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Chapter 1

Introduction

This thesis comprises four essays on social choice theory. The first three essays/chapters

consider models where voters follow “non-standard” rules for decision making. The last

chapter considers the binary social choice model and analyzes the consequences of a new

axiom.

The first chapter introduces a new axiom for manipulability when voters incur a cost

if they misreport their true preference ordering. The second chapter considers the random

voting model with strategic voters where standard stochastic dominance strategy-proofness

is replaced by strategy-proofness under two lexicographic criteria. The third chapter also

considers the random voting model but from a non-strategic perspective. It introduces a

new “robustness to small mistakes” by voters. The last chapter provides a characterization

of the status quo rule. We provide a brief description of each chapter below.

1.1 Strategy-Proof Voting with Lying Costs

Chapter 2 considers the usual model of strategic voting where voters have private information

about their preference orderings. A social choice function (SCF) is manipulable if a voter

can obtain a better outcome by lying about her preference ordering than telling the truth.

The standard assumption is that if a voter has any opportunity to gain (howsoever small)

she will manipulate. It implicitly assumes that there is no cost of lying. There is a large

experimental literature that suggests that agents are averse to lying - see for instance, Abeler

et al. (2019), Gneezy et al. (2013), Kajackaite and Gneezy (2015) Lundquist et al. (2007)

and Lundquist et al. (2009). Motivated by the experimental evidence, we say that a SCF is

K-manipulable (K ≥ 1) if the voter can improve by at least K ranks in her true preference

ordering by lying. If K > 1, we have a weaker notion of strategy-proofness that captures

the idea that a voter manipulates only when the gains from lying are “substantial”. If K
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equals the number of alternatives, K-strategy-proofness will be trivially satisfied. We can

therefore reasonably expect a wider class of SCFs to be strategy-proof as the “reluctance to

lie” increases.

Our main result is that this optimism is somewhat misplaced. Our main result is that

under various notions of efficiency and for a sufficiently large number of alternatives, a SCF

is K-strategy-proof only if it is K-dictatorial, i.e. there exists a voter such that the outcome

at every profile is one of her top K-ranked alternatives. As K increases, the strength of

strategy-proofness decreases but so does the power of K-dictatorship. Rather surprisingly,

they exactly counterbalance each other. We also show that the well-known equivalence

of ontoness, unanimity and efficiency for strategy-proof SCFs breaks down when strategy-

proofness is replaced by K-strategy-proofness. We also have various results on the lower

bound of number of alternatives required to prove the K-dictatorial SCF.

1.2 Random Strategy-Proof Voting with Lexicographic

Extension

An important issue in the random environments, especially in strategic models is that pref-

erences in the voting model are ordinal rankings while the outcome of voting is a probability

distribution over alternatives. In order to compare the outcomes for different voting profiles,

it is necessary to specify an appropriate extension from an (ordinal) preference ordering to

lotteries - in other words, to extend preferences over degenerate lotteries to preferences over

all lotteries. The choice of an extension has profound implications for the analysis.

The standard notion of strategy-proofness is proposed by Gibbard (1977). According to

Gibbard, a RSCF is sd-strategy-proof if the truth telling lottery stochastically dominates all

lotteries obtained via misrepresentation. Gibbard (1977) showed that all sd -strategy-proof

RSCFs which satisfy the additional (mild) property of unanimity, must be a random dicta-

torship. We replace the sd-extension by two simple lottery extensions based on lexicographic

comparisons. The first is the downward lexicographic or dl-extension and the second is the

upward lexicographic or ul-extension. While comparing two lotteries in the former case, the

voter will prefer the lottery which has the higher probability on the first-ranked alternative.

If they are the same, the voter will consider probabilities assigned to the second-ranked

alternative, preferring the lottery which has higher probability. If they are the same, she

will consider the third-ranked alternative and so on till the last ranked alternative. The

voter in this case cares “much more” about a higher ranked alternative than a lower-ranked

alternative.

There are two broad sets of results in this chapter. The first concerns ul-strategy-

proofness. We show that the Gibbard (1977) random dictatorship result continues to hold,
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i.e. every RSCF satisfying ul-strategy-proofness and unanimity must be a random dictator-

ship. This is rather surprising in view of the fact that ul-strategy-proofness is significantly

weaker than sd-strategy-proofness. The second set of results concern RSCFs that satisfy

dl-strategy-proofness. We show that a wider class of RSCFs beyond random dictatorship

satisfy unanimity and dl-strategy-proofness. However, if unanimity is strengthened to effi-

ciency, dl-strategy-proof RSCFs must be top-support rules, i.e. they can give strictly positive

probability in a profile only to alternatives that are ranked first by some voter. We show that

a class of RSCFs that we call top-weight rules, are characterized by dl-strategy-proofness,

efficiency and an additional but familiar property of tops-onlyness. In the case of two voters,

we show that the tops-onlyness property is implied by the other two requirements.

1.3 Stochastic same-sidedness in random voting models

In this chapter, we study the standard random voting model. In this framework, we propose

an axiom called stochastic same-sidedness (SSS) and explore its consequences. Consider a

preference profile and suppose a voter changes her preference ordering to an adjacent one

by swapping two consecutively ranked alternatives. Then SSS imposes two restrictions on

the RSCF. First, the sum of probabilities of the alternatives which are ranked strictly higher

than the swapped pair, should remain the same. Second, the sum probabilities assigned to

the swapped pair, should also remain the same. In the deterministic framework Muto and

Sato (2017) showed that this innocuous-looking property has strong negative implications.

The key question addressed in this paper is the following: does randomization significantly

expand the class of RSCFs satisfying SSS relative to the deterministic case?

We show that in the two voters case, every RSCF that satisfies efficiency and SSS, is

a random dictatorship. The result does not hold if we replace efficiency by unanimity.

If there are more than two voters, efficiency and SSS do not imply random dictatorship.

However, if RSCFs are required to satisfy tops-onlyness in addition to efficiency and SSS,

we have random dictatorship again. The weakest form of strategy-proofness is the weak sd-

strategy-proofness. We also show that SSS and weak sd-strategy-proofness are independent

i.e. neither implies the other. In particular, SSS allows instances where the truth-telling

lottery gives (strictly) lower expected utility than a lottery obtained via a misreport for

every utility representation of voter’s true ordinal preference. In other words, truth-telling

lottery is stochastically dominated by a lottery obtained by lying. As a consequence, the

SSS axiom cannot be interpreted as an incentive-compatible property.
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1.4 A characterization of the status quo rule in the binary

social choice model

This chapter considers the model of binary social choice. Each voter can have one of the

three preferences - one alternative can be strictly preferred to the other or they could be

indifferent to each other. The status quo rule identifies one of the two alternatives as the

status quo alternative. The rule picks this alternative at all profiles except the one where all

voters rank the non-status quo alternative strictly better than the status quo alternative. It

is a conservative rule which is “almost” constant. However, it is an appealing rule in certain

circumstances where change from the status quo can impose losses on a large number of

voters. Examples of such policies in India in recent years have been the Citizen Amend-

ment Act, the Goods and Services tax, the demonetization policy (2016) and the four-year

undergraduate program at Delhi University.

We use three axioms for our characterization. Two of these properties, ontoness and

strategy-proofness are well-known in the axiomatic literature. The third one is a new axiom

introduced by us, which we call Positive Welfare Association (PWA). To understand the

axiom, consider a profile where a particular voter, say i is indifferent. Suppose i changes her

preference from indifference to a strict preference. The new outcome differs from the earlier

one and is i’s strictly preferred outcome in the new preference ordering. Then, PWA requires

all other voters not to be made worse-off at the new profile. The PWA axiom is key to our

result and cannot be replaced by welfare dominance in the characterization. We also show

that our characterization is tight by providing examples of non-status quo rules that satisfy

all but one of the axioms.
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Chapter 2

Strategy-Proof Voting with Lying

Costs

2.1 Introduction

In this chapter we study the standard strategic voting model in deterministic framework. It

analyzes situations where a group of agents/voters want to decide what outcome should be

selected for the whole group from the set of available alternatives based on the their (ordinal)

preferences over the alternatives. Our goal in this chapter is to examine the consequences

of departing from the following hypothesis that underlies virtually all of mechanism design

theory: a voter will lie/manipulate whenever she can gain by doing so. The hypothesis

implicitly assumes that lying is costless. We will assume instead that lying has moral or

psychological costs so that an agent will lie only if the gains from lying are “sufficiently

large”.

There is a large experimental literature that suggests that agents are averse to lying -

see for instance, Abeler et al. (2019), Gneezy et al. (2013), Kajackaite and Gneezy (2015)

Lundquist et al. (2007) and Lundquist et al. (2009). To quote Kajackaite and Gneezy (2015):

“we find that people lie more, and in particular lie more when the incentives to do so increase”.

We will make a further assumption about the nature of lying - an agent may not lie if the gains

from lying are “small” but when she lies, she does so in a manner that maximizes her gain

from lying. The assumption is consistent with constant costs of lying. There is experimental

evidence to support this hypothesis as well. Quoting Kajackaite and Gneezy (2015) again:

“Our results reject the common assumption of “small lies” due to convex cost of lying. By

contrast, our data are consistent with a fixed intrinsic cost of lying: when our participants

lie, they do so to the full extent, whereas partial lying is rare. Combined, our results show

that for many participants, the decision to lie follows a simple cost-benefit analysis: they
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compare the intrinsic cost of lying with the incentives to lie; once the incentives are higher

than the cost, they switch from telling the truth to lying to the full extent”.

In the standard model of strategic voting, voters have a ranking or a preference ordering

over a finite number of alternatives. A social choice function or SCF associates an alternative

with every profile of preference orderings. A voter’s preferences are private information. A

SCF is strategy-proof if no voter can gain (according to her true preferences) by lying about

her preference ordering at every profile of preference orderings for the other voters. The

fundamental result of (Gibbard (1973) and Satterthwaite (1975)) states that every SCF that

is strategy-proof and satisfies the mild requirement of unanimity, is dictatorial. In other

words, there exists a voter whose first-ranked alternative is always picked as the outcome of

the SCF at every preference profile.

We say that a SCF is K-manipulable (K ≥ 1) if the voter can improve by at least K

ranks in her true preference ordering by lying. A SCF is K-strategy-proof if it is not K-

manipulable. If K = 1, K-strategy-proofness is standard strategy-proofness. However, if

K > 1, we have a weaker notion of strategy-proofness that captures the idea that a voter

manipulates only when the gains from lying are “substantial”. If K equals the number of

alternatives, K-strategy-proofness will be trivially satisfied. We can therefore reasonably

expect a wider class of SCFs to be strategy-proof as the “reluctance to lie” increases.

Our main result is that this optimism is somewhat misplaced. We show that under various

notions of efficiency and for a sufficiently large number of alternatives, a SCF is K-strategy-

proof only if it is K-dictatorial, i.e. there exists a voter such that the outcome at every

profile is one of her top K-ranked alternatives. As K increases, the strength of strategy-

proofness decreases but so does the power of K-dictatorship. Rather surprisingly, they

exactly counterbalance each other. For instance, if K is equal to the number of alternatives,

K- strategy-proofness is vacuously satisfied but so is K-dictatorship. If K = 2, the SCF

must always pick either the dictator’s first or second-ranked alternatives. This choice can

depend on the preferences of other voters. Our result establishes a robustness property of

the Gibbard-Satterthwaite result.

We also show that the well-known equivalence of ontoness, unanimity and efficiency for

strategy-proof SCFs breaks down when strategy-proof is replaced by K-strategy-proofness.

Along with this, we have various results on the lower bound of number of alternatives required

to prove the K-dictatorial SCF.

We would like to contrast our approach with that taken in the literature on local-global

equivalence (Carroll (2012), Sato (2013), Kumar et al. (2019)). In these models, agents are

restricted to “local lies”, i.e the inputs provided by the voters are constrained to be “close”

to the true private information they possess. Their main question is to determine whether

immunity to local lies guarantees that no lie will be beneficial. Our proposal is to focus
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instead on the output of the SCF. A voter is not constrained in the manner in which she lies

but will lie only when the rewards from doing so are suitably high. As we have mentioned

earlier, there is experimental evidence to support our approach.

There is a large theoretical literature on strategic communication, cheap talk and imple-

mentation which explicitly takes into account, the cost of lying (see Sobel (2020), Kartik

(2009), Khalmetski and Sliwka (2019) and Dutta and Sen (2012), Matsushima (2008a) and

Matsushima (2008b)). The papers on implementation, especially Dutta and Sen (2012) are

close in spirit to our work since they are also concerned with ordinal environments. However,

the actual assumptions on the costs of lying are quite different. For instance, Dutta and Sen

(2012) assume a lexicographic cost structure - agents always lie if they can improve their

material payoff; however they strictly prefer to tell the truth if truth-telling and lying yield

the same material payoff.

Two papers in the social choice literature that bear some resemblance to ours are Camp-

bell and Kelly (2009) and Campbell and Kelly (2010). Both papers consider the standard

notion of manipulability. The former investigates the relation between the maximal gain

that any voter can obtain by manipulation and a measure of the “degree of dictatorship”

of particular class of social choice functions. The second paper conducts a similar analyze

for the maximum loss that a manipulating voter can impose on other voters. Our approach

differs fundamentally from these papers in the sense that we depart from the standard notion

of manipulability and consider a behavioural approach to truth telling. The results in our

chapter are also unrelated to those in the papers mentioned above.

The rest of the chapter is organized as follows. Section 2.2 introduces the basic notation

and definitions. Section 2.3 contains the main results. Section 2.4 discusses various aspects

of our results while Section 2.5 concludes the chapter. Section 2.6 is the Appendix and

contains the proofs.

2.2 Preliminaries

Let N = {1, . . . , n} be a finite set of voters and A be a finite set of m alternatives i.e.

|A| = m. We will write i, j and a, x, y, xk, etc. for generic elements in N and A respectively.

Each voter i ∈ N has a (linear) preference ordering Pi over the elements of the set A1. For

distinct a, b ∈ A by aPib we mean : a is strictly preferred to b by voter i according to her

preference ordering Pi. Let P denote the set of all linear orderings over the elements of A.

For any preference ordering Pi and integer k = 1, . . . ,m, rk(Pi) denotes the kth ranked

alternative in Pi, i.e. |{a ∈ A : aPirk(Pi)}| = k − 1 and r(Pi, a) ∈ {1, 2, . . . ,m} denotes

the rank of alternative a at Pi. Note that for any Pi ∈ P, k ∈ {1, 2, . . . ,m} and a ∈ A,

1Linear order is a binary relation which satisfies completeness, transitivity and anti-symmetry.
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rk(Pi) = a if and only if r(Pi, a) = k. It will be helpful to write Pi as an ordered tuple,

Pi ≡
(
r1(Pi), r2(Pi), . . . , rk(Pi), rk+1(Pi), . . . rm−1(Pi), rm(Pi)

)
.

A profile is a list P = (P1, . . . , Pn) ∈ Pn of voters’ preference orderings. For any coalition

S ⊂ N , let PS ≡ (Pi)i∈S and P−S ≡ (Pi)i∈N\S. For simplicity, we write P−i for P−{i} and

P−ij for P−{i,j} and so on. A profile P is also denoted by (Pi, P−i), more generally (PS, P−S)

for any S ⊂ N . Some standard definitions are as follows:

Definition 2.1 A social choice function (SCF) f is a mapping f : Pn → A.

A SCF picks an alternative at every preference profile. Note that all preference profiles are

admissible i.e. the preference domain is “unrestricted” throughout the chapter.

In the standard model of strategic voting, a voter’s preference ordering is private infor-

mation. A desirable property for a SCF is strategy-proofness. A strategy-proof SCF has the

property that no voter can gain by misreporting her true ordering, irrespective of the reports

of other voters. In other words, truth telling is a weakly dominant strategy for each voter in

the direct revelation game. This is formally stated below.

Definition 2.2 The SCF f is manipulable at profile P via P ′i if f(Pi, P−i) Pi f(p). The

SCF is strategy-proof if it is not manipulable by any voter at any profile.

In this chapter, we explore the consequences of introducing a fixed cost of lying for every

voter. Our model (which is the standard voting model) is ordinal. It is however natural to

interpret ranks as utilities. With this understanding we assume that the fixed cost of lying

for every voter is K−1 ranks in her preference ordering. A voter will therefore will lie only if

the lie leads to an improvement of at least K ranks according to her true preference ordering.

This leads to the definition of K-strategy-proofness.

Definition 2.3 Pick an integer K in the set {1, 2, . . . ,m}. The SCF f is K-manipulable

at profile P via P ′i if r(Pi, f(P ))− r(Pi, f(P ′i , P−i)) ≥ K. The SCF is K-strategy-proof if it

is not K-manipulable by any voter at any profile.

Figure 2.1 diagrammatically illustrates K-manipulability of SCF f at a profile P via P ′i .

We make two important remarks regarding K-strategy-proofness.

Remark 2.1 The notion of K-strategy-proofness reduces to strategy-proofness in the case

K = 1. This is the case where cost of lying is zero.
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Pi

·
·
·

r[Pi, f(P ′i , P−i)] = L−K −→ f(P ′i , P−i)

·
·
·
·

 = K−1

r[Pi, f(Pi, P−i)] = L −→ f(Pi, P−i)

·
·
·

Figure 2.1: K-manipulability

Remark 2.2 As K increases, the cost of lying for every voter increases. The incentive for

truth telling therefore increases with K. If K = m the cost of lying is so high that no voter

has incentive to lie i.e. all SCFs are m-strategy-proof. Thus K-strategy-proofness reflects the

behaviour of an agent who has an intrinsic cost of lying and misreports her true preference

only when the gain from lying exceeds her intrinsic cost of lying.

As noted in the Remark 2.2 and also mentioned in the introduction that K-strategy-

proofness can be given a behavioral justification. A voter may not choose to misreport if she

can only gain by a “small” or “imperceptible” amount.

Our goal is to characterize the class of K-strategy-proof SCFs in conjunction with some

other axioms. The benchmark result in strategic social choice theory is the celebrated

Gibbard-Satterthwaite theorem for strategy-proof SCFs. In order to state the result some

additional definitions are required.

Definition 2.4 A SCF f satisfies unanimity if f(P ) = x for all profiles P where r1(Pi) = x

for all i ∈ N .

A SCF satisfies unanimity if it always picks the commonly first ranked alternative, whenever

it exists.

Definition 2.5 A SCF f is dictatorial if there exists a voter i (called a dictator) if f(P ) =

r1(Pi) for all profiles P .

A dictatorial SCF always picks the first ranked alternative of a pre-specified voter called the

dictator. It is easy to verify that a dictatorial SCF is strategy-proof and satisfies unanimity.

9



The Gibbard-Satterthwaite theorem states that dictatorial rules are the only SCFs that

satisfy these properties, provided there are at least three alternatives.

Theorem [Gibbard (1973) and Satterthwaite (1975)] Assume m ≥ 3. A SCF f is

strategy-proof and satisfies unanimity if and only if it is dictatorial.

It is well-known that the Gibbard-Satterthwaite theorem continues to hold when una-

nimity is replaced by a weaker requirement on the range of the SCF.2

Definition 2.6 A SCF f is onto if, for all a ∈ A there exists a profile P ∈ Pn such that

f(P ) = a.

Theorem [Gibbard (1973) and Satterthwaite (1975)] Assume m ≥ 3. A SCF f is

strategy-proof and satisfies ontoness if and only if it is dictatorial.

A counterpart of the dictatorial SCF in our context is the K-dictatorial SCF which is

defined below.

Definition 2.7 A SCF f is K-dictatorial if there exists a voter i (called a K-dictator) if

f(P ) ∈ {r1(Pi), r2(Pi), . . . , rK(Pi)} for all profiles P .

TheK-dictatorship SCF picks one of the topK ranked alternatives of a pre-specified voter

called the K-dictator. Again, it is obvious that the K-dictator can never K-manipulate at

any profile. An important difference between a dictatorial and a K-dictatorial SCF is that

the outcome of the latter at any profile may depend on the preferences of voters other than

that of the K-dictator. This is illustrated in the Example 2.1.

Example 2.1 Pick K such that 2 < K ≤ m. Consider the following SCF: at every profile,

pick the highest ranked alternative in voter 2’s preference ordering among the top K ranked

alternatives in voter 1’s preference ordering. As we have remarked earlier, voter 1 cannot

K-manipulate. In addition, voter 2 also cannot K-manipulate. The SCF also satisfies

unanimity. However, it is not strategy-proof. For example, consider the profile P where

P1 = (x1x2x3 . . . xkxK+1 . . .)
3 and P2 = (x2x1x3 . . . xkxK+1 . . .). The outcome at this profile

is x2. Consider the misreport P ′1 = (xK+1x1x3 . . . xKx2 . . .) by voter 1. Now x2 is no longer

among the K best alternatives reported by the voter 1. The outcome therefore changes to

x1. However, this is a manipulation for voter 1.

2An even weaker notion of the Gibbard-Satterthwaite theorem can be stated where the range of the SCF

is required to be three. However, in this case the definition of a dictator has to be modified to be a voter

who always gets the maximal alternative in the range of the SCF.
3Recall that P1 is the ordering where x1 is ranked first, x2 second, x3 third and so on.
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Remark 2.3 An important feature of the K-dictatorial SCF is that the dependence of its

outcome at any profile on the K-dictator’s preferences decreases, as K increases. In the

case when K = m, the outcome does not depend at all on the K-dictatorship’s preferences.

On the other hand, when K = 1 the outcome is completely determined by the K-dictator’s

preferences.

In the next section, we will show that there is a tight relationship between K-strategy-

proof SCFs and K-dictatorship.

2.3 Main Results

Our first result shows that unanimity and K-strategy-proofness imply K-dictatorship for

sufficiently large number of alternatives.

Theorem 2.1 Let K be an integer in the set {1, 2, . . . ,m} and assume m ≥ 5K. If a SCF

is K-strategy-proof and unanimous then it is a K-dictatorship.

The proof of the theorem is relegated to the Appendix. Our result is surprising in one respect

which we state below.

Remark 2.4 As we have observed earlier in Remark 2.2, the requirement of K-strategy-

proofness weakens as K increases. We may therefore expect many more rules to be K-

strategy-proof for large values of K. Interestingly, all these extra possibilities are exactly

captured within the class of K-dictatorships SCFs. As we have also observed earlier in

Remark 2.3, the class of K-dictatorship expands as K increases. This expansion exactly

accommodates the extra possibilities afforded by the K-strategy-proofness.

Remark 2.5 Our earlier Remake 2.4 suggests that Theorem 2.1 is a generalization of the

Gibbard-Satterthwaite Theorem. However, this is not exactly true since the lower bound

on the number of alternatives for the case K = 1 in Theorem 2.1 is 5. However, in the

Gibbard-Satterthwaite Theorem this lower bound is 3. We have not been able to reconcile

this difference.

The bound on the number of alternatives can be improved to 3K if unanimity is strength-

ened to efficiency.

Definition 2.8 Let P be a profile. Alternative a dominates alternative b at P if aPib for

all i ∈ N . The SCF f is efficient if at all profiles P and alternatives b, f(P ) 6= b if there

exists an alternative a which dominates b.
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Now we can state our next result.

Theorem 2.2 Let K be an integer in the set {1, 2, . . . ,m} and assume m ≥ 3K. If a SCF

is K-strategy-proof and efficient then it is a K-dictatorship.

Remark 2.6 Note that, K-dictatorship does not imply K-strategy-proofness. In a K-

dictatorial SCF, the outcome may depend on the preference orderings of other voters as

well. If the outcome is not selected carefully, then the SCF may become K-manipulable.

Consider a K-dictatorial SCF, where voter 1 is the K-dictator. Suppose the SCF selects the

least preferred alternative for voter 2 between the first and second ranked alternatives in the

preference ordering of voter 1. This SCF is K-manipulable by voter 2. On the other hand,

consider a different SCF which selects the most preferred alternative for voter 2 between

the first and second ranked alternatives in the preference ordering of voter 1. Now, the

new SCF is K-strategy-proof. This complication makes it harder to provide a complete

characterization of K-strategy-proof SCFs satisfying unanimity or efficiency.

The proof of Theorem 2.2 is also contained in the Appendix. It broadly follows the

arguments in the proof of Theorem 2.1 except that many of the steps are considerably

simplified. The next section discuses several aspects of our results.

2.4 Discussion

This section contains two subsections. The first discusses the relation between various axioms

and K-strategy-proofness. The second subsection discusses the lower bounds on the number

of alternatives in Theorems 2.1 and 2.2.

2.4.1 The Relationship between Ontoness, Unanimity and Efficiency

It is well-known that the notions of ontoness, unanimity and efficiency coincide for strategy-

proof SCFs. We show that this equivalence breaks down for values of K strictly greater

than 1. Of course efficiency implies unanimity which in turn implies ontoness. Below we

provide an example of a SCF which satisfies K-strategy-proofness and ontoness but violates

unanimity.

Example 2.2 Let K ≥ 2. Define a preference ordering P̄1 of voter 1 as follows : al P̄1 al+1

for l = 1, 2, . . . ,m−1 i.e. P̄1 = (a1, a2, . . . , am). The SCF f is defined as follows :

f(P ) =


rK−1(P1) if rK(P1) = a1

Max
P2

{a1, aK+1} if P1 = P̄1

rK(P1) otherwise

12



We first argue that f is not a K-dictatorial SCF. Note that no voter other than 1 can be

a K-dictator. To see this consider a profile P where rK(P1) = am and rm(Pi) = am for all

i 6= 1. We have f(P ) = am which shows that voters other than 1 do not get an alternative in

the set of their top K alternatives (since m > K). Voter 1 is not a K-dictator either because

in the profile P where P1 = P̄1 and aK+1 P2 a1 (the second case mentioned in the SCF), she

gets her K+1 ranked alternative aK+1.

It is easy to see that f is onto. To show that it violates unanimity, consider the profile P ′

where r1(P ′i ) = a2 for all i ∈ N and rK(P ′1) = a3. According to the SCF we have f(P ′) = a3.

However, unanimity requires that outcome should be a2.

Finally, we will show that no voter can K-manipulate at any profile. At all profiles no

voter other than 1 or 2 can influence the outcome. Voter 2 chooses the best alternative from

the set which is specified independently of her ordering. Moreover, at every profile voter 1

always gets an alternative which is either ranked K−1 or K in her ordering except when

P1 = P̄1 and aK+1P2a1. In this case, she gets her K+1 ranked alternative. The only way she

can K-manipulate is if she can get her top-ranked alternative in P̄1 i.e. a1. This is ruled out

since f(P ) 6= a1 when aK+1P2a1. We have covered all profiles. Hence, f is K-strategy-proof.

Remark 2.7 The Example 2.2 also highlights the fact that K-strategy-proofness and on-

toness do not imply K-dictatorship. We note this fact in the next proposition.

Proposition 2.1 Suppose m > K ≥ 2. There exist non K-dictatorial SCFs satisfying

K-strategy-proofness and ontoness.

The next example demonstrates the existence of a SCF which satisfies K-strategy-

proofness and unanimity but violates efficiency.

Example 2.3 Let K ≥ 2. Consider a K-dictatorial SCF f where voter 1 is the K-dictator.

f(P ) =

{
b if r1(P1) = rm−1(P2) = a and r2(P1) = rm(P2) = b

Max
P2

{r1(P1), r2(P1)} otherwise

It is easy to verify that f satisfies K-strategy-proofness and unanimity. However, it violates

efficiency. To see this, consider a profile where every voter prefers a over b. The specific

ranking of a and b in preference orderings P1 and P2 coincides with the first case in the

specification of the SCF. At that profile the efficient outcome is a but it selects b. Thus,

violating efficiency.

Remark 2.8 Both Examples 2.2 and 2.3 show that the breakdown of the equivalence be-

tween ontoness, unanimity and efficiency under K-strategy-proofness does not depend on

the value of either m or K, as long as K ≥ 2.
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2.4.2 Tightening the lower bound on number of alternatives

In this subsection, we discuss why K-strategy-proofness requires a large number of al-

ternatives. In the case of efficiency (Theorem 2.2), we have shown that K-strategy-

proofness implies K-dictatorship, if there are at least 3K alternatives. The next example

shows that there exists a non-K-dictatorial, efficient and K-strategy-proof SCF, if the num-

ber of alternatives is at most 2K.

We introduce some new notation for this purpose. For any coalition S ⊂ N and sub-

profile PS we let T K(PS) =
⋂
i∈S
{r1(Pi), . . . , rK(Pi)} i.e. T K(PS) contains the alternatives

that are ranked among the first K alternatives by all voters in S in the profile PS. All the

examples in this section have the feature that the outcome at any profile depends only on the

preference orderings of voters 1 and 2. Therefore, in order to show that K-strategy-proofness

is satisfied, we only need to argue for voters 1 and 2.

Example 2.4 Let K < m < 2K. Pick P ′i and P ′′i such that al P
′
i al+1 and al+1 P

′′
i al

respectively, for all l = 1, . . . ,m−1 i.e.P ′i = (a1, a2, . . . , am) and P ′′i = (am, am−1, . . . , a1).

The SCF f is defined as follows :

f(P ) =

{
ak+1 if P{1,2} = (P ′1, P

′′
2 ) or (P ′′1 , P

′
2)

Max
P2

T K(P1, P2) otherwise

Pick an arbitrary profile. If the profile is such that the outcome of f is specified by the first

case in the description of f then the outcome aK+1 is efficient because at this profile every

alternative is efficient. For any other profile, voter 2 chooses her most preferred outcome

from the set of alternatives which are top K-ranked by both voters. Since m < 2K, the set

T K(P1, P2) is non-empty. Clearly f is efficient.

We consider the K-strategy-proofness of f . Pick a profile where the outcome of f is

specified by the second case in the description of f . Here, the outcome belongs to the top

K-ranked alternatives of both voters 1 and 2. Therefore, they cannot K-manipulate. If a

profile P is such that P{1,2} = (P ′1, P
′′
2 ) then outcome is aK+1, which belongs to top K-ranked

alternatives of voter 2 and she cannot K-manipulate here (to be precise aK+1 is m−K + 2

ranked alternative for voter 2 and we have assumed m < 2K so m−K+2 < K ). For voter 1

it is her K+1 ranked alternative. In order for her to K-manipulate, voter 1 must obtain the

first ranked alternative which is a1. According to the SCF if P2 = P ′′2 then for any preference

ordering of voter 1 the outcome can never be a1. Hence she cannot K-manipulate either. At

profile P where P{1,2} = (P ′1, P
′′
2 ) a similar argument applies after reversing the roles of voter

1 and voter 2.

Finally, we show that f is not K-dictatorial. It is obvious that voters other than 1 and 2

cannot be K-dictators. At profiles where the sub-profile of voter 1 and 2 is either (P ′1, P
′′
2 ) or
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(P ′′1 , P
′
2), the outcome is aK+1, which is ranked K + 1 by voters 1 and voter 2 at preference

ordering P ′1 and P ′2 respectively. Therefore, neither 1 nor 2 can be a K-dictator.

Example 2.5 Let m = 2K. Fix a set of alternatives AK ⊂ A such that |AK | = K and

denote AK = {a1, a2, . . . , aK}. The SCF f is defined as follows :

f(P ) =


Max
P2

T K(P1, P2) if T K(P1, P2) 6= ∅

Max
P2

T K(P1) if T K(P1, P2) = ∅ and T K(P1) ∩ AK 6= ∅

Max
P1

T K(P2) otherwise

The SCF f is efficient because there is always a voter (either 1 or 2) who selects the best

alternative according to her preference ordering from the top K-ranked alternatives in the

other voter’s preference ordering. We will show that it satisfies K-strategy-proofness. It is

obvious that if a voter gets an outcome from her top K-ranked alternatives, then she cannot

K-manipulate. Therefore, we focus only on voters 1 and 2 when they get an alternative which

is not top K-ranked. In the second case, voter 2 is getting her K+1-ranked alternative, but

by misreporting she can only become worse-off. Thus, she cannot K-manipulate. Similarly,

in the third case, when voter 1 gets her K+1 ranked alternative, she cannot manipulate.

Finally, we argue that it is not a K-dictatorial rule. In the second and third cases of the

rule, voters 2 and 1 get an alternative which is K+1-ranked. So, neither of them can be a

K-dictator.

Remark 2.9 It is clear from results in the examples that we have complete answers for

the cases when m ≤ 2K or m ≥ 3K. In the case of two voters we can show efficiency and

K-strategy-proofness imply K-dictatorship whenever m ≥ 2K + 1.4 Unfortunately, we are

unable to settle the issue for more than two voters and 2K < m < 3K.

Example 2.6 shows that a non-dictatorial, unanimous and K-strategy-proof SCF exists

when 2K < m < 5K
2

. In conjunction with Examples 2.4 and 2.5 we can conclude that there

exists a non-dictatorial, unanimous and K-strategy-proof when K < m < 5K
2

. Note that

inequality 2K < m < 5K
2

can be satisfied only when K ≥ 3.

Example 2.6 Let K ≥ 3. Fix an integer K̄ < K
2

. Let m be such that 2K < m ≤ 2K + K̄.

Fix a set X ⊂ A, such that |X| = K̄. For any preference ordering P1, define l?(P1) =

Min{r(P1, a) : a ∈ A\X}. i.e. l?(P1) is rank of the most preferred alternative, according to

P1 which does not belong to X. Define T Kl?(P1)(P1) = {rl?(P1), rl?+1(P1), . . . , rl?+K−1(P1)}\X.

4We omit the proof of this claim. It is available with the author on request.

15



The SCF f is defined as follows:

f(P ) =

 Max
P2

T K(P1, P2) if T K(P1, P2) 6= ∅

Max
P2

T Kl?(P1)(P1) otherwise.

It says that if there are any common alternatives among the top K ranked alternatives

of voters 1 and 2, then f picks the most preferred alternative from them, according to the

preference ordering of voter 2. When there is no such alternative, it picks the most preferred

alternative from the set T Kl?(P1)(P1), according to the preference ordering of voter 2. In other

words, start from the top in preference ordering of voter 1 and pick the first alternative which

is not in the set X. Now including this alternative, consider the next K−1 alternatives in

preference ordering of voter 1 (which may include alternatives from X). Out of this collection

of K alternatives, select the most preferred alternative in the complement of X, according

to the preference ordering of voter 2.

