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Abstract

Evolutionary Algorithms (EAs) for Many-Objective Optimization (MaOO) problems are

challenging in nature due to the requirement of large population size, difficulty in main-

taining the selection pressure towards global optima and inability of accurate visualization

of high-dimensional Pareto-optimal Set (in decision space) and Pareto-Front (in objective

space). The quality of the estimated set of Pareto-optimal solutions, resulting from the

EAs for MaOO problems, is assessed in terms of proximity to the true surface (conver-

gence) and uniformity and coverage of the estimated set over the true surface (diversity).

With more number of objectives, the challenges become more profound. Thus, better

strategies have to be devised to formulate novel evolutionary frameworks for ensuring

good performance across a wide range of problem characteristics.

In this thesis, the first work adopts the strategy of objective reduction to present the

framework of DECOR, which handles MaOO problems through correlation-based clus-

tering by eliminating the less conflicting objectives. While DECOR demonstrates an

enhanced convergence, it reveals the necessity of better solution diversity for resembling

the true surface. In the second work, ESOEA is presented, which decomposes the objective

space for the collaborative optimization of multiple sub-populations. It also adaptively

feedbacks the sub-population size to redistribute the solutions for the effective explo-

ration of difficult regions in the fitness landscape. While ESOEA demonstrates enormous

improvement in performance over a variety of MaOO problems, lack of theoretical founda-

tions hinders the analysis of its properties. In the third work, the neighborhood property

arising out of sub-space formation (in objective space) is recognized and used to present the

framework of NAEMO. It not only demonstrates improved performance but also guaran-

tees monotonically improving diversity, theoretically. While such reference vector assisted

decomposition-based approaches are useful for good performance in the objective space, it

innately neglects the solution distribution in the decision space. This behavior is disadvan-

xi



tageous for multi-modal problems (multiple alternative subsets within the Pareto-optimal

Set independently mapping to the entire Pareto-Front). Hence, in the fourth work, the

decomposition in objective space is amalgamated with graph Laplacian based clustering

in the decision space to present the framework of LORD. Finally, to establish the efficacy

on a real-world problem, NAEMO and LORD are customized to address the multi-modal

many-objective building energy management problem. Moreover, four decision-making

strategies are presented to select one of the Pareto-optimal solutions as the most relevant

solution for implementation.
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Chapter 1

Introduction

1.1 Introduction

Three fundamental questions are asked for any problem: whether a solution exists, how

many solutions exist and which is the best solution for the given objective(s) [141]. An-

swering the third question is an optimization problem. Although numerous numerical

optimization methods exist, Evolutionary Algorithms (EAs) are more popular due to

their benefits [32, 161] such as the ability to provide a decent solution approximation to

problems unsolvable by numerical optimization (hard problems and black-box problems),

invariance to continuity and convexity of the landscape, and parallel search in multiple

directions by intelligent use of a population of solutions.

The problems with multiple conflicting objectives are known as Multi-objective Optimi-

zation Problems (MOPs) and the EAs used to address them are known as Multi-Objective

Evolutionary Algorithms (MOEAs) [60,85]. Formally, anM -objective minimization1 prob-

lem is defined as follows:

Minimize: F(X) = [f1(X), f2(X), · · · , fM (X)] where X = [x1, · · · , xN ]

subjected to, xLi ≤ xi ≤ xUi , for i = 1, 2, · · · , N,

gj(X) ≥ 0, for j = 1, 2, · · · ,Kieq and hk(X) = 0, for k = 1, 2, · · · ,Keq.

(1.1)

The N -dimensional search space is the region consisting of the intersection of the

constrained regions defined by the Kieq inequality and Keq equality constraints, and the

1Without loss of generality, minimization problems are considered throughout this thesis. Also, as
a symbolic representation rule in this thesis, bold math variables denote an array/vector/set of scalars,
calligraphic math variables denote a matrix/set of arrays and usual math variables denote scalar quantities.
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2 OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY

lower (xLi ) and upper bounds (xUi ) for all the ith decision variables.

In this class of optimization problems, when number of objectives is four or more

(i.e., M > 3), several challenges come into play. Hence, this sub-class of problems

forms an essential research topic and is called Many-objective Optimization Problems

(MaOPs) [85, 106]. Thus, the EAs used for addressing MaOPs are known as Many-

Objective Evolutionary Algorithms (MaOEAs). Some practical applications of MaOEAs

from varied domains are in nurse scheduling problem [131], factory-shed truss design prob-

lem [10], space trajectory design problem [88], pattern recognition problems [31,136], soft-

ware refactoring problem [126], building energy management problem [133] and cyclone

geometry design problem [55].

Rest of this chapter is structured as follows. In Section 1.2, the basic concepts of

MOEAs are outlined. In Section 1.3, the various research areas of this domain are briefly

described, including the well-explored and scarcely-explored areas. Thereafter, the appli-

cation domain of building energy management is briefly introduced, which is explored in

a later chapter to demonstrate the challenges of a real-world many-objective optimization

problem. Finally, the goals and scope of this thesis are stated in Section 1.5.

1.2 Key Concepts

This section gives a brief background of various concepts and terminologies required for

overall understanding of this thesis.

1.2.1 A Box-Constrained Multi-objective Optimization Problem

The mathematical formulation of a box-constrained multi-objective minimizations problem

presents the mapping from an N -dimensional vector (X) in the decision space (D) to an

M -dimensional vector (F(X)) in the objective space [22,106] as follows:

Minimize: F(X) = [f1(X), f2(X), · · · , fM (X)] where, X ∈ D
(
⊆ RN

)
,

F(X) : D 7→ RM and D : xLi ≤ xi ≤ xUi , for i = 1, 2, · · · , N.
(1.2)

1.2.2 Pareto-Dominance Relation

The concept of trade-off (Pareto-optimality) can be formally mentioned as a state where

further improvement in one of the objectives only leads to the deterioration in terms

1.2. KEY CONCEPTS
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of the other objective(s) [10, 85]. Pareto-dominance relation is used to compare two N -

dimensional decision vectors. Let X1 and X2 be two feasible points, then X1 ≺ X2 or X1

Pareto-dominates X2 according to the following condition:

∀i ∈ {1, · · · ,M}, fi(X1) ≤ fi(X2) and ∃j ∈ {1, · · · ,M}, fj(X1) < fj(X2). (1.3)

In other words, X1 is better than X2 if X1 is as good as X2 in all objectives and at

least better in one of the objectives.

(a) Partitions by F(X) (b) Decision Space (c) Objective Space

Figure 1.1: Illustration of the key concepts of a multi-objective minimization problem with
M = 2, N = 2, XL = [0, 0], XU = [1, 1].

Based on Pareto-dominance, there can be the following three cases (Fig. 1.1a) when a

solution X is compared with other solutions:

• Some of the other solutions are dominated by X (blue region).

• Some of the other solutions dominate X (green region).

• Some of the other solutions are non-dominated with respect to X (gray regions).

1.2.3 Non-Dominated Solution Set

A solution X? ∈ Sbox (where Sbox is a well-defined search space) is said to be a non-

dominated solution, if there is no other solution X ∈ Sbox dominating X?. A non-

dominated set of solutions is the set of all such X?, defined as follows:

ndset (Sbox) = {X?| (@X ∈ Sbox|X ≺ X?)}. (1.4)

1.2. KEY CONCEPTS
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1.2.4 Pareto-optimal Set and Pareto-Front

The Pareto-optimal Set (PS) is the set of solution vectors in the decision space (D) such

that there is no other solution that dominates any point of this set, i.e., the non-dominated

set of solutions in Sbox = D is the PS. The image of PS in the objective space is known as

the Pareto-Front (PF). Thus, PS and PF are defined as follows:

PS: {X? ∈ D | (@X ∈ D | X ≺ X?)} = ndset(D), (1.5)

PF: {Y ∈ RM | Y = F(X),X ∈ PS}. (1.6)

For any given MOPs or MaOPs, an EA yields an approximation of PS and PF at

termination as illustrated in Fig. 1.1b and Fig. 1.1c. A better approximation will indicate

a better performing ability of the EA for that MOP or MaOP.

1.2.5 Non-Conflicting Objective Set

Among the M objectives, any two objectives fi(.) and fj(.) are said to be conflicting in

nature, if the following condition [10,141] is satisfied:

∃ (X1,X2) ∈ D ×D such that (fi (X1) > fi (X2)) and (fj (X1) < fj (X2)) . (1.7)

The concept of induced Pareto-dominance has been introduced later. Induced Pareto-

dominance declares two objective sets Fi(.) and Fj(.) to be conflicting if �Fi 6=�Fj where

�Fi and �Fj denote the induced Pareto-dominance by the objective sets Fi and Fj ,

respectively. The objective set F′ is called Non-Conflicting Objective Set [18] when F′ ⊆ F,

2 ≤ |F′| ≤ |F| and �F′=�F so that excluding the objectives F − F′ does not change the

induced Pareto-dominance. The purpose of objective reduction is to find the smallest

Non-Conflicting Objective Set.

1.2.6 Ideal and Nadir Objective Vectors

The ideal and nadir points are essential concepts, which are required in several operations

to define an algorithmic framework for an M -objective optimization problem.

1.2. KEY CONCEPTS
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Let X be a feasible solution, then the ideal objective vector Fide is defined as follows:

Fide =
[
f ide1 , f ide2 , · · · , f idei , · · · , f ideM

]
where f idei = min

X∈D
fi (X) . (1.8)

Thus, Fide coincides with the point in the objective space defined by the true optimal

values of all objective functions, considered one at a time. The ideal objective vector is

not a feasible objective vector.

Let X be a solution in PS, then the nadir objective vector Fnad is given as follows:

Fnad =
[
fnad1 , fnad2 , · · · , fnadi , · · · , fnadM

]
where fnadi = max

X∈PS
fi (X) . (1.9)

Thus, Fnad coincides with the point in the objective space defined by the worst value

along each of the objectives in PF. It should be noted that unlike Eq. (1.8), for nadir point,

X is chosen from PS and not from D. Depending on the convexity and the continuity of

PF, the nadir objective vector may or may not be a feasible objective vector. An example

of the ideal and the nadir objective vectors are illustrated in Fig. 1.1c.

1.3 A Brief Overview of Research Areas

There is an abundance of MOEAs in the literature, some of the notable ones being Non-

dominated Sorting Genetic Algorithm (NSGA-II) [47], Strength Pareto EA (SPEA2) [201],

Pareto-Envelop based Selection Algorithm (PESA-II) [38] and Differential Evolution for

Multi-objective Optimization (DEMO) [153]. However, when these algorithms are applied

to MaOPs, several issues appear [32, 109, 142, 197]. These major challenges, along with a

few practical caveats, are summarized as follows:

1. With an increase in M , the population gets saturated with non-dominated solutions

at very early generations leading to a decrease in selection pressure [10,25,32,85].

2. With an increase in M , the curse of dimensionality [10,34,82,109] appears, i.e., the

requirement of a large number of solutions to approximate the PF and to balance

the trade-off between convergence and diversity.

3. With an increase in M , visualization issues [22, 32, 109,138] appear, which makes it

difficult to validate the search behavior of the MOEAs, the quality of the approxi-

mated PF and the choice of the final solution.

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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4. While assessment of MOEAs rely on different performance indicators, various in-

dicators capture different representative characteristics of the PF like convergence,

diversity, coverage, or a combination of two or more of these attributes.

For tackling these issues of applying EAs to MaOPs and the issues arising out of

practical challenges, research studies are broadly categorized into several areas, which are

described in the following sub-sections.

1.3.1 Algorithmic Design

There are broadly four classes of algorithms: Pareto-dominance based algorithms, indica-

tor based algorithms, objective reduction based algorithms and reference-vector assisted

decomposition based algorithms.

Pareto-dominance based Algorithms

The first class involves modification of the Pareto-dominance relationship to enhance the

selection pressure such as ε-dominance [46], θ-dominance [187], favour relation [54], fuzzy

Pareto-dominance [69] and grid dominance [184]. A few such tailored Pareto-dominance

based MaOEAs are Grid-dominance based EA (GrEA) [184], θ-Dominance based EA

(θ-DEA) [187], Approximation-Guided Evolutionary algorithm (AGE-II) [179] and Knee-

point driven EA (KnEA) [192].

Indicator based Algorithms

The second class considers convergence and diversity indicators as selection criteria. Com-

mon indicator based algorithms are Indicator-Based EA (IBEA) [200], S-Metric Selection

based Evolutionary Multi-Objective Algorithm (SMS-EMOA) [12], Generational Distance

and ε-dominance based Multi-Objective EA (GDE-MOEA) [124], improved version of

Many-Objective Metaheuristic Based on R2-Indicator (MOMBI-II) [61] and algorithm

based on Hypervolume Estimation (HypE) [9]. Hypervolume indicator has gained im-

mense attention due to its success, though its computational complexity increases expo-

nentially with the number of objectives. There has been some effort towards generalization

of hypervolume for MaOPs such as by using Monte-Carlo simulation [9] or weakly Pareto-

compliant Sharpe-Ratio indicator [62].

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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Objective Reduction based Algorithms

The third class transforms MaOPs into simpler problems by reducing the number of ob-

jectives so that the induced PS remains invariant [10, 142]. Hence, it combines dimen-

sionality reduction techniques like principal component analysis [157], clustering based

approaches [10, 142], feature selection [86, 87], and many more, in a framework, to deal

with MaOPs. The intuition behind such approaches is to reduce the problem complexities

such that the MaOPs could efficiently be handled by existing MOEAs. However, investi-

gating the optimal objective subset is tedious, albeit essential for every new problem.

Reference-vector Assisted Decomposition based Algorithms

The fourth class involves decomposition of MOPs or MaOPs into multiple scalar optimiza-

tion sub-problems which collaborate with each other to be optimized. Some notable al-

gorithms of this class are Multi-Objective EA based on Decomposition (MOEA/D) [150],

Evolutionary Dynamic Weighted Aggregation (EDWA) [97], second version of Multiple

Single Objective Pareto Sampling algorithm (MSOPS-II) [75] and Multi-Objective Genetic

Local Search (MOGLS) [80]. Two recent and successful approaches of this class are

MOEA/D-M2M (transforms MOPs into simpler multi-objective sub-problems) [115, 117]

and the third version of NSGA (NSGA-III, uses reference points to enhance diversity) [45].

Decomposition based algorithms have shown promising performance in addressing

MaOPs. Moreover, such approaches neither suffer from the reduced selection pressure

in high dimensional objective space like Pareto-dominance based approaches nor require

the extreme computational effort for hypervolume evaluation.

1.3.2 Benchmark Test Problems

For establishing the efficacy of MOEAs, the performance of the algorithms is compared on

various benchmark functions which try to simulate real-world problem difficulties. These

MOPs differ in problem characteristics [161] such as:

• Geometry : Shape of the PF can be convex, concave, linear, mixed, degenerate,

• Parameter Dependencies: Separable objectives, non-separable objectives (capability

to determine ideal points by considering only one objective at a time),

• Bias: Presence of bias (like variable density of solutions) while mapping solutions

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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from decision space to fitness functions in objective space,

• Many-to-One mappings: Pareto one-to-one, Pareto many-to-one, flat regions, iso-

lated optima and

• Modality : Uni-modal, multi-modal.

Several benchmark functions are available in the literature [50,74,76,112,115,191] and

new benchmark functions with added difficulties are also being developed. The definitions

of various test problems used in this thesis are provided in Appendix A.

1.3.3 Performance Indices

The objective space cannot be directly visualized when the number of objectives is greater

than three. Thus, the performance of the optimization algorithm has to be assessed in

terms of the performance indicators. Two criteria which are looked into while assessing

the effectiveness of the approximated PF are convergence [24, 47] and diversity [9, 10].

Convergence is the proximity of the approximated PF to the true PF, while diversity is

the uniformity in the spread of the solutions in the approximated PF over the true PF.

Several popular evaluation metrics, available in literature, are convergence metric [10,

47], Inverted Generational Distance (IGD) [14] and its variants [78, 198], hypervolume

indicator [9, 10], R2 indicator [16], purity metric [11], crowding distance [47], minimal-

spacing [10, 11], minimum of sum of objective values (denoting convergence towards the

center of true PF) [85], sum of minimum objective values attained along each dimension

(denoting convergence along the edges of the true PF) [85] and range of objective values

along each dimension (denoting diversity) [85]. These performance metrics operate in the

objective space. For assessing the performance of MaOEAs in the decision space, only a

handful of metrics are available in literature which includes IGD in decision space [169,188],

pareto-set proximity [188] and mixture of IGD in objective and decision space (IGDM)

[118]. For the different works presented in this thesis, one or more of those performance

measures are considered which are described in the next few paragraphs.

Convergence Metric

Convergence metric (CM) or generational distance [10, 47] indicates the convergence of

the approximated PF and is given as follows:

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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CM(AF,HCM ) =
1

|AF|

|AF|∑
i=1

(
|HCM |
min
j=1

(DE (F (Xi) ,Hj))

)
,

where F (Xi) ∈ AF and Hj ∈ HCM .

(1.10)

In Eq. (1.10), the non-dominated set of solutions approximating the PF is denoted

by AF. For evaluating CM , the knowledge of the true PF is required. To represent the

true PF, either several points are sampled uniformly across the surface of the true PF or

the intersection points are chosen where the true PF and the reference-vectors (defined

by [40]) coincide. This set of points representing the true PF is denoted by HCM . As

illustrated in Fig. 1.2a, convergence metric (CM) is estimated as the sample mean of the

minimum Euclidean distance DE(.) of the objective vectors (F(Xi)) constituting AF from

the points (Hj) in HCM , over the number of solutions in AF. Given the same HCM with

the same NCM = |HCM |, among two approximated PFs, the one having a smaller value

of convergence metric has a better convergence to the true PF.

(a) CM (b) IGD (c) HV

(d) Full Coverage (e) No Coverage (f) Partial Coverage

Figure 1.2: Illustration for evaluating some performance indices.

Although the convergence metric is a vital performance measure, it suffers from the

following two drawbacks [134]:

• For evaluating convergence by Eq. (1.10), defining HCM requires the knowledge of

the true PF which is unavailable for practical problems.

• The value of the convergence metric lies in the range [0,∞). Thus, without field

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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knowledge or unless compared with the convergence value of another solution set, it

becomes difficult to assert how far the approximated PF is from the true PF.

Inverted Generational Distance

Inverted Generational Distance (IGD) [14, 109] gives an indication of the convergence as

well as the diversity of the approximated PF and is obtained as follows:

IGD(AF,HIGD) =
1

|HIGD|

|HIGD|∑
j=1

(
|AF|
min
i=1

(DE (F (Xi) ,Hj))

)
,

where F (Xi) ∈ AF and Hj ∈ HIGD.

(1.11)

In Eq. (1.11), the non-dominated set of solutions approximating the PF is denoted

by AF and those approximating the PS is denoted by AX. Similar to the evaluation of

convergence metric, IGD also requires a set HIGD with representative points from the true

PF (if evaluated in the objective space). As illustrated in Fig. 1.2b, IGD is estimated as the

sample mean of the minimum Euclidean distance DE(.) of the points (Hj) in HIGD from

F(Xi) ∈ AF, over the number of solutions in HIGD. If IGD is evaluated in the decision

space HIGD is a representation of the true PS and instead of F(Xi) ∈ AF, Xi ∈ AX is

considered in Eq. (1.11). Given the same HIGD with the same NIGD = |HIGD|, among

two approximated PFs, the one having a smaller value of IGD has a better convergence,

or a better diversity or both with respect to the true PF.

As this indicator is computationally similar to the convergence metric, it shares the

same drawbacks as those of the convergence metric along with the following ones:

• IGD is known to yield Pareto non-compliant results [78]. However, this drawback

has been eliminated in the weakly Pareto-compliant, IGD+ metric [78].

• IGD is hugely influenced by the size of the reference set (NIGD = |HIGD|).

In this thesis, IGD represents the performance in objective space. However, when IGD

is also used to assess the performance in decision space, for distinction IGDF is used to

represent IGD in objective space and IGDX is used to represent IGD in decision space.

Hypervolume Indicator

Hypervolume indicator [9, 10] can also represent both convergence and diversity informa-

tion using a single value and also its evaluation is independent of the knowledge of the

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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true PF. For its evaluation, a hyper-rectangle is considered between a reference point

(RHV = [rHV,1, · · · , rHV,M ]) and the origin of the objective space. The hypervolume

(HV = volume (∪F∈AF
[f1, rHV,1]× · · · × [fM , rHV,M ]) with F = [f1, · · · , fM ]) indicates

the dominated region of this hyper-rectangle. For fair comparison, the following ap-

proaches [81, 134] guides the placement of the reference point (RHV ) for constructing

the hyper-rectangle:

• The most näıve approach considers RHV to be user-defined over the different esti-

mations of PF [10].

• To account for approximated PF with extreme points, a point just beyond the nadir

vector (Eq. (1.9)) can also act as RHV [77]. If two or more PFs are compared, a

point little beyond the maximum of the nadir vectors is chosen as the final RHV .

• The location of RHV can also be pre-fixed [200] (e.g., at [1.1,
M· · ·, 1.1]) and all the

approximated PFs can be normalized or scaled within a specified range (e.g., [0, 1]).

Due to high computational complexity of exact HV calculation, the hypervolume is

often approximated. A set of points (HHV ) is randomly sampled in this hyper-rectangle

using Monte-Carlo simulation. Hypervolume (HV ) of the hyper-rectangle is approximated

by the fraction of the points in HHV dominated by the estimated PF AF (Fig. 1.2c) as

follows:

HV (AF,HHV ) =
1

|HHV |

|HHV |∑
j=1

αHV (Hj ,AF) , where Hj ∈ HHV and

αHV (Hj ,AF) =


1, if ∃F (X) ∈ AF with F (X) ≺ Hj

0, otherwise.

(1.12)

For its evaluation, attainment function (αHV (.)) is defined which returns 1 when a

point Hj ∈ HHV is dominated by any solution (F (X) ∈ AF). Hypervolume indicator

is given by the average of the values returned by the attainment function over the set of

points belonging to HHV . Given the same HHV with the same NHV = |HHV |, among

two approximated PFs, the one having the larger value of HV has better convergence, or

better diversity or both with respect to the true PF.

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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Hypervolume indicator does not suffer from the drawbacks of the previous two indica-

tors [134], i.e., HV being a ratio is bounded in the range [0, 1] and the evaluation of Eq.

(1.12) does not require information on true PF. However, two major concerns for evalu-

ating hypervolume are the huge computational complexity (O (M · |AF| · |HHV |)) and its

high sensitivity towards the location of the reference point (RHV ) for defining the hyper-

rectangle and hence, the reference set HHV [134]. Literature consists of methods to reduce

these disadvantages [9, 199]. Nonetheless, the advantages of HV outweigh its drawbacks

and has been a popular choice of performance metric in this domain.

Purity Metric

Purity metric is used for comparison of two or more approximations of the PF [10, 11].

Hence, this metric could be used to compare the results of two or more algorithms by

unifying their approximated PFs and evaluating the proportion of non-dominated solutions

contributed by each of the solution set towards a unified set (A?F). Thus, for comparison

of KPF solution sets (AF,1,AF,2, · · · ,AF,KPF ), the unified approximation of the PF (A?F)

is given by the non-dominated set of the union of these KPF solution sets as follows:

A?F = ndset
(
∪KPFi=1 AF,i

)
, where ndset(.) is given by Eq. (1.4). (1.13)

For the ith approximation of the PF, the intersection of AF,i and the unified set A?F is

used to evaluate the purity metric (PM) is evaluated as follows:

PM (AF,i,A?F) =
|AF,i ∩ A?F|
|AF,i|

, for i = 1, 2, · · · ,KPF . (1.14)

The purity metric is bounded and can be equal to 1 for all the solution sets, as∑KPF
i=1 PM (AF,i,A?F) 6= 1. Among two approximated PFs, the one having a larger purity

value is a better approximation of the true PF. However, as Eq. (1.13) estimates ndset(.),

the potency of purity metric decreases when M > 10 due to dominance resistance [10,69].
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Pareto-Set Proximity

Pareto-Set Proximity (PSP) [188] evaluates the similarity between the approximated PS

(AX) and the true PS (whose sampled version is HIGD) as follows:

PSP (AX,HIGD) =
CoRa

IGD (AX,HIGD)
, where CoRa =

(
N∏
i=1

γi

) 1
2N

and

γi =


1, if xMAX

i = xMIN
i

0, if xmini ≥ xMAX
i ∨ xmaxi ≤ xMIN

i(
min(xmaxi ,xMAX

i )−max(xmini ,xMIN
i )

xMAX
i −xMIN

i

)2
, otherwise.

(1.15)

In Eq. (1.15), CoRa represents the cover rate (overlap ratio of the approximated PS

to the true PS) and IGD (AX,HIGD) represents IGDX. Also, xmini and xmaxi represent

the minimum and maximum along the ith decision variable over the approximated PS,

respectively. Similarly, xMIN
i and xMAX

i represent the minimum and maximum along

the ith decision variable over the true PS, respectively. While CoRa indicates overlap,

IGD (AX,HIGD) represents convergence and diversity of the approximated PS with re-

spect to true PS. Thus, PSP quantifies an overall quality of the approximated PS.

Indicators associated with Non-Contributing Solutions

In the decision space, IGDX (Eq. (1.11)) involves the term min
X∈AX

(DE (X,H)) where

H ∈ HIGD. A solution XNS ∈ AX is called a non-contributing solution, if for a given

representation of the true PS (HIGD) and the approximated PS (AX), the following con-

dition [173,174] is satisfied:

@H ∈ HIGD : DE

(
XNS ,Hj

)
= min

X∈AX

(DE (X,H)) . (1.16)

The notion of a non-contributing solution is shown in Fig. 1.2b for solutions in the

objective space. Let the subset of the non-dominated solution set consisting of all such non-

contributing solutions be ANSX . The proportion of non-contributing solutions in the non-

dominated solution set is given by NSX =
∣∣ANSX

∣∣ / |AX|. This proportion NSX reflects

the amount of outliers, i.e., how many non-dominated solutions of the final population are

not the nearest neighbors of any point in HIGD (the set representing the true PS).

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS
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Removing ANSX from AX does not change IGDX, i.e., IGD(AX,HIGD) = IGD(AX−

ANSX ,HIGD). However, to note how far the outliers are from the surface of true PS,

the convergence metric of ANSX can be obtained in the decision space with respect to

HCM = HIGD, i.e., CM NSX = CM
(
ANSX ,HCM

)
. If both NSX and CM NSX are

large, it implies that a large number of solutions are far away from the true PS.

1.3.4 Visualization Methods

The need to visualize the approximated PF is emphasized in [134] using several case-

studies, which show that there can be conflicting assessments based on the different per-

formance indicators [93, 134]. For example, the quality of an approximated PF does not

always agree in terms of visualization, convergence metric and hypervolume. Such anoma-

lous results [134] are demonstrated through the following four test scenarios (synthesized

for 2-objective minimization problems):

• Sensitivity to Solutions Far Away from True Pareto-Front (Case 1): Among the two

Pareto-Front approximations (PF1 and PF2), let PF2 be much closer to the true

Pareto-Front (True PF ) than PF1 but there is one very distant point in PF2. The

convergence metric, being sensitive to the distance of all the points, indicates PF1 to

be better. This result is contradicted by the hypervolume indicator, which indicates

PF2 to be a better approximation of the True PF . This case is illustrated in Fig.

1.3a and the performance is mentioned in Table 1.1.

• Variation in Distribution of Points Near the True Pareto-Front (Case 2): Similar

to Case-1, let both the Pareto-Fronts (PF1 and PF2) be intertwined. However,

in contrast to Case-1, let PF2 have all its points very close to True PF . Based

on the convergence metric, PF2 is a better approximation, whereas based on the

hypervolume indicator PF1 is better. This discrepancy is because the reference point

builds the hyper-rectangle in such a manner that the only solution of PF1 which lies

within hyper-rectangle is present at a location near the vertex (origin for this case)

which is diagonally opposite to the reference point. Thus, for conflict resolution, this

case requires a third metric (such as the number of points of the approximated PF

enclosed by the hyper-rectangle). The respective scenario is illustrated in Fig. 1.3b

and the other details are mentioned in Table 1.1.

1.3. A BRIEF OVERVIEW OF RESEARCH AREAS



OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY 15

• Shape of the Pareto-Front (Case 3): Among the two Pareto-Fronts (PF1 and PF2),

PF1 better approximates the shape of the True PF than PF2. However, the per-

formance values (convergence metric and hypervolume indicator) are only slightly

different between the two PFs concluding that the PFs are nearly equivalent. How-

ever, none of the metrics has captured the information on the shape of the PF. The

respective scenario is illustrated in Fig. 1.3c and the other details are mentioned in

Table 1.1.

• Normalizing the Pareto-Fronts (Case 4): Among the two Pareto-Fronts (PF1 and

PF2), PF1 is much closer to the True PF as indicated by the convergence metric

(Case 4(a)). Both the PFs have the same hypervolume, indicating that these are

of the same quality. The discrepancy is because the scale of the second objective

(f2) is larger than the scale of the first objective (f1). This case is shown in Fig.

1.3d. After scaling (Fig. 1.3e), this discrepancy disappears (Case 4(b)). Both the

objectives of True PF , PF1 and PF2 are linearly mapped in the interval [0, 0.5].

The performance of these cases is given in Table 1.1.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4(a) (e) Case 4(b) (f) Legend

Figure 1.3: Different scenarios [134] that convergence metric and hypervolume indicator
fail to resolve: (a) Case 1 for studying the sensitivity to outliers, (b) Case 2 for studying
the effect of the number of points in the PF, (c) Case 3 for studying the capability to
preserve the shape of PF, (d-e) Case 4(a-b) for studying the effects of normalizing the PF
on convergence metric and (f) graph legend for different cases.
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Table 1.1: Conflicting values of convergence metric and hypervolume indicator for various
test-cases [134] evaluated with the specified parameters (location of reference point RHV ,
size of reference sets for convergence metric |HCM | and hypervolume indicator |HHV |).

Convergence Hypervolume
Case Metric Indicator Parameters

Case 1 PF1: 80.8449 PF1: 0.7674 RHV = max(PFnad1 , PFnad2 ),
PF2: 85.3234 PF2: 0.8977 |HCM | = 158, |HHV | = 20000

Case 2 PF1: 0.0357 PF1: 0.7860 RHV = (0.5, 0.5),
PF2: 0.0062 PF2: 0.2222 |HCM | = 1001, |HHV | = 10000

Case 3 PF1: 0.3000 PF1: 0.4710 RHV = max(PFnad1 , PFnad2 ),
PF2: 0.3178 PF2: 0.4740 |HCM | = 101, |HHV | = 1000

Case 4 PF1: 0.0521 (a) PF1: 0.1692 (a) For both cases (a) and (b)
PF2: 10.0020 (a) PF2: 0.1686 (a) RHV = max(PFnad1 , PFnad2 ),
PF1: 0.1230 (b) PF1: 0.1717 (b) |HCM | = 158, |HHV | = 20000
PF2: 0.1229 (b) PF2: 0.1714 (b)

Thus, for ease of assessment and proper representation, it is essential not to rely only

on the performance measures but also to visualize the high-dimensional objective space

through methods like Buddle chart [67], parallel coordinate plots [22,67], heatmaps [22,67],

polar coordinate plots [22,67,68] and Self-Organizing Maps [67,166].

1.3.5 Special Types of Optimization Problems

There are several other types of optimization problems, which are more challenging than

the fundamental box-constrained multi-objective optimization problems. The real-world

problems can present multiple such challenges at the same time. Hence, it is essential to

analyze which algorithmic strategies are beneficial for which problem attributes. However,

for studying a novel algorithmic framework for each of these particular types of problems,

specific benchmark test functions and performance indicators are barely available, which

currently limits extensive studies in these areas.

Constrained Multi-objective Optimization Problems

A multi-objective optimization problem is often subjected to equality and inequality con-

straints (Eq. (1.1)), which determine the feasible regions of the search space for an op-

timization problem [33, 96]. The simplest strategy [47] to deal with such constrained

optimization problems involve modifying the selection stage of an EA where there are

three cases: (i) when the comparison is between two feasible solutions, candidate selection

is performed in a way similar to the approaches for box-constrained optimization prob-

lems, (ii) when the comparison is between a feasible solution and an infeasible solution,
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candidate selection favors the feasible solution, and (iii) when the comparison is between

two infeasible solutions, candidate selection favors the less constraint-violating solution.

Problems with Expensive Fitness Evaluations

From a practical standpoint, often the computation of fitness of a single feasible candidate

can be expensive [32] such as when the computation takes minutes or hours, involves a fi-

nancial cost (such as assembling cost, reagent cost, and other expenses), or involves simula-

tion (black-box scenario, i.e., the algebraic form of a fitness function is unknown) [94]. For

addressing such problems, one of the popular approaches is to introduce approximations,

especially function approximations. Computational models for functional approximations

are often known as surrogates and EAs using objective values estimated by surrogates are

often referred to as Surrogate-Assisted EAs (SAEAs) [94]. A surrogate (synonymous to

a metamodel) helps to replace (fully or partly) the computationally expensive objective

functions.

Five crucial challenges [29,144] of using surrogates in MOEAs are: (i) choosing the sur-

rogate model (e.g., Kriging, neural networks, polynomial approximation), (ii) determining

which quantity to approximate, (iii) maintaining a substantially smaller training cost of

surrogate than evaluation cost of expensive objectives, (iv) deciding how to update the

surrogate model (selecting representative solutions for training), and (v) deciding when to

update the surrogate model (based on the surrogate’s accuracy).

Large-scale Multi-objective Optimization Problems

Large-scale optimization problems have more than 100 decision variables (Eq. (1.1) with

N ≥ 100) [27,95]. Optimizing a whole large-scale problem at once is difficult. For tackling

such problems, co-operative co-evolution is mostly used. It involves the parallel and col-

laborative evolution (symbiosis) of sub-problems defined by variable groupings (species).

Thus, the overhead of dealing with such large-scale multi-objective optimization problems

are optimal separation of decision variables (or defining the sub-problems) and efficient

collaboration (information exchange) between multiple sub-problems [5].
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Multi-Modal Multi-objective Optimization Problems

The notion of Multi-Modal Multi-Objective Problem (MMMOP) [171] arises when a set

of kPS (≥ 2) distinct decision vectors (AM = {X1,X2, · · · ,XkPS}) maps to almost same

objective vectors as follows:

∀ (Xi,Xj) ∈ AM ×AM and i 6= j : ‖F (Xi)− F (Xj)‖ < εPF ,

where εPF is a small number.

(1.17)

An example is illustrated in Fig. 1.4 for a benchmark multi-modal multi-objective test

problem (MMF4 [112]). Thus, the PS can consist of multiple subsets of non-dominated

solutions, where each subset can independently generate the entire PF.

(a) PS of MMF4 (b) PF of MMF4

Figure 1.4: Four solution vectors (X1,X2,X3 and X4) mapping to almost same objective
vectors (F(X1),F(X2),F(X3) and F(X4)) for a benchmark test problem (MMF4) [140].

The motivation to study MMMOPs arises due to those decision maker’s preferences

which cannot be mathematically formulated and introduced in the MMMOPs. Thus,

providing a diverse set of nearly equivalent solutions help the users to make an informed

decision. Another advantage of studying MMMOPs is if the practical implementation

of a solution is hindered, an equivalent alternative is readily available. Some practical

MMMOPs are seen in rocket engine design [103], feature selection problem [189] and path-

planning problem [90]. To optimize such MMMOPs, an EA faces the following challenges:

1. Maintaining diversity in the decision space, i.e., representing and maintaining diver-

sity within each of the multiple solution sets which independently maps to a diverse

approximation of the PF.

2. Necessity of large population to efficiently represent MMMOPs. For example, if kPF
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points (e.g., 100) represent a 2-objective PF and kPS decision vectors (e.g., 4 for

MMF4 problem [112, 137]) map to each point of the PF, then the final population

size required is kPF × kPS (e.g., 100× 4 = 400).

Problems having Dynamic Fitness Landscape

This class of problems have their fitness landscape as a variable of time (like in a noisy envi-

ronment) [98,154]. Thus, algorithms designed for problems with such dynamic landscapes

are characterized by fast adaptation, sensitive to these changes. Along with specialized

benchmark functions [58], specific performance measures [70] are also required for assessing

the efficacy of an algorithm for problems with dynamic landscapes.

Interval-valued Multi-objective Optimization Problems

Often in real-world MOPs [114, 193], there are some uncertainties or tolerances involved

with the values of the objectives. When such uncertainties in objectives can be defined to

be uniform within a real-valued interval
[
fLi (X) , fUi (X)

]
, the MOP becomes an Interval-

Valued MOP (IVMOP). Mathematical formulation of such an IVMOP is similar to Eq.

(1.1) except that the ith objective function is further characterized as follows:

fi (X) = {piv|fLi (X) ≤ piv ≤ fUi (X) , piv ∈ R}. (1.18)

For extending MOEAs to address IVMOPs [193], strategies of conventional individual

comparison, population diversity and population evolution need to be modified to adapt

to interval-valued environments.

1.3.6 Multi-Criteria Decision-Making

After termination of MOEAs, the approximated PS and PF are obtained, both of which

are sets of solutions. Such a set of possible trade-offs are essential to make an informed

decision. However, an application problem can implement only one solution. This selection

of a Pareto-optimal solution from the approximations of PS and PF is dictated by multiple

criteria (preferences of the decision-makers) and the methods dealing with this selection

composes the domain of Multi-Criteria Decision-Making (MCDM) [152]. In this regard,

the most prominent work deals with the selection of knee-point [192], which considers
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nearly equal compromise in all objectives. However, a knee point has several disadvantages

for irregular PF and more recent methods exists to deal with such challenges [65, 186].

While MCDM for box-constrained MOPs is a widely-studied domain, it is relatively scarce

for those particular types of optimization problems which are discussed in Section 1.3.5.

1.3.7 Theoretical Studies on Population Dynamics

While the domain of metaheuristics evolves by the introduction of novel search strategies,

there are limited theoretical studies to prove the scope (such as convergence, stability,

bounds of hyper-parameters) of these strategies for MOEAs. In the absence of such theo-

retical evidence, it is not apparent why and when a particular strategy works. Thus, most

of the studies rely on empirical results. Even the hyper-parameter values are set based on

sensitivity studies. Similarly, EAs are accompanied by scalability studies. However, exper-

iments on the convergence behavior or the population dynamics of the MOEAs are often

overlooked, which are essential to investigate the effect of various strategies. Motivated

by this research gap, some population dynamics indicators have been recently developed

in [161] to aid in the analysis of MOEAs and MaOEAs.

Overall, the various research areas for studying MaOEAs are summarized in Fig. 1.5,

where the well-explored to scarcely-explored areas are color-coded.

Extending 
MOEAs to 
MaOEAs

Modification 
of Pareto 

Dominance  

Objective 
Reduction 

(Online and 
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Figure 1.5: Research areas in the domain of Many-Objective Optimization (MaOO).

As mentioned in Section 1.1, there are several real-world applications where MaOO
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Figure 1.6: Building energy management framework [139] where the optimization module
(dashed box) aims at estimating the relevant and Pareto-optimal schedule of occupants’
actions (opening/closing of doors ζ?D, windows ζ?W and turning on/off heater ζ?H) such that
indoor thermal discomfort (σtemp), aeraulic discomfort (σair), heater-related energy-cost
(σcost) and number of changes in recommendations (δWD) are minimized.

plays a central role. The use of MaOEAs in real-world problems help to identify various

open research areas and thus, provides the necessary research motivation. Inspired by this

practice, the efficacy of some strategies presented in different chapters of this thesis are

also established on a real-world problem of building energy management.

1.4 Many-Objective Building Energy Management Prob-

lem

Building energy management has been a trending topic over the past decade as nearly 40%

of the global energy consumption is from the buildings sector [72]. One of the prevailing

strategies for building energy management, even applicable to existing non-green buildings,

is regulating occupants’ actions to attain the finest indoor ambience [2]. This optimal

schedule of occupants’ actions helps to generate cause-and-effect explanations such that

the occupants can learn to modify their actions towards an energy-efficient routine [133].

The overall building energy management framework [133] is outlined in Fig. 1.6. The

loop begins with sensor-fitted rooms and creation of a database (HDB) to store usual

occupants’ actions (opening/closing of windows ζ̃W and doors ζ̃D and turning on/off the
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Table 1.2: Mathematical formulation of the four optimization objectives.

Objective Parameters

σktemp =


294.15−Tkin

294.15−291.15 , if T kin < 294.15 and nk > 0

0, if 294.15 ≤ T kin ≤ 296.15 or nk = 0
Tkin−296.15

299.15−296.15 , if T kin > 296.15 and nk > 0

simulated T kin (in K) and occupancy
(nk) at the kth hour

σkair
(
Ckin
)

=

{
0, if Ckin ≤ 400 or nk = 0
Ckin−400
1500−400 , if Ckin > 400 and nk > 0

simulated Ckin (in ppm) and occu-
pancy (nk) at the kth hour

σkcost

(
P kelec, P

k
fuel

)
=

{
PkelecEelec+P

k
fuelEfuel

1000 , if nk > 0

0, if nk = 0

simulated P kfuel (in W); and

recorded P kelec (in W), Eelec and
Efuel (in Euros per kWh) at the
kth hour in HDB

δkWD

(
ζkpair

)
=

δ
k−1
WD

(
ζk−1pair

)
+ 1, if ζkpair 6= ζk−1pair

δk−1WD

(
ζk−1pair

)
+ 0, if ζkpair = ζk−1pair

schedule of occupants’ actions XB

where ζkpair =
(
ζkW , ζ

k
D

)
and δ0WD

(
ζ0pair

)
= 0

room heater ζ̃H) and contextual variables (outdoor temperature Tout, corridor temperature

Tn, occupancy n, plug load energy consumption Pelec, fuel cost Efuel and electricity cost

Eelec). For the kth hour, this data is used by the simulation models [133] such that the

indoor physical variables (temperature T kin, CO2 concentration Ckin and heater energy

consumption P kfuel) can be evaluated for hypothetical actions (ζkW , ζkD and ζkH). Hence, a

24-hour action schedule is denoted by a 72-dimensional solution vector (XB) as follows:

XB = [xB,1, · · · , xB,72] =
[
ζ0W , · · · , ζ23W , ζ0D, · · · , ζ23D , ζ0H , · · · , ζ23H

]
. (1.19)

These variables (input and simulated) are used to minimize thermal discomfort σtemp,

aeraulic discomfort σair, heater associated cost indicator σcost and the number of changes

in a schedule δWD. Thus, using the formulation from Table 1.2, the optimization objective

vector FB is given as follows:

FB = [fB,1, fB,2, fB,3, fB,4] =
1

24

[
23∑
k=0

σktemp,
23∑
k=0

σkair,
23∑
k=0

σkcost,
23∑
k=1

δkWD

]
. (1.20)

Thus, the minimization of FB(XB) estimates the optimal hourly actions ζ?W , ζ?D and

ζ?H under the same recorded context used by the simulation models (fetched from the

database HDB). These recommended actions can be compared with the usual actions for

generating causal explanations, from which the occupants can learn by themselves the

impact of their actions [2, 133]. In this regard, several case-studies [1, 2, 132, 133, 135, 143]
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are conducted for an office at Grenoble Institute of Technology, France, leading to the

prototyping of an human-computer interface for implementing the framework of Fig. 1.6.

1.5 Organization of the Thesis

This thesis is a comprehensive attempt to present EAs with improved performance for

tackling a wide range of MaOPs having different characteristics. The thesis also aims

at demonstrating the use of MaOEAs for tackling a real-world problem where decision-

making (post-optimization) also plays a significant role in presenting the final problem

solution. The current chapter deals with the basics of multi- and many-objective optimiza-

tion algorithms and introduces the optimization problem for building energy management.

The next five chapters constitute the contributory part of the entire thesis, followed by a

concluding chapter. The content of the chapters are outlined below.

• Chapter 2: The unsuitability of MOEAs for solving MaOPs, due to reduced selec-

tion pressure with an increased number of objectives, is often tackled using objective

reduction approaches [141]. Chapter 2 of this thesis presents Differential Evolution

using Clustering based Objective Reduction (DECOR) [142]. Correlation distance

based clustering of objectives from the approximated PF, followed by elimination of

all but the centroid constituent of the most compact cluster (with special care to

singleton cluster), yields the reduced objective set. The objective set is periodically

switched between full and reduced size to ensure both global and local exploration.

For finer clustering, the number of clusters is eventually increased until it is equal

to the remaining number of objectives. DECOR is applied on 10- and 20-objective

DTLZ problems which demonstrate its superior performance in terms of convergence

and equivalence in terms of diversity as compared to state-of-the-art MOEAs.

• Chapter 3: Enhanced diversity of solutions in the objective space can be attained

using reference vector based decomposition algorithms. For achieving better so-

lution diversity, this chapter presents Ensemble of Single Objective Evolutionary

Algorithms (ESOEA) [138]. It adopts the reference-direction based approach to

decompose the population, followed by scalarization to transform the MaOP into

several single objective sub-problems which further enhances the selection pressure.

Additionally, with a feedback strategy, ESOEA explores the directions along difficult
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regions and thus, improves the search capabilities along those directions. For exper-

imental validation, ESOEA is executed on several benchmark problems from the

DTLZ, WFG, IMB and CEC 2009 competition test suites. For assessing the efficacy

of ESOEA, its performance is compared with numerous other MOEAs and adaptive

MOEAs such as MOEA/D, MOEA/D-M2M, NSGA-II, AR-MOEA, MOEA/D-DRA

ENS-MOEA/D, HypE, DEMO, α-DEMO-revised, DECOR, NSGA-III, A-NSGA-

III, RVEA, RVEA* and MOEA/DD.

• Chapter 4: While reference direction based decomposition of the objective space is

one of the prominent strategies to address MaOPs, literature severely lacks formal

mathematical analysis to establish the reason behind the superior performance of

such methods. In this chapter, the neighborhood property of the MaOPs is recog-

nized. It is used to present Neighborhood-sensitive Archived Evolutionary Many-

objective Optimizer (NAEMO) [160], where mating occurs within a local neighbor-

hood and every reference direction continues to retain at least one associated candi-

date solution. Such preservation of candidate solutions leads to a monotonic improve-

ment in diversity, as proven using a novel diversity indicator (Dmetric [161]). This

characteristic of NAEMO is also supported by experimental evidence. Moreover, to

keep the archive size under control, periodic filtering modules are integrated with

the NAEMO framework. Experimental results reveal that NAEMO outperforms sev-

eral state-of-the-art algorithms such as NSGA-III, MOEA/D, θ-DEA, MOEA/DD,

GrEA, HypE, MOPSO and dMOPSO. It is also competitive to MOEA/D-M2M on

IMB test problems.

• Chapter 5: Multi-Modal Multi-objective Optimization Problems (MMMOPs) have

multiple subsets within the PS, each independently mapping to the same PF [137].

The existing MOEAs are incapable of ensuring that the multiple subsets in PS are

represented in the solution set. Moreover, the solution diversity in the PF, obtained

by the handful of EAs designed for MMMOPs, are inferior to those obtained by

MOEAs. This chapter highlights the disadvantage of using crowding distance in

the decision space. It presents two evolutionary frameworks (LORD and LORD-

II) which use decomposition in both objective and decision space for dealing with

MMMOPs and multi-modal many-objective problems, respectively [140]. Its efficacy
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is established by comparing its performance on test instances obtained from the CEC

2019 test suite and polygon problems. These EAs (LORD and LORD-II) not only

improve the diversity of PS over EAs for MMMOPs but also improve the performance

in objective space over MOEAs.

