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It's a pleasure to return to the Indian Statistical Institute, after 40 years. My last encounter here 

was on C. R. Rao’s 60th birthday. I had ties to India before that and after that of course. I shared an 

apartment with Ashok Maitra, who later became director of the ISI. I also had two wonderful students 

from ISI, Sharmodeep Bhattacharyya and Soumendu 

Mukherjee.  

What I'd like to do is to present my view of statistics 

through my rather long life and show you how, in my eyes, 

it's evolved. To begin with there always have been two views 

of statistics, one as a mathematical science and the second 

as a data science. The first, mathematical science, was 

basically what the emphasis was on during most of my 

career. Now, I would say the emphasis is more on statistics 

as a data science. Actually even at that time, there were 

different emphases at different times in different places. So 

in the United States, on the East Coast, Harvard and other 

places emphasized the data science. On the West Coast, I 

would say, Stanford and Berkeley both emphasized theory. 

In India, I would say, theory also was emphasized. In the UK 

data science was definitely the dominant aspect.  

As a mathematical science,  I’ve  arbitrarily divided 

statistics into three parts. First of all, a part which is long 

before I was born, and that was before 1900 and in that 

case, there was theory. In fact, the framework of probability 

theory developed – but it was inspired by data. So in the 

18th century we had Bernoulli, Laplace, Bayes. In the 19th 

century, we had Quetelet in the social sciences, Galton and 

Pearson. But there were many other figures, e.g. Gauss 

played an important role in developing the method of least 

squares. If you're interested in this, I suggest you look at a 

wonderful book by Stephen Stigler, The History of Statistics: 

The Measurement of Uncertainty Before 1900.   



Now, the Past, which covers part of my life, from 1900 to 1980. I would say that the major 

figures were Fisher, who introduced the notions of population models, likelihood and much else, 

followed by Neyman and Wald, who brought in the notions of decision theory, optimality. There were 

many more things happening. Fisher introduced, in addition 

to population models and likelihood, the notion of ANOVA, 

experimental design. Wald introduced the idea of sequential 

analysis. There were also many other people during and after 

World War II: C. R. Rao, Hotelling, Tukey, Robbins, Hoeffding, 

Stein, Lehmann, Le Cam, Anderson, Cox and Bartlett for 

example, and many more that I've undoubtedly missed. 

Now the data part (it's also in the past now – I'm not 

going to talk about the period before 1900) was also 

different. Most of the data were survey, economical and 

public policy data, agricultural data, some medical data, some technological data. The general features 

of these data were bodies of data were in general small, and the data structures were relatively simple.  

I have to emphasize that there was much more going on, e.g. 

you might say that probability theory was basically prompted 

by gambling. Astronomy played a big role in the start of 

statistics, and also as far as small bodies of data. Well, there 

were censuses, insurance data, clinical trials from the 1930s. 

So there were always more going on.  

In the theory, again in the past, which is up to 1980, 

the emphasis was on parametric models: one sample, two 

sample, linear models, log linear models, exponential 

models, exponential distribution and models in particular in 

the context of life and survival analysis. The notion of parameter, by the way, was introduced by R. A. 

Fisher. The whole notion of looking at statistics on the basis of a sample from a population and having a 

parameter, which characterize the probability distribution of 

the population, that came primarily from Fisher. It's 

interesting to think back how unclear things were compared 

to the present. Of course, the present will presumably look 

unclear to the future also. Now, as far as the models’ 

motivation goes: treatment versus control (in let's say, 

agricultural trials), regression, categorical data, (like the lady 

tasting tea) of Fisher, reliability data, time series data. The 

classes of probability distributions whose members formed 

the parametric models and were believed to generate the 

data that could be described by low dimensional Euclidean 



parameters, which involved the usual suspects as far as probability distributions go: multivariate 

Gaussian, multinomial, logistic, exponential and Poisson. Why? Largely as a matter of mathematical 

convenience and applicability.1  

Also, for that period, even from the very beginning, 

were the idea of nonparametric models and implicitly semi 

parametric models. These are obtained by dropping the 

assumptions. You don't assume that things are necessarily 

Gaussian. On dependence between the covariance and 

response, you don’t assume that the responses are 

necessarily linear. On dependence between the observations 

you can assume time series.  

Now you cannot drop all assumptions. That's one of 

the first things I used to say in my theory classes, The only form of data in which there is no assumption 

is that you have n observations which have some joint distribution and from that you can't get anything. 

Nonparametric really means that you have an IID sample from one or more populations. 

Semiparametric, I will talk about a bit later.  

The questions that were considered very much were 

of three types: testing, estimation, and confidence regions. 

The emphasis of what was asked about the procedures was 

on optimality in various ways. Bayes optimality was relatively 

simple if you had a Bayes prior. In the decision theoretic 

point of view, you start to get more things like minimax, and 

unbiasedness.  