According to the SCF, if there is any alternative which is ranked first by both the voters

1 and 2, then it should be selected at that profile. Thus, it satisfies unanimity. We claim it

also satisfies K-strategy-proofness. It is obvious that a voter cannot K-manipulate, if she is

getting an alternative from her top K-ranked alternatives, so we only focus on profiles which

come under the second case (in the description of f).

Pick any profile P , where T K(P1, P2) = ∅. According to the SCF, an alternative from

the set X can be obtained only if it is commonly ranked in the top K-ranked alternatives

by both the voters 1 and 2. Therefore, fixing P−1, voter 1 can never obtain an alternative

xi ∈ X, which belongs to her top K-ranked alternatives, since T K(P1, P2) = ∅ (in particular,

alternative xi which is ranked higher than rl?(P1)). Moreover, the outcome must belong to

the set T Kl?(P1)(P1). It follows that at every profile voter 1 always gets an outcome which

belongs to the top K alternatives within her opportunity set. So, she cannot K-manipulate.

A similar argument applies to voter 2. At profile P , she cannot obtain an alternative

which belongs to top K-ranked alternatives in her preference ordering because we have as-

sumed T K(P1, P2) = ∅. Moreover at every profile she selects the most preferred outcome

from her opportunity set. It implies that by misreporting, at best, she can obtain an al-

ternative which is ranked at K+1. Fix the sub-profile P−2, because of our assumption of

m < 5K
2

, voter 2 at most can gain K−2 places in her preference ordering. We highlight this

specific case in Figure 2.2. Therefore, voter 2 also can never K-manipulate. Hence, f is

K-strategy-proof SCF.

It is easy to see that no voter can be a K-dictator because according to the SCF, for

every voter there exist profiles where she obtains an alternative below her top K-ranked

alternatives.
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P1 P2

a1 a20

· ·
· ·
· ·

a10−K̄ a11+K̄

x1 a10+K̄

· ·
· ·
xK̄ a11

a11−K̄ x1

a12−K̄

·
·
a10

x2

·
·
xK̄

 = K̄−1

a11

a12

·
·

a10+K̄

a10

a9

·
·
a11−K̄


= K̄

a11+K̄ a10−K̄

· ·
· ·
a20 a1

Figure 2.2: The profile P where voter 2 has maximum possible gain via a misreporting.

We provide a profile P , where voter 2 has the maximum scope of manipulation. We

argue that this manipulation can lead to at most a gain of 2K̄−1 places, which is at most

K−2. Therefore, she cannot K-manipulate. For simplicity, assume K = 10.5 This makes

m = 20+K̄, where K̄ ∈ {1, 2, 3, 4}. Consider a profile P such that P1 and P2 are as follows :

(i) P1 = (a1, . . . , a10−K̄ , x1, . . . , xK̄ , a11−K̄ , . . . , a20).

(ii) P2 = (a20, . . . , a11, x1, . . . , xK̄ , a10, . . . . . . , a1).

The profile P is shown in Figure 2.2. At this profile, we have T K(P1, P2) = ∅. According to

the SCF, P comes under the second case. Therefore, we need to compute l?(P1), which is

5This particular instance can easily be generalized to any value of K.
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equal to 1 because a1 is the first alternative from the top, which does not belong to X. It

implies that

T Kl?(P1)(P1) = {rl?(P1), rl?+1(P1), . . . , rl?+K−1(P1)}\X = {a1, a2, . . . , a10−K̄}

Hence, f(P ) = Max
P2

T Kl?(P1)(P1) = a10−K̄ . The most profitable manipulation for voter 2 is

when she obtains x1 via a misreport. But, we have assumed that K̄ < K
2

. Therefore, this

improvement at maximum could be of 2K̄−1 places, which is strictly lower than K−1. So,

at best she can K−1 manipulate but not K-manipulate. This completes our claim.

2.5 Conclusion

We have shown the robustness of the Gibbard-Satterthwaite Theorem when voters incur a

cost of lying. We have introduced the new notion of K-strategy-proofness. We have shown

that for a sufficiently large number of alternatives K-strategy-proofness in conjunction with

either efficiency or unanimity leads to the K-dictatorship. This is surprising in view of the

fact that K-strategy-proofness is a significant weakening of strategy-proofness.

2.6 Appendix

We provide a proof of Theorem 2.1. We begin with a lemma which we will use frequently

in the proof. It is a “lifting” lemma of the sort which is common in the arguments involving

strategy-proofness.

Let S be a non-empty subset of voters. Let (A1, A2, A3) be a partition of the set A with

|A2| ≥ K and A3 6= ∅. Let P̂ be a profile such that all voters in S rank all alternatives in

A1 above all alternatives in A2 and all alternatives in A2 above all alternatives in A3.

For any voter i ∈ S and let P̂i(A2) be the set of preference orderings obtained from the P̂i,

by only reshuffling the alternatives from A2, while keeping the ranks of all the alternatives in

A1 and A3 unchanged i.e. for i ∈ S denote P̂i(A2) = {Pi ∈ P : r(Pi, x) = r(P̂i, x) for all x ∈
A1 ∪ A3}.

Let P̂nS(A2) be the set of all profiles P such that Pi ∈ Pi(A2) for all i ∈ S and Pj = P̂j for

all j ∈ N\S i.e. PN\S = P̂N\S. In other words, every P in P̂nS(A2) is obtained from the profile

P̂ , by only reshuffling the alternatives from set A2 and only by voters in S. Let PnS(A) be the

set of all profiles P ′ such that P ′N\S = P̂N\S. In other words, every P ′ in P̂nS(A) is obtained

from the profile P̂ by keeping the orderings of voters in N\S the same, while the orderings

of voters in S can be chosen arbitrarily. It is obvious that P̂ n
S(A2) ( P̂ n

S(A).

Lemma 2.1 If f(P̂ )∈A3 ⇒ f(P )∈A3 for all P ∈ P̂nS(A2) then f(P ′) ∈ A3 for all P ′ ∈ PnS(A).
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Proof : Suppose the Lemma is false. Let S be a collection of subsets of set S as follows :

S = {T ⊆ S : ∃P such that (i)Pi ∈ P̂i(A2)∀i ∈ S\T (ii)PN\S = P̂N\S (iii)f(P ) /∈ A3}.

The collection S contains all sets T of voters from set S such that there exists a profile where

voters in S\T report a preference ordering obtained by only reshuffling A2 and N\S report

exactly same as P̂N\S and voters in T can obtain an outcome outside A3 by reporting some

sub-profile. As we have assumed that the Lemma is false then S cannot be non-empty, it

must include at least the set S.

Pick a set of minimal size from S i.e. S? ∈ S such that |S?| ≤ |T | for all T ∈ S. Let

|S?| = l? > 0. Assume w.l.o.g. that S? = {1, 2, . . . , l?}. The set S? must satisfy the following

property : there exists a profile P ? such that (i) f(P ?) /∈ A3 when P ?
i ∈ P̂i(A2)∀i ∈ S\S? and

P ?
N\S = P̂N\S, (ii) f(Pl? , P

?
−l?) ∈ A3 for every Pl? ∈ P̂l?(A2). Fix this profile P ?. We obtain a

contradiction by showing that S? is not the minimum.

Our first claim is that f(P ?) /∈ A1. Let P l? be the profile obtained from P ? by replacing

P ?
l? with P̂l? i.e. P l? = (P̂l? , P

?
−l?). By the fact that S? is minimal we have f(P l?) ∈ A3. If

f(P ?) ∈ A1 then voter l? can K-manipulate at profile P l? via P ?
l? because of the assumption

|A2| ≥ K. Therefore, f(P ?) ∈ A2.

Let P ′′l? be an ordering where (i) all alternatives in A1 are ranked above those in A2, which

in turn are ranked above those in A3 and (ii) x? is the highest ranked alternative within A2.

Formally, P ′′l? ∈ P̂l?(A2) and r|A1|+1(P ′′l?) = x?.

Our next claim is that l? 6= 1. Suppose l? = 1 i.e. S? = {1} and f(P ?) = x? ∈ A2.

Observe that (P ′′1 , P
?
−1) ∈ P̂nS(A2). By our assumption f(P ′′1 , P

?
−1) ∈ A3. So, if f(P ?) = x?

and |A2| ≥ K then voter 1 can K-manipulate at profile (P ′′1 , P
?
−1) via P ?

1 .

The remaining case to consider is l? > 1. As we have argued previously that l? is the

cardinality of the set which is minimum in the size in the collection S. Thus, it must be the

case that f(P ′′l? , P
?
−l?) ∈ A3; otherwise l?−1 becomes the cardinality of minimal set i.e. l?−1

number of voters are enough in the set S to obtain an outcome outside A3. As f(P ?) = x?

and |A2| ≥ K, the voter l? can K-manipulate at profile (P ′′l? , P
?
−l?) via P ?

l? because x? is

ranked at least K−1 places above every alternative in A3 in the preference ordering P ′′l? .

Therefore, we arrive at a contradiction and it completes the proof. �

Let G1, G2 and G3 be a partition of N such that G1 is non-empty. Let P̄G3 be a sub-profile

for voters in G3. Let X ⊂ A such that |X| = K. We denote PX
i for a ranking of alternatives

only in set X.6 We say G1 is decisive over X given P̄G3 , if there exists some ranking P̄X
i

such that we have f(P ) ∈ X for all profiles P such that

6In other words, PX
i is linear order over the set X. In this terminology any preference ordering Pi can

also be written as Pi ≡ PA
i .
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(i) all voters in G1 rank alternatives in X above all alternatives in A\X.

(ii) all voters in G1 have the common ranking P̄X
i over X.

(iii) the ordering of voters in G3 is P̄G3 i.e. PG3 = P̄G3 .

According to the definition, coalition G1 can “force” the outcome in X irrespective of the

preferences of G2 provided that preferences of G1 and G3 satisfy certain conditions.7 When

G3 = ∅, the condition reduces to saying G1 is decisive over X.

Next, we prove an important proposition which says that if N is partitioned into two

coalitions, a single voter and the rest, then either the single voter is decisive over some set

or the remainder coalition is decisive over another disjoint set.

Proposition 2.2 Let X and Y be arbitrary disjoint sets each with K alternatives. Let

({i}, N\{i}) be an arbitrary partition of N . If a SCF satisfies unanimity and K-strategy-

proofness then either voter i is decisive over Y or coalition N\{i} is decisive over X.

Proof : Assume without loss of generality that i = 1. Let (X, Y,B,C,D) be a partition of

set A such that (i) |Z| = K for Z = X, Y . (ii) |Z| ≥ K for Z = B,C,D. This is feasible

since |A| ≥ 5K. Let P be the profile such that

(i) voter 1 ranks all alternatives in Y on top, followed by all alternatives in D, followed

by all alternatives in X, followed by all alternatives in B and finally followed by all

alternatives in C.

(ii) all voters 2, 3, . . . , n rank all alternatives in X on top, followed by all alternatives in B,

followed by all alternatives in Y , followed by all alternatives in C and finally followed

by all alternatives in D.

(iii) all voters rank alternatives in X in the same way. We assume without loss of generality

that this common ranking is (x1, x2, . . . , xK). Similarly, all the voters rank alternatives

in Y the same way. We assume without loss of generality that this common ranking is

(y1, y2, . . . , yK).

The profile P is shown in Figure 2.3. Note that X and Y are shown in bold to signify that

all voters have a common ranking over X and Y as defined above. We emphasize that all

voters can rank alternatives arbitrarily in B, C and D, different from each other.8

7To clarify the nature of the condition let’s assume G1 = {1} and G2 = {2, . . . , n− 1} and G3 = {n}. Let

P̄X
i = (x1, . . . , xK) and P̄n = (a1, a2, . . . , am). Suppose voter 1 is decisive over X given P̄X

1 and P̄n. The

definition does not restrict the outcome if voter 1 changes her preference ordering by swapping x1 and x2.

In this case, the outcome may no longer belong to X. A similar implication applies to voter n. Therefore,
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P =

P1 P2 P3 · · · · Pn


Y X X · · · · X

D B B · · · · B

X Y Y · · · · Y

B C C · · · · C

C D D · · · · D

Figure 2.3

Step 1 : We claim that f(P ) ∈ X ∪ Y .

In order to prove the claim, we argue that f(P ) /∈ B ∪ C ∪ D. Suppose f(P ) ∈ B ∪
C. Consider a misreport by voter 1 of the type P ′1 = (x1, . . . . . .) i.e. r1(P ′1) = x1. By

unanimity f(P ′1, P−1) = x1. It is clear that voter 1 can K-manipulate at profile P via P ′1.

If f(P ) ∈ D then we show a contradiction using Lemma 2.1. Suppose f(P ) ∈ D.

Consider changes in the preferences of voters other than 1 in a manner where only ranking

of alternatives in C change i.e. only reshuffling the alternatives from C. Suppose a voter

i 6= 1 can shift the alternative from D. If the resulting alternative is above C then we have

a K-manipulation by voter i since |C| ≥ K. If the outcome is in C then the argument in

the previous paragraph applies and voter 1 can K-manipulate. Hence, the outcome must

remain in D for all such profiles.

All the conditions of Lemma 1 are satisfied with A1 = X ∪B ∪ Y, A2 = C, A3 = D and

coalition S = N \ {1}. Consider P ′ where P ′1 = P1 and for i 6= 1, P ′i = (y1, . . . . . .) i.e all

voters from 2 to n have y1 on top. Applying Lemma 2.1 we have f(P ′) ∈ D. Moreover, at this

profile y1 is commonly ranked first by all voters. However, this contradicts unanimity which

requires f(P ′) = y1. This completes the proof of Step 1.

Step 2 : If f(P ) ∈ Y then voter 1 is decisive over Y .

Consider a profile P ′ such that

(i) P1 = P ′1.

(ii) all voters 2, 3, . . . , n rank all alternatives in X on top, followed by all alternatives in

B, followed by alternative y1, followed by all alternatives in C and finally followed by

all alternatives in D ∪ Y \{y1}.

even a “slight change” in either P̄X
i via any voter in G1 or P̄G3

via any voter in G3 can lead to a drastic

change in the outcome.
8In all the figures, wherever we depict a set in bold in a preference ordering of a voter, it means alternatives

of that set are ranked in a specific way by that voter. Whereas, a non-bold set signifies that alternatives in

that set are ranked arbitrarily.
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(iii) all voters 2, 3, . . . , n rank alternatives in X according to (x1, x2, . . . , xK) and Y accord-

ing to (y1, y2, . . . , yK).

The profile P ′ is shown in Figure 2.4. We claim f(P ′) = y1.

f(P ′) = f

P ′1 P ′2 P ′3 · · · · P ′n


Y X X · · · · X

D B B · · · · B

X y1 y1 · · · · y1

B C C · · · · C

C
...

... · · · · ...

= y1 (2.1)

Figure 2.4

Consider a sequence which starts from P and terminates at P ′ such that voters from 2

to n progressively change their preference ordering from Pi to P ′i . Formally, consider the

sequence {P 1, P 2, . . . , P n} where P 1 = P and P k = (P ′k, P
k−1
−k ) = (P ′1 . . . P

′
k, Pk+1, . . . , Pn)

for k = 2, . . . , n i.e profile P k is obtained from P k−1 by replacing Pk with P ′k. Note that

P n = P ′. We claim that for any k ≥ 2,

(i) if f(P k−1) ∈ Y \{y1} then f(P k) ∈ Y ∪D.

(ii) if f(P k−1) = y1 then f(P k) = y1.

We first show (i). If f(P k) ∈ B ∪ C then an argument identical to the one used

in Step 1 applies. Voter 1 K-manipulates by misreporting via an ordering of type P ′′1 =

(x1 . . . xK . . . . . .). Suppose f(P k) ∈ X. As per ordering Pk every alternative in X is ranked

at least K places above every alternative in Y . Thus, voter k can K-manipulate at profile

P k−1 via P ′k. Therefore, f(P k) ∈ Y ∪D. This proves part (i).

Suppose f(P k−1) = y1 but f(P k) 6= y1. According to part (i) it has to belong to Y ∪D.

In ordering P ′k the alternative y1 is ranked at least K places above every alternative in

D∪Y \{y1}. Therefore, at profile P k = (P ′1 . . . P
′
k, Pk+1, . . . , Pn) voter k canK-manipulate via

misreporting Pk to obtain y1 instead of an alternative from D ∪ Y \{y1}. This is a contra-

diction to K-strategy-proof and completes the proof of part (ii).

It is obvious that (i) and (ii) imply f(P ′) ∈ Y ∪ D. Suppose f(P ′) ∈ D ∪ Y \{y1}.
Consider any profile obtained by changing the preference ordering of voters other than 1, only

over alternative in C i.e. keeping the ranking of alternatives in A\C unchanged. Arguments9

in Step 1 can be replicated to show that the outcome in this profile remains in D ∪ Y \{y1}.
9The arguments showed that f(P ) /∈ D in Step 1.
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Thus, all conditions of Lemma 2.1 are satisfied with A1 = X ∪ B ∪ {y1}, A2 = C, A3 =

D∪Y \{y1} and S = N \{1}. Lemma 2.1 would imply that for any profile P̂ where P̂1 = P ′1,

we have f(P̂ ) ∈ D ∪ Y \{y1}. Pick P̂−1 such that P̂i = (y1 . . . yK . . . . . .) for each i 6= 1,

unanimity implies f(P̂ ) = y1. However, this contradicts our conclusion f(P ′) ∈ D ∪ Y \{y1}
in previous paragraph. Therefore, f(P ′) = y1. We will use this conclusion later and record

it as Equation (2.1) Figure 2.4.

Consider a profile (P̃1, P
′
−1) where P̃1 = (y1 . . . yK , x1 . . . xK , . . .), it is shown in Figure

2.5. We claim f(P̃ ) = y1. If f(P̃1, P
′
−1) /∈ Y \{y1}, we can apply the same arguments

as in the previous paragraph to show that all conditions of Lemma 1 are satisfied with

A1 = X ∪ B ∪ {y1}, A2 = C, A3 = D ∪ Y \ {y1} and S = N \ {1}, again arriving at a

contradiction. Therefore, f(P̃1, P
′
−1) = y1.

(P̃1, P
′
−1) =

P̃1 P ′2 P ′3 · · · · P ′n



Y X X · · · · X

X B B · · · · B
... y1 y1 · · · · y1

... C C · · · · C

...
...

... · · · · ...

Figure 2.5

Now consider a profile P ′′ such that

(i) P ′′1 = P̃1.

(ii) all voters 2, 3, . . . , n rank all alternatives in X on top, followed by all alternatives in

B ∪ C ∪D, followed by all alternatives in Y .

(iii) all voters rank alternatives in X according to the common ranking (x1, x2, . . . , xK).

Similarly, alternatives in Y have the common ranking (y1, y2, . . . , yK).

The profile P ′′ is shown in Figure 2.6.

We claim f(P ′′) ∈ Y . In order to see this, start from profile P ′ and progressively change

the preference ordering of voters 2 through n from P ′i to P ′′i . Note that f(P ′) = y1 i.e. ∈ Y .

Suppose that voter k changes from P ′k to P ′′k and the outcome no longer belongs to Y .

If it belongs to X then voter k can K-manipulate at (P ′′1 , . . . , P
′′
k−1, P

′
k, . . . , P

′
n) via P ′′k .

If outcome belongs to B ∪ C ∪D then voter 1 K-manipulates at (P ′′1 , . . . , P
′′
k , P

′
k+1, . . . , P

′
n)

via any ordering of type P̂1 = (x1 . . . . . .). Therefore, we have a contradiction, establishing

that f(P ′′) ∈ Y .
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P ′′ =

P̃1 P ′′2 P ′′3 · · · · P ′′n


Y X X · · · · X

X
...

... · · · · ...
...

...
... · · · · ...

... Y Y · · · · Y

Figure 2.6

In profile P ′′ note that the ranking of voters 2 through n over B∪C∪D is arbitrary. Since

f(P ′′) ∈ Y , all conditions of Lemma 2.1 are satisfied with A1 = X A2 = B ∪C ∪D, A3 = Y

and S = N \ {1}. Applying Lemma 2.1 we have f(P ′′′) ∈ Y , where P ′′′ is shown in Figure

2.7 along with its outcome.

Note that in profile P ′′′ the preference orderings of voters 2 through n are arbitrary. While

the preference ordering of voter 1 is such that she ranks (y1, y2, . . . , yK) on top, immediately

followed by (x1, x2, . . . , xK) and the ranking over B ∪ C ∪D is arbitrary.

f

P ′′′1 P ′′′2 P ′′′3 · · · · P ′′′n


Y
...

... · · · · ...

X
...

... · · · · ...
...

...
... · · · · ...

...
...

... · · · · ...

∈ Y

Figure 2.7

Our final step is to show that voter 1 is decisive over set Y i.e. for any profile P̂ , where

P̂1 = (y1 . . . yK . . . . . .), we have f(P̂ ) ∈ Y .

Consider any such ordering P̂1 without loss of generality assume P̂1 =

(y1 . . . yK , t1, . . . , tK , . . . . . .) i.e. rl(P̂1) = yl for l = 1, 2, . . . , K and rl = tl−K for l =

1 +K, 2 +K, . . . , 2K.

Let (E,F,G) be a partition of A \ [Y ∪ T ] such that each has at least K elements i.e.

|V | ≥ K for V = E,F,G. Let P be the profile such that

(i) voter 1 ranks all alternatives in Y on top, followed by all alternatives in G, followed

by all alternatives in T , followed by all alternatives in E and finally followed by all

alternatives in F .

(ii) all voters 2, 3, . . . , n rank all alternatives in T on top, followed by all alternatives in E,

followed by all alternatives in Y , followed by all alternatives in F and finally followed
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by all alternatives in G.

(iii) all voters rank alternatives in T and Y in the same way with common ranking

(t1, t2, . . . , tK) and (y1, y2, . . . , yK) respectively.

Profile P is shown in Figure 2.8.

P =

P1 P2 P3 · · · · Pn


Y T T · · · · T

G E E · · · · E

T Y Y · · · · Y

E F F · · · · F

F G G · · · · G

Figure 2.8

It follows from Step 1 that f(P ) ∈ Y ∪ T . Suppose f(P ) ∈ T . At this profile consider a

misreport P ′′′1 = (Y ,X, . . .) via voter 1. By our previous arguments, we have f(P ′′′1 , P−1) ∈
Y . This implies voter 1 can K-manipulate. Hence, f(P ) ∈ Y .

Again replicating our earlier arguments, it follows that f(P̂ ) ∈ Y , where P̂1 = (Y,T . . .).

Since choice of ordering P̂1 is arbitrary, it completes the proof.

Step 3 : If f(P ) ∈ X then coalition {2, 3, . . . , n} is decisive over X.

Suppose f(P ) ∈ X. Consider any ordering P̂1 of voter 1 where she reshuffles the ordering of

alternatives in Y ∪D while keeping Y ∪D above X∪C∪B and the ranking of all alternatives

in X ∪ C ∪B the same. Profile (P̂1, P−1) with its outcome is shown in Figure 2.9.

f

P̂1 P2 P3 · · · · Pn



... X X · · · · X

... B B · · · · B

X Y Y · · · · Y

B C C · · · · C

C D D · · · · D

∈ X

Figure 2.9

Suppose f(P̂1, P−1) ∈ Y , then voter 1 can K-manipulate at P via P̂1. Suppose

f(P̂1, P−1) = dl for some dl in D. We can argue without loss of generality that dl is the

first ranked alternative in D according to P1 in profile P i.e rK+1(P1) = dl. Now, voter 1 can
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K-manipulate at P via P̂1. If f(P̂1, P−1) ∈ B∪C then voter 1 can K-manipulate at (P̂1, P−1)

via misreporting a preference ordering which puts x1 on top. Therefore, f(P̂1, P−1) ∈ X.

Consider any arbitrary partition (T,W ) of Y ∪D where both have cardinality of at least

K. Let P̃1 be an ordering such that voter 1 ranks all alternatives in T on top, followed by

an alternative x1,10 followed by all alternatives in W , followed by the remaining alternatives,

which are B ∪ C ∪X\{x1}. We claim f(P̃1, P−1) = x1. See Figure 2.10.

f(P̃1, P−1) = f

P̃1 P2 P3 · · · · Pn



T X X · · · · X

x1 B B · · · · B

W Y Y · · · · Y
... C C · · · · C
... D D · · · · D

= x1

Figure 2.10: Note that T ∪W = Y ∪D

Suppose f(P̃1, P−1) = z ∈ Y ∪D. Using the previous argument we can assume without

loss of generality that z is the top ranked alternative in P̂1 i.e. r1(P̂1) = z. By construction

alternative z is ranked at least 2K − 1 places above every alternative in X. Moreover, we

have shown that f(P̂1, P−1) ∈ X. Therefore, voter 1 can K-manipulate at profile (P̂1, P−1)

via P ′1. Suppose f(P̃1, P−1) ∈ X ∪ B ∪ C\{x1} i.e. the outcome is an alternative below W .

Then voter 1 can K-manipulate via misreporting x1 on top. Therefore, f(P ′1, P−1) = x1.

Consider an arbitrary profile P ′ where, P ′1 = P̃1 and voters 2 through n rank X on top

with the common ordering (x1, x2, . . . , xn). The ordering over all other alternatives i.e A\X
is arbitrary. We claim f(P ′) = x1. See Figure 2.11.

f(P ′) = f

P̃1 P ′2 P ′3 · · · · P ′n



T X X · · · · X

x1
...

... · · · · ...

W
...

... · · · · ...
...

...
... · · · · ...

...
...

... · · · · ...

∈ X

Figure 2.11

To see this, suppose voter 2 changes her preference from P2 to P ′2. Suppose the outcome

10Recall that x1 is top ranked alternative of all voters other than voter 1.
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is no longer x1. If the outcome is in X\{x1} then voter 1 can K-manipulate here via misre-

porting x1 on top (since |W | ≥ K). On the other hand, if the outcome is not in X then voter

2 can K-manipulate at (P̃1, P
′
2, P3, . . . , Pn) via P2 to obtain x1 again. Hence, the outcome

remains x1 at this profile. Now, repeating the same argument for voters 3 through n we

establish the claim.

P ′′ =

P ′′1 P ′′2 P ′′3 · · · · P ′′n


... X X · · · · X

...
...

... · · · · ...
...

...
... · · · · ...

...
...

... · · · · ...

Figure 2.12

Consider any profile P ′′ (see Figure 2.12), where P ′′1 is arbitrary and P ′′i = P ′i for all i 6= 1.

We claim f(P ′′) ∈ X ∪B∪C. Suppose the claim is false and f(P ′′) = z ∈ Y ∪D. As (T,W )

is an arbitrary partition of Y ∪D, we can assume without loss of generality that z ∈ T and

z is the top-ranked alternative in P ′1. Since T has at least K alternatives, z is ranked K − 1

places above x1. The argument in the previous paragraph shows that f(P ′) = x1. Therefore,

voter 1 can K-manipulate at P ′ via P ′′1 . So, f(P ′′) ∈ X ∪B ∪ C.

P ? =

P ?
1 P ?

2 P ?
3 · · · · P ?

n


Y X X · · · · X

B D D · · · · D

X Y Y · · · · Y

D C C · · · · C

C B B · · · · B

P ?? =

P1 P2 P3 · · · · Pn


Y X X · · · · X

C B B · · · · B

X Y Y · · · · Y

B D D · · · · D

D C C · · · · C

Figure 2.13

Consider the profiles P ? and P ?? shown in Figure 2.13. As we have shown f(P ′′) ∈
X ∪ B ∪ C, it follows immediately that f(P ?) ∈ X ∪ B ∪ C. However, in Step 1 we have

already shown that f(P ?) ∈ X ∪ Y . Thus, f(P ?) ∈ X.11

Starting from profile P ? instead of P and using the arguments in Step 3 we can deduce

that f(P ′′) ∈ X ∪D ∪ C because B and D have been interchanged in P to obtain P ?. By

an identical argument for P ??, we can show that f(P ′′) ∈ X.12

11This is so because P ? is the type of profile P ′′.
12The sets C and D have been interchanged in P to obtain P ??.
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Since B,C and D are mutually disjoint sets, it follows that f(P ′′) ∈ X. This shows that

coalition {2, 3, . . . , n} is decisive over X. �

Proposition 2.3 Let f be a unanimous and K-strategy-proof SCF. If there exists X ⊂ A

such that a voter i is decisive over X then f is K-dictatorial and i is the K-dictator.

Proof : We have to prove that for any profile P = (Pi, P−i), we have f(P ) ∈
{r1(Pi), r2(Pi) . . . rK(Pi)}. Pick an arbitrary preference ordering Pi. Suppose W contains

the top K alternatives in this preference ordering and assume without loss of generality that

they are ranked according to (w1, w2, . . . , wn) i.e. rl(Pi) = wl for all l = 1, . . . , K. Let Z be

the set of alternatives such that Z ⊂ A\W ∪ Y and |Z| = K.

P ∗ =

P ∗1 · · · P ∗i−1 P ∗i P ∗i+1 · · · P ∗n


Z · · · Z W Z · · · Z

E · · · E G E · · · E

W · · · W Z W · · · W

F · · · F E F · · · F

G · · · G F G · · · G

Figure 2.14

Consider a partition (Z,W,E, F,G) of A such that |V | = K for V = Z,W and |V | ≥ K

for V = E,F,G. Pick a profile P ∗ (shown in Figure 2.14) such that

(i) voter i ranks all alternatives in W on top, followed by all alternatives in G, followed

by all alternatives in Z, followed by all alternatives in E and finally followed by all

alternatives in F .

(ii) all voters in N\{i} rank all alternatives in Z on top, followed by all alternatives in E,

followed by all alternatives in W , followed by all alternatives in F and finally followed

by all alternatives in G.

(iii) all voters rank alternatives in W in the same way with the common ranking being

(w1, w2, . . . , wK). Similarly, alternatives in Z are ranked with the common ranking

(z1, z2, . . . , zK).13

Comparing profile P ∗ with profile P in the Figure 2.3, we see that they are “the same”

except that voter 1 and partition (X, Y,B,C,D) are replaced by voter i and partition

(Z,W,E, F,G) respectively.

13Note that voters can rank alternatives in E, F and G differently from each other.
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f

P ∗1 · · · P ∗i−1 P ∗i P ∗i+1 · · · P ∗n


Z · · · Z W Z · · · Z

E · · · E G E · · · E

W · · · W Z W · · · W

F · · · F E F · · · F

G · · · G F G · · · G

∈ W ⇒ f

P ′′1 · · · P ′′i−1 P ′′i P ′′i+1 · · · P ′′n


... · · · ... W
... · · · ...

... · · · ...
...

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

∈ W

Figure 2.15

Proposition 2.2 implies that either voter i is decisive over W or coalition N\{i} is decisive

over Z. If coalition N\{i} is decisive over Z then it is a contradiction to the hypothesis that

voter i is decisive over X. Therefore, voter i is decisive over W (see Figure 2.15). Note that

the choice of the preference ordering Pi was arbitrary. It follows that if voter i has preference

ordering Pi then i is decisive over set of alternatives {r1(Pi), r2(Pi) . . . rK(Pi)} i.e. outcome

must belong to her top K alternatives. Hence, voter i is K-dictator and f is a dictatorial

SCF. �

Proposition 2.4 Suppose f be a unanimous and K-strategy-proof SCF. Let X and Y be

disjoint sets each with K alternatives. Fix any i ∈ N , then either (i) voter i is decisive over

both X and Y or (ii) coalition N\{i} is decisive over both X and Y .

Proof : Assume w.l.o.g. that i = 1. Proposition 2.2 implies that either voter 1 is decisive

over Y or coalition N\{1} is decisive over X. If voter 1 is decisive over Y then Proposition

2.3 implies that voter 1 is the K-dictator which means she is also decisive over Y . This

covers the first possibility.

P ′ =

P ′1 P ′2 P ′3 · · · · P ′n


X Y Y · · · · Y

D B B · · · · B

Y X X · · · · X

B C C · · · · C

C D D · · · · D

Figure 2.16

Suppose coalition N\{1} is decisive over X. In order to show that it is also decisive over

Y, interchange X and Y in the profile P considered in Proposition 2.2 (Part 1)-Figure 2.3 to

obtain profile P ′ shown in Figure 2.16.
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f

P ′1 P ′2 P ′3 · · · · P ′n


X Y Y · · · · Y

D B B · · · · B

Y X X · · · · X

B C C · · · · C

C D D · · · · D

∈ Y ⇒ f

P ′′1 P ′′2 P ′′3 · · · · P ′′n


... Y Y · · · · Y

...
...

... · · · · ...
...

...
... · · · · ...

...
...

... · · · · ...

∈ Y

Figure 2.17

From Proposition 2.2-Step 1, we know that f(P ′) ∈ X ∪ Y . We want to argue that

f(P ) ∈ Y . Suppose f(P ) ∈ X. Then, using the arguments of Proposition 2.2-Step 2, we can

conclude that voter 1 is decisive over X. If voter 1 becomes decisive over X then Proposition

2.3 implies that she is the K-dictator. This contradicts the hypothesis that coalition N\{1}
is decisive over X. Therefore, f(P ) ∈ Y . Repeat the arguments of Proposition 2.2-Step 3,

with the only modification being X and Y are interchanged. This leads to the conclusion

that coalition N\{i} is decisive over set Y (see Figure 2.17). This completes the proof. �

We will define some notation for the next proposition. Let {X, Y,B,C,D} be a partition

of A such that |Z| = K for Z = X, Y,B and |Z| ≥ K for Z = C,D. For any positive integer

k define Gk− = {1, 2, . . . , k−1}, Gk = {k, k+1, . . . , n} and Gk+ = {k+1, k+2, . . . , n}. Let l

be a positive integer less than equal to n − 1. Let P̄Gl−
be a sub-profile for voters in Gl−

such that all voters 1, 2, . . . , l − 1 rank alternatives in B on top with the common ranking

(b1, b2, . . . , bK), followed by all alternatives in D, followed by alternatives in {x1, y1}, followed

by all alternatives in C and finally followed by remaining alternatives i.e. in X∪Y \{x1, y1}14.

