a test instance t with

respect to label j, we invoke Wj to predict it’s class. We have used linear SVM classifier

implementation of LIBSVM ([11]) for modeling and classification.

4.5 Experimental Setup

We present the details of the empirical study in this subsection. Eleven real-world multi-

label datasets were used. We have done some pre-processing for the class-imbalance

focused learning. In all these datasets, we have removed the labels whose imbalance

ratio (number of negative instances / number of positive instances) is more than 50 or

the number of positive instances is less than 20. A similar protocol has been suggested in

[103]. For the nominal datasets, we have performed reduction in the feature set according

the same recommendation. The attribute information of the datasets with respect to

this experiment is presented in Table 4.1. Since this work deals with differential class

imbalance ratios of multi-label datasets, we have also showed the minimum (min IR),

maximum (max IR) and average imbalance (avg IR) statistics of each dataset in Table

4.1. These datasets are obtained from MULAN [90] and MEKA [75] repositories.

Table 4.1: Description of Datasets for experiment on imbalance

Dataset domain att.type (D) (L) (F) (L.Card) (L.Uniq) min IR max IR avg IR

Corel5k image nominal 5000 44 499 3.522 3175 3.46 50 17.86
Enron text nominal 1702 24 1001 3.378 753 1.0 43.48 5.35

medical bio-NLP nominal 978 14 1449 1.075 42 2.67 43.48 11.24
Slashdot text nominal 3782 22 1079 1.134 118 5.46 35.71 10.99
Tmc2007 text nominal 28596 15 500 2.100 637 1.447 34.483 5.848
CAL500 music numeric 502 124 68 25.058 502 1.04 24.39 3.85

RCV1 Subset1 text numeric 6000 43 472 2.458 574 3.34 50.0 15.15
RCV1 Subset2 text numeric 6000 39 472 2.170 489 3.22 47.62 15.87

Emotions music numeric 592 6 72 1.869 27 1.25 3.0 2.15
Scene image numeric 2407 6 294 1.047 15 3.52 5.62 5.56
Yeast biology numeric 2417 13 103 4.233 189 1.32 12.5 2.78

For comparative analysis, we consider RAKEL ([88]), LIFT ([105]) and CLR ([24])

which are multi-label classifiers. In addition to that, we have also included COCOA [103]

and RML [66]. COCOA specifically addresses the class-imbalance problem in multi-label

datasets. MLKNN invokes a set of k-nearest neighbor based classifiers for multi-label

datasets. Besides these, we have included a couple of methods - namely SMOTE ([12])

and Random Undersampling (USAM) which are dedicated to the general class-imbalance

problem and used them in a multi-label setting.

We have included our both approaches — i] Proposed Method I – Reverse nearest

neighborhood based oversampling and ii] Proposed Method II – Cost-sensitive learning

61

adaptive to the imbalance ratios. It should be noted that we have presented the

results of Proposed Method II in conjunction with the extracted features

corresponding to the second algorithm of the previous chapter. The intrinsic

efficiency of the cost-sensitive learning paradigm of Proposed Method II is

further investigated in the next experiment.

For evaluating their performances we have employed Macro-averaging F1 and Macro-

averaging AUC. They are described below.

• Macro-averaging F1: It calculates the average of F1 values across all labels.

Let tpj , tnj , fpj and fnj denote the number of true positive, true negative, false

positive and false negative predictions for label j respectively.

We calculate F1 for label j,

F1j =
2× tpj

2× tpj + fpj + fnj
(4.12)

Macro-averaging F1 =
1

L

L∑
j=1

F1j, where L is the number of labels (4.13)

• Macro-averaging AUC: Let AUCj be the AUC score for label j. We calculate

the average AUC score of all labels in Macro-averaging AUC. Higher the value of

Macro-averaging AUC, better is the performance of the classifier.

Macro-averaging AUC =
1

L

L∑
i=1

AUCi (4.14)

4.5.1 Second experiment: Competence of the imbalance adaptive mis-

classification cost

We analyze the utility of the proposed scheme of imbalance-adaptive misclassification

cost in this study. We consider two first-order methods LIFT and BR in their default

settings where the misclassification costs of the classes are equal. We compare their

performances with an enhanced cost version of each of them, LIFT-cost and BR respec-

tively, where the cost of misclassification of the minority instances is set according to the

proposed scheme. Note that BR evaluates the intrinsic capability of Proposed Method

II in addressing the class-imbalance problem of multi-label datasets. We evaluate the

difference in performances using Macro-averaging F1 metric.

62

4.5.2 Third experiment: Parameter optimization

In this experiment, we have studied the effect of variation of cost factor and number

of lattice points on class-imbalance focused multi-label learning. Cost factor is varied

between 0.5, 1, 2 and 4. Variation of the number of positive and negative lattice points

is also explored.

4.5.3 Fourth: Statistical significance test

We have conducted Wilcoxon Signed Rank Sum Test to measure the statistical signifi-

cance of the difference in performance given by the proposed method, LIIML with respect

to a competing method. In this work, we have a number of experiments and each is eval-

uated with more than one metric. Experiments 1 and 2 are the key ones for this work.

We have conducted the statistical tests for these two experiments. We report the p value

at which the performance of the two methods are different. Lower the p value, more

significant is the difference or more certain we are about rejecting the null hypothesis.

The null hypothesis assumes that the performance of two methods are same. p value

0.05 or 5% significance level is the standard threshold for rejecting or accepting a null

hypothesis. We have used p value 0.05 as the threshold for statistical significance of

difference.

4.6 Results and Analysis

Experiment 1: Table 4.2 shows the performance of the proposed and compared methods

on Macro-averaging F1 and Macro-averaging AUC. Proposed Method II achieves the best

score on a total of 8 out of 11 cases (72.72% cases) on Macro-averaging F1. On one

remaining dataset Corel5k, RML has obtained the best results of Macro-averaging F1. On

2 datasets, Proposed Method I has performed best. On Macro-averaging AUC, Proposed

Method II performs better than all other methods on 7 out of 11 datasets (63.63%).

The remaining 4 best scores of Macro-averaging AUC are shared by COCOA (2), CLR

(1) and Proposed Method I (1).

63

T
a
b
le

4
.2

:
T

h
is

ta
b
le

reco
rd

s
th

e
o
b
serva

tio
n
s

o
f

ex
p

erim
en

t
o
n

cla
ss-im

b
a
la

n
ce

a
sp

ect
o
f

m
u
lti-la

b
el

d
a
ta

set
(E

x
p

erim
en

t
2
).

R
esu

lt
a
re

rep
o
rted

fo
r

2
m

etrics
(M

a
cro

-av
era

g
in

g
F

1
a
n
d

M
a
cro

-av
era

g
in

g
A

U
C

),
1
1

d
a
ta

sets
a
n
d

9
m

eth
o
d
s

(in
clu

d
in

g
L

IIM
L

).
F

o
r

b
o
th

th
e

m
etrics,

a
h
ig

h
er

va
lu

e
m

ea
n
s

b
etter

resu
lt

(
a
s

in
d
ica

ted
b
y

th
e
↑

).
O

n
M

a
cro

-av
era

g
in

g
F

1
a
n
d

M
a
cro

-av
era

g
in

g
A

U
C

,
L

IIM
L

h
a
s

a
ch

iev
ed

b
est

sco
res

a
m

o
n
g

a
ll

m
eth

o
d
s

o
n

8
a
n
d

7
d
a
ta

sets
resp

ectiv
ely.