In all of these, an important factor was to somehow 

measure model based variability. This was sort of limited. There were prediction tolerance regions. 

Sequential methods were also discussed. Bayes was a catch-all that included subjective Bayes, but it also 

included empirical Bayes, mixture of Bayes, and frequentist, and so on. Even robustness, which I’ll talk 

about a little bit more later, came about very early. For example, in the 18th century, trimmed means 

were used to characterize average yields of wheat in France. Then there was the issue of simplicity, if 

things were not simple you couldn't understand.  

As I said, the approaches involved exact distributions 

in so far as possible. Fisher spent a good bit of time deriving 

the t distribution, the F distribution also involved others. 

However, it was very clear that exact distributions could not 

be obtained in many cases. Very quickly, the focus was on 

asymptotic methods, as the sample size tends to infinity. But 

these were viewed as approximations. Of course, you never 

get to n equals infinity. But as an approximation, the 

 
1 The speaker added later: Other considerations were the availability of various forms of the CLT and also Poisson 
processes. These were applicable albeit with a somewhat unrealistic theory. 



expression could be perfectly valid, and good enough.  

I like to think of my own career as sort of split in a funny way. Speaking of asymptotics, I started 

out looking at second order asymptotics, which were approximations to order one over n of 

distributions. Then I moved to first order asymptotics, which is what most people looked at. We have 

limit laws with scale, one over square root of n. But in the recent past I focused on zeroth order 

asymptotics. The critical thing is bias, because the model is 

undoubtedly not correct.  

Now we move to the present. In the present (1980 

onwards) data has changed by its scale primarily. Why has it 

changed? Because we have computers, and sensors. The 

computers mean that you have easy storage, you can gather 

the data, you can process the data in very large amounts. You 

can have large bodies of data. Sensors are, in fact, what are 

used to gather the data. At Berkeley for a while people talked 

about smart dust which were tiny sensors, which would sort of send messages to central stations. Then 

you have more, more and more common things, which we don't necessarily think of as sensors, like 

tomography, which again, produces large, very complicated datasets. Social data, which was always 

present but now it's ballooned. And, finally, you have enormous amounts of data coming, from the 

human genome, where you have 3 billion base pairs. These are described in terms of all sorts of things 

called “ome”s. There is the genome of course, but there's the transcriptome, and there's the 

metabolome and all of these add complications and structure to the data. There are complex data 

structures.  

Nobody really has a very clear idea of how to 

describe these in compact and simple way. So the theory is 

focused on non and semi parametric models. But the 

probability spaces that one thinks about are very complex 

like random distributions on images, or represented in terms 

of probability distributions on high dimensional function 

spaces. The methods have mirrored the models. You have 

neural nets, reinforcement learning, and all sorts of different 

“learnings”, which involve huge datasets, and very complex 

procedures for analyzing.  

The questions on the emphases have changed very 

much. Perhaps the most  striking difference in emphasis has 

been on prediction. The advantage of prediction is that it is 

possible to somehow validate your methods without 

gathering new data, necessarily, or having new data handy, 

without running new experiments. It's become very 

important commercially, because the predictions have 

become a mainstay of most technological companies. The 

criteria are decision theoretic but the emphasis is on new data. Another emphasis has been on multiple 

comparisons. You want to make many conclusions from the same data since there's so much of it and 



many decisions are made simultaneously, and so you have to think about multiple comparisons. Then an 

old issue has become emphasized – the issue of causation. We've always focused on correlation 

between variables. But, in fact, what we really want is causation. As Hume showed a long time ago, you 

cannot actually prove causation. But, in practical terms, you can try to intervene and to extrapolate and 

have useful results. And then again, a completely new thing and emphasis on convergence of 

algorithms, because now methods are described in terms of usually iterative algorithms, and the 

optimization theory has played a role in these as well. 

The approaches have also apparently changed. There 

are now, for example, non-asymptotic guarantees, which are 

basically worst case bounds for the situation, as you've 

modeled it nonparametrically and these guarantees are on 

statistical properties, decision theoretic, but also on 

algorithm performance and convergence. Now, what is non-

asymptotic? All it is, is asymptotics, with worst case constants 

specified. To do asymptotics, you have to have bounds, but 

the constants have been long-known to be useless, because 

they're too big. But the structure of the bounds gives clues to the importance of the ingredients, the 

sample size, the dimension, and now tuning constants. The other big new aspect coming from the 

computer, is Monte Carlo and all sorts of things based on Monte Carlo. Combined with that is the idea of 

sample splitting. You can only do that when you have very large samples.  