The sub-profile P̄Gl−
is shown Figure 2.18.

P̄Gl−
=

P̄1 P̄2 · · · · P̄l−1


B B · · · · B

D D · · · · D

{x1, y1} {x1, y1} · · · · {x1, y1}
C C · · · · C
...

... · · · · ...

Figure 2.18

14Note that voters in Gl− can rank alternatives in D, {x1, y1}, C, X ∪ Y \{x1, y1} differently from each

other.
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Proposition 2.5 Let f be a unanimous and K-strategy-proof SCF. Fix L such that 1 ≤
L ≤ n− 1. Suppose coalition Gl is decisive over both X and Y given P̄Gl−

for every l ≤ L.

Then either (i) voter L is decisive over both X and Y or (i) coalition GL+ is decisive over

both X and Y given P̄GL−
.15

Proof : The proof will be similar to that of Proposition 2.2. It is divided into three steps

and a one preliminary step called Step 0. The preliminary step is similar to unanimity but

restricted to coalition GL. The first step is concerned with the possible outcomes at a specific

profile. Depending on the outcome at this profile, the second and third step show that either

voter L is decisive over X and Y or coalition GL+ is decisive over X and Y .

Consider an arbitrary preference profile P ? where coalition GL− has the sub-profile P̄GL−
.

All voters in GL rank X on top and alternatives in X are ranked according to the common

ranking (x1, x2, . . . , xK). Similarly, let P ∗∗ be an arbitrary profile where coalition GL− has a

profile P̄GL−
. In addition, all voters in GL rank Y on top and alternatives in Y are ranked

according to the common ranking (y1, y2, . . . , yn).16 The profiles P ∗ and P ∗∗ are shown in

Figure 2.19.

Step 0 : We claim f(P ∗) = x1 and f(P ∗∗) = y1.

Since GL is decisive over X given P̄GL−
, the outcome at P ∗ must belong to X. Suppose

f(P ∗) ∈ X\{x1}. Consider the profile obtained when voter L− 1 replaces ordering P̄L−1 by

an ordering P̂L−1, which places X on top such that alternatives in X are ranked according to

the common ranking (x1, x2, . . . , xK). By the hypothesis, GL−1 is also decisive over X given

P̄GL−1−
. Therefore, the outcome at this new profile (P̂L−1, P

∗
−(L−1)), must belong to X. If the

outcome is x1 then there is a K-manipulation at the original profile P ∗ by voter L − 1 via

P̂L−1 (since |C| ≥ K). Therefore, the outcome at the new profile also belongs to X\{x1}.
We can continue in the same way changing the preferences of voters L− 2 through 1 by

an ordering that places X on top such that alternatives in X are ranked according to the

common ranking (x1, x2, . . . , xK). At every step in this sequence the outcome must belong

to X\{x1}. However, at the end of the sequence unanimity will imply that the outcome is

x1. We have a contradiction. Therefore, f(P ∗) = x1. By an identical argument where X is

replaced by Y , we have f(P ∗∗) = y1. This completes the claim.

Consider the preference profile P such that (see Figure 2.20)

15According to the Proposition, if voter L is decisive then there is no restriction. Whereas coalition GL+

becomes decisive only with respect to the sub-profile P̄GL−
. To clarify further, suppose n = 6 and L = 3.

The Proposition says : Suppose it is true that N, {2, 3, 4, 5, 6}, {3, 4, 5, 6} is decisive over X and Y given

∅, P̄{1}, P̄{1,2} respectively. Then either (i) 3 is decisive over X and Y or (ii) {4, 5, 6} is decisive over X and

Y given P̄{1,2,3}.
16We are assuming w.l.o.g. a coalition is decisive over X and Y w.r.t. P̄X

i = (x1, x2, . . . , xK) and

P̄Y
i = (y1, y2, . . . , yn) respectively.
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P ∗ =

P̄1 . . . P̄L−1 P ∗L P ∗L+1 · · · · P ∗n



B · · · B X X · · · · X

D · · · D
...

... · · · · ...

{x1, y1} · · · {x1, y1}
...

... · · · · ...

C · · · C
...

... · · · · ...
... · · · ...

...
... · · · · ...

P ∗∗ =

P̄1 . . . P̄L−1 P ∗∗L P ∗∗L+1 · · · · P ∗∗n



B · · · B Y Y · · · · Y

D · · · D
...

... · · · · ...

{x1, y1} · · · {x1, y1}
...

... · · · · ...

C · · · C
...

... · · · · ...
... · · · ...

...
... · · · · ...

Figure 2.19

(i) PGL+ = P̄GL+

(ii) voter L ranks all alternatives in Y on top, followed by all alternatives in D, followed

by all alternatives in X, followed by all alternatives in B and finally followed by all

alternatives in C.

(iii) all voters in GL+ = {L+ 1, L+ 2, . . . , n} rank all alternatives in X on top, followed by

all alternatives in B, followed by all alternatives in Y , followed by all alternatives in C

and finally followed by all alternatives in D.

(iv) all voters in GL = {L,L+1, . . . , n} rank alternatives in X in the same way according to

common ranking (x1, x2, . . . , xK). Similarly, alternatives in Y are ranked in the same

way according to common ranking (y1, y2, . . . , yK).17

Step 1′ : We claim that f(P ) ∈ X ∪ Y .

We prove the claim by showing f(P ) /∈ B ∪ C ∪ D. Suppose f(P ) ∈ B ∪ C. Consider

a misreport by voter L that puts X on top which are ranked according to (x1, x2, . . . , xK)

i.e. an ordering of type P ′L = (x1 . . . xK . . . . . .). We thereby obtain the profile P ∗. Since

f(P ∗) = x1, voter L is able to K-manipulate at P .

17Note that voters in GL can rank alternatives in B, C and D differently from each other.
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P =

P̄1 . . . P̄L−1 PL PL+1 · · · · Pn


B · · · B Y X · · · · X

D · · · D D B · · · · B

{x1, y1} · · · {x1, y1} X Y · · · · Y

C · · · C B C · · · · C
... · · · ... C D · · · · D

Figure 2.20

Suppose f(P ) ∈ D. Consider any profile where voters in GL+ reshuffle only alternatives

in C i.e. keeping the position of all alternatives in A \ C unchanged.

Suppose a voter i ∈ GL+ can shift the outcome away from D. If the resulting out-

come is in C then the argument in the previous paragraph applies and voter L will K-

manipulate because she can obtain outcome x1 via misreporting (x1, x2, . . . , xK) on top. If

on the other hand, the outcome is above C then we have a K-manipulation by voter i since

|C| ≥ K. Hence, the outcome must remain in D for all such profiles.

Lemma 2.1 can therefore be applied with A1 = X∪B∪Y, A2 = C, A3 = D and S = GL+

to conclude that the outcome at a profile where voters L+1 through n have Y on top and

alternatives in Y are ranked according to (y1, y2, . . . , yn), the outcome is in D. This implies

that P ∗∗ ∈ D, which contradicts our conclusion in Step 0. This completes Step 1′.

Step 2′ : If f(P ) ∈ Y then L is decisive over Y .

The arguments will be similar to that of Proposition 2.2-Step 2 with the modifications that

voter L and coalition GL+ are treated like voter 1 and coalition G1+ respectively.18

Consider the profile P ′ such that

(i) P ′GL−
= P̄GL−

.

(ii) P ′L = PL.

(iii) all voters in GL+ rank all alternatives in X on top, followed by all alternatives in B,

followed by alternative y1, followed by all alternatives in C and finally followed by all

remaining alternatives i.e. D ∪ Y \{y1}.

(iv) all voters in GL+ rank alternatives in X according to (x1, x2, . . . , xK) and Y according

to (y1, y2, . . . , yK).

The profile P ′ is shown in Figure 2.21.

18We will keep the profile of GL− as P̄GL−
.
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P ′ =

P̄1 . . . P̄L−1 PL P ′L+1 · · · · P ′n



B · · · B Y X · · · · X

D · · · D D B · · · · B

{x1, y1} · · · {x1, y1} X y1 · · · · y1

C · · · C B C · · · · C
... · · · ... C

... · · · · ...

Figure 2.21

We claim f(P ′) = y1. Consider a sequence of profiles {PL, PL+1, . . . , P n}, where PL = P

and P k = (P ′k, P
k−1
−k ) = (P ′1, . . . , P

′
k, Pk+1, . . . , Pn) i.e profile P k is obtained from P k−1 by

replacing Pk with P ′k for k = L+1, . . . , n. Note that P n = P ′. The sequence starts with

profile P and voters L+1 through n progressively change their preference ordering from Pi

to P ′i . We claim that for any k ≥ 2,

(i) if f(P k−1) ∈ Y \{y1} then f(P k) ∈ Y ∪D.

(ii) if f(P k−1) = y1 then f(P k) = y1.

We first show Part (i). If f(P k) ∈ B ∪ C then an argument identical to the one used

in Step 1′ applies and voter L is able to K-manipulate via preference ordering of type P ′′L =

(x1 . . . xK . . . . . .). Suppose f(P k) ∈ X. As per preference ordering Pk every alternative in

X is ranked at least K places above every alternative in Y (since |B| = K). Thus, voter k

is able to K-manipulate at profile P k−1 via P ′k. Therefore, f(P k) ∈ Y ∪D. This proves part

(i).

Suppose f(P k−1) = y1 but f(P k) 6= y1. According to part (i) it has to belong to Y ∪D. In

preference ordering P ′k, the alternative y1 is ranked at least K places above every alternative

in D ∪ Y \{y1} (since |C| ≥ K). Therefore, at profile P k = (P ′1 . . . P
′
k, Pk+1, . . . , Pn), voter

k is able to K-manipulate via misreporting Pk to obtain y1 instead of an alternative from

D ∪ Y \{y1}. This is a contradiction to K-strategy-proof and it completes the proof of part

(ii).

Suppose f(P ′) ∈ D ∪ Y \{y1}. Consider any profile obtained by changing the preference

orderings of voters in coalition GL+ , only over alternatives in C i.e. keeping the position

of alternatives in A \ C unchanged. Arguments in Step 1′ can be replicated to show that

the outcome at this profile remains in D ∪ Y \{y1}.19 Thus, all conditions of Lemma 2.1 are

satisfied with A1 = X ∪ B ∪ {y1}, A2 = C, A3 = D ∪ Y \ {y1} and S = GL+ . Lemma

19We refer to the arguments which showed that f(P ) /∈ D.
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(P̃1, P
′
−L) =

P̄1 . . . P̄L−1 P̃L P ′L+1 · · · · P ′n



B · · · B Y X · · · · X

D · · · D X B · · · · B

{x1, y1} · · · {x1, y1}
... y1 · · · · y1

C · · · C
... C · · · · C

... · · · ...
...

... · · · · ...

Figure 2.22

2.1 implies that for any profile P̂ , where P̂N\GL+ = P ′N\GL+
, we have f(P̂ ) ∈ D ∪ Y \{y1}.

Pick P̂GL+ such that P̂i = (y1 . . . yK . . . . . .) for each i ∈ GL+ . The Step 0 implies f(P̂ ) = y1.

However, this contradicts our conclusion f(P ′) ∈ D ∪ Y \{y1} in the previous paragraph.

Therefore, f(P ′) = y1.

Consider the profile (P̃1, P
′
−L) shown in Figure 2.22. Note that P̃L =

(y1 . . . yK , x1 . . . xK , . . . . . .). We claim f(P̃1, P
′
−L) = y1. If f(P̃1, P

′
−1) /∈ Y then voter L

is able to K-manipulate at profile (P̃1, P
′
−1) via P ′L to obtain y1. If on the other hand,

f(P̃1, P
′
−1) ∈ Y \{y1}, we can apply the same arguments as in the previous paragraph to

show that all conditions of Lemma 2.1 are satisfied with A1 = X ∪B ∪ {y1}, A2 = C, A3 =

D ∪ Y \{y1} and S = GL+ . Again, it implies a contradiction. Therefore, f(P̃1, P
′
−1) = y1.

Now consider a profile P ′′ (see Figure 2.23) such that

(i) P ′′GL−
= P̄GL−

.

(ii) P ′′L = P̃L.

(iii) all voters in GL+ rank all alternatives in X on top, followed by all alternatives in

B ∪ C ∪D, followed by all alternatives in Y .

(iv) all voters rank alternatives in X according to the common ranking (x1, x2, . . . , xK).

Similarly, alternatives in Y have the common ranking (y1, y2, . . . , yK).

We claim f(P ′′) ∈ Y . In order to see this, start from profile P ′ and progressively

change the preference ordering of voters L+1 through n from P ′i to P ′′i . Note that

f(P ′) = y1 ∈ Y . Suppose that k is the first voter whose change from P ′k to P ′′k leads

the outcome to no longer belong to Y . If it belongs to X then voter k is able to K-

manipulate at (P ′′1 , . . . , P
′′
k−1, P

′
k, . . . , P

′
n) via P ′′k . On the other hand, if the outcome belongs

to B ∪C ∪D then voter L can K-manipulate at (P ′′1 , . . . , P
′′
k , P

′
k+1, . . . , P

′
n) via any ordering

of type P̂1 = (x1 . . . xK . . . . . .). Therefore, we have a contradiction, establishing f(P ′′) ∈ Y .
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P ′′ =

P̄1 . . . P̄L−1 P̃L P ′′L+1 · · · · P ′′n



B · · · B Y X · · · · X

D · · · D X
... · · · · ...

{x1, y1} · · · {x1, y1}
...

... · · · · ...

C · · · C
...

... · · · · ...
... · · · ...

... Y · · · · Y

Figure 2.23

In profile P ′′, note that the ranking of voters in GL+ over B ∪ C ∪D is arbitrary. Since

f(P ′′) ∈ Y , all conditions of Lemma 2.1 are satisfied with A1 = X, A2 = B∪C∪D, A3 = Y

and S = GL− . Moreover, the ranking of voter L over B ∪ C ∪D is also arbitrary. Applying

Lemma 2.1, we have f(P ′′′) ∈ Y , where P ′′′ is shown in Figure 2.24.

P ′′′ =

P̄1 . . . P̄L−1 P̃L P ′′′L+1 · · · · P ′′′n



B · · · B Y
... · · · · ...

D · · · D X
... · · · · ...

{x1, y1} · · · {x1, y1}
...

... · · · · ...

C · · · C
...

... · · · · ...
... · · · ...

...
... · · · · ...

Figure 2.24

Note that in profile P ′′′, the preference orderings of voters L+1 through n are arbitrary,

while voter L ranks (y1, y2, . . . , yK) on top, followed by (x1, x2, . . . , xK), followed by an

arbitrary ordering over B ∪ C ∪D.

Next, consider a profile P ? such that

(i) P ?
GL−

= P̄GL−
.

(ii) voter L ranks all alternatives in Y on top according to the ranking (y1, y2, . . . , yK),

followed by all alternatives in X according to the ranking (y1, y2, . . . , yK), followed

by all alternatives in B, followed by all alternatives in D and finally followed by all

alternatives in C.

(iii) all voters in GL+ rank all alternatives in B on top, followed by all alternatives in D,

followed by alternative y1, followed by all alternatives in C and finally, followed by all

remaining alternatives i.e. D ∪ Y \{y1}.
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(iv) all voters rank alternatives in B, according to the common ranking (b1, b2, . . . , bK).

The profile P ? is shown in Figure 2.25. We claim f(P ?) = y1.

P ? =

P̄1 . . . P̄L−1 P ?
L P ?

L+1 · · · · P ?
n


B · · · B Y B · · · · B

D · · · D X D · · · · D

{x1, y1} · · · {x1, y1} B y1 · · · · y1

C · · · C D C · · · · C
... · · · ... C

... · · · · ...

Figure 2.25

The arguments in the previous paragraph (see Figure 2.24) imply that f(P ?) ∈ Y . Sup-

pose f(P ?) ∈ Y \{y1}. As in Step 0, consider the profile when voter L+1 replaces ordering

P ?
L+1 by an ordering which places Y on top according to (y1, y2, . . . , yn). The outcome at this

new profile belongs to Y because of the argument in the previous paragraph. If the outcome

is y1 then it is a K-manipulation (since |C| ≥ K) at the original profile P ? by voter L+1.

Therefore, the outcome at the new profile must belong to Y \{y1}.
We can continue in the same way by changing the preference orderings of voters L+2

through n by a preference ordering that places Y on top, such that alternatives in Y are

ranked according to (y1, y2, . . . , yn). At every step in this sequence the outcome must belong

to Y \{y1}. However, at the end of sequence, the profile so obtained is P ∗∗. Step 0 will imply

that the outcome is y1 at this profile. So, we have a contradiction. Therefore, f(P ?) = y1.

Next, consider a profile P ?? obtained from P ?, where voters 1 through L−1 place x1

below C. Formally, profile P ?? (see Figure 2.26) is such that

(i) all voters in GL− rank all alternatives in B on top, according to the common ranking

(b1, b2, . . . , bK), followed by all alternatives in D, followed by the alternative y1, fol-

lowed by all alternatives in C and finally, followed by all remaining alternatives i.e.

D ∪ Y \{y1}.

(ii) P ??
GL

= P ∗GL
.

We claim that f(P ??) = y1. Suppose f(P ??) 6= y1. Start with profile P ? and consider the

profile obtained, when voter 1 replaces ordering P ?
1 by P ??

1 . If the outcome at new profile

(P ??
1 , P ?

−1) belongs to C ∪ D then voter L can K-manipulate by misreporting an ordering

of type (b1 . . . bk . . . . . .) to obtain b1. If the outcome belongs to X then voter 1 is able to

K-manipulate at P ? via ordering P ??
1 , since |D| ≥ K. Suppose the outcome is an alternative
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P ?? =

P ??
1 . . . P ??

L−1 P ?
L P ?

L+1 · · · · P ?
n


B · · · B Y B · · · · B

D · · · D X D · · · · D

y1 · · · y1 B y1 · · · · y1

C · · · C D C · · · · C
... · · · ... C

... · · · · ...

Figure 2.26: Profile P ??

below C. Then, voter 1 can K-manipulate at profile (P ??
1 , P ?

−1) via P ?
1 by obtaining y1, since

(|C| ≥ K). Therefore, the outcome at the new profile is y1 i.e. f(P ??
1 , P ?

−1) = y1.

We can continue in the same way, by changing progressively the preference ordering P ?
i of

voters 2 through L−1, by the ordering P ??
i . An identical argument implies that at every step

in this sequence the outcome is y1. Note that sequence ends at the profile P ??. Therefore,

we have f(P ??) = y1.

Our final step is to show that voter L is decisive over Y . Compare profile P ?? with profile

P ′ in the Proposition 2.2-Step 2 (Figure 2.4). We see that they are “the same” except that

voter 1 and sets (D,X and B) are replaced by voter L and sets (X,B and D) respectively.

Following a similar argument from there on, we can conclude that voter L is decisive over

Y . Since voter L is decisive over Y , the Proposition 2.4 implies that L is also decisive over

X. This completes the proof of this step.

Step 3′ : If f(P ) ∈ X then coalition GL+ is decisive over X and Y given P̄GL−
.

This step can be proved using the same arguments used in Proposition 2.2-Step 3 with some

suitable modifications. In particular, voter L is replaced by voter 1 and coalition GL+ is

replaced by G1+ . In all these arguments fix the sub-profile of coalition GL− equal to P̄GL−
.

We omit the details of the arguments, since they are essentially the same as those in Step 3

of Proposition 2.2. By doing this, we get the conclusion that coalition GL+ is decisive over

X given P̄GL−
.20

Now apply the arguments similar to Proposition 2.4 by replacing X and Y in preference

orderings of voters in GL+ in profile P to conclude that with this interchange outcome belongs

to Y . This will eventually lead to the conclusion that GL+ is decisive over Y given P̄GL−
.

This completes the proof. �

Proof : [Theorem 2.1] Proposition 2.5 implies that either there exists a voter L ∈
{1, 2, . . . , n−1}, who is decisive over X and Y or voter n is decisive over X and Y , given

20The Step 0 is important to establish this result.
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P̄G
(n−1)−

.

If voter L is decisive then Proposition 2.3 implies that L is also a K-dictator and it

completes the proof. For the latter case, we show that voter n is decisive over Y . Consider

the profile P ′ (see Figure 2.27) such that

(i) P ′G(n−1)−
= P̄G(n−1)−

(ii) voter n−1 ranks all alternatives in B on top, according to the common ranking

(b1, b2, . . . , bK), followed by all alternatives in D, followed by alternative y1, followed by

all alternatives in C and finally, followed by all remaining alternatives i.e. D ∪ Y \{y1}.

(iii) voter n ranks all alternatives in Y on top, according to the ranking (y1, y2, . . . , yK),

followed by all alternatives in X according to the ranking (y1, y2, . . . , yK), followed

by all alternatives in B, followed by all alternatives in D and finally, followed by all

alternatives in C.

P ′ =

P̄1 P̄2 · · · P̄n−2 P ′n−1 P ′n


B B · · · B B Y

D D · · · D D X

{x1, y1} {x1, y1} · · · {x1, y1} y1 B

C C · · · C C D
...

... · · · ...
... C

Figure 2.27

We claim f(P ′) = y1. Since, Gn is decisive over Y , given P̄Gn−1−
, we have f(P ′) ∈ Y .

Suppose f(P ′) ∈ Y \{y1}. Consider an ordering of voter n − 1, which puts Y on top and

alternatives in Y are ranked according to (y1, y2, . . . , yn). By such a preference ordering,

voter n−1 obtains P ∗∗ and Step 0 implies the outcome is y1. This implies that voter n−1

can K-manipulate by a misreport at profile P ′. Thus, we have f(P ′) = x1

Compare the profile P ′ and its outcome with profile P ? and its outcome in Figure 2.25.

We see that they are “ the same” except that voter L is replaced by voter n and coalition

GL+ is replaced by voter n−1. Replicating the arguments of Proposition 2.5-Step 2′, we can

conclude that n is decisive over Y . If n is decisive over Y , applying Proposition 2.3 will

imply that n is also the K-dictator. This completes the proof. �

Recall, that for any L such that 1 ≤ L ≤ n − 1, coalitions GL− , GL and GL+ are

{1, 2, . . . , L−1}, {L,L+1, . . . , n} and {L+1, L+2, . . . , n} respectively. In what follows, we

use the same notion of decisiveness as in the proof of Proposition 2.2.
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Consider a partition (X, Y, Z) of A, where |X| = |Y | = K. Since m ≥ 3K, we have |Z| ≥ K.

Proposition 2.6 Assume |A| ≥ 3K. Let f be an efficient and K-strategy-proof SCF. Fix

L such that 1 ≤ L ≤ n− 1. Suppose coalition Gl is decisive over X, for every l ≤ L. Then,

either voter L is decisive over Y or coalition GL+ is decisive over X.21

Proof : The proof will closely follow that of Proposition 2.5. It is however considerably

simpler because of the additional power of the efficiency axiom. As in Proposition 2.5 the

proof is divided into three steps. The first step is concerned with possible outcomes at a

specific profile. Depending on the outcome at this profile, the second and third step show

that either voter L is decisive over Y or coalition GL+ is decisive over X.

Consider the preference profile P such that (see Figure 2.28)

(i) all voters in GL− rank all alternatives in Z on top, followed by all alternatives in Y

and finally, followed by all alternatives in X.

(ii) voter L ranks all alternatives in Y on top, followed by all alternatives in X and finally,

followed by all alternatives in Y .

(iii) all voters in GL+ = {L+1, L+2, . . . , n} rank all alternatives in X on top, followed by

all alternatives in Y and finally, followed by all alternatives in Z.

(iv) all voters rank alternatives in X, Y and Z in the same way according to the common

rankings (x1, x2, . . . , xK), (y1, y2, . . . , yK) and (z1, z2, . . . , z|Z|) respectively.

P =

P1 . . . PL−1 PL PL+1 · · · · Pn Z · · · Z Y X · · · · X

Y · · · Y X Y · · · · Y

X · · · X Z Z · · · · Z

Figure 2.28

Step 1 : We claim that f(P ) ∈ {x1, y1}.
Efficiency implies that f(P ) ∈ {x1, y1, z1}. Suppose f(P ) = z1. Consider a misreport P ′L by

voter L, which puts X on top and alternatives in X are ranked according to common ranking

(x1, x2, . . . , xK). Since, GL is decisive over X, the outcome after misreport at profile (P ′L, PL
)

must belong to X. At this profile, x1 dominates every other alternative in X. Therefore,

21Note that when GL+ is decisive there is no restriction regarding the preferences of other voters, which

differs from the claim in Proposition 2.5
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f(P ′L, PL
) = x1. Since, x1 is ranked K−1 places above z1, voter L can K-manipulate at P

via P ′L. This is a contradiction. It completes the proof.

Step 2 : If f(P ) = x1 then coalition GL+ is decisive over X.

Consider an ordering P ′i , which puts all alternatives in Z on top, followed by all alternatives

in X and finally, followed by all alternatives in Y . Alternatives in X, Y and Z are ranked

according to the common rankings (x1, x2, . . . , xK), (y1, y2, . . . , yK) and (z1, z2, . . . , z|Z|) re-

spectively. Now, construct a profile P ′ from P by replacing Pi with P ′i for voters 1 through

L. In profile P ′, the sub-profile of voters other than {1, 2, . . . , L} remains the same as in P .

The profile P ′ is described below and shown in Figure 2.29.

(i) all voters in {1, 2, . . . , L} rank all alternatives in Z on top, followed by all alternatives

in X and finally, followed by all alternatives in Y . The alternatives in X, Y and

Z are ranked according to the common rankings (x1, x2, . . . , xK), (y1, y2, . . . , yK) and

(z1, z2, . . . , z|Z|) respectively.

(ii) P ′GL+
= PGL+

P ′ =

P ′1 . . . P ′L−1 P ′L PL+1 · · · · Pn Y · · · Y Y X · · · · X

Z · · · Z Z Y · · · · Y

X · · · X X Z · · · · Z

Figure 2.29

We claim f(P ′) = x1. Consider the profile (P ′1, P−1). Efficiency implies that f(P ′1, P−1) ∈
{x1, y1, z1}. If f(P ′1, P−1) = y1 then we have a contradiction because voter 1 can K-

manipulate at profile P via P ′1 as y1 is ranked K−1 places above x1. If on the other hand,

f(P ′1, P−1) = z1 then as we have argued in Step 1, voter L is able toK-manipulate at (P ′1, P−1)

by any ordering that puts X on top, which are ranked according to (x1, x2, . . . , xK). There-

fore, we have f(P ′1, P−1) = x1.

Now, progressively change Pi with P ′i for voters 2 through L. An identical argument

applies till voter L−1, and we have f(P ′1, . . . , P
′
L−1, PL, . . . , Pn) = x1. When voter L switches

from PL to P ′L, the outcome cannot be z1 because at profile P ′ all the alternatives in Z are

dominated by any yl ∈ Y . The outcome cannot be y1 either because it leads to a K-

manipulation by voter L. So, we have f(P ′) = x1.

Consider an arbitrary profile P ′′ obtained from P ′ where voters 1 through L reshuffle

only alternatives in Z i.e. keeping the position of all alternatives in A\Z unchanged. The

profile P ′′ is shown in Figure 2.30.
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P ′′ =

P ′′1 . . . P ′′L−1 P ′′L PL+1 · · · · Pn
Y · · · Y Y X · · · · X

... · · · ...
... Y · · · · Y

X · · · X X Z · · · · Z

Figure 2.30

At profile P ′′, efficiency will imply that f(P ) ∈ {x1, y1}. Note that f(P ′) =

x1. If voter k changes the outcome from x1 to y1 then she can K-manipulate at

(P ′′1 , . . . , P
′′
k−1, P

′
k, P

′
k+1, . . . , P

′
n) via P ′′k . It implies f(P ′′) = x1. Since, x1 ∈ X, all the

conditions of Lemma 2.1 are satisfied with A1 = Y , A2 = Z, A3 = X and S = {1, 2, . . . , L}.
Lemma 2.1 implies that for any profile where profile of coalition GL+ is PGL+ , the outcome

remains in X. This is shown through profile P ′′′ in Figure 2.31.

P ′′′ =

P ′′′1 . . . P ′′′L−1 P ′′′L PL+1 · · · · Pn


... · · · ...
... X · · · · X

... · · · ...
... Y · · · · Y

... · · · ...
... Z · · · · Z

Figure 2.31: f(P ′′′) ∈ X

Consider an arbitrary profile P̂ (shown in Figure 2.32) such that

(i) all voters in {1, 2, . . . , L} rank all alternatives in A\X above all alternatives in X.

(ii) all voters in GL+ rank all alternatives in X above all alternatives in A\X.

(iii) all voters rank alternatives in X, according to the common ranking (x1, x2, . . . , xK).

The ranking over A\X can be different for each voter.

P̂ =

P̂1 . . . P̂L−1 P̂L P̂L+1 · · · · P̂n


... · · · ...
... X · · · · X

... · · · ...
...

... · · · · ...

X · · · X X
... · · · · ...

Figure 2.32

We claim f(P̂ ) = x1. Start from profile P ′′ and consider the sequence of profiles such that

voters 1 through n progressively replace P ′′i with P̂i. The sequence of profiles thus obtained
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is {P 0, P 1, . . . , P n}, where P 0 = P ′′ and profile P k is obtained from P k−1 by replacing P ′′k
with P̂k. Note that P n = P̂ .

The step L in the sequence is profile PL = (P̂1, . . . , P̂L, PL+1, . . . , Pn). The argument

in previous paragraph (see Figure 2.31) implies that f(PL) ∈ X. Efficiency22 will imply

f(PL)) = x1. Consider profile PL+1 = (P̂L+1, P
L
−(L+1)). If f(PL+1) /∈ X then voter L+1 can

K-manipulate at profile PL+1 via P ′′L, as x1 is ranked at least K−1 places above every alter-

native in A\X. At profile P k for k ≥ L, the alternative x1 dominates all other alternatives

in X. Therefore, it leads to f(PL+1) = x1. The same argument applies to the remaining

profiles in the sequence. This implies f(P̂ ) = x1.

The final argument in this Step is to show that coalition GL+ is decisive over X. Consider

an arbitrary profile P ∗N\GL+
for voters in {1, 2, . . . , L}. Let (P ∗1 , P̂−1) be the profile obtained

from profile P̂ , when voter 1 replaces P̂1 with P ∗1 . We claim f(P ∗1 , P̂−1) ∈ X. Suppose for

some al ∈ A\X, we have f(P ∗1 , P̂−1) = al. Note that in ordering P̂1, voter 1 can arbitrarily

rank alternatives in A\X. We can therefore, assume that r1(P̂1) = al. This allows voter 1

to K-manipulate at profile (P ∗1 , P̂−1) via P ∗1 because al is at least 2K − 1 places above every

alternative in X according to P̂1. Hence, f(P ∗1 , P̂−1) ∈ X. An identical argument applies

when voters 2 through L replace P̂i with P ∗i . Thus, we have f(P ∗N\GL+
, P̂GL+ ) ∈ X.

The ranking of alternatives in A\X in sub-profile P̂GL+ is also arbitrary. Therefore, for

an arbitrary profile P ∗∗, where every voter in coalition GL+ ranks X on top with common

ranking (x1, x2, . . . , xK), we have f(P ∗∗) ∈ X. It is shown in the Figure 2.33. Therefore,

coalition GL+ is decisive over X and it completes the proof of Step 2.

P ∗∗ =

P ∗∗1 . . . P ∗∗L−1 P ∗∗L P ∗∗L+1 · · · · P ∗∗n


... · · · ...
... X · · · · X

... · · · ...
...

... · · · · ...
... · · · ...

...
... · · · · ...

Figure 2.33: f(P ∗∗) ∈ X

Step 3 : If f(P ) = y1 (see Figure 2.28) then voter L is decisive over Y .

Consider the profile P ′ such that (shown in Figure 2.34),

(i) P ′i = Pi, for all voters i ∈ {1, 2, . . . , L}.

(ii) all voters in GL+ rank all alternatives in X on top, followed by all alternatives in Z

and finally, followed by all alternatives in Y . The alternatives in X and Y are ranked

according to the common ranking (x1, x2, . . . , xK) and (y1, y2, . . . , yK) respectively.

22At profile PL, the alternative x1 dominates all other alternatives in X.
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P ′ =

P1 . . . PL−1 PL P ′L+1 · · · · P ′n
Z · · · Z Y X · · · · X

Y · · · Y X
... · · · · ...

X · · · X Z Y · · · · Y

Figure 2.34

We claim that f(P ′) = y1. Consider the profile (P ′L+1, P−(L+1)) obtained from profile P

by replacing PL+1 with P ′L+1. At profile (P ′L+1, P−(L+1)), efficiency implies that outcome must

belong to {x1, y1} ∪Z. If f(P ′L+1, P−(L+1)) = x1 then voter L+1 can K-manipulate at P via

P ′L+1. If on the other hand, f(P ′L+1, P−(L+1)) ∈ Z then consider a misreport by voter L of a

preference, where X is on top and alternatives in X are ranked according to (x1, x2, . . . , xK).

Since, coalition GL is decisive over X, the outcome in the new profile after the misreport

belongs to X. The alternative x1 dominates all other alternatives in X. Thus, voter L is able

to K-manipulate at (P ′L+1, P−(L+1)) by obtaining x1. Thus, we have f(P ′L+1, P−(L+1)) = y1.

The same argument applies when voters L+2 through n progressively replace Pi with P ′i . At

each step, the outcome remains y1 and hence at the end, we have f(P ′) = y1.

Since f(P ′) = y1 ∈ Y , |Z| ≥ K and the ranking over Z is arbitrary for voters of coalition

GL+ , all conditions of Lemma 2.1 are satisfied with A1 = X, A2 = Z, A3 = Y and S = GL+ .