C
o
rel5

k
E

n
ro

n
M

ed
ica

l
S

la
sh

d
o
t

T
M

C
C

A
L

5
0
0

R
C

V
1

S
u

b
set1

R
C

V
2

S
u

b
set2

E
m

o
tio

n
s

S
cen

e
Y

ea
st

M
a
c
r
o
-a
v
e
r
a
g
in

g
F
1
↑

U
S

A
M

0
.1

4
3±

0
.0

0
4

0
.2

6
3±

0
.0

1
1

0
.6

7
3±

0
.0

1
3

0
.2

6
0±

0
.0

0
8

0
.6

0
6±

0
.0

0
3

0
.2

1
6±

0
.0

0
6

0
.3

5
7±

0
.0

0
6

0
.3

4
2±

0
.0

0
5

0
.5

9
4±

0
.0

1
2

0
.6

2
1±

0
.0

0
7

0
.4

3
1±

0
.0

0
8

S
M

O
T

E
0
.1

3
1±

0
.0

0
3

0
.2

6
3±

0
.0

0
5

0
.6

7
1±

0
.0

1
8

0
.3

2
3±

0
.0

0
6

0
.6

0
8±

0
.0

0
3

0
.2

3
8±

0
.0

0
5

0
.3

1
2±

0
.0

0
3

0
.3

0
8±

0
.0

0
4

0
.5

8
6±

0
.0

2
1

0
.6

1
8±

0
.0

0
5

0
.4

3
1±

0
.0

0
3

R
M

L
0
.2
1
5±

0
.0
0
7

0
.3

0
8±

0
.0

0
8

0
.6

7
0±

0
.0

1
6

0
.3

1
5±

0
.0

0
2

0
.5

6
8±

0
.0

0
3

0
.2

0
9±

0
.0

0
6

0
.3

1
3±

0
.0

0
4

0
.3

0
2±

0
.0

0
4

0
.5

8
6±

0
.0

0
3

0
.6

2
3±

0
.0

0
6

0
.4

2
9±

0
.0

0
4

C
O

C
O

A
0
.1

9
7±

0
.0

0
3

0
.3

2
7±

0
.0

0
7

0
.6

9
0±

0
.0

1
1

0
.3

2
6±

0
.0

0
9

0
.6

6
8±

0
.0

0
3

0
.2

0
8±

0
.0

1
0

0
.3

6
2±

0
.0

0
6

0
.3

3
9±

0
.0

0
8

0
.6

6
5±

0
.0

1
4

0
.7

3
1±

0
.0

1
0

0
.4

5
5±

0
.0

1
4

L
IF

T
0
.0

7
2±

0
.0

0
3

0
.2

9
0±

0
.0

0
5

0
.5

8
8±

0
.0

0
5

0
.3

8
2±

0
.0

0
7

0
.4

1
6±

0
.0

0
3

0
.0

7
6±

0
.0

0
6

0
.2

1
2±

0
.0

0
4

0
.1

6
2±

0
.0

0
5

0
.6

3
9±

0
.0

0
6

0
.7

5
8±

0
.0

0
6

0
.3

7
7±

0
.0

0
5

R
A

K
E

L
0
.0

9
1±

0
.0

0
6

0
.2

4
9±

0
.0

0
4

0
.5

7
7±

0
.0

1
2

0
.2

4
8±

0
.0

0
4

0
.6

4
2±

0
.0

0
3

0
.1

9
5±

0
.0

0
2

0
.2

7
4±

0
.0

0
5

0
.2

6
7±

0
.0

0
5

0
.6

1
1±

0
.0

1
1

0
.6

8
4±

0
.0

0
7

0
.4

2
1±

0
.0

0
6

C
L

R
0
.0

5
1±

0
.0

0
3

0
.2

2
3±

0
.0

0
5

0
.6

5
3±

0
.0

1
1

0
.2

3
4±

0
.0

0
6

0
.6

2
6±

0
.0

0
3

0
.0

8
6±

0
.0

0
6

0
.2

2
6±

0
.0

0
4

0
.2

2
6±

0
.0

0
5

0
.5

9
3±

0
.0

1
5

0
.6

3
1±

0
.0

1
2

0
.4

1
4±

0
.0

0
7

P
ro

p
o
sed

M
eth

o
d

I
0
.2

0
0±

0
.0

0
3

0
.3

4
5±

0
.0

0
4

0
.7
6
8±

0
.0
0
5

0
.4

4
4±

0
.0

0
5

0
.6

3
0±

0
.0

0
4

0
.2

4
6±

0
.0

0
3

0
.4
7
8±

0
.0
0
3

0
.4
7
5±

0
.0
0
2

0
.6

8
3±

0
.0

0
2

0
.7

4
5±

0
.0

0
5

0
.4

8
8±

0
.0

0
4

P
ro

p
o
sed

M
eth

o
d

II
0
.1

7
9±

0
.0

0
3

0
.3
6
7±

0
.0
0
6

0
.7

2
1±

0
.0

0
5

0
.4
7
7±

0
.0
1
0

0
.6
7
2±

0
.0
0
5

0
.2
5
5±

0
.0
0
6

0
.4

5
9±

0
.0

0
8

0
.4

5
7±

0
.0

0
3

0
.6
9
2±

0
.0
0
4

0
.7
6
6±

0
.0
0
5

0
.5
0
9±

0
.0
0
4

M
a
c
r
o
-a
v
e
r
a
g
in

g
A
U
C
↑

U
S

A
M

0
.5

7
4±

0
.0

0
5

0
.6

0
5±

0
.0

1
1

0
.8

5
2±

0
.0

1
4

0
.6

2
0±

0
.0

0
4

0
.8

0
1
±

0
.0

0
4

0
.5

1
5±

0
.0

0
3

0
.6

7
5±

0
.0

1
1

0
.6

7
3±

0
.0

0
9

0
.7

0
7±

0
.0

1
5

0
.7

9
2±

0
.0

0
7

0
.5

7
9±

0
.0

0
6

S
M

O
T

E
0
.6

0
1±

0
.0

0
6

0
.6

1
9±

0
.0

0
7

0
.8

7
2±

0
.0

0
6

0
.6

8
5±

0
.0

0
6

0
.7

8
9±

0
.0

0
3

0
.5

1
4±

0
.0

0
4

0
.6

2
3±

0
.0

0
6

0
.6

2
1±

0
.0

0
5

0
.7

0
1±

0
.0

0
8

0
.7

7
1±

0
.0

1
2

0
.5

8
9±

0
.0

0
8

R
M

L
–

–
–

–
–

–
–

–
–

–
–

C
O

C
O

A
0
.7

1
7±

0
.0

0
3

0
.7

3
5±

0
.0

0
5

0
.9

5
5±

0
.0

0
4

0
.7

3
2±

0
.0

0
4

0
.9

3
0±

0
.0

0
2

0
.5

5
4±

0
.0

0
4

0
.8

9
0±

0
.0

0
3

0
.8

8
4±

0
.0

0
3

0
.8

4
2±

0
.0

0
7

0
.9
4
4±

0
.0
0
4

0
.7
1
2±

0
.0
0
3

L
IF

T
0
.7
4
2±

0
.0
0
3

0
.7

5
6±

0
.0

0
4

0
.9

4
6±

0
.0

1
0

0
.8

3
0±

0
.0

0
6

0
.9

1
1±

0
.0

0
3

0
.5

2
9±

0
.0

0
6

0
.8

9
8±

0
.0

0
5

0
.8

9
3±

0
.0

0
5

0
.8

4
4±

0
.0

0
7

0
.9

4
2±

0
.0

0
7

0
.6

8
0±

0
.0

0
5

R
A

K
E

L
0
.5

5
0±

0
.0

0
3

0
.6

3
7±

0
.0

0
3

0
.8

3
1±

0
.0

0
5

0
.6

1
3±

0
.0

0
3

0
.8

6
2±

0
.0

0
2

0
.5

2
5±

0
.0

0
3

0
.7

3
0±

0
.0

0
4

0
.7

2
1±

0
.0

0
5

0
.7

9
5±

0
.0

1
1

0
.8

9
2±

0
.0

0
3

0
.6

4
1±

0
.0

0
5

C
L

R
0
.7

4
2±

0
.0

0
1

0
.6

6
2±

0
.0

0
4

0
.8

0
1±

0
.0

0
8

0
.6

9
7±

0
.0

0
8

0
.9

0
5±

0
.0

0
3

0
.5
5
9±

0
.0
0
3

0
.8

9
2±

0
.0

0
5

0
.8

8
3±

0
.0

0
2

0
.7

9
3±

0
.0

0
9

0
.8

9
7±

0
.0

0
5

0
.6

5
2±

0
.0

0
4

P
ro

p
o
sed

M
eth

o
d

I
0
.7

2
6±

0
.0

0
4

0
.7

3
5±

0
.0

0
6

0
.9
7
7±

0
.0
0
7

0
.8

2
2±

0
.0

0
3

0
.9

2
1±

0
.0

0
4

0
.5

5
8±

0
.0

0
4

0
.9

1
2±

0
.0

0
3

0
.9

1
4±

0
.0

0
5

0
.8

4
1±

0
.0

0
5

0
.9

1
8±

0
.0

0
6

0
.6

6
1±

0
.0

0
3

P
ro

p
o
sed

M
eth

o
d

II
0
.7

1
8±

0
.0

0
6

0
.7
6
5±

0
.0
0
3

0
.9

6
7±

0
.0

0
4

0
.8
3
8±

0
.0
0
5

0
.9
2
3±

0
.0
0
6

0
.5

2
4±

0
.0

0
2

0
.9
2
0±

0
.0
0
2

0
.9
1
8±

0
.0
0
4

0
.8
4
7±

0
.0
0
3

0
.9
4
4±

0
.0
0
4

0
.6

9
4±

0
.0

0
3

?
?

64

(a) Enron (b) Medical

(c) Yeast (d) Slashdot

Figure 4.2: Macro-averaging AUC results of four datasets subject to varying and increasing misclassifi-
cation costs for the minority class. We have varied the cost factor between 0.5, 1, 2 and 4. It can be
observed that increasing the cost factor value upto 2 improves the learning of minority classes of each
label. The graphs of these figures indicate a loss of performance on cost factor beyond 2 on all the four
datasets. On using a value beyond 2, the classifier is getting over-biased towards the minority class. The
optimal cost factor value is 2 for three datasets and equals 1 for one dataset.

65

(a) Enron (b) Medical

(c) Yeast (d) Slashdot

Figure 4.3: Macro-averaging F1 results of four datasets subject to varying and increasing misclassification
costs for the minority class. We have varied the cost factor between 0.5, 1, 2 and 4. The observation
and analysis of this figure’s data is in congruence with our findings from Figure 4.2. On all four cases,
Macro-averaging F1 value increases on increasing the cost factor value up to 2. It marks the optimal
value for learning the given datasets. An increase beyond cost factor value 2 is observed to cause a loss
of minority performance.

66

(a) Enron (b) Medical

(c) Yeast (d) Slashdot

Figure 4.4: Macro-averaging F1 results of four datasets subject to varying number of lattice points. We
have varied the number of positive lattices between 50, 100, 150 and 200. Number of negative lattices
is proportional to the number of positive lattice points and vary accordingly. The figures indicate that
increasing the lattice points result in improvement in macro-averaging F1 performance.

(a) Enron (b) Medical

(c) Yeast (d) Slashdot

Figure 4.5: Macro-averaging AUC results of four datasets subject to varying number of lattice points.
We have varied the number of positive lattices between 50, 100, 150 and 200. Number of negative lattices
is proportional to the number of positive lattice points and vary accordingly. For three datasets (Enron,
Yeast and Slashdot) Macro-averaging AUC scores increase with increasing the lattice points. We get an
exception with Medical dataset, where the performance degrades as number of lattices.

67

T
a
b
le

4
.3

:
T

h
is

ta
b
le

reco
rd

s
th

e
resu

lts
o
f

a
p
p
ly

in
g

th
e

p
ro

p
o
sed

co
st-sen

sitiv
e

lea
rn

in
g

p
a
ra

d
ig

m
o
n

tw
o

fi
rst

o
rd

er
a
p
p
ro

a
ch

es
L

IF
T

a
n
d

B
R

.
W

e
h
av

e
u
sed

M
a
cro

-av
era

g
in

g
F

1
a
n
d

M
a
cro

-av
era

g
in

g
A

U
C

a
s

th
e

eva
lu

a
tin

g
m

etrics.
T

h
e

o
rig

in
a
l

resu
lts

(
w

ith
o
u
t

a
d
d
ed

co
st

),
resu

lts
w

ith
en

h
a
n
ced

co
st

a
n
d

th
e

co
rresp

o
n
d
in

g
im

p
rov

em
en

t
o
n

ea
ch

d
a
ta

set
a
re

rep
o
rted

in
th

e
ta

b
le.

T
h
e

in
sta

n
ces

w
h
ere

th
e

en
h
a
n
ced

co
st

v
ersio

n
a
ch

iev
es

a
n

im
p
rov

em
en

t
o
f

g
rea

ter
th

a
n

2
0
%

ov
er

th
e

o
rig

in
a
l

resu
lt

a
re

h
ig

h
lig

h
ted

th
ro

u
g
h

d
a
rk

en
in

g
o
f

th
eir

b
a
ck

g
ro

u
n
d
s.

—
↑

in
d
ica

tes
h
ig

h
er

is
b

etter
a
n
d
↓

in
d
ica

tes
low

er
is

b
etter,

b
est

o
u
tco

m
e

is
in

d
ica

ted
in

b
o
ld

-fa
ce

C
o
rel5

k
E

n
ro

n
M

ed
ica

l
S

la
sh

d
o
t

T
M

C
C

A
L

5
0
0

R
C

V
1

S
u

b
set1

R
C

V
2

S
u

b
set2

E
m

o
tio

n
s

S
cen

e
Y

ea
st

M
a
c
r
o
-a
v
e
r
a
g
in

g
F
1
↑

L
IF

T
-w

ith
co

st
0
.1

5
4

0
.3

9
7

0
.7

0
4

0
.4

6
3

0
.6

4
3

0
.2

4
5

0
.3

8
7

0
.3

7
9

0
.6

8
2

0
.7

5
8

0
.4

9
0

L
IF

T
0
.0

7
1

0
.2

9
0

0
.5

8
8

0
.3

8
1

0
.4

1
7

0
.0

7
6

0
.2

1
2

0
.1

6
7

0
.6

3
9

0
.7

5
5

0
.3

7
7

%
o
f

im
p

ro
v
em

en
t

1
1
6
%

3
6
%

1
9
%

2
1
%

5
4
%

2
2
2
%

8
2
%

1
2
7
%

7
%

0
.4

%
3
0
%

M
a
c
r
o
-a
v
e
r
a
g
in

g
A
U
C
↑

B
R

-w
ith

co
st

0
.2

0
6

0
.3

5
7

0
.7

9
7

0
.4

5
9

0
.5

8
3

0
.2

7
5

0
.4

8
2

0
.4

8
6

0
.6

5
1

0
.6

7
4

0
.4

7
6

B
R

0
.0

2
9

0
.1

9
4

0
.7

4
2

0
.3

4
6

0
.3

6
5

0
.0

7
6

0
.2

5
8

0
.2

4
7

0
.5

5
6

0
.6

3
5

0
.3

3
7

%
o
f

im
p

ro
v
em

en
t

6
1
0
%

8
4
%

7
%

3
3
%

6
0
%

2
6
1
%

8
7
%

9
7
%

1
7
%

6
%

4
2
%

68

Table 4.4: This table corresponds to the outcome of statistical tests on results of Experiment 1 (Table
4.2). It reports the p value at which LIIML’s performance is statistically superior to that of a comparing
method for a given metric. Each row corresponds to a method and each column to a metric. A lower
p value more significant difference in performance. We have selected p = 0.05 as the threshold for
statistical significance. Outcomes at which p < 0.05 are indicated in boldface. On Macro-averaging F1,
LIIML achieves statistical superior performance over 7 out of 8 methods. On Macro-averaging AUC
metric, LIIML’s performance is statistically superior to 4 out of 7 methods.

Metrics→
Methods↓

Macro-averaging F1 Macro-averaging AUC

USAM 0.003 0.003

SMOTE 0.003 0.003

RML 0.004 –

COCOA 0.006 0.184

LIFT 0.003 0.075

RAKEL 0.003 0.004

CLR 0.003 0.018

Proposed Method I 0.424 0.308

Experiment 2: Table 4.3 records the Macro-averaging F1 scores of LIFT and BR

in regular cost framework and enhanced misclassification cost framework (Proposed

Method II). The results indicate certain effectiveness of the enhanced cost scheme in

handling class-imbalance and recognition of the positive (minority) class of the multi-

label datasets. Macro-averaging F1 performance of LIFT has improved by over 20% on

8 out of 11 datasets using the misclassification cost-enhancement learning. On BR, the

improvement using this scheme is also pronounced as we witness the improvement in

results by over 20% on 8 out of 11 datasets also. For two datasets Corel5k and CAL500

the percentage of improvement is more than 100 (w.r.t both BR and LIFT).

Experiment 3: Figure 4.2 and Figure 4.3 show the variation of Macro-averaging

AUC and Macro-averaging F1 scores on varying ranges of cost factor. Increasing the

value of the cost factor promotes the recognition of minority class instances at the cost

of majority class performance dataset. Macro-averaging AUC and Macro F1 scores also

indicate the same. Increasing the cost factor beyond 2 results in sharp fall of Macro-

averaging F1 and Macro-averaging AUC scores for all four datasets. Figures 4.4 and

4.5 illustrate the variation of Macro-averaging F1 and Macro-averaging AUC scores with

varying number of lattice points. Unlike the cost factor, we could not establish a relation

between number of lattice points and Macro-averaging AUC scores.

Statistical Tests: Table 4.4 shows the results of statistical significance testing on

outcomes of Experiment 1. For analyzing results of Experiment 1, we have conducted 15

tests for 8 comparing methods (RML did not output Macro-averaging AUC scores) and

2 metrics. On 11 (73.33%) cases, Proposed Method II has achieved statistically superior

69

performance. Note that, as indicated by this analysis, the performances of Proposed

Method I and Proposed Method II do not differ statistically.

4.7 Summary

In this chapter, we proposed two divergent techniques for addressing the differential class-

imbalance problem of multi-label datasets. The first technique works on the principles of

reverse nearest neighborhood based minority oversampling. The second technique is ba-

sically extending the cost-sensitive learning framework in context of multi-label datasets.

The methods are also extensible in conjunction with other classifiers. We have presented

the results of Proposed Method II as the conjunction of the proposed cost-sensitive learn-

ing with the feature extraction method (Proposed Method II) of the previous chapter.

Empirical evidences indicate that considerable improvement in performance has been de-

livered by both the methods. It is also evident that the performance of Proposed Method

II is slightly better than that of Proposed Method I. Proposed Method I significantly

outperforms the remaining multi-label classifiers on class-imbalance oriented metrics.

70

Chapter 5

Open Set Classification

5.1 Introduction

A conventional classification task aims to assign the instances to one out of the known

classes whereas unknown class detection deals with recognition of the instances belonging

to unknown classes in addition to the known ones. An unknown class is discriminated

from the known classes on the basis of the non-availability of its (unknown class’s) in-

stances during the training phase. Though classification and detection are performed

simultaneously by humans, machines often fail to accomplish the latter efficaciously.

Perception and consequent detection of unknowns pose a serious challenge for the ma-

chine, which is designed to operate in a ’closed’ world. Classifier design and presumptions

made by us primarily account for such a disparity. We grow and learn in an unknown

world with an incrementally growing known subspace. On the contrary, our classifiers are

trained in a ’closed’ setting of known distributions and classes. Furthermore, it is consid-

ered ideal when the training set and the test set have as similar distributions as possible.

On assuming the above, a classifier is forced to restrict its prediction into the set of

training classes. While predicting a test set consisting of seen and unseen class instances,

the unseen instances get camouflaged as seen instances and thus get misclassified.