• Chapter 6: While several effective and versatile EAs for MaOO problems have

been presented in this thesis, often real-world scenarios call for application-specific

customizations. In this chapter, the many-objective building energy management

problem is considered, which aims to minimize the occupants’ discomfort (ther-

mal and aeraulic) [143], heater-related energy expenses [132] and the number of

recommended changes [133]. This study demonstrates the real-world applicability

of NAEMO (Chapter 4), whose performance is also compared with other state-of-

the-art EAs. However, such search procedures for Pareto-optimal occupants’ ac-

tions overlook the possibility of multiple action schedules for similar comfort trade-

offs [139]. To address the decision space attributes, like binary-encoding, multi-view

and multi-modal nature of occupants’ actions, the algorithm of LORD (Chapter 5)

is further customized and its performance is noted for the concerned optimization

problem [139].

Furthermore, this chapter discusses four strategies for the selection of the compro-

mise of interest (from both objective and decision space). The first strategy deals

with decision-making in the absence of any preference. The second strategy consid-

ers the occupants’ interactions with the system to set a realistic preference in the

objective space by learning about the Pareto-Front. However, when the subjective

preferences of multiple occupants are considered with equal priority, the third ap-

proach of obtaining a fair consensus solution is developed [135]. Finally, the fourth

strategy discusses how the preference of action schedule (in decision space) can be

amalgamated with any of the above-mentioned approaches to generate a context-

relevant yet Pareto-optimal schedule of occupants’ actions [139].

For generating awareness among building occupants, causal explanations are ob-

tained from the difference between the recommended Pareto-optimal scenario and

the usual scenario of the occupants [2, 133]. Such explanations help the occupants

in embracing the recommended energy-efficient routine.

1.5. ORGANIZATION OF THE THESIS
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• Chapter 7: In the final chapter, the various studies presented in this thesis are

briefly summarized. The limitations of these studies are highlighted. Alongside,

several open areas are enumerated, which present the scope of further extending the

computational strategies discussed in this thesis.

The development of approaches over the various chapters is summarized in Fig. 1.7.

Introduction

Conclusion and 

Future Scope

DECOR
Improving 

convergence using 

objective reduction

LORD
Finding equivalent 
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decision space

Building Energy 

Management
Optimization with novel 

decision-making strategies

Algorithms

Real-world 

Application

NAEMO
Improved diversity 

(theoretically 

supported) 

ESOEA
Improving 

performance 

through feedback 

Figure 1.7: Graphical summarization of the thesis.
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2.1 Introduction

In order to deal with the challenges of applying Multi-Objective Evolutionary Algorithms

(MOEAs) to Many-Objective Optimization (MaOO) problems (Eq. (1.2)), objective re-

duction approaches are often adopted. In these approaches, the most conflicting m ob-

jectives out of M objectives (m ≤ M) are chosen. The size of the full and reduced

objective sets are denoted as M and m, respectively. If m ≤ 3 is achieved, the MaOO

problem reduces to a Multi-Objective Optimization (MOO) problem and can be solved

using MOEAs. Even otherwise, i.e., achieving 4 ≤ m < M helps to minimize the compu-

tational cost [10,87,157]. Thus, objective reduction is an efficient way to deal with MaOO

problems.

This chapter presents an evolutionary algorithm known as Differential Evolution using

Clustering based Objective Reduction (DECOR) [142]. Correlation distance based clus-

tering of objectives from the approximated Pareto-Front (PF), followed by elimination of

all but the centroid constituent of the most compact cluster (with special care to singleton

cluster), yields the reduced objective set. During optimization, the objective set period-

ically toggles between full and reduced size to ensure both global and local exploration.

For finer clustering, the number of clusters is eventually increased until it is equal to

the remaining number of objectives. DECOR is integrated with an Improved Differential

Evolution for Multi-objective Optimization (IDEMO), which uses a novel elitist selection

and ranking strategy to solve MaOO problems. DECOR is applied to some DTLZ prob-

lems for 10 and 20 objectives. These experiments demonstrate the superior convergence

of DECOR in comparison to several state-of-the-art algorithms.

Outline of the rest of the chapter is as follows. Previous works, related to the objective

reduction, are briefly described in Section 2.2 while highlighting the primary contribu-

tions of DECOR. The modifications of the base optimization algorithm (DEMO) to yield

Improved DEMO (or IDEMO) are presented in Section 2.3 and the developed objective

reduction based optimization approach (i.e., DECOR) is described in Section 2.4. The

performance and the statistical significance of DECOR are analyzed in Section 2.5, and

the major observations are further discussed in Section 2.6. Finally, Section 2.7 concludes

the chapter, summarizing the overall observations of the various experiments to perform

optimization using objective reduction.

2.1. INTRODUCTION
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2.2 Motivation for the Work

This section briefly describes the shortcomings of the existing works to explain the moti-

vation behind developing DECOR. Subsequently, the novelties of DECOR are highlighted.

2.2.1 Related Studies on Objective Reduction

The objective reduction algorithms can be divided into two sets: (i) m is specified by the

user [17,86], and (ii) optimal m is automatically determined [17,86]. Some of the notable

objective reduction algorithms are Brockhoff and Zitler’s δ-Minimum Objective Sub-Set

(δ-MOSS) and k-sized Error Minimizing Objective Sub-Set(k-EMOSS) [17], Deb and Sax-

ena’s Principal Component Analysis NSGA-II (PCA-NSGA-II) [48], Coello and Lopez’s

k-sized Objective Sub-Set Algorithm (kOSSA) and mixed search scheme of kOSSA [86],

Bandyopadhyay and Mukherjee’s α-DEMO and α-DEMO-revised [10]. All these meth-

ods (except δ-MOSS and k-EMOSS [17]) use correlation among objectives to determine

conflicting objectives. The major drawbacks of these approaches are as follows:

• In Brockhoff and Zitler’s approach (δ-MOSS and k-EMOSS [17]), a greedy approach

is followed where the minimal alteration in induced Pareto-dominance relation is

searched by removing one objective in every turn. The high time complexity of

these algorithms limits their practical usages [17,87].

• Online objective reduction [86], which performs objective reduction during the search,

can help in speeding up the process. However, removing one objective at a time (like

in the mixed search scheme of kOSSA [86]) can still be slow. Hence, the provision for

removal of multiple objectives at a time is adopted in recent years, like in α-DEMO

and α-DEMO-revised [10] and in the approach of [141].

• For k-EMOSS [17], kOSSA [86] and α-DEMO [10], allowing user to choose m can be

disadvantageous [141]. Firstly, the optimal m, which results in the same PF as with

M , cannot be pre-determined. Secondly, for desirable performance, the algorithms

are repeatedly evaluated by varying m. This approach is not user-friendly.

Considering all these disadvantages, an objective reduction approach has been devel-

oped in [142], which is fast (online and has provision for elimination of multiple objectives

at a time) and automatically finds m.

2.2. MOTIVATION FOR THE WORK
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2.2.2 Novel Characteristics of DECOR

The algorithm (DECOR) [142] is an extension of the work reported in [141]. Experimental

results demonstrate the superior convergence performance of DECOR [142], while in terms

of diversity, its performance is equivalent to that of other MaOO algorithms.

On the one hand, DECOR [142] has the following two key features which are similar

to some existing algorithms:

• It uses Differential Evolution as the underlying optimizer similar to the approaches

in [10,141].

• It uses a similar principle of correlation-based clustering for online objective reduc-

tion as done in [86, 141]. Hence, the algorithm is called Differential Evolution using

Clustering based Objective Reduction (DECOR) [142].

On the other hand, DECOR [142] differs from the approach in [141], from which it has

been extended, in the following aspects:

• DECOR presents both the versions of objective reduction (automatic determination

of m and user-specified m).

• DECOR avoids premature termination of objective reduction due to appearance of a

singleton cluster, by determining whether it is relatively close to the nearest cluster.

• DECOR uses an Improved DEMO (IDEMO) with a novel elitist selection strategy

to avoid early saturation of the population by non-dominated solutions.

• DECOR uses IDEMO with a novel ranking scheme which combines the distance

of a solution from the ideal point with the crowding distance to account for both

convergence and diversity during online objective reduction.

Thus, the contributions are two-fold. Firstly, a new MaOO technique (IDEMO) is

introduced with an enhanced ranking strategy which utilizes a regulated elitist approach

and a new selection operator based on the crowding distance and the distance from the

ideal point. Secondly, a new objective reduction technique is presented, which is further

integrated with IDEMO to yield the MaOO algorithm called DECOR. Such an optimiza-

tion algorithm, having all the above-mentioned features, has not been developed before

DECOR. Thus, these features highlight the novelty of DECOR [142].

2.2. MOTIVATION FOR THE WORK
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2.3 Underlying Optimization Algorithm - IDEMO

A new ranking strategy and a new elitist operation are introduced in the classic Differential

Evolution based Multi-objective Optimization (DEMO) to develop the Improved DEMO

(or IDEMO) such that its selection process is more pertinent for solving MaOO problems.

This section briefly describes the different steps of IDEMO.

2.3.1 Differential Evolution for Multi-objective Optimization (DEMO)

DEMO [153] is an extension of the single-objective version of Differential Evolution (DE)

[164, 168]. DEMO has four steps: Initialization, Mutation, Recombination and Selection,

which are described in the following paragraphs.

Initialization

The initial population (AparentG=0 ) is a randomly initialized matrix of order npop×N , where

there are npop number of N -dimensional decision vectors. Using the lower and upper

bounds of the jth decision variable (xLj and xUj ) which define the search space (D), the ith

decision vector (Xi,0 ∈ AparentG=0 ) is initialized as follows:

Xi,0 = [xi1,0, xi2,0, · · · , xiN,0] , where xij,0 = xLj + rand(0, 1)×
(
xUj − xLj

)
for i = 1, · · · , npop and j = 1, · · · , N.

(2.1)

Random Mutation with One Difference Vector

For the i-th candidate (Xi,G) at generation G, three distinct indices r1, r2 and r3 of

decision vectors are randomly chosen and the mutant vector Xmut
i,G is obtained as follows:

Xmut
i,G = Xr1,G + FDE × (Xr2,G −Xr3,G) , for i = 1, · · · , npop

where FDE ∈ [0, 2] is the scale factor.

(2.2)

Binomial Crossover

The trial vector for the next generation (Xtrial
i,G+1) is formed by combining variables from

Xmut
i,G with a probability higher than the crossover rate (CR) and from Xi,G with a prob-

ability lower than CR. Also, for forming Xtrial
i,G+1 a decision variable corresponding to a

random index (Irand) is always chosen from Xmut
i,G so that Xtrial

i,G+1 is different from Xi,G.

2.3. UNDERLYING OPTIMIZATION ALGORITHM - IDEMO
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Thus, the binomial crossover [42] for the jth decision variable is given as follows:

xtrialij,G+1 =


xmutij,G, if rand(0, 1) ≤ CR or j = Irand

xij,G, if rand(0, 1) > CR and j 6= Irand

where i = 1, · · · , npop and j = 1, · · · , N.

(2.3)

Selection

The population for the next generation is obtained as AparentG+1 = ∪npopi=1 Xi,G+1 where Xi,G+1

is chosen from Xi,G and Xtrial
i,G+1 using Pareto-dominance relation (Eq. (1.3)) as follows:

Xi,G+1 =


Xi,G, if Xi,G ≺ Xtrial

i,G+1

Xtrial
i,G+1, otherwise

for i = 1, · · · , npop. (2.4)

2.3.2 Improved Elitist Strategy at the Selection Stage

In the elitist framework, at the selection stage, the trial solutions (Xtrial
i,G+1) form the set of

new candidates (AtrialG+1) which are combined with the parent population to form population

pool for next generation (AallG+1 = AparentG ∪ AtrialG+1). Selection of candidates from this

population pool (AallG+1) helps in retaining the good solutions over generations.

Conventional Elitist Strategy

The size of the population pool (AallG+1) will exceed npop. For generating a population

(AparentG+1 ) of size npop, the population pool (AallG+1) has to be trimmed by selecting the

candidates which will go to AparentG+1 . For this elitist selection, non-dominated sorting

[10, 47, 141] is the first step where the population pool AallG+1 is partitioned into several

ranks ({R1,R2, · · · ,Rl, · · · }) such that the following properties are satisfied:

• Solutions within each of the lth rank (i.e., (Xi,Xj) ∈ Rl × Rl) are non-dominated

with respect to each other.

• Each solution in Rl is dominated by at least one solution in Rl′ where l′ < l.

• Each solution in Rl dominates at least one of the remaining solutions from Aalli,G+1−

{R1 ∪R2 ∪ · · · ∪ Rl}.

The concept of non-dominated sorting is demonstrated in Fig. 2.1a where the popula-

2.3. UNDERLYING OPTIMIZATION ALGORITHM - IDEMO
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tion pool AallG+1 has three ranks of solutions (R1, R2 and R3).

(a)

R1

R2

R3

1

npop

parent

 GA

trial

G+1A

all

G+1A parent

G+1A

Selected Rejected

(1) (2)

1. Non-dominated Sorting

2. Crowding Distance based 

Ranking (Conventional Way)

(b)

Figure 2.1: (a) Ranks of solutions, crowding distance on R1 solutions (along f1) and
distance from ideal point [142], (b) conventional elitist framework [142].

The conventional next step is to fill the final population by starting from rank-one

(R1) candidates, allowing the lower-ranked candidates to fill the population until the

population size reaches npop. The candidates of the last essential rank (which might not

be fully accommodated) are sorted by crowding distance (Dcrowd) [10, 47] and the lesser

crowded candidates are allowed to enter the population until the population size reaches

npop. This method is shown in Fig. 2.1b and it performs satisfactorily for MOO problems.

Problem with the Existing Approach

In several studies [10,69], it is shown that the population pool (AallG+1) gets saturated with

non-dominated solutions (R1) towards the early generations of MOEAs for problems with

10 or higher objectives. Thus, conventional trimming of the population pool leads to a

higher amount of non-dominated solutions. However, as classical DE operators cannot

avoid local optima [42, 164], retaining dominated (non-optimal) candidates can help to

steer the search in other directions.

Alteration to Conventional Elitist Strategy

For avoiding such a sub-optimal scenario, the second step of the elitist strategy is modified.

A novel ranking strategy (described in Section 2.3.3) is used to rearrange the solutions

within each rank. Following this, a mixture of mostly rank-one solutions (R1) and a few

solutions from remaining ranks (Rrest) are used to create AparentG+1 whose size is npop. This

2.3. UNDERLYING OPTIMIZATION ALGORITHM - IDEMO
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step is performed after the non-dominated sorting of AallG+1 and is outlined in Fig. 2.2a.

The proportion of R1 and Rrest solutions are regulated by β (in the range [0, 100]) which

should usually be high to prefer the non-dominated solutions. For DECOR [142], β is

chosen as 75. This elitist selection strategy overcomes the saturation problem and hence,

is applicable for MaOO problems with higher objectives.

Selected Rejected

(i) b % of npop from 

R1 and (100 - b) % 

of npop from Rrest

(ii) Rrest and 

(npop - |Rrest|) from R1

(iii) R1 and 

(npop - |R1|) from Rrest
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|R1| + |Rrest|   npop

Yes

YesYes

No

No No

|R1|   b % 
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|Rrest|   (100-b) % 
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|Rrest|   (100-b) % 
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R1
R1
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1
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Population
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Population

(ii)
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R1
R1

1
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(a)

xi1 ... xiNXi = xi(N+1)

Solution vector of the 

optimization problem 

(randomly initialized 

between XU and XL)

Adaptive weight for 

Ranking Phase 

(randomly initialized 

between 0 and 1)

(b)

Figure 2.2: (a) Selection step of IDEMO [142] to create a population of size npop, (b)
candidate representation for IDEMO [142].

2.3.3 Improved Ranking Strategy at the Selection Stage

For single-objective optimization, the candidates can be rearranged in ascending/descending

order of fitness values for minimization/maximization problem. Ranking of solutions is

not that simple for MaOO as Pareto-dominance (Eq. (1.3)) is not a total order relation.

Conventional Ranking Strategy

Primary sorting using non-dominated ranking and secondary sorting using crowding-

distance is the conventional ranking strategy, as demonstrated in Fig. 2.1b. For the

ith candidate within the last essential rank l of solutions (∀Xi ∈ Rl), crowding distance

(Di
crowd) is evaluated along the jth objective (fj) as follows:

1. The candidates having maximum (fmaxj ) and minimum (fminj ) objective values are

assigned a crowding distance of 1000.
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2. For the remaining candidates, the crowding distance is proportional to the perimeter

of the hyper-rectangle formed by the normalized objectives of the candidates that

precede and succeed the corresponding candidate (Xi) in terms of fj .

Finally, the distances are summed across all the objectives (of full or reduced set) to

give the crowding distance corresponding to a candidate (Di
crowd) as follows:

Di
crowd = Dcrowd(Xi) =

a∑
j=1

(Dcrowd(Xi|fj)) , where a = M or a = m, and

Dcrowd(Xi|fj) =


1000, if fj(Xi) = fmaxj or fj(Xi) = fminj∣∣∣∣fj(Xi−1)−fj(Xi+1)

fmaxj −fminj

∣∣∣∣ , otherwise.

(2.5)

In Eq. (2.5), Xi−1, Xi and Xi+1 are assumed to be consecutive when Rl is sorted with

respect to the jth objective, fj(.). Thus, within a frontier (solutions of a particular rank),

a higher perimeter means the neighbors of a candidate are far away and hence, lesser is

the crowding of the candidate and its surrounding areas (implying better diversity of the

frontier). This concept of crowding distance is illustrated in Fig. 2.1a.

Problem with Existing Approach

This approach heavily weighs the boundary solutions of each objective. Hence, with an in-

creased number of objectives, the population ends up having a higher number of candidates

representing only the bordering points of the estimated PF. While these candidates are

essential for estimating PF, a non-uniform solution distribution will hamper the diversity

if the majority of the population consists of these bordering solutions.

Alteration to Conventional Ranking Strategy

For retaining the solutions towards the center of the estimated PF, after the non-dominated

sorting, the candidates can be ranked in ascending order in terms of the distance (Di
ideal)

between the objective vector (F(Xi)) and the ideal point (Eq. (1.8)). The concept of

Dideal is illustrated in Fig. 2.1a and is mathematically given as follows:

Di
ideal = Dideal(Xi) =

√√√√ a∑
j=1

(
fj(Xi)− f idej

)2
, where a = m or a = M. (2.6)
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For the test-suite (DTLZ) under consideration, Fide is the origin of the objective space.

The idea to rank the population AallG+1 according to Dideal is that given a frontier, shorter

distance to ideal point implies better convergence of the candidate in objective space.

This ranking strategy considers equal preference among all the objectives. If the pref-

erence varies, weighted Euclidean distance or some other distance metric could be used

which is suitable to the application under consideration. However, the problem with this

method is that it ignores the information about the diversity of the approximated PF.

As a trade-off between the two ranking strategies (ranking based on Dcrowd and ranking

based on Dideal), the weighted combination (Di
comb) of the crowding distance (Di

crowd) and

distance from ideal point (Di
ideal) is considered as follows:

Di
comb = wi × 1

Di
crowd

+ (1− wi)×Di
ideal where wi = xi(N+1). (2.7)

In Eq. (2.7), the weight (wi) is adaptively selected between 0 and 1 by optimizing

it as the last element of the candidate vector, i.e., xi(N+1). Hence, the dimension of the

candidate vector increases from N to (N + 1), as explained in Fig. 2.2b. It should be

mentioned that a (N+1)-dimensional candidate (including the last element) goes through

all the stages of IDEMO, except during the selection stage, the N -dimensional sub-vector

is considered for computing the objectives of the test problem.

Having described IDEMO, the next section presents the objective reduction approach

and its integration with IDEMO to form the MaOO algorithm of DECOR.

2.4 Objective Reduction based Optimization - DECOR

This section presents DECOR, which uses correlation-based online objective reduction

and IDEMO (described in Section 2.3).

2.4.1 Correlation Distance

Linear correlation coefficient has been used to measure the degree of conflict among the

objectives in several existing objective reduction algorithms [10,86,141]. In DECOR [142],

correlation distance (DC(.) ∈ [0, 2]) [87] is used which is defined between two vectors,

2.4. OBJECTIVE REDUCTION BASED OPTIMIZATION - DECOR
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Y = [y1, · · · , yn] and Z = [z1, · · · , zn], as follows:

DC(Y,Z) = 1−
∑n

i=1(yi − ȳ)(zi − z̄)√∑n
i=1(yi − ȳ)2

√∑n
i=1(zi − z̄)2

. (2.8)

2.4.2 Objective Reduction Principle

For implementing objective reduction, the conflicting objectives are to be identified. From

the current population, the rank-one (R1) solutions represent the estimated PF. Distances

(DC(.)) between all the objective pairs are noted, where the ith objective (fi(.)) is esti-

mated as shown in Fig. 2.3a using the candidates from R1 solutions as follows:

fi(.) =
[
fi(X1), · · · , fi(X|R1|)

]
, where i = 1, · · · , a. (2.9)

As more number of solutions contribute to form the R1 solutions, better is the estimate

of the objectives (f1 to fa, with a = M for full objective set and a = m for reduced

objective set). Closer the objectives in terms of DC(.) (Eq. (2.8)), more is the correlation

between these objectives and hence, these are less conflicting than other objective pairs.

The central idea for objective reduction is to cluster the estimated objectives and

eliminate all the neighbors of the cluster center from the most compact cluster while

retaining its center. This approach allows the elimination of multiple objectives at a time.

Thus, less conflicting objectives can be eliminated to yield the Non-Conflicting Objective

Set (defined in Section 1.2.5). An example is shown in Fig. 2.3b.

2.4.3 Specifications of Clustering

For clustering, k-medoids is used which selects a constituent (real) objective vector of

a cluster as the cluster center. It is implemented using Partitioning Around Medoid

(PAM) [100] with correlation distance representing the similarity among data points for

clustering. This clustering step is characterized by the following specifications:

• Clustering partitions a (= M or m) objectives {f1, f2, · · · , fa} in to k clusters {C1,

C2, · · · , Ck}

• ∃j such that fi ∈ Cj , and @(j1, j2) such that fi ∈ Cj1 and fi ∈ Cj2 , where i = 1, 2,

· · · , a (hard clustering, non-overlapping clusters)

•
∑k

j=1 |Cj | = a and 1 ≤ |Cj | ≤ (a− k − 1), where j = 1, 2, · · · , k

2.4. OBJECTIVE REDUCTION BASED OPTIMIZATION - DECOR



38 OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY
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Figure 2.3: (a) Construction of the data-points (representatives of each of the objectives
encircled in red) for clustering [142], (b) objective reduction principle to illustrate elimina-
tion of non-medoids from the most-compact cluster where filled circles are cluster medoids
and empty circles are non-medoids [142].

• ∀fi ∈ Cj , either it is the medoid (fi = Cmedj ) or it belongs to the non-medoid set

(fi ∈ Cnmedj )

2.4.4 Concept of Most Compact Cluster

The next step after clustering is to choose the most compact cluster (Ccom). For each

cluster Cj , the sum of medoid to non-medoid correlation distance is calculated. Then,

Ccom is the cluster having the minimum value of this sum over the current estimate of PF.

Using Eq. (2.8) for DC(.), the most compact cluster (Ccom) is given as follows:

Ccom =
k

arg min
j=1

|Cnmedj |∑
i=1

DC(Cmedj , fi) where fi ∈ Cnmedj . (2.10)
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2.4.5 Problems with Singleton Clusters

A special case needs to be considered during the determination of Ccom by Eq. (2.10). This

special case arises when clustering results in one or more singleton clusters (i.e., |Cj | = 1)

which trivially are the most compact clusters. As there is no neighbor in a singleton

cluster, no objective reduction occurs. If such a singleton cluster keeps on appearing in

successive stages, the objective reduction gets stuck.

A possible way to avoid this problem of singleton cluster is to consider the most

compact non-singleton cluster for objective reduction. However, a scenario may arise when

M objectives are clustered into k clusters such that there are (k − 1) singleton clusters

and one non-singleton cluster with (M − k− 1) objectives. Objective reduction from such

a non-singleton cluster will yield k objectives in the reduced set. As incrementing k will

not be possible any further, the objective reduction procedure will terminate prematurely.

An illustration to demonstrate both these extreme scenarios arising in the presence of

singleton clusters is given in Fig. 2.4. Hence, a trade-off approach has to be adopted to

compromise between these two extreme cases in the objective reduction stage.

(i) (ii)

k-medoids with k= 3 reduced objective setreduced objective set

kcannot be increasedno objectives reduced

most compact 

singleton 

clusters

most compact

non-singleton clusters

Figure 2.4: Issues in objective reduction due to the presence of singleton clusters [142]: (i)
scenario when a singleton cluster is considered as the most compact cluster, (ii) scenario
when a non-singleton cluster is considered as the most compact cluster but there are (k−1)
singleton clusters and only one non-singleton cluster.

2.4.6 A Solution to Handle Singleton Clusters

There can be two possible scenarios, while singleton clusters are encountered. These

scenarios and the strategies to tackle these scenarios are as follows:

1. Case-1: When the singleton cluster is relatively far away from its nearest cluster, it

forms a crucial objective and is conflicting with other clusters of objectives. Hence, it

is directly added to the reduced set of objectives, and the next most compact cluster

is analyzed, immediately. Thus, objective reduction continues without getting stuck.
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2. Case-2: When the singleton cluster is comparatively closer to its nearest cluster,

there can be a possibility that the singleton cluster is resultant because of the current

value of k (number of clusters) and/or the present estimate of PF. In such a scenario,

the singleton cluster itself is considered as the most compact cluster so that no

objective reduction occurs and k is increased in successive turns for finer clustering.

In order to differentiate whether the singleton cluster (Cj) is relatively far away or

closer to its nearest cluster, an indicator (Dj
ratio) is defined as follows:

Dj
ratio =

Dj
near

Dneigh
, where (2.11)

Dj
near =

k
min

j′=1,j′ 6=j
DC(Cmedj , Cmedj′ ), with Cmedj as a singleton cluster, and (2.12)

Dneigh =
k

max
j=1

DC(Cmedj , fi), where fi ∈ Cnmedj . (2.13)

In Eq. (2.11), Dj
near is the correlation distance between the singleton cluster (Cj)

and its nearest cluster’s medoid, and Dneigh is the maximum of intra-cluster medoid to

non-medoid correlation distance over all the clusters at the present state.

If Dj
ratio is at least greater than some threshold (th), implying that the singleton cluster

(Cj) is relatively far away from its nearest cluster, it is considered as a conflicting objective

and is directly added to the reduced objective set (by Case-1). On the other hand, if Dj
ratio

is less than the threshold (th) implying the singleton cluster (Cj) is comparatively closer

to its nearest cluster, no objective reduction occurs in the present state (by Case-2). For

DECOR [142], the value of this threshold (th) is chosen by trial and error.

2.4.7 Selecting the Number of Clusters

Next issue with this clustering approach of objective reduction is choosing the number of

clusters (i.e., the value of k). In DECOR [142], the objective reduction procedure starts

with a small value of k, and after Gop generations of the optimization algorithm, the

value of k is increased by 1 at a time. This increment happens periodically until k equals

the number of objectives because clustering is not possible with k higher than this value.

Through this step, most of the clusters are explored eventually, even if these were not

declared as the most compact cluster in earlier stages.
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Reasons for Online Objective Reduction

As R1 is an estimate of the PF, the true correlation between the objectives or the exact

groups of conflicting objectives cannot be determined at an early stage. Due to this

evolving nature of the correlation structure, the online version of objective reduction is

adopted, where the optimization alternates between global exploration (with full objective

set) and local exploitation (with reduced objective set). The switching parameter (Gsw)

regulates the number of generations after which the global and the local search toggles.

Two Different Versions of DECOR

Automatic-DECOR (aDECOR): The flowchart describing the framework (automatic DE-

COR or aDECOR) obtained by integrating the objective reduction and the optimization

algorithm is shown in Fig. 2.5a and Algorithm 2.1, which in turn calls the objective

reduction procedure as described in Algorithm 2.2. It is called automatic because the

number of objectives of the reduced set is automatically determined by the algorithm and

does not involve any input from the user.

Using aDECOR is problematic when for sufficiently large M (number of objectives)

and very small k (number of clusters), there is a very high number of objectives in each

of the clusters. In such a situation, objective reduction from the most compact cluster

leads to the elimination of a high number of objectives. For example, when k = 2 and

M/k objectives are there in each cluster, nearly half of the objectives are eliminated. Such

removal is undesirable as the estimation of the conflicting objectives is poor at early stages.

Fixed-DECOR (fDECOR): For avoiding the problem of aDECOR, the fixed version of

DECOR (fixed DECOR or fDECOR) is developed. It is called fixed because the size of

the reduced objective set is lower-bounded by a fixed user-specified value of k. Clustering

yields k clusters and in an extreme case like in (ii) of Fig. 2.3b, the reduced objective set

has at least k objectives. So, for MaOO problems with very high M , specifying a high k

will not lead to a drastic reduction in the number of objectives. It should be noted that

although k is not incremented periodically in fDECOR, the objective reduction module

is executed periodically to ensure that the correlation structure is evolved along with the

evolution of the objective vectors.

The flowchart describing fDECOR is shown in Fig. 2.5b and Algorithm 2.3, which in

turn also calls the objective reduction procedure as described in Algorithm 2.2.
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Figure 2.5: Flowchart describing the framework of DECOR [142]: (a) automatic-DECOR
(or aDECOR), (b) fixed-DECOR (or fDECOR).

Computational Complexity of the Objective Reduction Module

The time complexity of Algorithm 2.2 (objective reduction) is obtained by considering

that line 2 requires O(k.(a − k)2.|R1|2.GPAM ) [100] operations, lines 3 and 14 requires

O((a − k).|R1|) operations, lines 4 to 13 require O(a + k2.|R1|) operations and line 15

requires O(a) operations. It is equivalent to O(k.(a−k)2.|R1|2.GPAM ) where a is the size

of F′a, k is the number of cluster, |R1| is the dimension of each objective representative

(Eq. 2.9) for clustering and GPAM is the number of iterations needed by k-medoid.

The designed framework of DECOR is applied on several benchmark problems and the

associated results are analyzed in the subsequent sections.

2.4. OBJECTIVE REDUCTION BASED OPTIMIZATION - DECOR



OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY 43

Algorithm 2.1 Complete Framework of aDECOR [142]

Input: F: Objective functions for M -objective MaOO problem
Output: AparentG : Estimated PS; AparentF,G : Estimated PF
1: Initialize: k = 2; a = M ; G = 0; flag = 1;
2: while G < Gmax (GLOBAL SEARCH) do
3: Execute IDEMO on full objective set (of size M) for Gop generations, set flag = 0

when population has no new candidate, and evolve AparentG
4: G = G+Gop
5: if flag=0 (if no new candidates are found) then
6: Break;
7: end if
8: if a < M then
9: ∀fi, SDCi =

∑M
j=1,j 6=iDC(fi, fj) (Eq. (2.8))

10: Sort all fi based on SDCi in descending order
11: Form F′a with top a conflicting objectives
12: end if
13: while (G)mod(Gsw) 6= 0 (LOCAL SEARCH) do
14: F′m = ObjRed(AparentF,G ,F′a, k) (Algorithm 2.2)
15: Execute IDEMO on reduced objective set (of size m) for Gop generations, set

flag = 0 when population has no new candidate, and evolve AparentG
16: G = G+Gop
17: if flag=0 (if no new candidates are found) then
18: Break;
19: end if
20: if k < m then
21: k = k + 1;
22: end if
23: a = m;
24: end while(END OF LOCAL SEARCH)
25: if flag=0 (if no new candidates are found) then
26: Break;
27: end if
28: end while(END OF GLOBAL SEARCH)

2.5 Results

The performance of aDECOR and fDECOR are presented and analyzed in this section.

The algorithms are executed on a computer having 4GB RAM and Intel Core i3 processor

@2.30GHz, using the 32-bit version of MATLAB R2012b.

The performance of DECOR is compared with NSGA-II [47], MOEA/D [150], HypE

[9], DEMO [153], α-DEMO-revised [10] and the optimization approach of [141]. The

reasons for selecting these algorithms for comparison are as follows:

• Performance of some notable MOEAs are considered: NSGA-II [47] (pioneering

work for crowding distance-based ranking), HypE [9] (indicator-based ranking) and

MOEA/D [150] (decomposition of objective space into sub-spaces).
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Algorithm 2.2 Procedure for Objective Reduction to assist DECOR [142]

Input: AparentF,G : Objective vectors of population candidates; F′a: objective set of size a;
k: number of clusters

Output: F′m Objective set of size m where m ≤ a
1: procedure ObjRed(AparentF,G , F′a, k)

2: Execute k-medoids on AparentF′a,G
using DC(.) (Eq. (2.8))

3: Find Dneigh (Eq. (2.13))
4: for i = 1 to k (for all clusters) do
5: Initialize Flagi = 0
6: Obtain |Ci|
7: if |Ci| = 1 (if Ci is a singleton cluster) then
8: Find Di

near (Eq. (2.12)) and Di
ratio (Eq. (2.11))

9: if Di
ratio ≥ th then

10: Set Flagi = 1 (to ignore Ci in Step 14)
11: end if
12: end if
13: end for
14: Find Ccom using Eq. (2.10) (ignore Ci if Flagi = 1)
15: Construct F′m = F′a − {fj |fj ∈ Cnmedcom }
16: return F′m
17: end procedure

• As DECOR uses IDEMO (an improved version of DEMO), the performance of classic

DEMO [153] is considered.

• As DECOR is an extension of the work from [141], the results of [141] are considered.

• Finally, α-DEMO-revised [10] is considered as it is a contemporary objective reduc-

tion based MaOO algorithm.

In this experiment, DECOR is tested on DTLZ1, DTLZ2, DTLZ3 and DTLZ4 prob-

lems [50] for 10 and 20 objectives. The mean and standard deviation of the performance

values (convergence metric [10,134,141] and hypervolume indicator [10,134,141]) are con-

sidered as reported in [10,141] for NSGA-II, MOEA/D, HypE, DEMO, α-DEMO-revised

and for the approach of [141]. DECOR is implemented using the source code available at

http://decor.droppages.com/.

2.5.1 Parameter Specifications

For executing DECOR and recording the performance metrics, several parameters have

to be set. DECOR [142] is executed with various parameter settings and best results are

obtained for the parameters which are specified in Table 2.1.
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Algorithm 2.3 Complete Framework of fDECOR [142]

Input: F(.) Objective functions for M -objective MaOO problem; k: Number of clusters
(lower bound of m)

Output: AparentG : Estimated PS; AparentF,G : Estimated PF
1: Initialize: a = M ; G = 0; flag = 1;
2: User-Input: k;
3: while G < Gmax (GLOBAL SEARCH) do
4: Execute IDEMO on full objective set (of size M) for Gop generations, set flag = 0

when population has no new candidate, and evolve AparentG
5: G = G+Gop
6: if flag=0 (if no new candidates are found) then
7: Break;
8: end if
9: if a < M then

10: ∀fi, SDCi =
∑M

j=1,j 6=iDC(fi, fj) (Eq. (2.8))

11: Sort all fi based on SDCi in descending order
12: Form F′a with top a conflicting objectives
13: end if
14: while (G)mod(Gsw) 6= 0 (LOCAL SEARCH) do
15: F′m = ObjRed(AparentF,G ,F′a, k);
16: Execute IDEMO on reduced objective set (of size m) for Gop generations, set

flag = 0 when population has no new candidate, and evolve AparentG
17: G = G+Gop
18: if flag=0 (if no new candidates are found) then
19: Break;
20: end if
21: a = m;
22: end while(END OF LOCAL SEARCH)
23: if flag=0 (if no new candidates are found) then
24: Break;
25: end if
26: end while(END OF GLOBAL SEARCH)

Table 2.1: Recommended values of different parameters used for DECOR [142].

Parameters Explanation Values

npop Population size 100

Gmax Maximum generations 2000

CR Crossover Rate 0.8

Gop Number of generations for which IDEMO runs at a time 20

Gsw Number of generations after which the algorithm switches 100
from reduced to full objective dimension

β Percentage of R1 solutions 75

th Threshold on Dratio for considering singleton clusters Chosen from
during objective reduction {1.2, 1.5, 2.0}

|HCM | Size of sampled set for Convergence Metric 5000

|HHV | Size of sampled set for Hypervolume Indicator 10000

RHV Reference point (objective vector) for hypervolume {3, M· · ·, 3}

Increasing npop while keeping Gmax fixed, does not improve performance as compara-

tively more random initialization of candidates occurs rather than mutation and recombi-
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nation, which implies a proportionately lesser number of good solutions being propagated.

Again, keeping npop fixed and increasing Gmax, does not improve the results any further.

The parameter CR is kept high in order to generate a solution far from the parent can-

didate. However, with CR > 0.8, the trial vector is mostly independent of the parent

candidate, which leads to poor performance. The parameter Gop is the minimum num-

ber of generations over which some significant change in performance (change in total

Dideal > 10−2) is observed. Incrementing Gsw leads to more local search and thus, poor

performance at the global level whereas decreasing Gsw slows down objective reduction.

When β > 75, more sub-optimal non-dominated solutions are passed on to next genera-

tions, whereas when β < 75, more number of potential R1 solutions are not propagated,

resulting in poor performance. For setting the reference point (RHV ), |HHV | and |HCM |

for performance metrics, the work in [10] is consulted.

2.5.2 Performance of aDECOR

DECOR [142] involves a thresholding on Dratio for deciding how to process a singleton

cluster in objective reduction procedure. As Dnear is always greater than Dneigh, Dratio is

greater than 1. But a Dratio higher than 2 implies the singleton cluster is very far away

from the nearest cluster to be considered as an essential cluster. Hence, the threshold (th)

on Dratio is chosen in the range of (1, 2]. For sensitivity study, DECOR samples th from

{1.2, 1.5, 2.0} and reports those values in the th column in Tables1 2.2, 2.3, 2.4 and 2.5

which provide the best performance for aDECOR and fDECOR.

The performance of aDECOR is mentioned in Tables 2.2 and 2.3, in terms of conver-

gence metric and hypervolume indicator, respectively. For evaluating convergence metric,

a sampled version of the true PF is obtained by consulting [35]. NSGA-II, MOEA/D,

HypE and DEMO are not objective reduction based optimization algorithms. Hence, the

results are obtained using the full objective set for these four algorithms, i.e., M = m =10

(or 20). For each problem, the value of m automatically determined by aDECOR is used

as an input for α-DEMO-revised [10] and is mentioned in Tables 2.2 and 2.3 in the format

DTLZtype(M → m), where type indicates the type of the DTLZ problem. It should be

noted that the approach of [141] and aDECOR cannot be compared directly as both of

these automatically determine m, and thus, the final m values are often different.

1In this thesis, across all the tables reporting experimental results, the best and second-best performing
values are highlighted in dark and light shades of gray, respectively.
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Table 2.2: Mean and standard deviation of convergence metric over 50 independent runs
for comparing MOEAs with aDECOR [142].

Problem th NSGA-II MOEA/D HypE DEMO α-DEMO- aDECOR
type revised

DTLZ1(10→6) 1.2 225.4502 2.4800 146.3039 142.2519 1.0291 0.3993
± 5.9816 ± 1.0351 ± 2.2147 ± 3.1073 ± 0.0061 ± 0.0042

DTLZ1(20→10) 1.5 176.2357 3.2397 305.1945 143.5408 1.2356 0.3307
± 3.6600 ± 1.1651 ± 9.7488 ± 2.7434 ± 0.0210 ± 0.0310

DTLZ2(10→6) 1.5 1.4716 0.7419 1.3979 1.3891 1.3858 0.4088
± 0.0317 ± 0.0101 ± 0.0156 ± 0.0161 ± 0.0907 ± 0.0111

DTLZ2(20→10) 1.5 1.9273 1.3116 1.9240 1.9009 1.1112 0.4696
± 0.0224 ± 0.0050 ± 0.0144 ± 0.0092 ± 0.0172 ± 0.0177

DTLZ3(10→6) 1.2 1048.0740 24.8627 409.5137 939.7426 1.0011 0.5256
± 39.3631 ± 4.5587 ± 3.9870 ± 9.8824 ± 0.0245 ± 0.0153

DTLZ3(20→10) 1.5 978.3490 37.8409 911.8077 1024.4046 94.6363 0.4925
± 44.9975 ± 7.2125 ± 5.5582 ± 12.5577 ± 1.5260 ± 0.0293

DTLZ4(10→6) 1.5 1.1784 0.7461 0.8914 1.2663 1.5048 0.4768
± 0.0264 ± 0.0102 ± 0.0106 ± 0.0347 ± 0.0306 ± 0.0092

DTLZ4(20→11) 1.5 1.4337 1.0818 0.9572 1.6816 1.4034 0.4768
± 0.0309 ± 0.0070 ± 0.0077 ± 0.0370 ± 0.0197 ± 0.0307

Table 2.3: Mean and standard deviation of hypervolume indicator over 50 independent
runs for comparing MOEAs with aDECOR [142].

Problem th NSGA-II MOEA/D HypE DEMO α-DEMO- aDECOR
type revised

DTLZ1(10→6) 1.2 0.0044 0.8132 0.0000 0.0000 0.1385 0.9915
± 0.0061 ± 0.0984 ± 0.0000 ± 0.0000 ± 0.0092 ± 0.0098

DTLZ1(20→10) 1.5 0.0000 0.7233 0.0000 0.0000 0.9779 0.9994
± 0.0000 ± 0.1172 ± 0.0000 ± 0.0000 ± 0.0176 ± 0.0206

DTLZ2(10→6) 1.5 0.8399 1.0000 0.9514 0.8863 0.9103 0.8765
± 0.0079 ± 0.0000 ± 0.0034 ± 0.0059 ± 0.0675 ± 0.0018

DTLZ2(20→10) 1.5 0.8280 1.0000 0.9372 0.8487 0.9213 0.8016
± 0.0070 ± 0.0000 ± 0.0019 ± 0.0059 ± 0.0150 ± 0.0050

DTLZ3(10→6) 1.2 0.0000 0.0235 0.0000 0.0000 0.2967 0.9879
± 0.0000 ± 0.0388 ± 0.0000 ± 0.0000 ± 0.0013 ± 0.0105

DTLZ3(20→10) 1.5 0.0000 0.0301 0.0000 0.0000 0.3213 0.9964
± 0.0000 ± 0.0391 ± 0.0000 ± 0.0000 ± 0.0055 ± 0.0098

DTLZ4(10→6) 1.5 0.9765 1.0000 0.8741 0.9956 0.1786 0.9488
± 0.0056 ± 0.0000 ± 0.0169 ± 0.0012 ± 0.0313 ± 0.0072

DTLZ4(20→11) 1.5 0.9914 1.0000 0.8963 0.9829 0.9018 0.9420
± 0.0030 ± 0.0000 ± 0.0103 ± 0.0111 ± 0.0761 ± 0.0155

2.5.3 Performance of fDECOR

The execution of fDECOR is also compared with NSGA-II, MOEA/D, HypE, and DEMO,

which are not objective reduction based MOEAs. Hence, these MOEAs are executed on

the full objective set, i.e., M = m = 10 (or 20). The performance of the objective reduction

based MaOO algorithms of [10,141] are also compared. For each problem, the value of m

automatically determined by the approach of [141] is used as an input to fDECOR [142] and

α-DEMO-revised [10]. These values are mentioned in Tables 2.4 (reporting convergence

metric) and 2.5 (reporting hypervolume indicator) in DTLZtype(M → m) format.
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Table 2.4: Mean and standard deviation of convergence metric over 50 independent runs
for comparing MOEAs with fDECOR [142].

Problem th NSGA-II MOEA/D HypE DEMO α-DEMO- Approach fDECOR
type revised of [141]

DTLZ1(10→7) 1.2 225.4502 2.4800 146.3039 142.2519 1.1718 0.3991 0.3421
± 5.9816 ± 1.0351 ± 2.2147 ± 3.1073 ± 0.0094 ± 0.0017 ± 0.0029

DTLZ1(20→14) 1.2 176.2357 3.2397 305.1945 143.5408 1.7954 1.0095 0.4391
± 3.6600 ± 1.1651 ± 9.7488 ± 2.7434 ± 0.0565 ± 0.0041 ± 0.0046

DTLZ2(10→6) 1.2 1.4716 0.7419 1.3979 1.3891 1.3858 0.5214 0.3843
± 0.0317 ± 0.0101 ± 0.0156 ± 0.0161 ± 0.0907 ± 0.0069 ± 0.0070

DTLZ2(20→12) 1.5 1.9273 1.3116 1.9240 1.9009 1.3915 1.1610 0.8412
± 0.0224 ± 0.0050 ± 0.0144 ± 0.0092 ± 0.0175 ± 0.0076 ± 0.0183

DTLZ3(10→6) 1.2 1048.0740 24.8627 409.5137 939.7426 1.0011 0.5877 0.5256
± 39.3631 ± 4.5587 ± 3.9870 ± 9.8824 ± 0.0245 ± 0.0014 ± 0.0153

DTLZ3(20→13) 1.2 978.3490 37.8409 911.8077 1024.4046 1.4153 0.8591 0.5211
± 44.9975 ± 7.2125 ± 5.5582 ± 12.5577 ± 0.0111 ± 0.0068 ± 0.0034

DTLZ4(10→7) 1.5 1.1784 0.7461 0.8914 1.2663 0.5218 0.4780 0.3815
± 0.0264 ± 0.0102 ± 0.0106 ± 0.0347 ± 0.0059 ± 0.0014 ± 0.0067

DTLZ4(20→11) 1.2 1.4337 1.0818 0.9572 1.6816 1.4034 0.4716 0.3111
± 0.0309 ± 0.0070 ± 0.0077 ± 0.0370 ± 0.0197 ± 0.0021 ± 0.0101

Table 2.5: Mean and standard deviation of hypervolume indicator over 50 independent
runs for comparing MOEAs with fDECOR [142].