Lemma 2.1 implies that for all profiles where preferences of coalition N\GL+ , are PN\GL+

the outcome remains in Y . This is shown through profile P̃ in Figure 2.35.

P̃ =

P1 . . . PL−1 PL P̃L+1 · · · · P̃n


Z · · · Z Y
... · · · · ...

Y · · · Y X
... · · · · ...

X · · · X Z
... · · · · ...

Figure 2.35: f(P̃ ) ∈ Y

Consider a profile P ′′ (see Figure 2.36) such that

(i) P ′′i = Pi, for all voters i ∈ {1, 2, . . . , L}.

(ii) all voters in GL+ rank all alternatives in Z on top, followed by all alternatives in

X and finally, followed by all alternatives in Y . The alternatives in X, Y and Z

are ranked according to the common ranking (x1, x2, . . . , xK) and (y1, y2, . . . , yK) and

(z1, z2, . . . , z|Z|) respectively.

44



P ′′ =

P1 . . . PL−1 PL P ′′L+1 · · · · P ′′n Z · · · Z Y Z · · · · Z

Y · · · Y X X · · · · X

X · · · X Z Y · · · · Y

Figure 2.36

As argued in previous paragraph (Figure 2.35), we have f(P ′′) ∈ Y . Since, y1 dominates

every other alternative in Y , it must be true that f(P ′′) = y1.

Now, consider the profile P̂ (see Figure 2.37) such that

(i) all voters in GL− rank all alternatives in Z on top, followed by all alternatives in X

and finally, by all alternatives in Y .

(ii) voter L in rank all alternatives in Y on top, followed by all alternatives in Z and finally

followed by all alternatives in X.

(iii) The alternatives in X, Y and Z are ranked, according to the common ranking

(x1, x2, . . . , xK), (y1, y2, . . . , yK) and z1, z2, . . . , z|Z| respectively.

(iii) P̂GL+ = PGL
.

P̂ =

P̂1 . . . P̂L−1 P̂L P ′′L+1 · · · · P ′′n Z · · · Z Y Z · · · · Z

X · · · X Z X · · · · X

Y · · · Y X Y · · · · Y

Figure 2.37

We claim that f(P̂ ) = y1. Consider the profile (P̂L, P
′′
−L) obtained from profile P ′′ by

replacing P̂L with P ′′L by voter L. At this profile, efficiency implies that the outcome belongs

to {y1, z1}. Note that, f(P ′′) = y1 and y1 is ranked K − 1 places above z1, according to P̂L.

If f(P̂L, P
′′
−L) = z1 then voter L can K-manipulate at profile (P̂L, P

′′
−L) via P ′′L.

Now, start from profile (P̂L, P
′′
−L) and consider the sequence of profiles, where vot-

ers 1 through L−1 progressively replace P ′′i with P̂i i.e. the sequence of profiles is

{P 0, P 1, . . . , PL−1}, where P 0 = (P̂L, P
′′
−L) and P k is obtained from P k−1 by replacing P ′′k

with P̂k. Note that PL−1 = P̂ .

Observe that, for the all profiles considered in the sequence, efficiency will imply that the

outcome belongs to {y1, z1}. If P k is the first profile in the sequence where f(P k) = z1 then
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voter k can K-manipulate at profile P k−1 via P̂k because z1 is ranked at least K − 1 places

above y1 in the ordering P ′′k . Since f(P 0) = y1, we have f(PL−1) = f(P̂ ) = y1.

Now, we can show that voter L is decisive over Y by the same arguments used in Step 2

with some modifications. We briefly outline the argument. Comparing profile P̂ with profile

P ′ in Figure 2.29, we see that they are “ the same” except that coalitions {L} and N\L are

replaced by coalitions GL+ and coalition N\GL+ respectively. In addition, sets X, Y and Z

in profile P̂ are interchanged with Y , Z and X in profile P ′, respectively. Replicating the

arguments of Proposition 2.6-Step 2, we can conclude that L is decisive over Y . �

Proposition 2.7 Assume |A| ≥ 3K. Let f be an efficient and K-strategy-proof SCF. If

there exists X ⊂ A such that voter i is decisive over X then f is K-dictatorial and i is the

K-dictator.

Proof : The proof will be similar to that of Proposition 2.3. We have to show that for any

profile P = (Pi, P−i), f(P ) ∈ {r1(Pi), r2(Pi) . . . rK(Pi)}. Pick any arbitrary ordering Pi.

Suppose B consists of the top K alternatives in Pi and assume without loss of generality

they are ranked (b1, b2, . . . , bK). Let C be the set of alternatives such that C ⊂ A\B ∪ Y
and |C| = K. This is feasible since |A| ≥ 3K and |Y | = |B| = K

Consider a partition (B,C,D) of A such that D = A\B ∪ C. Pick a profile P ∗ (shown

in Figure 2.38) such that

(i) voter i ranks all alternatives in B on top, followed by all alternatives in C and followed

by all alternatives in D.

(ii) all voters in N\{i} rank all alternatives in C on top, followed by all alternatives in B,

and followed by all alternatives in D.

(iii) all voters rank alternatives in B, C and D in the same way with the common ranking

being (b1, b2, . . . , bK), (c1, c2, . . . , cK) and (d1, d2, . . . , dK).

P ∗ =

P ∗1 · · · P ∗i−1 P ∗i P ∗i+1 · · · P ∗n C · · · C B C · · · C

B · · · B C B · · · B

D · · · D D D · · · D

Figure 2.38

46



Comparing profile P ∗ with profile P in the Figure 2.28, we see that they are “the same”

except that voter i and coalition N\{i} are replaced with voter L and coalition GL+ , respec-

tively, for the value L = 1.23 In addition, the partition (B,C,D) is also replaced with the

partition (X, Y, Z).

f

P ∗1 · · · P ∗i−1 P ∗i P ∗i+1 · · · P ∗n C · · · C B C · · · C

B · · · B C B · · · B

D · · · D D D · · · D

= b1 ⇒ f

P ′′1 · · · P ′′i−1 P ′′i P ′′i+1 · · · P ′′n


... · · · ... B
... · · · ...

... · · · ...
...

... · · · ...
... · · · ...

...
... · · · ...

∈ B

Figure 2.39

Proposition 2.6 implies that either voter i is decisive over B or coalition N\{i} is decisive

over C. If coalition N\{i} is decisive over C then we have a contradiction to the hypothesis

that voter i is decisive over Y . Therefore, voter i is decisive over B (see Figure 2.39). As

the choice of preference ordering Pi was arbitrary, it follows that the voter i is decisive over

the set {r1(Pi), r2(Pi) . . . rK(Pi)}. Hence, voter i is the K-dictator. �

Proof : [Theorem 2.2] Proposition 2.6 implies that there exists either a voter L ∈
{1, 2, . . . , n−1}, who is decisive over Y or the voter n who is decisive over X. In addi-

tion, Proposition 2.7 implies that this voter is also the K-dictator. This completes the proof.

�

23The coalition GL− is empty for L = 1.
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Chapter 3

Random Strategy-Proof Voting

with Lexicographic Extension

3.1 Introduction

In social choice theory, the problem of collective decision making has been analyzed more

extensively in deterministic than in random environments. An important issue in random

environments, especially in strategic models is that preferences in the voting model are

ordinal rankings while the outcome of voting is a probability distribution over alternatives

(an exception is Benoit (2002)). In order to compare the outcomes for different voting

profiles, it is necessary to specify an appropriate extension from an (ordinal) preference

ordering to lotteries - in other words, to extend preferences over degenerate lotteries to

preferences over all lotteries. The choice of an extension has profound implications for the

analysis; however there are several extensions that can be justifiably chosen. The literature

has almost exclusively used the stochastic dominance or sd criterion introduced by Gibbard

(1977). Our goal in this chapter is to explore the consequences in mechanism design of

replacing the sd-extension by alternative but natural extensions.

The sd-extension designates a lottery L as preferred to another lottery L′ at some or-

dinal preference if the expected utility from L is greater than that from L′ with respect to

every utility representation of the ordinal preference. An equivalent formulation is that the

probability weight assigned to all alternatives in the upper contour set of any alternative

(according to the given preference) is at least as high in L as in L′. An important feature of

the sd-extension is that it is incomplete. It is possible to find lotteries L and L′ that are not

comparable.

A Random Social Choice Function or RSCF assigns a lottery over the set of alternatives

with every profile of ordinal preferences of voters. Gibbard (1977) provided a complete
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answer to the following question: which RSCFs have the property that the lottery obtained

by truth-telling at every profile is sd preferred to any lottery that a voter can obtain by

misreporting her preference. In other words, what is the class of strategy-proof RSCFs under

the sd-extension? Gibbard (1977) showed that all sd-strategy-proof RSCFs which satisfy the

additional (mild) property of unanimity, must be a random dictatorship. In such a RSCF,

every first-ranked alternative is given a fixed probability weight with the sum of weights

being one. The requirement for truth-telling in this model is strong - non-comparability of

the truth-telling lottery and the lottery obtained by misrepresentation is not permitted. 1

We replace the sd-extension by two simple lottery extensions based on lexicographic

comparisons. The first is the downward lexicographic or dl-extension and the second is the

upward lexicographic or ul-extension. While comparing two lotteries in the former case, the

voter will prefer the lottery which has higher probability on the first-ranked alternative.

If they are the same, the voter will consider probabilities assigned to the second-ranked

alternative, preferring the lottery which has higher probability. If they are the same, she

will consider the third-ranked alternative and so on till the last ranked alternative. The

voter in this case cares “much more” about a higher ranked alternative than a lower-ranked

alternative. For example, a voter will prefer lottery L over L′ if the former puts “slightly

more” weight on her first-ranked alternative, even though it may put “much more” weight on

her worst-ranked alternative.

In contrast, the ul-extension captures the behaviour of a voter who wishes to “avoid

the possibility” of getting lower-ranked alternatives. While comparing two lotteries, she will

prefer the one which has lower probability on the last-ranked alternative. If they are the

same, she will consider the alternative that is ranked second-last and so on. Once the dl

and ul extensions are defined, the concept of strategy-proofness for the respective extensions

naturally extend from sd-strategy-proofness. Thus, for any e ∈ {sd, dl, ul}, the e-strategy-

proofness means that lottery obtained by truth-telling at every profile is e-preferred to any

lottery that a voter can obtain by misreporting her true preference.

The ul and dl extensions are simple and natural criteria for decision-making which have

experimental validity - see Campbell et al. (2006), Tversky and Kahneman (1974) and

Starmer (2000). They have been used in various contexts as mentioned in the literature

review. Mennle and Seuken (2014) highlight the importance of dl-strategy-proofness by

showing that it is the lower bound of a generalization of sd-strategy-proofness, which they

call partial strategy-proofness. The ul and dl extensions generate complete orderings over the

set of lotteries in contrast to the sd-extension. Suppose a voter prefers lottery L to L′ ac-

cording to the dl-extension. As Cho (2016) shows, there exists a utility representation of the

1A weaker notion of strategy-proofness would require that no lottery obtained by misrepresentation be

sd-preferred to the truth-telling lottery.
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voter’s ordinal preference according to which L has a higher expected utility than L′. There-

fore, L′ can never be preferred to L according to the sd-extension. A similar observation

holds for the ul-extension. A successful misrepresentation according to either the ul or the

dl-extension will also be a successful misrepresentation according to the sd-extension, but

the reserve implication may not hold. It follows immediately that the ul and dl extensions

allow for (in principle) a larger class of strategy-proof RSCFs than does the sd-extension.

There are two broad sets of results in this chapter. The first concerns ul-strategy-

proofness. We show that the Gibbard (1977) random dictatorship result continues to hold,

i.e. every RSCF satisfying ul-strategy-proofness and unanimity must be a random dictator-

ship. This is rather surprising in view of the fact that ul-strategy-proofness is significantly

weaker than sd-strategy-proofness. The second set of results concern RSCFs that satisfy

dl-strategy-proofness. We show that a wider class of RSCFs beyond random dictatorship

satisfy unanimity and dl-strategy-proofness. However, if unanimity is strengthened to effi-

ciency, dl-strategy-proof RSCFs must be top-support rules, i.e. they can give strictly positive

probability in a profile only to alternatives that are ranked first by some voter. The weights

given to these alternatives can vary across preference profiles. We show that a class of RSCFs

that we call top-weight rules, are characterized by dl-strategy-proofness, efficiency and an

additional but familiar property of tops-onlyness. In the case of two voters, we show that

the tops-onlyness property is implied by the other two requirements. In this case, top-weight

rules are characterized by efficiency and dl-strategy-proofness. Overall, our results show that

the relationship between the random dictatorship and the lottery extension, is rather subtle.

3.1.1 Literature

The seminal work in strategic social choice theory in random environments is Gibbard (1977).

The paper shows that sd-strategy-proofness and unanimity imply random dictatorship. This

result has been extended to restricted domains of preferences in Chatterji et al. (2014) and

Chatterji and Zeng (2018)) using the sd-extension.

There are several papers that use the dl-extension in private good object allocation models

such as Bogomolnaia (2015), Alcalde et al. (2013), Saban and Sethuraman (2014), Schulman

and Vazirani (2012), Aziz and Stursberg (2014) and Aziz et al. (2015). Cho (2016) and

Aziz et al. (2014) consider lexicographic extensions in voting models. Cho (2016) provides

conditions on the domain that make e-strategy proofness equivalent to the weaker notions

of e-adjacent strategy-proofness and e-mistake monotonicity where e ∈ {sd, dl, ul}.
Two papers related to ours are Aziz et al. (2014) and Aziz and Stursberg (2014). Both

consider the full domain with indifference. The first contains several results with different ex-

tensions and shows the incompatibility of ul-strategy-proofness and ul-efficiency. This result
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can be easily derived as a corollary to our Theorem 3.1. Aziz and Stursberg (2014) propose

a rule called the egalitarian simultaneous reservation rule or (ESR) that satisfies dl-efficiency

and two fairness properties. If ESR is restricted to the voting domain of strict preferences,

it is weak-sd-strategy-proof. The ESR rule belongs to the class of top-weight rules.

3.2 Preliminaries

Let N = {1, . . . , n}, n ≥ 2 be a finite set of voters and A be a finite set of m alternatives

i.e. |A| = m ≥ 3. We will write i, j... and a, b, x, y... etc. for generic elements in N and A

respectively. Let ∆A denote the set of all probability distributions or lotteries over A. It is

the unit simplex of dimension m − 1. For any lottery L ∈ ∆A, La denotes the probability

that alternative a gets under lottery L . Of course La ≥ 0 for all a ∈ A and
∑

a∈A La = 1.

Each voter i ∈ N has a preference ordering Pi, which is a linear order over the elements

of the set A2. For distinct a, b ∈ A, by aPib we mean: a is strictly preferred to b by voter i,

according to her preference ordering Pi. Let P denote the set of all linear orderings over the

elements of A.

For any ordering Pi and integer k = 1, . . . ,m, rk(Pi) denotes the kth ranked alternative

in Pi, i.e. |{a ∈ A : aPirk(Pi)}| = k − 1. Also, r(Pi, a) ∈ {1, 2, . . . ,m} will be referred to as

the rank of a at Pi. Note that for any Pi ∈ P, k ∈ {1, 2, . . . ,m} and a ∈ A, rk(Pi) = a if

and only if r(Pi, a) = k. We shall occasionally write P a
i for an ordering where a is ranked

first. Similarly, P ab
i will denote a preference ordering where a is ranked first and b second.

Let B(a, Pi) denote the set {b ∈ A | b = a or bPia} i.e. B(a, Pi) is the set of (weakly) better

alternatives than a in the preference ordering Pi.

A profile is a list P = (P1, . . . , Pn) ∈ Pn of voters’ preference orderings. For any coalition

S ⊂ N , let PS ≡ (Pi)i∈S and P−S ≡ (Pi)i∈N\S. For simplicity, we write P−i for P−{i} and

P−ij for P−{i,j} and so on. A profile P is also denoted by (Pi, P−i), more generally (PS, P−S)

for any S ⊂ N .

Sometimes it will be useful to construct a preference ordering P ′i from Pi, where the

relative ranking of some alternatives (from set X) remains the same. For any two preference

orderings Pi, P
′
i and set of alternatives X ⊆ A, if xPiy ⇔ xP ′iy, for all x, y ∈ X, then we

write Pi(X) = P ′i (X).

Definition 3.1 A random social choice function (RSCF) (or simply a rule) ϕ is a mapping

ϕ : Pn → ∆A.

A RSCF picks a lottery at every preference profile. It is a standard concept in random mech-

anism design (for example Gibbard (1977)). The inputs to a RSCF are ordinal preference

2A linear order is a binary relation which satisfies completeness, transitivity and anti-symmetry
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profile, while the output is a lottery. Note that all preference profiles are admissible i.e.

the preference domain is “unrestricted” throughout the chapter. We will write ϕ(P ) for the

lottery assigned by RSCF ϕ for profile P and ϕa(P ) for the probability of alternative a being

chosen at profile P .

The objective of the mechanism designer is to incentivize voters to report their true

preference orderings, irrespective of their believes about the reports of the other voters. This

objective is referred to as strategy-proofness. In this framework, it is essential to introduce

assumptions regarding the comparison of different lotteries for a voter with an ordinal ranking

over alternatives. There are several ways to extend an ordinal preference over alternatives to

preferences over lotteries over these alternatives. We define some of these ways below using

the terminology of Cho (2016).

Let R(∆A) be the set of all preference orderings over ∆A. An extension is a mapping

e : P → R(∆A) such that for each Pi ∈ P, the restriction of e(Pi) to A coincides with Pi.

For each Pi ∈ P, let Re
i ≡ e(Pi). The strict preference relation associated with Re

i is denoted

by P e
i . For any two lotteries L and L′, L Re

i L
′ means lottery L is (weakly) preferred to

lottery L′ under extension e when voter i has (ordinal) preference ordering Pi, in short L

e-dominates L′. Similarly, for any two distinct lotteries L and L′, L P e
i L

′ means L is strictly

preferred to L′, in short L (strictly) e-dominates L′. We can define strategy-proofness with

respect to an extension.

Definition 3.2 Let e be an extension. A RSCF ϕ : Pn → 4A is e-strategy-proof if for all

i ∈ N , P ∈ Pn, P ′i ∈ P we have ϕ(Pi, P−i) R
e
i ϕ(P ′i , P−i).

The most widely used notion of an extension is the stochastic dominance extension (or

sd-extension) introduced by Gibbard (1977) (also see Postlewaite and Schmeidler (1986)

and Levy (1992)). We denote this extension by Rsd
i and is defined as follows: for any pair

of lotteries L and L′ and a voter i with ordering Pi, L Rsd
i L′ iff for all a ∈ A we have∑

b∈B(a,Pi)

Lb ≥
∑

b∈B(a,Pi)

L′b.

Pick any two lotteries L and L′. Then, L Rsd
i L′ iff the expected utility of L is at

least as high as that of L′ with respect to any cardinal representation of the underlying

ordering Pi. It is clear that Rsd
i is incomplete in the sense that there exist lotteries L and L′

such that neither L Rsd
i L′ nor L′ Rsd

i L hold. Thus, sd-strategy-proofness requires that the

lottery obtained by truth telling be comparable to the lottery obtained by any manipulation.

Moreover, the expected utility of the former is greater than or equal to the latter for all

utility representations of the true ordering.

We analyze strategy-proof RSCFs under two alternative extensions related with lexico-

graphic preferences (Hausner (1954), Chipman (1960)). They have recently been analyzed
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in Cho (2016) and Aziz et al. (2014).3 The first is the downward lexicographic extension (or

dl-extension). For every Pi ∈ P and every pair L and L′ ∈ 4A, L Rdl
i L

′ if either (i) there

exists k ∈ {1, 2, ...,m} such that for each h ≤ k− 1, Lrh(Pi) = L′rh(Pi)
and Lrk(Pi) > L′rk(Pi)

or

(ii) L = L′.

The dl-extension “strongly favors” lotteries that put higher weights on higher ranked

alternatives. It can also be rationalized as an expected utility maximization with respect to

a narrow but important class of utility representations. As Cho (2016) notes, the dl-extension

represents “agents whose von Neumann-Morgenstern (vNM) utility functions assign 1 to the

most preferred alternative, α to the second most preferred alternative, α2 to the third most

preferred alternative, and so on, where α→ 0+”.4

The dual to the dl-extension is the upward lexicographic extension (or ul-extension) where

voters lexicographically minimize probabilities for less preferred alternatives. For every Pi ∈
P and every pair L and L′ ∈ 4A, LRul

i L
′ if either (i) there exists k ∈ {1, 2, ...,m} such that

for each h ≥ k + 1, Lrh(Pi) = L′rh(Pi)
and Lrk(Pi) < L′rk(Pi)

or (ii) L = L′.

Once again, the ul-extension can be rationalized as utility maximizer over a narrow

class of utility functions. These are the vNM utility functions which assign −1 to the least

preferred alternative, −α to the second least preferred alternative, −α2 to the third least

preferred alternative, and so on, where α→ 0+ (see Cho (2016)).

Definitions make it clear that dl and ul extensions generate complete ordering over lot-

teries unlike the sd-extension. It is also clear that if LRsd
i L

′ then both LRdl
i L

′ and LRul
i L

′

hold. However, dl and ul extensions can disagree as the following example shows.

Example 3.1 Suppose a Pi b Pi c. Let L = (1
2
, 0, 1

2
) and L′ = (0, 1, 0) be two lotteries. Here

the first, second and third components refer to probabilities of a, b and c respectively. Thus,

LP dl
i L

′ and L′P ul
i L, while they are not comparable by sd-extension.

The ul and dl extensions allow for extra possibilities for the construction of strategy-proof

rules. This is illustrated in Figure 3.1.

Let voter i’s preference ordering be Pi : a Pi b Pi c. Suppose that the outcome of a RSCF

at profile (Pi, P−i) is λ = (1
3
, 1

3
, 1

3
) for some P−i.

5

3This extension has also been analyzed by Bogomolnaia (2015), Alcalde et al. (2013), Saban and Sethura-

man (2014), Schulman and Vazirani (2012), Aziz and Stursberg (2014) and Aziz et al. (2015) in the context

of object allocation models.
4“For any pair of lotteries L and L′ we have LP dlL′ iff there exists α̂ ∈ (0, 1) such that for all α ∈ (0, α̂)

the expected utility from L is higher than L′ where von Neumann-Morgenstern (vNM) utility functions

assign 1 to the most preferred alternative, α to the second most preferred alternative, α2 to the third most

preferred alternative, and so on”.
5The first, second and third components of λ denote the probabilities of a, b and c respectively
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Figure 3.1: Lottery comparison under different lottery extensions

Figure 1(A) shows lottery comparisons with λ under the sd-extension: (i) the red region

shows the set of lotteries that are sd-dominated by λ (ii) yellow region shows the set of

lotteries that are not comparable using sd-extension and (iii) the green region shows lotteries

that sd-dominate λ.

Similarly, Figure 1(B) and Figure 1(C) show lottery comparisons with λ under the ul-

extension and dl-extension respectively: (i) the red region shows the set of lotteries that

are dominated by λ and (ii) the green region shows lotteries that dominate λ. Note that

there is no yellow region in either 1(B) or 1(C), since ul and dl extensions generate compete

orderings over ∆A.

In order for a RSCF to be sd, ul and dl strategy-proof, any misreport P ′i by voter i

must lead to a lottery in the red regions of Figures 1(A), 1(B) and 1(C) respectively6. It is

apparent that the red region in Figure 1(A) is a strict subset of the red regions of Figure

1(B) and 1(C) respectively. This suggests, it ought to be the case that there exists a larger

class of ul and dl strategy-proof RSCFs as compared to sd-strategy-proof RSCFs.

3.3 Strategy-Proofness with ul-extension

In this section, we provide a characterization result under strategy-proof with respect to

ul extension in conjunction with a mild efficiency axiom. To proceed further we provide

following definitions.

Definition 3.3 Let P be a profile. Alternative a dominates alternative b at P if aPib for

all i ∈ N . The RSCF ϕ : Pn → ∆A is (ex-post) efficient if ϕb(P ) = 0 whenever there exists

6The axiom of e-strategy-proofness requires that truth telling lottery always e-dominates a lottery received

under any lie where e ∈ {sd, ul, dl}. Thus, for a RSCF to be e-strategy-proof, it is needed that if the lottery

λ is selected at profile P then at any profile (P ′i , P−i), it must select a lottery which is e-dominated by λ i.e.

a lottery in red region.
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an alternative a that dominates b in profile P .

An alternative that is (Pareto) dominated by another alternative in a profile is never chosen

by an efficient RSCF at that profile. A weaker notion of efficiency is the standard axiom of

unanimity which only requires that an alternative that is ranked-first by all voters is chosen

for sure.

Definition 3.4 A RSCF ϕ : Pn → ∆A is unanimous if ϕa(P ) = 1 at all profiles P where

r1(Pi) = a for all i ∈ N .

It is possible to define stronger notions of efficiency such as ordinal efficiency (see Bogomol-

naia and Moulin (2001a) and Abdulkadiroğlu and Sönmez (2003) for details) and ex-ante

efficiency (see Gibbard (1977)). In addition, we can define e-efficiency with respect to any

e-extension. For further discussion refer to Aziz et al. (2014) and Brandt et al. (2016).

Definition 3.5 A RSCF ϕ : Pn → 4A is a random dictatorship if there exist weights

β1, ..., βn ∈ [0, 1] with
n∑
i=1

βi = 1 such that for all P ∈ Pn and a ∈ A we have,

ϕa(P ) =
∑

{i∈N : r1(Pi)=a}

βi

If any βi = 1 for some i, the RSCF is the usual dictatorship which selects the top ranked

alternative of voter i. Random dictatorship is a probability distribution over (deterministic)

dictatorships, where βi is the probability of voter i being the dictator.

The classical result for sd-strategy-proof RSCF is Gibbard (1977). 7

Theorem [Gibbard (1977)] Assume |A| ≥ 3. A RSCF is sd-strategy-proof and satisfies

unanimity if and only if it is a random dictatorship.

Our first result shows that the Gibbard’s result continues to hold, if sd-strategy-proofness is

weakened to ul-strategy-proofness.

Theorem 3.1 Suppose |A| ≥ 3. A RSCF is unanimous and ul-strategy-proof if and only if

it is a random dictatorship.

This result is surprising because ul-strategy-proofness is weaker than sd-strategy-proofness.

As we have argued in the previous section, the following example shows that there are RSCFs

which are ul-strategy-proof but not sd-strategy-proof. We know from our result that they

must violate unanimity.

7The result in Gibbard (1977) is more general than the result stated in the Theorem 1. In particular, it

does not assume unanimity and characterize the entire class of sd-strategy-proof rules.
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Example 3.2 Let A = {a, b, c}. The RSCF depends only on the preference ordering of voter

1. If a is ranked third (or last) then the RSCF gives probability weights (0.6, 0.25, 0.15) to

the first, second and third ranked alternatives respectively. If b is ranked last then probability

weights are (0.55, 0.35, 0.1). If c is ranked last then the lottery is (0.5, 0.45, 0.05). Suppose a

is ranked last in 1’s preference ordering it receives probability 0.15. If voter 1 misrepresents

via an ordering that puts b or c at the bottom, the probability of a strictly increases. A

similar argument can be made when b and c are ranked last in voter 1’s preference. Suppose

a is third ranked while b is second ranked. One cannot reduce the probability of b while

keeping the probability of a the same. Therefore, it is ul-strategy-proof. However, it is not

sd-strategy-proof because preference ordering P ′1 : a P ′1 c P
′
1 b is a manipulation at the profile

where P1 : a P1 b P1 c. Note that these lotteries are not sd comparable which is a violation

of sd-strategy-proofness.

We conclude this section with the following remark.

Remark 3.1 Theorem 3 of Aziz et al. (2014) states the following : “there is no anonymous,

ul-efficient and ul-strategy-proof RSCF for n ≥ 2 and m ≥ 3”. This result can be obtained

as a corollary of our Theorem 3.1. To see this, observe that our theorem uses a weaker

notion of efficiency (ex-post efficiency), which is implied by ul-efficiency. Moreover, random

dictatorship violates ul-efficiency except in the case when βi = 1 for some voter i. However

this violates anonymity.

3.4 Strategy-Proofness with dl-Extension

This section deals with various results concerning with dl-strategy-proofness. The first sub-

section shows that dl-strategy-proofness is more permissive than ul-strategy-proofness or sd-

strategy-proofness .

3.4.1 Top-Support Rules

Unlike the Theorem 3.1, under dl-strategy-proofness unanimity does not imply random dic-

tatorship. The class of dl-strategy-proof and efficient RSCFs is very rich. Unfortunately we

cannot provide its characterization. However, all efficient and dl-strategy-proof RSCFs must

belong to the class of Top-Support (TS) rules.

Definition 3.6 A RSCF ϕ is a Top-Support rule if for any alternative a and profile P ,

ϕa(P ) > 0 implies a ∈ {r1(P1), . . . , r1(Pn)} ≡ T (P ).
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Only alternatives that are ranked first by some voter can get positive probability in a TS

rule. A random dictatorship is a TS rule. However, the probability that a voter assigns to

her top-ranked alternative can vary across profiles in a TS rule.

We provide an example of a dl-strategy-proof and efficient RSCF that is not a random

dictatorship. Aziz and Stursberg (2014) introduced a rule called egalitarian simultaneous

reservation (ESR)8 in the full domain which includes indifferences. If ESR is restricted only

to our domain i.e. domain of strict preferences then it reduces to a simple rule, which selects

all distinct alternatives that are ranked first by some voter with equal probability. Formally,

Example 3.3 The ESR rule ϕE is as follows 9 :

ϕEx (P ) =

{
1
k

if x ∈ T (P ) and k = |T (P )|
0 otherwise

ESR is a top-support rule. It is therefore efficient. Consider an arbitrary profile where

the set of top ranked alternatives is of size k, where k ∈ {1, 2, . . . , n}. A voter’s first-

ranked alternative gets probability 1
k

in this profile. Any misreport will either reduce this

probability or leave it unchanged. If a misreport does not the change the probability of a

voter’s first-ranked alternative, then the probability of all other alternatives also remains the

same. Therefore, the RSCF is dl-strategy-proof .

Our next result shows that the top-support feature of the Example 3.1 is true in general.

Proposition 3.1 An efficient and dl-strategy-proof RSCF is a top-support rule.

The proof of Proposition 3.1 is provided in Appendix. Although, the proposition sig-

nificantly narrows down the class of admissible RSCFs, it is far from a characterization.

In the rest of the chapter, we shall attempt to provide sharper results by making further

assumptions on the number of voters and the properties of admissible RSCFs.

3.4.2 Top-Weight Rules

In this subsection, we introduce and characterize a new class of rules called top-weight rules.

For the purpose of characterization we require the axiom of “tops-onlyness”. It requires the

8They have defined a more general class of rules called simultaneous reservation (SR). Their objective is

to characterized all dl-efficient RSCFs in full domain through SR.
9Recall that T (P ) is the set of all top ranked alternatives at profile P i.e. T (P ) =

{r1(P1), r1(P2), . . . , r1(Pn)}.
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outcome to be the same at any two profiles, where the first-ranked alternatives for voters co-

incide. This axiom has been widely studied in the context of both deterministic and random

environments- see Chatterji and Sen (2011) and Chatterji and Zeng (2018). In many contexts

tops-onlyness is a consequence of strategy-proofness together with axioms like unanimity. In

our setting however, tops-onlyness is not a consequence of dl-strategy-proofness and effi-

ciency. We impose it nevertheless on the grounds of informational parsimony. In other

words the outcome of the rule at any profile can be computed using a limited amount of re-

vealed information. The class of efficient dl-strategy-proof rules is large; tops-onlyness allows

us to make a natural and convenient selection from this class.

Definition 3.7 A RSCF ϕ is a Tops-Only rule, if for any two profiles P and P ′ where

r1(Pi) = r1(P ′i ) for all i ∈ N , we have ϕ(P ) = ϕ(P ′).

To define the class of top-weight rules we further need some notations. Let x =

(x1, x2, . . . , xn) ∈ An be an ordered n-tuple of alternatives. Denote [x] to be the set of

alternatives that appear in x. Note that x can contain repetitions which are removed in [x].

For example, let n = 6 and if x = (a, a, b, c, a, b) ∈ A6 then [x] = {a, b, c}. On the other

hand, if x = (a, b, c, d, e, f) then [x] = {a, b, c, d, e, f}. For any i ∈ {1, 2, . . . , n} = N we will

write x = (xi,x−i). Also, for any subset S ⊆ N , we write xS = (xi)i∈S.

Definition 3.8 A probability assignment map ξ is a function ξ : An → ∆(A) such that∑
a∈[x] ξa(x) = 1.

For any tuple x, the output of ξ is a lottery ξ(x) and ξa(x) is the probability assigned to

alternative a under this lottery. A probability assignment map assigns a lottery which gives

positive probability only to those alternatives which belong to the tuple.

Definition 3.9 A probability assignment map ξ is monotone if for all x−i ∈ An−1, any

i ∈ N and any distinct xi, x
′
i ∈ A.

1. ξxi(xi,x−i) ≥ ξxi(x
′
i,x−i).

2. (i) If ξxi(xi,x−i) = ξxi(x
′
i,x−i) then ξ(xi,x−i) = ξ(x′i,x−i).

(ii) If ξxi(xi,x−i) > ξxi(x
′
i,x−i) then ξx′i(xi,x−i) < ξx′i(x

′
i,x−i).

Consider the tuple (x′i,x−i). Suppose x′i is replaced by xi. According to the definition,

the probability of xi after replacement does not decrease. If it remains the same, then the

probability of all alternatives must also remain the same i.e. the lottery should remain

unchanged. If the probability of xi increases then probability of x′i must decrease. In this

case, there are no restrictions on the probability of other alternatives.

Next, we define a class of rules which are generated by monotone probability assignment

maps.
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Definition 3.10 A RSCF ϕ : Pn → ∆A is a top-weight rule if there exists a mono-

tone probability assignment map ξ such that ϕ(P ) = ξ(r1(P1), r1(P2), . . . , r1(Pn)) for all

P ∈ Pn.