The above mentioned problems can be generalized as follows. At the training phase,

we have instances belonging to any one of the c possible classes where c ≥ 1. Unlike

regular classification, during testing, the instances can be a member of any one of the c+u

classes, u ≥ 1, the c known classes are seen during the training as well as test phase while

the remaining u classes which constitute the set of unknown class/es appear in the test

phase only. In an open set classification scenario, we have an universe. During training,

we are provided information about only a few aspects (known classes) of the universe but

71

in the test phase we have to classify what we have seen before (known classes) and detect

the ones that that we have not encountered earlier (unknown classes). We may also have

some classes which we do not encounter in either training or test phases. Openness of a

dataset is the degree of unknownness in the dataset. For quantifying this characteristic

the following definition is provided by [81].

Openness = 1− 2

√
2 ∗ Training classes

Target classes + Test classes

The target classes consist of all the training and test classes as well as the leftover un-

known classes that do not participate in the training and testing. The task of open set

classification is much more complicated than simply rejecting the uncertain test points.

Here, one has to correctly classify the known class points besides detecting the unknown

instances. In unknown class detection, a significant fraction of points can come from the

unseen class/es and follow a class structure. In such a scenario, for efficacious perfor-

mance, one needs to balance and do well in both unknown class detection and known

class classification. A scheme addressing this task should be self-contained, and be able

to decide what it does not know, more favorably without any human intervention.

Extant classifiers predict ’closed’ class-memberships in terms of the known classes

only. As we have said earlier, a true open set solution has to possess the capability

of saying ’no’ or ’unknown’ when a test point is coming from an unknown class. In

this work, we attempt to answer this by raising a simple question. Instead of querying

a test instance p about its nearest neighbors in a given search space, we query about

the reverse k-nearest neighbors of p. Reverse k-nearest neighbors of an instance p

are all those points in a given search space whose k-nearest neighborhood contains p.

Note that, when n is the total number of training points, p’s RkNN count

can be anything between n and 0. When all the instances in the search space have

p as one of its k-NN, R-kNN count of p is n and it indicates sufficient belongingness

of p to the given search space. On the contrary, when p does not lie in any point’s

neighborhood, it indicates significant disharmony between p and all others members of

the search space. The latter situation is our motivation for rejecting and extending the

prediction into the unknown class. In this dissertation, we present a novel reverse k-

nearest based classification scheme which performs simultaneous classification into the

known classes as well as to the unknown class. The key aspect of our work is the

simplicity of the scheme. We do not need the availability of any information other than

the training or known class instances and their respective class labels. The proposed

72

scheme does not require any distance based thresholding for demarcation of the known

and unknown spaces. The only user-modulated parameter is neighborhood size k. In the

next section, we discuss the technical aspects (inputs and outputs) of the problem of

open set classification and also compare with other classification problems.

5.2 Open set classification

A closed set classifier makes its prediction within the set of classes that it encounters in the

training phase. It assumes that all classes of the test data (queries) were well represented

at the training phase. Closed set classifiers, mostly built on a Bayesian Optimal Posterior

Probability model assume, that a fixed set of classes share the real space and it (the

classifier) has to predict to any of these classes according to the class boundaries. If

the number of classes is c, it computes P(Cj |x) for j = 1, 2, . . . , c and assigns the query

instance to the class i which gives the maximum value of P(Ci|x), i = 1, 2, . . . , c.

Open set classification is a type of classification problem where an instance belonging

to the unknown class appears at the test phase. Unknown class denotes a class which

had zero or no representation at the training time. An open set classifier can encounter

instances from such un-represented class/es at the test phase and should rightfully predict

them as ’unknown’ instead of classifying them into the known classes. To yield admissible

output, the modus operandi of an open set classifier should largely differ from that of

a closed set classifier. As said in the previous paragraph, a closed set classifier can

create the class boundaries during the training phase. But, the same mode of action

by an open set classifier will lead to the assignment of the unknown class instances into

any one of the known classes, which will contradict with their true classes. Open set

classification is different from anomaly detection as well as incremental learning. In

incremental learning, the goal is to add the newly encountered classes to the database of

seen classes on encountering it’s instance. On the contrary, in open set classification it is

not desirable for us to add the unknown/ unrepresented classes in the seen domain. What

is unknown should remain unknown but should be recognized as unknown. Anomaly

detection is a task in which a rare event or observation like outliers is identified as

different from the regular ones. In anomaly detection, we do not need to discriminate

the known classes. Unlike anomaly detection, in open set classification, the classifier

does not make any assumption about the cardinalities of the unknown/ unknowns, no

information is available about the unknowns at the training time (as well as the test time).

The problem of open set classification requires us to have provision for the unknown and

73

Table 5.1: Categorization of different problems

Task Objective Training Data Prediction of test data

Closed set classification Discrimination between the classes Data from all classes
To any one of

the existing classes

Anomaly Detection Detecting abnormal data like outlier
Adequate normal class data,

few outliers
Classification as outlier-

yes or no

Incremental Learning
Dynamic classifier

modeling in a changing world
Adequate and sequential

training and test data

To any one of
the existing classes

as well as
classifier updation

Open set Recognition
Discrimination between known classes
and identifying unknown class instances

Data from all
known classes only

To any one of
the known class

or to the
unknown class

unrepresented class besides discriminating between, and correctly predicting the known

classes. In an efficient open set classifier, two types (known classification and unknown

prediction) of the results should be consequences of the scheme. Table 5.1 provides a

tabular presentation of the same. Principles of reverse nearest neighborhood provide

an elegant way of solving these two issues simultaneously. Our scheme based on reverse

nearest neighborhood principles is presented in Section 5.5. We discuss the existing works

on open set classification in the next section.

5.3 Literature Review

This work deals with open set classification using the principles of reverse nearest neigh-

borhood. Reverse k-nearest neighbor (RkNN) principle has been used in various appli-

cations but RkNN based classification has not been implemented or addressed in any

existing piece of work so far. Keeping in mind these two aspects, the literature review

of this work is presented in two contexts. First, we discuss extant works in the field of

open set classification. In the second part, we present a brief discussion on works that

have used principles of reverse k-nearest neighborhood to achieve some machine learning

goals.

Open set recognition in a mixed bag of seen and unseen classes has appealed to the

data science community for quite some time. Despite the number of works not being

numerous till date, the techniques applied are quite diverse. [30] implemented unknown

class recognition through estimation of prior probability of the known classes and poste-

rior probabilities for the known as well as unknown classes. One class classifiers which try

to model a class only through its positive instances has been one of the foremost solutions

to deal with open world problem. Though it is sufficient to deal with a setup having one

74

known class and the rest as unknown class, the need for a more refined scheme which can

tackle two or more known classes along with the unknown is natural. [81] addressed this

issue by implementing open set recognition in the context of two known and the remain-

ing as unknown class. They modified the conventional SVM for this. Besides drawing

a decision boundary between the two known classes, [81] added one more hyperplane

which separated the unknown class from the known subspace. The learning of the clas-

sifier model followed by incorporating Compact Abating Probability (CAP) is another

solution. An amalgamation of extreme value theory and the probabilistic CAP model is

implemented in [80] to classify the instances from the known class/es and subsequently

recognize the unknowns. CAP model considers a decreasing confidence of class member-

ship as one moves away from a known class instance into the unmarked space. Regions

beyond a thresholded radius are subsequently categorized as the unknown or open space.

In [40], a posterior probability estimator is implemented for each training class. A test

instance is predicted into a known class only if the maximum probability surpasses the

threshold. If none is found, the point is recognized as unknown. Distribution learning of

the known classes through Extreme Value Theory (EVT) and incremental learning are

incorporated in [78] to implement open set classification. Object detection under open

set constraints are solved using the drop-out sampling approach in [59].

A few recent schema have incorporated neural networks to recognize samples from

unseen classes along with classification of samples into seen or known classes. The scheme

by [56] is based on an ensemble of Convolutional Neural Networks with a provision for

open set recognition. It separates plant images from unknown non-plant images. Open

set recognition through a weightless neural network has been explored in [10]. In [9],

a neural network based classifier detects the unknown samples through comparison and

computation of the similarity between the unknown data and the stored or bounded

knowledge. [43] on the other hand proposed a theoretically sound method to estimate

the ’sampling window’ of the training data. Samples generated from regions outside the

sampling window are used to represent the unknown world (class). They have trained a

neural network to learn the known and unknown classes. In [2], a Generative Adversarial

Network (GAN) based approach is to separate the differential identity components of face

to generate an-identity preserving open set face synthesizer.

[58] has tweaked the traditional k-NN based classifier to facilitate open set recognition.

It has proposed two schema. In the first variant, an instance is classified as unknown on

non-agreement in class labels of its first two neighbors, while upon agreement the instance

is assigned to the class of its first (as well second) neighbor. The second captures the

75

distances of the test instance from its two nearest neighbors belonging to different classes

and calculates their ratio (nearer/ farther). If the ratio is beyond a threshold, the instance

is classified as unknown and vice versa. [16] has employed a data fusion technique by

integrating open-set graph-based optimum-path forest (OSOPF) classifier with genetic

programming (GP) and majority voting fusion techniques for open set recognition. [101]

explores the technique of classification-reconstruction learning for open set recognition.

Reverse k-nearest neighborhood might just seem a flip side of the k-nearest neigh-

borhood, but it has been used to solve a number of data mining subtasks. Outlier

detection in an unsupervised context and in data streams is implemented using reverse-

nearest neighborhood by [69] and [67] respectively. Efficient reverse nearest search in

metric spaces is achieved by [86]. [64] explored reverse nearest neighbor principles for

protein information mining in bioinformatics. Problems on spatial data search are also

addressed by the same in [41]. Reverse-nearest neighbor based algorithms have solved

spatio-temporal query and range queries in [53]. A work by [7] has implemented a data

clustering algorithm via RkNN. RkNN explores the locality of the instances to obtain

meaningful data mining. In recent years, the techniques of local information exploration,

feature embedding and lower rank and sparse subspace recovery have been used as a

backbone in a number of diversified domains. In [110], a technique of adaptive embed-

ded label propagation with weight learning is used for classification of real-world image

datasets. For efficient classification of images, [111] integrates incorporation of embedded

low-rank and sparse principal features with feature coding error and classification error.

[109] uses analysis-based trained dictionary learning model for retrieval of query images.

[112] is another important work on the same context. It introduces a structured and

scalable dictionary learning framework to handle image analysis.

A technical elaboration of the backbone of our work, the reverse-nearest neighbor

principles is presented in the next section.

5.4 Reverse k-nearest neighborhood

The principles of reverse nearest neighborhood is the backbone of this work. We have

provided a definition of this principle in Definition 1 of the previous chapter (Chapter

4). Let us assume that we have a query point p in a given feature (search) space p

∈ IRN). We have points X = {x1,x2, . . . ,xn} (X ⊂ IRN) in the search space. We also

assume the neighborhood cardinality to be k.

Extant neighborhood estimators estimate the neighborhood of a query instance p

76

through the distribution of the neighboring instances around it. Neighborhood demar-

cation is made via a surrounding hypersphere or through the encompassment of a fixed

number of nearest instances around the query point. They do not take into account the

locale of the query instance p in the neighborhood of the other search points. Reverse

k-nearest neighborhood realizes the neighborhood paradigm in the latter light. To ob-

tain reverse k-nearest neighbors of a query point p, all points in a given search space

are queried about their k-nearest neighbors to find if p is one of them. It is interesting

to note that unlike k-NN (where a query point has exactly k neighbors), the number of

RkNNs of query instance p can be anything between 0 and n (the search space cardi-

nality). Depending on the data distribution, a query instance p can remain absent from

the k-nearest neighborhood of all the instances in the training data, subsequently the

RkNN count of p would be zero, if distance(p,xi) >distance of xi from its kth-nearest

neighbor, ∀i. The other extreme case arises when the query point p has the RkNN count

of n, the size of search space by virtue of its presence within the k-nearest neighborhood

of all the instances in the search space. 0 ≤ RkNN count ≤ n is the possible range of

RkNN values. For p, its RkNNs constitute its neighborhood in the given search space X.

More the RkNN count of p in X, more is its agreement with the instances in X. A zero

RkNN cardinality indicates a significant disharmony between the query point p and the

instances in the training set, and it will be fair to assume that p comes from an entirely

different distribution. This is our principal motivation for predicting the unknown class

instances (along with the usual prediction for the known classes) in a mixed bag of known

and unknown class instances. Neighborhood size k is a critical component of our work.

It is also the only parameter that the user needs to find out and fix to get the optimal

performance on a dataset. In a later part of this chapter, Section 5.6.2, we have explained

the procedure for selecting the k value for a particular dataset. We have carried out an

empirical study on this aspect and reported our findings in Figures 5.37-5.40 and Section

5.8. The findings indicate that a single k value will not provide optimized performance

across all datasets.

5.4.1 Known and unknown space modulation

According to our scheme, a region of positive RkNN count constitutes the known subspace

(subspace covered by the known classes). We have a search space X (as defined in the

previous subsection) and a query instance p. Let dk(xi) be the distance of xi from its

kth nearest neighbor in the given search space X (excluding itself). A hypersphere Skxi

of radius dk(xi), centered at xi is assumed as the kth-nearest neighborhood of xi. Skxi

77

Figure 5.1: This figure shows known-unknown subspace for a toy example.