Problem th NSGA-II MOEA/D HypE DEMO α-DEMO- Approach fDECOR
type revised of [141]

DTLZ1(10→7) 1.2 0.0044 0.8132 0.0000 0.0000 0.9281 0.9544 0.9182
± 0.0061 ± 0.0984 ± 0.0000 ± 0.0000 ± 0.0016 ± 0.0545 ± 0.0087

DTLZ1(20→14) 1.2 0.0000 0.7233 0.0000 0.0000 0.8743 0.9704 0.9791
± 0.0000 ± 0.1172 ± 0.0000 ± 0.0000 ± 0.0081 ± 0.0356 ± 0.0234

DTLZ2(10→6) 1.2 0.8399 1.0000 0.9514 0.8863 0.9103 0.6054 0.6314
± 0.0079 ± 0.0000 ± 0.0034 ± 0.0059 ± 0.0675 ± 0.0037 ± 0.0114

DTLZ2(20→12) 1.5 0.8280 1.0000 0.9372 0.8487 0.9117 0.6444 0.9127
± 0.0070 ± 0.0000 ± 0.0019 ± 0.0059 ± 0.0477 ± 0.0028 ± 0.0167

DTLZ3(10→6) 1.2 0.0000 0.0235 0.0000 0.0000 0.2967 0.9848 0.9525
± 0.0000 ± 0.0388 ± 0.0000 ± 0.0000 ± 0.0013 ± 0.0759 ± 0.0130

DTLZ3(20→13) 1.2 0.0000 0.0301 0.0000 0.0000 0.4830 0.9825 0.9870
± 0.0000 ± 0.0391 ± 0.0000 ± 0.0000 ± 0.0035 ± 0.0468 ± 0.0099

DTLZ4(10→7) 1.5 0.9765 1.0000 0.8741 0.9956 0.8632 0.8850 0.9095
± 0.0056 ± 0.0000 ± 0.0169 ± 0.0012 ± 0.054 ± 0.0273 ± 0.0301

DTLZ4(20→11) 1.2 0.9914 1.0000 0.8963 0.9829 0.9018 0.9608 0.9053
± 0.0030 ± 0.0000 ± 0.0103 ± 0.0111 ± 0.0761 ± 0.0383 ± 0.0083

2.5.4 Statistical Analysis

For statistical validation of the results, Friedman Test [52], McNemar’s Test [122] and

Holm-Bonferroni Test [71] are performed.

Friedman Test

Assumptions made for the Friedman test are as follows: the null hypothesis (H0) states

that all the algorithms are ranked equally while the alternate hypothesis (Ha) states that

the algorithms are ranked as mentioned in Table 2.6. Friedman statistic follows a χ2
F -

distribution with NDS number of datasets, kalgo number of comparative algorithms and
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(kalgo − 1) degrees of freedom as given below:

χ2
F =

12NDS

kalgo(kalgo + 1)

kalgo∑
j=1

R2
F,j −

kalgo(kalgo + 1)2

4

 . (2.14)

This test considers NDS = 4, kalgo = 6 (for aDECOR) or kalgo = 7 (for fDECOR). The

average rank of the jth algorithm (RF,j) based on its performance is specified in Table 2.6.

For aDECOR, convergence metric attains χ2
F > χ2

5,0.05 = 11.07 (critical value for

five degrees of freedom and 95% confidence interval) and thus, the test rejects H0. For

hypervolume indicator, χ2
F < χ2

5,0.05 = 11.07 and hence, it fails to reject H0. For fDECOR

also, convergence metric attains χ2
F > χ2

6,0.05 = 12.59, and thus, the test rejects H0. For

hypervolume indicator, χ2
F < χ2

6,0.05 = 12.59 and hence, it fails to reject H0.

McNemar’s Test

McNemar’s test is another non-parametric test following χ2
M -distribution which compares

algorithms on a one-against-one basis. Assuming nAB and nBA denote the number of

times algorithm A outperforms algorithm B and vice-versa, respectively, the McNemar’s

statistic is given as follows:

χ2
M =

(|nAB − nBA| − 1)2

(nAB + nBA)
. (2.15)

For each of the four problem types (DTLZ1 to DTLZ4) within each category (M = 10

or 20), each algorithm is executed 50 times and thus, the number of discordant pairs is

200 (= 50 × 4). The null hypothesis (H0,i) is assumed as the two competitor algorithms

(i.e., aDECOR/fDECOR and the ith algorithm listed in Table 2.6) have equal tendencies

to approximate PF. When χ2
M > χ2

1,0.05 = 3.84 (critical value for one degree of freedom

and 95% confidence interval), H0,i is rejected.

Holm-Bonferroni Test

For multiple comparisons, this post-hoc test controls the family-wise error rate by applying

Bonferroni corrections to the significance level of each individual hypotheses. The p-values

of different results are listed under the McNemar’s test in Table 2.6. Within each family,

the p-values are ranked from lowest to highest as given by RH,i in Table 2.6. This test

2.5. RESULTS
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rejects those hypotheses for which p-values are smaller than the adjusted significance level

(α′HB) for 95% confidence interval, given as follows:

α′HB =
0.05

(kalgo + 1−RH,i)
. (2.16)

2.6 Discussion

Based on the results presented in Section 2.5, an analysis of the performance of DECOR

is presented as follows:

Table 2.6: Parameters and results of Friedman Test (FT), McNemar’s Test (MNT) and
Holm-Bonferroni Test (HBT) to validate the performance of DECOR [142].

Algorithms 10 objectives 20 objectives
FTa MNTb HBTc FTa MNTb HBTc

(a) aDECOR vs. others (for observations in Table 2.2)

NSGA-II 5.50 200, 0, 198.005, < 10−5, R 1, 0.01, R 5.00 200, 0, 198.005, < 10−5, R 1, 0.01, R

MOEA/D 2.50 200, 0, 198.005, < 10−5, R 1, 0.01, R 2.75 200, 0, 198.005, < 10−5, R 1, 0.01, R

HypE 4.25 200, 0, 198.005, < 10−5, R 1, 0.01, R 4.25 200, 0, 198.005, < 10−5, R 1, 0.01, R

DEMO 4.50 200, 0, 198.005, < 10−5, R 1, 0.01, R 5.00 200, 0, 198.005, < 10−5, R 1, 0.01, R

α-DEMO- 3.25 200, 0, 198.005, < 10−5, R 1, 0.01, R 3.00 200, 0, 198.005, < 10−5, R 1, 0.01, R
revised

aDECOR 1.00 - - 1.00 - -

χ2
F , H0 (FT) 14.71, R - - 13.86, R - -

(b) aDECOR vs. others (for observations in Table 2.3)

NSGA-II 4.50 150, 50, 49.005, < 10−5, R 1, 0.01, R 3.75 100, 100, 0.005, 0.94363, A 2, 0.0125, A

MOEA/D 1.75 100, 100, 0.005, 0.94363, A 2, 0.0125, A 2.00 100, 100, 0.005, 0.94363, A 2, 0.0125, A

HypE 3.75 150, 50, 49.005, < 10−50, R 1, 0.01, R 4.00 150, 50, 49.005, < 10−50, R 1, 0.01, R

DEMO 3.50 100, 100, 0.005, 0.94363, A 2, 0.0125, A 3.75 100, 100, 0.005, 0.94363, A 2, 0.0125, A

α-DEMO- 3.50 160, 40, 70.805, < 10−50, R 1, 0.01, R 3.00 140, 60, 31.205, < 10−50, R 1, 0.01, R
revised

aDECOR 2.75 - - 3.00 - -

χ2
F , H0 (FT) -4.64, A - - -8.43, A - -

(c) fDECOR vs. others (for observations in Table 2.4)

NSGA-II 6.75 200, 0, 198.005, < 10−50, R 1, 0.0083, R 6.25 200, 0, 198.005, < 10−50, R 1, 0.0083, R

MOEA/D 4.00 200, 0, 198.005, < 10−50, R 1, 0.0083, R 3.75 200, 0, 198.005, < 10−50, R 1, 0.0083, R

HypE 5.25 200, 0, 198.005, < 10−50, R 1, 0.0083, R 5.25 200, 0, 198.005, < 10−50, R 1, 0.0083, R

DEMO 5.75 200, 0, 198.005, < 10−50, R 1, 0.0083, R 6.00 200, 0, 198.005, < 10−50, R 1, 0.0083, R

α-DEMO- 3.25 200, 0, 198.005, < 10−50, R 1, 0.0083, R 3.75 200, 0, 198.005, < 10−50, R 1, 0.0083, R
revised

Approach 2.00 200, 0, 198.005, < 10−50, R 1, 0.0083, R 2.00 200, 0, 198.005, < 10−50, R 1, 0.0083, R
of [141]

fDECOR 1.00 - - 1.00 - -

χ2
F , H0 (FT) 22.07, R - - 20.36, R - -

(d) fDECOR vs. others (for observations in Table 2.5)

NSGA-II 4.50 100, 100, 0.005, 0.94363, A 4, 0.0167, A 4.50 150, 50, 49.005, < 10−5, R 1, 0.0083, R

MOEA/D 2.50 100, 100, 0.005, 0.94363, A 4, 0.0167, A 2.50 100, 100, 0.005, 0.94363, A 3, 0.0125, A

HypE 4.75 150, 50, 49.005, < 10−5, R 1, 0.0083, R 4.75 145, 55, 39.605, < 10−5, R 1, 0.0083, R

DEMO 4.25 100, 100, 0.005, 0.94363, A 4, 0.0167, A 4.50 150, 50, 49.005, < 10−5, R 1, 0.0083, R

α-DEMO- 3.75 95, 105, 0.405, 0.52452, A 3, 0.0125, A 4.00 140, 60, 31.205, < 10−5, R 1, 0.0083, R
revised

Approach 3.50 120, 80, 7.605, 0.00582, R 2, 0.01, R 3.75 125, 75, 12.005, 0.00053, R 2, 0.01, R
of [141]

fDECOR 3.75 - - 2.50 - -

χ2
F , H0 (FT) -3.86, A - - -5.46, A - -

a For Friedman Test (FT): Average Ranks (RF,j)
b For McNemar’s Test (MNT): nAB, nBA, χ2

M , p-value, Acceptance(A) or Rejection(R) of H0,i at 95% confidence interval
c For Holm-Bonferroni Test (HBT): Rank (RH,i), Bonferroni corrected significance level (α′HB) for 95% confidence interval,

Acceptance(A) or Rejection(R) of H0,i
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1. Benefit of Thresholding while Clustering : The threshold (th) helps DECOR [142] to

overcome the problems of singleton cluster (unlike [141]). It also leads to a reduced

number of objective computations as seen from m determined by aDECOR (in Table

2.2), which are smaller than m determined by the approach of [141] (in Table 2.4).

However, th varies with different problems and currently can only be set empirically.

2. Convergence by DECOR: Although superior convergence of DECOR is noted in

Tables 2.2 and 2.4, its diversity is poor in some cases (Tables 2.3 and 2.5). Similar

to Fig. 1.3b, this conflict in convergence metric and hypervolume indicator [134] can

be due to the variation in solution distribution near the true PF which implies that

performance of DECOR can further be improved.

3. Diversity by DECOR: Diversity of DECOR is studied from its hypervolume values.

While a zero hypervolume indicates that the entire estimated PF is outside the

hyper-rectangle [134], DECOR has succeeded in obtaining non-zero hypervolume

in several cases. Moreover, DECOR outperforms other objective reduction based

algorithms [10,134] in 50% or more cases in Tables 2.3 and 2.5.

4. Beneficial Attributes of DECOR: DECOR integrates simultaneous objective reduc-

tion and optimization, allows the elimination of multiple objectives at a time, em-

ploys regulated elitism (Fig. 2.2a) to avoid dominance resistance of MaOO problems

and uses a combination (Dcomb) of crowding distance and distance from the ideal

point for ranking. Using Dideal during ranking of solutions not only helps in conver-

gence along the center of the global PF but also along the center of those regions of

PF which are induced by m objectives (local).

2.7 Conclusion

In this chapter, IDEMO, with revised elitist selection and ranking scheme, is used in

order to improve the selection pressure, convergence and diversity of the solutions in

the estimated PF. DECOR integrates IDEMO in a fast and online objective reduction

framework with provision for elimination of multiple objectives in a turn. DECOR is

applied on DTLZ problems for 10 and 20 objectives and results are noted in terms of

convergence metric and hypervolume indicator. DECOR shows superior convergence to

2.7. CONCLUSION
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PF as compared to several other algorithms. The diversity of the PF resulting from

DECOR, is better than some of the MaOO approaches and is equivalent to a few other

popular MaOO approaches. DECOR not only outperforms the recent objective reduction

based MaOO approaches but also overcomes several of their drawbacks. In future, the

integration of the revised elitist selection scheme and the objective reduction approach

with other MOEAs could be explored.

An important observation is that there is a vast scope of improvement in terms of

diversity as seen from the performance values of DECOR (Tables 2.3 and 2.5). This scope

motivates research for further better many-objective evolutionary algorithms to tackle a

broader spectrum of problem characteristics. Hence, in the next chapter, algorithms with

decomposition-based strategies are considered for performance (convergence and diversity)

improvement.

2.7. CONCLUSION



Chapter 3

ESOEA: Ensemble of Single

Objective Evolutionary

Algorithms for Many-Objective

Optimization [138]

Outline

Objective: To develop an adaptive optimization algorithm using

reference-vector assisted decomposition of objective space and a feedback

scheme on the allocation of candidates to the sub-spaces for addressing

various kinds of many-objective optimization problems.

Workflow:

Modify candidate association to improve exploration 

of various sub-spaces

Decompose objective space into sub-spaces using 

reference vectors

Use SaNSDE with adaptive hyper-parameters to 

address sub-space specific problem features

Modify secondary selection of regulated elitism to 

avoid dominance resistance and to preserve diversity

Devise a feedback scheme on sub-population size to 

focus on difficult regions of search space
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3.1 Introduction

From the previous chapter, some Multi-Objective Evolutionary Algorithms (MOEAs) are

noted to suffer from poor diversity. However, decomposition-based MOEAs are a promising

alternative for Multi-Objective Optimization (MOO) or Many-Objective Optimization

(MaOO) problems (Eq. (1.2)). These MOEAs use reference vectors to decompose the

MOO/MaOO problems into multiple scalar problems which collaborate to get optimized.

Inspired by the success of decomposition-based MOEAs and the constant search for a

versatile MaOO algorithm (adaptive to different problem characteristics), an optimization

framework is developed by using an Ensemble of Single Objective Evolutionary Algorithms

(ESOEA) [138]. It is characterized by reference-vector based decomposition and trans-

formation of the MaOO problem into several single objective sub-problems to enhance

the selection pressure. Additionally, with a feedback strategy, ESOEA explores difficult

regions and thus, improves the search capability. For experimental validation, ESOEA

is integrated with an adaptive Differential Evolution, and its performance is analyzed on

several benchmark problems (from the DTLZ, WFG, IMB and CEC 2009 competition test

suites) in terms of convergence metric, inverted generational distance, and hypervolume

indicator. The estimated PFs are further visualized to establish the robustness of ESOEA.

Rest of this chapter is outlined as follows. The key concepts and the state-of-the-art

of decomposition-based MOEAs are presented in Section 3.2. Thereafter, the algorithmic

framework of ESOEA is described and discussed in Sections 3.3 and 3.4, respectively. Its

performance is analyzed in Section 3.5 while highlighting its different modules. Finally,

this chapter is concluded in Section 3.6, summarizing the overall observations.

3.2 Background of Reference Vector based Algorithms

Some basic concepts on reference vector based decomposition of objective space are pre-

sented in this section. Alongside, a brief review on the state-of-the-art of reference vector

guided decomposition based algorithms is also presented.

3.2.1 Key Concepts

A decomposition-based MOEA partitions the objective space into multiple sub-spaces

and thereby, decompose the MOO problem into multiple sub-problems (often single ob-

3.1. INTRODUCTION
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jective) associated with each sub-space. These sub-problems are then solved collabora-

tively. Hence, the decomposition of the objective space using reference vectors and the

scalarization of the objective vectors are discussed next.

Reference Vector based Decomposition of the Objective Space

For partitioning the objective space into sub-spaces, an optimization algorithm is initial-

ized with a set of reference vectors (W) which is defined as follows:

W = [W1,W2, · · · ,Wndir ]
T ,

where Wi = [wi1, wi2, · · · , wiM ] and
M∑
j=1

wij = 1, for i = 1 to ndir.
(3.1)

The two-layered approach [40] is used to define W on a unit hyperplane in the first

hyper-octant of the objective space. This approach is outlined using the following steps:

1. Das and Dennis’ approach [40] is used to generate a set H1 of uniformly distributed(
p1+M−1
M−1

)
vectors. If M < 7, ndir =

(
p1+M−1
M−1

)
and W = H1. An example of W with

M = 3 and p1 = 4 is illustrated in Fig. 3.1a and plotted in Fig. 3.1b.

When M = 7, with p1 = 7, H1 has
(
p1+M−1
M−1

)
= 1716 reference vectors, which

increases the computational burden of the MOEA. Also, with p1 < M only reference

vectors on the boundary of the simplex are generated. Hence, when M ≥ 7, a

boundary layer is used to generate reference vectors (or the set H1) on the boundary

of the simplex with p1 < M and another inside layer is used to generate reference

vectors inside the simplex, as explained in the next step.

2. If M ≥ 7, another set H2 of uniformly distributed
(
p2+M−1
M−1

)
vectors is generated.

Each of the constituents of H2 is scaled and shifted to create a smaller simplex (H′2)

inside the boundary simplex (H1). For each hij ∈ H2, h
′
ij = 1−τw

M +τw×hij is defined

to create H′2 for i = 1 to
(
p2+M−1
M−1

)
and j = 1 to M . The parameter τw is called the

shrinkage factor and τw = 0.5 is considered, without loss of generality [109]. Then,

W = H1 ∪ H′2 and ndir =
(
p1+M−1
M−1

)
+
(
p2+M−1
M−1

)
. An example of W with M = 3,

p1 = 2 and p2 = 1 is illustrated in Fig. 3.1c.

Once the set of reference vectorW is defined, each reference vector W defines a unique

sub-space in the objective space. To associate a point F(X) to a subspace, d2 is used which

3.2. BACKGROUND OF REFERENCE VECTOR BASED ALGORITHMS
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Figure 3.1: (a) One-layered approach of generating the reference vector setW with p1 = 4
partitions in three-dimensional space using Das and Dennis’ approach [40], (b) visualiza-
tion of these

(
p1+M−1
M−1

)
= 15 points (sampled from unit simplex), (c) two-layered approach

of generating W with p1 = 2 partitions in boundary layer and p2 = 1 partitions in the in-
side layer, (d) PBI function combines d1 and d2 while associating F(X) with the reference
vector W and aims to bring F(X) at the intersection of PF and W, i.e., at • point.

is the perpendicular distance from F(X) to the reference vector passing through Wi and

origin of the objective space. An illustration of this distance d2 is provided in Fig. 3.1d.

Hence, a subspace is formed by all objective vectors F(X) that are associated to a reference

vector Wi as follows:

Sub-space associated to Wi : {F(X) ∈ RM |d2 (X|Wi) ≤ d2 (X|Wj)},

for j = {1, 2, · · · , ndir}, i 6= j and X ∈ D.
(3.2)

Scalarization Methods

The scalarization approaches obtain a scalar fitness value for an objective vector of the

MOO problem [32, 85, 197]. The most commonly used scalarization functions [28, 109]
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are weighted sum, Tchebycheff and boundary intersection functions. Normal Boundary

Intersection (NBI) method [40] considers a scalar transformation with an equality con-

straint. The unconstrained NBI variant uses a penalty parameter (θpbi) and is known as

Penalty-based Boundary Intersection (PBI) method [40,163]. Due to its efficacy [40,109],

several MOEAs [109, 138] adopt the PBI function. Using Fide from Eq. (1.8), for a

reference vector (W), PBI generates a scalar optimization problem as follows:

Minimize: fpbi(X|W,Fide) = d1 + θpbi × d2 where, X ∈ D, θpbi ≥ 0,

d1 =

∥∥∥(F (X)− Fide
)T

W
∥∥∥

‖W‖
and d2 =

∥∥∥∥F (X)−
(

Fide + d1
W

‖W‖

)∥∥∥∥ .
(3.3)

In PBI function (Eq. (3.3)), d1 denotes the convergence of the projection of F (X) on

W and d2 denotes the perpendicular distance from F (X) to W, as shown in Fig. 3.1d.

Hence, d2 is the diversity parameter. Also, θpbi balances the degree of convergence and

diversity such that F(X) evolves along the boundary of fpbi for a given W.

In [109], contours of PBI function along W = [0.5, 0.5] for θpbi = {0, 1, 2} are analyzed.

It shows when θpbi = 0, the PBI function (Eq. (3.3)) represents weighted sum and when

θpbi = 1, the PBI function (Eq. (3.3)) represents weighted Tchebycheff. The contour for

weighted Tchebycheff with W = [0.5, 0.5] has same shape as the region dominating the

solution X (green region in Fig. 1.1a). This contour becomes narrower around W as θpbi

increases [109,163]. MOEAs with θpbi = 5 shows promising performance [109,138,150,160].

3.2.2 Related Works

A reference vector assisted decomposition based MOEA is advantageous as it neither faces

dominance resistance in high dimensional objective space like Pareto-dominance based

algorithms nor it requires the extreme computational effort for hypervolume evaluation.

However, such MOEAs suffer from the following shortcomings:

1. Replacing old solutions by new solutions is dictated by scalarization functions [123,

150] and may skip some search regions leading to a severe loss of population diversity.

2. Setting the reference vectors and the scalarization function is problem-specific [123,

150], which can be a daunting task for every new kind of a problem.

3. Performance of these MOEAs strongly depends on whether the distribution of ref-

erence vectors is consistent with the shape of Pareto-Front (PF) [84].
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Hence, these MOEAs cannot regulate their exploration as per problem requirements.

Some adaptation methods [151,190] report results only for 2 or 3-objective problems. Even

the adaptive MaOO framework of [63] reports its performance up to 8-objective problems.

Hence, their extensibility for problems with a large number of objectives is unknown.

Standard reproduction operators of Genetic Algorithm [44, 167] or Differential Evo-

lution [15, 42] are essentially designed for candidate-wise perturbation, i.e., for single-

objective EAs. In contrast, the solution of MOO problems is characterized by a set of

candidate solutions. Yet most of the existing MOEAs directly adopt these vector-wise

(instead of set-wise) reproduction operators, without proper justification [190]. Moreover,

the existing MOEAs are specifically tailored for particular types (difficulties and shape) of

PF [84,173]. Hence, the literature of MOEAs still lacks a robust algorithm with adaptive

search-ability.

Recent literature presents some reference-vector based adaptive MOEAs like Adaptive-

NSGA-III (or A-NSGA-III) [89], MOEA/D-M2M [115,117], MOEA based on Dominance

and Decomposition (MOEA/DD) [109], Reference Vector guided Evolutionary Algorithm

(RVEA) [28] and Adaptive Reference-vector based MOEA (AR-MOEA) [173]. The ref-

erence vectors (W) represent different aspects in different algorithms. For example, in

MOEA/D-M2M and RVEA, W specifies the sub-populations; in MOEA/DD and NSGA-

III, W estimates the local density; while in AR-MOEA, W evaluates a scalar indicator to

address the shape of the PF.

For addressing different shapes of PF, some reference vector adaptation strategies

modifyW based on the solution distribution in the current population such as in A-NSGA-

III [89] and RVEA* [28] whereas other strategies are based on the solution distribution in

an external archive such as in paλ-MOEA/D [92] and MOEA/D-AWA [148]. The general

steps of reference vector adaptation involve deletion of reference vectors from an empty

niche or a sparsely populated region, followed by the addition of reference vectors randomly

or to a densely populated region. However, these reference vector adaptation strategies

perform better for MOO/MaOO problems with irregular PF1 than those with regular PF

due to perturbation of initial uniform distribution of the reference vectors [173].

Although the contemporary algorithms show excellent performance, yet these algo-

rithms suffer from the following issues:

1Continuous, smooth and well-spread PF are called as regular PF and degenerate, disconnected, in-
verted PF or PF with sharp tails are called as irregular PF [173].
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1. As MOEA/D-M2M is designed to deal with imbalance and variable linkage difficul-

ties [115], its extension for problems with irregular PF is yet to be investigated.

2. Some algorithms (like MOEA/D-M2M [117], NSGA-III [45], and AR-MOEA [173])

inherit the entire rank-one solutions, which exhibits dominance resistance for prob-

lems with M ≥ 10 [79]. Hence, such MOEAs are prone to get trapped in local

optima as high-ranked diverse solutions have minimal survival chances [10].

3. For adaptive algorithms, like A-NSGA-III [45] and RVEA* [28], the candidate asso-

ciation with reference vectors becomes costlier as the location of the reference vectors

are not constant, i.e., the reference vectors are adapted as per the shape of PF.

Thus, the need of the hour is an evolutionary algorithm which exhibits robust perfor-

mance for various problem types and reduces the effect of the above drawbacks.

3.3 Algorithmic Framework of ESOEA

Motivated by the requirements specified in Section 3.2.2, an adaptive framework is devel-

oped for dealing with MaOO problems using an Ensemble of Single Objective Evolutionary

Algorithms (ESOEA) [138]. Its significant contributions are as follows:

1. Being a decomposition-based approach, ESOEA considers multiple single objective

sub-problems to maintain the selection pressure. The use of a Single Objective

Evolutionary Algorithm (SOEA) justifies the use of candidate-wise reproduction

operators. Moreoever, an adaptive SOEA helps in addressing the sub-space specific

problem characteristics.

2. ESOEA uses a regulated elitism scheme (with a novel secondary selection) where

only a fraction of rank-one solutions is inherited to avoid dominance resistance for

MaOO problems with M ≥ 10. As the regulated elitist selection is executed only

after periodic intervals, it leads to a considerable saving in execution time.

3. ESOEA adaptively allocates candidates to SOEAs based on the contribution to form

the current population. Thus, it boosts those SOEAs which perform poorly.

ESOEA [138] is the first MaOO algorithm that focusses on the above aspects.

3.3. ALGORITHMIC FRAMEWORK OF ESOEA
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Rest of this section describes several modules involved in building the entire framework

of ESOEA for addressing MOO and MaOO problems using multiple instances of SOEAs,

as illustrated in Fig. 3.2. Its constituent units are subsequently discussed.
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Figure 3.2: Architecture of ESOEA: (a) Overall framework [138], (b) Central loop [138].

3.3.1 Distributing Reference Vectors

The first step of ESOEA involves initializing a set of ndir reference vectors (W) using Das

and Dennis’ approach [40], as described in Section 3.2.1. This set of reference vectors is

stored as a matrix (W) of size ndir ×M as shown in Eq. (3.1).

3.3.2 Initializing the Parent Population

A population of npop candidate solutions is randomly initialized within the bounds of the

search space (D), as explained in Eq. (2.1), where rand(0, 1) indicates a random real

number between 0 and 1. This initial parent population is denoted as AG=0.

3.3.3 Partitioning the Parent Population (Decomposition)

Prior to partitioning the parent population (AG), objective scaling is done so that the

scales of the objective functions have minimal influence on the other modules. For this

purpose, a reference vector (Fr
G) is obtained from the parent population as follows:

Fr
G =

[
f r1,G, · · · , f rM,G

]
with f rj,G = max

X∈AG
fj (X)− min

X∈AG
fj (X) for j = 1, · · · ,M. (3.4)

This reference vector is updated in the Gth generation of the central loop with updates

in the parent population AG. Using Fr
G, an objective vector F (X) is scaled as follows:
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Fs (X) =

f1(X)− min
X∈AG

fM (X)

f r1,G
, · · · ,

fM (X)− min
X∈AG

fM (X)

f rM,G

 , where X ∈ AG. (3.5)

Population decomposition aims to select the candidates of the kth sub-population

(Asubk,G) such that their corresponding scaled objective vectors (Fs(X) where X ∈ Asubk,G)

are associated to the kth reference vector (Wk) among the ndir reference vectors.

• Usual Approach: Usually, each candidate is associated to its nearest reference vector

using the smallest d2 distance [45,109,160] (as shown in Fig. 3.1d and Eq. (3.2)) or

using the smallest acute angle [28,117] between F (X) and Wk.

• Association Approach of ESOEA: This population decomposition is described in

Algorithm 3.1. The first step (line 3) is to consider the array Parr
G =

[
S1
G, · · · , S

ndir
G

]
which stores the sub-population sizes. Using the round(.) function on a real number

to yield the nearest integer, the size of the kth sub-population (SkG=0) is initialized

as follows:

SkG=0 =


round(npop/ndir), for k = 1, 2, · · · , (ndir − 1) and

npop −
∑(ndir−1)

i=1 SiG=0, when k = ndir.

(3.6)

This initialization considers that all ndir sub-spaces are equally likely to be searched.

When G 6= 0, the determination of SkG is discussed later in Section 3.3.6. In lines 4

to 9, AG is sorted using the angle φEik between the scaled objective vector of Xi and

the kth reference vector (Wk). This associating angle (φEik) is obtained as follows:

φEik = φE (Fs(Xi),Wk) = arccos

(
Fs(Xi) ·Wk

‖Fs(Xi)‖ × ‖Wk‖

)
, where Xi ∈ AG. (3.7)

Finally, the kth sub-population Asubk,G is formed in lines 10 to 11 by sequentially

assigning SkG candidates from sorted AG to Asubk,G.

After population decomposition, the sub-population Asubk,G is used as the initial popu-

lation Apark,g=0 of the kth SOEA of the ensemble of single-objective optimizers.
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Algorithm 3.1 Procedure for Partitioning the Population in ESOEA [138]

Input: Fs(X): Scaled objective vectors ∀X ∈ AG; Parr
G : Array of sub-population sizes;

ndir: Number of reference vectors; W: Set of reference vectors
Output: {Asub1,G, · · · ,Asubndir,G

}: ndir sub-populations
1: procedure CandAssoc(W, ∀X ∈ AG : Fs(X), Parr

G , ndir)
2: for k = 1 to ndir (for each sub-population) do
3: SkG ← Size of kth sub-population from Parr

G

4: ΦE
k ← ∅

5: for i = 1 to npop (for each candidate) do
6: Evaluate φEik using Eq. (3.7) where Wk ∈ W
7: ΦE

k ← ΦE
k ∪ φEik

8: end for
9: Isort ← Indices after sorting ΦE

k in ascending order
10: Isub ← First SkG indices from Isort
11: Asubk,G ← {Xi ∈ AG|i ∈ Isub}
12: end for
13: return {Asub1,G, · · · ,Asubndir,G

}
14: end procedure

3.3.4 Ensemble of Single Objective Optimizers

In this module, ndir instances of SOEA are used to evolve each sub-population for Ginnermax

number of generations as shown in Fig. 3.2b. For differentiating, g denotes a generation

of SOEA and G denotes a generation of ESOEA. The sub-population Apark,g is evolved to

create a child sub-population Achildk,g . The sub-populations Apark,g and Achildk,g are compared

to yield Apark,g+1 using PBI function (Eq. (3.3)) for scalarization of the MaOO problem.

AfterGinnermax generations, the kth SOEA generates the child sub-populationAchild
k,g=Ginnermax

=

Achildk,G . All candidates Achildk,G undergo objective scaling by Eq. (3.5) using the same Fr
G

which was determined over AG in Eq. (3.4). Then, elitist selection is performed on the

merged population
(
AG ∪

(
∪ndirk=1A

child
k,G

))
. As all objective vectors remain scaled using

the same Fr
G, the elitist selection is unbiased and yields the next population (AG+1).

3.3.5 Elitist Selection Strategy

Elitist selection is considered as elitism is necessary for MOEAs to guarantee convergence

[155]. The usual approach of elitism (non-dominated sorting followed by sorting using

crowding distance) and its problems are outlined in Section 2.3.2.

Using ndset(.) from Eq. (1.4), ESOEA performs non-dominated sorting [47] on the

merged population
(
AG ∪

(
∪ndirk=1A

child
k,G

))
to yield R1,G and Rrest,G = ∪

p≥2
Rp,G as follows:
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Rp,G =


ndset

(
AG ∪

(
∪ndirk=1A

child
k,G

))
, for p = 1 and

ndset
((
AG ∪

(
∪ndirk=1A

child
k,G

))
\
(
∪p−1q=1Rq,G

))
, for p ≥ 2.

(3.8)
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Figure 3.3: Regulated elitism strategy adopted in ESOEA [138].

Based on the parameter β (regulating the number of candidates of |R1,G| and |Rrest,G|

that are allowed to propagate), one of the following approaches (Fig. 3.3) is followed:

• When |R1,G| > round (β% of npop) and |Rrest,G| > (npop − round (β% of npop)):

R1,G is sorted based on the secondary selection criteria and up to round (β% of npop)

number of candidates are allowed to fill AG+1.

The remaining of AG+1 is filled set-wise. Starting fromR2,G, those ranks of solutions

(which can be entirely accommodated) are added to AG+1 until the last required set

Rq,G is reached from which only a fraction of solutions are added. The undesired

candidates are eliminated from Rq,G using the secondary selection criteria.

• When |R1,G| > round (β% of npop) and |Rrest,G| ≤ (npop − round (β% of npop)):
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The entire of Rrest,G is propagated to AG+1. From R1,G, (npop − |Rrest,G|) number

of candidates are allowed to be propagated. The undesired candidates are elimated

from R1,G using the secondary selection criteria.

• When |R1,G| ≤ round (β% of npop) and |Rrest,G| ≥ (npop − round (β% of npop)):

The usual approach of elitist selection [47] is followed as described in Fig. 2.1b.

However, instead of crowding distance, the undesired candidates are eliminated from

Rq,G using the secondary selection criteria of ESOEA.

• When |R1,G| < round (β% of npop) and |Rrest,G| < (npop − round (β% of npop)):

This case is not possible as |R1,G|+ |Rrest,G| ≥ npop.

Secondary Selection of ESOEA: Using Algorithm 3.2, a rank of solutions (Rq,G)

is sorted to yield Asort and the required number of candidates are sequentially selected

from Asort to preserve diversity. At first, d2 is evaluated for all the candidates of Rq,G

(lines 2 to 6). Then, the outer while loop (lines 8 to 18) selects candidate in the various

unique directions as follows. An auxiliary array Plabels is used to store the indices of

those reference vectors with which each candidate of Rq,G is associated. This association

is established either through population partitioning or being generated as a child from a

particular SOEA. For each unique reference vector (Wrvec), the associated sub-population

within Rq,G (denoted as Arvec) is selected and thereafter, the candidate (Xselect) with

minimum d2 is chosen from Arvec in lines 11 to 13. This Xselect is appended to Asort and

is removed from Rq,G (lines 14 to 16). The selection (lines 10 to 17) continues until a

candidate is chosen from every unique direction, after which the outer while loop resumes

with the reduced set of candidates in Rq,G and continues until all candidates of Rq,G have

been assigned to Asort.

Thus, by elitist selection from the merged populations, i.e., from
(
AG ∪

(
∪ndirk=1A

child
k,G

))
,

the parent population for the next generation (AG+1) is extracted.

3.3.6 Determining Sub-population Sizes for Next Generation

The adaptive property of ESOEA is imparted by regulating candidate allocation instead of

perturbing the uniformly distributed reference vectors. The feedback (Fig. 3.2) provided to

the population decomposition step is the updated sub-population sizes for next generation,

i.e., Parr
G+1 =

[
S1
G+1, S

2
G+1, · · · , S

ndir
G+1

]
. This updation has the following characteristics:
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Algorithm 3.2 Sorting based on Secondary Selection Criteria [138]

Input: Rq,G: Candidates forming qth non-dominated rank; Fs (X): Scaled objective vec-
tors of candidates in the qth non-dominated rank ∀X ∈ Rq,G; Plabels: Indices of
reference vectors with which candidates of Rq,G are associated

Output: Asort: Candidates of Rq,G in sorted order
1: procedure SecondSort(Rq,G, ∀X ∈ Rq,G : Fs(X), Plabels)
2: Dd2 ← ∅
3: for X ∈ Rq,G (for each candidate) do
4: d2q ← d2(X|Wk) using Eq. (3.3) with Fs(X) and k = Plabels(X)
5: Dd2 ← Dd2 ∪ d2q
6: end for
7: ncand = 1, Asort = ∅
8: while ncand ≤ |Rq,G| do
9: Iuniq = Obtain all unique directions from Plabels

10: for rvec ∈ Iuniq (for each direction) do
11: Arvec = {X ∈ Rq,G|Plabels (X) = rvec}
12: Drvec

d2 = {d2 ∈ Dd2|Plabels (X) = rvec}
13: Xselect = arg min

X∈Arvec
Drvec
d2

14: Asort = Asort ∪Xselect (append sequentially)
15: ncand = ncand + 1
16: Rq,G = Rq,G \Xselect

17: end for
18: end while
19: return Asort
20: end procedure

• It allocates more candidates to the poorly performing instances of SOEA (or equiv-

alently along those sub-spaces where exploration is challenging).

• As a performance indicator, N share
k represents the percentage of candidates con-

tributed by the kth instance of SOEA (SOEA-k) towards AG+1 as mentioned in Eq.

(3.9), where nchildk is the number of candidates contributed by Achildk,G and nchildtotal is

the total number of candidates contributed by all the child sub-populations.

• As mentioned before, when G = 0, the sub-population sizes are initialized using Eq.

(3.6). For subsequent generations, the kth sub-population size (SkG+1) is negatively

correlated to N share
k as follows:

SkG+1 =


round

((
100−Nshare

k
ndir−1

)
×
(npop

100

))
, if k 6= ndir and

npop −
∑ndir−1

k=1 SkG+1, if k = ndir,

where, N share
k = (nchildk /nchildtotal )× 100 with

nchildk =
∣∣∣Achildk,G ∩ AG+1

∣∣∣ and nchildtotal =

ndir∑
k=1

nchildk .

(3.9)
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Table 3.1: Example to illustrate adaptive feedback of sub-population sizes [138].

kth Contribution of kth Performance indicator of Sub-population size Sub-population size
sub-population sub-population, nchildk kth sub-population, N share

k before rounding, SkG+1 after rounding, SkG+1

1 10 20% 10.00 10
2 0 0% 12.50 13
3 25 50% 6.25 6
4 10 20% 10.00 10
5 5 10% 11.25 11

Total 50 100% 50 50

An example in Table 3.1 is discussed to explain the adaptive feedback. In Table 3.1,

the sub-population along the 2nd reference vector does not contribute anything whereas

the sub-population along the 3rd reference vector contributes half of the candidates to the

parent population for the next generation. Thus, more resource should be spent to explore

the region around the 2nd reference vector than that around the 3rd reference vector. This

feedback is provided in terms of sub-population size for the next generation. Thus, by

Eq. (3.9), the candidate allocation to the kth sub-space is boosted (or damped) if it has

a lesser (or higher) contribution in forming AG+1 as compared to other sub-spaces.

(a) Usual Strategy (b) Strategy of ESOEA

kth Existing ESOEA
Sub-space SkG SkG

(Sk)
1 4 2
2 2 2
3 0 2
4 1 2
5 3 2

Total 10 10
(npop)

(c) Specifications

Figure 3.4: Difference in sub-population formation approaches: (a) usual strategy, (b)
strategy of ESOEA, (c) corresponding details of population partitioning.

To explain why adaptively fixing SkG is a better strategy [26] than existing association

strategy [28,45,109], the example in Fig. 3.4 is considered. The sub-populations formed by

usual association scheme are shown in Fig. 3.4a, those formed by the association scheme

of ESOEA are shown in Fig. 3.4b and the respective sub-population sizes are mentioned

in Fig. 3.4c. The usual approach and the approach of ESOEA are compared as follows:

• In constrast to the usual association scheme (Fig. 3.4a), in the adaptive association

scheme of ESOEA (Fig. 3.4b) SkG are determined before partitioning the population

into sub-populations (Fig. 3.4c). Hence, unlike the usual approach, some solutions

(such as a few from S1 in Fig. 3.4b) do not contribute to any sub-population.

• Each sub-population represents the mating pool corresponding to a sub-space. In
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the usual approach, all the candidates within a sub-space formed the mating pool.

This approach is unfair as sub-spaces (S3 and S4) with a lower solution density need

relatively more exploration. Some sub-spaces (such as S1 and S5) have a higher

densities of solutions and thereby, result in bigger mating pools. To remove this

bias, the approach of ESOEA adaptively determines SkG and tends to allocate an

equal number of candidates in exploring all the sub-spaces (such as in Table 3.1).

• When a sub-space is empty, ESOEA borrows solutions from the neighboring sub-

spaces similar to MOEA/DD [109]. For example, Asub3,G is formed using solutions

from S2 and S4 in Fig. 3.4b. This is beneficial to improve exploration.

Thus, this adaptive association scheme of ESOEA assists in better exploration and in

improving the overall diversity of the estimated PF.

3.4 Comparison of ESOEA with Related Algorithms

The similarities and differences of ESOEA with a few related works such as MOEA/D-

M2M [117], MOEA/DD [109], RVEA [28] and AR-MOEA [173] are highlighted next.

3.4.1 Similarities with Related Algorithms

The following similarities are observed between ESOEA and other related algorithms:

a) Similar to MOEA/D-M2M and RVEA, ESOEA uses acute angle (Eq. (3.7)) between

objective vectors and reference vectors for the association of candidates.

b) Similar to MOEA/DD, ESOEA uses PBI as the scalarization function.

c) Similar to MOEA/D-M2M, MOEA/DD, and AR-MOEA, ESOEA employs non-

dominated sorting. Although RVEA is not based on Pareto-dominance, both RVEA

and ESOEA performs an elitist selection of candidates.

d) Similar to MOEA/DD and MOEA/D-M2M, ESOEA exploits the neighborhood

property of MaOO problems during mating of candidates.

3.4.2 Differences with Related Algorithms

The following differences are observed between ESOEA and other related algorithms:
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68 OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY

a) With MOEA/D-M2M: MOEA/D-M2M [117] considers a fixed sub-population size.

If a sub-population size exceeds this fixed size, the usual non-dominated sorting

based selection [47, 117] is performed. Otherwise, candidates are randomly selected

from the rest of the population to fill up the respective sub-population. Unlike this,

ESOEA uses adaptive sub-population size and preserves the neighborhood property

during the formation of parent sub-populations.

b) With MOEA/DD: In MOEA/DD [109], mating occurs either between neighboring

sub-populations or within the global population, whereas in ESOEA, mating occurs

only within each sub-population. Moreover, MOEA/DD (steady-state selection)

preserves isolated solutions even with worst scalarized fitness in the last domination

level. ESOEA performs the same by propagating the solutions closest to respective

reference vectors, within a non-dominated rank of solutions.

c) With RVEA: In RVEA [28], mating occurs within the global population and candi-

date selection is guided by Angle-Penalized Distance (APD). Moreover, RVEA mod-

ifies initial reference vector distribution for scaled MaOO problems and for problems

with irregular PF. Unlike this, ESOEA performs mating within each sub-population,

performs selection guided by Pareto-dominance and PBI, and does not perturb the

initial distribution of reference vectors.

d) With AR-MOEA: In AR-MOEA [173], non-dominated sorting is performed followed

by secondary selection using IGD with Non-contributing Solutions (IGD-NS). Also,

currently, AR-MOEA cannot handle problems with difficult regions [173]. Unlike

this, ESOEA performs regulated elitism based on Pareto-dominance and PBI, and

is capable of guiding the search process towards reference vectors where discovering

solutions is difficult as for the imbalanced test problems [115].

The adaptive framework of ESOEA is implemented to assess its efficacy whose details

are mentioned in the following section.

3.5 Performance Analysis

ESOEA [138] is implemented in Matlab R2017a using a 64-bit computer with 8 GB RAM

and Intel Core i7 @2.20 GHz processor. The experimental specifications, in terms of
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benchmark test problems, performance indicators and parameter setting of ESOEA, are

discussed in detail subsequently. The performance of ESOEA is compared with several

other state-of-the-art approaches to establish its efficacy. Some experiments are also per-

formed to demonstrate the importance of the different modules of ESOEA [138].

3.5.1 Benchmark Problems

For performance analysis of ESOEA, the following benchmark problems (described in

Appendix A) are considered:

1. From the DTLZ test suite [49, 74], DTLZ1, DTLZ2, DTLZ3, DTLZ4 and DTLZ7

problems are considered where N is set as described in Section A.1.

2. From the WFG test suite [10, 45, 73], WFG1 and WFG2 problems are considered

with N = 24 (except N = 23 for WFG2 when M is even) [187].

3. From the IMB test suite [115], IMB1 to IMB10 problems are considered with N = 10.

4. From the CEC 2009 competition test suite [191], UF1 to UF10 problems are consid-

ered with N = 30.

3.5.2 Performance Indicators

The performance of ESOEA is assessed in terms of convergence metric [10, 134, 141],

Inverted Generational Distance (IGD) [32,85,197] and hypervolume indicator [9, 10,142].

Moreover, some estimated PFs are visualized using Cartesian coordinate plots for problems

with M = 2 or 3, and using polar coordinate plots [68] for problems with higher M .

A uniformly distributed set of points HIGD (= HCM ) is sampled over the true PF for

IGD (or convergence metric) evaluation. For all problems (except UF52), |HIGD| = 5000

is considered as per [173]. The size of the reference set |HHV | and the reference point

RHV for hypervolume evaluation are specified later corresponding to each experiment.

3.5.3 Experimental Settings of ESOEA/DE

For implementing ESOEA [138], Self-adaptive Neighborhood Search based Differential

Evolution (SaNSDE) [185] is used as the base optimizer (SOEA). The parameters of

2PF of UF5 consists of (2kU + 1) discrete Pareto-optimal solutions with kU = 10 [191] (Appendix A).
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SaNSDE [185] such as FDE (sampled from normal or Cauchy distribution), mutation

probability (to choose between DE/rand/1/bin and DE/current-to-best/2/bin) and CR

(sampled from normal distribution) are learned independently for each sub-population

and updated (using SaNSDE’s scheme) after each generation g until Ginnermax . This hyper-

parameter adaptation of SaNSDE helps in addressing the sub-space specific characteris-

tics of the fitness landscape. For generation G of the central loop, the hyper-parameter

adaptation is repeated until Goutermax after which the estimated PF is obtained. This en-

tire framework is referred to as ESOEA/DE, hereafter, and its steps are summarized

in Algorithm 3.3 for a single generation G. Source code of ESOEA/DE is available at

http://worksupplements.droppages.com/esoea.

Algorithm 3.3 Generation G of ESOEA/DE procedure [138]

Input: W: Set of reference vectors; AG: Parent population; Parr
G : Set of sub-population

sizes; ndir: Number of reference vectors
Output: AG+1: Parent population for next generation; Parr

G+1: Set of sub-population sizes
for next generation

1: procedure ESOEA/DE(W, AG, Parr
G , ndir)

2: Fr
G ← From Eq. (3.4) using F(X) over all X ∈ AG

3: Fs(X)← Using Fr
G and Eq. (3.5) for all X ∈ AG

4: {Asub1,G, · · · ,Asubndir,G
} = CandAssoc(W, ∀X ∈ AG : Fs(X), Parr

G , ndir)
5: for k = 1 to ndir (for each sub-population) do
6: Let Apark,g=0 = Asubk,G

7: for g = 0 to (Ginnermax − 1) (for each SaNSDE-k) do
8: Achildk,g ← By applying SaNSDE on Apark,g

9: ∀X ∈ Apark,g+1 : Get Fs(X) using Fr
G (from line 3.3) and Eq. (3.5)

10: ∀X ∈ Apark,g+1 : Get fpbi(X|Wk) (Eq. (3.3)) using Fs(X) and Wk ∈ W
11: Apark,g+1 ← Select by comparing fpbi(.) of candidates from Achildk,g and Apark,g

12: end for
13: Assign Achildk,G = Achild

k,g=Ginnermax

14: end for
15: (R1,G,R2,G, · · · ) =ndset

(
AG ∪

(
∪ndirk=1A

child
k,G

))
by Eq. (3.8)

16: AG+1 ← Form using one of the three selection approaches in Fig. 3.3 where
secondary selection is done by Algorithm 3.2

17: Evaluate Parr
G+1 =

[
S1
G+1, · · · , S

ndir
G+1

]
by Eq. (3.9) (adaptive feedback)

18: return AG+1 and Parr
G+1

19: end procedure

The specifications (p1 and p2) for definingW are mentioned in Table 3.2 alongwith the

recommended values of Ginnermax and Goutermax . As M increases, multi-modal problems (DTLZ1

and DTLZ3) and problems with sharp-tailed PF (WFG1) are observed to require higher

Ginnermax (indicating irregular landscape) whereas unimodal problems (DTLZ2 and DTLZ4)

needed higher Goutermax (indicating smoother and flat regions in landscape). While all IMB1-
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10 and UF1-10 are 2- or 3-objective problems, IMB problems require lesser generations

to converge due to smaller N . Among the remaining parameters for ESOEA/DE, the

sub-problem sizes (SkG=0) are initialized to 10 which is later adapted using Eq. (3.9). The

penalty parameter (θpbi = 5) for PBI is set as specified in [109,160,187] and the parameter

(β = 75) for the elitist selection approach (Fig. 3.3) is set as specified in [10,141,142].