The next result shows that top-weight rules are the only dl-strategy-proof rules which satisfy

the efficiency and tops-onlyness. In the case of two voters the tops-only assumption can be

dropped.

Theorem 3.2 Let ϕ : Pn → ∆A be a RSCF.

(a) If n ≥ 3, ϕ is tops-only, efficient and dl-strategy-proof if and only if it is a top-

weight rule.

(b) If n = 2, ϕ is efficient and dl-strategy-proof if and only if it is a top-weight rule.

The proof of Theorem 3.2 is provided in the Appendix. The class of top-weight rules is

very rich. It includes random dictatorship as a special case. To see this, pick a vector

β = (β1, . . . , βn) where βi ≥ 0 for all i ∈ N and
∑

i∈N βi = 1. Let ξβ be the probability

assignment map defined as ξβa (x) =
∑
{i∈N : xi=a} βi for any tuple x ∈ An and a ∈ A. It

is easy to verify that ξβ satisfies the monotonicity requirements of Definition 3.9. A RSCF

generated by ξ is a random dictatorship where each voter i has weight βi.

Top-weight rules can accommodate the following kind of non-monotonicity: the probabil-

ity received by an alternative may decline, as the number of voters who rank it first increases.

We show this with an example.

Example 3.4 Suppose N = {1, 2, 3} and |A| ≥ 3. Let β = (0.2, 0.2, 0.6) and β′ =

(0.6, 0.2, 0.2). Fix an alternative a, for any tuple x ∈ A3, the probability assignment map ξ

is as follows:

ξ(x) =

{
ξβ(x) if x1 = a

ξβ
′
(x) if x1 6= a

As described earlier, ξβ and ξβ
′

are the probability assignment maps associated with random

dictatorship rules with weights β and β′ respectively. The probability assignment map in

this example is obtained by combining these two probability assignment maps. In particular,

ξβ is chosen when voter 1 first-ranked alternative is a and ξβ
′

when it is not. It is easy to

verify that ξβ satisfies monotonicity. Consequently, it generates a top-weight rule.

Consider two profiles P and P ′ such that the profile of first-ranked alternatives are (a, b, c)

and (b, c, c) respectively. According to the rule, associated with the probability assignment

map ξ, the probability of alternative c at both profiles are ϕc(P ) = 0.6 and ϕc(P
′) = 0.4. In

profile P , only voter 3 has c on top, whereas in P ′ voters 2 and 3 have c on top. However,

probability of c declines in P ′ as compared to P .
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It is possible to construct efficient dl-strategy-proof rules that are not top-weight rules.

In particular, they will violate the tops-only axiom. This is shown in the example below.

Example 3.5 Suppose N = {1, 2, 3} and |A| ≥ 3. Let β = (0.4, 0.1, 0.5) and β′ =

(0.1, 0.4, 0.5). Consider the RSCF ϕξ generated by the probability assignment map ξ de-

fined as follows:

ξ(x) =

{
ξβ(x) if r1(P1) P3 r1(P2)

ξβ
′
(x) otherwise

This RSCF as the one in the previous example is a combination of two random dic-

tatorships. However, particular choice of random dictatorship weights can depend on the

ranking of alternatives that are not ranked first by voter 3. This rule is clearly not tops-only.

However, it is efficient and dl-strategy-proof .

We conclude this section with two remarks. The first one is regarding the ESR rule and

the second one is about various notions of efficiency and their relationship with our Theorem

3.2.

Remark 3.2 The ESR rule is a top-support rule. It is easy to verify that following proba-

bility assignment map ξE generates the ESR rule ϕE defined in Example 3.3 :

ξEa (x) =

{
1
|[x]| if a ∈ [x]

0 otherwise

Remark 3.3 Several papers use different notions of efficiency such as sd, dl and ul efficiency.

It is easy to verify that the dl and ul efficiency notions are independent of each other. They

both imply sd-efficiency which in turn implies our notion of efficiency10. The top-weight rule

satisfies dl-efficiency but not ul-efficiency. Thus, we can replace efficiency axiom in our

Theorem 3.2 with either dl-efficiency or sd-efficiency.

3.5 Conclusion

In this chapter, we have analyzed the structure of random social choice functions using

variants of the standard stochastic dominance lottery comparisons. We show that the ul-

extension leads to the same characterization as that under the sd-extension. However, the

dl-extension allows for a richer class of strategy-proof random social choice functions. We

show that dl-strategy-proofness in conjunction with efficiency implies a top-support rule. We

further characterize a sub-class of such random social functions with an addition axiom of

tops-onlyness.

10Our notion of efficiency is often referred to as ex-post efficiency.
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3.6 Appendix

3.6.1 Appendix : Proof with ul-extension

In this appendix we provide a proof of Theorem 3.1. We begin with a couple of lemmas. Let

Pi and P ′i be two distinct preference orderings that agree on the bottom k alternatives. Then

ul-strategy-proofness implies that ϕ(Pi, P−i) and ϕ(P ′i , P−i) assign the same probabilities to

the commonly ranked bottom k alternatives, at all P−i.

Lemma 3.1 (Monotonicity) Suppose ϕ is a ul-strategy-proof RSCF. Let (Pi, P−i) be a

profile and let P ′i be a preference ordering such that rl(Pi) = rl(P
′
i ) for all l ≥ k for some

k ∈ {1, 2, . . . ,m}. Then ϕrl(Pi)(P ) = ϕrl(P ′i )(P
′
i , P−i) for all l ≥ k.

Proof : Suppose the Lemma is false. Let rl(Pi) = rl(P
′
i ) for all l ≥ k for some k ∈

{1, 2, . . . ,m} and ϕrl̂(Pi)(P ) 6= ϕrl̂(P ′i )(P
′
i , P−i) for some l̂ ≥ k. Let l′ be the greatest integer

for which ϕrl′ (Pi)(P ) 6= ϕrl′ (P ′i )(P
′
i , P−i). Either ϕrl′ (Pi)(P ) < ϕrl′ (P ′i )(P

′
i , P−i) or ϕrl′ (Pi)(P ) >

ϕrl′ (P ′i )(P
′
i , P−i) must hold. In the former case, ϕ(P ) P

′ul
i ϕ(P ′i , P−i) and voter i manipulates

at (P ′i , P−i) via Pi. In the latter case, ϕ(P ′i , P−i) P
ul
i ϕ(P ) and voter i manipulates at P via

P ′i . This establishes the Lemma. �

Lemma 3.2 If a RSCF is ul-strategy-proof and satisfies unanimity, it satisfies efficiency.

Proof : Suppose not i.e. there exists a profile P and alternatives a and b such that aPib for

all i ∈ N and ϕb(P ) > 0. Let P ′ be the profile, where each P ′i is constructed from Pi by

moving a to the top rank and leaving the ordering of all other alternatives unchanged i.e.

r1(P ′i ) = a and for all x, y ∈ A\{a}, we have xP ′iy ⇔ xPiy. Note that Pi and P ′i agree on

the ranking of alternatives b and below.

Consider the sequence of profiles {P 0, P 1, . . . , P n}, where P 0 = P and

P k = (P ′1 . . . P
′
k, Pk+1, . . . , Pn) for k = 1, 2, . . . , n. The sequence starts with profile P and

voters from 1 through n progressively change their preference ordering from Pi to P ′i . It ends

at profile P ′. We claim that ϕb(P
′) > 0.

Since the ranking of b and all alternatives below it is exactly the same in Pk and P ′k,

Lemma 3.1 implies that ϕb(P
k−1) = ϕb(P

k). Repeatedly applying the argument for all

k ≥ 1, we get ϕb(P ) = ϕb(P
′) > 0. Since a is ranked-first by all voters at P ′ and ϕb(P

′) > 0,

we have a contradiction to unanimity. �

To prove our Theorem 3.1, we follow the technique applied in Sen (2011). The proof uses

induction on the number of voters. The base case in the induction is n = 2. In subsequent

arguments, we will use efficiency instead of unanimity because of Lemma 3.2.
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Proposition 3.2 Suppose N = {1, 2} and |A| ≥ 3. A RSCF is unanimous and ul-strategy-

proof if and only if it is a random dictatorship.

We proceed in a sequence of lemmas.

Lemma 3.3 Fix a pair of alternatives a and b. For all profiles P , P ′ such that P = (P a
1 , P

ba
2 )

and P̂ = (P̂ ab
1 , P̂ b

2 ) we have ϕ(P ) = ϕ(P̂ ).

Proof : Fix a profile P̄ such that P̄ = (P̄ ab
1 , P̄ ba

2 ). We claim that ϕ(P̄ ab
1 , P̄ ba

2 ) = ϕ(P a
1 , P̄

ba
2 ) =

ϕ(P a
1 , P

ba
2 ). Efficiency implies that at all three profiles only a and b get positive probability.

Suppose the first equality does not hold. If ϕb(P̄
ab
1 , P̄ ba

2 ) > ϕb(P
a
1 , P̄

ba
2 ) then voter 1

manipulates at (P̄ ab
1 , P̄ ba

2 ) via P a
1 . If ϕb(P̄

ab
1 , P̄ ba

2 ) < ϕb(P
a
1 , P̄

ba
2 ), voter 1 manipulates at

(P a
1 , P̄

ba
2 ) via P̄ ab

1 . Second equality follows using virtually identical arguments with voter 1

being replaced by voter 2.

The proof of lemma is completed by showing ϕ(P̄ ab
1 , P̄ ba

2 ) = ϕ(P̂ ab
1 , P̄ b

2 ) = ϕ(P̂ ab
1 , P̂ b

2 ).

This be done by using the same arguments as those in the earlier paragraph. �

For any x, y ∈ A and a profile P = (P xy
1 , P yx

2 ), denote ϕx(P ) = λxy and ϕy(P ) =

1− λxy where 0 ≤ λxy ≤ 1. Lemma 3.3 implies that λxy does not depend on the ranking of

alternatives other than x and y. Note that order is important and potentially λxy and λyx

could be different. But next lemma shows that λxy is the same irrespective of any x and y,

in any order.

Lemma 3.4 For any a, b, c, d ∈ A where a 6= b and c 6= d we have λab = λcd.

Proof : Pick three distinct alternatives a, b, c ∈ A. Consider the profile P = (P ac
1 , P ba

2 ) and

preference ordering P̄1 = P̄ cb
1 .

Lemma 3.3 and ul-strategy-proofness imply that 1−λab = ϕb(P
ac
1 , P ba

2 ) ≤ ϕb(P̄
cb
1 , P

ba
2 ) =

1− λcb, otherwise voter 1 manipulates at (P ac
1 , P ba

2 ) via P̄ cb
1 . This is true since at the former

profile voter 1 prefers any lottery which gives zero probability to alternatives below b and a

lower probability to alternative b. This is exactly what happens if the inequality above does

not hold.

A similar argument holds at profile P = (P ca
1 , P bc

2 ) and preference ordering P̄1 = P̄ ab
1 .

Lemma 3.3 and ul-strategy-proofness imply that 1 − λcb = ϕb(P
ca
1 , P bc

2 ) ≤ ϕb(P̄
ab
1 , P bc

2 ) =

1 − λab, else voter 1 manipulates at (P ca
1 , P bc

2 ) via P̄ ab
1 . These two inequalities imply that

λab = λcb. This is summarized below.

1−λab = ϕb


a b

c a

b ·
...

...

 ≤ ϕb


c b

b a
...

...
...

...

=1−λcb and 1−λcb = ϕb


c b

a c

b ·
...

...

 ≤ ϕb


a b

b c
...

...
...

...

=1−λab
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Pick an alternative d 6= b, c. A similar argument for voter 2 shows that λcb = λcd. Thus

we have established that λab = λab = λcd. This completes the proof except the case when

r1(P1) = b. This can easily be shown using an earlier argument for voter 1 to show that

λcd = λbd. �

Lemma 3.4 implies that λab is same for any a and b. Thus, we simply write λ instead of

λab.

Lemma 3.5 For all profiles P such that P = (P ax
1 , P bx

2 ) for any distinct a, b, x ∈ A we have

ϕa(P ) = λ and ϕb(P ) = 1− λ.

Proof : Consider an arbitrary profile P̂ = (P̂ xa
1 , P̂ bx

2 ). Lemma 3.4 will imply that ϕx(P̂ ) = λ

and ϕb(P̂ ) = 1−λ. Now swap x and a. Note because of Lemma 3.1, probability of alternative

b should remain the same i.e. ϕb(P ) = 1− λ.

Similarly start with profile P̄ = (P̄ ax
1 , P̄ xb

2 ) we know ϕa(P ) = λ and ϕx(P̄ ) = 1 − λ.

Now swap x and b. Note because of the previous Lemma, probability of alternative a should

remain the same i.e ϕa(P ) = λ. Thus we have established the Lemma. �

Lemma 3.6 For any profile P ∈ P2, we have ϕr1(P1)(P ) = λ and ϕr1(P2)(P ) = 1− λ.

Proof : Take any profile P and assume w.l.o.g. that P = (P ax
1 , P by

2 ). If x = y, the result

immediately follows by an application of Lemma 3.5. Suppose x 6= y. The probabilities of

alternatives which are ranked below b by voter 1 and below a by voter 2 are zero by virtue

of efficiency.

Suppose ϕb(P
ax
1 , P by

2 ) > 1 − λ. Then voter 1 can manipulate here at profile P via P̂ ay
1 .

This is because the ϕ(P̂ ay
1 , P2) provides probability of b equal to 1− λ and everything below

it zero.

Suppose ϕb(P
ax
1 , P by

2 ) < 1 − λ. Consider the preference ordering P̃ ay
1 such that

P̃ ay
1 (A\{a, y} = P ax

1 (A\{a, y}).11 Since Lemma 3.5 implies that ϕb(P̃
ay
1 , P by

2 ) = 1 − λ, it

makes voter 1 to manipulate at (P̃ ay
1 , P by

2 ) via P ax
1 . But it contradicts the hypothesis that

RSCF ϕ is ul-strategy-proof. Thus we have ϕb(P
ax
1 , P by

2 ) = 1− λ.12

11Remember that for any two preference orderings Pi, P
′
i and set of alternatives X ⊆ A, if xPiy ⇔ xP ′iy

for all x, y ∈ X, then we write Pi(X) = P ′i (X).
12The preference ordering P̃1 is selected such that P̃ ay

1 holds. We want to emphasize why P̃1 has an extra

condition of P̃1(A\{a, y}) = P1(A\{a, y}). Suppose we have selected an arbitrary preference ordering P ′1 =

P
′ay
1 without this extra condition. Let there exist an alternative z such that z P1 b but b P ′1 z. Suppose

ϕz(P ) > ϕz(P ′1, P2) = 0, this is (potentially) possible because we have not ruled it out yet. If this be the

case, then P ′1 is not a manipulation at P because ϕ(P1, P2) P
′ul
1 ϕ(P ′1, P2) does not hold any more. In that

case we do not have a contradiction to ul-strategy-proofness. To avoid this case we have used that extra

condition.
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A similar argument follows for agent 2 and implies that ϕa(P
ax
1 , P by

2 ) = λ. It completes

the proof of Proposition 3.2. �

Thus, we have established that when there are two voters, unanimity and ul-strategy-

proofness imply random dictatorship. Now we use the induction argument. Assume that for

all integers k < n, the following statement is true:

Induction Hypothesis (IH): Assume m ≥ 3. If ϕ : Pk → ∆A satisfies unanimity and

ul-strategy-proofness then it is a random dictatorship.

Let N̂ = {0, 3, . . . , n} be a set of voters where 3, . . . , n ∈ N . Define a RSCF g : Pn−1 →
∆A for the set of voters in N̂ as follows:

For all (P0, P3, . . . , Pn) ∈ Pn−1, g(P0, P3, ..., Pn) = ϕ(P1, P2, P3, ..., Pn) such that P1 = P2 = P0.

Alternatively, we will write g(P0, P3, ..., Pn) = g(P0, P−12) = ϕ(P0, P0, P−12) (where it is

obvious that P1 = P2 = P0 in ϕ(·)).
Voter 0 in the RSCF g is obtained by “cloning” voters 1 and 2 in N . Thus if voters 1 and

2 in N have a common ordering Pi, then voter 0 in N̂ also has ordering P0 = Pi.

Lemma 3.7 The RSCF g is a random dictatorship.

Proof : It is easy to see that g is unanimous. To show that it is ul-strategy-proof , it is

sufficient to show that voter 0 cannot manipulate since other voters cannot manipulate g

because ϕ is ul-strategy-proof . Take any profile P = (P0, P−12) ∈ Pn−1 and a preference

ordering P̂0 ∈ P. Using the definition of g and ϕ being ul-strategy-proof we can establish

that following ranking of lotteries:

g(P0, P−12) = ϕ(P0, P0, P−12)Rul
1 ϕ(P̂0, P0, P−12)Rul

2 ϕ(P̂0, P̂0, P−12) = g(P̂0, P−12) 13

So we have shown g(P0, P−12) Rul
0 g(P̂0, P−12) for preference profiles. Thus voter 0 cannot

manipulate. Induction hypothesis implies that g is random dictatorship. �

Let β, β3, ..., βn be the weights associated with the random dictatorship g i.e. βi, is the

weight associated with voter i = 3, ..., n and β is the weight associated with voter 0. For any

profile P , let βx−12(P ) =
∑
{i 6=1,2 : r1(Pi)=a} βi. So for any distinct alternatives x, y and profile

P we have gx(P
x
0 , P−12) = βx−12(P ) + β and gy(P

x
0 , P−12) = βy−12(P ). To establish that ϕ is

random dictatorship we will divide the proof in various lemmas.

13Remember that for any (ordinal) preference ordering Pi the associated ordering over lotteries under

dl-extension is denoted by Rdl
i and it’s strict part by P dl

i . Similar notation follows for any P ′i as R̂ul
i and

P̂ul
i .
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Lemma 3.8 For an profile P ∈ Pn such that r1(P1) = r1(P2) we have ϕ(P ) = g(P0, P−12)

where r1(P0) = r1(P1).

Proof : Let r1(P1) = r1(P2) = a. We apply the definition of g and the fact that ϕ is ul-

strategy-proof to conclude that for any P a
0 , P̂

a
0 and P−12 we have

g(P a
0 , P−12) = ϕ(P a

0 , P
a
0 , P−12)Rul

1 ϕ(P̂ a
0 , P

a
0 , P−12) Rul

2 ϕ(P̂ a
0 , P̂

a
0 , P−12) = g(P̂ a

0 , P−12)

In the above expression first and third lottery are identical and because ul extension is a

linear order then above relation can hold if only if the middle lottery is also the same. This

will imply that ϕ(P a
1 , P

a
2 , P−12) = g(P a

0 , P−12) and it completes the proof. This lemma imply

that for any distinct x and y we have ϕy(P
x
1 , P

x
2 , P−12) = βy−12(P ). �

Lemma 3.9 Fix an arbitrary sub-profile P−12 ∈ Pn−2 and two different alternatives a and

b. Pick any two profiles P ′ and P̂ such that P ′ = (P
′a
1 , P

′ba
2 , P−12) and P̂ = (P̂ ab

1 , P̂ b
2 , P−12)

then we have ϕ(P ′) = ϕ(P̂ ).

Proof : We first prove a claim that for any profile P = (P a
1 , P

ba
2 , P−12) we have ϕx(P ) =

βx−12(P ) for all x ∈ A\{a, b}. Consider a preference ordering P ′′2 for voter 2 obtained from

P ba
2 simply by swapping a and b i.e. P ′′2 (A\{a, b}) = P2(A\{a, b}) and (r1(P ′′2 ), r2(P ′′2 )) =

(a, b). Applying Lemma 3.1 and previous Lemma 3.8 we get ϕx(P ) = ϕx(P
′′
2 , P−2) =

βx−12(P ′′2 , P−2) = βx−12(P ) for all x ∈ A\{a, b}.
Now fix a profile P̄ such that P̄ = (P̄ ab

1 , P̄ ba
2 , P−12). We have just proved that for such a

profile, probability of any alternative other than a and b is determined w.r.t. βi’s i.e. ϕx(P̄ ) =

βx−12(P̄ ) for all x 6= a, b which in turn imply that ϕa(P̄ ) + ϕb(P̄ ) = β + βa−12(P̄ ) + βb−12(P̄ ).

We will make the following claim regarding the individual probabilities of a and b.

We claim βa−12(P̄ ) ≤ ϕa(P̄ ) ≤ β + βa−12(P̄ ). Suppose not, if we assume ϕa(P̄ ) < βa−12(P̄ ).

Consider a preference ordering P ′′1 such that r1(P ′′1 ) = b. Now replace this preference order-

ing in profile P̄ to obtain the profile (P b
1 , P̄−1). Since both voters 1 and 2 share a common

alternative at top at this profile, Lemma 3.8 implies that ϕa(P
b
1 , P̄−1) = βa−12(P b

1 , P̄−1) =

βa−12(P̄ ). This makes voter 1 worse-off compared to profile P̄ i.e. ϕ(P̄ ) P̄ ul
1 ϕ(P b

1 , P̄−1). Thus

voter 1 can manipulate at (P b
1 , P̄−1) via P̄1. On the other hand, if ϕa(P̄ ) > β + βa then,

by applying similar argument, we can obtain a manipulation by voter 2 at (P a
2 , P̄−2) via P̄2.

The similar inequality holds, βb ≤ ϕb(P̄ )β + βb.14

Now we claim ϕ(P ′) = ϕ(P̄ ) = ϕ(P̂ ). We only show first equality the other can be shown

with virtually similar argument. We have already shown that for profile of type P ′ we have

ϕx(P
′) = βx for all x 6= a, b. Consider the sequence which starts from P̄ and successively voter

14For simplicity, we will drop the indexation of P and simply write βx instead of βx(P ).
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1 and 2 change their respective preference orderings from P̄i to P ′i . We claim the outcome

remain same throughout the sequence i.e. ϕ(P̄ ) = ϕ(P ′1, P̄−1) = ϕ(P ′1, P
′
2, P̄−12) ≡ ϕ(P ′).

To see first equality, note that ϕx(P̄ ) = ϕx(P
′
1, P̄−1) = βx for all x 6= a, b. If ϕb(P̄ ) 6=

ϕb(P
′
1, P̄−1) then either ϕb(P̄ ) < ϕb(P

′
1, P̄−1) or ϕb(P̄ ) > ϕb(P

′
1, P̄−1) must hold. In the

former case ϕ(P̄ ) P
′ul
i ϕ(P ′1, P̄−1) and voter i manipulates at profile (P ′1, P̄−i) via preference

ordering P̄i. In the latter case ϕ(P ′1, P̄−1) P̄ ul
i ϕ(P̄ ) and i manipulates at profile P̄ via

preference ordering P ′i . Thus ϕ(P̄ ) = ϕ(P ′1, P̄−1).

The second equality can be argued similarly for voter 2. Hence ϕ(P ′) = ϕ(P̄ ) and it

completes the proof of lemma. �

Lemma 3.9 implies that all profiles where top two alternatives of voter 1 and 2 coincides

then it has a special structure. For distinct x, y ∈ A and a profile P such that P1 = P xy
1

and P2 = P yx
2 let ϕx(P ) = λxyβ + βx and ϕy(P ) = (1−λxy)β + βy. As we earlier argued

βz < ϕz(P ) < β + βz for z = x and y, it implies that λxy ∈ [0, 1]. Lemma 3.9 implies that

λxy does not depend on the ranking of alternatives other than x and y. It signifies that β

is divided into ratio of λxy and 1 − λxy among voter 1 and 2 for the profiles where x and y

are ranked in a certain way in their preference orderings. Note that order is important and

potentially λxy and λyx could be different. But next lemma shows λxy is same irrespective

of any x and y in any order.

Lemma 3.10 For any a, b, c, d ∈ A where a 6= b and c 6= d we have λab = λcd

Proof : Pick three distinct alternatives a, b, c ∈ A. Consider two profiles P =

(P ac
1 , P ba

2 , P−12) and P̄ = (P̄1, P−1) where preference ordering P̄1 = P̄ cb
1 .

Lemma 3.9 and ul-strategy-proofness imply that (1 − λab)β + βb = ϕb(P ) ≤ ϕb(P̄ ) =

(1− λcb)β + βb, otherwise voter 1 manipulates at profile P via P̄1. This is true since at the

former profile voter 1 prefers any lottery which gives probability βx to all x ranked below b

and a lower probability to alternative b. This is exactly what happens if the inequality above

does not hold.

A similar argument holds at profiles P = (P ca
1 , P bc

2 , P−12) and P̄ = (P̄1, P−1) where prefer-

ence ordering P̄1 = P̄ ab
1 . Lemma 3.3 and ul-strategy-proofness imply that (1− λcb)β + βb =

ϕb(P ) ≤ ϕb(P̄ ) = (1− λab)β + βb else voter 1 manipulates at profile P via P̄1. These two

inequalities imply that (1− λcb)β + βb = (1− λab)β + βb and if β > 0 then λab = λcb. This

is summarized below (we have highlighted only preference ordering of voters 1 and 2, the
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sub-profile P−12 is kept same throughout).

(1− λab)β + βb = ϕb


a b

c a

b ·
...

...

 ≤ ϕb


c b

b a
...

...
...

...

=(1− λcb)β + βb and

(1− λcb)β + βb = ϕb


c b

a c

b ·
...

...

 ≤ ϕb


a b

b c
...

...
...

...

 = (1− λab)β + βb

⇒ λab = λcb

To complete the claim, pick an alternative d 6= b, c. A similar argument for voter 2 shows

that λcb = λcd. Thus we have established λab = λcb = λcd

λcbβ + βc = ϕc


c b

b d

· c
...

...

 ≤ ϕc


c d

b c
...

...
...

...

 = λcdβ + βc

λcbβ + βc = ϕc


c b

d c
...

...
...

...

 ≥ ϕc


c d

d b

· c
...

...

 = λcdβ + βc

The earlier arguments cover all cases except when r1(P1) = b. This can also easily be done

using the earlier argument for voter 1 to show that λcd = λbd. This completes the proof. �

Lemma 3.11 For any profile P where r2(P1) = r2(P2) we have ϕy(P ) = βy for all y ∈ A.

Proof : The profiles where r1(P1) = r1(P2) are covered in Lemma 3.8, so here we consider

the case when they are not equal. Pick any three distinct alternatives a, b, x ∈ A. We need

to show that for any profile P where P1 = P ax
1 and P2 = P bx

2 we have ϕy(P ) = βy(P ) for all

y ∈ A.

Consider the preference ordering P ′1 such that r1(P ′1) = x and P ′1(A\{x}) = P1(A\{x}).15

Lemma 3.10 will imply that ϕy(P
′
1, P−1) = βy(P ′1, P−1) for all y ∈ A. Now swap x and

15This implies that r2(P ′1) = a and rl(P
′
1) = rl(P1) for all l ≥ 3.
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a in preference ordering of voter 1, in other words replace P ′1 with P1 to obtain profile P .

Because of Lemma 3.1 all the alternatives that are ranked below a and x, should get the

same probability as before i.e. ϕz(P ) = βz(P ′1, P−1) = βz(P ) for all z 6= a, x.

Similarly argument applies when voter 2 has a preference ordering P ′2 where r1(P ′2) = x

and P ′2(A\{x}) = P2(A\{x}). Start with profile (P ′2, P−2) and replace P ′2 with P2 to obtain

ϕz(P ) = βz(P ′2, P−1) = βz(P ) for all z 6= b, x. Both these equalities imply ϕy(P ) = βy(P )

for all y ∈ A\{x}. Since they all add to 1, we have ϕx(P ) = βx(P ) also. This completes the

proof. �

Lemma 3.12 For any profiles P ∈ Pn we have ϕx(P ) = βx for all x ∈ A.

Proof : We assume w.l.o.g. that P1 = P ax
1 and P2 = P by

2 . If x = y, the result immediately

follows by an application of Lemma 3.11. To complete the result we assume x 6= y.

Our arguments will focus on voter 1. First we claim that probability of every alternative z

which is ranked below b in P1 equals to βz(P ). Suppose it is not true. Consider the preference

ordering P ′1 such that P ′1 = P
′ab
1 and P ′1(A\{a, b}) = P1(A\{a, b}). If ϕz(P ) > βz(P ) then

voter 1 manipulates at profile P via P ′1 because ϕ(P ′1, P−1) selects a lottery which gives same

probability as ϕ(P ) to all alternatives below z but strictly lesser to z. On the other hand

if we have ϕz(P ) < βz(P ) then it makes voter 1 to manipulate at profile (P ′1, P−1) via P1

because of ϕ(P ) P
′ul
i ϕ(P ′1, P−1). In both the cases we have a contradiction to ϕ being

ul-strategy-proof.16

Next we claim ϕb(P ) = βb. If it is not true then voter 1 will manipulate at profile P via

P ′′1 when ϕb(P ) > βb where P ′′1 = P
′′ay
1 and P ′′1 (A\{a, y}) = P1(A\{a, y}).17 On the other

hand if ϕb(P ) < βb then voter 1 manipulates at profile (P ′′1 , P−1) via P1, contradicting the dl-

strategy-proofness of ϕ. In this argument the ranking of alternative y in P1 is not important.

If b P1 y then its probability remains the same as βy before and after the manipulation. And

if y P1 b then its probability is not relevant for manipulation.

Finally we claim ϕz(P ) = βz for all z such that z P1 b. Suppose ϕw(P ) 6= βw such that

w P1 b. Consider the preference ordering P ′′′1 such that P ′′′1 = P
′′′ab
1 and P ′′′1 (A\{a, b}) =

P1(A\{a, b}). If ϕw(P ) > βw(P ) then voter 1 manipulates at profile P via P ′′′1 because

ϕ(P ′′′1 , P−1) selects a lottery which gives the same probability as ϕ(P ) to all alternatives

16The preference ordering P ′1 is selected such that P
′ab
1 . We want to emphasis that why P ′1 has an extra

condition of P ′1(A\{a, b}) = P1(A\{a, b}). Suppose we have selected an arbitrary preference ordering P̂ ab
1

without this extra condition. Let there exist a w such that w P1 b and z P̂1 w and ϕw(P ) > βw. This is

potentially possible because we have not ruled it out yet. If this be the case then P̂1 is not a manipulation

at P because ϕ(P̂1, P−1) Pul
1 ϕ(P ) does not hold any more. In that case we do not have a contradiction to

ul-strategy-proofness.
17The relevance of P ′′1 (A\{a, y}) = P1(A\{a, y}) is similar to that of the previous paragraph.
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below w but strictly lesser to w. On the other hand if we have ϕz(P ) < βz(P ) then it makes

voter 1 to manipulate at profile (P ′′′1 , P−1) via P1 because of ϕ(P ) P
′′′ul
i ϕ(P ′′′1 , P−1). In both

the cases we have a contradiction to ϕ being ul-strategy-proof. �

3.6.2 Appendix : Proofs with dl-extension

Lemma 3.13 (dl-monotonicity) Suppose ϕ is a dl-strategy-proof RSCF. Let (Pi, P−i) be

a profile and let P ′i be a preference ordering such that rl(Pi) = rl(P
′
i ) for all l ≤ k̄, for some

k̄ ∈ {1, 2, . . . ,m}. Then ϕrl(Pi)(P ) = ϕrl(P ′i )(P
′
i , P−i) for all l ≤ k̄.

Proof : We show it by contradiction. Suppose rl(Pi) = rl(P
′
i ) for all l ≤ k and ϕrl(Pi)(P ) 6=

ϕrl(P ′i )(P
′
i , P−i) for some l̂ ≤ k for some k ∈ {1, 2, . . . ,m}. Let l′ be the smallest integer

for which ϕrl′ (Pi)(P ) 6= ϕrl′ (P ′i )(P
′
i , P−i). Either ϕrl′ (Pi)(P ) > ϕrl′ (P ′i )(P

′
i , P−i) or ϕrl′ (Pi)(P ) <

ϕrl′ (P ′i )(P
′
i , P−i) must hold. In the former case ϕ(P ) P

′dl
i ϕ(P ′i , P−i) and voter i manipulates

at (P ′i , P−) via Pi. In the latter case ϕ(P ′i , P−i) P
dl
i ϕ(P ) and i manipulates at P via P ′i .

This establishes the lemma. �

Lemma 3.14 Suppose ϕ is a dl-strategy-proof RSCF. Let P ′i is obtained from preference

ordering Pi by only improving the ranking of an alternative x and keeping everything else

same i.e. k′ = r(P ′i , x) < r(Pi, x) = k and Pi(A\{x}) = P ′i (A\{x}). Then for any sub-profile

P−i we have : (i) ϕrl(Pi)(P ) = ϕrl(P ′i )(P
′
i , P−i) for all l < k′ and (ii) either ϕx(P

′
i , P−i) > ϕx(P )

or ϕ(P ) = ϕ(Pi, P−i).

Proof : Part (i) is immediately follow from Lemma 3.13. If ϕx(P
′
i , P−i) < ϕx(P ) then voter

i manipulates at profile (P ′i , P−i) via Pi. Thus we have ϕx(P
′
i , P−i) ≥ ϕx(P ). Suppose

ϕx(P
′
i , P−i) = ϕx(P ) and ϕ(P ′i , P−i) 6= ϕx(P ). Pick the first alternative for which they

are not equal i.e. ϕy(P
′
i , P−i) 6= ϕy(P ) and ϕz(P

′
i , P−i) = ϕz(P ) for all z P ′i y. Either

ϕy(P
′
i , P−i) < ϕy(P ) or ϕy(P

′
i , P−i) > ϕy(P ). In the former case ϕ(P ) P

′dl
i ϕ(P ′i , P−i)

and voter i manipulates at (P ′i , P−i) via Pi. In the latter case ϕ(P ′i , P−i) P
dl
i ϕ(P ) and i

manipulates at P via P ′i . This establishes the Lemma. It is immediate that ϕx(P
′
i , P−i) ≥

ϕx(P ). �

Lemma 3.15 Suppose ϕ is a dl-strategy-proof RSCF. Let P and P ′ be two profiles such

that, every P ′i is obtained from Pi by only (weakly) improving the ranking of an alternative

x and keeping everything else the same i.e. k′ = r(P ′i , x) ≤ r(Pi, x) = k and Pi(A\{x}) =

P ′i (A\{x}) for all i ∈ N . Then either (i) ϕx(P
′) > ϕx(P ) or (ii) ϕ(P ) = ϕ(Pi, P−i).
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Proof : Consider a sequence where voters 1 through n progressively replacing Pi with P ′i .