Red points and blue points denote two different known classes. Let red points and blue
points denote class 1 and class 2 respectively. Class 1 points come from a Gaussian
distribution with µ = [50, 50] and Σ = (49 0

0 49). Similarly, Class 2 come from a Gaussian
distribution with µ = [20, 15] and Σ = (9 0

0 9). 100 points from each of these classes are
shown in the figures. White space denotes the known subspace and the yellow colored
region denotes the unknown subspace. It can be noted that spread of known subspace
around each class increases with the sparsity of the distribution. Class 2, being a dense
class with lower value of sigma spans a smaller area representing the known subspace.
On the other hand, known space volume around class 1 points is high since the relative
distribution of the points is sparser. 1 Fig A and Fig B shows the known-unknown
subspace delimitation at k = 5 and k = 10 respectively for the same set of data points.
It can be noted that the known space volume increases with increasing the k value. At
k value 10, known subspaces of the two classes expand and we get an overlap between
the two.

constitutes the known space corresponding to instance xi. If p lies inside Skxi
, xi is a

RkNN of p. Let d(p,xi) be the distance between p and xi. p can lie within Skxi
if

dk(xi) > d(p,xi). Let S be the subspace that is covered by the known class.

S =
⋃

xi∈X Skxi
.

If xi is a vector in IRN , then S is a subset of IRN . Here, S implicitly defines the

sampling window of the training data and hence can be viewed as defining the boundary

of the known classes. The volume of Skxi
or the known subspace spanned by xi is

dependent on dk(xi). In Figure 5.1, we scatter-plot 100 points each from two Gaussian

distributions N1(µ1,Σ1) and N2(µ2,Σ2) where µ1 = [50, 50], µ2 = [20, 15], Σ1 = (49 0
0 49)

and Σ2 = (9 0
0 9). The points of N1 are labeled in red while the ones from N2 are labeled

78

in blue. The kth nearest neighbor distance or dk(xi) for points in N1 are usually greater

than that of points in N2. Accordingly, the points from N1 span a larger volume of

known space than that of N2. Thus, the RkNN gives an automatic modulation of the

known class spaces depending on the local distribution of the training data points. In

Figure 5.1, the spaces marked with yellow color correspond to the unknown region. It is

auto-adaptive to the class boundaries which vary from class to class. This is a desirable

property while dealing with variable data distributions.

5.4.2 Principles of Reverse k-nearest neighborhood and classification

Mathematically, the principles of reverse-nearest neighborhood provides another ap-

proach of quantifying the neighborhood of the points. But reverse k-nearest neighbor

principles have not been used for handling problems of classification. k-nearest neigh-

borhood principles has a framework of classifying test data points. In k-nearest neigh-

borhood based classifier, the confidence of the contending classes is calculated from the

class membership of the k nearest neighbors. A test point is likely to belong to a class

which has the highest number of it’s (test point’s) neighbors. The working principles

of reverse k-nearest neighborhood is analogous to that of k-nearest neighbor’s. We can

easily extend a similar classification protocol using reverse k-nearest neighborhood. For

a certain k value, we can find the reverse k-nearest neighbors of a test point p and give

more confidence of classifying p to the class with highest number of reverse k-nearest

neighbors. It is indeed true that getting a zero reverse k-nearest neighborhood is also

possible. A RkNN based classifier has to possess proper strategies for handling the zero

neighborhood count. The zero RkNN count allows us to solve the issue of open set

recognition in a natural manner, hence we allow it as it is in our scheme.

The approach and its algorithm is elaborated in the next section.

5.5 Proposed Work

5.5.1 Approach

While classifying a test instance, classifiers operating on principles of density estimation

predict the class having the highest density estimate (that is the class with the highest

number of neighbors) as the test class. Now, let us assess their potential for addressing

the classification task of an unknown class. For a window based classification paradigm

[65], the number of neighbors inside the window volume can vary from zero to maxi-

mum cardinality of the search space. Though a zero neighbor count can be used for

79

unknown class detection, when the density distribution is highly skewed, a single volume

threshold is not expected to work well across the entire dataset. In addition to this, the

volume thresholding is not automatic and needs empirical and manual modulations. In

k-NN based classification motivated by [52], the k-nearest neighbors of a query point are

searched in the training space. Consequently, k-NN classifier can predict only one of the

known classes. There is no provision for unknown class detection in this scheme unless

some thresholding is involved.

An efficient neighborhood based solution of open set detection should detect test in-

stances which fall into zero neighborhood zones of a given feature space and subsequently

reject them as unknown class instances. On a similar note, a positive neighbor count

of a test instance indicates a finite known class membership and should be predicted

to a class from the training instances. It is desirable that both these tasks (unknown

class rejection and known class classification) should be done by the scheme without

any thresholding. The scheme should be uniform as well as robust to non-uniform class

distributions in a dataset. In order to design a scheme satisfying the said requirements,

we propose a neighborhood based classifier where the neighborhood definition is a bit

different from the one assumed in the above paragraph. Reverse k-nearest neighbors

(RkNN) of a query instance p is searched in the training space X. When the RkNN

count of p is zero, we classify p to the unknown class. In other words, if p ∈ SC (the

complement of the known subspace or sampling window, S), then p will likely belong to

some unknown class. When RkNN count of p is > 0, then the class-specific membership

scores are computed. Membership score of p for a class depends on the number of RkNNs

count from that class and the distance between p and the nearest RkNN in that class.

The membership value increases with increase in the RkNN count and a decrease in the

distance of the nearest RkNN. The instance p is assigned to the training class with the

highest membership score.

5.5.2 The Proposed Method

We have an open instance set D, consisting of two mutually exclusive partitions Dtr and

Dte, representing the training set and test set respectively. The respective number of

classes in Dtr and Dte are c and c+u. The extra u classes in Dte are the ones that remain

unseen during the training. We consider u unseen classes together as a single unknown

class resulting in c + 1 classes for the test set, Dte. Classes 1, 2, . . . , c correspond to the

known classes and c+ 1th class corresponds to the unknown class. We also assume that

the neighborhood size is a fixed positive integer k.

80

We will classify a test instance p ∈ Dte in IRN into any one of the known classes

1, 2, . . . , c or to the unknown class, c+ 1 on the basis of the training set Dtr only.

Let Dtr={(xi,yi)| 1 ≤ i ≤ n}, where xi is a training instance vector in IRN and yi is

its corresponding class label. Hence, the number of training instances is n. The instances

in Dtr belong to the known classes only, hence their memberships lie in {1, 2, . . . , c}. Next

we provide a stepwise description of the algorithm. Algorithm 6 depicts the same.

Step 1: We find the RkNN of p in Dtr. The outputs of the lookup are stored in

Rp(.) and Mp(.).

Rp(i) =

{
1, if xi is a RkNN of p

0, otherwise
(5.1)

Mp(i) =

{
distance(p,xi), if xi is a RkNN of p

∞, otherwise
(5.2)

Remarks: Rp(i) is a vector which can take only two values 0 or 1. Mp is a vector in Rn.

Step 2: Now, we obtain the class-wise RkNN statistics for p in Np(j) and Memp(j),

i=1, 2, . . . , j. By ’class’ only the seen training classes are meant. We calculate the

distance of p from its nearest RkNN in class j and store the same in Np(j). When p

does not find a RkNN in class j, p is considered unreachable from the entire class j and

Np(j) is set to ∞. Next, we compute Memp(j). It indicates the overall membership of

p to class j. Memp(j) depends on the RkNN count from class j as well as Np(j), the

distance from the nearest RkNN of p from class j.

Np(j) = {min(Mp(i)); i = 1, 2, . . . , n,yi = j, Rp(i) = 1} (5.3)

For each class j, j = 1, 2, .., c, class membership score of p, Memp(j) is calculated.

Memp(j) =
1

Np(j)

n∑
i

yi=j

Rp(i) (5.4)

Remarks : A higher value of class-specific RkNN count and smaller distance between p

and the nearest class-specific RkNN indicates higher confidence of p to that class. A zero

RkNN count from a class results in zero confidence of the instance to that class. Note

that Memp(j) could be greater than 1. By RkNN principles, even for the same k value,

81

the neighbor count of different points vary (depending on their configurations). In such

a scenario, it is difficult to adopt the distribution of their distances (as the number of

neighbors would vary widely). So, in Memp(j), we have considered the nearest neighbor

distance from class j only.

A toy example of Memp(j) calculation: Let us have two classes A and B. Let

the test point be p. We have the information about p’s RkNN counts as well as it’s

respective nearest neighbor distances from class A and class B also. Let the RkNN count

from class A and class B be 2 and 3 respectively. Let the nearest neighbor distances

Np(A) and Np(B) be 0.5 and 1 respectively.

Memp(A) = 1
0.5 × 2=4

Memp(B) =1
1 × 3=3

This indicates the importance of nearest neighbor distance in our scheme. Though the

RkNN count from class B is higher than that of class A, p’s class-membership to A is

greater than that of B by virtue of the smaller distance. Besides k-reverse nearest neigh-

bor configuration, the nearest neighbor’s proximity from a class plays a decisive factor

in computing the class-memberships.

Step 3: In this step, we will classify p to any one of the known classes 1, 2, .., c

or to the unknown class on the basis of class membership scores. Max Mem(p) value

0 indicates a zero RkNN count from entire set of known (training) classes. It indi-

cates remoteness of p from the training classes and p is classified to the unknown class.

Max Mem(p) > 0 signifies the presence of p within some known class space and p is

assigned to the class with Max Mem(p). Class prediction(p) gives the final prediction

for p, it can be the unknown class or any one of the known classes.

Max Mem(p) = max
j

Memp(j), j = 1, 2, . . . , c (5.5)

Max Mem class(p) = argmaxj Memp(j) (5.6)

Class prediction(p) =

{
unknown class , Max Mem(p) = 0

Max Mem class(p), otherwise.
(5.7)

General Remarks:

82

1. Not in the neighborhood of any : Our scheme classifies an instance to the unknown

class only when the instance does not possess any RkNN in the known training

space. In other words, it does not lie in the kth-nearest neighborhood of any

training instance.

2. Do we need to search the training space for each test instance? A training instance

xi ∈ Dtr can be a RkNN of a test instance p only if d(xi,p) is less than the kth

nearest neighbor distance of xi. Here, we assume that kth nearest neighbor search

of each xi is done in the training space only once and stored for computations in the

later stages. We conduct a single k-nearest neighbor search of the entire training

set Dtr and find the distance of the kth nearest neighbor of each training point

xi, , i=1,2, . . . ,n. Next, we only need to find and compare d(xi,p) with kth-nearest

neighbor distance of xi. If the former is lesser, xi becomes a RkNN of p and vice

versa. Hence, the RkNN lookup of the entire test instance set requires just one

k-NN search of the training set (in context of itself).

5.6 Experimental Setup

In this section,we propose a setup to make a comprehensive assessment of the proposed

and competing method’s performance on classification of the known classes and detection

of the unknown class. A brief outline on the four essentials, namely Datasets, Comparing

methods, Parameter Optimization and Evaluating Metrics is presented in the following

subsections in order.

5.6.1 Datasets

We have employed ten real-world multi-class datasets to evaluate the relative efficacies of

the proposed and compared methods. Table 5.2 summarizes the basic statistics of their

attributes. The MNIST dataset is obtained from https://pjreddie.com/projects/mnist-

in-csv/ while the source of the remaining ones is the Keel Dataset Repository [1]. MNIST

dataset has 784 features and we obtain a Reduced-MNIST version by extracting the top

features whose eigenvalue value summation covers 90% feature variance. Essentially,

we perform PCA to extract the features. Reduced MNIST dataset has 79 features.

We present the results of both MNIST and Reduced MNIST datasets individually in this

83

Algorithm 6 Reverse-nearest neighborhood based classification

Input: Training set Dtr with c known classes, Test point p which may belong to one of
the c known classes or the unknown class (c+1).
Output: Class prediction of p.

1: Search for RkNN of p in Dtr

Rp(i) =

{
1, if xi is a RkNN of p
0, otherwise

Mp(i) =

{
distance(p,xi), if xi is a RkNN of p
∞, otherwise

2: for each class j from 1, 2, .., c do
3: Calculate Nj(p) = min(M(p,xi)), i = 1, 2, . . . , n,

yi = j, xi is a RkNN of p

4: Calculate Memj(p) = 1
Nj(p)

n∑
i

yi=j

Rp(xi)

5: end for
6: Max Mem(p) = max

j
Memj(p)

7: Max Mem class(p) = argmaxj Memj(p),
8: if Max Mem(p)=0 then
9: Classify p as unknown (c+1).

10: else
11: Classify p to Max Mem class(p) (known class).
12: end if
13: End

work. These datasets are obtained in closed form that is they do not possess any openness

and the class information of all the instances are known. In order to accommodate them

for the purpose of open set recognition, we have generated an open version of each dataset

following the same protocol as done by [80]. The first step is to set the cardinalities of

the known and unknown classes. For MNIST and Letter datasets, we have followed

the recommended partition (by [80]) of 6 known, 1-4 unknown classes and 15 known,

1-11 unknown classes, respectively. For the remaining datasets, the following protocol is

adopted.

Let the non-open or regular instance set be denoted by D. D = {(xi, yi)|,xi ∈ X, yi ∈
C}, X ⊂ IRN and C = {c1, c2, . . . , cn}. Hence the number of classes in the dataset is

n. We randomly equi-partition D into a training set Dtr and Dte. Dtr ∪ Dte = D and

Dtr∩Dte = φ. We will generate open training-test tuple (Do
tr,D

o
te) from Dtr and Dte. We

84

will select the sets of known classes and unknown classes, Ck and Cu respectively from

C. The instances belonging to Ck will appear in both Do
tr and Do

te whereas the instances

belonging to the unknown class set, Cu will appear in Do
te only. The cardinality of

Ck, denoted by ck is fixed to b0.5× nc. The cardinality of Cu, cu is varied from 1 to

d0.5× ne. Here, we describe a procedure for generating (Do
tr,D

o
te) at one particular value

of openness.

1. Ck = {A set of ck classes from C}.

C̄k = C − Ck.

2. For a given cu, Cu = {A set of cu classes from C̄k}.

3. Do
tr = {(xi, yi), |xi ∈ Dtr and yi ∈ Ck}.

The instances in Dtr which belong to Ck goes to the open training set.

Dk
te = {(xi, yi), |xi ∈ Dte and yi ∈ Ck}.