I'd like to also talk a little bit about my view of the 

future. Probability has already moved to the center of 

mathematics, which it was not when I started. There were 

probabilists in math departments, but they were usually on 

the fringes. Now, there have been Fields medals, which 

involve probability theory, and what's also happened is that 

there are very strong interactions with statistical physics, and 

with theoretical computer science. In statistics, the strong 

interactions with probability have continued. But there are 

also other parts of data science, machine learning, artificial 

intelligence, data structures, all of these play a big role. Computational issues have arisen as I mentioned 

before and skills are intrinsic. The structure of algorithms, convergence of algorithms, computation time. 

And finally, what I find most interesting are the appearance of strong interactions with substantive fields 

in almost all areas.  

So, to summarize, statistics in the past was small, and 

at the present, is large and complex. I mentioned in passing, 

statistical physics in connection with probability theory. But 

it's also had a big impact on statistical practice, because the 

most successful algorithms of statistics, the Gibbs sampler, 

the Metropolis algorithm, mean field methods, all came from 

statistical physics. So that should have been included in my 

education and wasn't.  



Now what are hot theory areas – because I would 

guess most people at the ISI will go in that direction? Large 

complex datasets as I mentioned, analyzing deep learning 

phenomena, e.g. the possible disappearance of sparsity as an 

issue in prediction. Now, what is sparsity? Sparsity has 

appeared as a way of dealing with very high dimensional 

datasets with very high numbers of parameters. Basically, 

whenever you try to fit those naively, you get what's called 

overfitting, which means that you basically are fine with the 

data you have, but worthless at prediction. It turns out that 

neural nets behave in funny ways. And overfitting seems to be much less of a problem. A starting point 

for this study is videos of lectures at various programs at Simons- Institute, which you can look at online. 

The second aspect, which is far less settled, is interpretable conclusions from methods achieving 

excellent prediction. The methods which achieve excellent prediction are things like deep learning, and 

so on. But you get it without really understanding why. There are smallish datasets and intermediate 

datasets, where causation issues play a role. And finally, there's a general point I would like to stress 

that theory is combined with practice, for large datasets in many fields. One, which I've gotten very 

interested in, in my later years, is molecular biology. What you need is to learn the language and share 

the interests of the people in the substantive science that you're working with.  

Now, let me just briefly pause and talk about what 

you should gain from your studies and statistics. Of course, 

you will gain models and techniques in mathematics and data 

analysis. You will also – and that’s a very important point – 

make friends to collaborate with and otherwise. But perhaps 

the major thing is something that should come to you already 

– and if it hasn't, you should learn it – is how to think 

statistically, which means that you accept randomness in 

formulating models and ideas. You want to realize and 

analyze the dependence of your conclusions on your 

assumptions. And finally, you want measure uncertainty in some way, without forgetting dependence 

on assumptions. These are philosophical issues as much as statistical, and I actually hit them rather early 

on – in my only paper in Science – towards the start of my career. How it occurred was accidental, but 

let me just mention it. There’s a paper on sex bias in graduate admissions, where it appeared from a 

simple analysis of male female acceptance-denial ratios in the university that there was considerable 

bias in favor of males. However, admissions at Berkeley are done department by department. And then 

when people started to look for the guilty departments, they couldn't find any. And the reason was, in 

some sense, you can view it as a purely theoretical one. There's a tremendous difference between 

independence and conditional independence. So there was conditional independence, but not 

independence. Why? Because it turned out, at that time, women were going to departments which are 

hard to get into.  

  



We have a bright future in statistics. In academia, 

statisticians, data scientists, computer scientists, social 

sciences, economists, psychologists, business school, public 

policy, sociology, anthropology; in the bio sciences, molecular 

biology, genetics, integrative biology, neuroscience, 

epidemiology, biostatistics; in the engineering and physical 

sciences; even in history and philosophy.  

 

There are, of course, very much closer relations to industry 

than there were in the past, partial or full positions in tech 

companies and finance. The key point to draw from this long 

list is that labels will not matter much – that's one. And the 

other, which is not so apparent from this is: work is now very 

much done in teams.  

 

 

And now, finally, having gone over this very quick view of my 

views, and, to some extent, my life, I wish you all good luck. 

 

 

 

 

References 

1. Stigler, S. M. (1986). The history of statistics: The 

measurement of uncertainty before 1900. Harvard 

University Press.  

2. Foundations of Deep Learning. Program at the 

Simons Institute for the Theory of Computing, 

Berkeley (May 23 – August 9, 2019).  

3. Bickel, P. J., Hammel, E. A. and O’Connell, J. W. 

(1975). Sex bias in graduate admissions: Data from 

Berkeley. Science, 187(4175), 398-404. 

 

Transcribed by Sushavona Chatterjee and Sandip Kumar De, Library with support from Prof. Debasis Sengupta, Dean of 

Studies, and Dr. Soumendu Sundar Mukherjee, ISRU, Indian Statistical Institute. 

 