Applying Lemma 3.14 at each step and hence we obtain the following inequality :

ϕx(P ) = ϕx(P1, P2, P3, . . . , Pn−1, Pn)

≤ ϕx(P
′
1, P2, P3, . . . , Pn−1, Pn)

≤ ϕx(P
′
1, P

′
2, P3, . . . , Pn−1, Pn)

...

≤ ϕx(P
′
1, P

′
2, P

′
3, . . . , P

′
n−1, Pn)

≤ ϕx(P
′
1, P

′
2, P

′
3 . . . , P

′
n−1, P

′
n) = ϕx(P

′)

It is obvious that ϕx(P ) ≤ ϕx(P ). If ϕx(P ) = ϕx(P
′) then all inequalities hold with equality

and at each step again applying Lemma 3.14-Part (ii), we have ϕ(P ) = ϕ(P ′). This completes

the lemma. �

Lemma 3.16 For any profile P , if r2(Pi) = x for all i ∈ N then we have ϕx(P ) = 0.

Proof : Pick an arbitrary profile P̃ such that r2(P̃i) = x. We define few notations used

in this proof. Assume w.l.o.g. that T (P̃ ) = {a1, a2, . . . , ak} = Ak
18 i.e. there are k

distinct alternatives in total that are ranked-first at profile P̃ . Denote K = {1, 2, . . . , k}
for indexation of these alternatives and Gl be set of voters who have alternative al

as their first-ranked alternative in P̃ i.e. Gl = {i ∈ N : r1(P̃i) = al} for all l ∈ K. It

is obvious that each group Gl is non-empty and groups G1 through Gk forms a partition of N .

Pick any set K̄ ⊆ K and an arbitrary profile P̄ such that

(i) r1(P̄i) = al and r2(P̄i) = x for all i ∈ Gl, for all l ∈ K̄19

(ii) r1(P̄i) = at and {r1(P̄i), r2(P̄i), . . . , rk(P̄i)} = Ak for all i ∈ Gt, for all t ∈ K\K̄.

In other words, at profile P̄ all voters in group Gl (for l ∈ K̄) has al first and x second in

their preference ordering. All voters in group Gt (for t ∈ K\K̄) has at on first and their

top-k alternatives are from set Ak.

Claim 1: If |K̄| = 1 then ϕx(P̄ ) = 0. W.l.o.g. assume K̄ = {l}. At profile P̄ we have

al Pi x for all i ∈ N . Since ϕ is efficient, it implies ϕx(P ) = 0.

18Remember that for any profile P we denote T (P ) = {r1(P1), r1(P2), . . . , r1(Pn)}
19We want to emphasis that condition r2(P̄i) can easily be replace with r(P̄i, x) ≥ 2. We can start with

preference ordering Pi where r2(Pi) = 2 and keep lowering the rank of x. By application of Lemma 3.15,

probability of x can only decrease by lowering the ranking of x. Since it is already 0 thus it remains at 0.
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Claim 2 (Induction Step): Suppose ϕx(P̄ ) = 0 for every K̄ such that |K̄| ≤ L−1. We claim

for any K̄ such that |K̄| = L we also have ϕx(P̄ ) = 0.

Assume w.l.o.g. that K̄ = {1, 2, . . . , L}. Consider a profile P such that

(i) All voters in G1 rank alternative a1 first, followed by a2, followed by a3 and so on till

ak i.e. rl(Pi) = al for all l ∈ K, for all i ∈ G1.

(ii) All voters in group Gl rank alternative al first, a1 second and x third from group G2

through GL i.e.
(
r1(Pi), r2(Pi), r3(Pi)

)
= (al, a1, x) for all i ∈ Gl, for all l ∈ K̄\{1} =

{2, . . . , L}.

(iii) All voters from group GL+1 through Gk has same preference ordering as that of in

profile P̄ i.e. Pi = P̄i for all i ∈ Gt, for all t ∈ K\K̄ = {L+1, L+2, . . . , k}.

At profile P every voter prefers a1 over x. Thus efficiency implies ϕx(P ) = 0. Let

ϕa1(P ) = εa1 ∈ [0, 1]. Let P ?
i be the preference ordering obtained from Pi by raising x to

the second rank while keeping everything else the same i.e. r2(P ?
i ) = x and P ?

i (A\{x}) =

Pi(A\{x}). Now consider three different profiles P ′, P ′′ and P ′′′ each obtained from P . In

profile P ′ only voters from G1 have replaced their Pi with P ?
i . In P ′′ only voters from group

G2 through GL have replaced Pi with P ?
i . Finally in P ′′′ all voters from group G1 through

GL have replaced Pi with P ?
i . Formally,

(i) In profile P ′ we have P ′i = P ?
i for all i ∈ G1 and P ′i = Pi for all i ∈ N\G1.

(ii) In profile P ′′ we have P ′i = P ?
i for all i ∈ G2 ∪ G3 . . . ∪ GL and P ′i = Pi for all

i ∈ N\G2 ∪G3 . . . ∪GL

(iii) In profile P ′′′ we have P ′i = P ?
i for all i ∈ G1 ∪ G2 . . . ∪ GL and P ′i = Pi for all

i ∈ N\G1 ∪G2 . . . ∪GL.

It is important to note that each profile P ′, P ′′ and P ′′′ is obtained from P by raising

only the ranking of alternative x for voters belong to certain groups. We show that

ϕx(P
′) = ϕx(P

′′) = ϕx(P
′′′) = 0. And then finally we obtain profile P̄ from P ′′′ to establish

that ϕx(P̄ ) = 0.

Claim 2.1 : ϕ(P ′) = ϕ(P ). Note that at profile P ′ each voter ranks a1 above x. Thus

efficiency implies ϕx(P
′) = 0. Note profile P ′ is obtained from P by raising only the ranking

of x for voters in G1. Therefore, Lemma 3.15 implies that ϕ(P ′) = ϕ(P ) because we have

already shown that ϕx(P
′) = ϕx(P ). We note that ϕa1(P

′) = εa1 .
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Claim 2.2 : ϕ(P ′′) = ϕ(P ). An inspection of profile P ′′ reveals that there are L − 1

groups in total (from G2 through GL), such that each group Gl ranks al first then x

second and all other Gt groups (G1, GL+1 through Gk) rank at at first followed by next

k−1 alternatives only from the set Ak. Therefore, the profile P ′′ satisfies the conditions of

induction hypothesis. Thus by our assumption we have ϕx(P
′′) = 0. Again Lemma 3.15

implies that ϕ(P ′′) = ϕ(P ). We note that ϕa1(P
′′) = εa1 .

Claim 2.3 : ϕx(P
′′′) = 0. Note that the only difference between profile P ′ and P ′′′ is

preference orderings of voters in G2 ∪ G3 . . . ∪ GL. Consider a sequence from P ′ to P ′′′

such that each voter from group G2 through GL successively replaces Pi with P ?
i (while

keeping everything as the same). To be precise each of them are raising x from third to

the second rank and lower a1 from second to the third. Lemma 3.14 implies that after each

such change the probability of x can only increases. Moreover, it can increase if and only if

the probability of a1 decreases.20 Thus at the end we have either (i) ϕx(P
′′′) > ϕx(P

′) = 0

and ϕa1(P
′′′) < ϕa1(P

′) = εa1 or (ii) ϕ(P ′′′) = ϕ(P ′).

Suppose ϕx(P
′′′) > 0 and ϕa1(P

′′′) < εa1 . We show that it leads to a contradiction to

Lemma 3.13. Consider a sequence from P ′′ to P ′′′ such each voter in group G1 replaces Pi

with P ?
i . Note that first-ranked alternative is the same in both Pi and P ?

i . Therefore, we

have a contradiction to Lemma 3.13 because it implies that ϕa1(P
′′′) = ϕa1(P

′′). Thus, we

have ϕa1(P
′′′) = εa1 and which in turn implies that ϕx(P

′′′) = 0. This completes the proof

of the Claim

The Claim 1 and Claim 2 in together implies when |K̄| = k i.e. K̄ = K we have ϕx(P̄ ) = 0.

Note that in preference ordering P̄i, the ranking of alternatives which are below x could be

arbitrary. Therefore, at any profile where each group Gl ranks al first and x second, the

probability of x is zero i.e ϕx(P̃ ) = 0. This completes the proof of Lemma. �

Proof of Proposition 3.1: Pick an arbitrary profile P̂ , we will show that for any x /∈ T (P̂ )

we have ϕx(P̂ ) = 0. Consider the profile P̄ such r2(P̄i) = x and P̄i(A\{x}) = P̂i(A\{x}) for

all i ∈ N . Lemma 3.16 implies that ϕx(P̄ ) = x.

Consider a sequence from profile P̄ to P̂ such that each voter 1 through n successively

replaces P̄i with P̂i i.e. each of them lowers the ranking of alternative x, while keeping the

relative ranking of all other alternatives the same. By an application of Lemma 3.15 the

probability of x can only decrease with such replacement. Thus, at the end of the sequence

20If it is not the case, then an argument similar to Lemma 3.14 applies and a manipulation to dl-strategy-

proofness can be shown.
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we have ϕx(P̂ ) ≤ ϕx(P̄ ) = 0, which implies that ϕx(P̂ ) = 0. This completes the proof. �

Proof of Theorem 3.2 [Sufficiency] The tops-onlyness and efficiency of a top-weight is obvious.

We only show dl-strategy-proofness.

Let ϕ be a top-weight rule. Suppose it is generated by a monotone probability assignment

map ξ. Consider an arbitrary voter i and two profiles P and P ′ such that P−i = P ′−i. We

claim ϕ(P ) Rdl
i ϕ(P ′).

Suppose a = r1(Pi) and r1(P ′i ) = b. If a = b then tops-onlyness of ϕ implies that

ϕ(P ) = ϕ(P ′) and the claim is trivially true.

Suppose a 6= b. If ϕb(P ) = ϕb(P
′) then part 2(i) in the definition of monotonicity of ξ

(Definition 3.9) implies that ϕ(P ) = ϕ(P ′). Once again we have ϕ(P ) Rdl
i ϕ(P ′).

Suppose a 6= b. If ϕb(P ) 6= ϕb(P
′) then part 2(ii) in the definition of monotonicity of ξ

(Definition 3.9) implies that ϕb(P ) < ϕb(P
′) and ϕa(P ) > ϕa(P

′). Since a is first-ranked in

Pi, we have ϕ(P ) P dl
i ϕ(P ′). This completes the proof.

[Necessity.] First consider the case when n ≥ 3. Let ϕ be a RSCF which satisfies tops-only,

dl-strategy-proof and efficiency. We construct a monotone probability assignment map ξ

which generates ϕ. Define a mapping ξ : An → ∆A as follows: for any tuple x ∈ An we have

ξ(x) = ϕ(P ) where xi = r1(Pi) for all i ∈ N . Since ϕ is tops-only ξ is well-defined.

Applying Proposition 3.1, it follows that ϕ is a top support rule. This implies that∑
a∈T (P ) ϕa(P ) = 1 or

∑
a∈[x] ξa(x) = 1. Hence ξ is a probability assignment map. It only

remains to show that ξ satisfies monotonicity.

Pick any x−i ∈ An−1 and distinct xi, x
′
i ∈ A for any i ∈ N . Consider a profile P and a

preference ordering P ′i such that r1(Pj) = xj for all j ∈ N and x′i = r1(P ′i ). Suppose xi =

r1(Pi) = a 6= x′i = r1(P ′i ) = b. We claim either ϕ(P ) = ϕ(P ′) holds or ϕa(P ) > ϕa(P
′) and

ϕb(P ) < ϕb(P
′) is true. Since ϕ is dl-strategy-proof, ϕa(P ) ≥ ϕa(P

′) follows immediately.

Case 1: Suppose ϕa(P ) = ϕa(P
′). We show ϕ(P ) = ϕ(P ′). Pick an arbitrary c ∈ A\{a}.

Since ϕ is tops-only we can assume w.l.o.g. that r2(Pi) = c. Since ϕ is dl-strategy-proof , it

follows that ϕc(P ) ≥ ϕc(P
′); otherwise i can misreport P ′i at profile P to obtain a (strictly)

better lottery. Since ϕa(P ) = ϕa(P
′) = and ϕc(P ) ≥ ϕc(P

′) for all c ∈ A\{a}, it must be

the case that ϕ(P ) = ϕ(P ′).

Case 2: Suppose ϕa(P ) > ϕa(P
′). We claim ϕb(P ) < ϕ(P ′). Suppose not i.e. ϕb(P ) ≥

ϕb(P
′). Assume w.l.og. that r2(P ′i ) = a. Thus the probability of b is (weakly) higher and that

of a strictly higher in lottery ϕ(P ) as compared to ϕ(P ′). Thus ϕ(P ) is strictly preferred to

ϕ(P ′) at P ′i according to dl-extension. Hence voter i manipulates at profile P ′ via Pi. Thus

ϕb(P ) < ϕ(P ′) as claimed. This completes the proof for the case n ≥ 3.
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We now turn to the case of two voters (n = 2). We will show that tops-onlyness is

redundant because dl-strategy-proofness and efficiency imply tops-onlyness.

Pick two distinct alternatives a and b and consider a profile P = (P ab
1 , P ba

2 ).21 Let

ϕa(P ) = λ. Efficiency implies that ϕb(P ) = 1 − λ. Pick an arbitrary profile P̄ = (P̄ a
1 , P̄

b
2 ).

If we can show that ϕ(P ) = ϕ(P̄ ) it completes the proof. The first step in that direction we

claim that ϕ(P̄1, P2) = ϕ(P ).

Suppose ϕa(P̄1, P2) 6= ϕa(P ). If ϕa(P̄1, P2) > ϕa(P ) then voter 1 manipulates at profile

P via P̄1. On the other hand if ϕa(P̄1, P2) < ϕa(P ) then voter 1 manipulates at profile

(P̄1, P2) via P1. Thus we have ϕa(P̄1, P2) = ϕa(P ). Applying efficiency at (P̄1, P2) implies

ϕb(P̄1, P2) = 1− ϕa(P̄1, P2) = 1− λ. By a similar argument we show ϕ(P1, P̄2) = ϕ(P ).

Finally we claim that ϕ(P̄ ) = ϕ(P ). Suppose not. If ϕa(P̄ ) < ϕa(P1, P̄2) = λ then voter

1 manipulates at profile P̄ via P1. On the other hand, if ϕb(P̄ ) < ϕb(P̄1, P2) = 1 − λ then

voter 2 manipulates at profile P̄ via P2. This completes the proof. �

21Remember that We shall write P a
i for a preference ordering where a is ranked first. Similarly P ab

i will

denote a preference ordering where a is ranked first and b second.
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Chapter 4

Stochastic same-sidedness in random

voting models

4.1 Introduction

In this chapter, we study the standard random voting model. A group of agents (or voters)

have to choose a lottery over the set of alternatives (or candidates) based on their ordinal

preferences over the alternatives. A random social choice function (RSCF) maps each profile

of agents’ preferences to a lottery. In this framework, we propose an axiom called stochastic

same-sidedness (SSS) and explore its consequences.

Consider a preference profile and suppose a voter changes her preference ordering to an

adjacent one by swapping two consecutively ranked alternatives. Then, SSS imposes two

restrictions on the RSCF. First, the sum of probabilities of the alternatives which are ranked

strictly higher than the swapped pair, should remain the same. Second, the sum probabilities

assigned to the swapped pair, should also remain the same.

The SSS axiom can be motivated as an axiom of robustness to“small mistakes”. Consider

a deterministic SCF where a voter makes a small mistake in reporting y better than x when

x is better than y and consecutively ranked in her true preference and misreport. Suppose

truth-telling outcome z was below y but is above x after the misreport. Then this could be

interpreted as a “large” change as consequence of small mistake since the outcome “jumps”

over a number of alternatives including x and y. A similar interpretation could be given if

z was above x but new outcome is below y. In addition if z is either x or y then it must

remain so after the misreport.

Muto and Sato (2017) introduced an axiom called same-sidedness (SS) which ensures

that a SCF does not respond to small mistakes in this way. Our SSS axiom is the stochastic

counterpart of the same-sidedness condition. In particular, probability weight should not be
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transferred from an outcome ranked strictly above x to either x or any outcome worse than

x. Similarly, probability weight should not be transferred from an outcome ranked strictly

below y to either y or any outcome better than y. The SSS axiom also requires that the sum

of the probabilities of x and y is the same before and after a misreport. The same-sidedness

condition of Muto and Sato (2017) is a weaker version of a condition they called bounded

response (BR). Our SSS condition cannot be interpreted as a generalization of BR. However,

our results show that even this form of weaker immunity to small mistakes leads to negative

results.

Muto and Sato (2017) showed that the mild SS condition has strong negative implica-

tions. For more than two voters, unanimity and SS do not imply dictatorship. However,

if unanimity is replaced by the requirement of efficiency, then it is not possible to escape

dictatorship.

The key question addressed in this chapter is the following: does randomization sig-

nificantly expand the class of RSCFs satisfying SSS relative to the deterministic case? In

particular, can we escape the negative conclusions of Muto and Sato (2017)? The simple

answer is that we cannot. We show that in the two voters case, every RSCF that satisfies

efficiency and SSS, is a random dictatorship. The result does not hold if we replace efficiency

by unanimity. If there are more than two voters, efficiency and SSS do not imply random

dictatorship. However, if RSCFs are required to satisfy tops-onlyness in addition to effi-

ciency and SSS, we have random dictatorship again. We note that results for deterministic

SCFs do not always immediately translate into results for RSCFs. An illustration of this

fact is that much stronger restrictions may be required for a dictatorial domain to also be a

random dictatorial domain - see Chatterji et al. (2014).

It is important to clarify the precise relationship between SSS and various notions

of incentive compatibility. The standard notion of incentive-compatibility is sd-strategy-

proofness introduced in Gibbard (1977) (for detailed explanation refer Chapter 3 of the

dissertation). The SSS axiom is much weaker than sd-strategy-proofness. Suppose for in-

stance, a voter misrepresents her true preference ordering by swapping the 7th and 8th ranked

alternatives, say x and y respectively. According to sd-strategy-proofness, the probability

of all alternatives other than x and y should remain the same; furthermore the probability

of y must not decline while the probability of x must not increase. On the other hand,

SSS merely requires the sum of probabilities of alternatives above x and y (i.e. the top six

alternatives) to remain unchanged. In addition, the sum of the probabilities of x and y must

remain unchanged.

There are several weaker versions of sd-strategy-proofness that have been used in ran-

dom voting model and random object assignment models (for instance, Bogomolnaia and

Moulin (2001b), Aziz et al. (2014), Balbuzanov (2016), Sen (2011), Brandt (2017). See also
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Chapter 3 for further discussion on this issue). The weakest among these notions is weak

sd-strategy-proofness. It requires the existence of at least one utility representation of the

voter’s true ordinal preference for which the expected utility from truth-telling is higher than

lying. In other words, the truth-telling lottery should not be stochastically dominated by

any other lottery obtained by misrepresentation. We show that SSS and weak sd-strategy-

proofness are independent i.e. neither implies the other. In particular, SSS allows instances

where the truth-telling lottery gives (strictly) lower expected utility than a lottery obtained

via a misreport for every utility representation of voter’s true ordinal preference. In other

words, truth-telling lottery is stochastically dominated by a lottery obtained by lying. As a

consequence, the SSS axiom cannot be interpreted as an incentive-compatible property. We

conclude this section by noting that recently, Chun and Yun (2020) introduced a weaken-

ing of sd-strategy-proofness, called upper-contour strategy-proofness to study random object

assignment model. Our SSS axiom is weaker than their axiom, as former is immediately

implied by the latter.

This chapter is organized as follows. Section 4.2 formally introduces the model. Section

4.3 discusses the relationship between SSS and incentive-compatibility. Section 4.4 contains

the main results. Section 4.5 concludes the chapter. All proofs are contained in the Appendix

(Section 4.6).

4.2 The Framework

Let N = {1, . . . , n} be a finite set of voters and A be a finite set of alternatives where

|A| = m ≥ 3. We denote ∆A the set of probability distributions or lotteries over the

elements of A. Each voter i ∈ N has a linear ordering Pi over the elements of the set A. Let

P denote the set of all linear orderings over the elements of A. A preference profile is a list

P = (P1, . . . , Pn) ∈ Pn of voters preferences. For any profile P ∈ Pn and voter i ∈ N , let P−i

denote the n − 1 voters profile (P1, . . . , Pi−1, Pi+1, . . . , Pn). For any ordering Pi and integer

k = 1, . . . ,m, we denote rk(Pi) the kth ranked alternative in Pi, i.e. |{a ∈ A : aPirk(Pi)}| =
k − 1. For any ordering Pi and a ∈ A, we denote r(Pi, a) ∈ {1, 2, . . . ,m} as the rank of a

at Pi. Note that for any Pi ∈ P, k ∈ {1, 2, . . . ,m} and a ∈ A, rk(Pi) = a if and only if

r(Pi, a) = k.

Definition 4.1 A random social choice function (RSCF) ϕ is a mapping from Pn to ∆A

i.e. ϕ : Pn → ∆A.

For any P ∈ Pn, ϕ(P ) is a lottery over A. For any alternative a ∈ A, ϕa(P ) denotes the

probability assigned to a at the lottery ϕ(P ). Clearly, ϕa(P ) ≥ 0 and
∑
a∈A

ϕa(P ) = 1.
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Throughout this paper, attention is restricted to RSCFs satisfying the efficiency property.

This requires that if a ∈ A is preferred to b ∈ A by all voters in any profile, then the RSCF

must assign zero probability to the alternative b in that profile.

Definition 4.2 A RSCF ϕ : Pn → ∆A is efficient if for all P ∈ Pn and for all a, b ∈ A
such that aPib for all i ∈ N , we have ϕb(P ) = 0.

A much weaker notion of efficiency is unanimity. This requires that an alternative that

is first-ranked by all voters in any profile be selected with probability one in that profile.

Definition 4.3 A RSCF ϕ : Pn → ∆A is unanimous if for all P ∈ Pn and for all a ∈ A
such that r1(Pi) = a for all i ∈ N , we have ϕa(P ) = 1.

Now we introduce the key axiom of the paper, which we call stochastic same-sidedness.

Before providing a formal definition, we need to introduce further notations. For any Pi, P
′
i ∈

P and B ⊆ A, if xPiy ⇔ xP ′iy for all x, y ∈ B, then we write Pi(B) = P ′i (B). Two

orderings P and P ′ are adjacent if there exist two distinct alternatives x, y ∈ A such that

(1) rk(Pi) = x = rk+1(P ′i ) and rk+1(Pi) = y = rk(P
′
i ), k ∈ {1, 2, . . . ,m − 1} and (2)

Pi(A \ {x, y}) = P ′i (A \ {x, y}). If Pi and P ′i are adjacent and two distinct alternatives

x, y ∈ A satisfy xPiy and yP ′ix, the set of two alternatives {x, y} is denoted by A(Pi, P
′
i ).

Two alternatives x and y are adjacent at Pi if they are consecutively ranked in Pi, i.e.,

r(Pi, x) − r(Pi, y) is either 1 or −1. For any Pi ∈ P and for any two alternatives x and y

at Pi, U(Pi, {x, y}) denotes the set of alternatives which are ranked above x and y at Pi i.e.

U(Pi, {x, y}) = {a ∈ A : aPix and aPiy}. A sequence of distinct orderings (P 1, . . . , P k) is a

path from P 1 to P k if for every j ∈ {1, . . . , k − 1}, P j and P j+1 are adjacent.

Now we state stochastic same-sidedness formally below.

Definition 4.4 A RSCF ϕ : Pn → ∆A satisfies stochastic same-sidedness (SSS) if for all

P ∈ Pn, i ∈ N and P ′i ∈ P such that Pi and P ′i are adjacent with A(Pi, P
′
i ) = {x, y}1, we

have

a.
∑

a∈U(Pi,{x,y})
ϕa(P ) =

∑
a∈U(Pi,{x,y})

ϕa(P
′
i , P−i).

b.
∑

a∈{x,y}
ϕa(P ) =

∑
a∈{x,y}

ϕa(P
′
i , P−i).

Stochastic same-sidedness puts the following restrictions on RSCFs. At P ∈ Pn if voter

i ∈ N replaces her preference by P ′i which is adjacent to Pi, then the total probabilities to

each of the two sets U(Pi, A(Pi, P
′
i ) and {x, y} at (P ′i , P−i) should remain same as at P . The

main objective of this paper is to study RSCFs that satisfy efficiency and SSS.

1Note that if Pi and P ′i are adjacent with A(Pi, P
′
i ) = {x, y}, then U(Pi, x, y) = U(P ′i , x, y)
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4.3 Incentive-compatibility and stochastic same-sidedness

In this section we explore the connection between stochastic same-sidedness and incentive-

compatibility. In this framework, there are several notions of incentive-compatibility. We

first describe the approach of Gibbard (1977) which is, in fact the standard approach in

probabilistic voting theory.

Definition 4.5 A utility function u : A → R represents the ordering Pi over A if for all

a, b ∈ A,

[aPib]⇔ [u(a) > u(b)]

We let U(Pi) denote the set of utility functions that represent Pi.

Definition 4.6 A RSCF ϕ : Pn → ∆A is strategy-proof if, for all i ∈ N , for all P ∈ Pn,

for all P ′i ∈ P and all u ∈ U(Pi), we have

∑
a∈A

u(a)ϕa(Pi, P−i) ≥
∑
a∈A

u(a)ϕa(P
′
i , P−i)

.

A RSCF is strategy-proof if telling the truth maximizes a voter’s expected utility for

every utility representation of her ordinal preferences, irrespective of the announcements of

the other voters. It is well-known that this is equivalent to requiring that the probability

distribution from truth-telling stochastically dominates the probability distribution from

misrepresentation in terms of a voter’s true preferences. This is also known as stochastic

dominance strategy-proofness (sd-strategy-proofness) and is stated formally below.

For any i ∈ N , Pi ∈ P and k = 1, . . . ,m, let B(k, Pi) = {a ∈ A : aPirk(Pi)} ∪ {rk(Pi)},
i.e. B(k, Pi) denotes the set of alternatives that are weakly preferred to the kth ranked

alternative in Pi.

Definition 4.7 A RSCF ϕ : Pn → ∆A is sd-strategy-proof if for all i ∈ N , for all P ∈ Pn,

for all P ′i ∈ P and for all k = 1, . . . ,m− 1, we have∑
a∈B(k,Pi)

ϕa(Pi, P−i) ≥
∑

a∈B(k,Pi)

ϕa(P
′
i , P−i)

.

In the following, we show that stochastic same-sidedness is weaker than sd-strategy-

proofness.

Proposition 4.1 Let ϕ : Pn → ∆A be a sd-strategy-proof RSCF. Then ϕ satisfies SSS.
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The proof of Proposition 4.1 is in the Appendix. However, SSS does not imply sd-

strategy-proofness (see example 4.2).

The weakest form of incentive-compatibility is weak sd-strategy-proofness which we define

formally below.

Definition 4.8 A RSCF ϕ : Pn → ∆A is weakly sd-strategy-proof if for all i ∈ N , for all

P ∈ Pn, for all P ′i ∈ P[ ∑
a∈B(k,Pi)

ϕa(P
′
i , P−i) ≥

∑
a∈B(k,Pi)

ϕa(Pi, P−i) for all k = 1, . . . ,m− 1
]
⇒
[
ϕ(P ) = ϕ(P ′i , P−i)

]
.

Weak sd-strategy-proofness is equivalent to requiring the truth-telling lottery not to be

first order stochastically dominated by all lotteries obtained by misrepresentation of prefer-

ences. In other words, it requires the existence of one utility representation of voter’s true

ordinal preference for which the expected utility from truth-telling is higher than lying. How-

ever, SSS is not a strategic property of RSCFs. It allows the fact that truth-telling lottery

can be first order stochastically dominated by a lottery obtained by misrepresentation of

preferences. In particular, in the below, we show that SSS and weak sd-strategy-proofness

are independent.

Example 4.1 (Weak sd-strategy-proofness does not imply SSS) Let |A| ≥ 3 and N = {1, 2}.
Fix a ∈ A. We define ϕ : P2 → ∆A as follows: For any P ∈ P2 and for any x ∈ A,

ϕx(P ) =



1 if x = r1(P1) = r1(P2)
1
2

if x = a = r1(P1) and r1(P1) 6= r1(P2)
1
2

if a = r1(P1) 6= r1(P2) = x
3
5

if x = r1(P1) 6= a and r1(P1) 6= r1(P2)
2
5

if r1(P1) 6= a and r1(P1) 6= r1(P2) = x

0 otherwise

It is easy to verify that ϕ satisfies weak sd-strategy-proofness. Now consider the case

where A = {a, b, c}. Let P1, P ′1 and P2 be the following linear orders.

P1 P ′1 P2

a b c

b a b

c c a

Note that ϕa(P1, P2) = 1
2

and ϕb(P1, P2) = 0. Therefore, ϕa(P1, P2) + ϕb(P1, P2) = 1
2
.

Now note that P1 and P ′1 are adjacent and A(Pi, P
′
i ) = {a, b}. But ϕa(P

′
1, P2) = 0 and
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ϕb(P
′
1, P2) = 3

5
. So ϕa(P

′
1, P2) +ϕb(P

′
1, P2) = 3

5
. Therefore we have ϕa(P1, P2) +ϕb(P1, P2) 6=

ϕa(P
′
1, P2) + ϕb(P

′
1, P2). This is a violation of SSS. �

Example 4.2 (SSS does not imply weak sd-strategy-proofness) Let |A| ≥ 3 and N = {1, 2}.
Fix a, b ∈ A, a 6= b and ε ∈ (0, 0.5). We define ϕa,b : P2 → ∆A as follows: For any P ∈ P2

and for any x ∈ A,

ϕa,bx (P ) =



1
2
− ε if x = a = r1(P1) and rm(P1) = b

ε if a = r1(P1), x = r2(P1) and rm(P1) = b
1
2

if a = r1(P1) and rm(P1) = b = x
1
2

if x ∈ {a, b} and a 6= r1(P1) or b 6= rm(P1)

0 otherwise

Note that ϕa,b satisfies SSS. Now consider the case where A = {a, b, c}. Let P1, P ′1 and P2

be the following linear orders.

P1 P ′1 P2

a a c

c b b

b c a

Note that ϕa,ba (P1, P2) = 1
2
− ε, ϕa,bb (P1, P2) = 1

2
and ϕa,bc (P1, P2) = ε. Also ϕa,ba (P ′1, P2) = 1

2
,

ϕa,bb (P ′1, P2) = 1
2

and ϕa,bc (P1, P2) = 0. Now assume that P1 be the true preference of agent

1. Then we have

ϕa,ba (P ′1, P2) > ϕa,ba (P1, P2).

ϕa,ba (P ′1, P2) + ϕa,bc (P ′1, P2) = ϕa,ba (P1, P2) + ϕa,bc (P1, P2).

ϕa,ba (P ′1, P2) + ϕa,bc (P ′1, P2) + ϕa,bb (P ′1, P2) = ϕa,ba (P1, P2) + ϕa,bc (P1, P2) + ϕa,bb (P1, P2).

This shows that ϕa,b(P ′1, P2) stochastically dominates ϕa,b(P1, P2). This implies that ϕa,b

violates weak sd-strategy-proofness. �

It is important to mention that a prominent class of unanimous and sd-strategy-proof

RSCFs is the class of random dictatorships (Gibbard (1977)). Each voter first is assigned a

non-negative weight such that the sum of all weights equals one. In a random dictatorship,

at each preference profile, the probability received by an alternative is determined by the set

of voters who prefer this alternative the most, and equals the sum of these voters’ weights.

Definition 4.9 A RSCF ϕ : Pn → ∆A is a random dictatorship if there exist non-negative

real numbers βi, i ∈ N with
∑
i∈N

βi = 1 such that for all P ∈ Pn and all a ∈ A,

ϕa(P ) =
∑

{i:r1(Pi)=a}

βi
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Note that random dictatorships are sd-strategy-proof. In the view of Proposition 4.1, we

can conclude that random dictatorship satisfies SSS. We conclude this section by stating this

observation formally below.

Lemma 4.1 Let the RSCF ϕ : Pn → ∆A be a random dictatorship. Then ϕ satisfies SSS.

4.4 The Results

In this section we present the main results of the paper. For the two voters case, we show

that efficiency and SSS imply random dictatorship.

Theorem 4.1 Let n = 2. A RSCF ϕ : P2 → ∆A satisfies efficiency and SSS if and only if

it is random dictatorship.

The proof of Theorem 4.1 is in the Appendix. The following example shows that Theorem

4.1 does not hold if we replace efficiency by unanimity.

Example 4.3 Let A = {a, b, c, d} and N = {1, 2}. We define P̄1, P̄2 ⊆ P as follows:

P̄1 = {P1 ∈ P : r1(P1) = a, r4(P1) = b}

P̄2 = {P2 ∈ P : r1(P2) = b, r4(P2) = a}

Let P̄s = P̄1× P̄2 and 0 < ε < 1
2
. We define ϕ : P2 → ∆A as follows: For any P ∈ P2 and

for any x ∈ A,

ϕx(P ) =


1
2
− ε if P ∈ P̄s and x ∈ {a, b}

ε if P ∈ P̄s and x ∈ {c, d}
k
2

if P /∈ P̄s and k = |{i ∈ {1, 2} : r1(Pi) = x}|
Note that ϕ does not satisfy random dictatorship. It can be verified that that ϕ satisfies

unanimity and SSS. Now consider the profile P = (P1, P2) such that

P1 P2

a b

c c

d d

b a

Note that ϕd(P ) = ε > 0. This violates efficiency as for all agents i ∈ N , cPid. �
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For the more than two voters case, efficiency and SSS do not imply random dictator-

ship. However, if we impose the additional requirement of tops-onlyness on RSCFs, then

efficiency and SSS imply random dictatorship. A RSCF satisfies the tops-only property if the

lottery under each preference profile depends only on the top ranked alternatives of voters’

preferences.