Dk
te is the collection of test instances which belong to the known class/es.

Du
te = {(xi, yi), |xi ∈ Dte and yi ∈ Cu}.

Du
te is the collection of test instances which belong to the unknown class/es. We re-

label the instances in Du
te to the unknown class (instead of their actual class labels).

Do
te = Dk

te ∪Du
te.

Do
te, the open test set consists of the test instances belonging to the known classes

as well as the unknown class.

By varying cu in step 2, we vary the openness in Do
te. In our experiments, for each

dataset, we repeat step 1 and step 2 five times to generate 25 folds of open data (at each

level of openness). After generating the open set versions, we calculate the openness

value of each such partition using the formula proposed in [81].

Openness = 1 − 2

√
2∗Training classes

Target classes+ Test classes . Target class consists of all the training

and test classes as well as the leftover unknown classes that do not participate in training

and testing. An example is illustrated below in the Openness Calculation Example.

85

Remarks: As said earlier, we have followed the openness generation protocol similar

to the state-of-the-art methods. We may note that the number of opennesses (openness

as defined in the previous paragraph) generated for a dataset depends on the the number

of classes it originally has. Following this, Vehicle, a dataset with 4 classes has 2 openness

values (0.244 and 0.293) while Texture, a 11 class dataset has six openness values in the

range 0.233-0.326. The same openness calculation formula stated in Introduction is used

for these computations.

Openness calculation example: Let us consider the Dermatology dataset which

has 6 classes. The number of target classes for this dataset is always 6. Following the

above-mentioned protocol, we have 3 known classes and we will have 1,2 or 3 unknown

classes at each stage.

3 known classes, 1 unknown class: Number of training classes=3. Number of test

classes (known+unknown)= 4. Number of target classes=6. Following the formula,

openness =0.225.

3 known classes, 2 unknown class: Number of training classes=3. Number of test

classes (known +unknown) = 5. Number of target classes=6. Following the formula,

openness =0.261.

3 known classes, 3 unknown classes: Number of training classes=3. Number of test

classes (known+unknown)= 6. Number of target classes=6. Following the formula,

openness =0.293.

5.6.2 Parameter Optimization

Most open set learners, including ours involve parameters whose values have to be deter-

mined empirically. The optimized values of these parameters are determined via cross-

validation on the training set. We carve out a cross-validation training set, T and val-

idation set V from Do
tr only. For open set classification, we introduce openness in V

following the same protocol as described in the above section. If m is the number of

classes in Do
tr, we fix the known class and unknown class cardinalities at b0.5×mc and

d0.5×me respectively.

Let us illustrate this with an example. Let there be 6 classes and 100 instances in

Do
tr. We randomly partition the Do

tr into cross-validation training set, T and validation

set, V. Each of T and V has 50 instances. We randomly choose 3 classes as known classes

and the remaining 3 classes fall into the unknown class. We remove the instances from

unknown classes in the training set T. In the validation set, instances from the known

classes as well unknown classes are present.

86

Table 5.2: Description of datasets. N, f and C denote the number of instances, features and total number
of classes in order. ck and cu denote the cardinalities of the known and unknown classes respectively.

Datasets N f C ck cu
Dermatology 358 34 6 3 1-3

Letter 20000 16 26 15 1-11
MNIST 70000 784 10 6 1-4

Reduced-MNIST 70000 79 10 6 1-4
Optdigits 5620 64 10 5 1-5
Penbased 10992 16 10 5 1-5
Segment 2310 19 7 3 1-4
Shuttle 58000 9 7 3 1-4
Texture 5500 40 11 5 1-6
Vehicle 846 18 4 2 1-2
Vowel 990 13 11 5 1-6

To optimize N parameters, we perform an N-dimensional grid search on the training

set validation set tuple (T,V) and select the parameter value/s giving the best output

on the validation set. Accuracy is used for evaluation of performance.

5.6.3 Comparing methods

Open set recognition and classification have been accomplished efficaciously by a number

of works in the past few years. For comparative assessment of performance of our scheme,

we have selected five methods which are briefly described next.

• 1-vs-set, [81] : It is a baseline method in the field of open set recognition. The

recommended version of ”1-vs-all” is chosen for comparison.

• WSVM, [80] : This is possibly the best performing open set learner so far. But

LETTER and MNIST datasets are run on the recommended values of C = 2, γ =

2,δ = 0.1 and C = 2, γ = 0.03125, δ = 0.1 respectively. For the remaining datasets,

γ and C values are selected via two-dimensional grid search. As recommended in

the paper, threshold probability, P is set to 0.5*openness.

• Multi-class probability of inclusion, PI-SVM [40] : Probability of inclusion or into

the class probability is the foundation of this work. ’1-vs-rest’ binary SVM with

threshold probability, P value 0.5*openness is considered for execution. Similar

to [80], tuning of γ and C are required for this scheme. LETTER and MNIST

datasets are run on the recommended values of C = 2, γ = 2,δ = 0.1 and C = 2,

γ = 0.03125, δ = 0.1 respectively. For the remaining datasets, parameters are fixed

87

through grid search.

Nearest neighbor distance-ratio open set classifier by [58] has addressed open set

recognition through a tweaked knn classifier. They proposed two slightly different

schema which stand apart from each other in terms of performance. Since the inter-

est of this work lies with classification through nearest neighborhood, we consider

both versions for comparison.

• Nearest neighbor distance-ratio open set classifier (OSNN-CV) : An instance is

classified as unknown when getting a class mismatch between its two nearest neigh-

bors. No user defined parameter is involved.

• Nearest neighbor distance-ratio open set classifier (OSNN-NDR): The distance

between two nearest neighbors belonging to different classes are noted for a test

instance. If the ratio of the distance (nearer to farther) is sufficiently large, the

instance is classified as unknown. The ratio of the two distances (nearer/ far-

ther) is computed and compared with a threshold, namely T. For unknown class

classification, T threshold range suggested by the authors is between 0.5 and 1.

Through parameter optimization, a single value is selected from 0.5, 0.55, . . . , 1 for

each dataset.

• The proposed method: The proposed scheme requires tuning of the neighborhood

k. The value of k is chosen via cross-validation on the training set.

5.6.4 Evaluating indices

In this piece of work, we deal with learners which detect unknown class instances alongside

the usual classification of instances into one of the known classes. Accuracy, Average F1

over known and unknown classes (AKUF1) and Known class F1 are employed to provide

insight into known class classification as well as unknown class detection. Before going

into the details, we describe notation.

The class of known classes (known or training classes taken together) is considered

the positive class and the set of classes absent during training or the unknown class is

dubbed as negative. Let the known classes set be, K = {1, 2, . . . , c} and the unknown

class label be c + 1. A true positive prediction denotes that the classifier prediction is

correct and the actual class is any one among 1, 2, . . . , c. In a similar fashion, a true

negative is a correct prediction and the actual class is c+ 1, the unknown class. A False

88

Figure 5.2: It depicts TP, TN, FP, FN for a toy scenario which has 2 known classes and an unknown
class. Class 1 and class 2 constitute the set of known classes and U denotes the unknown class. The first
two diagonal elements correspond to the correct predictions for class 1 and class 2 and belonging to the
TP set. The 3rd diagonal cell corresponds to the correct predictions for the unknown class U and hence
is counted as TN. Remaining elements of row 1 and 2 correspond to the FPs or false predictions into the
known classes. For example, cell(2,1) counts the cases where the actual class is 1 but the prediction has
been class 2. For cell(2,U) the actual class of the instances is unknown class U but class 2 is predicted.
Non-diagonal elements of row 3 correspond to the cases where prediction has been made into the unknown
class U but actual class is a known class (1 or 2).

positive prediction is incorrect and the prediction is between 1 and c. There can be two

cases of a false positive prediction — true class is the unknown class but the learner has

misclassified into a known class. The other possible case is when the true class is some

known class 1 (say) but the prediction has been made into some other known class 3 (say).

False negative denotes that an instance from a known class has been incorrectly classified

into the unknown class. The total and individual counts of true positive, true negative,

false positive and false negative are represented as TP, TN, FP and FN respectively.

An example is illustrated in Fig 5.2.

• Accuracy : For evaluating the classification performance of a learner, accuracy is

the primary choice. It measures the fraction of correct predictions against the total

number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.8)

Intricate details like individual class performance of a learner cannot be deduced

from accuracy alone. The next metric is employed to address the same.

• Known class F1: This particular measure estimates the efficiency of the schemes

89

in correct classification of the known class instances in a mixed bag of known and

unknown instances.

• Average F1 over known and unknown classes (AKUF1): In order to address the

limitation of the above and provide a better glimpse of the class performances,

AKUF1 is computed. F1 is measured for a single class where the possible classes

can be more than one. F1 calculates the harmonic mean of precision and recall for

the concerned class. Below, the F1 calculation for the positive class is demonstrated.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× Precision×Recall
Precision+Recall

(5.9)

In the context of open set recognition, classes are broadly classified into known

and unknown and the two are equally significant. F1 is individually calculated on

the known (positive) class as well as the unknown (negative) class. Mean of the

above two are computed as the AKUF1 and interpreted to evaluate the overall

performance of the learners. A similar metric has been used by [58].

5.7 Results and Discussion

This section of the paper is devoted to the summarization and comparative analysis of

the experimental results. Before proceeding to the discussion, we would like to clarify the

figurative layout. The empirical results are obtained with different openness values where

the range of openness varies across datasets depending on the number of classes. For

LETTER and MNIST datasets, we have set the known class and unknown cardinalities

according the experimental protocol of [80]. For a proper presentation, we have provided

three graphical layouts for each dataset, one each for three evaluating metrics, namely

Accuracy, Average F1 over known and unknown classes (AKUF1) and Known class F1.

Results on AKUF1 are presented in Figure 5.4 to Figure 5.14). Figures 5.15-5.25 and

Figures 5.26-5.36 show the Accuracy and Known class F1 plots respectively. Additionally,

we have presented the summarized results in three tables 5.3, 5.4 and 5.5. Each table is

dedicated to a metric and reports the number of best results obtained by each method on

each dataset. A total of 50 scenarios or opennesses have arisen for the 10 datasets and the

corresponding results are reported in the tables. In the following three paragraphs, we

90

discuss the comparative performance of the methods on accuracy, AKUF1, and Known

class F1 in order with reference to their corresponding plots and tables.

Accuracy is a primary choice when one has to evaluate a classifier. Table 5.3 records

the number and percentage of best performance delivered by each of the comparing

methods. Out of the 50 cases, the proposed method delivers best results on 39 scenarios

(78%), followed by 6 (12%), 4 (8%) and 1 (2%) scenarios by WSVM, PI-SVM and 1-vs-

Set respectively. On MNIST and Dermatology datasets, the proposed method achieves

best result on 1 (25%) out of 4 opennesses and 1 (50%) out of 2 opennesses. On all

other datasets, performance of the proposed method is better at more than 50% of the

cases. For lower values of opennesses, the known class/es play a key role in determining

accuracy value while the growing unknown class contributes more at higher opennesses.

From the figures, it can be seen that the accuracy achieved by the proposed method is

fairly constant across increasing openness. This indicates the robustness of the proposed

scheme to variable opennesses. Figures 5.15 to 5.25 portray the graphical portrayal of

accuracy performances delivered by the methods against increasing openness. These

plots show the accuracy scores of the methods at different opennesses. Let us analyze

Fig 5.15, which corresponds to the Dermatology dataset. At openness value 0.2257,

performance of 1-vs-Set is best among the lot, for the remaining opennesses (openness

values 0.2614 and 0.2929) the performance of proposed method is better than all the

comparing methods. The betterment in performance by the proposed method is more at

0.2614 than at 0.2929.

Now, we analyze the relative capability of the proposed method to correctly predict

the known class instances or Known class F1. In practical scenario, this metric holds

significance since its mimics the real world where we predict known things in a known

and unknown world. Table 5.5 records the data of best outcomes on each dataset and its

respective opennesses. Similar to the previous two measures, the proposed method gets

the major share 76% (38 out of 50) best outcomes. Remaining 24% is shared by WSVM

(8%, 4 out of 50), PI-SVM (10%, 5 out 50) and OSNN-CV (6%, 3 out of 5). Detailed

known class F1 values are available in Figures 5.26-5.36. Known class F1 performance

on Dermatology dataset is shown in Figure 5.26. At openness values 0.2257 and 0.2614,

the proposed method performs best. PI-SVM scores best on the remaining openness

(0.2929).

AKUF1 performance is similar. Figures 5.4 to 5.14 present the AKUF1 performance

of the methods over increasing openness. These figures plot the actual outputs given by

the proposed and compared methods. Let us analyze Fig. 5.4 (Dermatology dataset). It

91

T
a
b
le

5
.3

:
P

erfo
rm

a
n
ce

o
n
A
c
c
u
ra

c
y

.
T

h
e

ta
b
le

g
iv

es
th

e
su

m
m

a
ry

o
f

th
e

b
est

p
erfo

rm
a
n
ces

o
b
ta

in
ed

b
y

ea
ch

m
eth

o
d

o
n

ea
ch

d
a
ta

set.