Table 3.2: Specifications of Ginnermax (tuned in the range 10 to 30) and Goutermax (tuned in the
range 25 to 350) and the number of divisions in the boundary layer (p1) and the inside
layer (p2) for defining the reference vectors [138].

Problems M = 3 M = 5 M = 10 M = 20 Problems M = 2 M = 3 Problems M = 2 M = 3

DTLZ1 20 and 35 10 and 150 30 and 50 30 and 70 IMB1 10 and 20 - UF1 20 and 50 -
DTLZ2 10 and 25 10 and 50 10 and 200 10 and 250 IMB2 10 and 100 - UF2 20 and 50 -
DTLZ3 10 and 100 20 and 50 20 and 75 20 and 100 IMB3 20 and 50 - UF3 30 and 250 -
DTLZ4 10 and 50 10 and 100 10 and 200 10 and 350 IMB4 - 10 and 50 UF4 20 and 75 -
DTLZ7 20 and 25 20 and 50 20 and 100 20 and 100 IMB5 - 10 and 20 UF5 30 and 300 -
WFG1 30 and 50 10 and 200 20 and 100 20 and 125 IMB6 - 10 and 20 UF6 20 and 150 -
WFG2 10 and 50 10 and 75 30 and 50 10 and 150 IMB7 10 and 75 - UF7 20 and 100 -

IMB8 10 and 80 - UF8 - 30 and 300
IMB9 10 and 100 - UF9 - 30 and 50
IMB10 - 20 and 50 UF10 - 30 and 150

p1, p2 13, 0 6, 0 3, 2 2, 1 p1, p2 100, 0 13, 0 p1, p2 100, 0 13, 0

With these settings, the performance of ESOEA/DE [138] is analyzed subsequently.

All the results are statistically validated using the Wilcoxon’s rank-sum test [173] under

the null hypothesis (H0) that the performance of ESOEA/DE is equivalent to other com-

petitor algorithms. The statistical significance is indicated using three signs: + denoting

ESOEA/DE is superior, − denoting the competitor algorithm is superior, and ∼ indicating

the algorithms are equivalent.

3.5.4 Effectiveness of ESOEA/DE to Address MOO Problems

The following experiments assess the performance of ESOEA/DE on MOO problems:

1) On MOO problems having regular and irregular PF: As per the specifications

in [173], the mean and standard deviation of IGD for ESOEA/DE are compared in Table

3.3 with those for two of the most popular MOEAs (NSGA-II [47] and MOEA/D [150])

and the state-of-the-art MOEA (AR-MOEA [173]). The results show that ESOEA/DE

performs in the best in five out of seven cases.

For some test cases in Table 3.3, the estimated PF from ESOEA/DE are visualized

in Fig. 3.5 for the MOO problems. The estimated PFs of DTLZ2, DTLZ3 and DTLZ4

are identical. For DTLZ7, all the disconnected Pareto-optimal patches are obtained. For

WFG1, the outline of the PF and a part of its sharp tail are obtained.

2) On imbalanced test problems: The performance of ESOEA/DE is studied
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Table 3.3: Mean and standard deviation of IGD values over 30 independent runs for
comparing MOEAs on 3-objective problems [138].

Problems M NSGA-II MOEA/D AR-MOEA ESOEA/DE

DTLZ1 3 2.6772E-02 ± 1.36E-03 (+) 1.8973E-02 ± 3.89E-05 (+) 1.8972E-02 ± 3.52E-05 (+) 1.1561E-02 ± 1.75E-03
DTLZ2 3 6.7599E-02 ± 2.65E-03 (+) 5.1303E-02 ± 4.38E-04 (+) 5.0244E-02 ± 6.34E-05 (+) 4.6183E-02 ± 1.75E-03
DTLZ3 3 1.0247E-01 ± 1.73E-01 (+) 5.4281E-02 ± 2.52E-03 (∼) 5.2839E-02 ± 1.67E-03 (−) 5.4789E-02 ± 8.58E-04
DTLZ4 3 1.2481E-01 ± 2.23E-01 (+) 4.1204E-01 ± 3.65E-01 (+) 1.6466E-01 ± 2.11E-01 (+) 5.6493E-02 ± 8.46E-04
DTLZ7 3 7.4897E-02 ± 3.32E-03 (+) 1.2746E-01 ± 1.48E-03 (+) 6.2010E-02 ± 9.20E-04 (+) 3.4653E-02 ± 2.63E-03
WFG1 3 2.5333E-01 ± 3.02E-02 (+) 3.6315E-01 ± 3.72E-02 (+) 1.5906E-01 ± 1.17E-02 (∼) 1.6003E-01 ± 9.39E-03
WFG2 3 1.9063E-01 ± 1.27E-02 (+) 9.5329E-01 ± 7.30E-02 (+) 1.7238E-01 ± 4.52E-03 (+) 1.4627E-01 ± 9.83E-04

ESOEA vs. others 7/0/0 6/0/1 5/1/1
(+/− / ∼)
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Figure 3.5: Estimated PFs from ESOEA/DE for 3-objective test problems [138].

on the IMB test problems [115] using hypervolume indicator with |HHV | = 10000 and

RHV = Fnad +
[
0.001,

M· · ·, 0.001
]

(where Fnad is given by Eq. (1.9)). The best, mean

and worst hypervolume values of ESOEA/DE are compared in Table 3.4 with those of

MOEA/D [150] and MOEA/D-M2M [115], according to the specifications in [115]. The

estimated PFs of IMB problems from ESOEA/DE are shown in Fig. 3.6.

For the worst cases (Table 3.4), M2M approach performs better than ESOEA/DE as

a combination of the PFs of the sub-space constrained MOO problems (from M2M) is

equivalent to the true PF, whereas a combination of solutions of single-objective problems

(from ESOEA) is only an approximation of the true PF [117]. Also, while ESOEA/DE is

capable of exploring the difficult regions for IMB4 and IMB10 problems (Fig. 3.6d and

3.6j), it has not shown superior performance. Nonetheless, for most of the IMB problems,

ESOEA/DE (due to its adaptive feedback strategy and adaptive parameters of SaNSDE)

performs better than MOEA/D and MOEA/D-M2M.

3) Against MOEAs using ensemble strategies: While ESOEA is a decomposition-

based optimization method using ensemble strategies, a few other ensemble-based MOEAs

[182] are MOEA/D-DRA [101] and ENS-MOEA/D [195]. MOEA/D-DRA uses adap-

tive switching between simplex and center of mass crossover operators [101], and ENS-

MOEA/D uses an ensemble of neighborhood sizes [195]. The mean and standard deviation

of IGD values of ESOEA/DE are compared in Table 3.5 with those of MOEA/D-DRA

3.5. PERFORMANCE ANALYSIS



OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY 73

Table 3.4: Best, mean and worst hypervolume values over 30 independent runs for MOEAs
on IMB problems [138].

IMB Test MOEA/D MOEA/D-M2M ESOEA/DE
Problems best mean worst best mean worst best mean worst

IMB1 0.4684 0.4207 0.4154 0.6387 0.6375 0.6354 0.6712 0.6640 0.6569

IMB2 0.4436 0.3840 0.3390 0.4627 0.4608 0.4583 0.4902 0.4838 0.4700

IMB3 0.0385 0.0385 0.0385 0.1851 0.1836 0.1824 0.1923 0.1838 0.1728

IMB4 0.7361 0.7122 0.7030 0.7803 0.7795 0.7785 0.7716 0.7599 0.7488

IMB5 0.3916 0.3913 0.3910 0.4266 0.4229 0.4202 0.4306 0.4247 0.4205

IMB6 0.7783 0.7758 0.7751 0.7916 0.7909 0.7904 0.7998 0.7921 0.7843

IMB7 0.6327 0.6325 0.6322 0.6545 0.6540 0.6534 0.6682 0.6559 0.6415

IMB8 0.4504 0.4500 0.4496 0.4840 0.4830 0.4820 0.4885 0.4770 0.4676

IMB9 0.1716 0.1713 0.1712 0.1975 0.1960 0.1946 0.1989 0.1951 0.1911

IMB10 0.7815 0.7812 0.7807 0.7849 0.7842 0.7835 0.7698 0.7668 0.7613
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Figure 3.6: Estimated PFs from ESOEA/DE for IMB test problems [138].

and ENS-MOEA/D on the CEC 2009 test suite [191], as per the specifications in [101].

Results show that ESOEA/DE is superior to MOEA/D-DRA in eight out of ten cases

and is superior or equivalent to ENS-MOEA/D in six out of ten cases. The estimated

PFs from ESOEA/DE (Fig. 3.7) bear good resemblance with the true PFs (Fig. A.4)

which further supports its performance. This superior performance of ESOEA/DE is due

to its adaptability in terms of both reproduction operators (SaNSDE [185]) as well as sub-

population sizes. These experiments establish the versatility of ESOEA/DE for addressing

MOO problems.

3.5.5 Comparison of ESOEA/DE with Various Categories of MOEAs

From each of the four categories of MOEAs (Section 1.3.1), four algorithms are chosen:

NSGA-II [47] (Pareto-dominance based MOEA), MOEA/D [150] (decomposition-based

MOEA), HypE [9] (indicator-based MOEA) and aDECOR [142] (objective reduction based

MOEA). The respective mean and standard deviation of hypervolume indicator (Table 3.6
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Table 3.5: Mean and standard deviation of IGD values over 30 independent runs for
comparing MOEAs using ensemble strategies on CEC 2009 competition problems [138].

Problems MOEA/D-DRA ENS-MOEA/D ESOEA/DE

UF1 4.2920E-03 ± 2.63E-04 (−) 1.6423E-03 ± 1.26E-04 (−) 7.3920E-03 ± 2.83E-03

UF2 5.6150E-03 ± 4.12E-04 (+) 4.0487E-03 ± 1.01E-03 (∼) 3.5153E-03 ± 3.56E-04

UF3 1.1165E-02 ± 1.31E-02 (−) 2.5916E-03 ± 4.56E-04 (−) 2.9207E-02 ± 1.15E-02

UF4 6.4145E-02 ± 4.24E-03 (+) 4.2070E-02 ± 1.33E-03 (+) 1.3010E-02 ± 4.89E-04

UF5 4.1851E-01 ± 1.36E-01 (+) 2.4811E-01 ± 4.26E-02 (+) 7.0236E-02 ± 1.37E-02

UF6 3.2736E-01 ± 1.86E-01 (+) 6.0847E-02 ± 1.98E-02 (+) 3.8250E-02 ± 3.67E-03

UF7 6.2620E-03 ± 3.31E-03 (+) 1.7286E-03 ± 8.52E-04 (−) 5.2724E-03 ± 4.50E-04

UF8 5.7443E-02 ± 3.37E-03 (+) 3.1006E-02 ± 3.01E-03 (+) 2.6375E-02 ± 3.21E-03

UF9 9.7693E-02 ± 5.43E-02 (+) 2.7874E-02 ± 9.57E-03 (−) 4.0991E-02 ± 6.99E-03

UF10 4.6265E-01 ± 3.87E-02 (+) 2.1173E-01 ± 1.99E-02 (∼) 1.9602E-01 ± 4.00E-02

ESOEA vs. others 8/2/0 4/4/2
(+/− / ∼)
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Figure 3.7: Estimated PFs from ESOEA/DE for CEC 2009 test instances [138].

with |HHV | = 10000 and RHV = [3,
M times· · · , 3]) and convergence metric (Table 3.7 with

|HCM | = 5000) are compared with ESOEA/DE on 10- and 20-objective DTLZ problems,

as per the specifications in [10, 142]. As ESOEA/DE is a DE-based method, its com-

parison is also done with DEMO [153]. These competitor algorithms are set as per the

specifications in [10, 142]. For some test cases in Tables 3.6 and 3.7, the estimated PFs

from ESOEA/DE are visualized in Fig. 3.8 using polar plots [68] (Appendix B).
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Figure 3.8: Estimated PFs from ESOEA/DE for 10-objective test problems [138].

From Table 3.6 (where ESOEA/DE has the best or second-best hypervolume in eight
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out of ten cases) and Fig. 3.8, the following observations are noted:

• The superior hypervolumes resulting from MOEA/D and ESOEA/DE are due to

their embedded diversity enforcing through the decomposition of objective space.

• Even for 10-objective DTLZ7 (Fig. 3.8c), the estimated PF is outside the hyper-

rectangle when RHV = [3,
10· · ·, 3] which results in zero hypervolume in all test cases

except from aDECOR. As aDECOR operates on reduced objective set, it has dis-

covered a few points within the concerned hyper-rectangle.

• Overall, ESOEA/DE is superior to these six MOEAs based on hypervolume.

From Table 3.7 (where ESOEA/DE has the best or second-best convergence in nine

out of ten cases) and Fig. 3.8, the following observations are noted:

• The better convergence of aDECOR and ESOEA/DE is due to the utilization of

regulated elitism (Fig. 3.3) that avoids dominance resistance and trapping at local

optima. Moreover, better convergence but worse diversity of aDECOR may be due

to convergence of only a few solutions on the true PF as opposed to ESOEA/DE.

• For unimodal problems (DTLZ2 and DTLZ4), ESOEA/DE is only outperformed by

aDECOR due to the better selection pressure for the reduced objective problem.

Table 3.6: Mean and standard deviation of hypervolume values over 30 independent runs
for comparing MOEAs on DTLZ problems [138].

Problems M NSGA-II MOEA/D HypE DEMO aDECOR ESOEA/DE

DTLZ1 10 0.0044 ± 0.8132 ± 0.0000 ± 0.0000 ± 0.9915 ± 0.9970 ±
0.0016 (+) 0.0984 (+) 0.0000 (+) 0.0000 (+) 0.0098 (+) 0.0015

20 0.0000 ± 0.7233 ± 0.0000 ± 0.0000 ± 0.9994 ± 0.9903 ±
0.0000 (+) 0.1172 (+) 0.0000 (+) 0.0000 (+) 0.0206 (−) 0.0016

DTLZ2 10 0.8399 ± 1.0000 ± 0.9514 ± 0.8863 ± 0.8765 ± 1.0000 ±
0.0079 (+) 0.0000 (∼) 0.0034 (+) 0.0059 (+) 0.0018 (+) 0.0000

20 0.8280 ± 1.0000 ± 0.9372 ± 0.8487 ± 0.8016 ± 1.0000 ±
0.0070 (+) 0.0000 (∼) 0.0019 (+) 0.0059 (+) 0.0050 (+) 0.0000

DTLZ3 10 0.0000 ± 0.0235 ± 0.0000 ± 0.0000 ± 0.9879 ± 0.9997 ±
0.0000 (+) 0.0188 (+) 0.0000 (+) 0.0000 (+) 0.0105 (+) 0.0002

20 0.0000 ± 0.0301 ± 0.0000 ± 0.0000 ± 0.9964 ± 0.9985 ±
0.0000 (+) 0.0031 (+) 0.0000 (+) 0.0000 (+) 0.0098 (+) 0.0007

DTLZ4 10 0.9765 ± 1.0000 ± 0.8741 ± 0.9956 ± 0.9488 ± 1.0000 ±
0.0056 (+) 0.0000 (∼) 0.0169 (+) 0.0012 (+) 0.0072 (+) 0.0000

20 0.9914 ± 1.0000 ± 0.8963 ± 0.9829 ± 0.9420 ± 1.0000 ±
0.0030 (+) 0.0000 (∼) 0.0103 (+) 0.0111 (+) 0.0155 (+) 0.0000

DTLZ7 10 0.0000 ± 0.0000 ± 0.0000 ± 0.0000 ± 0.0102 ± 0.0000 ±
0.0000 (∼) 0.0000 (∼) 0.0000 (∼) 0.0000 (∼) 0.0002 (−) 0.0000

20 0.0000 ± 0.0000 ± 0.0000 ± 0.0000 ± 0.0097 ± 0.0000 ±
0.0000 (∼) 0.0000 (∼) 0.0000 (∼) 0.0000 (∼) 0.0003 (−) 0.0000

ESOEA vs. others 8/0/2 4/0/6 8/0/2 8/0/2 7/3/0
(+/− / ∼)
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Table 3.7: Mean and standard deviation of convergence metric over 30 independent runs
for comparing MOEAs on DTLZ problems [138].

Problems M NSGA-II MOEA/D HypE DEMO aDECOR ESOEA/DE

DTLZ1 10 225.4502 ± 2.4800 ± 146.3039 ± 142.2519 ± 0.3993 ± 0.2455 ±
5.9816 (+) 1.0351 (+) 2.2147 (+) 3.1073 (+) 0.0042 (+) 0.0523

20 176.2357 ± 3.2397 ± 305.1945 ± 143.5408 ± 0.3307 ± 0.3491 ±
3.6600 (+) 1.1651 (+) 9.7488 (+) 2.7434 (+) 0.0310 (∼) 0.0405

DTLZ2 10 1.4716 ± 0.7419 ± 1.3979 ± 1.3891 ± 0.4088 ± 0.6132 ±
0.0317 (+) 0.0101 (+) 0.0156 (+) 0.0161 (+) 0.0111 (−) 0.0078

20 1.9273 ± 1.3116 ± 1.9240 ± 1.9009 ± 0.4696 ± 1.2169 ±
0.0224 (+) 0.0050 (+) 0.0144 (+) 0.0092 (+) 0.0177 (−) 0.0367

DTLZ3 10 1048.0740 ± 24.8627 ± 409.5137 ± 939.7426 ± 0.5256 ± 0.8351 ±
39.3631 (+) 4.5587 (+) 3.9870 (+) 9.8824 (+) 0.0153 (∼) 0.0565

20 978.3490 ± 37.8409 ± 911.8077 ± 1024.4046 ± 0.4925 ± 1.3600 ±
44.9975 (+) 7.2125 (+) 5.5582 (+) 12.5577 (+) 0.0293 (−) 0.0090

DTLZ4 10 1.1784 ± 0.7461 ± 0.8914 ± 1.2663 ± 0.4768 ± 0.6118 ±
0.0264 (+) 0.0102 (+) 0.0106 (+) 0.0347 (+) 0.0092 (−) 0.0088

20 1.4337 ± 1.0818 ± 0.9572 ± 1.6816 ± 0.4768 ± 0.9771 ±
0.0309 (+) 0.0070 (+) 0.0077 (−) 0.0370 (+) 0.0307 (−) 0.0076

DTLZ7 10 42.6764 ± 2.3922 ± 40.0715 ± 41.6292 ± 4.4121 ± 0.5856 ±
0.7278 (+) 0.1161 (+) 0.2762 (+) 0.2632 (+) 0.0977 (+) 0.0090

20 78.0439 ± 6.8244 ± 82.4481 ± 84.4237 ± 4.5302 ± 1.7615 ±
0.4853 (+) 0.5152 (+) 0.3383 (+) 0.5181 (+) 0.0687 (+) 0.1327

ESOEA vs. others 10/0/0 10/0/0 9/1/0 10/0/0 3/5/2
(+/− / ∼)

Also, for DTLZ4 (biased solution density towards fM − f1 plane) [49], ESOEA/DE

is not very far behind aDECOR in convergence. The adaptive feedback strategy of

ESOEA/DE helps in the exploration of the search space for such problems.

• For multi-modal problems (DTLZ1 and DTLZ3), ESOEA/DE is better than most

of the MOEAs which can be attributed to the fact that NSDE part of SaNSDE is

useful for escaping from local minima [185].

• For DTLZ7 with disconnected PF (Fig. 3.8c shows two Pareto-optimal patches),

ESOEA/DE outperforms other MOEAs. This improved performance is because

the decomposition of the objective space with the adaptive feedback strategy of

ESOEA/DE ensures the proper balance between exploration and exploitation.

Thus, ESOEA/DE has superior performance on a variety of problem characteristics as

compared to popular MOO and MaOO algorithms from various categories of MOEAs.

3.5.6 Comparison of ESOEA/DE with MOEAs using Reference Vectors

The performance of ESOEA/DE are compared with other contemporary reference vector

based approaches like NSGA-III [45], MOEA/DD [109], RVEA [28] and AR-MOEA [173].

As per the specifications in [173], the mean and standard deviation of hypervolumes of

3.5. PERFORMANCE ANALYSIS
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Table 3.8: Mean and standard deviation of hypervolume values over 30 independent runs
for comparing ESOEA/DE with other reference vector associated MaOO algorithms [138].

Problems M NSGA-III MOEA/DD RVEA AR-MOEA ESOEA/DE

DTLZ1 5 9.7456E-01 ± 9.7487E-01 ± 9.7478E-01 ± 9.7492E-01 ± 9.7113E-01 ±
4.86E-04 (−) 1.94E-04 (−) 3.14E-04 (−) 1.53E-04 (−) 1.05E-03

10 9.8390E-01 ± 9.9957E-01 ± 9.9967E-01 ± 9.9971E-01 ± 9.1338E-01 ±
4.66E-02 (−) 4.55E-05 (−) 2.82E-05 (−) 8.84E-06 (−) 9.48E-02

DTLZ2 5 7.9035E-01 ± 7.9294E-01 ± 7.9209E-01 ± 7.9047E-01 ± 8.1198E-01 ±
8.70E-04 (+) 5.49E-02 (∼) 6.51E-04 (+) 8.44E-04 (+) 1.21E-03

10 9.4923E-01 ± 9.6735E-01 ± 9.6751E-01 ± 9.6432E-01 ± 9.6852E-01 ±
3.10E-02 (+) 2.41E-04 (+) 2.27E-04 (+) 8.26E-04 (+) 4.00E-04

DTLZ3 5 5.9177E-01 ± 7.7880E-01 ± 7.3843E-01 ± 7.7240E-01 ± 8.5123E-01 ±
2.97E-01 (+) 1.20E-02 (+) 7.61E-02 (+) 7.36E-03 (+) 8.62E-03

10 3.8532E-01 ± 9.6669E-01 ± 9.6065E-01 ± 9.6723E-01 ± 8.8142E-01 ±
3.38E-01 (+) 2.00E-03 (−) 6.15E-03 (−) 2.93E-03 (−) 8.66E-02

DTLZ4 5 7.8203E-01 ± 7.9366E-01 ± 7.9307E-01 ± 7.9077E-01 ± 8.0225E-01 ±
2.89E-02 (∼) 5.01E-04 (+) 4.99E-04 (+) 6.88E-04 (+) 9.41E-04

10 9.6625E-01 ± 9.6837E-01 ± 9.6964E-01 ± 9.6902E-01 ± 9.6966E-01 ±
9.90E-04 (+) 3.23E-03 (∼) 2.83E-04 (∼) 5.57E-04 (∼) 8.06E-04

DTLZ7 5 2.4167E-01 ± 9.0909E-02 ± 2.0007E-01 ± 2.3599E-01 ± 5.0892E-01 ±
4.33E-03 (+) 4.94E-07 (+) 9.91E-03 (+) 2.48E-03 (+) 1.54E-02

10 1.9584E-01 ± 1.1971E-03 ± 1.4380E-01 ± 1.4646E-01 ± 6.0554E-01 ±
1.26E-02 (+) 3.11E-04 (+) 1.51E-02 (+) 7.03E-03 (+) 3.05E-02

WFG1 5 7.8837E-01 ± 7.7075E-01 ± 8.6621E-01 ± 9.0787E-01 ± 9.5295E-01 ±
3.33E-02 (+) 5.71E-02 (+) 4.04E-02 (+) 2.65E-02 (+) 6.42E-03

10 7.0682E-01 ± 9.8947E-01 ± 9.8712E-01 ± 9.4718E-01 ± 9.9064E-01 ±
4.79E-02 (+) 2.24E-02 (∼) 2.83E-02 (+) 3.69E-02 (+) 1.74E-03

WFG2 5 9.9246E-01 ± 9.6933E-01 ± 9.8809E-01 ± 9.9469E-01 ± 7.0163E-01 ±
1.19E-03 (−) 4.70E-03 (−) 1.99E-03 (−) 5.81E-04 (−) 3.58E-02

10 9.9671E-01 ± 9.6285E-01 ± 9.8615E-01 ± 9.9508E-01 ± 7.3139E-01 ±
1.69E-03 (−) 6.50E-03 (−) 3.22E-03 (−) 1.06E-03 (−) 2.75E-02

ESOEA vs. others 9/4/1 6/5/3 8/5/1 8/5/1
(+/− / ∼)

normalized PFs (between Fnad and Fide) [134] are noted in Table 3.8 with |HHV | =

1, 000, 000 and RHV =
[
1.1,

M times· · · , 1.1
]
. ESOEA/DE outperforms these MOEAs in nine

out of 14 test cases, followed by AR-MOEA which shows superior performance in four out

of 14 test cases. The following observations are made from Table 3.8:

• The superior performance of ESOEA/DE over NSGA-III is due to its regulated

elitist selection (Fig. 3.3) and adaptive feedback scheme (Eq. (3.9)).

• Adaptive feedback of ESOEA/DE is also beneficial for DTLZ7 (having disconnected

PF) and WFG1 (having sharp-tailed PF) over MOEA/DD which benefits problems

like DTLZ1 and DTLZ3 (having multi-modal nature but regular PF).

• ESOEA/DE outperforms RVEA [28] as the former algorithm performs mating in a

local neighborhood to improve exploitation to the search space.

• Unlike ESOEA/DE, the reference vector adaptation of AR-MOEA becomes detri-

mental for problems like DTLZ4 (having biased solution density).

3.5. PERFORMANCE ANALYSIS
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Table 3.9: Mean IGD values over 30 independent runs for comparing adaptive MaOO
algorithms on multi-modal problems with regular Pareto-Fronts [138].

Problems M A-NSGA-III RVEA* AR-MOEA ESOEA/DE

DTLZ1 3 2.3434E-02 (+) 2.8841E-02 (+) 1.8931E-02 (+) 1.1561E-02
5 6.3446E-02 (+) 7.1247E-02 (+) 6.2861E-02 (+) 4.0492E-02
10 1.7341E-01 (−) 2.5566E-01 (−) 1.4292E-01 (−) 4.0598E-01

DTLZ3 3 6.8590E-02 (+) 7.2553E-02 (+) 5.0276E-02 (−) 5.9847E-02
5 2.0753E-01 (+) 2.8049E-01 (+) 1.9531E-01 (+) 1.1701E-01
10 2.0584E+00 (+) 6.9093E-01 (−) 4.9583E-01 (−) 1.2617E+00

ESOEA vs. others 5/1/0 4/2/0 3/3/0
(+/− / ∼)

For comparing the adaptive tendency of ESOEA/DE with reference vector adaptation

based MOEAs like A-NSGA-III [89], RVEA* [28] and AR-MOEA [173], the mean IGD

values from DTLZ1 and DTLZ3 problems are noted in Table 3.9 using the specifications

of [173]. Results show that ESOEA/DE is better than A-NSGA-III and RVEA* as the

adaptive strategies of A-NSGA-III and RVEA* are designed specifically for problems with

irregular PF. However, ESOEA/DE ties with AR-MOEA for problems with regular PF.

3.5.7 Analysis of the Adaptive Feedback Scheme of ESOEA

The adaptive feedback scheme of ESOEA intends to redistribute the solutions such that

all sub-spaces have an equal number of associated solutions. As the global population size

is 10×ndir, the minimum sub-population size (SkG using Eq. (3.9)) over all the sub-spaces

can atmost be 10. For a problem with biased solution density (DTLZ4), the variations in

SkG are noted across generations (G) of ESOEA/DE in Fig. 3.9 when M = {3, 5, 10}. For

all these test cases, the minimum SkG and the maximum SkG vary marginally after reaching

a near-equilibrium value of 10 (or log10(10 + 1) ≈ 1). Thus, this experiment shows the

role of the feedback strategy of ESOEA in a uniform exploration of the search space.

(a) DTLZ4 (M = 3) (b) DTLZ4 (M = 5) (c) DTLZ4 (M = 10)

Figure 3.9: Variations of minimum and maximum sub-population size across generations
of ESOEA/DE for a problem with biased solution density (DTLZ4).

3.5. PERFORMANCE ANALYSIS
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3.5.8 Effectiveness of Components of ESOEA/DE

For investigating the effectiveness of various components of ESOEA/DE, the following

experiments are performed where the basic framework of ESOEA/DE is kept intact, except

changing one of its components:

1. Experiment-I : Using DE/rand/1/bin [149,165] instead of SaNSDE

2. Experiment-II : Using non-dominated sorting with crowding distance (Fig. 2.1b)

instead of the selection scheme of ESOEA (Fig. 3.3)

3. Experiment-III : Using weighted sum (θpbi = 0) instead of PBI function (Eq. (3.3))

4. Experiment-IV : Initializing W based on maximization of minimum pair-wise dis-

tance between reference vectors instead of Das and Dennis’ two-layered approach [40]

These experiments are performed on both MOO and MaOO problems. For the com-

parison, the mean hypervolumes of normalized PFs (between Fnad and Fide) [134] are

noted in Table 3.10 with |HHV | = 1, 000, 000 and RHV =
[
1.1,

M times· · · , 1.1
]
. From Ta-

ble 3.10, it is observed that ESOEA/DE performs best or second-best in 21 out of 28 test

cases as compared to the other experimental frameworks. Even for 3-objective DTLZ3 and

20-objective WFG1 problems, the hypervolume value of ESOEA/DE is not significantly

different from the second-best value. The following insights are obtained from Table 3.10:

• ESOEA/DE performs better or equivalent to Experiment-I in 21 out of 28 test cases

as using SaNSDE (ESOEA/DE) instead of DE/rand/1/bin (Experiment-I) aids in

local adaptability to problem characteristics. Also, Experiment-I shows the second-

highest number of best or second-best performances, supporting the efficacy of the

overall framework of ESOEA.

• For some 3-objective problems, the framework of Experiment-II performs better than

the ESOEA/DE framework. As M increases, the effectiveness of the non-dominated

sorting with crowding distance (Experiment-II) fades away in comparison to the

regulated elitism scheme of ESOEA/DE.

• ESOEA/DE performs significantly better or equivalent to Experiment-III in 23 out

of 28 test cases as using PBI (ESOEA/DE) instead of weighted sum (Experiment-III)

presents a better trade-off between convergence and diversity.

3.5. PERFORMANCE ANALYSIS
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• The alternate weight distribution scheme (Experiment-IV) gives an inferior result

over ESOEA/DE when M is small. However, it performs better or equivalent to

ESOEA/DE in 5 test cases when M = 10 or 20 because for such problems there

are very few intermediate reference vectors (by Das and Dennis’ approach in ES-

OEA/DE) [13], hampering the diversity of the resulting PF.

These observations demonstrate that the combination of modules of ESOEA/DE is

significantly better than the usual existing modules.

Table 3.10: Mean hypervolume values over 30 independent runs from ESOEA/DE to
establish the effectiveness of its different modules [138].

Problems ESOEA/DE Experiment-I Experiment-II Experiment-III Experiment-IV

M
=

3

DTLZ1 8.5453E-01 8.4154E-01 (+) 8.5658E-01 (−) 8.1774E-01 (+) 7.9633E-01 (+)
DTLZ2 5.7467E-01 5.6276E-01 (+) 5.8463E-01 (−) 5.7097E-01 (+) 5.1058E-01 (+)
DTLZ3 5.6074E-01 5.5885E-01 (+) 5.8437E-01 (−) 5.6102E-01 (∼) 5.0282E-01 (+)
DTLZ4 5.6318E-01 5.6136E-01 (+) 5.8660E-01 (−) 5.5706E-01 (+) 5.0291E-01 (+)
DTLZ7 5.7580E-01 4.4063E-01 (+) 5.3227E-01 (+) 5.5827E-01 (∼) 4.4002E-01 (+)
WFG1 8.0581E-01 7.8667E-01 (+) 7.6349E-01 (+) 7.5286E-01 (+) 7.3019E-01 (+)
WFG2 6.9209E-01 6.6852E-01 (+) 6.8132E-01 (∼) 6.5564E-01 (+) 6.1144E-01 (+)

M
=

5

DTLZ1 9.7113E-01 9.7427E-01 (−) 9.7014E-01 (∼) 9.8447E-01 (−) 8.5232E-01 (+)
DTLZ2 8.1198E-01 8.0876E-01 (+) 8.0901E-01 (+) 8.0099E-01 (+) 6.8135E-01 (+)
DTLZ3 8.5123E-01 8.0531E-01 (+) 8.4474E-01 (∼) 8.4419E-01 (∼) 7.1841E-01 (+)
DTLZ4 8.0225E-01 8.0710E-01 (−) 8.0046E-01 (+) 7.9584E-01 (+) 6.7313E-01 (+)
DTLZ7 5.0892E-01 5.3167E-01 (−) 5.6352E-01 (−) 5.5237E-01 (−) 3.9291E-01 (+)
WFG1 9.5295E-01 9.4304E-01 (+) 9.3726E-01 (+) 9.3512E-01 (+) 5.1293E-01 (+)
WFG2 7.0163E-01 6.9669E-01 (∼) 6.4977E-01 (+) 6.6672E-01 (+) 8.0880E-01 (−)

M
=

10

DTLZ1 9.1338E-01 9.9814E-01 (−) 8.9365E-01 (∼) 9.6804E-01 (−) 7.4837E-01 (+)
DTLZ2 9.6852E-01 9.1965E-01 (+) 9.2339E-01 (+) 9.6504E-01 (+) 7.3232E-01 (+)
DTLZ3 8.8142E-01 7.7287E-01 (+) 6.9587E-01 (+) 8.3545E-01 (+) 8.8016E-01 (∼)
DTLZ4 9.6966E-01 8.7187E-01 (+) 8.7648E-01 (+) 9.6828E-01 (+) 7.2930E-01 (+)
DTLZ7 6.0554E-01 6.9478E-01 (−) 7.7617E-01 (−) 5.6036E-01 (∼) 6.2205E-01 (∼)
WFG1 9.9064E-01 9.8725E-01 (+) 9.0984E-01 (+) 9.2766E-01 (+) 8.4420E-01 (+)
WFG2 7.3139E-01 6.7190E-01 (+) 6.4810E-01 (+) 6.2490E-01 (+) 5.9579E-01 (+)

M
=

20

DTLZ1 8.1368E-01 9.6994E-01 (−) 8.5046E-01 (∼) 9.3120E-01 (−) 9.9752E-01 (−)
DTLZ2 9.8335E-01 9.6377E-01 (+) 9.1597E-01 (+) 9.6395E-01 (+) 8.5250E-01 (+)
DTLZ3 7.5869E-01 6.7534E-01 (+) 5.7603E-01 (+) 6.8463E-01 (+) 7.1100E-01 (∼)
DTLZ4 9.9875E-01 9.9871E-01 (∼) 9.9456E-01 (+) 9.9834E-01 (+) 9.7615E-01 (+)
DTLZ7 8.0038E-01 3.1698E-01 (+) 8.4948E-01 (−) 6.4741E-01 (+) 5.2040E-01 (+)
WFG1 7.5766E-01 7.8495E-01 (−) 7.1659E-01 (+) 7.7598E-01 (∼) 6.6224E-01 (+)
WFG2 6.2019E-01 5.8943E-01 (+) 6.0747E-01 (+) 6.3564E-01 (−) 6.0435E-01 (∼)

ESOEA vs. others (+/− / ∼) 19/7/2 16/7/5 18/5/5 22/2/4

3.6 Conclusion

Motivated by the need for an evolutionary optimizer which is effective for a broad spectrum

of problem characteristics, this chapter presents ESOEA/DE, comprising an ensemble of

SaNSDE. Using the PBI function, ESOEA/DE transforms MaOO problems into multiple

single-objective sub-problems, each constrained to a sub-space created by the decomposi-

tion of the objective space. These sub-problems are solved collaboratively. Additionally,

the adaptive feedback, the modified candidate association and the regulated elitist scheme

3.6. CONCLUSION
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with a novel secondary selection help ESOEA to tackle several MOO/MaOO problems.

While the results exhibit the robustness of ESOEA/DE by demonstrating good con-

vergence and superior diversity over several problems (with different modalities, biased

solution density, disconnected PFs, sharp-tailed PFs, imbalance difficulties and variable

linkage difficulties), the reasoning behind its performance is established only through qual-

itative analysis. Lack of any theoretical analyses hinders the further understanding of the

weaknesses and the scope of improvement of such optimization algorithms. Hence, the next

chapter theoretically analyzes some basic concepts for decomposition-based MOEAs.

3.6. CONCLUSION
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Chapter 4

NAEMO: Neighborhood-sensitive

Archived Evolutionary

Many-objective Optimization

Algorithm [160]

Outline

Objective: To establish the neighborhood property related to reference-

vector assisted decomposition of objective space and to use it to develop

an algorithm with theoretically and experimentally proven performance

enhancement for many-objective optimization problems.

Workflow:

Establish the neighborhood 

property for decomposition-

based MOEAs

Theoretically analyze the 

effect of the shape of 

Pareto-Front on PBI

Design NAEMO using the neighborhood property, 

probabilistic mutation switching and population filtering 

using both dominance and PBI function

Devise an indicator to study 

the dynamics of population 

diversity

Demonstrate performance 

of NAEMO (theoretically 

and experimentally)
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4.1 Introduction

From the previous chapter, it is noted that one of the prominent techniques to address

Multi-Objective Optimization (MOO) and Many-Objective Optimization (MaOO) prob-

lems (Eq. (1.2)) is the reference-vector assisted decomposition-based Multi-Objective

Evolutionary Algorithms (MOEAs) [119]. However, literature severely lacks formal math-

ematical analysis to establish the reason behind superior performance of such methods.

Motivated by this research gap, the neighborhood property of MaOO problems is rec-

ognized and is used to develop the Neighborhood-sensitive Archived Evolutionary Many-

objective Optimization (NAEMO) algorithm [160]. In NAEMO, mating occurs within a

local neighborhood and every sub-space continues to retain at least one associated solution.

This preservation of solutions leads to a monotonic improvement in diversity (theoretically

and experimentally justified). Moreover, to combine the advantages of various mutation

strategies, probabilistic mutation switching concept is introduced and to keep the archive

size under control, periodic filtering modules are integrated with the NAEMO frame-

work. In terms of inverted generational distance, hypervolume values and purity metric,

NAEMO outperforms several state-of-the-art MOEAs on DTLZ1-4 test problems for up

to 15 objectives. Further experiments show that NAEMO is also competitive to M2M-

based algorithms on the IMB problems. Thus, NAEMO is a robust algorithm, which is

additionally supported by theoretical foundations.

Rest of this chapter is structured as follows. The work presented in this chapter is

motivated by the arguments discussed in Section 4.2. The neighborhood theorem is intro-

duced in Section 4.3. The effect of the shape of the Pareto-Front (PF) on the PBI function

(Eq. (3.3)) is theoretically analyzed in Section 4.4. Section 4.5 presents NAEMO along

with preliminary theoretical analyses. Its performance is compared with other MOEAs in

Section 4.6. The chapter is finally concluded in Section 4.7.

4.2 Research Gap Analysis

Among various approaches to deal with MaOO problems, reference-vector based algo-

rithms such as MOEA/D [150], NSGA-III [45], θ-DEA [187], MOEA/DD [109] and their

variants have been developed which perform well for problems with number of objec-

tives (M) as high as 15. The concept of decomposition in MOEA/D has also been

4.1. INTRODUCTION
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combined with other meta-heuristics such as Particle Swarm Optimization for yielding

decomposition-based Multi-Objective Particle Swarm Optimization (dMOPSO) [121].

It is challenging for the general MOEAs to obtain the complete PF for IMB prob-

lems [115], which have difficult regions (as discussed in Section A.3). The M2M based

algorithms [115,117], which decomposes the MOO problems into simpler MOO problems,

are effective for IMB problems (theoretically supported) [117].

Theoretical analyses and results are vital for understanding optimization problems and

algorithms. The convergence of MOEAs are formally investigated in [66]. Some concepts

of reference-vector assisted decomposition-based MOEAs are studied in [111]. However,

much theoretical work on MaOO is still not present in the literature. The working and

reasoning behind the performance of MOEAs are usually qualitative. Formal theoretical

analysis will aid in finding the weaknesses of algorithms and in making improvements with

a concrete theoretical basis. This chapter is dedicated to filling this research gap and has

the following contributions:

1. The neighborhood property of decomposition-based MOEAs is identified and utiliz-

ing it Neighborhood-sensitive Archived Evolutionary Many-objective Optimization

(NAEMO) algorithm [160] is developed. NAEMO introduces convergence-based fil-

tering and diversity-based filtering schemes, supported by theoretical analyses.

2. NAEMO uses both PBI function and Pareto-dominance simultaneously. It also

demonstrates a candidate vector generation scheme using the probabilistic mutation

switching concept.

3. A theoretical analysis of the PBI function is presented to explain how the shape of

the actual PF affects the final solution if the PBI function is used.

4. An indicator (D metric) [161] is developed to study the diversity attainment behav-

ior of MOEAs, which is used to compare NAEMO with other MOEAs.

4.3 Theoretical Outline of the Neighborhood Property

A notion of the spatial relationship between objective space and decision space, which is

created by reference-vector assisted decomposition of the objective space, is conveyed by

the following theorem based on which NAEMO is developed in [160].

4.3. THEORETICAL OUTLINE OF THE NEIGHBORHOOD PROPERTY
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Figure 4.1: Neighborhood property [160]: (a) reference vectors decomposing the objective
space in to 5 regions (S1, S2, S3, S4, S5), (b) when adjacent regions of the objective space
are also adjacent in the decision space, (c) when non-adjacent regions of the objective
space (S1 and S3) are adjacent in the decision space sharing a common boundary PQ.

Theorem 4.1 (Neighborhood property). The regions corresponding to each reference

vector in the objective space, which do not share a common boundary in the objective

space, do not share a common boundary in the decision space either.

Proof. The reference-vectors (W1, W2, W3, W4 and W5) decomposes the objective space

into corresponding regions (S1, S2, S3, S4 and S5) as shown in Fig. 4.1a.

It is first assumed that some regions (like S1 and S3) which do not have a common

boundary in the objective space can have a common boundary in the decision space. Then,

a possible decision space visualization might be as shown in Fig. 4.1c, where the line PQ

is common to both S1 and S3. Hence, when mapped to the objective space, this line PQ

would correspond to a curve common to both S1 and S3 in the objective space. However,

such a curve can never be present as the region S2 always comes between S1 and S3 (Fig.

4.1a). Therefore, the initial assumption that S1 and S3 can have a common region in the

decision space is wrong. This analysis proves the theorem by contraposition.

Thus, the non-adjacent regions (corresponding to the reference-vectors) in the objective

space (Fig. 4.1a) will also have non-adjacent regions in the decision space (Fig. 4.1b).

This property of MOO/MaOO problems is denoted as the neighborhood property.

4.4 Analyzing the Penalty-based Boundary Intersection

The PBI function [40, 150] (Eq. (3.3)) is used over several MOEAs due to its efficacy. It

provides a measure of fitness for the sub-problems (created by the decomposition of objec-

tive space). Due to its popularity in recent days, it is necessary to perform a theoretical

4.4. ANALYZING THE PENALTY-BASED BOUNDARY INTERSECTION
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Figure 4.2: Given a reference vector
−−→
OA, (a) for a non-optimal point B, there is an

optimal point M, (b) for a optimal point N, there is a better point S along
−−→
AL such that

AS = RN = d2N , (c) Triangle AMT to demonstrate fpbi(A) < fpbi(M), ∀AM = εp [160].

analysis of the PBI function. This analysis is conducted for different shapes of the PF.

4.4.1 Linear Pareto-Front

For a problem with linear PF, the minimal objective values are attained using PBI ap-

proach with θpbi > 1. This claim is analyzed, theoretically, using the following theorem.

Theorem 4.2. The optimal point (objective values) for all sub-spaces for a multi-objective

optimization problem with a linear Pareto-Front is the point of intersection of the reference

vector with the true Pareto-Front, if the penalty factor is higher than 1, i.e., θpbi > 1.

Proof. Let a problem with linear PF be considered. It is also assumed that the scales for

all the objective functions are same and normalized such that

Linear Pareto-Front: f1 + f2 = 1. (4.1)

Assuming mW as the slope of the reference vector, the ideal optimal point A (at in-

tersection of reference vector with PF) is shown in Fig. 4.2a and is given as follows:

Ideal Optimal Point A :

(
1

mW + 1
,

mW

mW + 1

)
. (4.2)

The parameters (d1B and d2B) of PBI function for a random point B is given as:

d1B = d1(B) =
−−→
OB · ÔA and d2B = d2(B) =

∥∥∥−−→OB− d1BÔA
∥∥∥ ,

where ÔA =
1√

1 +m2
W

f̂1 +
mW√

1 +m2
W

f̂2.
(4.3)
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Thus, the fitness (through PBI-based scalarization using Eq. (3.3)) of B along the

reference-vector
−−→
OA : f2 = mW × f1 is given as follows:

fpbi(B) =
(f1 +mW × f2) + θpbi |f2 −mW × f1|√

1 +m2
W

. (4.4)

Hence, the penalty factor (θpbi) must satisfy the following equation:

min (fpbi(B)) is at A =

(
1

mW + 1
,

mW

mW + 1

)
. (4.5)

This analysis considers the following arguments:

1. A line is considered parallel to f2 = mWf1 and passing through B (
←→
OA‖

←−→
BM in Fig.

4.2a). This line intersects PF at M. This point M has the same value of d2 as B, i.e.,

d2B = d2M as
←→
OA‖

←−→
BM. But the d1 of M is better than d1 of B, i.e., d1M < d1B.

Hence, fpbi(M) (= d1M +θpbi×d2M ) is less than fpbi(B) (= d1B+θpbi×d2B), which

implies that for every point B not on the PF, there is always a better point M on

the PF using the PBI function (Eq. (3.3)).

2. Next, a point N is considered on the other side of the reference vector (
−−→
OA), opposite

to M. This point N is at εp distance from A and lies on the PF (Fig. 4.2b), i.e.,

AM = AN = εp. The PBI parameters of N are d1N = OR and d2N = RN. The

vector (
−−→
AL) is considered to be perpendicular to the reference vector

−−→
OA : f2 =

mWf1. Let the point on
−−→
AL at a distance d2N from A be S. Such a point will

have d2S = d2N = RN and d1S = OA. It can be seen that d1N = d1S + AR with

AR > 0. However, AR → 0 as εp → 0. Thus, for every point N on the optimal

surface, there exists a better point S on
−−→
AL. Since S is not on the PF, there will

again be a further better point on the PF using the PBI function similar to case 1.