Definition 4.10 A RSCF ϕ : Pn → ∆A satisfies tops-onlyness if for all P, P ′ ∈ Pn where

r1(Pi) = r1(P ′i ) for all i ∈ N , we have ϕ(P ) = ϕ(P ′).

Tops-onlyness has the following implication on efficient RSCFs. If a RSCF satisfies

efficiency and tops-onlyness, then the support of the lottery under each preference profile is

a subset of the set of the top ranked alternatives of voters’ preferences. We call this property

as only-topness and provide a formal definition in the below.

Definition 4.11 A RSCF ϕ : Pn → ∆A satisfies only-topness if for all P ∈ Pn and a ∈ A,

ϕa(P ) > 0 implies a = r1(Pi) where i ∈ N .

Proposition 4.2 If a RSCF ϕ : Pn → ∆A is efficient and tops-only, then it is a only-top

RSCF.

Proof : Suppose not i.e. there exist P ∈ Pn and a ∈ A such that ϕa(P ) > 0 and a 6= r1(Pi)

for all i ∈ N . Let P ′ ∈ Pn be such that for all i ∈ N , r1(Pi) = r1(Pi) and rm(P ′i ) = a. By

tops-onlyness, ϕa(P ) = ϕa(P
′) > 0. This contradicts efficiency of ϕ at P ′. Therefore, ϕ is

only-top. �

The state our main result for the case of more than two voters in below.

Theorem 4.2 Let n ≥ 3. A RSCF ϕ : Pn → ∆A satisfies efficiency, tops-onlyness and SSS

if and only if it is random dictatorship.

The proof of Theorem 4.2 is in the Appendix. The following example illustrates that for

the more than two voters case, efficiency and SSS do not imply random dictatorship.

Example 4.4 Let A = {a, b, c, x, y, z} and N = {1, 2, 3}. We define P̄1, P̄2, P̄3 ⊆ P as

follows:

P̄1 = {P1 ∈ P : r1(P1) = a, {r2(P1), r3(P1)} = {x, z}, {r4(P1), r5(P1)} = {b, c}, r6(P1) = y}

P̄2 = {P2 ∈ P : r1(P2) = b, {r2(P2), r3(P2)} = {x, y}, {r4(P2), r5(P2)} = {a, c}, r6(P2) = z}
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P̄3 = {P3 ∈ P : r1(P3) = c, {r2(P3), r3(P3)} = {y, z}, {r4(P3), r5(P3)} = {a, b}, r6(P3) = x}

Let P̄s = P̄1× P̄2× P̄3 and 0 < ε < 1
3
. We define ϕ : P3 → ∆A as follows: For any P ∈ P3

and for any w ∈ A,

ϕw(P ) =


1
3
− ε if P ∈ P̄s and w ∈ {a, b, c}

ε if P ∈ P̄s and w ∈ {x, y, z}
k
3

if P /∈ P̄s and k = |{i ∈ {1, 2, 3} : r1(Pi) = w}|

Note that ϕ does not satisfy random dictatorship. It can be verified that that ϕ satisfies

efficiency and SSS.

Now consider the profiles P = (P1, P2, P3) and P ′ = (P ′1, P
′
2, P

′
3).

P1 P2 P3 P ′1 P ′2 P ′3
a b c a b c

x x y b a b

z y z c c a

b a a x x x

c c b y y y

y z x z z z

Note that ϕa(P ) = ϕb(P ) = ϕc(P ) = 1
3
− ε and ϕx(P ) = ϕy(P ) = ϕz(P ) = ε. On

the other hand ϕa(P
′) = ϕb(P

′) = ϕc(P
′) = 1

3
and ϕx(P

′) = ϕy(P
′) = ϕz(P

′) = 0. So

ϕ(P ) 6= ϕ(P ′). This violates tops-onlyness as for all agents i ∈ N , r1(Pi) = r1(P ′i ). �

The following example shows that Theorem 4.2 does not hold if we replace top-onlyness

by only-topness.

Example 4.5 Let A = {a, b, c, d} and N = {1, 2, 3, 4}. We define P̄1, P̄2, P̄3, P̄4 ⊆ P as

follows:

P̄1 = {P1 ∈ P : r1(P1) = a, r4(P1) = b}

P̄2 = {P2 ∈ P : r1(P2) = b, r4(P2) = a}

P̄3 = {P3 ∈ P : r1(P3) = c, r4(P3) = d}
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P̄4 = {P4 ∈ P : r1(P4) = d, r4(P4) = c}

Let P̄s = P̄1 × P̄2 × P̄3 × P̄4 and 0 < ε < 1
2
. We define ϕ : P4 → ∆A as follows: For any

P ∈ P3 and for any x ∈ A,

ϕx(P ) =


1
2
− ε if P ∈ P̄s and x ∈ {a, b}

ε if P ∈ P̄s and x ∈ {c, d}
k
2

if P /∈ P̄s and k = |{i ∈ {1, 2} : r1(Pi) = x}|

Note that ϕ does not satisfy random dictatorship. It can be verified that that ϕ satisfies

efficiency, only-topness and SSS. �

In the following, we show that Theorem 4.2 does not hold if we replace efficiency by

unanimity.

Example 4.6 Let A = {a, b, c, d} and N = {1, 2, 3}. We partition P3 into five sets as

follows:

P3
1 = {P ∈ P3 : r1(P1) = r1(P2) 6= r1(P3)}

P3
2 = {P ∈ P3 : r1(P1) = r1(P3) 6= r1(P2)}

P3
3 = {P ∈ P3 : r1(P1) 6= r1(P2) = r1(P3)}

P3
4 = {P ∈ P3 : r1(P1) 6= r1(P2), r1(P1) 6= r1(P3), r2(P1) 6= r1(P3)}

P3
5 = {P ∈ P3 : r1(P1) = r1(P2) = r1(P3)}

We define ϕ : P3 → ∆A as follows: For any P ∈ P3 and for any x ∈ A,
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ϕx(P ) =



1
2

if P ∈ P3
1 and x = r1(P1)

1
2

if P ∈ P3
1 and x = r1(P3)

3
5

if P ∈ P3
2 and x = r1(P1)

2
5

if P ∈ P3
2 and x = r1(P2)

3
10

if P ∈ P3
3 and x = r1(P1)

7
10

if P ∈ P3
3 and x = r1(P2)

2
10

if P ∈ P3
4 and x = r1(P1)

3
10

if P ∈ P3
4 and x = r1(P2)

4
10

if P ∈ P3
4 and x = r1(P3)

1
10

if P ∈ P3
4 and x /∈ {r1(P1), r1(P2), r1(P3)}

1 if P ∈ P3
5 and x = r1(P1)

0 otherwise

Note that ϕ does not satisfy random dictatorship. It can be verified that that ϕ satisfies

unanimity, SSS and tops-onlyness. Now consider the profiles P = (P1, P2, P3). Note that

P1 P2 P3

a b c

b c a

c a b

d d d

ϕd(P ) = 1
10

. This violates efficiency as for all agents i ∈ N , aPid. �

4.5 Conclusion

This chapter explores the consequences of introducing a new axiom stochastic same-sidedness

in the random voting model. The foundations for this axiom are non-strategic. We have

shown that the axiom has strong implications for the structure of random social choice

functions. Our results show that there is no escape from random dictatorship if a RSCF is

required to satisfy a minimal robustness to small mistakes in conjunction with efficiency and

tops-onlyness.
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4.6 Appendix

The Proof of Proposition 4.1

Proof : Consider an i ∈ N , P = (Pi, P−i) ∈ Pn and P ′i ∈ P such that Pi and P ′i are adjacent

with A(Pi, P
′
i ) = {x, y}. Without loss of generality, assume that r(Pi, x) = r(P ′i , y) = k and

r(Pi, y) = r(P ′i , x) = k + 1. Note that for any l ∈ {1, 2, . . . , k − 1}, B(l, Pi) = B(l, P ′i ). So

applying sd-strategy-proofness for the deviation from Pi to P ′i and from P ′i to Pi, we have∑
a∈B(l,Pi)

ϕa(Pi, P−i) =
∑

a∈B(l,Pi)

ϕa(P
′
i , P−i)

for all l ∈ {1, 2, . . . , k − 1}. Also note that B(k + 1, Pi) = B(k + 1, P ′i ). So again applying

sd-strategy-proofness for the deviation from Pi to P ′i and from P ′i to Pi we have∑
a∈B(k+1,Pi)

ϕa(Pi, P−i) =
∑

a∈B(k+1,Pi)

ϕa(P
′
i , P−i)

Now, it follows that

∑
a∈B(k+1,Pi)

ϕa(Pi, P−i) =

 ∑
a∈B(k−1,Pi)

ϕa(Pi, P−i)

+ ϕx(Pi, P−i) + ϕy(Pi, P−i)

∑
a∈B(k+1,Pi)

ϕa(P
′
i , P−i) =

 ∑
a∈B(k−1,Pi)

ϕa(P
′
i , P−i)

+ ϕx(P
′
i , P−i) + ϕy(P

′
i , P−i)

Combining we have

ϕx(Pi, P−i) + ϕy(Pi, P−i) = ϕx(P
′
i , P−i) + ϕy(P

′
i , P−i)

Note that B(k − 1, Pi) = B(k − 1, P ′i ) = U(Pi, {x, y}). Hence, ϕ satisfies SSS. �

The Proof of Theorem 4.1

Proof : It is straightforward that random dictatorship satisfies efficiency and SSS. Therefore

we show the only if part. Let ϕ : P2 → ∆A satisfies efficiency and SSS. We will show that ϕ

is a random dictatorship.

We complete the proof by showing following two lemmas.

Lemma 4.2 For any P, P ′ ∈ P2 and a, b ∈ A such that r1(P1) = r1(P ′1) = a 6= b = r1(P2) =

r1(P ′2), we have
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1. ϕa(P ) + ϕb(P ) = ϕa(P
′) + ϕb(P

′) = 1.

2. ϕa(P ) = ϕa(P
′) and ϕb(P ) = ϕb(P

′).

Proof : Consider any two alternatives a, b ∈ A and a preference profile P̄ ∈ P2 such that

r1(P̄1) = r2(P̄2) = a 6= b = r1(P̄2) = r2(P̄1). By efficiency, ϕa(P̄ ) + ϕb(P̄ ) = 1. We assume

that ϕa(P̄ ) = β1 and ϕb(P̄ ) = β2 where 0 ≤ β1, β2 ≤ 1 and β1 + β2 = 1. We complete the

proof by showing following claims.

Claim 4.1 For any P ∈ P2 such that r1(P1) = a 6= b = r1(P2) = r2(P1) or r1(P1) =

r2(P2) = a 6= b = r1(P2), we have ϕa(P ) = β1 and ϕb(P ) = β2.

Proof : Case 1: P ∈ P2 be such that r1(P1) = a 6= b = r1(P2) = r2(P1).

Let P ′1 be an ordering where P̄1(A \ b) = P ′1(A \ b) and rm(P ′1) = b. Let P̄1 =

P 1, P 2, . . . , P k = P ′1 be a path from P̄1 to P ′1 where P j(A \ b) = P j+1(A \ b) for all

j ∈ {1, 2, . . . , k − 1}. By efficiency and SSS, we have ϕ(P̄ ) = ϕ(P 2, P̄2) = ϕ(P 3, P̄2) =

. . . = ϕ(P ′1, P̄2).

Let P ′′1 be an ordering where P1(A \ b) = P ′′1 (A \ b) and rm(P ′′1 ) = b. Let P ′1 =

P 1, P 2, . . . , P l = P ′′1 be a path from P ′1 to P ′′1 where r1(P j) = a and rm(P j) = b for all

j ∈ {1, 2, . . . , l}. Again, by efficiency and SSS, we have ϕ(P ′1, P̄1) = ϕ(P 2, P̄2) = ϕ(P 3, P̄2) =

. . . = ϕ(P ′′1 , P̄2).

Let P ′′1 = P 1, P 2, . . . , P r = P1 be a path from P ′′1 to P1 where P j(A \ b) = P j+1(A \ b)
for all j ∈ {1, 2, . . . , r − 1}. Applying efficiency and SSS, we get ϕ(P ′′1 , P̄1) = ϕ(P 2, P̄2) =

ϕ(P 3, P̄2) = . . . = ϕ(P1, P̄2).

Let P ′2 be an ordering where P̄2(A \ a) = P ′2(A \ a) and rm(P ′2) = a. Let P̄2 =

P 1, P 2, . . . , P k′ = P ′2 be a path from P̄2 to P ′2 where P j(A \ a) = P j+1(A \ a) for all

j ∈ {1, 2, . . . , k′ − 1}. By efficiency and SSS, we have ϕ(P1, P̄1) = ϕ(P1, P
2) = ϕ(P1, P

3) =

. . . = ϕ(P1, P
′
2).

Let P ′′2 be an ordering where P2(A \ a) = P ′′2 (A \ a) and rm(P ′′2 ) = a. Let P ′2 =

P 1, P 2, . . . , P l′ = P ′′2 be a path from P ′2 to P ′′2 where r1(P j) = b and rm(P j) = a for all

j ∈ {1, 2, . . . , l′}. Again, by efficiency and SSS, we have ϕ(P1, P
′
2) = ϕ(P1, P

2) = ϕ(P1, P
3) =

. . . = ϕ(P1, P
′′
2 ).

Let P ′′2 = P 1, P 2, . . . , P r′ = P2 be a path from P ′′2 to P2 where P j(A \ a) = P j+1(A \ a)

for all j ∈ {1, 2, . . . , r′ − 1}. Applying efficiency and SSS, we get ϕ(P1, P
′′
2 ) = ϕ(P1, P

2) =

ϕ(P1, P
3) = . . . = ϕ(P1, P2).

Case 2: P ∈ P2 be such that r1(P1) = r2(P2) = a 6= b = r1(P2). Using same arguments

as in Case 1, we can get = ϕ(P̄1, P̄2) = ϕ(P1, P2). �
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Claim 4.2 For any P ∈ P2 and x ∈ A such that r1(P1) = a 6= b = r1(P2) and r2(P1) =

r2(P2) = x, we have ϕa(P ) = β1 and ϕb(P ) = β2.

Proof : Consider any P ∈ P2 and x ∈ A such that r1(P1) = a 6= b = r1(P2) and r2(P1) =

r2(P2) = x. We assume for contradiction that either ϕa(P ) 6= β1 or ϕb(P ) 6= β2 or both.

We assume that ϕa(P ) 6= β1 (a similar argument will lead to a contradiction if we assume

ϕb(P ) 6= β2).

Let P ′2 be an ordering where P2(A \ a) = P ′2(A \ a) and r3(P ′2) = a. Let P2 =

P 1, P 2, . . . , P k = P ′2 be a path from P2 to P ′2 where P j(A \ a) = P j+1(A \ a) for all j ∈
{1, 2, . . . , k−1}. By efficiency and SSS, ϕa(P1, P

j) = ϕa(P1, P
j+1) for all j ∈ {1, 2, . . . , k−1}.

Therefore we have ϕa(P1, P2) = ϕa(P1, P
′
2).

Let P ′1 be an ordering where P1(A \ x) = P ′1(A \ x) and r(P ′1, x) = r(P ′1, b) + 1. Let

P1 = P 1, P 2, . . . , P l = P ′1 be a path from P1 to P ′1 where P j(A \ x) = P j+1(A \ x) for

all j ∈ {1, 2, . . . , l − 1}. By efficiency and SSS, ϕa(P
j, P ′2) = ϕa(P

j+1, P ′2) for all j ∈
{1, 2, . . . , l−1}. Therefore we have ϕa(P1, P2) = ϕa(P1, P

′
2) = ϕa(P

′
1, P

′
2). Also, by efficiency,

we have ϕb(P
′
1, P

′
2) = 1− ϕa(P ′1, P ′2).

Let P ′′2 be an adjacent ordering to P ′2 where A(P ′2, P
′′
2 ) = {x, a}. By efficiency and SSS,

ϕa(P
′
1, P

′
2) = ϕa(P

′
1, P

′′
2 ). Since, ϕa(P

′
1, P

′′
2 ) 6= β1, we have a contradiction to Claim 4.1. �

Claim 4.3 For any P ∈ P2 such that r1(P1) = a 6= b = r1(P2), we have ϕa(P ) = β1 and

ϕb(P ) = β2.

Proof : Consider any profile P ∈ P2 such that r1(P1) = a 6= b = r1(P2). Let B1 = {x ∈
A : aP1x and xP1b} i.e B1 is the set of alternatives which are preferred to b and worse than

a at P1. Similarly, let B2 = {x ∈ A : bP2x and xP2a}. We consider following two cases to

complete the proof.

Case 1: B1 ∩ B2 = ∅. In this case, by efficiency, we have ϕa(P ) + ϕb(P ) = 1. If

ϕa(P ) = β1, then ϕb(P ) = β2 and we are done. We assume for contradiction that ϕa(P ) 6= β1.

Let P ′2 be an ordering where P2(A \ a) = P ′2(A \ a) and r2(P ′2) = a. Let P2 =

P 1, P 2, . . . , P l = P ′2 be a path from P2 to P ′2 where P j(A \ a) = P j+1(A \ a) for all j ∈
{1, 2, . . . , l−1}. By efficiency and SSS, ϕa(P1, P

j) = ϕa(P1, P
j+1) for all j ∈ {1, 2, . . . , l−1}.

Therefore we have ϕa(P1, P2) = ϕa(P1, P
′
2) 6= β1. This contradicts Claim 4.1.

Case 2: B1∩B2 6= ∅. Let B = B1∩B2. By efficiency, if ϕx(P ) > 0 for some x ∈ A, then

x ∈ B ∪ {a, b}. We consider following two sub-cases.

Sub-case 2.1:{x ∈ B : ϕx(P ) > 0} = ∅. In this sub-case, by efficiency, we have ϕa(P ) +

ϕb(P ) = 1. If ϕa(P ) = β1 and ϕb(P ) = β2, then we are done. We assume for contradiction

that either ϕa(P ) > β1 or ϕb(P ) > β2. Let ϕa(P ) > β1 (a similar argument will lead to a

contradiction if ϕb(P ) > β2)
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Let P ′2 be an ordering where P2(A \ a) = P ′2(A \ a) and r2(P ′2) = a. Let P2 =

P 1, P 2, . . . , P l = P ′2 be a path from P2 to P ′2 where P j(A \ a) = P j+1(A \ a) for all j ∈
{1, 2, . . . , l−1}. By efficiency and SSS, ϕa(P1, P

j) ≤ ϕa(P1, P
j+1) for all j ∈ {1, 2, . . . , l−1}.

Therefore we have β1 < ϕa(P1, P2) ≤ ϕa(P1, P
′
2). This contradicts Claim 4.1.

Sub-case 2.2: {x ∈ B : ϕx(P ) > 0} 6= ∅. Let S = {x ∈ B : ϕx(P ) > 0} and y ∈ S such

that for all x ∈ S \ y, xP1y.

Let P ′1 be an ordering where P1(A \ y) = P ′1(A \ y) and r2(P ′1) = y. Let P1 =

P 1, P 2, . . . , P l = P ′1 be a path from P1 to P ′1 where P j(A \ y) = P j+1(A \ y) for all j ∈
{1, 2, . . . , l−1}. By efficiency and SSS, ϕy(P

j, P2) ≤ ϕy(P
j+1, P2) for all j ∈ {1, 2, . . . , l−1}.

Therefore, we have 0 < ϕy(P1, P2) ≤ ϕy(P
′
1, P2).

Let P ′2 be an ordering where P2(A \ y) = P ′2(A \ y) and r2(P ′2) = y. Let P2 =

P 1, P 2, . . . , P k = P ′2 be a path from P2 to P ′2 where P j(A \ y) = P j+1(A \ y) for all j ∈
{1, 2, . . . , k−1}. By efficiency and SSS, ϕy(P

′
1, P

j) ≤ ϕy(P
′
1, P

j+1) for all j ∈ {1, 2, . . . , k−1}.
Therefore we have 0 < ϕy(P1, P2) ≤ ϕy(P

′
1, P2) ≤ ϕy(P

′
1, P

′
2). This contradicts Claim 4.2. �

Claims 4.1, 4.2 and 4.3 establish Lemma 4.2. �

Lemma 4.3 For any P, P̄ ∈ P2 such that r1(P1) = a 6= b = r1(P2) and r1(P̄1) = c 6= d =

r1(P̄2), we have ϕa(P1, P2) = ϕc(P̄1, P̄2) and ϕb(P1, P2) = ϕd(P̄1, P̄2).

Proof : We consider P, P̄ ∈ P2 such that r1(P1) = a 6= b = r1(P2) and r1(P̄1) = c 6= d =

r1(P̄2). We consider following two cases.

Case 1: c 6= b. Now we consider following four sub-cases.

Sub-case 1.1: a = c and b = d. By Lemma 4.2, we are done with this sub-case.

Sub-case 1.2: a = c and b 6= d. W.o.l.o.g we consider P, P̄ ∈ P2 such that P1 = P̄1 and

P2 and P̄2 are adjacent with A(P2, P̄2) = {b, d}. Applying Lemma 4.2 and SSS, we have

ϕa(P1, P2) = ϕc(P̄1, P̄2) and ϕb(P1, P2) = ϕd(P̄1, P̄2).

Sub-case 1.3: a 6= c and b = d. W.o.l.o.g we consider P, P̄ ∈ P2 such that P2 = P̄2 and P1

and P̄1 are adjacent with A(P1, P̄1) = {a, c}. Again applying Lemma 4.2 and SSS, we have

ϕa(P1, P2) = ϕc(P̄1, P̄2) and ϕb(P1, P2) = ϕd(P̄1, P̄2).

Sub-case 1.4: a 6= c and b 6= d. By sub-case 1.3, for P ′, P ′′ ∈ P2 such that r1(P ′1) = a 6=
b = r1(P ′2) and r1(P ′′1 ) = c 6= b = r1(P ′′2 ), we have ϕa(P

′) = ϕc(P
′′) and ϕb(P

′) = ϕb(P
′′).

W.o.l.o.g. we assume r2(P ′′2 ) = d and consider P, P̄ ∈ P2 such that P = P ′, P ′′1 = P̄1 and

P ′′2 and P̄2 are adjacent with A(P ′′2 , P̄2) = {b, d}. Applying Lemma 4.2 and SSS, we have

ϕa(P ) = ϕc(P̄ ) and ϕb(P ) = ϕd(P̄ ).

Case 2: c = b. Now we consider following two sub-cases.
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Sub-case 2.1: d = a. Let x 6= a, b. Consider P, P ′ ∈ P2 such that r1(P1) = a 6= b = r2(P2),

P2 = P ′2 and P1 and P ′1 are adjacent with A(P1, P
′
1) = {a, x}. Again applying Lemma 4.2 and

SSS, we have ϕa(P ) = ϕx(P
′) and ϕb(P ) = ϕb(P

′). W.o.l.o.g we assume that r2(P ′2) = a.

Now we consider P ′′ ∈ P2 such that P ′1 = P ′′1 and P ′2 and P ′′2 are adjacent with A(P ′2, P
′′
2 ) =

{a, b}. Applying Lemma 4.2 and SSS, we have ϕx(P
′) = ϕx(P

′′) and ϕb(P
′) = ϕa(P

′′). Let

P ′′′1 be an ordering such that r1(P ′′′1 ) = x and r2(P ′′′1 ) = b. By Lemma 4.2, ϕx(P
′′) =

ϕx(P
′′′
1 , P

′′
2 ) and ϕa(P

′′) = ϕa(P
′′′
1 , P

′′
2 ).

Now we consider P̄ ∈ P2 such that P̄2 = P ′′2 and P̄1 and P ′′′1 are adjacent with A(P̄1, P
′′′
1 ) =

{x, b}. Applying Lemma 4.2 and SSS, we have ϕx(P
′′′
1 , P

′′
2 ) = ϕb(P̄ ) and ϕa(P

′′′
1 , P

′′
2 ) =

ϕa(P̄ ).

Since ϕa(P ) = ϕb(P̄ ) and ϕb(P ) = ϕa(P̄ ), we are done by Lemma 4.2.

Sub-case 2.2: d 6= a. By sub-case 2.1, for any P, P ′ ∈ P2 such that r1(P1) = r1(P ′2) =

a 6= b = r1(P2) = r1(P ′1) we have ϕa(P ) = ϕb(P
′) and ϕb(P ) = ϕa(P

′). For any y 6= a, b,

w.o.l.o.g we can assume that r2(P ′2) = y.

Now we consider P̄ ∈ P2 such that P̄1 = P ′1 and P̄2 and P ′2 are adjacent with A(P̄2, P
′
2) =

{y, a}. Applying Lemma 4.2 and SSS, we have ϕb(P
′) = ϕb(P̄ ) and ϕa(P

′) = ϕy(P̄ ).

Since ϕa(P ) = ϕb(P̄ ) and ϕb(P ) = ϕy(P̄ ) where y 6= a, b, we are done by Lemma 4.2. �

Lemma 4.2 and 4.3 establish that ϕ is a random dictatorship. �

The Proof of Theorem 4.2

Proof : It is straightforward that random dictatorship satisfies efficiency and SSS. Therefore

we show the only if part. Let ϕ : Pn → ∆A satisfies efficiency, tops-onlyness and SSS. It will

be shown that ϕ is a random dictatorship.

The arguments in the proof closely follow counterparts in Sen (2011). In what follows,

we will use induction arguments. Assume that for all integers k < n, the following statement

is true:

Induction Hypothesis (IH): Assume m ≥ 3. If ϕ : Pk → ∆A satisfies efficiency, tops-

onlyness and SSS, then it is a random dictatorship.

Let N̂ = {1̂, 3, . . . , n} be a set of voters where 3, . . . , n ∈ N . A RSCF g : Pn−1 → 4(A)

for the set of voters N̂ is defined as follows: For all (P1̂, P3, . . . , Pn) ∈ Pn−1,

g(P1̂, P3, . . . , Pn) = ϕ(P1, P1, P3, . . . , Pn)

Voter 1̂ in the RSCF g is obtained by “cloning” voters 1 and 2 in N . Thus if voters 1

and 2 in N have a common ordering P1, then voter 1̂ in N̂ has ordering P1̂.
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Lemma 4.4 The RSCF g is a random dictatorship.

Proof : It is easy to verify that g satisfies efficiency and tops-only. We will show that g

satisfies SSS. Consider any P ∈ Pn−1, i ∈ N̂ and P ′i ∈ P such that Pi and P ′i are adjacent

with A(Pi, P
′
i ) = {x, y}. Let voter i be the voter 1̂. Since ϕ satisfies SSS, we have

∑
{a∈U(Pi,x,y)}

ga(P1̂, P3, . . . , Pn) =
∑

{a∈U(Pi,x,y)}

ϕa(P1, P1, P3, . . . , Pn)

=
∑

{a∈U(Pi,x,y)}

ϕa(P
′
1, P1, P3, . . . , Pn)

=
∑

{a∈U(P ′i ,x,y)}

ϕa(P
′
1, P

′
1, P3, . . . , Pn)

=
∑

{a∈U(Pi,x,y)}

ga(P
′
1̂
, P3, . . . , Pn)

and

∑
a∈{x,y}

ga(P1̂, P3, . . . , Pn) =
∑

a∈{x,y}

ϕa(P1, P1, P3, . . . , Pn)

=
∑

a∈{x,y}

ϕa(P
′
1, P1, P3, . . . , Pn)

=
∑

a∈{x,y}

ϕa(P
′
1, P

′
1, P3, . . . , Pn)

=
∑

a∈{x,y}

ga(P
′
1̂
, P3, . . . , Pn)

For i ∈ {3, . . . , n} it is straightforward that above qualities holds because ϕ satisfies SSS.

Hence, g satisfies SSS. Therefore, the IH will imply that g is a random dictatorship. �

Let β, β3, . . . , βn be the weights associated with the random dictatorship g; i.e. βi is the

weight associated with voter i, i = 3, . . . , n and β is the weight associated with voter 1̂.

Lemma 4.5 Let P ∈ Pn be an arbitrary profile. Let a = r1(P1) and b = r1(P2) and let

βx =
∑
{i∈{3,...,n}:r1(Pi)=x} βi for all x ∈ A.2 Then,

(i) ϕa(P ) = β + βa if a = b.

(ii) ϕc(P ) = βc for all c 6= a = b.

2For simplicity, we will drop the indexation of P and just write βx instead of βx(P ).
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(iii) ϕa(P ) + ϕb(P ) = β + βa + βb if a 6= b.

Proof : Proof of Part (i): By tops-onlyness and the fact that r1(P1) = r1(P2) = a, we have

ϕa(P1, P2, P3, . . . , Pn) = ϕa(P1, P1, P3, . . . , Pn)

= ga(P1̂, P3, . . . , Pn)

= β + βa

This establishes (i).

Proof of Part (ii): By tops-onlyness and the fact that r1(P1) = r1(P2) = a, we have

ϕc(P1, P2, P3, . . . , Pn) = ϕc(P1, P1, P3, . . . , Pn)

= gc(P1̂, P3, . . . , Pn)

= βc

This establishes the proof of part (ii).

Proof of Part (iii): Note that a and b are distinct. Let P ′2 and P ′′2 be two adjacent

orderings where r1(P ′2) = a = r2(P ′′2 ) and r2(P ′2) = b = r1(P ′′2 ). In the view of part (i) and

(ii), it can be deduced that ϕa(P1, P
′
2, P3, . . . , Pn) +ϕb(P1, P

′
2, P3, . . . , Pn) = β + βa + βb. By

tops-onlyness and SSS, we can conclude that

ϕa(P1, P2, P3, . . . , Pn) + ϕb(P1, P2, P3, . . . , Pn) = ϕa(P1, P
′′
2 , P3, . . . , Pn) + ϕb(P1, P

′′
2 , P3, . . . , Pn)

= ϕa(P1, P
′
2, P3, . . . , Pn) + ϕb(P1, P

′
2, P3, . . . , Pn)

= β + βa + βb

This completes the proof of part (iii). �

Lemma 4.6 Fix a, b ∈ A, a 6= b. Let P ∈ Pn be a preference profile where r1(P1) = a and

b = r1(P2) and let βx =
∑
{i∈{3,...,n}:r1(Pi)=x} βi for all x ∈ A. Then, there exist 0 ≤ βa1 , β

b
2 ≤ β,

βa1 + βb2 = β such that ϕa(P ) = βa1 + βa, ϕb(P ) = βb2 + βb and ϕc(P ) = βc for all c 6= a, b.

Proof : Fix an alternative d 6= a, b. Let P ∗ ∈ Pn be such that r1(P ∗1 ) = a, r1(P ∗2 ) = b

and for all j ∈ {3, . . . , n}, r1(P ∗j ) = d. In the view of Part (iii) of Lemma 4.5, we have

that ϕa(P
∗) + ϕb(P

∗) = β. W.l.o.g we assume that ϕa(P
∗) = βa1 and ϕb(P

∗) = βb2 where

0 ≤ βa1 , β
b
2 ≤ β and βa1 + βb2 = β. Now we show the following claims.
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Claim 4.4 Let r1(Pj) ∈ {a, b} for all j ∈ {3, . . . , n}. Then ϕa(P ) = βa1 +βa, ϕb(P ) = βb2+βb

and ϕc(P ) = 0 for all c 6= a, b.

Proof : By Proposition 4.2, ϕc(P ) = 0 for all c 6= a, b. We complete the proof by showing

that ϕa(P ) = βa1 + βa and ϕb(P ) = βb2 + βb. W.o.l.g. we assume that r1(Pj) = a for all

j ∈ {3, . . . , k} and r1(Pj) = b for all j ∈ {k + 1, . . . , n}, k ≤ n. We assume for contradiction

that ϕa(P ) 6= βa1 + βa.

Let P̄ ∈ Pn, such that r1(P̄i) = r1(Pi) for all for all i ∈ N and r2(P̄i) = d for all

i ∈ {3, . . . , n}. By tops-onlyness, ϕ(P̄ ) = ϕ(P ). For all i ∈ {3, . . . , k}, let P̄i and P̂i be

two adjacent ordering where r1(P̄i) = r2(P̂i) = a and r2(P̄i) = r1(P̂i) = d. Also, For all

i ∈ {k + 1, . . . , n}, let P̄i and P̂i be two adjacent ordering where r1(P̄i) = r2(P̂i) = b and

r2(P̄i) = r1(P̂i) = d. By SSS and the fact that ϕa(P̄ ) 6= βa1 + βa and ϕd(P̄ ) = 0, we have

ϕa(P̄ ) + ϕd(P̄ ) = ϕa(P̄1, P̄2, P̂3, . . . , P̄n) + ϕd(P̄1, P̄2, P̂3, . . . , P̄n)

...

= ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) + ϕd(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n)

6= βa1 + βa

= βa1 +
k∑
i=3

βi

By Proposition 4.2 and part (iii) of Lemma 4.5,

ϕd(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) =
k∑
i=3

βi

Therefore, we can conclude that

ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) 6= βa1

By Proposition 4.2 and SSS,

ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) = ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̂k+1, . . . , P̄n)

...

= ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̂k+1, . . . , P̂n)

6= βa1
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However, by tops-onlyness, ϕa(P
∗) = ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̂k+1, . . . , P̂n) = βa1 - a con-

tradiction. Hence, ϕa(P ) = βa1 + βa. Since ϕa(P ) + ϕb(P ) = 1, we have ϕb(P ) = βb1 + βb. �

Claim 4.5 Let |{r1(P3), . . . , r1(Pn)} \ {a, b}| = 1. Then, ϕa(P ) = βa1 + βa, ϕb(P ) = βb2 + βb

and ϕc(P ) = βc for all c 6= a, b.

Proof : Let {r1(P3), . . . , r1(Pn)}\{a, b} = e. By Proposition 4.2, ϕc(P ) = 0 for all c 6= a, b, e.