D
a
ta

set
(#

o
f

O
p

en
n

esses)
M

eth
o
d

s
P

ro
p

o
sed

M
eth

o
d

1
-v

s-S
et

W
S

V
M

P
I-S

V
M

O
S

N
N

-C
V

O
S

N
N

-N
D

R
#

o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

D
erm

a
to

lo
g
y

(3
)

2
6
6
.6
7

%
1

3
3
.3

3
%

0
0

0
0

0
0

0
0

L
etter

(1
1
)

8
7
2
.7
2

%
0

0
3

2
7
.2

7
%

0
0

0
0

0
0

M
N

IS
T

(4
)

1
2
5
%

0
0

2
5
0
%

1
2
5
%

0
0

0
0

O
p

td
ig

its
(5

)
4

8
0
%

0
0

0
0

1
2
0
%

0
0

0
0

P
en

b
a
sed

(5
)

4
8
0
%

0
0

0
0

1
2
0
%

0
0

0
0

S
eg

m
en

t
(4

)
4

1
0
0
%

0
0

0
0

0
0

0
0

0
0

S
h
u

ttle
(4

)
4

1
0
0
%

0
0

0
0

0
0

0
0

0
0

T
ex

tu
re

(6
)

5
8
3
.3
3
%

0
0

1
1
6
.6

7
%

0
0

0
0

0
0

V
eh

icle
(2

)
1

5
0
%

0
0

0
0

1
5
0
%

0
0

0
0

V
o
w

el
(6

)
6

1
0
0
%

0
0

0
0

0
0

0
0

0
0

T
o
ta

l
3
9
/
5
0

7
8
%

1
2
%

6
/
5
0

1
2
%

4
/
5
0

8
%

0
0

0
0

92

T
a
b
le

5
.4

:
P

er
fo

rm
a
n
ce

o
n
A
v
e
ra

g
e
F
1
o
v
e
r
k
n
o
w
n
a
n
d
u
n
k
n
o
w
n
c
la
ss
e
s
(A

K
U
F
1
).

T
h
e

ta
b
le

g
iv

es
th

e
su

m
m

a
ry

o
f

th
e

b
es

t
p

er
fo

rm
a
n
ce

s
o
b
ta

in
ed

b
y

ea
ch

m
et

h
o
d

o
n

ea
ch

d
a
ta

se
t.

D
a
ta

se
t

(#
o
f

O
p

en
n

es
se

s)
M

et
h

o
d

s
P

ro
p

o
se

d
M

et
h

o
d

1
-v

s-
S

et
W

S
V

M
P

I-
S

V
M

O
S

N
N

-C
V

O
S

N
N

-N
D

R
#

o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

D
er

m
a
to

lo
g
y

(3
)

3
1
0
0

%
0

0
0

0
0

0
0

0
0

0
L

et
te

r
(1

1
)

9
8
1
.8
1

%
0

0
2

1
8
.1

8
%

0
0

0
0

0
0

M
N

IS
T

(4
)

0
0
%

0
0

3
7
5
%

1
2
5
%

0
0

0
0

O
p

td
ig

it
s

(5
)

4
8
0
%

0
0

0
0

1
2
0
%

0
0

0
0

P
en

b
a
se

d
(5

)
4

8
0
%

0
0

0
0

1
2
0
%

0
0

0
0

S
eg

m
en

t
(4

)
4

1
0
0
%

0
0

0
0

0
0

0
0

0
0

S
h
u

tt
le

(4
)

2
5
0
%

0
0

1
2
5
%

1
2
5
%

0
0

0
0

T
ex

tu
re

(6
)

6
1
0
0
%

0
0

0
0

0
0

0
0

0
0

V
eh

ic
le

(2
)

2
1
0
0
%

0
0

0
0

0
0

0
0

0
0

V
o
w

el
(6

)
6

1
0
0
%

0
0

0
0

0
0

0
0

0
0

T
o
ta

l
4
0
/
5
0

8
0
%

0
0

6
/
5
0

1
2
%

4
/
5
0

8
%

0
0

0
0

93

T
a
b
le

5
.5

:
P

erfo
rm

a
n
ce

o
n
K
n
o
w
n

c
la
ss

F
1 .

T
h
e

ta
b
le

g
iv

es
th

e
su

m
m

a
ry

o
f

th
e

b
est

p
erfo

rm
a
n
ces

o
b
ta

in
ed

b
y

ea
ch

m
eth

o
d

o
n

ea
ch

d
a
ta

set.

D
a
ta

set
(#

o
f

o
p

en
n

esses)
M

eth
o
d

s
P

ro
p

o
sed

M
eth

o
d

1
-v

s-S
et

W
S

V
M

P
I-S

V
M

O
S

N
N

-C
V

O
S

N
N

-N
D

R
#

o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

#
o
f

W
in

s
W

in
%

D
erm

a
to

lo
g
y

(3
)

2
6
6
.6
7

%
0

0
0

0
1

3
3
.3

3
%

0
0

0
0

L
etter

(1
1
)

7
6
3
.6
3

%
0

0
2

1
1
.1

1
%

0
0

2
1
8
.1

8
%

0
0

M
N

IS
T

(4
)

1
2
5
%

0
0

2
5
0
%

0
0

1
2
5
%

0
0

O
p

td
ig

its
(5

)
4

8
0
%

0
0

0
0

1
2
0
%

0
0

0
0

P
en

b
a
sed

(5
)

4
8
0
%

0
0

0
0

1
2
0
%

0
0

0
0

S
eg

m
en

t
(4

)
4

1
0
0
%

0
0

0
0

0
0

0
0

0
0

S
h
u

ttle
(4

)
4

1
0
0
%

0
0

0
0

0
0

0
0

0
0

T
ex

tu
re

(6
)

6
1
0
0
%

0
0

0
0

0
0

0
0

0
0

V
eh

icle
(2

)
0

0
0

0
0

0
2

1
0
0

%
0

0
0

0
V

o
w

el
(6

)
6

1
0
0
%

0
0

0
0

0
0

0
0

0
0

T
o
ta

l
3
8
/
5
0

7
6
%

0
0

4
/
5
0

8
%

5
/
5
0

1
0
%

3
/
5
0

6
%

0
0

94

can be observed that the performance of the proposed method lies above all others at all

three openness values. But the degree of improvement over the other methods is more

pronounced at openness values 0.2257 and 0.2929. Similar analysis for all datasets can

be be made by consulting the remaining figures. Table 5.4 shows the overall statistics

of best AKUF1 performance by the methods. The proposed method delivers the best

performance on 50% or more cases for all but one dataset. Out of the 50 cases, the

proposed method wins in 40 cases (80%) followed by 6 (12%) and 4 (8%) cases by

WSVM and PI-SVM respectively. These figures indicate the capability of the proposed

scheme in correctly predicting the known classes as well as the unknown class.

Comparative results presented in the above three paragraphs indicate the efficacious-

ness of the proposed scheme in both known and unknown aspects of open set learning.

The proposed method maintains its superior performance on datasets with lesser number

of classes (Dermatology, Vehicle) as well as on datasets with a larger number of classes

(LETTER, Vowel, Texture). The intrinsic multi-class framework of the proposed scheme

accounts for this robustness.

The performance of the proposed method on MNIST dataset is not as good as a couple

of methods (namely WSVM and PI-SVM). Moreover, it also shows a deviation from it’s

own (proposed method’s) performance on the remaining datasets. We investigated the

loss of performance on MNIST dataset and our findings point to the high-dimensionality

of this dataset. Our method is based on RkNN principles where distance and neighbor-

hood relations are the only information that we cultivate for classification. Our method

suffers from curse of dimensionality at 784 features and failed to perform as competently

as on the remaining datasets. To validate our findings, we have generated outputs on a

reduced version of MNIST dataset. The Reduced-MNIST version is obtained by extract-

ing the top features which covers 90% feature variance. Reduced MNIST dataset has 79

features. Fig 5.7 shows the AKUF1 performance of proposed and comparing methods on

Reduced MNIST. It shows that the performance of the proposed method is better than

that of all others. The results are also superior to that of the best performing methods

(WSVM and PI-SVM) on regular MNIST (with all features) of 784 features (Refer to

Figure 5.6 (for MNIST) and 5.7 (for Reduced MNIST)). Figures 5.18 and 5.29 show the

accuracy and known class F1 results of these experiments. The results are in congruence

with AKUF1 performance.

95

5.7.1 Reporting average (over all opennesses of a dataset) AKUF1 re-

sults of five datasets

For five datasets (Dermatology, MNIST Reduced-MNIST, Optdigits and Segment), we

calculate the average of AKUF1 scores over the various openness values (of each dataset).

In Figure 5.3, we plot the average AKUF1 results of the proposed method and the five

competing methods. The results indicate the certain superiority of the proposed method

over all five comparing methods (including neighborhood based openset classifiers OSNN-

CV and OSNN-NDR) in all datasets except MNIST.

96

(a) Dermatology (b) MNIST

(c) Reduced-MNIST

(d) Optdigits (e) Segment

Figure 5.3: The results indicate the certain superiority of the proposed method over all competing
methods on four out of five datasets. On MNIST dataset, the proposed method suffers from the issue of
high dimensionality of features. The enhanced performance of the proposed method on Reduced-MNIST
(with reduced feature set) dataset affirms this fact.

97

Openness of dataset

0.23 0.24 0.25 0.26 0.27 0.28 0.29

A
v
e
ra

g
e

 F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.4: AKUF1 results on Dermatology on three openness values.

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

A
v
e

ra
g

e
 F

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.5: AKUF1 results on Letter on eleven openness values.

98

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22

A
v
e
ra

g
e

 F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.6: AKUF1 results on MNIST on four openness values.

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22

A
v
e

ra
g

e
 F

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.7: AKUF1 results on Reduced-MNIST on four openness values.

99

Openness of dataset

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

A
v
e
ra

g
e

 F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.8: AKUF1 results on Optdigits on five openness values.

Openness of dataset

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

A
v
e

ra
g

e
 F

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.9: AKUF1 results on Penbased on five openness values.

100

Openness of dataset

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

A
v
e
ra

g
e

 F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.10: AKUF1 results on Segment on four openness values.

Openness of dataset

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

A
v
e

ra
g

e
 F

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.11: AKUF1 results on Shuttle on four openness values.

101

Openness of dataset

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

A
v
e
ra

g
e

 F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.12: AKUF1 results on Texture on six openness values.

Openness of dataset

0.245 0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29

A
v
e

ra
g

e
 F

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.13: AKUF1 results on Vehicle on two openness values.

102

Openness of dataset

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

A
v
e

ra
g

e
 F

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.14: AKUF1 results on Vowel on six openness values.

103

Openness of dataset

0.23 0.24 0.25 0.26 0.27 0.28 0.29

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.15: Accuracy results on Dermatology on three openness values.

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.16: Accuracy results on Letter on eleven openness values.

104

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.17: Accuracy results on MNIST on four openness values.

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.18: Accuracy results on Reduced-MNIST on four openness values.

105

Openness of dataset

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.19: Accuracy results on Optdigits on five openness values.

Openness of dataset

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.20: Accuracy results on Penbased on five openness values.

106

Openness of dataset

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.21: Accuracy results on Segment on four openness values.

Openness of dataset

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.22: Accuracy results on Shuttle on four openness values.

107

Openness of dataset

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.23: Accuracy results on Texture on six openness values.

Openness of dataset

0.245 0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.24: Accuracy results on Vehicle on two openness values.

108

Openness of dataset

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.25: Accuracy results on Vowel on six openness values.

Openness of dataset

0.23 0.24 0.25 0.26 0.27 0.28 0.29

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.26: F1 results on Dermatology on three openness values.

109

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.27: F1 results on Letter on eleven openness values.

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.28: F1 results on MNIST on four openness values.

110

Openness of dataset

0.16 0.17 0.18 0.19 0.2 0.21 0.22

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.29: F1 results on Reduced-MNIST on four openness values.

Openness of dataset

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.30: F1 results on Optdigits on five openness values.

111

Openness of dataset

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.31: F1 results on Penbased on five openness values.

Openness of dataset

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.32: F1 results on Segment on four openness values.

112

Openness of dataset

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM-CAP
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.33: F1 results on Shuttle on four openness values.

Openness of dataset

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.34: F1 results on Texture on six openness values.

113

Openness of dataset

0.245 0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.35: F1 results on Vehicle on two openness values.

5.7.2 Limitations of the proposed scheme

The proposed work deals with RkNN in which distance and neighborhood relation is the

only information that is interpreted. Like any other distance-based scheme, our method

suffers from the curse of dimensionality at higher dimensions. The same phenomenon

was observed for the original MNIST dataset with 784 features. To curb this problem,

we suggest a reduction in feature dimension of a dataset with ≥ 100 features through

feature extraction or selection before proceeding with the RkNN-based learning and

classification. The improvement in performance on Reduced-MNIST dataset (Figures 6,

17, 28) over original MNIST dataset (Figures 5, 16, 27) indicates dimensionality can

be an issue.

5.8 Experiment on parameter tuning

On four datasets, namely, Dermatology, Vehicle, Segment and Vowel, we have conducted

a parameter tuning experiment. Neighborhood size k is the only tunable parameter of

our scheme. From our detailed experimental study and analysis, we have seen that a

k value in the range 2, 3, 4, 5, 6 works well for all the datasets that we have used.

Accordingly, we have reported the accuracy results of the four mentioned datasets across

these five k values. Figures 5.37-5.40 show the same. It is interesting to note that a

114

Openness of dataset

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

F
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed method
1-vs-SET based 1-vs-all
WSVM
PI-SVM
OSNN-CV
OSNN-NDR

Figure 5.36: F1 results on Vowel on six openness values.

single k value may not work well on a dataset. So, it is advisable to tune the k value

across different opennesses of a single dataset. The detailed procedure for parameter

optimization is given Section 5.6.2.

115

Figure 5.37: Accuracy results on Dermatology on three openness values and varying k values.

Figure 5.38: Accuracy results on Vehicle on two openness values and varying k values.

116

Figure 5.39: Accuracy results on Segment on four openness values and varying k values.

5.9 Summary

In this chapter, we have presented a novel reverse k-nearest neighbor based classifier. The

elegance of this classifier lies with it’s innate ability to address open set classification.

RkNN based neighborhood identification does the task of unknown class detection besides

the regular known class classification naturally. Choice of k or neighborhood size is

dataset dependent and it is determined through cross-validation on the training set.