3. Now, when traversing from M to A (Fig. 4.2b), d1 increases but d2 decreases. This

change is evident from the associated parameters of PBI function as follows:

fpbi(M) = d1M + θpbi × d2M and fpbi(A) = d1A + θpbi × d2A,

where d1A = OA = OT + AT = d1M + AT,

d2A = 0 and d2M = MT.

(4.6)
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For A to be optimal after minimizing fpbi(.), θpbi must satisfy the following:

fpbi(M) > fpbi(A), ∀εp

=⇒ d1M + θpbi × d2M > d1A + θpbi × d2A

=⇒ θpbi >
d1A − d1M
d2M − d2A

=
∆d1

∆d2
=

AT

MT
(From Fig. 4.2c)

=⇒ θpbi >
1

tanφp
=

1

tan (αp + βp)
(From Fig. 4.2b)

=⇒ θpbi >
1−mW

1 +mW

=⇒ θpbi > 1, when 0 ≤ mW ≤ 1.

(4.7)

Since everything is symmetric about the reference vector with mW = 1, considering

0 ≤ mW ≤ 1 presents a generic analysis. Therefore, θpbi > 1 ensures that A is optimal

point for all values of mW in case of a linear PF.

4.4.2 General Pareto-Front

The shape of the final PF can also be concave or convex with different degrees of curvature

(δc). Assuming a symmetric PF about the reference vector with mW = 1, the PF can be

approximated as follows:

General Pareto-Front: f δc1 + f δc2 = 1. (4.8)

A PF with δc > 1 corresponds to a concave shape and δc < 1 corresponds to a convex

shape (Fig. 4.3). A very high or very low value of δc represents a high curvature.

mW = 1

f2 = mWf1

A

δc = 1 δc > 1

δc < 1

O(0, 0) f1

f2

Figure 4.3: Illustration of convex, linear and concave PFs [160].

In terms of mW and δc, the ideal optimal point A at the intersection of the PF (Eq.
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(4.8)) and the reference vector f2 = mWf1 is expressed as follows:

Ideal Optimal Point A :

 1(
1 +mδc

W

) 1
δc

,
mW(

1 +mδc
W

) 1
δc

 . (4.9)

Furthermore, a tangent at point A is given as follows:

df2
df1

= −f
δc−1
1

f δc−12

= − 1

mδc−1
W

. (4.10)

For A to be optimal, θpbi must satisfy the following in a small region around A:

θpbi >
1

tanφp
=

1

tan (αp + βp)
=⇒ θpbi >

mδc−1
W − 1

mδc+1
W + 1

. (4.11)

For all values of mW and δc ≥ 1 (linear and concave PF), θpbi > 1. This condition

satisfies the condition for the optimality of A.

However, for convex PF (δc < 1), the condition (Eq. (4.11)) may not be satisfied for

all values of mW. If the standard value of θpbi = 5 is used and a convex PF (e.g., with

δc = 0.5) is assumed, the condition (Eq. (4.11)) is satisfied only till mW = 0.03, i.e., till

the reference-vectors make an angle of 1.72◦ with the closest axes in the objective space.

For reference vectors which make smaller angles with the axes, the optimal point cannot

be obtained using PBI. Higher the value of θpbi, lesser the value of the limiting angle

between the reference vector and axes. Thus, a higher value of θpbi increases the extent

of the estimated PF for convex shape in a two-dimensional objective space. For larger

number of objectives, future studies can be conducted to generalize the above theoretical

analysis.

Thus, the PBI function may not always give the complete PF for all MOO problems.

It is crucial to find out the effect of the value of θpbi on the other aspects of MOEAs (such

as speed). Without such an analysis, it may not be advisable to increase the value of θpbi

beyond the commonly used value of 5.

4.5 Algorithmic Framework of NAEMO

In this section, the different steps of NAEMO [160], and its underlying features are dis-

cussed in detail. The key concepts used in NAEMO are as follows:
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1. Using the neighborhood property: NAEMO maintains an organized global archive

(AG), which is divided into sub-archives to store the associated solutions for each of

the ndir reference-vectors. Candidate association occurs using Eq. (3.2) and the ith

sub-archive (Asubi,G) belongs to AG as follows:

AG =
{
Asub1,G,Asub2,G, · · · ,Asubndir,G

}
. (4.12)

2. Periodic filtering of population: In NAEMO, filtering operations are performed on

AG to enhance the convergence or diversity. When the size of AG exceeds a specific

value (lsoft), diversity-based filtering is performed to remove points with high PBI

values from relatively crowded sub-archives. When a newly generated solution dom-

inates some points in AG, the convergence-based filtering operation is performed to

remove such dominated points while ensuring that the diversity is not hampered.

3. Monotonic improvement in diversity: NAEMO ensures that once a reference-vector

obtains an associated point, it is never lost. This feature, along with the filtering

operations, helps in diversity preservation as proven later in Section 4.5.8.

4. Using the PBI function along with dominance: As diversity-based filtering operation

removes points having maximal PBI values, it further increases the selection pressure

(as discussed in Section 4.4) in addition to the dominance-based selection.

5. Improved mutation strategy: NAEMO uses an improved mutation strategy (proba-

bilistic mutation switching) with hyper-parameter adaptation.

4.5.1 Basic Steps of NAEMO

The NAEMO algorithm (Algorithm 4.1) starts with a randomly initialized global archive

of size lsoft. A single generation (G) consists of iterations through all of the ndir sub-spaces.

The set of all reference-vectors is denoted by W and |W| = ndir.

A random candidate, associated to the jth sub-archive (Asubj,G), is selected as the parent

candidate (Xparent
G ). However, if Asubj,G is empty, another sub-archive corresponding to

a random reference-vector is selected from knbr non-empty reference-vectors closest to

Wj ∈ W. The set (Nj) of indices of such neighboring reference-vectors of Wj is stored in

the jth row of the matrix N . The intuition behind this step is that mutation of points from

4.5. ALGORITHMIC FRAMEWORK OF NAEMO



92 OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY

Algorithm 4.1 Framework of NAEMO [160]

Input: Gmax: maximum number of generations; ndir: number of reference lines; lhard and
lsoft: hard and soft limits on archive size; flag1, flag2, Pmut and ηm: parameters for
probabilistic mutation switching (for Algorithm 4.2)

Output: AGmax : final archive at the end of Gmax generations
1: Obtain W using the approach of Das and Dennis [40] (Section 3.2.1)
2: Randomly initialize archive AG=1 of size lsoft using Eq. (2.1)
3: Create Asubi,G by association, using Eq. (3.2) for X ∈ AG and for Wi ∈ W
4: for G = 1 to Gmax do
5: Sηc = ∅
6: SFDE = ∅
7: SCR = ∅
8: for j = 1 to ndir do
9: Idir = j

10: if AsubIdir,G
= ∅ then

11: Inbr ← Sample a random index from Nj

12: Idir = Inbr
13: end if
14: Xparent

G ← A random candidate from AsubIdir,G

15: ηc = Gaussian(µηc , 5)
16: FDE = Gaussian(µFDE , 0.1)
17: CR = Gaussian(µCR, 0.1)
18: Xchild

G = Mutate Xparent
G using Algorithm 4.2

19: if Xparent
G does not dominate Xchild

G then
20: Get index l of reference vector Wl where Xchild

G associates (Eq. (3.2))
21: Asubl,G ← Asubl,G ∪Xchild

G

22: Convergence-based filtering (Algorithm 4.3) yields filtered AG
23: if |AG| > lsoft then
24: Diversity-based filtering (Algorithm 4.4) yields filtered AG
25: end if
26: Sηc = Sηc ∪ ηc
27: SFDE = SFDE ∪ FDE
28: SCR = SCR ∪ CR
29: end if
30: end for
31: µηc = mean(Sηc)
32: µFDE = mean(SFDE )
33: µCR = mean(SCR)
34: end for
35: return AGmax

neighboring regions of an empty sub-space have a higher probability of generating a new

point (Xchild
G ) associated to that sub-space. After obtaining Xparent

G , Xchild
G is generated

by mutating Xparent
G (by Algorithm 4.2). However, by the neighborhood property, the

mutation operation is constrained only in the knbr closest non-empty neighborhood, i.e.,

the other parent vectors for mutation are selected from Asubk,G where k ∈ Nj .

The new candidate solution (Xchild
G ) is selected for addition to the archive only if
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Xparent
G does not dominate Xchild

G . If selected, association operation is performed on the

Xchild
G to select the sub-archive to which Xchild

G will be added. After this inclusion, if

there exist points in AG which are dominated by Xchild
G , the convergence-based filtering is

executed. If the size of AG exceeds the predefined value lsoft, diversity-based filtering is

performed to reduce the number of points equal to a hard limit (lhard).

4.5.2 Initialization

NAEMO (Algorithm 4.1) starts with initialization of W. The reference-vectors can be

placed with a higher density in the region of preference, as decided by the user. In

the absence of any preference, W is initialized using Das and Dennis’ approach [40] (as

described in Section 3.2.1). NAEMO also initializes AG=1 of size lsoft and creates the

structured archive, having sub-archives, as mentioned in Eq. (4.12).

4.5.3 Mutation Strategy

Probabilistic mutation switching of NAEMO involves switching between two or more muta-

tion strategies according to a probability assigned for each of the mutation strategies. This

switching between mutation techniques often helps in combining the benefits of individual

mutation techniques. NAEMO uses Algorithm 4.2 to combine Simulated Binary Crossover

(SBX) based mutation [44] and a Differential Evolution (DE) based mutation [41, 164].

These reproduction techniques are described as follows:

1. SBX mutation: For a parent solution (Xparent
G ) and a second parent solution (Xpar2

G ),

SBX crossover [44] combines the jth parent decision variables (xparentj,G and xpar2j,G ) to

produce the jth variable (xchildj,G ) of the child candidate (Xchild
G ) as follows:

xchildj,G = 0.5
[
(1 + βj)x

parent
j,G + (1− βj)xpar2j,G

]
, where j = 1, · · · , N. (4.13)

Using ηc as the SBX crossover parameter, the parameter βj is sampled from the

following probability distribution:

P (β) =


0.5 (ηc + 1)βηc , if β ≤ 1

0.5 (ηc + 1) 1
β(ηc+2) , otherwise.

(4.14)
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2. DE based mutation: DE based mutation [41, 146, 162] involves generating the jth

decision variable (xchildj,G = xtrialij,G+1) for the child candidate (Xchild
G ) by using three

different candidates from the archive (Xr1,G, Xr2,G and Xr3,G) and employing the

mutation (Eq. (2.2)) and binomial crossover (Eq. (2.3)) operations.

3. Polynomial mutation: The polynomial mutation [43] alters the jth decision variable

(xj,G) of an N -dimensional candidate (XG) within the upper and lower bounds of the

jth decision variable (xUj and xLj , respectively) to generate the jth decision variable

(xchildj,G ) of the child candidate (Xchild
G ) as follows:

xchildj,G = xj,G + δj ×
(
xUj − xLj

)
, where j = 1, · · · , N. (4.15)

Using ηm as the polynomial mutation parameter, δj is sampled from the following

distribution:

P (δ) = 0.5 (ηm + 1) (1− |δ|)ηm . (4.16)

Probabilistic mutation switching (Algorithm 4.2) uses Pmut as the probability of per-

forming an SBX-based mutation. Therefore, (1− Pmut) becomes the probability of per-

forming DE based mutation. The mutation strategy of NAEMO employs two flags, flag1

and flag2, which determines whether the SBX mutation and DE-based mutation are to

be followed by polynomial mutation, respectively. This option is incorporated as the

polynomial mutation helps in overcoming local optima [110].

Algorithm 4.2 Mutation Strategy of NAEMO [160]

Input: Pmut: mutation switching factor; flag1 and flag2: determine the use of polyno-
mial mutation; N : set of neighboring non-empty reference-vectors

Output: Xchild
G : Newly generated point

1: if rand(0, 1) > Pmut then
2: Xchild

G ← DE based mutation (Eq. (2.2)-(2.3))
3: if flag2 is true then
4: Xchild

G ← Polynomial mutation (Eq. (4.15)-(4.16))
5: end if
6: else
7: Xchild

G ← SBX mutation (Eq. (4.13)-(4.14))
8: if flag1 is true then
9: Xchild

G ← Polynomial mutation (Eq. (4.15)-(4.16))
10: end if
11: end if
12: return Xchild

G
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4.5.4 Parameter Adaptation

The SBX mutation parameter ηc is sampled from the following Gaussian distribution:

ηc = Gaussian(µηc , 5). (4.17)

The mean (µηc) is initialized to a value of 30 and updated in each generation as the mean

over Sηc where Sηc is a set to store all successful values of ηc over a generation G.

Similarly, the parameters FDE and CR of DE-based mutation are also sampled from

the following Gaussian distributions:

FDE = Gaussian(µFDE , 0.1), (4.18)

CR = Gaussian(µCR, 0.1). (4.19)

The mean values (µDEF and µCR) are initialized to 0.5 and 0.2, respectively, and updated

in each generation as the mean of SFDE and SCR, respectively.

The sampled values are then truncated to [0, 1]. The parameter Pmut is experimentally

set at 0.75 as adaptation Pmut does not lead to any improvements. The parameters flag1

and flag2 are also not adaptive in this mutation strategy.

4.5.5 Convergence-based Filtering

This operation is performed every time Xchild
G gets added. Convergence-based filtering

(Algorithm 4.3) looks for all the points in AG, which are dominated by the Xchild
G and

removes them. However, it does not remove a dominated point if it is the only point

associated with its corresponding reference-vector. This step ensures that no sub-space

associated to a reference-vector is rendered empty, thus, preserves diversity. This step is

useful for problems which have difficult regions, such as IMB problems [115,160].

4.5.6 Diversity-based Filtering

Diversity-based filtering (Algorithm 4.4) is performed when the size of AG exceeds the soft

limit, lsoft. At first, the reference-vector with the highest number of associated points is

obtained. Then, the point in the associated sub-archive is obtained, which has the highest

PBI function value, and it is removed. This process continues until the total size of AG
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Algorithm 4.3 Convergence-based filtering of NAEMO [160]

Input: AG: unfiltered archive consisting of all the ith sub-archives Asubi,G ; ndir: number of

reference-vectors or sub-spaces in the objective space; Xchild
G : newly added point

Output: AG: filtered archive consisting of all the ith filtered sub-archives Asubi,G

1: for i = 1 to ndir do
2: L ← Set of points in Asubi,G dominated by Xchild

G

3: for j = 1 to |L| do

4: if
∣∣∣Asubi,G

∣∣∣ > 1 then

5: Asubi,G ←
{(
Asubi,G −Xj

)
|Xj ∈ L

}
6: end if
7: end for
8: end for
9: return AG

Algorithm 4.4 Diversity-based filtering of NAEMO [160]

Input: AG: unfiltered archive consisting of all the ith sub-archives Asubi,G ; ndir: number
of reference-vectors or sub-spaces in the objective space; Parr: array of length ndir to
store sub-archive sizes; lhard: minimum size of archive

Output: : AG: filtered archive consisting of all the ith filtered sub-archives Asubi,G

1: narch = 0

2: Parr ←
[
0,
ndir· · · , 0

]
3: for i = 1 to ndir do
4: Asubi,G ← Sort Asubi,G by PBI value (Eq. (3.3))

5: SiG ←
∣∣∣Asubi,G

∣∣∣ where SiG is the ith element of Parr

6: narch = narch +
∣∣∣Asubi,G

∣∣∣
7: end for
8: while narch > lhard do
9: Iind ← Index of maximum value from Parr

10: Remove last element from AsubIind,G

11: SIindG = SIindG − 1
12: narch = narch − 1
13: end while
14: return AG

reduces to the hard limit, lhard. Filtering the points, using the PBI value, creates selection

pressure on the points towards the optimal point (Section 4.4).

4.5.7 An Indicator for the Dynamics of Population Diversity [161]

Using the sub-archive sizes (SkG =
∣∣∣Asubk,G

∣∣∣), an indicator (D metric) is defined to measure

the population diversity at a certain generation G. It is given as follows:

D metricG =
ndir
narch

√√√√ndir∑
k=1

(SkG − Skideal)2, where Skideal =
narch
ndir

. (4.20)
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While the ideal sub-archive size (Skideal) is chosen to be equal for all reference-vectors [161],

it can also be defined as per user’s preference. For the best case, D metric = 0 when all

the sub-archives have equal number of associated solutions, denoted by Skideal = narch/ndir

for k = 1 to ndir.

4.5.8 Proof of Monotonic Improvement of Diversity

In this part, it is mathematically proven that NAEMO with its two filtering operations

never leads to deterioration of the diversity.

Theorem 4.3. Diversity-based filtering operation (Algorithm 4.4) always generates a

monotonic improvement of diversity measured using D metric (Eq. (4.20)).

Proof. In NAEMO, diversity-based filtering reduces the population size (narch) from lsoft

to lhard. Thus, narch is constantly decreasing after each removal of point. This filtering

operation finds the sub-archive with the highest SkG and removes from it the point with the

largest PBI. The D metric after removal of a point from two independent sub-archives,

Al1G and Al2G, are given as follows:

Removal from Al1G: D metricG1 =
ndir

narch − 1

 ndir∑
i=1,i 6=l1,l2

(
SiG −

narch − 1

ndir

)2

+

(
Sl1G − 1− narch − 1

ndir

)2

+

(
Sl2G −

narch − 1

ndir

)2
)0.5

.

(4.21)

Removal from Al2G: D metricG2 =
ndir

narch − 1

 ndir∑
i=1,i 6=l1,l2

(
SiG −

narch − 1

ndir

)2

+

(
Sl2G − 1− narch − 1

ndir

)2

+

(
Sl1G −

narch − 1

ndir

)2
)0.5

.

(4.22)

For an improvement in the diversity, the D metric should be minimum, after removal

of a point. For D metricG1 to be better than D metricG2 , the following must occur:

D metricG1 ≤ D metricG2

=⇒
(
Sl1G − 1− narch − 1

ndir

)2

+

(
Sl2G −

narch − 1

ndir

)2

≤(
Sl2G − 1− narch − 1

ndir

)2

+

(
Sl1G −

narch − 1

ndir

)2

=⇒ Sl1G ≥ Sl2G .

(4.23)
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Thus, for removal of a point from Al1G to be a better decision than removal from Al2G, the

sub-archive size for l1 should be larger than that of l2. Since the diversity-based filtering

always finds the index Iind of the largest sub-archive from Parr in line 9 of Algorithm 4.4,

it always satisfies the inequality of Eq. (4.23) and thus, leads to the maximum possible

decrease in the value of D metric.

Theorem 4.4. Convergence-based filtering operation (Algorithm 4.3) preserves diversity

in the long run.

Proof. Convergence-based filtering operation removes all the points that are dominated

by Xchild
G , except for those points removing which might render a sub-space empty. The

removal of points by this operation might lead to an increase in D metric as the inequality

of Eq. (4.23) might not be met. However, NAEMO aims to obtain one point per reference-

vector. Thus, finally Siideal = 1 for i = 1 to ndir as narch = lhard = ndir. Substituting

Siideal = 1 in Eq. (4.20), D metricG translates as follows:

D metricG =

√√√√ndir∑
i=1

(
SiG − 1

)2
. (4.24)

The value of this D metric increases (i.e., diversity deteriorates) as more sub-spaces

are rendered empty. However, since convergence-based filtering operation never renders a

sub-space empty once an associated point is found, it can be claimed that the convergence-

based filtering operator preserves diversity.

4.5.9 Using the Neighborhood Property

NAEMO uses the neighborhood property (Theorem 4.1) in the following ways:

1. When an empty reference-vector is encountered during any iteration, the parent

vector is chosen from a neighboring non-empty reference-vector.

2. The selection of parent vectors during reproduction is constrained within the knbr

closest neighboring sub-spaces. This constraint increases the convergence of NAEMO

immensely, as shown by the results in Section 4.6. Let the Region of Improvement

(RoI) of a reference-vector be that region in decision space which correspond to better

solutions than the current best point. This RoI is a subset of the region in decision

space corresponding to the reference-vector. Neighboring to this RoI is the RoI of
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other reference-vectors, by the neighborhood property (Theorem 4.1). Reproduction,

using points in the neighbourhood, thus, has a much higher probability of producing

a point in one of the RoIs than reproduction with other random points.

4.5.10 Computational Complexity of NAEMO

The complexity of one generation of NAEMO is computed by considering ndir reference

vectors, M number of objectives, lsoft as the soft limit and lhard as the hard limit. For

NAEMO, lhard = ndir and lsoft = Cndir where C is a real constant such that C > 1.

Apart from the values of M and ndir, the time taken by NAEMO depends on how

frequently the if conditions in lines 19 and 23 of Algorithm 4.1 are satisfied. The frequency

of the if condition in line 23 being satisfied does not affect the complexity as it contributes

a constant term as shown later. The if condition in line 19 depends on how frequently the

Xchild
G dominates Xparent

G and therefore, also does not affect the complexity.

From Algorithm 4.1-line 8, a for loop is observed with ndir iterations. Thus, the

complexity for operations inside this for loop considers the following:

• In Algorithm 4.1 - line 20, the association step requires O(Mndir) operations.

• In Algorithm 4.1 - line 22, convergence-based filtering requiresO(Mlsoft) = O(Mndir)

operations.

• Diversity-based filtering, in Algorithm 4.1 - lines 23 and 24, is analyzed as follows.

Within the if block,

– Maximum number of times the if condition (in line 23) is satisfied within ndir

iterations is ndir
lsoft−lhard = 1

C−1 . Therefore, it is constant.

– Diversity-based filtering (Algorithm 4.4) requiresO(lsoft log(lsoft))+O(ndir(lsoft−

lhard)) = O(ndir log(ndir)) +O(n2dir) = O(n2dir) operations.

Therefore, the total complexity over ndir iterations is given by ndir(O(Mndir)+O(n2dir)) =

O(Mn2dir + n3dir).

The computational burden of several MOEAs is compared in Table 4.1. In the worst

case, NAEMO has intermediate time requirements. It is neither the fastest nor the slowest

among several other MOEAs. Hence, NAEMO is developed to yield competitive perfor-

mance at similar time requirements. A comparison of execution time (in seconds) is

provided later in Section 4.6.8.

4.5. ALGORITHMIC FRAMEWORK OF NAEMO
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Table 4.1: Worst case computational complexity for a single generation of several MaOEAs
considering M as number of objectives and lhard = ndir as the population size (which is
nearly equal to the number of reference-vectors) [160].

Algorithm Name Computational Complexity

NAEMO O(Mn2dir + n3dir)

NSGA-III [45] O(n2dir logM−2 ndir +Mn2dir)
θ-DEA [187] O(Mn2dir)
GrEA [184] O(n3dir)
HypE [9] O(nMdir +Mndir log ndir)

4.6 Experimental Results and Interpretations

NAEMO is compared with other state-of-the-art MOEAs on DTLZ1-DTLZ4 problems

from the DTLZ test suite [49] and IMB1-IMB9 problems (with N = 10) from IMB test

suite [115]. These test-suites are described in Appendix A. For performance analysis,

NAEMO is implemented in Python 3.4 and executed in a computer having 8 GB RAM

with Intel Core i7 @ 2.5 GHz processor. The source code of NAEMO available at http:

//worksupplements.droppages.com/naemo.

4.6.1 Comparison Metrics

The estimated PFs are assessed in terms of convergence and diversity over the true PF.

The most common performance measures are Inverted Generational Distance (IGD) and

Hypervolume Indicator (HV) (described in Section 1.3.3).

Decomposition-based MOEAs have an unfair advantage over MOEAs not based on

reference-vectors when compared using IGD because the former MOEAs explicitly target

those points at the intersection of the reference-vectors and the true PF. These points

also constitute the reference set HIGD for IGD evaluation. Algorithms, not based on

reference-vectors, do not target any specific points on the PF and thus, yield poorer IGD.

For comparing MOEAs (based on both decompostion and non-decomposition strate-

gies) with NAEMO, the HV is considered. Using AF to denote the estimated PF, if the

reference point in the objective space is RHV = [rHV,1, rHV,2, · · · , rHV,M ], then HV is

evaluated as follows:

HV (AF,RHV ) = volume (∪F∈AF
[f1, rHV,1]× · · · × [fM , rHV,M ]) ,

where F = [f1, f2, · · · , fM ] .

(4.25)

4.6. EXPERIMENTAL RESULTS AND INTERPRETATIONS

http://worksupplements.droppages.com/naemo
http://worksupplements.droppages.com/naemo
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For IMB test problems, RHV is set at Fnad +
[
0.001,

M· · ·, 0.001
]

as per [116], where

Fnad is given by Eq. (1.9). For DTLZ1, RHV is set as
[
1,

M· · ·, 1
]

and for DTLZ2 - DTLZ4,

RHV is set as
[
2,

M· · ·, 2
]

as per [109]. The HV values for the DTLZ problems are further

normalized to [0, 1] by dividing with the total volume of the hyper-rectangle,
∏M
i=1 rHV,i.

4.6.2 Parameter Settings of Algorithms

The parameters for other compared algorithms are set as suggested in [8,45,150,184,187].

The specifications of these parameters are summarized in Tables 4.2 and 4.3.

Table 4.2: Parameters for various MOEAs for qualitative comparison of NAEMO.

Category Parameters Values Parameters Values

NAEMO µηc initialized as 30 knbr 0.2× ndir
µFDE initialized as 0.5 lhard ndir
µCR initialized as 0.2 lsoft Table 4.3 for DTLZ
flag1 true (only for DTLZ3) 400 (for 2-objective IMB)
flag2 true (only for DTLZ1) 900 (for 3-objective IMB)

Reproduction ηc 30 (for NSGA-III and θ-DEA) crossover 1 (for all MOEAs)
Parameters 20 (for other MOEAs) probability

ηm 20 (for all MOEAs) mutation 1/N (for all MOEAs)
probability

Decomposition θpbi 5 (for NAEMO, θ-DEA, neighborhood 20 (for MOEA/D and
Parameters MOEA/D-PBI, MOEA/DD) size MOEA/DD)

Other sampling 10,000 (for HypE) grid As per GrEA [184]
Parameters size divisions

Table 4.3: Population size settings for experiments in [160].

No. of Divisions to No. of reference Population size lsoft for
objectives (M) decompose (p1, p2) [45] vectors (ndir) for NSGA-III [45] NAEMO

3 12, 0 91 92 100

5 6, 0 210 212 220

8 3, 2 156 156 160

10 3, 2 275 276 280

15 2, 1 135 136 140

4.6.3 Comparison on DTLZ Problems

As per the specifications in [109, 187], the best, median and worst IGD (Tables 4.4 and

4.5) and HV values (Tables 4.6 and 4.7) of NAEMO are noted for DTLZ problems with

M ∈ {3, 5, 8, 10, 15}. For establishing the efficacy of NAEMO, the IGD and HV values

of other state-of-the-art MOEAs (NSGA-III, MOEA/D, θ-DEA*, MOEA/DD, GrEA and

HypE) are mentioned alongside in Tables 4.4, 4.5, 4.6 and 4.7. The maximum number of

generations (Gmax), upto which the MOEAs are executed, are also mentioned in Tables

4.4 and 4.5. These Gmax values are a standard setting as noted in [45,109].

4.6. EXPERIMENTAL RESULTS AND INTERPRETATIONS
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Table 4.4: Best, median, worst IGD values over 30 independent runs for comparing MOEAs
on M -objective multimodal (DTLZ1 and DTLZ3) problems [160].

Problems M Gmax NAEMO NSGA-III MOEA/D θ-DEA* MOEA/DD GrEA HypE

DTLZ1 2.725E-5 4.880E-4 4.095E-4 3.006E-4 3.191E-4 2.759E-2 1.822E+1
3 400 4.801E-5 1.308E-3 1.495E-3 9.511E-4 5.848E-4 3.339E-2 1.974E+1

1.119E-3 4.880E-3 4.743E-3 2.718E-3 6.573E-4 1.351E-1 2.158E+1
3.710E-5 5.116E-4 3.179E-4 3.612E-4 2.635E-4 7.369E-2 1.799E+1

5 600 5.854E-5 9.799E-4 6.372E-4 4.259E-4 2.916E-4 3.363E-1 2.141E+1
6.529E-5 1.979E-3 1.635E-3 5.797E-4 3.109E-4 4.937E-1 2.359E+1
4.477E-4 2.044E-3 3.914E-3 1.869E-3 1.809E-3 1.023E-1 1.030E+1

8 750 6.558E-4 3.979E-3 6.106E-3 2.061E-3 2.589E-3 1.195E-1 2.265E+1
2.389E-1 8.721E-3 8.537E-3 2.337E-3 2.996E-3 3.849E-1 2.426E+1
5.022E-4 2.215E-3 3.872E-3 1.999E-3 1.828E-3 1.176E-1 1.427E+1

10 1000 8.536E-4 3.462E-3 5.073E-3 2.268E-3 2.225E-3 1.586E-1 1.693E+1
1.762E-3 6.869E-3 6.130E-3 2.425E-3 2.467E-3 5.110E-1 2.034E+1
1.782E-3 2.649E-3 1.236E-2 2.884E-3 2.867E-3 8.061E-1 1.797E+1

15 1500 3.587E-3 5.063E-3 1.431E-2 3.504E-3 4.203E-3 2.057E+0 2.519E+1
4.464E-3 1.123E-2 1.692E-2 3.922E-3 4.699E-3 6.307E+1 2.954E+1

DTLZ3 1.395E-4 9.751E-4 9.773E-4 8.575E-4 5.690E-4 6.770E-2 1.653E+2
3 1000 1.682E-4 4.007E-3 3.426E-3 3.077E-3 1.892E-3 7.693E-2 1.700E+2

2.871E-4 6.665E-3 9.113E-3 5.603E-3 6.231E-3 4.474E-1 1.757E+2
4.173E-4 3.086E-3 1.129E-3 8.738E-4 6.181E-4 5.331E-1 1.826E+2

5 1000 4.893E-4 5.960E-3 2.213E-3 1.971E-3 1.181E-3 8.295E-1 2.172E+2
7.944E-4 1.196E-2 6.147E-3 4.340E-3 4.736E-3 1.124E+0 2.278E+2
2.654E-3 1.244E-2 6.459E-3 6.493E-3 3.411E-3 7.518E-1 2.196E+2

8 1000 3.476E-3 2.375E-2 1.948E-2 1.036E-2 8.079E-3 1.024E+0 2.700E+2
5.102E-3 9.649E-2 1.123E+0 1.549E-2 1.826E-2 1.230E+0 2.949E+2
1.760E-3 8.849E-3 2.791E-3 5.074E-3 1.689E-3 8.656E-1 1.720E+2

10 1500 1.994E-3 1.188E-2 4.319E-3 6.121E-3 2.164E-3 1.145E+0 2.893E+2
2.418E-3 2.082E-2 1.010E+0 7.243E-3 3.226E-3 1.265E+0 3.391E+2
2.226E-3 1.401E-2 4.360E-3 7.892E-3 5.716E-3 9.391E+1 2.358E+2

15 2000 3.017E-3 2.145E-2 1.664E-2 9.924E-3 7.461E-3 1.983E+2 2.635E+2
3.640E-3 4.195E-2 1.260E+0 1.434E-2 1.138E-2 3.236E+2 3.451E+2

From Tables 4.4 and 4.5, it can be noted that in only six out of 60 cases, MOEA/DD

performs slightly better than NAEMO. Similarly, from Tables 4.4 and 4.5, in only three

out of 60 cases, θ-DEA* performs only slightly better than NAEMO. However, in all the

remaining cases, NAEMO demonstrates improvement in IGD values, in some cases, even

by order of magnitude. This large margin of improvement can be attributed to the efficient

use of the neighborhood property (Theorem 4.1). NAEMO also uses the PBI function,

which creates a selection pressure on the points towards the optimal point (Section 4.4).

Tables 4.6 and 4.7, also show a similar trend in the performance of NAEMO.
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Figure 4.4: Estimated PFs from NAEMO for different types of DTLZ problems [160].
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Table 4.5: Best, median, worst IGD values over 30 independent runs for comparing MOEAs
on M -objective unimodal (DTLZ2 and DTLZ4) problems [160].

Problems M Gmax NAEMO NSGA-III MOEA/D θ-DEA* MOEA/DD GrEA HypE

DTLZ2 2.350E-4 1.262E-3 5.432E-4 7.567E-4 6.666E-4 6.884E-2 6.732E-2
3 250 3.542E-4 1.357E-3 6.406E-4 9.736E-4 8.073E-4 7.179E-2 6.910E-2

4.463E-4 2.114E-3 8.006E-4 1.130E-3 1.243E-3 7.444E-2 7.104E-2
4.589E-4 4.254E-3 1.219E-3 1.863E-3 1.128E-3 1.411E-1 2.761E-1

5 350 5.895E-4 4.982E-3 1.437E-3 2.146E-3 1.291E-3 1.474E-1 2.868E-1
7.831E-4 5.862E-3 1.727E-3 2.288E-3 1.424E-3 1.558E-1 2.922E-1
1.977E-3 1.371E-2 3.097E-3 6.120E-3 2.880E-3 3.453E-1 5.475E-1

8 500 2.410E-3 1.571E-2 3.763E-3 6.750E-3 3.291E-3 3.731E-1 6.033E-1
3.053E-3 1.811E-2 5.198E-3 7.781E-3 4.106E-3 4.126E-1 6.467E-1
1.753E-3 1.350E-2 2.474E-3 6.111E-3 3.223E-3 4.107E-1 6.778E-1

10 750 2.105E-3 1.528E-2 2.778E-3 6.546E-3 3.752E-3 4.514E-1 6.901E-1
2.429E-3 1.697E-2 3.235E-3 7.069E-3 4.145E-3 5.161E-1 6.917E-1
2.209E-3 1.360E-2 5.254E-3 7.269E-3 4.557E-3 5.087E-1 6.237E-1

15 1000 2.903E-3 1.726E-2 6.005E-3 8.264E-3 5.863E-3 5.289E-1 8.643E-1
4.019E-3 2.114E-2 9.409E-3 9.137E-3 6.929E-3 5.381E-1 3.195E+0

DTLZ4 4.209E-5 2.915E-4 2.929E-1 1.408E-4 1.025E-4 6.869E-2 6.657E-2
3 600 5.963E-5 5.970E-4 4.280E-1 1.918E-4 1.429E-4 7.234E-2 7.069E-2

1.320E-4 4.286E-1 5.234E-1 5.321E-1 1.881E-4 9.400E-1 5.270E-1
3.859E-5 9.849E-4 1.080E-1 2.780E-4 1.097E-4 1.422E-1 2.603E-1

5 1000 5.285E-5 1.255E-3 5.787E-1 3.142E-4 1.296E-4 1.462E-1 2.676E-1
7.452E-5 1.721E-3 7.348E-1 3.586E-4 1.532E-4 1.609E-1 5.301E-1
6.595E-4 5.079E-3 5.298E-1 2.323E-3 5.271E-4 3.229E-1 4.792E-1

8 1250 7.619E-4 7.054E-3 8.816E-1 3.172E-3 6.699E-4 3.314E-1 4.956E-1
1.208E-3 6.051E-1 9.723E-1 3.635E-3 9.107E-4 3.402E-1 5.387E-1
8.560E-4 5.694E-3 3.966E-1 2.715E-3 1.291E-3 4.191E-1 6.760E-1

10 2000 1.025E-3 6.337E-3 9.203E-1 3.216E-3 1.615E-3 4.294E-1 6.828E-1
1.189E-3 1.076E-1 1.077E+0 3.711E-3 1.931E-3 4.410E-1 6.877E-1
9.607E-4 7.110E-3 5.890E-1 4.182E-3 1.474E-3 4.975E-1 5.986E-1

15 3000 1.496E-3 3.431E-1 1.133E+0 5.633E-3 1.881E-3 5.032E-1 6.102E-1
2.788E-3 1.073E+0 1.249E+0 6.562E-3 3.159E-3 5.136E-1 6.126E-1

The resulting archive (AF,Gmax) in the objective space represents the estimated PF. It

is visualized in Fig. 4.4 using Cartesian plots for 3-objective problems and polar plots [68]

for higher-objective problems (Appendix B). From Fig. 4.4, these estimated PFs from

NAEMO are noted to be similar to the true PF for DTLZ problems (Section A.1 and Fig.

B.2). These observations establish the proficiency of NAEMO for DTLZ1-4 problems.

4.6.4 Comparison on IMB Problems

To establish the efficacy of NAEMO over the IMB problems, the best, mean and worst

HV values of NAEMO are compared in Table 4.8 with those of the M2M-based MOEAs,

according to the specifications in [115]. For M2M-based MOEAs, Gmax = 2000, ndir =

SkG = 10 (when M = 2) or ndir = 30 with SkG = 10 (when M = 3) are set as per [115]

while for NAEMO, ndir = 100 (when M = 2) or ndir = 276 (when M = 3) are set.

The respective HV values of ESOEA/DE [138] are also noted in Table 4.8 where the

specifications from Table 3.2 are considered.

NAEMO outperforms the M2M-based MOEAs for IMB1, IMB2, IMB4 and IMB6

4.6. EXPERIMENTAL RESULTS AND INTERPRETATIONS
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Table 4.6: Best, median, worst HV values over 30 independent runs for comparing MOEAs
on M -objective multimodal (DTLZ1 and DTLZ3) problems [160].

Problems M NAEMO NSGA-III MOEA/D MOEA/DD GrEA HypE

DTLZ1 0.973668 0.973519 0.973541 0.973597 0.967404 0.000000
3 0.973668 0.973217 0.973380 0.973510 0.964059 0.000000

0.973668 0.971931 0.972484 0.973278 0.828008 0.000000
0.999897 0.998971 0.998978 0.998980 0.991451 0.000000

5 0.999897 0.998963 0.998969 0.998975 0.844529 0.000000
0.999897 0.998673 0.998954 0.998968 0.500179 0.000000
0.999979 0.999975 0.999943 0.999949 0.999144 0.000000

8 0.999979 0.993549 0.999866 0.999919 0.997992 0.000000
0.994781 0.966432 0.999549 0.999887 0.902697 0.000000
0.999999 0.999991 0.999983 0.999994 0.999451 0.000000

10 0.999999 0.999985 0.999979 0.999990 0.998587 0.000000
0.999978 0.999969 0.999956 0.999974 0.532348 0.000000

DTLZ3 0.926512 0.926480 0.926598 0.926617 0.924652 0.000000
3 0.926411 0.925805 0.925855 0.926346 0.922650 0.000000

0.925641 0.924234 0.923858 0.924901 0.621155 0.000000
0.990532 0.990453 0.990543 0.990558 0.963021 0.000000

5 0.990532 0.990344 0.990444 0.990515 0.808084 0.000000
0.990428 0.989510 0.990258 0.990349 0.499908 0.000000
0.999327 0.999300 0.999328 0.999343 0.953478 0.000000

8 0.999325 0.924059 0.999303 0.999311 0.791184 0.000000
0.999324 0.904182 0.508355 0.999248 0.498580 0.000000
0.999923 0.999921 0.999922 0.999923 0.962168 0.000000

10 0.999921 0.999918 0.999920 0.999922 0.735934 0.000000
0.999921 0.999910 0.999915 0.999921 0.499676 0.000000

problems (with imbalanced difficulty). In cases of IMB7-IMB9 problems (with variable

linkage difficulty), the performance of NAEMO is relatively poor. Even so, its HV values

are quite comparable. While ESOEA/DE outperforms NAEMO in some test cases, it

requires a larger global population size [138]. Hence, NAEMO uniformly explores the

IMB problems to generate a well-diverse PF (Fig. 4.5). Thus, NAEMO is competitive to

the state-of-the-art MOEAs for addressing the IMB problems.
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Figure 4.5: Estimated PFs from NAEMO for IMB test problems [160].
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Table 4.7: Best, median, worst HV values over 30 independent runs for comparing MOEAs
on M -objective unimodal (DTLZ2 and DTLZ4) problems [160].

Problems M NAEMO NSGA-III MOEA/D MOEA/DD GrEA HypE

DTLZ2 0.926683 0.926626 0.926666 0.926674 0.924246 0.925691
3 0.926662 0.926536 0.926639 0.926653 0.923994 0.925650

0.926651 0.926395 0.926613 0.926596 0.923675 0.925531
0.990535 0.990459 0.990529 0.990535 0.990359 0.987889

5 0.990535 0.990400 0.990518 0.990527 0.990214 0.987665
0.990521 0.990328 0.990511 0.990512 0.990064 0.987545
0.999352 0.999320 0.999341 0.999346 0.999991 0.997401

8 0.999340 0.978936 0.999329 0.999337 0.999670 0.996551
0.999329 0.919680 0.999307 0.999329 0.989264 0.995761
0.999923 0.999918 0.999922 0.999952 0.997636 0.998995

10 0.999923 0.999916 0.999921 0.999932 0.996428 0.998934
0.999921 0.999915 0.999919 0.999921 0.994729 0.998913

DTLZ4 0.926733 0.926659 0.926729 0.926731 0.924613 0.926351
3 0.926733 0.926705 0.926725 0.926729 0.924094 0.926223

0.926652 0.799572 0.500000 0.926725 0.500000 0.800459
0.990581 0.991102 0.990569 0.990575 0.990514 0.988150

5 0.990569 0.990413 0.990568 0.990573 0.990409 0.988009
0.990431 0.990156 0.973811 0.990570 0.990221 0.987743
0.999382 0.999363 0.999363 0.999364 0.999102 0.997994

8 0.999371 0.999361 0.998497 0.999363 0.999039 0.997730
0.999327 0.994784 0.995753 0.998360 0.998955 0.997569
0.999921 0.999915 0.999918 0.999921 0.999653 0.999019

10 0.999921 0.999910 0.999907 0.999920 0.999608 0.998934
0.999921 0.999827 0.999472 0.999917 0.999547 0.998921

4.6.5 Analyzing the Mutation Switching Scheme

To assess the efficacy of mutation switching scheme of NAEMO, instead of Algorithm 4.2,

SBX crossover (Eq. (4.13)) followed by polynomial mutation (Eq. (4.15)) are considered

in line 18 of Algorithm 4.1. The IGD value from this altered framework (NAEMO-SBX) is

noted in Table 4.9 for 10-objective DTLZ1-4 problems. The values in Table 4.9 show that

NAEMO is more robust than NAEMO-SBX. NAEMO’s mutation switching (Algorithm

4.2) is a generic framework where other reproduction strategies could also be integrated

to combine their advantages for covering a wider range of problem characteristics.

4.6.6 Diversity Plots

A comparison of the D metric plots of NAEMO is presented for DTLZ1 and DTLZ3 prob-

lems (multi-modal) in Fig. 4.6. The multi-modal problems can cause changes in diversity

while overcoming local optima [161]. The D metric plots for NAEMO are monotonically

decreasing as proven in Section 4.5.8. Not only NAEMO attains the ideal D metric much

faster than the other MOEAs, but also the diversity does not monotonically improve for

4.6. EXPERIMENTAL RESULTS AND INTERPRETATIONS
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Table 4.8: Best, mean, worst HV values over 30 independent runs for comparing NAEMO
with M2M-based MOEAs on IMB problems [160].

Problems NAEMO ESOEA/DE NSGA-II MOEA/D SMS-EMOA SPEA2 GVEGA
-M2M -M2M -M2M -M2M -M2M

0.6477 0.6712 0.6375 0.6387 0.6402 0.6384 0.6475
IMB1 0.6441 0.6640 0.6360 0.6375 0.6386 0.6372 0.6408

0.6399 0.6569 0.6353 0.6354 0.6363 0.6351 0.5969

0.4734 0.4902 0.4605 0.4627 0.4639 0.4605 0.4750
IMB2 0.4710 0.4838 0.4577 0.4608 0.4592 0.4564 0.4509

0.4657 0.4700 0.4537 0.4583 0.4411 0.4487 0.4224

0.1801 0.1923 0.1828 0.1851 0.1845 0.1824 0.1964
IMB3 0.1745 0.1838 0.1815 0.1836 0.1834 0.1802 0.1950

0.1639 0.1728 0.1801 0.1824 0.1819 0.1783 0.1914

0.7886 0.7716 0.7445 0.7803 0.7792 0.7476 0.7798
IMB4 0.7812 0.7599 0.7424 0.7795 0.7786 0.7421 0.7790

0.7531 0.7488 0.7398 0.7785 0.7783 0.7364 0.7784

0.4117 0.4306 0.3874 0.4266 0.4169 0.3973 0.4215
IMB5 0.4026 0.4247 0.3842 0.4229 0.4140 0.3906 0.4209

0.3974 0.4205 0.3802 0.4202 0.4119 0.3832 0.4205

0.8046 0.7998 0.7700 0.7916 0.7859 0.7814 0.7837
IMB6 0.7996 0.7921 0.7686 0.7909 0.7856 0.7807 0.7833

0.7961 0.7843 0.7675 0.7904 0.7853 0.7801 0.7828

0.6501 0.6682 0.6499 0.6545 0.6559 0.6515 0.6540
IMB7 0.6471 0.6559 0.6482 0.6540 0.6550 0.6505 0.6537

0.6443 0.6415 0.6464 0.6534 0.6542 0.6494 0.6531

0.4777 0.4885 0.4798 0.4840 0.4852 0.4811 0.4863
IMB8 0.4703 0.4770 0.4774 0.4830 0.4835 0.4795 0.4857

0.4519 0.4676 0.4756 0.4820 0.4820 0.4768 0.4848

0.1836 0.1989 0.1925 0.1975 0.1974 0.1930 0.2011
IMB9 0.1777 0.1951 0.1912 0.1960 0.1961 0.1919 0.2005

0.1719 0.1911 0.1896 0.1946 0.1947 0.1911 0.1998

Table 4.9: Best, median, worst IGD values over 30 runs for demonstrating the effectiveness
of NAEMO’s mutation switching scheme on 10-objective DTLZ problems [160].

Problems NAEMO-SBX NAEMO NSGA-III MOEA/D θ-DEA* MOEA/DD GrEA HypE

1.787E-3 5.022E-4 2.215E-3 3.872E-3 1.999E-3 1.828E-3 1.176E-1 1.427E+1
DTLZ1 2.668E-3 8.536E-4 3.462E-3 5.073E-3 2.268E-3 2.225E-3 1.586E-1 1.693E+1

2.751E-3 1.762E-3 6.869E-3 6.130E-3 2.425E-3 2.467E-3 5.110E-1 2.034E+1

1.827E-3 1.753E-3 1.350E-2 2.474E-3 6.111E-3 3.223E-3 4.107E-1 6.778E-1
DTLZ2 1.980E-3 2.105E-3 1.528E-2 2.778E-3 6.546E-3 3.752E-3 4.514E-1 6.901E-1

2.369E-3 2.429E-3 1.697E-2 3.235E-3 7.069E-3 4.145E-3 5.161E-1 6.917E-1

4.414E-3 1.760E-3 8.849E-3 2.791E-3 5.074E-3 1.689E-3 8.656E-1 1.720E+2
DTLZ3 1.842E-2 1.994E-3 1.188E-2 4.319E-3 6.121E-3 2.164E-3 1.145E+0 2.893E+2

2.190E-2 2.418E-3 2.082E-2 1.010E+0 7.243E-3 3.226E-3 1.265E+0 3.391E+2

9.227E-4 8.560E-4 5.694E-3 3.966E-1 2.715E-3 1.291E-3 4.191E-1 6.760E-1
DTLZ4 1.016E-3 1.025E-3 6.337E-3 9.203E-1 3.216E-3 1.615E-3 4.294E-1 6.828E-1

1.042E-3 1.189E-3 1.076E-1 1.077E+0 3.711E-3 1.931E-3 4.410E-1 6.877E-1

any other MOEAs. This huge difference in the D metric convergence is owing to the

effective utilization of the neighborhood property (Theorem 4.1) in NAEMO.