W.l.o.g we assume that at P , r1(Pi) = e for i ∈ {3, . . . , k}, r1(Pi) = a for i ∈ {k + 1, . . . , l}
and r1(Pi) = b for i ∈ {l + 1, . . . , n}, k ≤ l ≤ n. By Lemma 4.5 and Proposition 4.2,

ϕe(P ) = βe =
∑k

i=3 βi.

Next we show that ϕa(P ) = βa1 +βa = βa1 +
∑l

i=k+1 βi. We assume for contradiction that

ϕa(P ) 6= βa1 +
∑l

i=k+1 βi.

Let P̄ ∈ Pn, such that r1(P̄i) = r1(Pi) for all for all i ∈ N and r2(P̄i) = a for all

i ∈ {3, . . . , k}. By tops-onlyness, ϕ(P̄ ) = ϕ(P ). For all i ∈ {3, . . . , k}, let P̄i and P̂i be two

adjacent ordering where r1(P̄i) = r2(P̂i) = e and r2(P̄i) = r1(P̂i) = a. By SSS and the fact

that ϕa(P̄ ) 6= βa1 +
∑l

i=k+1 βi and ϕe(P̄ ) =
∑k

i=3 βi, we have

ϕa(P̄ ) + ϕe(P̄ ) = ϕa(P̄1, P̄2, P̂3, . . . , P̄n) + ϕe(P̄1, P̄2, P̂3, . . . , P̄n)

...

= ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) + ϕe(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n)

6= βa1 +
l∑

i=3

βi

The above inequality contradicts Claim 4.4. Therefore, ϕa(P ) = βa1 +βa = βa1 +
∑l

i=k+1 βi.

Since, by Lemma 4.5, ϕa(P ) +ϕb(P ) = β +
∑n

i=k+1 βi , we have ϕb(P ) = βb1 +
∑n

i=l+1 βi.

This completes the proof of the claim. �

Finally, we complete the proof of the lemma by induction on |{r1(P3), . . . , r1(Pn)}\{a, b}|.
Induction Hypothesis (IH): Let |{r1(P3), . . . , r1(Pn)} \ {a, b}| = k ∈ {1, . . . ,m − 3}.

Then, ϕa(P ) = βa1 + βa, ϕb(P ) = βb2 + βb and ϕc(P ) = βc for all c 6= a, b.

We will show that if |{r1(P3), . . . , r1(Pn)} \ {a, b}| = k + 1, then ϕa(P ) = βa1 + βa,

ϕb(P ) = βb2 + βb and ϕc(P ) = βc for all c 6= a, b.

Note that by Proposition 4.2, ϕc(P ) = 0 if c /∈ {r1(P3), . . . , r1(Pn)} ∪ {a, b}. First we

show that ϕc(P ) = βc for all c ∈ {r1(P3), . . . , r1(Pn)} \ {a, b}. We assume for contradiction

that there exists an alternative c′ ∈ {r1(P3), . . . , r1(Pn)} \ {a, b} such that ϕc′(P ) 6= βc
′
. We

consider the following two cases.
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Case I: ϕc′(P ) > βc
′
. In the view of part (iii) of Lemma 4.5, either (i) ϕa(P ) ≥ βa1 +βa

and ϕb(P ) ≤ βb2 + βb or (ii) ϕa(P ) ≤ βa1 + βa and ϕb(P ) ≥ βb2 + βb. First we will consider

the case where (i) ϕa(P ) ≥ βa1 + βa and ϕb(P ) ≤ βb2 + βb.

W.o.l.g. we assume that r1(Pj) = c′ for all j ∈ {3, . . . , k} and r1(Pj) = a for all j ∈
{k + 1, . . . , l}, k ≤ l ≤ n. Let P̄ ∈ Pn, such that r1(P̄i) = r1(Pi) for all for all i ∈ N

and r2(P̄i) = a for all i ∈ {3, . . . , k}. By tops-onlyness and the fact that ϕc′(P ) > βc
′

and

ϕa(P ) ≥ βa1 + βa, we have

ϕc′(P̄ ) + ϕa(P̄ ) = ϕc′(P ) + ϕa(P )

> βa1 +
l∑

i=3

βi

For all i ∈ {3, . . . , k}, let P̄i and P̂i be two adjacent ordering where r1(P̄i) = r2(P̂i) = c′

and r2(P̄i) = r1(P̂i) = a. By SSS and the induction hypothesis, we have

ϕc′(P̄ ) + ϕa(P̄ ) = ϕc′(P̄1, P̄2, P̂3, . . . , P̄n) + ϕa(P̄1, P̄2, P̂3, . . . , P̄n)

...

= ϕc′(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) + ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n)

= βa1 +
l∑

i=3

βi

This leads to a contradiction. Similarly, in the case where ϕa(P ) ≤ βa1 + βa and ϕb(P ) ≥
βb2 + βb, a contradiction can be established by replacing the role of a in (i) by b.

Case II: ϕc′(P ) < βc
′
. In the view of part (iii) of Lemma 4.5, either (i) ϕa(P ) ≥ βa1 +βa

and ϕb(P ) ≤ βb2 + βb or (ii) ϕa(P ) ≤ βa1 + βa and ϕb(P ) ≥ βb2 + βb. First we will consider

the case where (i) ϕa(P ) ≥ βa1 + βa and ϕb(P ) ≤ βb2 + βb.

W.o.l.g. we assume that r1(Pj) = c′ for all j ∈ {3, . . . , k} and r1(Pj) = b for all j ∈
{k + 1, . . . , l}, k ≤ l ≤ n. Let P̄ ∈ Pn, such that r1(P̄i) = r1(Pi) for all for all i ∈ N

and r2(P̄i) = b for all i ∈ {3, . . . , k}. By tops-onlyness and the fact that ϕc′(P ) < βc
′

and

ϕb(P ) ≤ βb2 + βb, we have

ϕc′(P̄ ) + ϕb(P̄ ) = ϕc′(P ) + ϕb(P )

< βb2 +
l∑

i=3

βi

For all i ∈ {3, . . . , k}, let P̄i and P̂i be two adjacent ordering where r1(P̄i) = r2(P̂i) = c′
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and r2(P̄i) = r1(P̂i) = b. By SSS and the induction hypothesis, we have

ϕc′(P̄ ) + ϕb(P̄ ) = ϕa(P̄1, P̄2, P̂3, . . . , P̄n) + ϕb(P̄1, P̄2, P̂3, . . . , P̄n)

...

= ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) + ϕb(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n)

= βb2 +
l∑

i=3

βi

This leads to a contradiction. In the case where ϕa(P ) ≤ βa1 + βa and ϕb(P ) ≥ βb2 + βb,

a contradiction can be established by replacing the role of b in (i) by a.

In the view of cases I and II, we have that ϕc(P ) = βc for all c 6= a, b.

Next we show that ϕa(P ) = βa1 +βa. We assume for contradiction that ϕa(P ) 6= βa1 +βa.

W.o.l.g. we assume that r1(Pj) = d′ 6= a, b for all j ∈ {3, . . . , k} and r1(Pj) = a for all

j ∈ {k + 1, . . . , l}, k ≤ l ≤ n. Let P̄ ∈ Pn, such that r1(P̄i) = r1(Pi) for all for all i ∈ N and

r2(P̄i) = a for all i ∈ {3, . . . , k}. In the view of what we have shown earlier and tops-onlyness,

we have

ϕd′(P̄ ) + ϕa(P̄ ) = ϕd′(P ) + ϕa(P )

6= βa1 +
l∑

i=3

βi

For all i ∈ {3, . . . , k}, let P̄i and P̂i be two adjacent ordering where r1(P̄i) = r2(P̂i) = d′

and r2(P̄i) = r1(P̂i) = a. By SSS and the induction hypothesis, we have

ϕd′(P̄ ) + ϕa(P̄ ) = ϕd′(P̄1, P̄2, P̂3, . . . , P̄n) + ϕa(P̄1, P̄2, P̂3, . . . , P̄n)

...

= ϕd′(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n) + ϕa(P̄1, P̄2, P̂3, . . . , P̂k, P̄k+1, . . . , P̄n)

= βa1 +
l∑

i=3

βi

This leads to a contradiction. therefore, ϕa(P ) = βa1 +βa. Finally, by part (iii) of Lemma

4.5, we have ϕb(P ) = βb2 + βb. This completes the proof of the lemma. �

The proof is now completed by considering two mutually exhaustive cases.

Case I: β > 0

Fix (P3, . . . , Pn) ∈ Pn−2 and let βx =
∑
{i∈{3,...,n}:r1(Pi)=x} βi for all x ∈ A. We define the

function h : P2 → Rm below: for all (P1, P2) ∈ P2 and a ∈ A,
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ha(P1, P2) =
1

β
[ϕa(P1, P2, P3 . . . , Pn)− βa]

Lemma 4.7 The function h is a RSCF and satisfies efficiency and SSS.

Proof : Pick an arbitrary profile (P1, P2) ∈ P2. Let a ∈ A. If r1(P1) = r1(P2) = a, then

ϕa(P1, P2, P3, . . . , Pn) = β + βa according to Lemma 4.5 part (i). Hence ha(P1, P2) = 1.

Suppose r1(P1) = a 6= b = r1(P2). From Lemma 4.6, ϕa(P1, P2, P3, . . . , Pn) ≥ βa and

ϕb(P1, P2, P3, . . . , Pn) ≥ βb. Hence ha(P1, P2) ≥ 0 and hb(P1, P2) ≥ 0. If a /∈ {r1(P1) ∪
r1(P2)}, then ϕa(P1, P2, P3, . . . , Pn) = βa. Hence ha(P1, P2) = 0, i.e ha(P1, P2) ≥ 0 for all a ∈
A. Note also that

∑
a∈A ϕa(P1, P2, P3, . . . , Pn) = β+

∑
a∈A β

a = 1, so that
∑

a∈A ha(P1, P2) =

1. Therefore, h is a RSCF.

First we show that h satisfies efficiency. Pick an arbitrary profile (P1, P2) ∈ P2. Let

x, y ∈ A such that xPiy for all i ∈ {1, 2}. From Lemma 4.6, ϕb(P1, P2, P3, . . . , Pn) = βy.

Hence hy(P1, P2) = 0. This concludes that h is efficient.

Next we show that h satisfies SSS. Pick an arbitrary profile (P1, P2) ∈ P2. Let Pi and P ′i
be two adjacent orderings where i ∈ {1, 2}. W.o.l.g we assume that i = 1. Let A(P1, P

′
1) =

{x, y}. We will show that

(i).
∑

{a∈U(Pi,x,y)}
ha(P1, P2) =

∑
{a∈U(P ′i ,x,y)}

ha(P
′
i , P2).

(ii).
∑

a∈{x,y}
ha(P1, P2) =

∑
a∈{x,y}

ha(P
′
1, P2).

Note that for any a ∈ A, we have

ϕa(P1, P2, P3, . . . , Pn) = β · ha(P1, P2) + βa

and

ϕa(P
′
1, P2, P3, . . . , Pn) = β · ha(P ′1, P2) + βa

Since ϕ satisfies SSS and β > 0, it can be easily verified that equalities in (i) and (ii) hold.

Hence, h satisfies SSS. �

Since h satisfies efficiency and SSS, it follows from Theorem 4.1 that h is a random

dictatorship. Assume that the weights associated with h are γ1 and γ2 for voters 1 and 2

respectively. It follows from the definition of h that for all P1, P2 ∈ P and a ∈ A,

ϕa(P1, P2, P3, . . . , Pn) =
∑

{i∈{1,2}:r1(Pi)=a}

βγi +
∑

{i∈{3,...,n}:r1(Pi)=a}

βi
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Therefore ϕ is a random dictatorship with weights βγ1, βγ2, β3, . . . , βn if the weights for

the random dictatorship do not depend on the initial choice of the profile (P3, . . . , Pn) for

voters 3, . . . , n. Lemma 4.6 establishes that this is indeed the case.

This completes the proof of random dictatorship in Case I.

Case II: β = 0.

Let P1, P2 ∈ P. Applying Lemma 4.5 and 4.6, it follows that ϕa(P1, P2, P3, . . . , Pn) = βa

for all a ∈ A. But this implies that ϕ is a random dictatorship with weights β1 = β2 = 0

and βi, i = 3, . . . , n. This concludes the proof. �
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Chapter 5

A characterization of the status

quo rule in the binary social choice

model

5.1 Introduction

This chapter considers the following a model in which there is a finite set of voters who have

to choose an alternative from the set of two alternatives, based on their preferences over

the alternatives. Each voter can have one of the three preferences - one alternative can be

strictly preferred to the other or they could be indifferent to each other. A social choice

function (or simply, a rule) assigns an alternative to each profile. Our goal in this chapter is

to characterize a salient rule in this model, the status quo rule.

The status quo rule identifies one of the two alternatives as the status quo alternative.

The rule picks this alternative at all profiles except the one where all voters rank the non-

status quo alternative strictly better than the status quo alternative. It is a conservative

rule which is “almost” constant. However, it is an appealing rule in certain circumstances

where change from the status quo can impose losses on a large number of voters. Examples

of such policies in India in recent years have been the Citizen Amendment Act, the Goods

and Services tax, the demonetization policy (2016) and the four-year undergraduate program

at Delhi University. Since these decisions have irreversible and long-lasting consequences,

they typically require super-large majorities to be passed as a law. Other examples of such

decisions are Constitutional Amendments and jury decisions to acquit or convict.

We use three axioms for our characterization. Two of these properties, ontoness and

strategy-proofness are well-known in the axiomatic literature. The third one is a new axiom

introduced by us, which we call Positive Welfare Association or PWA. To understand the
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axiom, consider a profile where a particular voter, say i is indifferent. Suppose i changes

her preference from indifference to a strict preference. The new outcome differs from the

earlier one and is i’s strictly preferred outcome in the new preference. Then, PWA requires

all other voters not to be made worse-off at the new profile. The justification for the axiom

is the principle that a change that does not make a voter unhappy (this is well-defined in a

two-alternative model), must not make anyone else unhappy.

The PWA axiom is closely related to the various solidarity axioms in the fairness litera-

ture. The most relevant solidarity axiom for us is the Welfare Dominance Under Preference

Replacement or WD. The axiom has been extensively analyzed in the binary choice model in

Harless (2015). Suppose the preference ordering of a single voter changes. The WD axiom

requires the welfare of all other voters to move in the same direction, i.e they must all either

(weakly) gain or lose. The PWA axiom differs from WD in the respect that it relates the

welfare of the voter who initiates the change with the rest of the voters. The WD axiom

also allows for the initiating voter to be made better-off while all the remaining voters are

made worse-off. This may be natural in allocation models where the voter whose preferences

change, obtains an object that is highly valued by all other voters. This argument is less

compelling in a public good model such as ours. We believe therefore that our axiom is

entirely consistent with the notion of solidarity. The PWA axiom is key to our result and

cannot be replaced by WD in the characterization. We also show that our characterization

is tight by providing examples of non-status quo rules that satisfy all but one of the axioms.

5.1.1 Related Literature

The binary model was introduced by May (1952). This paper characterizes simple majority

voting rules using anonymity, monotonicity, and neutrality. Fishburn (2015) provides a

characterization of anonymous, neutral and monotonic rules which are further analyzed in

Llamazares (2013). As mentioned earlier, Harless (2015) provides a complete characterization

of rules satisfying WD. Recently, Lahiri and Pramanik (2019) characterize the class of onto,

anonymous and strategy-proof rules. On the other hand, Moulin (1987) studies the binary

model with money and quasi-linear utilities. The status quo rule in the Arrowian framework

is studied in Bossert and Sprumont (2014), Harless (2016) and Athanasoglou (2019). Gordon

(2007) provides conditions which guarantee the existence of a status quo alternative.

The rest of the chapter is organized as follows. Section 5.2 introduces the basic notation

and definitions. Section 5.3 contains the main result. Section 5.4 contains discussion of the

result. Section 5.5 concludes the chapter. The proof of our main result is provided in the

Appendix (Section 5.6).
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5.2 The Framework

Let A = {a, b} and N = {1, ..., n}, n ≥ 2 denote the set of two alternatives and the set of

voters respectively. There are three possible preference orderings over A: (i) a is better than

b, denoted by Ra, (ii) b is better than a, denoted by Rb and (iii) a and b are indifferent to

each other, denoted by Rab. Every voter i ∈ N has a preference relation Ri over A where

Ri ∈ {Ra, Rb, Rab} = R. We denote aPib when Ri = Ra, aRib when Ri ∈ {Ra, Rab} and aIib

when Ri = Rab. Similarly notation for Ri = Rb or Ri ∈ {Rb, Rab}.
A preference profile is a list R = (R1, R2, . . . , Rn) ∈ Rn of voter preferences. A profile

R = (R1, R2, . . . , Rn) is also denoted by (Ri, R−i) for i ∈ N , or more generally, (RS, R−S)

for S ⊆ N .

For every profile R ∈ Rn, let Na(R), Nb(R) and Nab(R) be the set of voters who prefer a

to b, b to a and indifferent between a and b at R. A profile R can therefore be represented

by the triple Na(R), Nb(R) and Nab(R). Some standard definitions are below:

Definition 5.1 A social choice function (SCF) (or simply a rule) f is a mapping

f : Rn → A.

Definition 5.2 A rule f is onto if there exist R′, R′′ ∈ R such that f(R′) = a and f(R′′) =

b.

Note that if a rule is not onto, it must be constant i.e. it picks the same alternative at every

profile.

Definition 5.3 A rule f is strategy-proof if, for all i ∈ N , for all Ri, R
′
i ∈ R, we have

f(Ri, R−i)Rif(R′i, R−i) for all R−i ∈ Rn−1.

Strategy-proofness is a standard requirement for social choice functions. It considers an

environment where voters’ preferences are private information. If a rule is strategy-proof

then no individual can obtain a strictly better alternative by misrepresenting her preferences

for any possible announcement of the preferences by other individuals.

Definition 5.4 A SCF fsatisfies positive welfare association (PWA) if, for any R ∈ Rn,

for any i ∈ Nab(R) and any R′i ∈ {Ra, Rb}, if f(R′i, R−i) 6= f(R) and f(R′i, R−i) R
′
i f(R),

then f(R′i, R−i)Rj f(R) for each j ∈ N\{i}.

Suppose a voter changes her preference from indifference to a strict preference. This

results in a change in the alternative chosen with the strictly preferred alternative chosen

in the new profile. The voter moves from being indifferent to being “strictly” happy. Then

PWA requires all other voters not to be made worse-off. The axiom is clearly related to the

solidarity axioms in the fairness literature. We discuss this issue further in Section 5.4.
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5.3 The Main Result

We formally introduce the status quo rule below.

Definition 5.5 A rule is a status quo rule, if there exists an alternative x ∈ A such that

for all R ∈ Rn,

f(R) =

{
y if Ny(R) = Nwhere {y} = A \ {x}
x otherwise

We say that x ∈ A is the status-quo alternative. We denote by fx the status-quo rule with

status-quo alternative x. It is a simple rule gives status quo alternative x at all profiles except

when all voters agree on best alternative being y. Our main result shows that the status quo

rule can be characterized by PWA in conjunction with onto and strategy-proofness .

Theorem 5.1 A rule is onto, strategy-proof and satisfies positive welfare association if and

only if it is the status quo rule.

The proof of the theorem is provided in the Appendix. In the next section we discuss various

aspects of result and that of our key property we have introduced in this chapter.

5.4 Discussion

In this section explore the relationship between a solidarity condition and PWA. In addition

we show independence of our axioms in our characterization and also provide an alternative

characterization of the status quo rule.

5.4.1 Relationship between positive welfare association and solidarity

A solidarity property used widely in the fairness literature (see Thomson (1999) for a sur-

vey) is welfare dominance under preference replacement (or simply welfare dominance WD).

According to the axiom any change in the outcome resulting from change in the preference

of a voter must impact all other voters in the same direction i.e. they must all be made

(weakly) better-off or all they must be made (weakly) worse-off.

Definition 5.6 A SCF f satisfies welfare dominance under preference replacement (or sim-

ply welfare dominance WD) if for any R ∈ Rn, i ∈ N and R′i ∈ R, either f(R)Rjf(R′i, R−i)

for all j ∈ N \ {i} or f(R′i, R−i)Rjf(R) for all j ∈ N \ {i}.
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As mentioned in the Introduction, Harless (2015) employs this axiom in our model, that

of binary social choice. We believe that our PWA axiom captures the idea of solidarity better

than WD in our model for two reasons. The first is that WD excludes the voter making the

preference change from consideration. The second is that it allows for the possibility that

the welfare of the voter whose preference changes, improves but makes others worse-off.

We now discuss the relationship between the WD and PWA axioms. At first glance it

seems that the two are independent. The PWA axiom is concerned only with profiles where

an indifferent voter changes to some strict preference ordering while WD axiom applies to

all profiles. On the other hand PWA requires all other voters to be weakly better-off while

WD says all other voters are either weakly better-off or worse-off. Thus the antecedent of

PWA is weaker and its consequent stronger than WD. Indeed we show through examples

that the axioms are independent and neither implies the other. The first examples shows

that WD does not imply PWA.

Example 5.1 Consider the SCF f that selects b at profiles where at least some voters

strictly prefers b to a and others are indifferent, otherwise it selects a. For any x, y ∈ A and

R ∈ Rn :

f(R) =


a if ∅ 6= Na(R) ( N

b if ∅ 6= Na(R) ( N

x if Na(R) 6= ∅ and Nb(R) 6= ∅
y if Nab(R) = N

Consider R ∈ Rn where R1 = Rab and Ri = Rb for all i ∈ N\{1} and preference order-

ing R′1 = Ra. According to the rule we have f(R′1, R−i) P
′
1 f(R) but f(R) Pi f(R′1, R−1) for

all i ∈ N\{1}. Thus f violates PWA. It is easy to see that it satisfies the WD. In Harless

(2015), this rule is called “Consensus rule with default x and y”. It belongs to a larger class

of rules characterized solely with the axiom of WD.

The next example demonstrates that PWA does not imply WD.

Example 5.2 Consider the following anti-dictatorial rule f (where voter 1 is the anti-

dictator). For each R ∈ Rn,

f(R) =


b if R1 = Ra

a if R1 = Rb

a if R1 = Rab

Consider the profile R where R2 = Ra, R3 = Rb and Ri = Rab for all i ∈ N\{2, 3} and a

preference ordering R′1 = Ra. The rule selects f(R) = a and f(R′1, R−1) = b. Thus we have

f(R) P2 f(R′1, R−1) while f(R′1, R−1) P3 f(R). Clearly WDis violated.

107



We only need to focus on voter 1 to check whether PWA is satisfied - other voters

cannot change the outcome by changing their preference ordering. Take any profile R where

R1 = Rab. For any preference ordering R′1 either f(R) = f(R′1, R−1) or f(R) P ′1 f(R′1, R−1).

Thus the antecedent of PWA is false; thus PWA holds vacuously.

Next we demonstrate that PWA cannot be replaced by WD in the characterization of the

status quo rule. We construct an example which satisfies WD along with strategy-proofness

and ontoness but does not satisfy PWA.

Example 5.3 Consider the SCF f which selects a for all profiles where at least one voter

strictly prefers a to b and for the remaining profiles, selects alternative b. For all R ∈ Rn,

f(R) =

{
a if Na(R) 6= ∅
b otherwise

This SCF is not a status quo rule. The status quo cannot be a because at the profile where

all voters are indifferent f picks b. The status quo cannot be b either because at the profile

where a single voter prefers a to b while others b to a, it picks a. This rule is clearly onto.

In order to see that it satisfies strategy-proofness consider any profile R, voter i and an

ordering R′i such that f(R) 6= f(R′i, R−i) else it is trivially satisfied. This is possible only

when Na(R−i) = ∅. In this case f(R) Ri f(R′i, R−i). Thus strategy-proofness is satisfied.

Consider the profile R = (Rab, Rb, . . . , Rb) and the preference ordering R′1 = Ra. Accord-

ing to the rule, we have a = f(R′1, R−1) P ′1 f(R) = b but b = f(R) Pj f(R′1, R−1) = a for all

j ∈ N\{1}. Thus it violates PWA.

On the other hand it satisfies WD. Consider any profile R, voter i and an ordering R′i
such that f(R) 6= f(R′i, R−i). As just explained we have either f(R) Rj f(R′i, R−i) or

f(R′i, R−i) Rj f(R) for all j ∈ N\{i}.

An alternative PWA axiom is the following.

Definition 5.7 A SCF f satisfies minus positive welfare association (PWA−) if, for

any R ∈ Rn, for any i ∈ Nab(R) and any R′i ∈ {Ra, Rb}, if f(R′i, R−i) 6= f(R) and

f(R) R′i f(R′i, R−i), then f(R) Rj f(R′i, R−i) for each j ∈ N\{i}.

Suppose an indifferent voter changes her preference ordering to a strict ordering. Suppose

further that this change leads to a change in the outcome. The new outcome is voter i’s worst

alternative according to i’s new preference ordering. Then PWA− requires all other voters

to be weakly worse-off. The PWA− axiom is the symmetric counterpart of the PWA axiom.1

However it is not useful for our analysis. This is so because it an immediate implication of

strategy-proofness.

1We can show that PWA and PWA− are independent. To see this, the Example 5.2 satisfies the former

but violates the latter. On the other hand the Example 5.6 satisfies latter but fails the former.
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5.4.2 Independence of the Axioms

In this subsection we show that our characterization is tight. We provide examples of non-

status quo rules that satisfy all but one of the axioms which is specified in parentheses.

Example 5.4 (Onto) The constant rule satisfies strategy-proofness and PWA but fails

ontoness.

Example 5.5 (Strategy-proofness) Consider the SCF f that selects a for all profiles

except when everyone is indifferent, rule selects alternative b. This rule satisfies ontoness

and PWA but does not satisfy strategy-proofness. For all R ∈ Rn,

f(R) =

{
b if Nab(R) = N

a otherwise

Example 5.6 (PWA) Consider the following dictatorial rule f (where voter 1 is the dic-

tator). For each R ∈ Rn,

f(R) =


a if R1 = Ra

b if R1 = Rb

a if R1 = Rab

It is immediate to see that it satisfies strategy-proofness and onto. If voter 1 changes her

preference ordering from a profile where she is indifferent while some voters prefer a over b

to a preference ordering where she prefers b. This shift makes some voters worse-off. Thus

violating PWA.

5.4.3 An alternative characterization

In this section, we consider a modified framework where voters can report either one of

the two strict preferences or abstain from voting. A voter’s report Ri ∈ R̄ = {Ra, Rb, R∅}
where R∅ signifies abstention. We characterize the status-quo rule in terms of ontoness, the

participation property and PWA.

Definition 5.8 A SCF f : R̄n → A satisfies Participation (PART) if for any i ∈ N , R−i ∈
Rn−1, Ri ∈ {Ra, Rb} and R′i = R∅ we have f(Ri, R−i) 6= f(R′i, R−i)⇒ f(R)Pif(R′i, R−i).

The Participation Property was introduced in Moulin (1991) to avoid the no-show para-

dox. It prevents a voter from manipulating by abstention i.e. no voter can gain by abstaining.

In general it is weaker than strategy-proofness. However in this framework the two conditions

are equivalent as is shown in Lahiri and Pramanik (2019).
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Proposition 5.1 A SCF f : Rn → A satisfies PART if and only if it satisfies strategy-

proofness.

In view of Proposition 5.1, we can replace strategy-proofness by PART in Theorem 5.1.

Theorem 5.2 Let n ≥ 2. A rule f satisfies ontoness, PART and PWA if and only if f ≡ fx

where x ∈ A.

5.5 Conclusion

In this chapter, we have provided a characterization of the status quo rule in binary social

choice model. The key to the characterization is a new axiom, positive welfare association.

We also show that our characterization is tight.

5.6 Appendix

We provide a proof of Theorem 5.1.

Proof : Only if. Let f be a onto, strategy-proof rule which satisfies PWA. We show that

f ≡ fx for some x ∈ A.

Fix a profile R′ ∈ Rn such that R′1 = Ra, R′2 = Rb and R′i = Rab for all iN\{1, 2}. There

are only two cases to consider: f(R′) = a and f(R′) = b. We only consider f(R′) = a. The

case where f(R′) = b is identical and is therefore omitted.

Let f(R′) = a. Now we will show that f is a status quo rule with a being the status

quo i.e. f ≡ fa. To show this, there are four types of profiles to consider: (i) Nab = N i.e.

everyone is indifferent (ii) Nb = ∅ i.e. no voter prefers b to a, (iii) Na = ∅ and Nb 6= N i.e.

no voter prefers a to b; however not all voters prefer b to a and (iv) Na 6= ∅ and Nb 6= ∅ i.e.

some voters prefer a to b and some prefer b to a. In each case we show f(R) = a. The only

remaining profile is the one where Nb(R) = N . Since f is onto it follows that f(R) = b. This

establishes that f ≡ fa.

Case 5.1 : Fix the profile R̄ where Nab(R̄) = N i.e. R̄i = Rab for all i ∈ N . As we assumed

at profile R′ we have Na(R
′) = {1} and Nb(R

′) = {2}. Suppose f(R̄1, R
′
−1) = b. Then we

have f(R′) = a P ′1 b = f(R̄1, R
′
−1) but also f(R̄1, R

′
−1) P ′2 f(R′), which contradicts PWA.

Therefore, f(R̄1, R
′
−1) = a. By strategy-proofness, f(R̄1, R̄2, R

′
3, . . . , R

′
n) = a, otherwise

voter 2 would manipulate at (R̄1, R
′
−1) via R̄2. Since, (R̄1, R̄2, R

′
3, . . . , R

′
n) = R̄, we have

f(R̄) = a.
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Case 5.2 : Consider a profile R where Nb(R) = ∅. W.l.o.g., let Na(R) = {1, . . . , k}. Sup-

pose f(R) = b. By strategy-proofness, f(R̄1, R−1) = b, otherwise agent 1 would manipulate

at R via R̄1. Applying this argument repeatedly, we get

f(R̄1, R−1) = f(R̄1, R̄2, R−{1,2})

...

= f(R̄1, . . . , R̄k, Rk+1, . . . , Rn)

= f(R̄)

= b

This contradicts our conclusion in Case 5.1. Therefore, we have f(R) = a.

Case 5.3 : Consider a profile R where Na(R) = ∅ and Nb(R) 6= N . We will show if f(R) 6= a

it leads to contradiction.

Suppose f(R) = b. Assume w.l.o.g. Nb(R) = {1, . . . , k} and Nab(R) = {k+1, . . . , n}.
Note that k < n. Pick R′′k+1 = Ra. The PWA will imply that f(R′′k+1, R−{k+1}) = b. Other-

wise, f(R′′k+1, R−{k+1}) P
′′
K+1 f(R) but also f(R) Pj f(R′′k+1, R−{k+1}) where j ∈ {1, . . . , k}

which contradicts PWA.

Now, we show that f(R̄1, R
′′
k+1, R−{1,k+1}) = b. Suppose it is not true and we have

f(R̄1, R
′′
k+1, R−{1,k+1}) = a. This implies f(R′′k+1, R−{k+1}) = b P1 a = f(R̄1, R

′′
k+1, R−{1,k+1})

along with f(R̄1, R
′′
k+1, R−{1,k+1})P

′′
k+1f(R′′k+1, R−{k+1}). We have a contradiction to PWA.

Therefore f(R̄1, R
′′
k+1, R−{1,k+1}) = b.

Applying PWA repeatedly, we get

f(R̄1, R
′′
k+1, R−{1,k+1}) = f(R̄1, R̄2, R

′′
k+1, R−{1,2,k+1})

...

= f(R̄1, . . . , R̄k, R
′′
k+1, Rk+2 . . . , Rn)

= b

However, this contradicts the conclusion in Case 5.2. Therefore f(R) = a.

Case 5.4 : Let R be a profile where Na(R) 6= ∅ and Nb(R) 6= ∅ (it is obvious that

1 ≤ k ≤ n−1). W.l.o.g., let Na(R) = {1, . . . , k} and Nb(R) = {k + 1, . . . , p}. We as-

sume for contradiction that f(R) = b. Suppose that f(R̄1, R−1) = a. Since P1 = Ra we

have f(R̄1, R−1)P1f(R) which contradicts strategy-proof. Thus f(R̄1, R−1) = b. Applying
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strategy-proofness repeatedly, we get

f(R̄1, R−1) = f(R̄1, R̄2, R
′
−{1,2})

...

= f(R̄1, . . . , R̄k, Rk+1, . . . , Rp, Rp+1, . . . , Rn)

= b

However, we reach a contradiction because Na(R̄1, . . . , R̄k, Rk+1, . . . , Rp, Rp+1, . . . , Rn) = ∅.
In Case 5.3 we have shown that at this profile outcome should be a. Therefore starting

assumption of this case is false. Hence f(R) = a.

Therefore, Case 5.1, 5.2, 5.3 and 5.4 establish that for all R ∈ Rn except when

Nb(R) = N we have f(R) = a. Since f is onto, there must be a profile where f(R) = b and

the only profile left is where Nb(R) = N . Therefore, f(R) = b where Nb(R) = N . Hence,

f ≡ fa.

If. Let f ≡ fx where x ∈ A. We will show that fx is onto, strategy-proof and satisfies PWA.

It is straightforward to see that fx satisfies ontoness.

In order to show strategy-proofness, assume w.l.o.g. that x = a. Pick any R ∈ Rn, i ∈ N
and R′i ∈ R. Note that if fa(R) 6= fa(R′i, R−i) then R−i is such that Rj = Rb for all j 6= i.

In that case fa(R) Ri f
a(R′i, R−i). Therefore, fa is strategy-proof.

Pick any R ∈ Rn and i ∈ N such that Ri = Rab. Note that for any R′i ∈ R, if fa(R) 6=
fa(R′i, R−i) then fa(R) = a and fa(R′i, R−i) = b. However, in that case, fa(R′i, R−i) Pj f

a(R)

for all j ∈ N \ i. Therefore, fa satisfies PWA. This completes the proof. �
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