Apart from that, no thresholding or parameters are involved to distinguish the known

and unknown subspaces. A unique attribute of the proposed scheme is that it estimates

and explores the sampling window implicitly. The RkNN process itself adaptively adjusts

the class boundaries, depending on the local sparseness of the training data and this

contributes to the simplicity and efficiency of the scheme. The proposed classifier also

operates on an intrinsic multi-class framework. A comprehensive empirical study affirms

the capability of the proposed scheme to deliver competent to superior performance

against competing classifiers in an open set backdrop.

117

Figure 5.40: Accuracy results on Vowel on six openness values and varying k values.

118

Chapter 6

Conclusion and Scope of Further

Research

The principal objective of this thesis is to find ways of meaningful learning of the real

world data where the data or classification paradigm possess some form of deviations

from the traditional scenario. In this thesis, we have addressed three particular classes

of such deviations — i]. generic class imbalance of datasets, ii]. multi-label datasets

and iii]. open set classification. Our primary concern has been to identify one or more

key aspects of each of these classes of data or classification paradigm. After identifying

the aspect/s, we work on towards them to generate an efficient classifier for solving the

problem. We have reported a chapter-wise list of findings below.

• Chapter 2: In this chapter, we have addressed class imbalance, a classical form

of data irregularity. Data preprocessing through minority class oversampling is a

standard and fruitful technique for handling such data. But, there is a critical gap

between oversampling to improve the classification results and non-encroaching

oversampling. We have shown that the synthetic minority points estimated by

the state-of-the-art methods do not preserve the boundaries of the Voronoi cells

(constructed on the basis of original training points). They encroach upon the

majority class cells.

1. To solve this issue, we have proposed a novel direction of minority set estima-

tion before generating the synthetic minority points. We estimate the support

of the minority classes. We have proposed two solutions using i]. Minimum

Spanning Tree (MST) and ii]. Relative Neighborhood Graph (RNG). In either

119

case, the synthetic minority points lie within the minority cells (of the Voronoi

diagram) only.

2. Between the two solutions rendered by us, the second one (using RNG) has

a layer of refinement over the first (using MST). In the first solution, the

synthetic minority points lie within a small hypersphere around the original

minority point and do not distribute across the entire minority cell. In the

second solution, we solve this issue by implementing an adaptive protocol.

3. The empirical study indicates the efficaciousness of the proposed schemes.

The second solution fares better than the first scheme and surpasses the per-

formance of all the state-of-the-art minority oversamplers.

• Chapter 3: In this chapter, we focus our attention on multi-label datasets, whose

abundance can be attributed to a number of real-world domains like medical, text

and tag recommendation systems. Such datasets have a single feature (instance

) set but their class memberships distribute across multiple labels. Consequently,

the class partitions vary from one label to another. The single, original feature set

may not be optimal for learning all the labels.

1. In a multi-label dataset, the positive and negative class geometries of the

labels are distinct. Initially, we learn the positive and negative class lattices

of each label. Two graph based techniques i]. MST and ii]. RNG are used for

determining the lattices.

2. In spite of having the same instance set, the set and number of lattices vary

from label to label. We derive a label specific feature set from the lattice sets

of each label.

3. The feature extraction technique that we have proposed is a supervised one

and takes into account the class information, which is the distinguishing factor.

This gives us label-specific features for the labels.

4. The findings of our experiments indicate that the proposed schema of label-

dedicated features have a generic multi-label learning capability and have fared

better than most of the multi-label classifiers across different metrics.

• Chapter 4: This chapter is our second attempt on multi-label datasets and it

focuses on the class-imbalance aspect of the multi-label datasets. In general, a

number of labels of a multi-label dataset have very few positive instances leading to

a high imbalance ratio. While performing the experiments of the previous chapter,

120

we have noticed that scores on metrics like Hamming Loss may not provide us a

clear picture. For proper learning, we have to work on and analyze the imbalance

aspect of multi-label data.

1. First, we should note that the degree of class-imbalance of a multi-label dataset

varies across labels. There is no single imbalance ratio of a multi-label dataset,

instead we have one for each label.

2. The first solution that we have proposed solves the imbalance issue by oversam-

pling the minority classes of each label. We generate the synthetic minority

points from the density-adaptive reverse nearest neighborhood of the minority

points. The original instances and the synthetic minority points are together

used to learn the classifiers for each label.

3. In the second solution, we add an augmented misclassification cost for the

minority class of each label. We set the misclassification cost according to the

imbalance ratio of a label.

4. Both the solutions solve the problem of class-imbalance of multi-label datasets

in an elegant as well as effective fashion. They surpass the performances of

all the state-of-the art methods in multi-label learning.

• Chapter 5: This chapter deals with open set classification, where a classifier needs

to correctly classify the known class instances as well as identify the unknown ones.

It is an important class of learning because open set classification mimics the real-

world learning where we grow and learn incrementally in an unknown world.

1. The solution that we propose is based on Reverse nearest neighborhood prin-

ciples, which is quite novel in the field of classification. It allows us to perform

unknown class detection and known class classification simultaneously.

2. The proposed solution is elegant and simple. Moreover, in our solution, we

do not need to expose the classifier to the unknown class instances in the

training phase at all. Concurring with the essence of open set classification,

the classifier is modeled on the known training instances only.

3. The empirical results have shown the potency of the proposed scheme to effi-

ciently handle open set classification. However, we have also observed that the

proposed technique suffers from the curse of dimensionality. Consequently, on

datasets with over 100 features, we suggest a reduction in feature set cardi-

nality via PCA or any standard feature extraction technique.

121

6.1 Future Work

In this thesis, we have addressed three specific types of deviations (in data or in classi-

fication protocol) and provided solutions to them. We have some specific plans for our

future work. First of all, we will re-study these three particular types of deviations to find

and unravel some more useful characteristics and work on them. Specifically, we would

like to focus on known unknown and unknown unknown aspect of open set classification.

In context of multi-label data, we would like to focus and address label correlation in

multi-label datasets. From a perspective of real-world data, multi-label datasets with

both nominal and numeric features is a relevant one and it would constitute our interest.

The other end of our future work will be directed at learning some more types of irregu-

larities in a classification framework which arises from a real-world scenario. Specifically,

I would like to explore the domain of concept drift, where the data characteristics (and

consequently the classifier model) varies over time.

122

Bibliography

[1] J. Alcalá-fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and

F. Herrera. a member of the old city publishing group. keel data-mining soft-

ware tool: Data set repository, integration of algorithms and experimental analysis

framework, 2011.

[2] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Towards open-

set identity preserving face synthesis. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2018.

[3] S. Barua, M. M. Islam, X. Yao, and K. Murase. Mwmote–majority weighted minor-

ity oversampling technique for imbalanced data set learning. IEEE Transactions

on Knowledge and Data Engineering, 26(2):405–425, Feb 2014.

[4] Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierarchical

multi-label prediction of gene function. Bioinformatics, 22(7):830–836, 2006.

[5] Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown. Learning

multi-label scene classification. Pattern recognition, 37(9):1757–1771, 2004.

[6] Lorenzo Bruzzone and Sebastiano B Serpico. Classification of imbalanced remote-

sensing data by neural networks. Pattern recognition letters, 18(11):1323–1328,

1997.

[7] A. Bryant and K. Cios. Rnn-dbscan: A density-based clustering algorithm using

reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and

Data Engineering, 30(6):1109–1121, 2018.

[8] J. Burez and D. Van den Poel. Handling class imbalance in customer churn pre-

diction. Expert Systems with Applications, 36(3, Part 1):4626 – 4636, 2009.

123

[9] D. O. Cardoso, F. França, and J. Gama. A bounded neural network for open set

recognition. In 2015 International Joint Conference on Neural Networks (IJCNN),

pages 1–7, July 2015.

[10] Douglas O. Cardoso, João Gama, and Felipe M. França. Weightless neural networks

for open set recognition. Mach. Learn., 106(9-10):1547–1567, October 2017.

[11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011.

[12] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–

357, June 2002.

[13] Sheng Chen, Haibo He, and Edwardo A. Garcia. Ramoboost: Ranked minority

oversampling in boosting. Trans. Neur. Netw., 21(10):1624–1642, October 2010.

[14] Weiwei Cheng, Eyke Hüllermeier, and Krzysztof J Dembczynski. Bayes optimal

multilabel classification via probabilistic classifier chains. In Proceedings of the 27th

international conference on machine learning (ICML-10), pages 279–286, 2010.

[15] D. A. Cieslak, N. V. Chawla, and A. Striegel. Combating imbalance in network in-

trusion datasets. In 2006 IEEE International Conference on Granular Computing,

pages 732–737, May 2006.

[16] M. A. Córdova Neira, P. Ribeiro Mendes Júnior, A. Rocha, and R. Da Silva Torres.

Data-fusion techniques for open-set recognition problems. IEEE Access, 6:21242–

21265, 2018.

[17] Zachary Alan Daniels and Dimitris N Metaxas. Addressing imbalance in multi-

label classification using structured hellinger forests. In AAAI, pages 1826–1832,

2017.

[18] Debashree Devi, Saroj kr. Biswas, and Biswajit Purkayastha. Redundancy-driven

modified tomek-link based undersampling: A solution to class imbalance. Pattern

Recognition Letters, 93(Supplement C):3 – 12, 2017. Pattern Recognition Tech-

niques in Data Mining.

124

[19] Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Sašo Džeroski. Fast and

efficient visual codebook construction for multi-label annotation using predictive

clustering trees. Pattern Recognition Letters, 38:38 – 45, 2014.

[20] André Elisseeff and Jason Weston. A kernel method for multi-labelled classifica-

tion. In Proceedings of the 14th International Conference on Neural Information

Processing Systems: Natural and Synthetic, NIPS’01, pages 681–687, Cambridge,

MA, USA, 2001. MIT Press.

[21] Seyda Ertekin, Jian Huang, and C. Lee Giles. Active learning for class imbalance

problem. In Proceedings of the 30th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’07, pages 823–824,

New York, NY, USA, 2007. ACM.

[22] Tom Fawcett and Foster Provost. Adaptive fraud detection. Data Min. Knowl.

Discov., 1(3):291–316, January 1997.

[23] Alberto Fernández, Sara del Ŕıo, Nitesh V Chawla, and Francisco Herrera. An

insight into imbalanced big data classification: outcomes and challenges. Complex

& Intelligent Systems, 3(2):105–120, 2017.

[24] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Menćıa, and Klaus Brinker.

Multilabel classification via calibrated label ranking. Mach. Learn., 73(2):133–153,

November 2008.

[25] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review

on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-

based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 42(4):463–484, July 2012.

[26] V. Garćıa, J. S. Sánchez, R. Mart́ın-Félez, and R. A. Mollineda. Surrounding

neighborhood-based smote for learning from imbalanced data sets. Progress in

Artificial Intelligence, 1(4):347–362, Dec 2012.

[27] Eva Gibaja and Sebastián Ventura. Multi-label learning: a review of the state of

the art and ongoing research. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 4(6):411–444, 2014.

125

[28] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled

classification. In Proceedings of the 8th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 22–30, 2004.

[29] Bastian Goldluecke and Daniel Cremers. Convex relaxation for multilabel problems

with product label spaces. In Kostas Daniilidis, Petros Maragos, and Nikos Para-

gios, editors, Computer Vision – ECCV 2010, Berlin, Heidelberg, 2010. Springer

Berlin Heidelberg.

[30] B. Gorte and N. Gorte-Kroupnova. Non-parametric classification algorithm with

an unknown class. In Proceedings of International Symposium on Computer Vision

- ISCV, pages 443–448, Nov 1995.

[31] U Grenander. Abstract Inference. Wiley, USA, 1981.

[32] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-

sampling method in imbalanced data sets learning. In Proceedings of the 2005

International Conference on Advances in Intelligent Computing - Volume Part I,

ICIC’05, pages 878–887, Berlin, Heidelberg, 2005. Springer-Verlag.

[33] Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic

sampling approach for imbalanced learning. In 2008 IEEE International Joint

Conference on Neural Networks (IEEE World Congress on Computational Intelli-

gence), pages 1322–1328, June 2008.

[34] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Trans.

on Knowl. and Data Eng., 21(9):1263–1284, September 2009.

[35] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural

networks for perception, pages 65–93. Elsevier, 1992.

[36] C. Huang, Y. Li, C. C. Loy, and X. Tang. Learning deep representation for imbal-

anced classification. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5375–5384, June 2016.

[37] J. Huang, G. Li, Q. Huang, and X. Wu. Joint feature selection and classification

for multilabel learning. IEEE Transactions on Cybernetics, 48(3):876–889, March

2018.

[38] Kuan-Hao Huang and Hsuan-Tien Lin. Cost-sensitive label embedding for multi-

label classification. Mach. Learn., 106(9-10):1725–1746, October 2017.

126

[39] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari, and S. Ah-

mad. An ensemble oversampling model for class imbalance problem in software

defect prediction. IEEE Access, 6:24184–24195, 2018.

[40] Lalit P. Jain, Walter J. Scheirer, and Terrance E. Boult. Multi-class open set

recognition using probability of inclusion. In ECCV, 2014.

[41] C. Ji, H. Hu, Y. Xu, Y. Li, and W. Qu. Efficient multi-dimensional spatial rknn

query processing with mapreduce. In 2013 8th ChinaGrid Annual Conference,

pages 63–68, Aug 2013.

[42] Thorsten Joachims. Text categorization with support vector machines: Learning

with many relevant features. In European conference on machine learning, pages

137–142. Springer, 1998.

[43] Bikram Karmakar and Nikhil R. Pal. How to make a neural network say “don’t

know”. Information Sciences, 430-431:444 – 466, 2018.

[44] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel text clas-

sification for automated tag suggestion. In: Proceedings of the ECML/PKDD-08

Workshop on Discovery Challenge, 2008.