4.6.7 Decomposition of Objective Space versus Objective Reduction

It is observed from Tables 3.6 and 3.7 that aDECOR (an objective reduction based MOEA)

has superior convergence but poor diversity whereas ESOEA/DE (a reference vector as-

sisted decomposition-based MOEA) improves the diversity of solutions over the estimated

4.6. EXPERIMENTAL RESULTS AND INTERPRETATIONS
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(a) DTLZ1 (M = 3) (b) DTLZ1 (M = 8) (c) DTLZ3 (M = 3) (d) DTLZ3 (M = 8)

Figure 4.6: D metric plots showing faster diversity attainment rate of NAEMO [160].

PF. Thus, the performance of NAEMO is compared with aDECOR and ESOEA/DE on

DTLZ1-4 problems (M = 10) in Fig. 4.7 using the comparison framework of [83]. For

HV evaluation, RHV =
[
3,

M· · ·, 3
]

and |HHV | = 10, 000 is considered as per [138,142]. For

IGD evaluation, |HIGD| = 5000 (6= ndir) points are uniformly sampled from the true PF.
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Figure 4.7: Mean HV and IGD values over 30 independent runs to compare decomposition-
based MOEAs (ESOEA/DE and NAEMO) with objective reduction based MOEA
(aDECOR) on 10-objective DTLZ1-4 problems where for better scaling, the maximum
limit on y-axis of IGD is considered as 2.

It is seen from Fig. 4.7 that the reference-vector assisted decomposition-based MOEAs

(ESOEA and NAEMO) have largely outperformed the objective reduction based MOEA

(aDECOR) in all the cases. Although the difference in performance between NAEMO

and ESOEA is small, NAEMO is superior for most of these test cases as DTLZ1-4 prob-

lems have regular PFs. Thus, this experiment establishes the superiority of NAEMO for

problem characteristics similar to DTLZ1-4 problems.

4.6.8 Miscellaneous Experiments

These experiments compare NAEMO with variants of Multi-Objective Particle Swarm

Optimization (MOPSO) [30,36,121], analyze its Purity metric [10,11], study its effect on

scaled and disconnected PF and compare its computational time requirements.

4.6. EXPERIMENTAL RESULTS AND INTERPRETATIONS
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1) Comparison of NAEMO with MOPSO variants: NAEMO is compared with

MOPSO [36] and dMOPSO [121] using mean HV values in Table 4.10, as per the speci-

fications in [187]. For HV evaluation, the estimated PF is normalized between Fnad and

Fide, and RHV is set at 1.1Fnad. NAEMO outperforms both MOPSO and dMOPSO in

Table 4.10. A zero HV of MOPSO implies that its estimated PF is completely outside the

hyper-rectangle used for calculating the HV.

Table 4.10: Mean HV over 30 runs for comparing NAEMO with MOPSO variants [160].

Number of objectives (M) Number of objectives (M)
MaOEAs 3 5 8 10 3 5 8 10

NAEMO

D
T

L
Z

1 1.304662 1.609497 2.143047 2.593741

D
T

L
Z

2 0.744830 1.308778 1.980806 2.515441
MOPSO 0 0 0 0 0.638144 0.510065 0.060562 0.082047

dMOPSO 1.074976 1.482412 1.824428 2.317805 0.712523 1.239853 1.816420 2.428399

NAEMO

D
T

L
Z

3 0.744840 1.308723 1.980405 2.515377

D
T

L
Z

4 0.744848 1.308761 1.980838 2.515418
MOPSO 0 0 0 0 0 0 0 0

dMOPSO 0.665529 1.252229 1.428208 2.107556 0.677459 1.203429 1.829561 2.438748

2) Performance of NAEMO based on Purity Metric: The purity metric [10,11]

compares two or more approximations of PF as described in Section 1.3.3. NAEMO is

observed to be superior when compared to other MOEAs using purity metric in Table

4.11. Also, for DTLZ4, NAEMO, NSGA-III and θ-DEA have much higher purity values

than HyPE and MOPSO. This result shows the necessity of decomposition-based MOEAs

for problems with a biased solution density.

Table 4.11: Mean purity values over 30 independent runs for comparing MOEAs [160].

Number of objectives (M) Number of objectives (M)
MaOEAs 3 5 8 10 3 5 8 10

NAEMO

D
T

L
Z

1

1.000000 1.000000 1.000000 1.000000

D
T

L
Z

2

1.000000 1.000000 1.000000 1.000000
HypE 0.000000 0.004762 0.012821 0.537879 0.318681 0.195238 0.339744 0.647273

MOPSO 0.017241 0.066667 0.326923 0.742424 0.406593 0.404762 0.551282 0.469091
NSGA-III 0.431034 0.633333 0.858974 0.946970 0.714286 0.638095 0.570513 0.512727
θ-DEA 0.965517 0.795238 0.980769 0.992424 0.637363 0.780952 0.750000 0.730909

NAEMO

D
T

L
Z

3

1.000000 1.000000 1.000000 1.000000

D
T

L
Z

4

1.000000 1.000000 1.000000 1.000000
HypE 0.092105 0.066667 0.500000 0.450909 0.844444 0.766667 0.224359 0.221818

MOPSO 0.026316 0.190476 0.282051 0.269091 0.077778 0.333333 0.538462 0.676364
NSGA-III 0.236842 0.509524 0.416667 0.505455 0.966667 0.990476 1.000000 1.000000
θ-DEA 0.421053 0.247619 0.634615 0.578182 0.977778 0.990476 0.993590 1.000000

3) Weaknesses of NAEMO - Scaled and Disconnected Pareto-Fronts: WFG1

and WFG2 problems are considered as examples of problems with scaled and disconnected

PF (Section A.2). For WFG2 problem with even M , N is set to 23 and for all other cases,

N is set to 24 as per [138, 187]. For these problems, the mean HV values of NAEMO is

noted in Table 4.12, as done in [187]. For HV evaluation, the estimated PF is normalized

between Fnad and Fide, and RHV is set at 1.1Fnad. NAEMO has worst performance
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in Table 4.12 as it does not have any explicit scaling mechanism integrated with the

framework and it retains a solution in every sub-space if ever associated. For WFG1 (Fig.

4.8a, 4.8b) still a considerable part of the PF is estimated by NAEMO as opposed to the

poor convergence for WFG2 (Fig. 4.8c, 4.8d).

Table 4.12: Mean HV values over 30 independent runs for comparing NAEMO with other
MOEAs on WFG1 and WFG2 problems [160].

Problems M Gmax NAEMO NSGA-III MOEA/D GrEA HypE dMOPSO

WFG1 3 400 0.387079 0.669729 0.657143 0.846287 0.976181 0.403170
5 750 0.418739 0.859552 1.349888 1.268898 0.911020 0.461233
8 1500 0.504653 1.424963 1.755326 1.769013 1.536599 0.484046
10 2000 0.553354 2.249535 1.799394 2.365107 2.268813 0.536340

WFG2 3 400 0.289046 1.226956 1.111085 1.226099 1.244737 1.125810
5 750 0.322285 1.598410 1.520168 1.570086 1.535704 1.478517
8 1500 0.390006 2.136525 2.016854 2.102930 2.084336 1.971067
10 2000 0.445272 2.588104 2.459026 2.570389 2.556327 2.406484
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Figure 4.8: Estimated PFs from NAEMO for WFG1 and WFG2 problems [160].

4) Computational Time Requirement: On the same platform, the average exe-

cution time of NAEMO [160] is compared with that of NSGA-III [45] for several cases of

DTLZ problems (Fig. 4.9). NAEMO requires lesser execution time than NSGA-III as the

main computation-intensive parts of NAEMO get initiated only when the if condition in

line 19 of Algorithm 4.1 is satisfied. Although the execution time should increase with

an increase in M , yet the MOEAs need more time for problems with M = 5 than for

problems with M = 8. This requirement is because ndir (and associatively, the number

of candidates) is smaller when M = 8 than when M = 5 (Table 4.3) by Das and Dennis’

approach of reference-vector initialization (Section 3.2.1).

All these experiments demonstrate the overall efficacy of NAEMO to tackle many-

objective optimization problems (from DTLZ and IMB test suites) with several char-

acteristics like unimodality, multi-modality, a biased density of solutions, meta-variable

mapping, imbalance mapping difficulty and variable linkage difficulty.
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Figure 4.9: Computational time requirements of NAEMO and NSGA-III where for better
scaling, the maximum limit along time-axis is 4500 seconds [160].

4.7 Conclusion

Motivated by the success of the decomposition-based MOEAs and the necessity of the-

oretical analyses to understand the working of such MOEAs, this chapter discusses the

algorithmic framework of NAEMO where the neighborhood property of the MaOO prob-

lems is identified and used for selecting the mating candidate solutions for the generation

of new candidate solutions. Moreover, NAEMO aims to preserve and monotonically im-

prove the diversity through periodic filtering of the archive where if a candidate solution

ever gets associated with a reference-vector, it is never lost along the evolutionary process.

The robust performance of NAEMO to tackle MaOO problems with several characteristics

like unimodality, multi-modality, biased solution density, meta-variable mapping, imbal-

ance mapping difficulty and variable linkage difficulty, has been demonstrated through

experiments on problems from DTLZ and IMB test suite. Results indicate that NAEMO

outperforms several contemporary state-of-the-art MOEAs on these test problems.

While the usual algorithmic designs of MOEAs (Section 1.3.1), including those of

DECOR [142], ESOEA [138] and NAEMO [160], deal with the solution distribution in the

objective space, it is essential to analyze the solution distribution in the decision space as

well. Such an analysis forms the basis of developing algorithms for Multi-Modal Multi-

Objective Problems (MMMOPs) [171] and are extremely important from the practical

perspective of decision-making. Hence, algorithms for MMMOPs are considered in the

next chapter.

4.7. CONCLUSION
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Outline

Objective: To develop a generic algorithm using reference-vector as-

sisted decomposition of objective space and spectral clustering in the de-

cision space for addressing many-objective optimization problems (in-

cluding multi-modal problems).

Workflow:

Develop LORD to reduce crowding illusion by 

clustering solutions in decision space and evaluating 

crowding distance with each cluster 

Establish the crowding illusion problem arising from 

using crowding distance over the entire decision space

Develop LORD-II by extension to avoid dominance 

resistance for higher number of objectives

Analyze LORD and LORD-II for MMMOPs with 

high number of decision variables and objectives

111



112 OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY

5.1 Introduction

Multi-Modal Multi-Objective Problem (MMMOP) [171] maps a set of kPS (≥ 2) distinct

decision vectors (AM = {X1,X2, · · · ,XkPS}) to almost same objective vectors (formally

given by Eq. (1.17), illustrated in Fig. 1.4). By the neighborhood property (Theorem 4.1),

MMMOPs have kPS partitions in the decision space. Thus, the Pareto-optimal Set (PS)

of MMMOPs consists of multiple subsets, where each subset can independently generate

the identical regions of the Pareto-Front (PF). However, it is observed from the previous

chapters that the standard Multi-Objective Evolutionary Algorithms (MOEAs) [32, 127]

(Section 1.3.1) focus mainly on the objective space and overlook the solution distribution

in the decision space. Thus, MMMOPs are difficult for such MOEAs.

Research on MMMOPs is motivated to discover those kPS alternative solutions for

nearly the same objective values such that the non-numeric, domain-specific attributes of

these solutions can be analyzed and compared during decision-making. Moreover, when

the practical implementation of a solution is hindered, a nearly equivalent alternative can

be beneficial. Such MMMOPs are seen in rocket engine design [103], feature selection

problem [189] and path-planning problem [90].

In contrast to standard MOEAs, MOEAs for MMMOPs have improved diversity in the

decision space but poor performance in the objective space [56, 113, 120, 188]. To explore

this gap, this chapter explains the drawback of using crowding distance in the decision

space when solving MMMOPs. Subsequently, graph Laplacian based Optimization using

Reference-vector assisted Decomposition (LORD) is presented, which uses decomposition

in both objective and decision space for dealing with MMMOPs. Its filtering step is further

extended to present LORD-II algorithm, which demonstrates its dynamics on Multi-Modal

Many-Objective Problems (MMMaOPs). The performance of these frameworks are com-

pared on 34 test instances (obtained from the CEC 2019 test suite for MMMOPs [112])

with the state-of-the-art MOEAs for MMMOPs, Multi-Objective Optimization (MOO) or

Many-Objective Optimization (MaOO) problems.

The rest of the chapter is organized as follows: Section 5.2 presents the related stud-

ies on the exploring the decision space, Section 5.3 explains the issue of directly using

crowding distance, Section 5.4 outlines the frameworks of LORD and LORD-II, Section

5.5 investigates their performance and Section 5.6 concludes this chapter with a summary.

5.1. INTRODUCTION
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5.2 Related Studies on Manipulation of Solution Distribu-

tion in the Decision Space

Omni-optimizer [51] is the earliest work to consider the solution diversity in the decision

space1. It uses of crowding distance in the decision space (CDX) after the non-dominated

sorting [51] but hampers the solution diversity in the objective space. The work in [21]

uses neighborhood count and Lebesgue contribution to promote solution diversity in the

decision and objective spaces, respectively. The work in [198] considers CDX and a prob-

abilistic model to estimate PS and PF but performs poorly when PS is a linear manifold.

Extensive research on Multi-Modal Multi-Objective Evolutionary Algorithms (MM-

MOEAs) started with Decision-Niched NSGA-II (DN-NSGA-II) [113], which replaces the

crowding distance in the objective space (CDF) with CDX in NSGA-II. Another MM-

MOEA combines NSGA-II with Weighted Sum Crowding Distance and Neighbor-hood

Based Mutation (NSGA-II-WSCD-NBM) [91]. Unlike these preliminary MMMOEAs,

MO Ring PSO SCD [188] demonstrates that diversity preservation and niching methods

(like ring topology) play vital roles for several MMMOPs. Although computationally

expensive, Zoning Search (ZS) [56] further enhances its diversity in the decision space.

MOEA/D with Addition and Deletion operators (MOEA/D-AD) [169] introduces the no-

tion of almost same Pareto-optimal solutions. Multi-Modal Multi-Objective Evolutionary

Algorithm with Two Archive and Recombination (TriMOEA TA&R) [118] benefits those

MMMOPs where a subspace can be extracted from the convergence-related decision vari-

ables [118]. Two recent studies: Differential Evolution for MMMOPs (DE-TriM) [137] and

Multi-Modal NAEMO (MM-NAEMO) [120] use reference-vector assisted decomposition

of objective space and adaptive reproduction strategies. However, these MMMOEAs have

inferior performance in the objective space as compared to the standard MOEAs. Earlier

in 2019, a Niching Indicator based Multi-Modal many-objective Optimizer (NIMMO) [170]

demonstrated its performance on a few MMMaOPs. However, NIMMO [170] investigated

its performance only on MMMaOPs [76] with 2-dimensional decision space.

Thus, several MMMOEAs [56,113,120,188] exhibit poor performance in the objective

space and have only been tested on non-scalable problems, which motivate the design of

better MMMOEAs for problems with high numbers of variables (N) and objectives (M).

1In this thesis, decision space, variable space and solution space are considered as synonymous.

5.2. RELATED STUDIES ON MANIPULATION OF SOLUTION DISTRIBUTION IN
THE DECISION SPACE
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5.3 The Crowding Illusion Problem

Most MMMOEAs [51, 91, 113, 137, 188, 198] use CDX to assess the solution distribution.

However, using CDX over the entire decision space can be illusional. To describe the

problem, let the example in Fig. 5.1 be considered. It has an isolated � solution in the

estimated PS. However, due to overlap along different dimensions of the decision space,

� has nearby neighbors in both objective and decision space impacting the evaluation

(perimeter of hyper-rectangle bounded by neighbors). Thus, by the crowding distance-

based sorting approach of [137, 188], this � solution appears towards at the end of the

sorted list as a more crowded solution. This ambiguity arising due to the use of CDX over

the entire decision space is being termed as the crowding illusion problem, henceforth.

Cluster 1 of size 9 Cluster 2 of size 1
Cluster 3 of size 5 Cluster 4 of size 5

(a) Decision Space

Cluster 1 of size 9 Cluster 2 of size 1
Cluster 3 of size 5 Cluster 4 of size 5

(b) Objective Space

Figure 5.1: Crowding illusion problem on the results of a benchmark test prob-
lem (MMF3 [112]) arises due to overlap along different dimensions of the decision
space which gives the illusion that � is crowded. Usual sorting (without cluster-
ing of solutions in the decision space) from least crowded to most crowded gen-
erates
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i.e., with � at 19th position whereas
LORD’s sorting (which relies on clustering of solutions in the decision space) generates
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i.e., with � at 2nd position.

5.4 Algorithmic Frameworks of LORD and LORD-II [140]

Graph Laplacian based Optimization with Reference-vector guided Decomposition (LORD)

[140] is developed for addressing a wide range of problems (MMMOPs or otherwise). It is

further extended to LORD-II for MMMaOPs. In order to reduce the adverse effects of the

crowding illusion problem, graph Laplacian based clustering (spectral clustering) is used

5.3. THE CROWDING ILLUSION PROBLEM
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in LORD to decompose the decision space while reference-vector based approach is used

to decompose the objective space. Diversity preservation is collaboratively conducted in

each decomposed sub-region.

The following aspects motivate the design of LORD and LORD-II:

1. As there is no standard formulation for the solution diversity in the decision space, it

is either denoted by the solution distribution [137,188] or by the number of optimal

solutions [118]. Thus, LORD and LORD-II characterize the solution diversity in the

decision space using both the number and distribution of solutions.

2. To reduce the effect of the crowding illusion problem (Section 5.3), LORD clusters a

set of non-dominated solutions and, thereafter, computes crowding distance within

each cluster. For the example in Fig. 5.1, the � solution appears as a much less

crowded solution by using the sorting approach of LORD.

3. To yield the competitive performance in objective space similar to standard MOEAs,

unlike other MMMOEAs, LORD demonstrates the synergism of diversity preserva-

tion, adaptation of hyper-parameters, reference-vector based decomposition of the

objective space, and utilization of the neighborhood property [160] (Theorem 4.1)

during mating pool formation and candidate selection.

Thus, LORD [140] utilizes decomposition in the decision space and is extended to

LORD-II for investigating the scalability on MMMaOPs by varing M and N .

5.4.1 General Framework

LORD (Algorithm 5.1) considers the problem description (prob(N,M)), population size

(npop), maximum function evaluations (MaxFES) and the set of reference-vectors (W by

Eq. (3.1) to decompose the objective space, Section 3.2.1) as input. It estimates PS and

PF as the output. Its major blocks are outlined next.

During initialization (line 2), the population (AG=1) is formed with npop candidates

using Eq. (2.1). The mean values of reproduction parameters (µFDE ,G=1, µCR,G=1 and

µηc,G=1) are initialized. For the kth reference vector (Wk), the indices of other reference

vectors are stored in the kth row of the neighborhood lookup matrix, Nk ∈ N , sorted

by distance from Wk. Then, the for-loop (lines 3 to 13) executes different generations of

LORD until Gmax = bMaxFES/ndirc. Each generation G iterates over all ndir sub-spaces.
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Algorithm 5.1 General Framework of LORD and LORD-II [140]

Input: prob(N,M): An MMMOP having N -dimensional decision space (lower-bounded
by XL and upper-bounded by XU ) and M -dimensional objective space; npop: Popula-
tion size; MaxFES: Maximal of fitness evaluations; W: Set of ndir reference vectors
(as in [40,109])

Output: AGmax : Estimated PS; AF,Gmax : Estimated PF
1: procedure LORD(prob, npop, MaxFES, W)
2: Initialize AG, N , µFDE ,G, µCR,G, µηc,G, for G = 1
3: for G = 1 to Gmax do
4: SFDE ← ∅, SCR ← ∅, Sηc ← ∅
5: for k = 1 to ndir (for each direction) do
6:

[
Xchild, FDE , CR, ηc

]
← PERTURB using Algorithm 5.2

7: AG ← FILTER(AG, Xchild) using Algorithm 5.4 (LORD) or 5.5 (LORD-II)
8: if Xchild ∈ AG then
9: SFDE ← SFDE ∪ FDE , SCR ← SCR ∪ CR, Sηc ← Sηc ∪ ηc

10: end if
11: end for
12: µFDE ,G+1 ← mean(SFDE ), µCR,G+1 ← mean(SCR), µηc,G+1 ← mean(Sηc)
13: end for
14: return AGmax and AF,Gmax = {F(X)|X ∈ AGmax}
15: end procedure

Within one iteration, solution perturbation (line 6) and population filtering (line 7) are

performed, as described in the next paragraphs. If the child candidate Xchild survives

the filtering step, the reproduction parameters involved in its creation are appended to

respective success vectors (SFDE , SCR and Sηc) in lines 8 to 10. When the generation G

ends, the mean of reproduction parameters are updated in line 12 using respective success

vectors. The population (AGmax) at the end of Gmax generations estimates PS and the

set AF,Gmax of corresponding objective vectors represents the estimated PF.

The generation of Xchild in line 6 of Algorithm 5.1 uses Algorithm 5.2. The first parent

X1 is randomly chosen from the candidates associated with Wk (line 7) where candidate

association is dictated by Eq. (3.2). The remaining parents (in line 10 or 17) and also X1

(if the kth sub-space is empty in lines 3 to 5) are randomly chosen using the mating pool

formation principle (described in next paragraph). The parameter Pmut chooses between

DE/rand/1/bin [153,168] and SBX crossover [44,113] (in line 9 or 16). The reproduction

parameters (ηc, F
DE and CR) are sampled from Gaussian distributions with mean values

provided by µηc,G, µFDE ,G and µCR,G and empirically chosen standard deviations, in line 11

or 18. Both SBX crossover and DE/rand/1/bin are followed by Polynomial mutation [110]

in lines 14 and 21, respectively, as it helps to avoid local optima [110]. The sampled values

of reproduction parameters and Xchild are returned in line 24.
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Algorithm 5.2 Reproduction of Child Candidate [140]

Input: AG: Population; Nk: Mating pool; {µFDE ,G, µCR,G, µηc,G}: Reproduction pa-

rameters; Wk: k
th reference vector; Pmut: Probability of mutation switching

Output: Xchild: Child; {FDE , CR, ηc}: Reproduction parameters used
1: procedure PERTURB(AG, Nk, µFDE ,G, µCR,G, µηc,G, Wk, Pmut)
2: if no candidate is associated with Wk then
3: N′ ← First knbr non-empty vectors from Nk

4: Wr ← Reference vector for random index r ∈ N′

5: X1 ← Random candidate associated with Wr

6: else
7: X1 ← Random candidate associated with Wk

8: end if
9: if rand(0, 1) > Pmut then

10: Amatk,G ← MATING POOL(Nk, AG, 3) using Algorithm 5.3

11: FDE ← N
(
µFDE ,G, 0.1

)
, CR← N (µCR,G, 0.1)

12: [X2,X3,X4]← Randomly from Amatk,G

13: X′child ← DE/rand/1/bin [165] with X1 to X4, F
DE , CR using Eq. (2.2)-(2.3)

14: Xchild ← Polynomial mutation [110] on X′child using Eq. (4.15)-(4.16)
15: ηc ← ∅
16: else
17: Amatk,G ← MATING POOL(Nk, AG, 1) using Algorithm 5.3
18: ηc ← N (µηc,G, 5)
19: X2 ← Randomly from Amatk,G

20: X′child ← SBX-crossover [44] with X1, X2, ηc using Eq. (4.13)-(4.14)
21: Xchild ← Polynomial mutation [110] on X′child using Eq. (4.15)-(4.16)
22: FDE ← ∅, CR← ∅
23: end if
24: return Xchild, FDE , CR, ηc
25: end procedure

Algorithm 5.3 Mating Pool Formation [140]

Input: Nk: Sorted array of nearest neighboring directions of Wk; AG: Population in
decision space; nS : Number of sub-spaces to be chosen

Output: Amatk,G : Sub-population selected for mating
1: procedure MATING POOL(Nk, AG, nS)
2: N′ ← First knbr non-empty vectors from Nk

3: {Wr1 , · · · ,WrnS
} ← Reference vectors for random indices {r1, · · · , rnS} ∈ N′

4: Amatk,G ← Candidates of AG associated with {Wr1 , · · · ,WrnS
}

5: return Amatk,G

6: end procedure

The mating pool (Amatk,G ) formation in line 10 or 17 of Algorithm 5.2 uses Algorithm

5.3. It considers knbr nearest non-empty reference vectors of Wk (line 2), from which nS

random reference vectors {Wr1 , · · · ,WrnS
} are selected in line 3. The parameter nS is the

minimum number of candidates required as per a reproduction strategy. All candidates

associated with {Wr1 , · · · ,WrnS
} form Amatk,G in line 4 and returned from line 5.
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To maintain a constant npop, one of the candidates from AG∪Xchild is removed in line

7 of Algorithm 5.1 by calling the filtering operation, which is described after explaining

the approach to decompose the population in the decision space.

5.4.2 Decomposition of the Decision Space

The filtering operation in line 7 of Algorithm 5.1 involves graph Laplacian based parti-

tioning (spectral clustering) [178] of a set of solutions (And) in the decision space. This

clustering operation has the following steps:

1) Create nearest neighbor graph (G): All candidates of And are used as the nodes

of graph G. Euclidean distances between all pairs of candidates inAnd are evaluated. Edges

are placed between pairs of candidates (nodes) where distance is less than a threshold of

εL. Specifically, G (binary symmetric matrix) is the adjacency matrix representation.

2) Obtain symmetric normalized graph Laplacian (Lsym): A diagonal matrix

Gd is created using the degree of each node (row sum) of G. Using the identity matrix I

of the same order as G and Gd, Lsym [178] is obtained as follows:

Lsym = I − G−1/2d GG−1/2d . (5.1)

3) Obtain number of connected components (kCC): The algebraic multiplicity

of 0 eigenvalue of Lsym [178] gives the number of connected components (kCC) of G.

4) Assign candidates (nodes) to kCC clusters: By Cheeger’s inequality [19,23], the

sparsest cut of G is approximated by the second smallest eigenvalue of Lsym [59]. Thus, all

the eigenvectors from the second smallest to the kthCC eigenvalues are clustered (C1, · · · , CkCC)

using k-means [37] for assigning the candidates of And to the clusters in the decision space.

Examples of clustering of a non-dominated set of solutions are illustrated in Fig. 5.1a and

Fig. 5.2a for benchmark test problems [112]: MMF3 and MMF2, respectively.

For reducing crowding illusion (Section 5.3), spectral clustering of And is chosen over

k-means clustering due to the following reasons: (1) k-means is effective only for globular

structures whereas spectral clustering is effective for non-globular structure as well, (2) kCC

for k-means is not known apriori whereas kCC for spectral clustering can be obtained math-

ematically and (3) k-means (involved in step 4 of decomposition of And) is independent

of the number of decision variables (N).

5.4. ALGORITHMIC FRAMEWORKS OF LORD AND LORD-II [140]



OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY 119

5.4.3 Filtering Scheme of LORD

For maintaining the convergence and the solution diversity in both the objective and the

decision spaces, the filtering operation of LORD (Algorithm 5.4) has the following steps:

1. Obtain last non-dominated rank (maintaining convergence in objective space): Us-

ing non-dominated sorting on (AG ∪ Xchild), the solutions (And) in the last non-

dominated rank [109, 125] are obtained in lines 2 to 4. If
∣∣And∣∣ = 1, lines 5 to 17

yield the only Xdel ∈ And for elimination. Otherwise, some Xdel ∈ And (from the

least converged set of mutually non-dominated points) is eliminated by the next

steps.

2. Spectral clustering of candidates from And (maintaining diversity in decision space):

The candidates in And is partitioned in line 5 as mentioned in Section 5.4.2. Evaluat-

ing the crowding in the respective spaces, Special Crowding Distance (SCD) [137,188]

combines CDF (
∑M

j=1Dcrowd (X|fj)) and CDX (
∑N

k=1Dcrowd (X|xk)) by obtaining

Dcrowd(.) from Eq. (2.5) as follows:

SCD(X) =


max (CDX(X), CDF (X)) , if CDX(X) > mean (CDX(X))

or CDF (X) > mean (CDF (X))

min (CDX(X), CDF (X)) , otherwise.

(5.2)

SCD is evaluated per cluster in line 6. A sorted set (Ands ) of candidates is formed

by rearranging And in line 7 where at first the candidates with the highest SCD are

selected from each cluster, then candidates with the second-highest SCD are selected

from each cluster and so on. An example in Fig. 5.2b demonstrates Ands .

3. Association based elimination of candidate from Ands (maintaining diversity in ob-

jective space): Starting from the last candidate (worst) in Ands , the reference vector

Wk is obtained in line 9 with which Xj ∈ Ands associates. If multiple candidates

of (AG ∪Xchild) are associated with Wk (implying a dense sub-space), Xdel = Xj

is chosen for deletion (lines 10 to 13) as exemplified in Fig. 5.2 (see caption for

details). If all the sub-spaces with which candidates of Ands are associated have only

one candidate, the last candidate from Ands is chosen for deletion (lines 15 to 17).

Xdel is deleted from (AG ∪ Xchild) in line 18 to yield the filtered AG for the next

5.4. ALGORITHMIC FRAMEWORKS OF LORD AND LORD-II [140]



120 OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY

iteration. This filtered AG is returned from line 19 of Algorithm 5.4 to line 7 of

Algorithm 5.1.

Algorithm 5.4 Filter for constant Population Size (LORD) [140]

Input: AG: Current population; Xchild: Child candidate
Output: AG: Filtered population of size npop;
1: procedure FILTER(AG, Xchild)
2: AallF = {F(X)|X ∈ (AG ∪Xchild)}
3: AndF ← Last non-dominated rank of AallF

4: And = {X|F(X) ∈ AndF }
5: {C1, · · · , CkCC} ← Spectral clustering of And
6: Evaluate SCD cluster-wise
7: Ands ← Rearrange And by select one-by-one from C1 to CkCC w.r.t. SCD
8: for j =

∣∣Ands ∣∣ to 1 (starting from most-crowded) do
9: Wk ← Direction where Xj ∈ Ands is associated

10: if number of candidates associated with Wk > 1 then
11: Xdel ← Assign Xj for deletion
12: Break loop
13: end if
14: end for
15: if no Xdel is chosen then
16: Xdel ← Last candidate of Ands
17: end if
18: AG ← (AG ∪Xchild)−Xdel

19: return AG
20: end procedure

(a) Decision Space (MMF2)

X ∈ C1|X has highest SCD in C1
X ∈ C2|X has highest SCD in C2
X ∈ C3|X has highest SCD in C3
X ∈ C1|X has second-highest SCD in C1
X ∈ C2|X has second-highest SCD in C2
X ∈ C3|X has second-highest SCD in C3
X ∈ C1|X has third-highest SCD in C1
X ∈ C2|X has third-highest SCD in C2
X ∈ C1|X has fourth-highest SCD in C1
X ∈ C2|X has fourth-highest SCD in C2
X ∈ C1|X has fifth-highest SCD in C1

(b) Sorted Set (And
s ) (c) Objective Space (MMF2)

Figure 5.2: Filtering steps of LORD on a non-dominated set of solutions (And) which
rearranges candidates according to maximal SCD per cluster (C1 to CkCC = C3) to form the
sorted set (Ands ). LORD removes one candidate from the end of Ands if it is not the only
candidate within a subspace (e.g., the encircled candidate from S1 will not be removed,
whereas the encircled candidate from S5 can be removed) [140].

Explicit maintenance of the three essential properties is the most important char-

acteristics of LORD as a novel MMMOEA. While SCD explicitly accounts for solution

distribution in decision space, the candidates towards the end of Ands come from the big-
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ger clusters (e.g., Fig. 5.1 and Fig. 5.2) and are more likely to be deleted. Hence, LORD

implicitly takes care of the neighborhood count also as a diversity criterion.

5.4.4 Filtering Scheme of LORD-II

For avoiding dominance resistance with high number of objectives [32, 127], the filtering

operation is modified to yield LORD-II. It is based on Penalty-based Boundary Intersection

(PBI, Eq. (3.3)) and uses Algorithm 5.5 which involves the following steps:

1. PBI-based selection for deletion (maintaining convergence in objective space): The

objective vectors corresponding to all candidates of AG and Xchild are stored in AndF

in line 3. From each sub-space, the candidate with the maximum PBI [40, 109, 138]

is stored in Adel (lines 4 to 10) as potential candidates for deletion.

2. Disregarding based on association (maintaining diversity in objective space): Dele-

tion of a candidate from any sub-space with only one candidate would hamper the

diversity in the objective space. Hence, it is not considered in Adel (lines 7 to 10).

3. Spectral clustering of candidates (maintaining diversity in decision space): The can-

didates in And are partitioned in line 11 as mentioned in Section 5.4.2. The cardi-

nality is noted (lines 12 to 19) for those clusters, which share common element with

Adel (line 14). From the largest cluster (CIdel), the candidates common to those in

Adel are chosen to yield A′′del in line 20. The candidate with the largest PBI in A′′del
is deleted (lines 21 to 22) to yield the filtered AG for the next iteration.

(a) PBI-based creation of Adel (b) Tuning of Adel (c) Clustering in decision space

Figure 5.3: Filtering of LORD-II on a set of solutions (And): (a) candidates (X1, X2

and X3) with maximal PBI from each sub-space form Adel, (b) sub-spaces with only one
candidate (S2 with X2) are disregarded in Adel, (c) candidate X1, common to both largest
cluster (CIdel = C1 of size 40) and Adel, is deleted [140].
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Algorithm 5.5 Filter for constant Population Size (LORD-II) [140]

Input: AG: Current population; Xchild: Child candidate
Output: AG: Filtered population of size npop;
1: procedure FILTER(AG, Xchild)
2: And ← AG ∪Xchild

3: AndF = {F(X)|X ∈ And}
4: Adel ← ∅
5: for k = 1 to ndir (for each direction) do
6: AsubF,k ← Candidates of AndF,G associated with Wk

7: if
∣∣∣AsubF,k

∣∣∣ > 1 then

8: Adel ← Adel ∪ (X with max PBI in AsubF,k)
9: end if

10: end for
11: [C1, · · · , CkCC ]← Spectral clustering of And
12: Idel = 0, Mdel = 0
13: for j = 1 to kCC (for all clusters) do
14: if Adel ∩ Cj 6= ∅ then
15: if Mdel < |Cj | then
16: Idel = j, Mdel = |Cj |
17: end if
18: end if
19: end for
20: A′′del ← CIdel ∩ Adel
21: Xdel ← Select candidate with max PBI from A′′del
22: AG ← And −Xdel

23: return AG
24: end procedure

While the cluster size explicitly accounts for the number of optimal solutions, the

spectral clustering implicitly accounts for the solution distribution in the decision space.

The combination of these operations allows the LORD and LORD-II to effectively

address MMMOPs and MMMaOPs, respectively.

5.5 Experimental Results

For performance analysis, LORD and LORD-II are implemented in MATLAB R2018a

using a 64-bit computer (8 GB RAM, Intel Core i7 @ 2.20 GHz). The experimental

specifications of the benchmark MMMOPs, performance measures and parameter settings

of various competitor MOEAs are provided in the following sub-sections.

5.5. EXPERIMENTAL RESULTS



OBJECTIVE REDUCTION, DECOMPOSITION AND MULTI-MODALITY 123

5.5.1 Benchmark Problems

The benchmark problems from CEC 2019 test suite for MMMOPs [112] (defined in Section

A.5) are considered with MaxFES = 5000 × N and npop = 100 × N , as per [112].

Specifications of these MMMOPS are mentioned in Table 5.1. It should be noted that

MMF12 has discontinuous PF, hence the number of subsets in the global PS (#PSs) is

one per Pareto-optimal patch. While MMF10-13, MMF15 and MMF15 a have one global

PS but these are multi-modal problems as these have local PSs close to their global PS.

Table 5.1: Specifications for M -objective MMMOPs in terms of N -dimensional decision
space, upper and lower bounded between XU and XL having reference point at RHV for
HV calculation with NIGD number of points in the reference set for IGD evaluation and
number of subsets in the global PS (#PSs) [137,140].

Problems N M XL XU RHV NIGD #PSs

MMF1 2 2 [1,−1] [3, 1] [1.1, 1.1] 400 2

MMF1 z 2 2 [1,−1] [3, 1] [1.1, 1.1] 400 2

MMF1 e 2 2 [1,−20] [3, 20] [1.1, 1.1] 400 2

MMF2 2 2 [0, 0] [1, 1] [1.1, 1.1] 400 2

MMF3 2 2 [0, 0] [1, 1.5] [1.1, 1.1] 400 2

MMF4 2 2 [−1, 0] [1, 2] [1.1, 1.1] 400 4

MMF5 2 2 [1,−1] [3, 3] [1.1, 1.1] 400 4

MMF6 2 2 [1,−1] [3, 2] [1.1, 1.1] 400 4

MMF7 2 2 [1,−1] [3, 1] [1.1, 1.1] 400 2

MMF8 2 2 [−π, 0] [π, 9] [1.1, 1.1] 400 4

MMF9 2 2 [0.1, 0.1] [1.1, 1.1] [1.21, 11] 400 2

MMF10 2 2 [0.1, 0.1] [1.1, 1.1] [1.21, 13.2] 400 1

MMF11 2 2 [0.1, 0.1] [1.1, 1.1] [1.21, 15.4] 400 1

MMF12 2 2 [0, 0] [1, 1] [1.54, 1.1] 410 1

MMF13 3 2 [0.1, 0.1, 0.1] [1.1, 1.1, 1.1] [1.54, 15.4] 1250 1

MMF14 N = M M ≥ 3 [0,
M· · ·, 0] [1,

M· · ·, 1] [2.2,
M· · ·, 2.2] 1250 2

MMF14 a N = M M ≥ 3 [0,
M· · ·, 0] [1,

M· · ·, 1] [2.2,
M· · ·, 2.2] 1250 2

MMF15 N = M M ≥ 3 [0,
M· · ·, 0] [1,

M· · ·, 1] [2.5,
M· · ·, 2.5] 1250 1

MMF15 a N = M M ≥ 3 [0,
M· · ·, 0] [1,

M· · ·, 1] [2.5,
M· · ·, 2.5] 1250 1

Omni-test 3 2 [0, 0, 0] [6, 6, 6] [4.4, 4.4] 600 27

SYM-PART 2 2 [−20,−20] [20, 20] [4.4, 4.4] 396 9
simple

SYM-PART 2 2 [−20,−20] [20, 20] [4.4, 4.4] 396 9
rotated

The polygon MMMaOPs [76] (defined in Section A.6) are considered with MaxFES =

10000 as per [170]. The specifications (p1 and p2) for defining ndir reference vectors (as

per Section 3.2.1) are mentioned in Table 5.2. The goal is to satisfy ndir u npop = 100N .

5.5.2 Performance Indicators

In the objective space, Inverted Generational Distance (IGD) [32] and Hypervolume indica-

tor (HV) [9] are noted for CEC 2019 MMMOPs [112] with M = 2 to assess the convergence
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Table 5.2: Specifications for reference-vector based decomposition for problems with M
objectives and N decision variables [140].

M p1 p2 ndir
2 100N − 1 0 100N

3 23 0 300

5 8 0 495

8 5 2 828

10 4 3 935

and diversity of MOEAs [32]. The size of the reference sets2 (NIGD = |HIGD|) for IGD

evaluation and the reference points (RHV ) for HV evaluation are specified in Table 5.1.

For polygon MMMaOPs, IGD with NIGD = 5000 is used. Convergence Metric (CM) [10]

with HCM = HIGD and D metric [161] are used for CEC 2019 MMMOPs [112] with

M ≥ 3 to individually assess the convergence and diversity of MOEAs.

In decision space, IGD [198] and Pareto-Set Proximity (PSP) [188] are used for CEC

2019 MMMOPs [112] with M = 2 and for polygon MMMaOPs [76] to assess the per-

formance of MOEAs. For CEC 2019 MMMOPs [112] with M ≥ 3, the fraction of non-

contributing solutions (NSX) [173,174] and the convergence metric of this non-contributing

set (CM NSX) are noted. Hereafter, IGDX and IGDF represent IGD values in decision and

objective space, respectively, and rHV=1/HV and rPSP=1/PSP are noted such that lower

value is the better measure over all the indicators. Brief description of all the performance

indicators are provided in Section 1.3.3.

5.5.3 Details of Competitor Algorithms

As DN-NSGA-II3 [113] and MO Ring PSO SCD3 [188] use non-dominated sorting with

CDX, LORD3 is compared with these two MMMOEAs. For comparison with a standard

MOEA outperforming the former MMMOEAs in the objective space, LORD is also com-

pared with NSGA-II [127, 128]. For MMMOPs with M ≥ 3, LORD-II3 is compared with

MO Ring PSO SCD [188] and a decomposition-based MOEA (MOEA/DD3) [109].

Other MMMOEAs (Omni-Optimizer [51], TriMOEA TA&R [118], MM-NAEMO [120],

DE-TriM [137] and NIMMO [170]) have demonstrated their effectiveness only for certain

kinds of test problems. These MMMOEAs are also compared with LORD and LORD-II

2Reference sets are obtained from http://www5.zzu.edu.cn/ecilab/info/1036/1163.htm for CEC
2019 MMMOPs [112] and from https://sites.google.com/view/nimmopt/ for polygon MMMaOPs [76].

3The MATLAB codes are acquired from http://www5.zzu.edu.cn/ecilab/info/1036/1163.htm for
MO Ring PSO SCD and DN-NSGA-II, and from https://github.com/BIMK/PlatEMO for MOEA/DD.
Source code of LORD and LORD-II is available at http://worksupplements.droppages.com/lord.
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on some CEC 2019 MMMOPs [112] and polygon problems [76,170].

Most of the hyper-parameters of LORD and LORD-II are adaptive, while the rest of

them are set as mentioned in Table 5.3.

Table 5.3: Recommended values of different parameters for LORD and LORD-II.

Parameters Values Remarks

knbr 0.2× ndir Number of non-empty neighboring directions for mating
pool formation (line 2, Algorithm 5.3) which is easily within
0.2× ndir all test cases (except MMF12) have regular PFs

Pmut 0.25 Probability of switching among reproduction methods (line
9, Algorithm 5.2) and sensitivity is analyzed in Section 5.5.4

εL αL times
diagonal
of D with
αL = 0.2

Threshold on inter-solution distance for formation of nearest
neighbor graph (Section 5.4.2) and sensitivity is analyzed in
Section 5.5.4

µFDE ,G=1,
µCR,G=1 and
µηc,G=1

Initialized
as 0.5, 0.2
and 30

Initial mean values of reproduction parameters (line 2, Al-
gorithm 5.1), later adapted per generation

5.5.4 Parameter Sensitivity Studies

Two experiments are presented to study the sensitivity of the following parameters: (1)

threshold (εL) for nearest neighbor graph formation (Section 5.4.2), and (2) the probability

(Pmut) of switching between DE/rand/1/bin and SBX crossover (line 9, Algorithm 5.2).

1. Threshold for Nearest Neighbor Graph: During spectral clustering (Section

5.4.2) in LORD and LORD-II, the formation of the nearest neighbor graph (G) considers

edges between those pairs of solutions (nodes) whose distance is less than the threshold

εL. This parameter εL is set as αL (= 0.2) times the longest distance in the decision space,

i.e., diagonal of the box-constrained decision space, D. For validating this value of αL, it

is varied between 0.1 to 0.8 (10% to 80% of the diagonal of D) and the performance of

LORD and LORD-II are noted in Table 5.4 for some MMMOPs with M = 2 or M = 3.

From Table 5.4, the best performance is observed when αL = 0.2. The performance

deteriorates for higher αL as all the candidates in And form a single cluster (kCC = 1) and

distinguishability of the multiple subsets in PS is lost. The performance also deteriorates

for lower αL as kCC →
∣∣And∣∣ and the candidates become independent (higher randomness).

2. Probability of Reproduction Switching: During the probabilistic mutation

switching (Algorithm 5.2) in LORD and LORD-II, Pmut decides between DE/rand/1/bin

[41, 168] and SBX-crossover [44]. However, in either case, polynomial mutation [110] is

5.5. EXPERIMENTAL RESULTS
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Table 5.4: Mean IGDX and IGDF over 51 independent runs for sensitivity study of αL
(parameter of LORD and LORD-II) on some 2- and 3-objective MMMOPs [140].

IGDX IGDF
αL → 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

L
O

R
D

MMF1 0.0504 0.0431 0.0479 0.0492 0.0028 0.0025 0.0025 0.0028
MMF2 0.1431 0.0180 0.0304 0.0366 0.0092 0.0070 0.0109 0.0173
MMF3 0.0459 0.0176 0.0419 0.0458 0.0084 0.0069 0.0103 0.0117
MMF4 0.0298 0.0251 0.0303 0.0352 0.0021 0.0018 0.0023 0.0024
MMF5 0.0976 0.0814 0.0943 0.1165 0.0025 0.0024 0.0025 0.0027
MMF6 0.0812 0.0692 0.0720 0.0890 0.0025 0.0023 0.0024 0.0024
MMF7 0.0277 0.0218 0.0299 0.0339 0.0024 0.0022 0.0026 0.0028
MMF8 0.1631 0.0762 0.1299 0.1577 0.0025 0.0025 0.0025 0.0025

L
O

R
D

-I
I MMF14 0.0495 0.0443 0.0522 0.0580 0.0550 0.0540 0.0545 0.0546

MMF14 a 0.0657 0.0576 0.0665 0.0674 0.0574 0.0561 0.0582 0.0583
MMF15 0.0295 0.0287 0.0292 0.0293 0.0552 0.0548 0.0552 0.0558

MMF15 a 0.0369 0.0355 0.0373 0.0379 0.0584 0.0571 0.0589 0.0593

also executed. This parameter Pmut is set as 0.25 after investigating the following cases:

1. Pmut = 0.00: only DE/rand/1/bin is used,

2. Pmut = 0.25: DE/rand/1/bin is used more often than SBX-crossover,

3. Pmut = 0.50: DE/rand/1/bin and SBX-crossover are equally-likely to be used,

4. Pmut = 0.75: SBX-crossover is used more often than DE/rand/1/bin, and

5. Pmut = 1.00: only SBX-crossover is used.

The performance of LORD and LORD-II are noted in Table 5.5 for some MMMOPs.

From Table 5.5, the best performance is observed when Pmut = 0.25. Hence, for explo-

ration of the search space, DE/rand/1/bin is preferred over SBX-crossover [176] along

with a switching scheme to combine the benefits of both these strategies.

Table 5.5: Mean IGDX and IGDF over 51 independent runs for sensitivity study of Pmut
(parameter of LORD and LORD-II) on some 2- and 3-objective MMMOPs [140].