[45] X. Kong and P. S. Yu. Multi-label feature selection for graph classification. In

2010 IEEE International Conference on Data Mining, pages 274–283, Dec 2010.

[46] Miroslav Kubat, Robert C. Holte, and Stan Matwin. Machine learning for the

detection of oil spills in satellite radar images. Machine Learning, 30(2):195–215,

Feb 1998.

[47] Jorma Laurikkala. Improving identification of difficult small classes by balancing

class distribution. In Proceedings of the 8th Conference on AI in Medicine in

Europe: Artificial Intelligence Medicine, AIME ’01, pages 63–66, London, UK,

UK, 2001. Springer-Verlag.

[48] Sauchi Stephen Lee. Noisy replication in skewed binary classification. Comput.

Stat. Data Anal., 34(2):165–191, August 2000.

[49] Feng Li, Duoqian Miao, and Witold Pedrycz. Granular multi-label feature selection

based on mutual information. Pattern Recogn., 67(C):410–423, July 2017.

127

[50] Tao Li and M. Ogihara. Toward intelligent music information retrieval. Multimedia,

IEEE Transactions on, 8(3):564–574, June 2006.

[51] Ying Liu, Han Tong Loh, and Aixin Sun. Imbalanced text classification: A term

weighting approach. Expert Syst. Appl., 36(1):690–701, January 2009.

[52] D. O. Loftsgaarden and C. P. Quesenberry. A nonparametric estimate of a multi-

variate density function. Ann. Math. Statist., 36(3), 06 1965.

[53] Jiaheng Lu, Ying Lu, and Gao Cong. Reverse spatial and textual k nearest neighbor

search. In SIGMOD Conference, 2011.

[54] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and SašO Deroski. An extensive

experimental comparison of methods for multi-label learning. Pattern Recogn.,

45(9):3084–3104, September 2012.

[55] Musa A Mammadov, Alexander M Rubinov, and John Yearwood. The study of

drug–reaction relationships using global optimization techniques. Optimisation

Methods and Software, 22(1):99–126, 2007.

[56] Mostafa Mehdipour-Ghazi, Berrin A. Yanikoglu, and Erchan Aptoula. Open-set

plant identification using an ensemble of deep convolutional neural networks. In

CLEF, 2016.

[57] Luis J Mena and Jesus A Gonzalez. Machine learning for imbalanced datasets:

Application in medical diagnostic. In Flairs Conference, pages 574–579, 2006.

[58] Pedro R. Mendes Júnior, Roberto M. de Souza, Rafael de O. Werneck, Bernardo V.

Stein, Daniel V. Pazinato, Waldir R. de Almeida, Otávio A. B. Penatti, Ricardo

da S. Torres, and Anderson Rocha. Nearest neighbors distance ratio open-set

classifier. Machine Learning, 106(3):359–386, Mar 2017.

[59] D. Miller, L. Nicholson, F. Dayoub, and N. Sünderhauf. Dropout sampling for

robust object detection in open-set conditions. In 2018 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 3243–3249, May 2018.

[60] Stephen O Moepya, Sharat S Akhoury, and Fulufhelo V Nelwamondo. Applying

cost-sensitive classification for financial fraud detection under high class-imbalance.

In 2014 IEEE International Conference on Data Mining Workshop, pages 183–192.

IEEE, 2014.

128

[61] Jose M. Moyano, Eva L. Gibaja, Krzysztof J. Cios, and Sebastián Ventura. Review

of ensembles of multi-label classifiers: Models, experimental study and prospects.

Information Fusion, 44:33 – 45, 2018.

[62] Jinseok Nam, Jungi Kim, Eneldo Loza Menćıa, Iryna Gurevych, and Johannes

Fürnkranz. Large-scale multi-label text classification—revisiting neural networks.

In Joint european conference on machine learning and knowledge discovery in

databases, pages 437–452. Springer, 2014.

[63] G. Nasierding, G. Tsoumakas, and A. Z. Kouzani. Clustering based multi-label

classification for image annotation and retrieval. In Systems, Man and Cybernetics,

2009. SMC 2009. IEEE International Conference on, pages 4514–4519, Oct 2009.

[64] Kang Ning, Hoong Kee Ng, Sriganesh Srihari, Hon Wai Leong, and Alexey I

Nesvizhskii. Examination of the relationship between essential genes in ppi net-

work and hub proteins in reverse nearest neighbor topology. BMC bioinformatics,

11:505, October 2010.

[65] Emanuel Parzen. On estimation of a probability density function and mode. Ann.

Math. Statist., 33(3):1065–1076, 09 1962.

[66] James Petterson and Tibério S. Caetano. Reverse multi-label learning. In J. D.

Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,

Advances in Neural Information Processing Systems 23, pages 1912–1920. Curran

Associates, Inc., 2010.

[67] D. Pokrajac, A. Lazarevic, and L. J. Latecki. Incremental local outlier detection

for data streams. In 2007 IEEE Symposium on Computational Intelligence and

Data Mining, pages 504–515, March 2007.

[68] Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, Tao Mei, and Hong-Jiang

Zhang. Correlative multi-label video annotation. In Proceedings of the 15th ACM

International Conference on Multimedia, MM ’07, pages 17–26, New York, NY,

USA, 2007. ACM.

[69] M. Radovanović, A. Nanopoulos, and M. Ivanović. Reverse nearest neighbors in

unsupervised distance-based outlier detection. IEEE Transactions on Knowledge

and Data Engineering, 27(5):1369–1382, May 2015.

129

[70] M Mostafizur Rahman and DN Davis. Addressing the class imbalance problem

in medical datasets. International Journal of Machine Learning and Computing,

3(2):224, 2013.

[71] Ajita Rattani, Walter J Scheirer, and Arun Ross. Open set fingerprint spoof detec-

tion across novel fabrication materials. IEEE Transactions on Information Foren-

sics and Security, 10(11):2447–2460, 2015.

[72] J. Read, L. Martino, and D. Luengo. Efficient monte carlo optimization for multi-

label classifier chains. pages 3457–3461, 2013.

[73] Jesse Read. A pruned problem transformation method for multi-label classifica-

tion. In Proc. 2008 New Zealand Computer Science Research Student Conference

(NZCSRS 2008), volume 143150, page 41, 2008.

[74] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains

for multi-label classification. Machine learning, 85(3):333, 2011.

[75] Jesse Read, Peter Reutemann, Bernhard Pfahringer, and Geoff Holmes. MEKA: A

multi-label/multi-target extension to Weka. Journal of Machine Learning Research,

17(21):1–5, 2016.

[76] Oscar Reyes, Carlos Morell, and Sebastián Ventura. Effective lazy learning al-

gorithm based on a data gravitation model for multi-label learning. Information

Sciences, 340-341:159 – 174, 2016.

[77] Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–46,

2001.

[78] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult. The extreme value machine.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3):762–768,

March 2018.

[79] P. Sadhukhan. Learning minority class prior to minority oversampling. In 2019

International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2019.

[80] W. J. Scheirer, L. P. Jain, and T. E. Boult. Probability models for open set

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(11):2317–2324, Nov 2014.

130

[81] Walter Scheirer, Anderson Rocha, Archana Sapkota, and Terrance Boult. Toward

open set recognition. IEEE Trans. Pattern Anal. Mach. Intell., 35(7):1757–1772,

July 2013.

[82] Alex Shenfield and Shahin Rostami. Multi-objective evolution of artificial neural

networks in multi-class medical diagnosis problems with class imbalance. In 2017

IEEE Conference on Computational Intelligence in Bioinformatics and Computa-

tional Biology (CIBCB), pages 1–8. IEEE, 2017.

[83] Newton Spolaôr, Everton Alvares Cherman, Maria Carolina Monard, and Huei Di-

ana Lee. A comparison of multi-label feature selection methods using the prob-

lem transformation approach. Electronic Notes in Theoretical Computer Science,

292:135 – 151, 2013. Proceedings of the XXXVIII Latin American Conference in

Informatics (CLEI).

[84] Hongyu Su and Juho Rousu. Multilabel classification through random graph en-

sembles. Machine Learning, 99(2), May 2015.

[85] Kenneth J. Supowit. The relative neighborhood graph, with an application to

minimum spanning trees. J. ACM, 30(3):428–448, July 1983.

[86] Yufei Tao, Man Lung Yiu, and N. Mamoulis. Reverse nearest neighbor search

in metric spaces. IEEE Transactions on Knowledge and Data Engineering,

18(9):1239–1252, Sept 2006.

[87] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition, Fourth

Edition. Academic Press, Inc., USA, 4th edition, 2008.

[88] G. Tsoumakas, I. Katakis, and I. Vlahavas. Random k-labelsets for multilabel

classification. IEEE Transactions on Knowledge and Data Engineering, 23(7):1079–

1089, July 2011.

[89] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.

Int J Data Warehousing and Mining, 2007:1–13, 2007.

[90] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis

Vlahavas. Mulan: A java library for multi-label learning. Journal of Machine

Learning Research, 12:2411–2414, 2011.

[91] Grigorios Tsoumakas and Min-Ling Zhang. Learning from multi-label data. 2009.

131

[92] Sen Wang, Xiaojun Chang, Xue Li, Guodong Long, Lina Yao, and Quan Z Sheng.

Diagnosis code assignment using sparsity-based disease correlation embedding.

IEEE Transactions on Knowledge and Data Engineering, 28(12):3191–3202, 2016.

[93] Wei Wei, Jinjiu Li, Longbing Cao, Yuming Ou, and Jiahang Chen. Effective detec-

tion of sophisticated online banking fraud on extremely imbalanced data. World

Wide Web, 16(4):449–475, July 2013.

[94] Gang Wu and Edward Y. Chang. Class-boundary alignment for imbalanced dataset

learning. In In ICML 2003 Workshop on Learning from Imbalanced Data Sets,

pages 49–56, 2003.

[95] Gang Wu and Edward Y. Chang. Kba: Kernel boundary alignment considering

imbalanced data distribution. IEEE Trans. on Knowl. and Data Eng., 17(6):786–

795, June 2005.

[96] Yu-Ping Wu and Hsuan-Tien Lin. Progressive random k-labelsets for cost-sensitive

multi-label classification. Mach. Learn., 106(5):671–694, May 2017.

[97] Jin Xiao, Ling Xie, Changzheng He, and Xiaoyi Jiang. Dynamic classifier ensem-

ble model for customer classification with imbalanced class distribution. Expert

Systems with Applications, 39(3):3668 – 3675, 2012.

[98] Suping Xu, Xibei Yang, Hualong Yu, Dong-Jun Yu, Jingyu Yang, and Eric C.C.

Tsang. Multi-label learning with label-specific feature reduction. Know.-Based

Syst., 104(C):52–61, July 2016.

[99] Chan-Yun Yang, Jr-Syu Yang, and Jian-Jun Wang. Margin calibration in svm

class-imbalanced learning. Neurocomput., 73(1-3):397–411, December 2009.

[100] Show-Jane Yen and Yue-Shi Lee. Cluster-based under-sampling approaches for im-

balanced data distributions. Expert Systems with Applications, 36(3, Part 1):5718

– 5727, 2009.

[101] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and

Takeshi Naemura. Classification-reconstruction learning for open-set recognition.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2019.

132

[102] Jia Zhang, Candong Li, Donglin Cao, Yaojin Lin, Songzhi Su, Liang Dai, and

Shaozi Li. Multi-label learning with label-specific features by resolving label cor-

relations. Knowledge-Based Systems, 159:148 – 157, 2018.

[103] Min-Ling Zhang, Yu-Kun Li, and Xu-Ying Liu. Towards class-imbalance aware

multi-label learning. In Proceedings of the 24th International Conference on Arti-

ficial Intelligence, IJCAI’15, pages 4041–4047. AAAI Press, 2015.

[104] Min-Ling Zhang, José M. Peña, and Victor Robles. Feature selection for multi-label

naive bayes classification. Inf. Sci., 179(19):3218–3229, September 2009.

[105] Min-Ling Zhang and Lei Wu. Lift: Multi-label learning with label-specific features.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(1):107–120,

Jan 2015.

[106] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-

label learning. Pattern Recogn., 40(7):2038–2048, July 2007.

[107] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms.

IEEE transactions on knowledge and data engineering, 26(8):1819–1837, 2013.

[108] M.L. Zhang and Z.H. Zhou. Multi-label neural networks with applications to func-

tional genomics and text categorization. IEEE Transactions on Knowledge and

Data Engineering, 18:1338–1351, 2006.

[109] Z. Zhang, W. Jiang, J. Qin, L. Zhang, F. Li, M. Zhang, and S. Yan. Jointly learn-

ing structured analysis discriminative dictionary and analysis multiclass classifier.

IEEE Transactions on Neural Networks and Learning Systems, 29(8):3798–3814,

Aug 2018.

[110] Z. Zhang, F. Li, L. Jia, J. Qin, L. Zhang, and S. Yan. Robust adaptive embedded

label propagation with weight learning for inductive classification. IEEE Transac-

tions on Neural Networks and Learning Systems, 29(8), Aug 2018.

[111] Z. Zhang, F. Li, M. Zhao, L. Zhang, and S. Yan. Joint low-rank and sparse principal

feature coding for enhanced robust representation and visual classification. IEEE

Transactions on Image Processing, 25(6):2429–2443, June 2016.

[112] Zhao Zhang, Weiming Jiang, Zheng Zhang, Sheng Li, Guangcan Liu, and Jie Qin.

Scalable block-diagonal locality-constrained projective dictionary learning. In Pro-

133

ceedings of the 28th International Joint Conference on Artificial Intelligence, IJ-

CAI’19, pages 4376–4382. AAAI Press, 2019.

[113] Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari. Feature selection for text cate-

gorization on imbalanced data. SIGKDD Explor. Newsl., 6(1):80–89, June 2004.

134