IGDX IGDF
Pmut → 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

L
O

R
D

MMF1 0.0529 0.0431 0.0470 0.0472 0.0506 0.0028 0.0026 0.0027 0.0027 0.0027
MMF2 0.0694 0.0110 0.0169 0.0207 0.0251 0.0100 0.0069 0.0085 0.0097 0.0141
MMF3 0.0603 0.0275 0.0116 0.0188 0.0217 0.0169 0.0065 0.0070 0.0082 0.0475
MMF4 0.0283 0.0237 0.0239 0.0287 0.0381 0.0023 0.0021 0.0021 0.0023 0.0025
MMF5 0.0923 0.0789 0.0738 0.0900 0.0904 0.0027 0.0025 0.0024 0.0026 0.0028
MMF6 0.1199 0.0693 0.0777 0.0827 0.0976 0.0025 0.0024 0.0025 0.0025 0.0025
MMF7 0.0240 0.0209 0.0229 0.0228 0.0278 0.0024 0.0023 0.0023 0.0023 0.0025
MMF8 0.4619 0.1197 0.1085 0.0737 0.1123 0.0026 0.0025 0.0026 0.0025 0.0026

L
O

R
D

-I
I MMF14 0.0490 0.0484 0.0497 0.0494 0.0502 0.0547 0.0545 0.0542 0.0548 0.0554

MMF14 a 0.0617 0.0609 0.0613 0.0650 0.0671 0.0578 0.0563 0.0580 0.0589 0.0596
MMF15 0.0296 0.0288 0.0291 0.0292 0.0291 0.0553 0.0551 0.0552 0.0553 0.0560

MMF15 a 0.0374 0.0370 0.0364 0.0372 0.0378 0.0588 0.0588 0.0593 0.0594 0.0606
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5.5.5 Comparison of LORD and LORD-II with Other MMMOEAs

Four sets of experiments are conducted to compare the performance of LORD and LORD-

II with other MMMOEAs.

1) Experiment-I: Comparison on CEC 2019 Test Suite: For 2-objective MM-

MOPs, the performance of LORD in decision and objective spaces are presented in Tables

5.6 and 5.7, respectively. For M -objective MMMOPs (with M ≥3), the performance of

LORD-II in decision and objective spaces are presented in Tables 5.8 and 5.9, respectively.

The estimated PSs and PFs are also plotted in Fig. 5.4 for some of the MMMOPs. All the

results are statistically validated using the Wilcoxon’s rank-sum test [173] under the null

hypothesis (H0) that the performance of LORD (or LORD-II) is equivalent to other MM-

MOEAs. The statistical significance is indicated using three signs: + denoting LORD (or

LORD-II) is superior, − denoting the competitor MMMOEA is superior, and ∼ indicating

the algorithms are equivalent.

Table 5.6: Mean and standard deviation of rPSP and IGDX over 51 independent runs for
comparing LORD on 2-objective MMMOPs [140].

rPSP=IGDX/CoRa IGDX
Problems LORD MO Ring DN-NSGA-II NSGA-II LORD MO Ring DN-NSGA-II NSGA-II

PSO SCD PSO SCD

MMF1 0.0441 ± 0.0489 ± 0.0957 ± 0.0652 ± 0.0431 ± 0.0485 ± 0.0939 ± 0.0645 ±
0.0044 0.0018 (+) 0.0146 (+) 0.0103 (+) 0.0044 0.0017 (+) 0.0141 (+) 0.0098 (+)

MMF1 z 0.0356 ± 0.0354 ± 0.0822 ± 0.3892 ± 0.0351 ± 0.0352 ± 0.0805 ± 0.2606 ±
0.0069 0.0019 (∼) 0.0166 (+) 0.3913 (+) 0.0075 0.0018 (∼) 0.0157 (+) 0.1608 (+)

MMF1 e 0.8894 ± 0.5501 ± 1.7201 ± 14.0870 ± 0.7499 ± 0.4738 ± 1.1536 ± 3.0324 ±
0.1466 0.1276 (−) 1.2086 (+) 8.1289 (+) 0.4192 0.0847 (−) 0.5095 (+) 0.7634 (+)

MMF2 0.0219 ± 0.0444 ± 0.1356 ± 0.0766 ± 0.0180 ± 0.0416 ± 0.1121 ± 0.0650 ±
0.0108 0.0113 (+) 0.0805 (+) 0.0402 (+) 0.0093 0.0103 (+) 0.0525 (+) 0.0300 (+)

MMF3 0.0200 ± 0.0294 ± 0.1249 ± 0.0785 ± 0.0176 ± 0.0276 ± 0.0968 ± 0.0661 ±
0.0105 0.0074 (+) 0.1291 (+) 0.0416 (+) 0.0080 0.0061 (+) 0.0632 (+) 0.0311 (+)

MMF4 0.0253 ± 0.0274 ± 0.0854 ± 0.1066 ± 0.0251 ± 0.0271 ± 0.0849 ± 0.1004 ±
0.0036 0.0014 (+) 0.0232 (+) 0.0468 (+) 0.0039 0.0014 (+) 0.0230 (+) 0.0411 (+)

MMF5 0.0814 ± 0.0864 ± 0.1788 ± 0.1525 ± 0.0814 ± 0.0857 ± 0.1763 ± 0.1478 ±
0.0080 0.0045 (+) 0.0179 (+) 0.0296 (+) 0.0074 0.0044 (+) 0.0165 (+) 0.0265 (+)

MMF6 0.0692 ± 0.0741 ± 0.1453 ± 0.1410 ± 0.0692 ± 0.0736 ± 0.1433 ± 0.1372 ±
0.0104 0.0044 (+) 0.0176 (+) 0.0272 (+) 0.0104 0.0042 (+) 0.0173 (+) 0.0251 (+)

MMF7 0.0219 ± 0.0264 ± 0.0535 ± 0.0452 ± 0.0218 ± 0.0262 ± 0.0524 ± 0.0420 ±
0.0044 0.0014 (+) 0.0098 (+) 0.0132 (+) 0.0025 0.0014 (+) 0.0092 (+) 0.0106 (+)

MMF8 0.0745 ± 0.0679 ± 0.2969 ± 0.9348 ± 0.0762 ± 0.0673 ± 0.2860 ± 0.7198 ±
0.0452 0.0049 (∼) 0.1120 (+) 0.4682 (+) 0.0504 0.0048 (∼) 0.1078 (+) 0.3034 (+)

MMF9 0.0047 ± 0.0079 ± 0.0229 ± 1.7445 ± 0.0046 ± 0.0079 ± 0.0229 ± 0.1783 ±
0.0002 0.0005 (+) 0.0081 (+) 1.9877 (+) 0.0002 0.0005 (+) 0.0081 (+) 0.0740 (+)

MMF10 0.0018 ± 0.0293 ± 0.1426 ± 0.0398 ± 0.0018 ± 0.0276 ± 0.1295 ± 0.0398 ±
0.0007 0.0113 (+) 0.0834 (+) 0.1184 (∼) 0.0009 0.0092 (+) 0.0747 (+) 0.1184 (∼)

MMF11 0.0029 ± 0.0055 ± 0.0045 ± 0.0027 ± 0.0029 ± 0.0054 ± 0.0045 ± 0.0027 ±
0.0002 0.0003 (+) 0.0003 (+) 0.0003 (−) 0.0002 0.0003 (+) 0.0003 (+) 0.0003 (−)

MMF12 0.0013 ± 0.0038 ± 0.0090 ± 0.0013 ± 0.0013 ± 0.0038 ± 0.0090 ± 0.0013 ±
0.0001 0.0003 (+) 0.0159 (+) 0.0002 (∼) 0.0001 0.0003 (+) 0.0159 (+) 0.0002 (∼)

MMF13 0.0243 ± 0.0317 ± 0.0614 ± 0.1492 ± 0.0242 ± 0.0314 ± 0.0609 ± 0.0880 ±
0.0039 0.0014 (+) 0.0070 (+) 0.0652 (+) 0.0039 0.0013 (+) 0.0064 (+) 0.0173 (+)

Omni- 0.0754 ± 0.3946 ± 1.4390 ± 1.8176 ± 0.0706 ± 0.3907 ± 1.4159 ± 1.4210 ±
test 0.0242 0.0939 (+) 0.2069 (+) 0.6886 (+) 0.0215 0.0927 (+) 0.1986 (+) 0.3726 (+)

SYM-PART 0.0556 ± 0.1741 ± 4.1590 ± 113.0044 ± 0.0549 ± 0.1733 ± 4.0657 ± 6.8332 ±
simple 0.0145 0.0301 (+) 0.8683 (+) 131.2343 (+) 0.0130 0.0300 (+) 0.7040 (+) 1.8906 (+)

SYM-PART 0.1730 ± 0.3142 ± 5.5941 ± 13.9239 ± 0.1558 ± 0.2926 ± 3.7659 ± 5.4249 ±
rotated 0.0743 0.3533 (+) 3.6017 (+) 12.8588 (+) 0.0760 0.2938 (+) 1.2478 (+) 1.9790 (+)

LORD vs. others (+/− / ∼) 15/1/2 18/0/0 15/1/2 (+/− / ∼) 15/1/2 18/0/0 15/1/2
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Table 5.7: Mean and standard deviation of rHV and IGDF over 51 independent runs for
comparing LORD on 2-objective MMMOPs [140].

rHV=1/HV IGDF
Problems LORD MO Ring DN-NSGA-II NSGA-II LORD MO Ring DN-NSGA-II NSGA-II

PSO SCD PSO SCD

MMF1 1.0737 ± 1.1484 ± 1.1495 ± 1.0738 ± 0.0025 ± 0.0037 ± 0.0043 ± 0.0028 ±
0.0008 0.0005 (+) 0.0014 (+) 0.0006 (∼) 0.0002 0.0002 (+) 0.0005 (+) 0.0004 (+)

MMF1 z 1.0731 ± 1.1483 ± 1.1484 ± 1.1255 ± 0.0022 ± 0.0036 ± 0.0036 ± 0.0396 ±
0.0008 0.0005 (+) 0.0009 (+) 0.0615 (+) 0.0001 0.0002 (+) 0.0004 (+) 0.0496 (+)

MMF1 e 1.0751 ± 1.1861 ± 1.2080 ± 1.1058 ± 0.0029 ± 0.0119 ± 0.0276 ± 0.0250 ±
0.0021 0.0173 (+) 0.0387 (+) 0.0180 (+) 0.0006 0.0017 (+) 0.0207 (+) 0.0139 (+)

MMF2 1.0817 ± 1.1848 ± 1.1944 ± 1.1168 ± 0.0070 ± 0.0207 ± 0.0325 ± 0.0300 ±
0.0120 0.0059 (+) 0.0322 (+) 0.0280 (+) 0.0031 0.0034 (+) 0.0238 (+) 0.0182 (+)

MMF3 1.0792 ± 1.1739 ± 1.1873 ± 1.1089 ± 0.0069 ± 0.0154 ± 0.0263 ± 0.0229 ±
0.0322 0.0043 (+) 0.0398 (+) 0.0212 (+) 0.0023 0.0025 (+) 0.0308 (+) 0.0126 (+)

MMF4 1.5234 ± 1.8620 ± 1.8577 ± 1.5241 ± 0.0018 ± 0.0037 ± 0.0032 ± 0.0024 ±
0.0003 0.0021 (+) 0.0012 (+) 0.0004 (+) 0.0002 0.0004 (+) 0.0002 (+) 0.0002 (+)

MMF5 1.0734 ± 1.1485 ± 1.1488 ± 1.0739 ± 0.0024 ± 0.0037 ± 0.0039 ± 0.0028 ±
0.0006 0.0006 (+) 0.0015 (+) 0.0003 (+) 0.0001 0.0001 (+) 0.0007 (+) 0.0002 (+)

MMF6 1.0732 ± 1.1483 ± 1.1486 ± 1.0738 ± 0.0023 ± 0.0035 ± 0.0036 ± 0.0026 ±
0.0003 0.0009 (+) 0.0016 (+) 0.0006 (+) 0.0001 0.0002 (+) 0.0003 (+) 0.0002 (+)

MMF7 1.0731 ± 1.1484 ± 1.1498 ± 1.0736 ± 0.0022 ± 0.0037 ± 0.0039 ± 0.0027 ±
0.0002 0.0009 (+) 0.0011 (+) 0.0003 (+) 0.0001 0.0003 (+) 0.0003 (+) 0.0003 (+)

MMF8 1.7915 ± 2.4065 ± 2.3813 ± 1.7920 ± 0.0025 ± 0.0048 ± 0.0040 ± 0.0025 ±
0.0012 0.0164 (+) 0.0025 (+) 0.0014 (∼) 0.0001 0.0002 (+) 0.0004 (+) 0.0001 (∼)

MMF9 0.0820 ± 0.1034 ± 0.1034 ± 0.0820 ± 0.0085 ± 0.0160 ± 0.0141 ± 0.0108 ±
0.0000 0.0000 (+) 0.0000 (+) 0.0000 (∼) 0.0007 0.0014 (+) 0.0012 (+) 0.0007 (+)

MMF10 0.0678 ± 0.0679 ± 0.0680 ± 0.0678 ± 0.0061 ± 0.1128 ± 0.1446 ± 0.0074 ±
0.0000 0.0000 (+) 0.0001 (+) 0.0001 (∼) 0.0009 0.0230 (+) 0.0660 (+) 0.0000 (+)

MMF11 0.0581 ± 0.0581 ± 0.0581 ± 0.0581 ± 0.0082 ± 0.0176 ± 0.0136 ± 0.0107 ±
0.0000 0.0000 (∼) 0.0000 (∼) 0.0000 (∼) 0.0004 0.0018 (+) 0.0014 (+) 0.0008 (+)

MMF12 0.5431 ± 0.5452 ± 0.5598 ± 0.5430 ± 0.0020 ± 0.0068 ± 0.0110 ± 0.0020 ±
0.0000 0.0014 (+) 0.0492 (∼) 0.0000 (−) 0.0001 0.0006 (+) 0.0187 (+) 0.0001 (∼)

MMF13 0.0444 ± 0.0444 ± 0.0444 ± 0.0444 ± 0.0063 ± 0.0264 ± 0.0121 ± 0.0089 ±
0.0000 0.0000 (∼) 0.0000 (∼) 0.0000 (∼) 0.0014 0.0076 (+) 0.0036 (+) 0.0014 (+)

Omni- 0.0518 ± 0.0190 ± 0.0189 ± 0.0518 ± 0.0091 ± 0.0422 ± 0.0080 ± 0.0100 ±
test 0.0000 0.0000 (−) 0.0000 (−) 0.0000 (∼) 0.0015 0.0034 (+) 0.0005 (−) 0.0021 (∼)

SYM-PART 0.0520 ± 0.0605 ± 0.0601 ± 0.0520 ± 0.0165 ± 0.0419 ± 0.0127 ± 0.0109 ±
simple 0.0000 0.0001 (+) 0.0000 (+) 0.0000 (∼) 0.0039 0.0044 (+) 0.0014 (−) 0.0013 (−)

SYM-PART 0.0520 ± 0.0606 ± 0.0601 ± 0.0520 ± 0.0178 ± 0.0467 ± 0.0152 ± 0.0159 ±
rotated 0.0000 0.0001 (+) 0.0000 (+) 0.0000 (∼) 0.0047 0.0058 (+) 0.0022 (−) 0.0040 (∼)

LORD vs. others (+/− / ∼) 15/1/2 14/1/3 8/1/9 (+/− / ∼) 18/0/0 15/3/0 13/1/4

From Tables 5.6 and 5.7, the following insights are obtained for LORD:

• LORD is superior to DN-NSGA-II [113] as DN-NSGA-II neglects the solution diver-

sity in the objective space. Thus, the solution distribution also suffers in the decision

space by the neighborhood property (Theorem 4.1).

• While NSGA-II is the second-best in the objective space (Table 5.7), it neglects the

solution diversity in the decision space and thus, gets outperformed by LORD.

• While MO Ring PSO SCD is the second-best in the decision space (Table 5.6), it

often gets trapped in the local optima (Fig. 5.4) leading to poor performance for

some MMMOPs (e.g., MMF11 and MMF12). As LORD efficiently addresses the

crowding illusion problem (Section 5.3), it has superior performance in most cases.

• The performance of LORD remains consistent (Tables 5.6 and 5.7), even for high

#PSs (e.g., Omni-test with #PSs=27 in Fig. 5.4). It can successfully overcome the
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Figure 5.4: Estimated PSs and PFs for some 2- and 3-objective MMMOPs [140].

local optima (e.g., MMF10 in Fig. 5.4) and thus, also, acts as an excellent MOEA.

As cover rate (CoRa) is nearly equal to one (ideal value as mentioned in Section

1.3.3), Table 5.6 reflects rPSP (=IGDX/CoRa) to be similar to IGDX.

From Tables 5.8 and 5.9, the following insights are obtained for LORD-II:

• In the objective space (Table 5.9), both LORD-II and MOEA/DD have similar per-

formance for 3-objective problems. For 5-objective problems, LORD-II is marginally

outperformed in only one case by MOEA/DD. For 8- and 10-objective problems,

LORD-II is superior. In all cases, LORD-II outperforms MO Ring PSO SCD in

both convergence (CM) and diversity (D metric) as also seen in Figs. 5.4 and 5.5.

• In the decision space (Table 5.8), LORD-II maintains superiority.

• The estimated PS and PF from LORD-II (Figs. 5.4 and 5.5) demonstrate excellent

convergence and diversity. The results from MO Ring PSO SCD deteriorate severely

with an increase in dimension (Fig. 5.5). In contrast to MO Ring PSO SCD (Fig.

5.5l), the polar plot [68] from LORD-II (Fig. 5.5f) converges all solutions to a

near-global PF, forming a uniformly distributed circle for 8-objective MMMaOPs.
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Table 5.8: Mean and standard deviation of NSX and CM NSX over 51 independent runs
for comparing LORD-II on M -objective MMMOPs with M ≥ 3 [140].

NSX CM NSX
Problems (M) LORD-II MO Ring MOEA/DD LORD-II MO Ring MOEA/DD

PSO SCD PSO SCD

MMF14 (3) 0.0068 ± 0.2400 ± 0.0133 ± 0.0203 ± 0.1078 ± 0.0228 ±
0.0052 0.0262(+) 0.0024 (+) 0.0018 0.0088 (+) 0.0019 (+)

MMF14 a (3) 0.0251 ± 0.2533 ± 0.1333 ± 0.1498 ± 0.1534 ± 0.2481 ±
0.0290 0.0320 (+) 0.0259 (+) 0.0518 0.0147 (+) 0.0103 (+)

MMF15 (3) 0.0205 ± 0.4033 ± 0.0400 ± 0.0209 ± 0.2356 ± 0.0265 ±
0.0073 0.0361 (+) 0.0024 (+) 0.0010 0.0251 (+) 0.0039 (∼)

MMF15 a (3) 0.0179 ± 0.3400 ± 0.0567 ± 0.0270 ± 0.2069 ± 0.0454 ±
0.0076 0.0262 (+) 0.0024 (+) 0.0180 0.0263 (+) 0.0098 (+)

MMF14 (5) 0.4838 ± 0.5140 ± 0.5152 ± 0.1830 ± 0.2363 ± 0.1874 ±
0.0125 0.0168 (+) 0.0057 (+) 0.0015 0.0047 (+) 0.0015 (+)

MMF14 a (5) 0.4855 ± 0.4960 ± 0.5232 ± 0.2080 ± 0.2809 ± 0.2474 ±
0.0141 0.0175 (∼) 0.0029 (+) 0.0155 0.0041 (+) 0.0044 (+)

MMF15 (5) 0.4959 ± 0.5600 ± 0.5172 ± 0.1559 ± 0.4118 ± 0.1602 ±
0.0076 0.0155 (+) 0.0014 (+) 0.0015 0.0152 (+) 0.0005 (∼)

MMF15 a (5) 0.4969 ± 0.5660 ± 0.5232 ± 0.1783 ± 0.3672 ± 0.1938 ±
0.0086 0.0155 (+) 0.0071 (+) 0.0062 0.0128 (+) 0.0078 (+)

MMF14 (8) 0.2772 ± 0.5663 ± 0.3088 ± 0.4025 ± 0.4386 ± 0.4178 ±
0.0012 0.0129 (+) 0.0018 (+) 0.0011 0.0070 (+) 0.0011 (+)

MMF14 a (8) 0.2796 ± 0.5588 ± 0.2900 ± 0.4222 ± 0.4480 ± 0.4335 ±
0.0008 0.0114 (+) 0.0062 (+) 0.0004 0.0045 (+) 0.0021 (+)

MMF15 (8) 0.2524 ± 0.6438 ± 0.2713 ± 0.3537 ± 0.5312 ± 0.3815 ±
0.0002 0.0175 (+) 0.0018 (+) 0.0052 0.0059 (+) 0.0015 (+)

MMF15 a (8) 0.2430 ± 0.6113 ± 0.2688 ± 0.3797 ± 0.4885 ± 0.3886 ±
0.0137 0.0093 (+) 0.0027 (+) 0.0115 0.0078 (+) 0.0068 (∼)

MMF14 (10) 0.2595 ± 0.5880 ± 0.2620 ± 0.5088 ± 0.5584 ± 0.5356 ±
0.0005 0.0101 (+) 0.0038 (+) 0.0087 0.0046 (+) 0.0085 (+)

MMF14 a (10) 0.2717 ± 0.5930 ± 0.2718 ± 0.5165 ± 0.5699 ± 0.5393 ±
0.0106 0.0134 (+) 0.0083 (∼) 0.0008 0.0036 (+) 0.0063 (+)

MMF15 (10) 0.2557 ± 0.6590 ± 0.2481 ± 0.4516 ± 0.6180 ± 0.4850 ±
0.0023 0.0123 (+) 0.0030 (−) 0.0096 0.0071 (+) 0.0005 (+)

MMF15 a (10) 0.2664 ± 0.6350 ± 0.2652 ± 0.4731 ± 0.5780 ± 0.4903 ±
0.0143 0.0119 (+) 0.0098 (∼) 0.0061 0.0048 (+) 0.0006 (+)

LORD-II vs. others (+/− / ∼) 15/0/1 13/1/2 (+/− / ∼) 16/0/0 13/0/3

3-objective MMF14 and MMF15 problems 8-objective MMF14 and MMF15 problems
Estimated Pareto-optimal Set Estimated Estimated Pareto-optimal Set Projected Estimated

Pareto-Front on Last Two Dimensions (x8 vs. x7) Pareto-Front
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(a) PS: MMF14(3) (b) PS: MMF15(3) (c) PF: MMF14(3) (d) PS: MMF14(8) (e) PS: MMF15(8) (f) PF: MMF14(8)
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(g) PS: MMF14(3) (h) PS: MMF15(3) (i) PF: MMF14(3) (j) PS: MMF14(8) (k) PS: MMF15(8) (l) PF: MMF14(8)

Figure 5.5: Estimated PSs and PFs of MMF14 and MMF15 problems, as both MMF14
and MMF15 problems have similar PFs, only the PFs of MMF14 are shown [140].

2) Experiment-II: Comparison with Reference Vector Assisted MMMOEAs:

The performance of two recent reference-vector assisted MMMOEAs (DE-TriM [137] and

MM-NAEMO [120]) are compared with LORD and LORD-II in Table 5.10 on CEC 2019

MMMOPs [112]. The results of this experiment are also compared with MO Ring PSO SCD
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Table 5.9: Mean and standard deviation of D metric and CM over 51 independent runs
for comparing LORD-II on M -objective MMMOPs with M ≥ 3 [140].

D metric CM
Problems (M) LORD-II MO Ring MOEA/DD LORD-II MO Ring MOEA/DD

PSO SCD PSO SCD

MMF14 (3) 0.0000 ± 21.3266 ± 0.0000 ± 0.0419 ± 0.1083 ± 0.0419 ±
0.0000 2.0086 (+) 0.0000 (∼) 0.0003 0.0130 (+) 0.0002 (∼)

MMF14 a (3) 0.0000 ± 22.2752 ± 0.0000 ± 0.0435 ± 0.0949 ± 0.0438 ±
0.0000 2.2816 (+) 0.0000 (∼) 0.0007 0.0149 (+) 0.0010 (∼)

MMF15 (3) 0.0000 ± 24.4073± 0.0000 ± 0.0422 ± 0.1471 ± 0.0426 ±
0.0000 3.8341 (+) 0.0000 (∼) 0.0004 0.0161 (+) 0.0004 (∼)

MMF15 a (3) 0.0000 ± 22.5315± 0.0000 ± 0.0445 ± 0.1322 ± 0.0449 ±
0.0000 3.5845(+) 0.0000 (∼) 0.0007 0.0207 (+) 0.0008 (∼)

MMF14 (5) 0.0000 ± 43.9023 ± 0.0000 ± 0.0590 ± 0.4121 ± 0.0587 ±
0.0000 4.6565 (+) 0.0000 (∼) 0.0020 0.0177 (+) 0.0015 (∼)

MMF14 a (5) 0.0000 ± 46.7494 ± 0.9428 ± 0.0781 ± 0.3659 ± 0.0827 ±
0.0000 2.8893 (+) 0.8165 (+) 0.0022 0.0115 (+) 0.0021 (+)

MMF15 (5) 0.0000 ± 43.6883 ± 0.0000 ± 0.0654 ± 0.4610 ± 0.0625 ±
0.0000 3.9734 (+) 0.0000 (∼) 0.0017 0.0152 (+) 0.0025 (−)

MMF15 a (5) 0.0000 ± 45.2327 ± 0.9428 ± 0.0954 ± 0.4339 ± 0.0961 ±
0.0000 3.4695 (+) 0.8165 (+) 0.0045 0.0162 (+) 0.0053 (∼)

MMF14 (8) 0.0000 ± 101.1673 ± 5.3833 ± 0.1332 ± 0.6277 ± 0.1456 ±
0.0000 4.3256 (+) 0.0000 (+) 0.0002 0.0154 (+) 0.0016 (+)

MMF14 a (8) 0.0000 ± 106.8644 ± 5.3833 ± 0.1742 ± 0.5917 ± 0.1817 ±
0.0000 3.5223 (+) 0.0000 (+) 0.0044 0.0149 (+) 0.0044 (+)

MMF15 (8) 0.0000 ± 99.5550 ± 5.4810 ± 0.1288 ± 0.6767 ± 0.1508 ±
0.0000 3.0343 (+) 0.1382 (+) 0.0038 0.0128 (+) 0.0008 (+)

MMF15 a (8) 0.0000 ± 103.5948 ± 5.5787 ± 0.2014 ± 0.6488 ± 0.2122 ±
0.0000 3.5180 (+) 0.0000 (+) 0.0025 0.0151 (+) 0.0284 (+)

MMF14 (10) 14.1331 ± 132.4681 ± 38.9838 ± 0.2200 ± 0.6575 ± 0.2504 ±
2.5516 4.6720 (+) 0.7255 (+) 0.0037 0.0129 (+) 0.0002 (+)

MMF14 a (10) 21.9290 ± 137.8081 ± 41.7357 ± 0.2554 ± 0.6311 ± 0.2966 ±
0.4837 3.8224 (+) 0.5083 (+) 0.0065 0.0128 (+) 0.0041 (+)

MMF15 (10) 17.6340 ± 131.8568 ± 36.4571 ± 0.2219 ± 0.7072 ± 0.2535 ±
1.4436 4.0914 (+) 9.3681 (+) 0.0118 0.0109 (+) 0.0072 (+)

MMF15 a (10) 23.2171 ± 133.7104 ± 39.7423 ± 0.2672 ± 0.6812 ± 0.3193 ±
2.4365 2.8705 (+) 1.7614 (+) 0.0037 0.0092 (+) 0.0007 (+)

LORD-II vs. others (+/− / ∼) 16/0/0 10/0/6 (+/− / ∼) 16/0/0 9/1/6

to fairly assess the relative rankings of algorithms. Each of these algorithms (DE-TriM,

MM-NAEMO and MO Ring PSO SCD) are set up using the parameters recommended

in [137], [120] and [188], respectively.

From Table 5.10, LORD-II is noted to have the best performance in all cases and

LORD is noted to have the best or the second-best performance in both objective and

decision spaces for most of the cases. Unlike other MMMOEAs [56, 120, 188] which yield

poor performance in objective space in order to improve the performance in decision

space, LORD and LORD-II perform satisfactorily in both the spaces and competitively

outperform the other reference vector assisted MMMOEAs.

3) Experiment-III: Comparison on Polygon MMMaOPs: Similar to [170], the

mean IGDX and IGDF of LORD-II are compared with NIMMO on Polygon test problems

as both the MMMOEAs are designed for MMMaOPs. The results of MO Ring PSO SCD

[188], Omni-Optimizer [51] and TriMOEA TA&R [118] are also compared.
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Table 5.10: Mean of IGDX and IGDF over 51 independent runs for comparing reference-
vector guided MMMOEAs on 2- and 3-objective MMMOPs [140].

IGDX IGDF
2-objective MO Ring MO Ring
Problems LORD DE-TriM MM-NAEMO PSO SCD LORD DE-TriM MM-NAEMO PSO SCD

MMF1 0.0431 0.0465 (+) 0.0486 (+) 0.0485 (+) 0.0025 0.0026 (∼) 0.0040 (+) 0.0037 (+)
MMF1 z 0.0351 0.0503 (+) 0.0347 (∼) 0.0352 (∼) 0.0022 0.0026 (+) 0.0035 (+) 0.0036 (+)
MMF1 e 0.7499 2.8757 (+) 0.4115 (−) 0.4738 (−) 0.0029 0.0029 (∼) 0.0051 (+) 0.0119 (+)
MMF2 0.0180 0.0505 (+) 0.0118 (−) 0.0416 (+) 0.0070 0.0035 (−) 0.0083 (+) 0.0207 (+)
MMF3 0.0176 0.0235 (+) 0.0137 (−) 0.0276 (+) 0.0069 0.0047 (−) 0.0085 (+) 0.0154 (+)
MMF4 0.0251 0.0211 (−) 0.0312 (+) 0.0271 (+) 0.0018 0.0025 (+) 0.0033 (+) 0.0037 (+)
MMF5 0.0814 0.0892 (+) 0.0871 (+) 0.0857 (+) 0.0024 0.0027 (+) 0.0037 (+) 0.0037 (+)
MMF6 0.0692 0.0756 (+) 0.0743 (+) 0.0736 (+) 0.0023 0.0025 (∼) 0.0036 (+) 0.0035 (+)
MMF7 0.0218 0.0201 (−) 0.0229 (+) 0.0262 (+) 0.0022 0.0025 (+) 0.0035 (+) 0.0037 (+)
MMF8 0.0762 0.0989 (+) 0.3348 (+) 0.0673 (∼) 0.0025 0.0029 (+) 0.0037 (+) 0.0048 (+)
MMF9 0.0046 0.0787 (+) 0.0048 (∼) 0.0079 (+) 0.0085 0.0119 (+) 0.0479 (+) 0.0160 (+)
MMF10 0.0018 0.0018 (∼) 0.0121 (+) 0.0276 (+) 0.0061 0.0080 (+) 0.0639 (+) 0.1128 (+)
MMF11 0.0029 0.0036 (+) 0.0418 (+) 0.0054 (+) 0.0082 0.0109 (+) 0.0931 (+) 0.0176 (+)
MMF12 0.0013 0.0013 (∼) 0.0050 (+) 0.0038 (+) 0.0020 0.0021 (∼) 0.0196 (+) 0.0068 (+)
MMF13 0.0242 0.0368 (+) 0.1878 (+) 0.0314 (+) 0.0063 0.0094 (+) 0.1059 (+) 0.0264 (+)

Omni-test 0.0706 0.0732 (+) 0.1511 (+) 0.3907 (+) 0.0091 0.0125 (+) 0.0130 (+) 0.0422 (+)
SYM-PART-simple 0.0549 0.0740 (+) 0.1115 (+) 0.0300 (−) 0.0165 0.0101 (−) 0.0472 (+) 0.0419 (+)
SYM-PART-rotated 0.1558 0.1885 (+) 0.7586 (+) 0.2926 (+) 0.0178 0.0125 (−) 0.0395 (+) 0.0467 (+)

LORD vs. others (+/− / ∼) 14/2/2 13/3/2 14/2/2 (+/− / ∼) 10/4/4 18/0/0 18/0/0

3-objective MO Ring MO Ring
Problems LORD-II DE-TriM MM-NAEMO PSO SCD LORD-II DE-TriM MM-NAEMO PSO SCD

MMF14 0.0443 0.0558 (+) 0.0465 (+) 0.0539 (+) 0.0540 0.0749 (+) 0.0808 (+) 0.0801 (+)
MMF14 a 0.0576 0.0676 (+) 0.0663 (+) 0.0613 (+) 0.0561 0.0809 (+) 0.0791 (+) 0.0789 (+)
MMF15 0.0287 0.0361 (+) 0.0518 (+) 0.0419 (+) 0.0548 0.0787 (+) 0.1113 (+) 0.0854 (+)

MMF15 a 0.0355 0.0503 (+) 0.0848 (+) 0.0452 (+) 0.0571 0.0951 (+) 0.1263 (+) 0.0841 (+)

LORD-II vs. others (+/− / ∼) 4/0/0 4/0/0 4/0/0 (+/− / ∼) 4/0/0 4/0/0 4/0/0

Table 5.11: Specifications for the experiment in [140] conducted on polygon and rotated
polygon problems according to specifications of [170].

Used by NIMMO, TriMOEA TA&R,
Parameters Used by LORD-II in [140] MO Ring PSO SCD, and

Omni-Optimizer in [170]

n
p
o
p

3-obj 210 210
5-obj 210 210
8-obj 156 156
10-obj 230 230

#runs 31 31

MaxFES 10000 10000

NIGD 5000 5000

The performance of these MMMOEAs are noted on M -objective polygon and rotated

polygon MMMaOPs [76] in Tables 5.12 (using IGDX) and 5.13 (using IGDF). This exper-

iment considers the specifications mentioned in Table 5.11 as per [170]. The performance

values of the other MMMOEAs (except LORD-II) are also noted from [170]. The remain-

ing parameters of LORD-II are set up as specified in Table 5.3.

From Tables 5.12 and 5.13, LORD-II is observed to be superior in both decision and ob-

jective spaces, respectively. The performance of all MMMOEAs (except TriMOEA TA&R)

are unaffected due to rotation. However, the IGDX values of TriMOEA TA&R are widely

different (poorer) for rotated polygon problems from those of the polygon problems (Table

5.12). This difference arises as TriMOEA TA&R considers only the number of solutions

as the diversity criteria and neglects the solution distribution in the decision space [118].
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Table 5.12: Mean IGDX over 31 independent runs for comparing LORD-II on M -objective
polygon and rotated polygon (RPolygon) problems [140].

TriMOEA MO Ring Omni-
M-Problems LORD-II NIMMO TA&R PSO SCD Optimizer

3-Polygon 0.0054 0.0056 (+) 0.0063 (+) 0.0091 (+) 0.0083 (+)
3-RPolygon 0.0064 0.0059 (−) 0.0295 (+) 0.0090 (+) 0.0085 (+)
5-Polygon 0.0055 0.0070 (+) 0.0162 (+) 0.0113 (+) 0.0110 (+)

5-RPolygon 0.0062 0.0074 (+) 0.0400 (+) 0.0113 (+) 0.0110 (+)
8-Polygon 0.0046 0.0089 (+) 0.0136 (+) 0.0143 (+) 0.0140 (+)

8-RPolygon 0.0051 0.0093 (+) 0.0747 (+) 0.0144 (+) 0.0138 (+)
10-Polygon 0.0044 0.0072 (+) 0.0123 (+) 0.0120 (+) 0.0112 (+)

10-RPolygon 0.0053 0.0076 (+) 0.0404 (+) 0.0118 (+) 0.0112 (+)

LORD-II vs. others (+/− / ∼) 7/1/0 8/0/0 8/0/0 8/0/0

Table 5.13: Mean IGDF over 31 independent runs for comparing LORD-II on M -objective
polygon and rotated polygon (RPolygon) problems [140].

TriMOEA MO Ring Omni-
M-Problems LORD-II NIMMO TA&R PSO SCD Optimizer

3-Polygon 0.0023 0.0025 (+) 0.0040 (+) 0.0034 (+) 0.0028 (+)
3-RPolygon 0.0023 0.0025 (+) 0.0046 (+) 0.0034 (+) 0.0028 (+)
5-Polygon 0.0031 0.0044 (+) 0.0149 (+) 0.0057 (+) 0.0051 (+)

5-RPolygon 0.0030 0.0044 (+) 0.0149 (+) 0.0058 (+) 0.0052 (+)
8-Polygon 0.0031 0.0069 (+) 0.0180 (+) 0.0092 (+) 0.0082 (+)

8-RPolygon 0.0032 0.0069 (+) 0.0190 (+) 0.0093 (+) 0.0083 (+)
10-Polygon 0.0033 0.0064 (+) 0.0204 (+) 0.0087 (+) 0.0074 (+)

10-RPolygon 0.0034 0.0064 (+) 0.0185 (+) 0.0086 (+) 0.0075 (+)

LORD-II vs. others (+/− / ∼) 8/0/0 8/0/0 8/0/0 8/0/0

The estimated PSs from LORD-II are shown in Table 5.14 from which the following

observations are noted:

• For all the 8 instances, LORD-II converges to global surfaces without any outliers.

• The number of solutions per subset is relatively uniform over the 9 subsets in PS.

• For both polygon and rotated polygon problems, the shape of the polygon is properly

replicated for 3- and 5-objective problems. For 8- and 10-objective problem, a near-

spherical blob (of unidentifiable shape) is formed at each of the subsets in PS.

4) Experiment-IV: Comparison by Variation in Population Size: While a

large population size (npop) is a necessity for MMMOPs (as mentioned in Section 1.3.5),

standard MOEAs such as MOEA/DD may have poor performance due to a large npop.

For a fair assessment on the superiority of LORD-II, this experiment compares LORD-II

with MOEA/DD using both small npop (as per the optimal setting of MOEA/DD in [109])

and large npop (= 100 ×N as per the recommendation of CEC 2019 MMMOPs [112]) in

Table 5.15, from which the following insights are obtained:

• LORD-II is superior even for small npop.
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Table 5.14: Estimated PSs from LORD-II for M -objective polygon and rotated polygon
problems [140].

Polygon problems (9 polygons)

M = 3 M = 5 M = 8 M = 10
Rotated Polygon problems (9 polygons)

M = 3 M = 5 M = 8 M = 10

• While MOEA/DD never outperforms LORD-II in the decision space, the former is

marginally superior for a few cases (one out of 16 cases for small npop and two out

of 16 cases for large npop) in the objective space.

• A large npop improves IGDX and IGDF (Eq. (1.11)) regardless of the effectiveness

of the underlying algorithm [170], as also observed in Table 5.15 for both LORD-II

and MOEA/DD. However, since the superiority of LORD-II against MOEA/DD is

also established for a small npop, these results indeed reflect the efficient synergism

of various strategies in the evolutionary framework of LORD-II.

Table 5.15: Mean of IGDX and IGDF over 51 independent runs with different population
sizes (npop) for M -objective MMMOPs [140].

Recommended Population Size for MOEA/DD in [109] Recommended Population Size for MMMOPs in [112]
Problems M IGDX IGDF IGDX IGDF

npop LORD-II MOEA/DD LORD-II MOEA/DD npop LORD-II MOEA/DD LORD-II MOEA/DD

MMF14 3 91 0.0832 0.2150 (+) 0.1044 0.1045 (∼) 300 0.0443 0.0671 (+) 0.0540 0.0555 (+)
MMF14 a 3 91 0.1150 0.2076 (+) 0.1044 0.1045 (∼) 300 0.0576 0.0780 (+) 0.0561 0.0568 (+)
MMF15 3 91 0.0514 0.0522 (∼) 0.1055 0.1056 (∼) 300 0.0287 0.0295 (+) 0.0548 0.0562 (+)

MMF15 a 3 91 0.0638 0.0705 (+) 0.1056 0.1144 (+) 300 0.0355 0.0357 (∼) 0.0571 0.0607 (+)

MMF14 5 210 0.3070 0.3314 (+) 0.3125 0.3136 (+) 495 0.2448 0.2554 (+) 0.0564 0.0598 (+)
MMF14 a 5 210 0.3283 0.4083 (+) 0.3129 0.3135 (∼) 495 0.2670 0.2846 (+) 0.0752 0.0839 (+)
MMF15 5 210 0.2460 0.2652 (+) 0.3155 0.3167 (+) 495 0.1960 0.2032 (+) 0.0602 0.0645 (+)

MMF15 a 5 210 0.2695 0.2963 (+) 0.3181 0.3168 (−) 495 0.2155 0.2230 (+) 0.0895 0.0999 (+)

MMF14 8 156 0.6864 0.7006 (+) 0.7233 0.7244 (+) 828 0.5621 0.5857 (+) 0.1445 0.1494 (+)
MMF14 a 8 156 0.6851 0.7363 (+) 0.7225 0.7241 (+) 828 0.5725 0.5936 (+) 0.1776 0.1905 (+)
MMF15 8 156 0.6086 0.6263 (+) 0.7270 0.7291 (+) 828 0.5146 0.5586 (+) 0.1503 0.1486 (−)

MMF15 a 8 156 0.6543 0.6539 (∼) 0.7277 0.7289 (+) 828 0.5315 0.5498 (+) 0.2195 0.2159 (∼)

MMF14 10 275 0.8404 0.8847 (+) 0.6811 0.6864 (+) 935 0.7088 0.7373 (+) 0.3463 0.3102 (∼)
MMF14 a 10 275 0.8374 0.8972 (+) 0.6839 0.6907 (+) 935 0.6869 0.7241 (+) 0.4296 0.4317 (∼)
MMF15 10 275 0.7787 0.8105 (+) 0.6864 0.6903 (+) 935 0.6469 0.6731 (+) 0.3561 0.2984 (−)

MMF15 a 10 275 0.8074 0.8246 (+) 0.6913 0.6940 (+) 935 0.6712 0.6848 (+) 0.4375 0.4384 (∼)

LORD-II vs. MOEA/DD (+/− / ∼) 14/0/2 (+/− / ∼) 11/1/4 (+/− / ∼) 15/0/1 (+/− / ∼) 10/2/4

Thus, it is evident that the improved performance is an attribute of the algorithmic

framework of LORD-II and not of the large npop.
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5.5.6 Scalability Study on LORD-II framework

As most of the MMMOEAs are not tested on scalable problems [118], the scalability of

LORD-II is established by studying its performance in Table 5.16 with variations in the

candidate dimension (N) of a 3-objective MMF14 problem for N = {3, 10, 30, 50, 100}.

Table 5.16: Mean of rPSP, IGDX, rHV and IGDF for 3-objective MMF14 (with different
candidate dimensions, N) over 51 Independent Runs of LORD-II [140].

N rPSP IGDX rHV IGDF

3 0.0449 0.0443 1.0395 0.0540
10 0.5928 0.5838 1.0414 0.0013
30 2.8270 1.5038 1.0402 0.0001
50 2.1513 2.1258 1.0405 0.0001
100 3.2476 3.1807 1.0406 0.0000

From Table 5.16, the following observations are noted:

• As the number of objectives (M) does not change, the performance of LORD-II

remains unaffected in the objective space as noted from the absence of any significant

increase in rHV and IGDF.

• For small N , the performance in the decision space deteriorates only linearly (not

exponentially) with an increase in N . For example, IGDX increases 34 times when

N is increased from 3 to 30. However, with further increase in N , the deterioration

in performance is even less drastic. For example, IGDX only doubles when N is

increased from 30 to 100.

Thus, LORD-II, using decomposition of decision and objective spaces, works efficiently

even for high-dimensional MMMOPs, i.e., LORD-II is scalable with problem size.

5.5.7 Population Dynamics in Decision and Objective Space

In this sub-section, the diversity attainment rates in the decision and objective spaces are

analyzed for several MMMOEAs (LORD [140], LORD-II [140], MO Ring PSO SCD [188]

and DN-NSGA-II [113]).

For comparing the diversity attainment rate in the decision space, the time-evolution

of the proportion of solutions in each of the four distinct regions of MMF4 (Fig. 5.6a) is

considered with npop = 800 and Gmax = 100 (as done in [188]). The mean proportions

over 5 independent runs are plotted for the MMMOEAs (Fig. 5.6b to 5.6e). Ideally, these

proportions should saturate at 25%. As seen from Figs. 5.6d and 5.6e, the proportions
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of solutions in 3 regions are steady near 25-27% and the proportion in region 4 fluctuates

between 20 to 25% for LORD, whereas it is steady around 19-21% for LORD-II. Thus,

the diversity attainment rate in the decision space of LORD and LORD-II is intermediate

between that of MO Ring PSO SCD and DN-NSGA-II.

(a) PSs of MMF4 (b) DN-NSGA-II (c) MO Ring PSO SCD

(d) LORD (e) LORD-II (f) D metric

Figure 5.6: (a) True solution distribution of MMF4 problem in the decision space, (b-
e) convergence behavior in the decision space for four algorithms: (b) DN-NSGA-II, (c)
MO Ring PSO SCD, (d) LORD and (e) LORD-II, (f) diversity attainment rate in the
objective space using D metric [140].

For comparing the diversity attainment rate in the objective space, the time-evolution

of D metric (Eq. (4.20)) is considered with ndir = 800. The mean D metric over 5

independent runs are plotted in Fig. 5.6f for all the four MMMOEAs. Ideally, D metric

should saturate at 0. As seen in Fig. 5.6f, D metric for MO Ring PSO SCD severely

deteriorates with generations. This may be a result of the crowding illusion problem

(Section 5.3). For LORD, a decreasing trend in D metric is observed. For LORD-II,

the D metric has reached the ideal value roughly by 25 generations. These observations

support the enhanced diversity preservation of the LORD and LORD-II in the objective

space without sacrificing too much on the distribution in the decision space.
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5.5.8 Comparing Partitioning Strategies for Many-Objective Problems

Over the previous chapters various partitioning strategies have been analyzed for address-

ing MaOO problems. Specifically, Chapter 2 presents DECOR [142] which consists of an

objective reduction strategy to handle MaOO problems and Chapters 3 and 4 present

ESOEA [138] and NAEMO [160], respectively, which explores decomposition of objective

space for MaOO problems. As LORD-II [140] is based in decompostion in both objec-

tive and decision spaces for many-objective optimization problems, Fig. 5.7 compares its

performance on 10-objective MMMaOPs against aDECOR [142] and NAEMO [160], in

terms of IGDX and IGDF with NIGD = 1250 points uniformly sampled from the true op-

timal surfaces. For fair comparison under the same function evaluation budget, DECOR,

NAEMO and LORD-II are realized with npop = ndir = 935 and MaxFES = 50, 000.
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Figure 5.7: Mean IGDF and IGDX over 51 independent runs to compare objective re-
duction in aDECOR, decomposition of objective space in NAEMO and decomposition
of decision space in LORD-II on 10-objective MMMaOPs where for better scaling the
maximum limit of IGDX is considered as 0.8 and that of IGDF is considered as 0.5.

From Fig. 5.7, it is observed that the decomposition of objective space (used by both

NAEMO and LORD-II) is hugely beneficial for MaOO problems. Additionally, decom-

position of decision space (used by LORD-II) is beneficial for dealing with multi-modal

problems like MMMF14 and MMF14 a (where #PSs > 1 as shown in Table 5.4). Nonethe-

less, across all the problems in this experiment, LORD-II demonstrates its superiority.

Thus, all the experiments, presented in this chapter, establish the efficacy of LORD

and LORD-II for addressing a wide range of MOO problems (MMMOPs or otherwise).
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5.6 Conclusion

As most of the existing MMMOEAs use crowding distance over the entire decision space,

its analysis exhibits a major disadvantage which is identified as the crowding illusion prob-

lem. To mitigate the adverse effects of this problem for MMMOPs, a novel evolutionary

framework is presented in this chapter. It is the first MMMOEA to consider the de-

composition of decision space using graph Laplacian based clustering for maintaining the

diversity of solutions in that space. It uses reference vectors to partition the objective

space for maintaining diversity in the objective space. This algorithmic framework has

two different versions to impart and explore the convergence attribute. The first version

(LORD) is for MMMOPs with a small number of objectives, which eliminates the maxi-

mally crowded solution from the last non-dominated rank. The second version (LORD-II)

is for problems with a high number of objectives which eliminates the candidate with max-

imal PBI, from the maximally large cluster. During the elimination of a candidate, LORD

and LORD-II try to ensure that the removal does not occur from the sub-spaces (defined

by reference vectors) with only one associated candidate. These frameworks have been

tested over several MMMOPs and MMMaOPs and their performance have been compared

with recent state-of-the-art algorithms to establish their efficacy.

While any multi- or many-objective optimization algorithm explores the search space to

generate a set of multiple alternative solutions for different trade-offs among the objectives,

an application problem can implement only one of these solutions. This selection of one

of the solutions from the estimated set of Pareto-optimal solutions is often governed by

domain knowledge or decision-maker’s preferences. In the absence of such preferences or

to resolve conflict among preferences from multiple decision-makers, formulating certain

strategies is essential to guide the decision-making process for yielding the most relevant

solution for a real-world optimization problem. This application-driven necessity motivates

the research work in the next chapter, which is vital from the practical perspective of

decision-making.

5.6. CONCLUSION
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6.1 Introduction

The Many-Objective Optimization (MaOO) problem of building energy management (Sec-

tion 1.4) is explored in this chapter to study the research direction (identified in the previ-

ous chapter) of integrating decision-making strategies with the evolutionary algorithms for

selecting the context-relevant implementable solution from the Pareto-optimal Set (PS).

It is crucial to satisfy an ever-growing energy demand with limited resources [132] in

the building sector, as it occupies nearly 40% of the global energy consumption [183].

Building energy management through regulation of occupant behavior [147] is an effective

strategy, even for existing (non-green) buildings. Preliminary works [53, 143] show that

scheduling occupants’ actions, like opening/closing doors and windows, could save energy.

Thus, the physical factors stimulating these actions and the consequent effects [2] should

be explained to the occupants, as these users are not domain-experts.

The crucial goals of building energy management [72] are to achieve premium indoor

thermal comfort and finest indoor air quality without increasing energy consumption. This

problem (Section 1.4) therefore generates several Pareto-optimal schedules of occupants’

actions of which the most relevant one is chosen for implementation. This optimal schedule

can explain the causal phenomenon leading up to the differences in actions (between

optimal and actual schedules) and convey the temporal importance of a particular action.

Section 6.2 analyzes the state-of-the-art of building energy management approaches,

Section 6.3 outlines the concerned framework followed by its four components: the experi-

mental platform in Section 6.4, the building simulation models in Section 6.5, the optimiza-

tion problem (with novel decision-making strategies) in Section 6.6 and the explanation

generating framework in Section 6.7. Finally, Section 6.8 summarizes this chapter.

6.2 Research Gap Analysis

For the concerned approach of building energy management (Fig. 1.6), a solution [72]

is characterized by (i) types of occupants’ actions [147], (ii) specifications of building

simulation models [64], and (iii) explaining the impacts of occupants’ actions [2]. Brief

surveys on each of these aspects are presented next.

Occupants’ actions can greatly influence the indoor ambience. A few such actions

include opening/closing windows [53] and doors [20], adjusting window blinds [130, 156],

6.1. INTRODUCTION
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switching on/off heater [180] and lights [177], and plug load energy consumption [181].

For simulating the occupants’ actions given the contextual information, various cogni-

tive [104,194,196] and stochastic models [64,156] have been studied. Towards the middle of

this decade, Multi-Objective Optimization (MOO) has also been considered [7,57,145] for

placement of windows and solar panels. However, studies are scarce for identifying optimal

occupants’ actions concerning conflicting goals like comfort, economy, and ecology.

The vital effects of occupants’ actions are thermal comfort [39, 145] and air-quality

comfort [2, 132]. However, quantifying the influence of energy savings incurred through

occupants’ actions [72] and analysis with hourly granularity of decision variables for a

holistic occupant-building interaction profile [145] continue to be challenging tasks.

This chapter contributes to the many-objective building energy management problem

[133] by discussing various schedule selection strategies and causal explanation generating

strategies to assist the occupants in learning and adopting the energy-efficient schedules.

6.2.1 Contributions of the Case Study

This case study [133] contributes to the domain of energy buildings in the following ways:

1. It aims to attain the occupants’ action schedule for minimal indoor thermal dissatis-

faction, minimal indoor air quality dissatisfaction, and minimal energy expenditure,

while providing a minimal number of changes in recommended actions.

2. For a holistic exploration, it considers hourly granularity of data acquisition and

system-generated recommendations along with performance analysis at different

granularities (hourly, daily and seasonal).

3. It presents various decision-making strategies considering different types of occu-

pants’ preferences for selecting the most relevant energy-efficient schedule.

4. It identifies the driving forces behind the recommended actions. Such explanations

are summarized to obtain the cause-and-effect chart. These justifications bridge the

gap between recommendations and cognitive adaptations for the occupants.

Thus, this novel case study [133] assists the occupants to interact with the building

energy system regarding their preferences and helps them to embrace the recommended

energy-efficient schedules.

6.2. RESEARCH GAP ANALYSIS
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Figure 6.1: General schema for studying the impact of occupants’ actions [133].

6.3 General Schema for Obtaining Explanations

Due to the complexity and formalism of building models and unconsciously varying sched-

ules of occupants, it is highly challenging for the occupants to understand the underlying

causal relations between their actions and effects. The concerned framework (Fig. 1.6)

aims to simplify the recommended actions by associating them with contextual explana-

tions. For this case study [133], the physical variables, involved in the building simulation

models, can be grouped into the following categories (Fig. 6.1):

1. Occupant actions (XB): At time t, XB contains variables directly controllable by the

occupants, like opening/closing doors (ζD(t)) and windows (ζW (t)), and switching

on/off a room heater (ζH(t)).

2. Physical context (PB): At time t, PB contains variables, which cannot be controlled

by the occupants, like outdoor temperature (Tout(t)), wind speed, humidity, illumi-

nance, temperature of neighboring zones (Tn(t)), number of occupants (n(t)) and

electric power consumption from work-associated appliances (Pelec(t)).

3. Occupant satisfaction (FB): At time t, FB contains variables desired by the occu-

pants, like indicators of thermal discomfort (σtemp(t)), aeraulic discomfort (σair(t)),

the heater energy cost (σcost(t)), and changes in successive recommendations (δWD(t)).

4. Intermediate variables (IB): At time t, the set of auxiliary variables IB contains

some model-estimated parameters (I1), like airflow (Q(t)) and heat flow (ϕ(t)),

along with some sensor-recorded parameters (I2), like indoor temperature (Tin(t))

and indoor CO2 concentration (Cin(t)).

6.3. GENERAL SCHEMA FOR OBTAINING EXPLANATIONS
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Thus, this causal relationship (Fig. 6.1) is denoted as XB,PB
IB−−→ FB. According to

Fig. 1.6, the chosen set of optimal actions X ?B under the same PB leads to X ?B,PB
I?B−−→ F?B.

For conveying the impact of this change from usual to optimal plan, the difference between

the usual values (x̃) and the optimal values (x?) is translated as follows:

Π(∆x, v−3, v−2, v−1, v1, v2, v3) :

∆x < v−3 → big fall (↓↓↓), ∆x ≥ v3 → big rise (↑↑↑),

v−2 ≤ ∆x < v−3 → medium fall (↓↓), v2 ≤ ∆x < v3 → medium rise (↑↑),

v−3 ≤ ∆x < v−1 → small fall (↓), v1 ≤ ∆x < v2 → small rise(↑),

v−1 ≤ ∆x < v1 → no significant change (no arrows),

where ∆x = x? − x̃, x? ∈ {X ?B, I?B,F?B} and x̃ ∈ {X̃B, ĨB, F̃B}.

(6.1)

6.4 Experimental Testbed and its Description

The experimental testbed (Fig. 6.2) is an office room1 at Grenoble Institute of Technology,

France, shared among four researchers [133]. The office draws power from a fixed tariff

power supply at the rate (Eelec) of 0.15 Euros per kilowatt-hour (kWh). Although Heating,

Ventilation and Air Conditioning (HVAC) is absent, the office has a room heater. Its fuel

consumption cost is at the rate (Efuel) of 0.089 Euros per kWh. The metabolism of the

occupants (ϕbodies) is assumed to be constant at 129 watts (W) per person.

Figure 6.2: Panoramic view (from door) of the office and its outside view [133].

1This work is partially supported by the Indo-French project (DST-INRIA/2015-02/BIDEE/0978).

6.4. EXPERIMENTAL TESTBED AND ITS DESCRIPTION
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Figure 6.3: Simulation models based on occupants’ actions fitted to the office room.

This testbed is fitted with 27 sensors for acquiring data like door and window openings,

acoustic pressure, illuminance, indoor and corridor physical variables like temperature,

CO2 concentration, humidity and volatile organic compounds (COV). Hourly data from

sensor recordings and weather conditions are stored in the historical database (HDB) from

April 2015 to October 2016 for creating the context during simulations. This data is also

utilized to dynamically estimate the occupancy [3, 4].

6.5 Physical Knowledge Models

Developing the electro-mechanical equivalent of the office room is a challenging task as

there is a multitude of ongoing building-occupant-environment interactions, like heat flow

and air flow. The specifications of the physical models, fitted to this office room, is found

from [158, 159]. Using the parameters mentioned in Table 6.1, the equivalent thermal

model (Fig. 6.3a) is described as follows:

Tin =
Req
Ri

τ +Reqϕin +Req

(
1

Rout
+
ζW
RW

)
Tout +Req

(
1

Rn
+
ζD
RD

)
Tn,

where
1

Req
=

1

Ri
+

1

Rout
+
ζW
RW

+
1

Rn
+
ζD
RD

, RD =
1

ρaircp,airQD
,

RW =
1

ρaircp,airQW
, QW = Q0

W + ζWQ
1
W and QD = Q0

D + ζDQ
1
D

with time-invariant Rn, Rout and Ri.

(6.2)

Similarly, the equivalent model (Fig. 6.3b) representing the CO2 based aeraulic charac-

teristics of the office room [158] is described as follows:

Cin(t) = Cout +

(
Q0
n + ζD(t)QD

)
Cn(t)

Q0
out +Q0

n + ζW (t)QW + ζD(t)QD
+

SCO2n(t)

Q0
out +Q0

n + ζW (t)QW + ζD(t)QD
,

6.5. PHYSICAL KNOWLEDGE MODELS
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where Qout(t) = Q0
out + ζW (t)QW and Qn(t) = Q0

n + ζD(t)QD. (6.3)

Finally, the heater-related energy consumption (Pfuel) is described as follows:

Pfuel (t) = ζH (t)× Pmaxheater. (6.4)

Thus, besides the physical context, ζD, ζW and ζH can influence the indoor ambience.

The next section discusses an approach to search ζW , ζD and ζH for optimal effects.

6.6 Obtaining Optimal Actions of Occupants

Using the discretized simulation models (Section 6.5), the optimal ζW , ζD and ζH are rec-

ommended (Fig. 1.6). The continuous-time variables (x(t)) are transformed into discrete-

time variables (xk) using the average value over the kth time quantum.

The concerned problem (Section 1.4) is characterized by the solution vector encoding

in Eq. (1.19). As it considers an hourly granularity, the solution vector (XB) is 72-

dimensional (N = 72 = 24 hours ×3 actions). To simplify intepretations, the optimization

problem considers only binary-valued (open(1)/close(0) or on(1)/off(0)) ζkW , ζkD and ζkH .

Table 6.1: Description of building simulation model parameters [133]

Parameters Meaning Remarks

τ Average temperature of the building envelope Data from HDB
Rn, Rout, RW , RD Thermal resistance of neighboring zones, outdoor,

window and door
Data from HDB

Ri, Ci Equivalent resistance and capacitance due to inertia Data from HDB
Req Equivalent resistance By Eq. (6.2)

Tin, Tn, Tout Temperatures inside, with adjacent corridor and out-
side

Data from HDB

ϕin Total indoor energy gains Data from HDB
ρair Air density Typical value is 1.204m3

cp,air Specific heat of air at room temperature Typical value is 1.004
kJ.kg−1.K−1

Cin, Cn, Cout CO2 concentration indoor, with neighboring zone
and outdoor

Data from HDB, Cout = 395×
10−6 mol per mol of air (con-
stant)

Qn, Qout, QW , QD,
QWD

Air flow with adjacent corridor, outdoor, through
window, through door, through window and door
(cross-ventilation)

Data from HDB

SCO2 Breath production in CO2 from each occupant Typical value is 8.73 × 10−6

mol.m3.s−1 per person per mol
of air

Pelec or ϕappliances Power drawn from electric supply or net heat flow
from appliances

Data from HDB

Pmaxheater Maximum energy consumption associated with wa-
ter circulation for hourly heater usage

Typical value is 2000W

6.6. OBTAINING OPTIMAL ACTIONS OF OCCUPANTS
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When there is at least one occupant (nk 6= 0), the optimization problem (Section

1.4) minimizes the occupants’ dissatisfaction (FB), defined by Eq. (1.20). These effects of

occupants’ actions (M = 4 objectives) are given in Table 1.2, which represents the thermal

discomfort (σktemp), CO2 based air quality discomfort (σkair), an indicator for energy cost

(σkcost) and the dissatisfaction from changes in actions at successive hours (δkWD).

These objectives necessitate the use of MaOO algorithms to address this building

energy management problem. The result of such MaOO algorithms is a set of trade-off

solutions. However, a single solution from this set can be chosen for implementation. The

next part discusses various approaches to select the final context-relevant solution.

6.6.1 Decision-making Strategies

Earlier optimization approaches [6, 57] combined multiple objectives into a single objec-

tive and thus, resulted in a single solution. However, after termination (i.e., after Gmax

generations), MaOO algorithms result in a set of solutions to represent the estimated

Pareto-optimal Set (PS: AGmax) and the estimated Pareto-Front (PF: AF,Gmax). A multi-

objective formulation for the building energy management problem [145] mentions the

requirement of expert’s knowledge for selecting the most relevant solution. However, in

absence of an expert’s knowledge, for allowing convenient decision-making by the occu-

pants, this chapter subsequently outlines four strategies.

6.6.2 Strategy I: In absence of user preferences

Assuming the objectives of Eq. (1.20) have a preference weighting of wb,1, wb,2, wb,3 and

wb,4, the distance to a solution (DB(.)) and the best compromise (X?
B) are as follows:

DB (XB) =

4∑
i=1

(
wb,i ×

∣∣∣fB,i (XB)− f ideB,i

∣∣∣) , where

4∑
i=1

wb,i = 1, (6.5)

X?
B = arg min

XB∈AGmax
DB (XB) and F?

B = [fB,1 (X?
B) , · · · , fB,4 (X?

B)] . (6.6)

As the objectives in Eq. (1.20) have nearly the same scale, F?
B from Eq. (6.6) rep-

resents the point from the estimated PF closest to the ideal objective vector (Fide
B =

[0, 0, 0, 0]). Thus, F?
B corresponds to a schedule with the minimum net (global) occupant

dissatisfaction. As constraining changes in actions will prohibit the other optimization

objectives to evolve leading to poor exploration of the search space, the objective weights

6.6. OBTAINING OPTIMAL ACTIONS OF OCCUPANTS
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are considered as wb,1 = 33.22%, wb,2 = 33.22%, wb,3 = 33.22% and wb,4 = 0.34%. For a

2-objective problem (minimizing σtemp and σair), this strategy is shown in Fig. 6.4a.
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(a) Strategy-I (05-May-2015) [133] (b) Strategy-IV (08-April-2015) [139]

Figure 6.4: Choosing a single solution from the estimated PF.

6.6.3 Strategy II: Setting a reasonable preference

For allowing occupants (users) to interact with the building energy system, a slider proto-

type [1, 133] is developed. It has co-dependent horizontal bars (per objective), which are

divided into infeasible (red), non-optimal (gray) and optimal (white) regions (e.g., Fig.

6.5 shows the sliders from a real interface [105]). When the user voluntarily navigates one

of the sliders, the other sliders can simultaneously adjust the respective optimal or non-

optimal regions. When all the sliders are set at desired positions representing occupants’

preference Fpref
B , the objective vector closest to it is selected from the PF using Eq. (6.6)

and the corresponding schedule (X?
B) is recommended.

Figure 6.5: Screenshot of the slider (Strategy-II of decision-making) from the real user
interface (https://pareto-sliders.firebaseapp.com/).

6.6.4 Strategy III: Multiple subjective preferences [135]

When the subjective preferences of multiple occupants are considered with equal priority,

i.e., when there is no hierarchy among the occupants, this strategy provides a fair consensus

6.6. OBTAINING OPTIMAL ACTIONS OF OCCUPANTS
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solution [135]. The situation must satisfy the following conditions:

1. The occupants are rational, intelligent, and cooperative individuals.

2. The occupants can conclude on a mutually beneficial state (solution) of comfort.

3. There is a conflict of interest about which state (solution) should be preferred.

This situation is called the bargaining problem [129] which is commonly addressed

using the α-fairness criteria for yielding the generalized Nash bargaining solution [175].

Inspired from this approach, the fair consensus criterion [135] is developed to yield the

Fair Consensus Schedule (FCS) where the following assumptions are made:

• The ith occupant in the office sets the preference Fpref
B,i using the sliders (Fig. 6.5).

• In the objective space, a point FB belongs to a set of alternatives (AF).

• The utility function U
(
FB,F

pref
B,i

)
indicates the degree of unfairness (disagreement)

of the comfort state (FB) as compared to the preference of the ith occupant (Fpref
B,i ).

• A parameter αB regulates the kind of fairness sought among the occupants. Thus,

considering U (.), αB and a small number εB, the estimated unfairness C(FB,F
pref
B,i )

of a comfort state FB to the preferred state Fpref
B,i is given as follows:

C
(
FB,F

pref
B,i

)
=

(
U
(
FB,F

pref
B,i

)
+ εB

)(αB−1)
(αB − 1)

, where i = 1, · · · , n. (6.7)

• The unfairness of a solution (having a comfort state FB) to the preferences of all the n

occupants is denoted by DF (FB). Thus, the comfort state F?
B having the minimum

value of DF (.) is the least unfair to all the occupants and the corresponding schedule

X?
B, mapping to F?

B, is FCS [135]. The state F?
B is obtained as follows:

F?
B = arg min

FB∈AF

DF (FB) , where DF (FB) =
n∑
i=1

C
(
FB,F

pref
B,i

)
. (6.8)

Thus, the evaluation of FCS is governed by U(.) and αB. As U(.) signifies how much

a comfort state FB is different from a preference Fpref
B , it is evaluated as follows:

U
(
FB,F

pref
B

)
=

M∑
k=1

(
fB,k − fprefB,k

)2
, where M = number of objectives. (6.9)

The variations of U(.) (Eq. (6.9)), C(.) (Eq. (6.7)) and DF (.) (Eq. (6.8)) over the

solutions in the Pareto-Front are shown in Fig. 6.6.
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Figure 6.6: Variations in different functions for Fair Consensus Schedule [135].

The parameter αB for FCS evaluation (used in Eq. (6.7)) is defined for values in the

range (1,∞). Different values of αB signify different perspectives of fairness among all

the occupants as described in Table 6.2. Thus, X?
B = arg F?

B (where F?
B is obtained using

Eq. (6.8)) is the chosen schedule based on the fair consensus criterion. For the concerned

problem, αB = 3 is used as a trade-off between minimizing the group disagreement and

the maximum disagreement, as specified in [135].

Table 6.2: Implications of fair consensus criterion for different values of αB.

Parameters Implications Contextual Significance

αB → 1 Proportional Fair-
ness Criteria

Consensus highly prioritizes the solutions with lower un-
fairness and thus, FCS settles in favour of majority.

αB = 2 Group Disagreement As DF (.) (Eq. (6.8)) becomes sum of U(.), FCS mini-
mizes average disagreement over the group of occupants.

αB →∞ Min-Max Criteria It magnifies large disagreements and diminishes small dis-
agreements. Thus, consensus is obtained by minimizing
the maximum disagreement such that FCS is not oblivi-
ous to an occupant with a very different preference.

6.6.5 Strategy IV: Preference in decision space [139]

The occupants have a usual/preferred schedule (X̃B from HDB) and are more likely to

embrace a recommended schedule (X?
B) which has a smaller deviation from X̃B. By

exploring the multi-modality (Section 5.1) of the concerned MaOO problem, different

alternative schedules for the same objective values can be discovered, which further assists

in finding a schedule X?
B with the least deviation from X̃B.

Once a Multi-Modal Multi-Objective Evolutionary Algorithm (MMMOEA) estimates

the PF and the equivalent subsets within the PS, this decision-making strategy filters

out the subset of the most relevant schedules (AschF,Gmax
). Thereafter, Strategy-I, II or III

of decision-making is used in the objective space to finally obtain the schedule X?
B for

recommendation, as illustrated in Fig. 6.4b.

If the least deviation (∆sch
min) is the minimum change in schedules (XB) of AGmax from
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the usual schedule (X̃B), the pruned Pareto-Front AschF,Gmax
is estimated as follows:

AschF,Gmax = {FB(XB) | ∆XB = ∆sch
min},

where ∆sch
min = arg min

XB∈AGmax
∆XB = arg min

XB∈AGmax

N∑
j=1

|x̃B,j − xB,j | .
(6.10)

6.6.6 Optimization Results and Discussions

The purpose of the optimization module is to yield the set of best trade-offs and to allow

the users to browse through this set for obtaining a desirable schedule. For addressing

this MaOO problem, the concerned framework (Fig. 1.6) is implemented for the office

room of the Grenoble Institute of Technology on a computer with 8 GB RAM and Intel

Core i7 processor (having 2.20 GHz clock speed) using Python 3.4 and its performance is

analyzed through following experiments.

Recommending an Optimization Algorithm

The algorithms, investigated for solving the MaOO problem, are specified as follows:

1. Using SA: Similar to existing works [6, 57], a weighted combination of multiple ob-

jectives (
∑4

i=1wb,i × fB,i) is considered to generate an equivalent single-objective

problem and then solved using Simulated Annealing (SA) [102]. For defining the

neighborhood in SA, the changes in variables are restricted to 10%, and the radius

is attenuated by 1 in each of the 1000 iterations. The temperature is considered to

be linearly decreasing over the iterations. The best solution over 100 runs is noted.

2. Using NSGA-II : Being a popular choice, NSGA-II [47, 145] is used along with the

reproduction scheme in Fig. 6.7. It uses binary tournament for selecting the parent

solutions, a mutation probability of 3/N and npop of 36.

3. Using AGE-II : For approximate estimation of PS and PF, Approximation-Guided

Evolutionary algorithm (AGE-II) [133, 179] is used along with the reproduction

scheme in Fig. 6.7 and npop of 36. It incorporates the formal notion of additive

approximation with a degree of approximation of 0.01.

4. Using NAEMO : To estimate a well-diverse PF, a decomposition-based algorithm

(NAEMO [160]) is also considered. It is implemented using Algorithm 4.1 with
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ndir = 35 and the reproduction scheme in Fig. 6.7 instead of Algorithm 4.2.

For NSGA-II, AGE-II, and NAEMO, a maximum of 300 iterations is used (i.e., Gmax =

300). For each algorithm (except SA), the result over 5 runs is considered using Eq. (1.13)

with KPF = 5. Combining the small solution sets obtained over multiple runs to generate

the final Pareto-Front, help in balancing the trade-off between small population size and

better performance of a MOEA [170]. For 20 randomly sampled days over the experimen-

tal duration, the results are noted from the optimization algorithms using Strategy-I of

decision-making. For detailed results, kindly refer to [133,139].

For denoting the global minima attained by an algorithm, DB (X?
B) is noted in Fig. 6.8.

The corresponding value for the usual schedule of the occupants, i.e., DB

(
X̃B

)
, is also

noted for comparison. A higher deviation between the global and the usual dissatisfaction

(i.e., ∆DB = DB

(
X̃B

)
−DB (X?

B)) denotes better energy management. Such deviations

are noted in Table 6.3 along with p-values from the t-test corresponding to 95% confidence

interval under the null hypothesis that the mean ∆DB is zero (insignificant).

By analyzing the results, the following insights are obtained:

1. From Fig. 6.8, DB (X?
B) < DB

(
X̃B

)
for all cases. This is supported by the positive

values of ∆DB and p-values ≥ 0.05 (rejecting the null hypothesis) in Table 6.3.

2. In all cases, SA yields the worst DB (X?
B) (Fig. 6.8) and the least ∆DB (Table 6.3)

as transforming multiple objectives into a single objective neglects their conflict.

Thus, such transformations are not recommended during the optimization.
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1 2 3 4 5 6 7 8 9 10 11 12 13

SA 0.3037 0.4002 0.3608 0.1470 0.2120 0.3893 0.3788 0.4828 0.1485 0.2803 0.7332 0.1181 0.1553

AGE-II 0.3020 0.3961 0.3577 0.1412 0.2088 0.3826 0.3715 0.4652 0.1093 0.2752 0.7282 0.1152 0.1501

NSGA-II 0.2978 0.3961 0.3573 0.1412 0.2060 0.3939 0.3719 0.4656 0.1085 0.2752 0.7286 0.1148 0.1514

NAEMO 0.2982 0.3953 0.3569 0.1417 0.2042 0.3830 0.3715 0.4656 0.1087 0.2752 0.7290 0.1151 0.1514

Usual 0.3257 0.4143 0.3886 0.1687 0.2252 0.5480 0.4837 0.8002 0.4813 0.2821 0.7378 0.1327 0.2980
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Figure 6.8: Comparing the performance of optimizers when global criteria obtained with
respect to usual schedule of occupant’s actions (DB(X̃B)) is (a) ≤ 1, (b) > 1 [133].

Table 6.3: Difference in the global dissatisfaction of the optimal schedule from that of the
historical schedule (∆DB = DB(X̃B)−DB(X?

B)) [133,139].

Day Date Deviation ∆DB Execution time (in seconds)
Number SA AGE-II NSGA-II NAEMO SA AGE-II NSGA-II NAEMO

1 01-Apr-2015 0.0220 0.0237 0.0279 0.0275 61.8668 91.6743 101.3238 65.2527
2 20-May-2015 0.0142 0.0183 0.0183 0.0191 59.3280 97.6341 103.1781 68.9027
3 30-Sep-2015 0.0278 0.0309 0.0314 0.0318 60.9106 84.8661 100.1119 73.1182
4 08-Oct-2015 0.0217 0.0275 0.0275 0.0270 62.3862 89.8696 101.8488 70.2369
5 03-Nov-2015 0.0132 0.0164 0.0192 0.0210 64.7919 90.9098 102.4084 70.1459
6 07-Dec-2015 0.1587 0.1654 0.1541 0.1650 61.0254 86.0383 100.6460 66.0193
7 26-Jan-2016 0.1049 0.1122 0.1118 0.1122 61.6363 83.7820 101.3354 67.7403
8 01-Feb-2016 0.3173 0.3349 0.3345 0.3345 62.4322 85.8027 101.1520 70.8845
9 17-Mar-2016 0.3329 0.3720 0.3728 0.3726 60.5009 84.0765 100.3140 68.2200
10 13-Apr-2016 0.0018 0.0069 0.0069 0.0069 62.8810 85.6809 102.4386 65.1108
11 23-May-2016 0.0046 0.0096 0.0092 0.0088 41.6105 67.8174 71.4416 65.1858
12 02-Jun-2016 0.0146 0.0175 0.0180 0.0176 40.9297 67.6796 74.3269 70.1280
13 20-Oct-2016 0.1427 0.1479 0.1467 0.1467 62.0120 101.5243 100.8283 66.5560
14 16-Jun-2015 0.3773 0.5871 0.5867 0.5867 62.4832 89.1091 103.2391 66.1912
15 07-Jul-2015 0.4306 0.6671 0.6668 0.6655 62.8645 88.0524 100.6763 66.0063
16 01-Sep-2015 0.3933 0.6968 0.6909 0.6765 63.3529 94.0166 105.1845 73.7089
17 30-Jun-2016 0.5444 0.7731 0.7737 0.7737 42.0875 68.1006 73.8499 64.0145
18 26-Jul-2016 0.5420 0.7631 0.7635 0.7635 42.3909 70.1146 72.1790 64.0524
19 31-Aug-2016 0.4644 0.7321 0.7321 0.7317 42.2508 65.3673 72.9211 66.4241
20 08-Sep-2016 0.4605 0.7539 0.7438 0.7563 42.9969 63.3149 74.5413 68.6838

Mean 0.2194 0.3128 0.3118 0.3122 56.0369 82.7716 93.1973 67.8291
p-value 0.000136 0.000306 0.000305 0.000148 – – – –

3. The remaining MaOO algorithms (NSGA-II, AGE-II and NAEMO) have similar

bar heights in Fig. 6.8 and similar ∆DB in Table 6.3. This indicates all the MaOO

algorithms are equally capable of finding the approximation of an optimal schedule.

4. Besides DB (X?
B) and ∆DB, the execution time (in seconds) of the algorithms are

noted in Table 6.3, using which the algorithms are ranked as follows: SA, NAEMO,

AGE-II and NSGA-II. The lower speed of NSGA-II [47] is due to the computationally

expensive non-dominated sorting step whereas the higher speed of SA [102] is due to

its simpler solution comparisons for being a single-objective optimization algorithm.

The speed of AGE-II [179] and NAEMO [160] are intermediate.
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5. During summer (mid-June to mid-September), the outside weather is less favorable

to attain occupants’ comfort. It is observed from higher values of DB (X?
B) and

DB

(
X̃B

)
(Fig. 6.8b) for these days (day number 14 to 20) as compared to other

days. Thus, future case studies in summer may benefit from using cooling devices.

Since NAEMO is fastest (Table 6.3) among the MaOO algorithms, it is recommended

for the concerned building energy management problem.

Importance of Each Objective

On a random day (03-November-2015), the hourly variations in Tin, Cin, ζW , ζD and Pfuel

are plotted in Fig. 6.9, for both the optimal schedule (green dotted curves) and the actual

schedule (blue dashed curves). The final schedule is recommended using Strategy-I of

decision-making. The following observations are noted from these plots:

1. The decision-making and the results [2], with data from 8 am to 8 pm, are illustrated

in Fig. 6.9 (first column) for two objectives (σtemp and σair). The plots for both Tin

and Cin from the optimal schedule have a lower trend than those from the actual

schedule. Being an autumn day, the doors and windows are usually closed whereas

the optimal schedule recommends that occasionally opening them can be beneficial.

2. The above problem is extended to a 3-objective problem by introducing σcost (i.e., the

heater operation with Pfuel) and the associated plots are shown in Fig. 6.9 (second

column). Although the overall trends of Tin and Cin are similar to the 2-objective

problem, Tin is closer to 21◦C (294.15K) by using the heater. Thus, introducing the

heater in the 3-objective problem allows a more regulated control over Tin.

3. The above problem is extended to a 4-objective problem by introducing δWD and the

associated plots are shown in Fig. 6.9 (third column). The overall trends of Tin and

Cin continue to be similar to the 3-objective problem with fewer changes in ζW and

ζD. Hence, building energy management can occur without too much interference

with the daily work of the occupants.

Thus, all four objectives are essential for the concerned MaOO problem.
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Figure 6.9: Indoor physical parameters along optimal actions for 2-objective problem with
σtemp and σair (first column); for 3-objective problem with σtemp, σair and σcost (second
column); and for 4-objective problem with σtemp, σair, σcost and δWD (third column) [133].

Analyzing the Fair Consensus Criterion [135]

For this experiment, the 2-objective problem is revisited with door and window actions

(ζD and ζW ) between 8 am to 8 pm while minimizing thermal and aeraulic discomfort

(σtemp and σair). In this experiment, the FCS (Eq. (6.8)) is obtained post-optimization

(Approach-I) over the estimated PF (AF,Gmax). However, the search for FCS can also be

integrated during optimization (Approach-II) by considering minimization of DF (.) (Eq.

(6.8)) as the (M + 1)th optimization objective. Thus, this extended optimization problem
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considers the objective vector (F′B) as follows:

F′B = [fB,1, · · · , fB,M , DF (FB)] , where DF (.) is given by Eq. (6.8). (6.11)

After estimating the PF by this approach, X?
B is obtained similar to Approach-I.

For this experiment, two occupants specify their preferences in terms of average Tin

and Cin over the entire day and the physical context of 05-May-2015 is considered for

investigating the performance in Table 6.4. Additionally, Strategy-I of decision-making is

also considered for comparison of results.

Table 6.4: Comparison of the consensus searching approaches for the building energy
management problem [135]

Items Average of Average of σair σtemp
Cin (ppm) Tin (◦ C)

Preference of occupant 1 (Fpref
B,1 ) 675.0000 23.3000 0.2500 0.1000

Preference of occupant 2 (Fpref
B,2 ) 466.0000 24.0500 0.0600 0.3500

Actual State (F̃B) Using Historical Schedule 667.4100 24.3497 0.2431 0.4499

Strategy-I 531.5600 23.5664 0.1196 0.1888
Chosen State (F?

B) Approach-I (Strategy-III) 535.3000 23.5658 0.1230 0.1886
Approach-II (Strategy-III) 562.0300 23.6021 0.1473 0.2007

(a) Strategy-I (b) Approach-I (Strategy-III) (c) Approach-II (Strategy-III)

Figure 6.10: Comparison of different approaches for obtaining consensus from two occu-
pants with subjective preferences of comfort criteria [135].

Although the chosen states (F?
B) from the Strategy-I and Approach-I (Strategy-III)

appear to overlap in Figs. 6.10a and 6.10b, the small differences in σtemp and σair lead

to dissimilar average values of Tin and Cin (Table 6.4). Unlike these results, the chosen

state (F?
B) from Approach-II (Strategy-III with Eq. (6.11)) is less biased to either of the

preferences. Instead of highly satisfying one of the decision-makers [129], a bargaining is

more likely when intermediate choices exist between the multiple preferences [135]. Thus,

the fair consensus criterion is a more practical decision-making approach where the fairness

can be regulated through the utility function U(.) and the parameter αB.
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Exploring the Multi-Modality of the Problem [139]

In the previous experiments with standard MOEAs, multiple schedules (X?
B) were ob-

served to have the same F?
B, out of which any random schedule was reported. To further

explore this multi-modality, the 4-objective MaOO problem (Section 1.4) is optimized us-

ing LORD [140]. To implement LORD (Algorithm 5.1) for the concerned building energy

management problem, the following enhancements are considered:

• LORD uses the reproduction scheme outlined in Fig. 6.7, instead of Algorithm

5.2, as single-point binary crossover and bit-flip mutation address the binary nature

of the action variables whereas the decision tree deals with the multi-view nature

(action variables from multiple domains: window, door and heater) of the problem.

• The following changes (Fig. 6.11) are considered to customize the filtering step of

LORD (Algorithm 5.4):

1. Due to the binary nature of the action variables, the cosine distance measures

the node similarity (domain-wise). The binary symmetric matrices (Gwindow,

Gdoor and Gheater) are generated by placing edges between those pairs of nodes

where the distances are less than εL = 0.4 (more similar).

Subsequently, the symmetric normalized graph Laplacians (Lwindowsym , Ldoorsym and

Lheatersym ) are obtained using Eq. (5.1) and the eigendecomposition is performed

separately on the Laplacians. In the respective domains, the smallest non-zero

eigenvalue or the Fiedler value [59] (λwindow2 , λdoor2 and λheater2 ) represents the

quality of the graph partitioning [59]. Thus, these Fiedler values can determine

the influence of the multiple domains on the overall Laplacian (Lcombsym ) as follows:

Lcombsym =
λwindow2 × Lwindowsym + λdoor2 × Ldoorsym + λheater2 × Lheatersym

λwindow2 + λdoor2 + λheater2

. (6.12)

Similar to Section 5.4.2, the algebraic multiplicity of 0 eigenvalue of Lcombsym gives

the number of connected components (kCC) of the overall cluster structure and

the eigenvectors of Lcombsym from the second smallest to the kthCC eigenvalue are

clustered (C1, · · · , CkCC) using the k-means algorithm. This clustering of the

action schedules is performed in line 5 of Algorithm 5.4 for this study.

2. Due to the assignment of high crowding distances to extreme values along each
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Figure 6.11: Modified filtering step for LORD [139].

dimension (Section 2.3.3), all binary action schedules will have equal crowding

in the decision space (CDX). Hence, only crowding distance in the objective

space (CDF) is considered in lines 6 and 7 of Algorithm 5.4 instead of Special

Crowding Distance (SCD: a combination of CDX and CDF).

As NAEMO is recommended based on its performance in Table 6.3, the performance

of the customized version of LORD is compared with that of NAEMO using ndir = 35

and npop = 105. This experiment notes the amount of change from the usual schedule

(∆X?
B/N) required for a deviation of ∆DB in the global criteria. As multiple distinct

schedules are noted for the same F?
B (Eq. (6.6)), among these schedules the schedule X?

B

having the least deviation from X̃B can be recommended (Approach S1). Otherwise, the

subset AschF,Gmax
with the least deviation over the estimated PS (Eq. (6.10)) is obtained,

from which X?
B is estimated using Eq. (6.6) (Approach S4).

The results obtained from the above two approaches for the same 20 days (as in Table

6.3) are noted in Table 6.5. The following insights are obtained from this experiment:

• For both LORD and NAEMO, as S1 prioritizes DB(X?
B) over ∆X?

B, better ∆DB

values are obtained by S1 approaches. Similarly, as S4 prioritizes in the reverse

order, better ∆X?
B/N values are obtained by S4 approaches.

• Although S4 yields a poorer ∆DB value, it is numerically very close to S1 at a much
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Table 6.5: Amount of change in schedule (∆X?
B/N =

(∑N
j=1

∣∣∣x̃B,j − x?B,j

∣∣∣) /N) required

for a deviation of ∆DB (= DB(X̃B)−DB(X?
B)) in global criteria [139].

Day Date Change in Schedule (∆X?
B/N) Change in Global Criteria (∆DB)

Number NAEMO LORD NAEMO LORD
(S1) (S4) (S1) (S4) (S1) (S4) (S1) (S4)

1 01-Apr-2015 0.4583 0.4583 0.3889 0.3889 0.0275 0.0275 0.0275 0.0275
2 20-May-2015 0.6806 0.6806 0.4167 0.4167 0.0191 0.0191 0.0183 0.0183
3 30-Sep-2015 0.5139 0.4167 0.3472 0.3333 0.0318 0.0303 0.0320 0.0307
4 08-Oct-2015 0.4167 0.4167 0.3889 0.3889 0.0270 0.0270 0.0270 0.0270
5 03-Nov-2015 0.7778 0.6667 0.7639 0.4861 0.0210 0.0170 0.0211 0.0179
6 07-Dec-2015 0.7083 0.5833 0.6111 0.5694 0.1650 0.1625 0.1650 0.1545
7 26-Jan-2016 0.7917 0.6111 0.6528 0.6250 0.1122 0.1112 0.1126 0.1116
8 01-Feb-2016 0.7778 0.7500 0.6806 0.5417 0.3345 0.3340 0.3349 0.3348
9 17-Mar-2016 0.7222 0.6250 0.7083 0.6528 0.3726 0.3706 0.3732 0.3728
10 13-Apr-2016 0.6944 0.5833 0.7778 0.6250 0.0069 0.0061 0.0073 0.0069
11 23-May-2016 0.6250 0.6250 0.5694 0.5694 0.0088 0.0088 0.0092 0.0092
12 02-Jun-2016 0.4444 0.4444 0.3472 0.3472 0.0176 0.0176 0.0176 0.0176
13 20-Oct-2016 0.7917 0.7917 0.4444 0.4444 0.1467 0.1467 0.1463 0.1463
14 16-Jun-2015 0.4028 0.4028 0.3611 0.3611 0.5867 0.5867 0.5872 0.5872
15 07-Jul-2015 0.5000 0.3889 0.2917 0.2917 0.6655 0.6610 0.6668 0.6668
16 01-Sep-2015 0.4306 0.2083 0.4028 0.1667 0.6765 0.5469 0.6972 0.5306
17 30-Jun-2016 0.3889 0.3611 0.2917 0.2917 0.7737 0.7347 0.7737 0.7737
18 26-Jul-2016 0.3611 0.3611 0.3333 0.3333 0.7635 0.7635 0.7635 0.7635
19 31-Aug-2016 0.3611 0.3611 0.2222 0.2222 0.7317 0.7317 0.7319 0.7319
20 08-Sep-2016 0.3472 0.2639 0.3472 0.1806 0.7563 0.7356 0.7563 0.7230

Mean 0.5597 0.5000 0.4674 0.4118 0.3122 0.3019 0.3134 0.3026

better ∆X?
B/N value. For example, on 26-Jan-2016, NAEMO attains similar ∆DB

value with only a 61% change in the schedule using S4 as opposed to 79% using S1.

Thus, S4 is a better approach than S1 for choosing the schedule to be recommended.

• LORD (S4) is noted to perform as good as or better than NAEMO (S4) in 15 out

of 20 cases. Moreover, for five days (numbered 2, 5, 8, 13, and 19), ∆X?
B/N from

LORD (S4) is at least 10% better than those from NAEMO (S4). This superiority

of LORD is due to its efficacy for multi-modal optimization problems (Chapter 5).

Thus, recommending a relevant and Pareto-optimal schedule can be beneficial for en-

ergy management. For example, on 01-Sep-2015, with only a 16% change from X̃B, LORD

(S4) has obtained a better (Pareto-optimal) schedule X?
B than the usual schedule X̃B.

Analyzing the Seasonal Variations with Year-Round Results

The distribution of daily averages of the actual and the optimal Tin and Cin along with

that of the four objectives are presented over the four seasons: Autumn’15, Winter’15-16,

Spring’16 and Summer’16 in Fig. 6.12, from which the following observations are noted:

• In winter and spring, mean T ?in is higher than T̃in, and vice-versa during autumn and

6.6. OBTAINING OPTIMAL ACTIONS OF OCCUPANTS
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(a) Indoor temperature (b) Indoor CO2 concentration

(c) Effects of optimal actions

Figure 6.12: Seasonal variations in daily average values of physical variables affected by
occupants’ actions [133].

summer (Fig. 6.12a) as σtemp (Table 1.2) brings Tin between 294.15K and 296.15K.

• Mean C?in is lower than C̃in, except in winter (Fig. 6.12b) when closed windows

(ζW = 0) reduces heat exchange (ϕout) and adversely affects airflow (Qout) and Cin.

• The seasonal variations of the effects (optimization objectives) of the optimal actions

(Fig. 6.12c) maintain near minimal values, except thermal dissatisfaction (σtemp) in

summer [132]. This raised σtemp agrees with similar findings from Fig. 6.8b.

The recommended schedule of actions is beneficial for building energy management

but difficult for users to learn, especially when the underlying phenomena are formally

presented as in Fig. 6.9. Thus, generating simpler explanations is considered next.

6.7 Generating explanations

Changing the entire schedule may not be acceptable for an occupant [1]. Hence, the

effects of each action should be explained so that the occupants can learn the priority of

the optimal actions. Thus, the explanation generation is considered in this section.

6.7. GENERATING EXPLANATIONS
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6.7.1 Differential Explanations

A scenario includes these four groups of variables (Fig. 6.1). The relations between these

groups is pre-determined as expert’s abstract knowledge [172]. Differential explanations

are constructed by analyzing the difference between the two scenarios: the usual scenario

recorded in HDB and the optimal scenario obtained from the estimated PF as follows:

(
Optimal scenario: X ?B,PB

I?B→ F?B
)
−
(

Usual scenario: X̃B,PB
ĨB→ F̃B

)
= ∆ actions,∆ effects,∆ intermediates (Translate using Eq. (6.14)).

(6.13)

It is necessary to transform the quantitative values into qualitative information for

occupants (not domain-experts). These transformations are done using Eq. (6.1), which

divides the value domain of a variable into 7 levels, using the following specifications:

Π
(

∆ζkW ,−0.7,−0.5,−0.2, 0.2, 0.5, 0.7
)
,

Π
(

∆ζkD,−0.7,−0.5,−0.2, 0.2, 0.5, 0.7
)
,

Π
(

∆σktemp,−0.25,−0.15,−0.05, 0.05, 0.15, 0.25
)
,

Π
(

∆σkair,−0.25,−0.15,−0.05, 0.05, 0.15, 0.25
)
,

Π
(

∆Qkin,−0.2,−0.1,−0.05, 0.05, 0.1, 0.2
)
,

Π
(

∆ϕkin,−600,−400,−200, 200, 400, 600
)
.

(6.14)

For example, two scenarios from 05-May-2015 are analyzed over a period ranging from

8 am to 8 pm as shown in Fig. 6.13a. Thus, differential explanations inform how the

occupants should change their schedule and the gain they can expect from this change.

However, it does not explain which action is responsible for a particular effect. So, a

deeper explanation process is considered next.

6.7.2 Differential Explanations with Influence

The optimal actions at different hours, suggested by the system, do not have the same

importance in terms of impact. Some of them should necessarily be performed because

of their strong influence on a particular criterion. To evaluate the influence of an action

at the jth hour, the difference is computed between the following two scenarios: (1) the

optimal scenario, and (2) a modified scenario from the schedule (X̂j
B) hypothesized by

6.7. GENERATING EXPLANATIONS
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Figure 6.13: (a) Differential explanations and differential explanations with influence [133],
(b) inexplicit information flow among the different categories of variables [133], and (c)
causal graph to demonstrate the impact of actions on 05-May-2015 [133].

replacing an optimal action ζ?,j in X?
B with the actual action ζ̃j as follows:

X̂j
B =

{
∪
k 6=j

ζ?,k
}
∪
{
ζ̃j
}
. (6.15)

Thus, the difference in actions at the jth hour (∆Xj
B) can be isolated as follows:

∆Xj
B = X?

B − X̂j
B =


0, ∀k 6= j

ζ?,j − ζ̃j , k = j.

(6.16)

Now, using the same explanation generating approach the influence of ignoring the

6.7. GENERATING EXPLANATIONS
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recommended action ζ?,j at the jth hour can be obtained as follows:

(
Optimal scenario: X ?B,PB

I?B→ F?B
)
−
(

Modified scenario: X̂ jB,PB
ÎjB→ F̂ jB

)
= ∆Xj

B influence ∆ effects via ∆ intermediates (Translate using Eq. (6.14))

(6.17)

A few computed influences are shown in Fig. 6.13a using arrows from some ∆ actions

to some ∆ effects. However, the causality between the different groups of intermediate

variables and the effects are unreachable (Fig. 6.13b) as their changes cannot be monitored

with the physical knowledge models [159]. Such relations can only be injected using expert

knowledge of potential and impossible causalities. For example, heat flow may influence

air temperature but not CO2 concentration. Thus, by integrating the computed influences

and the potential influences, a full causal graph for the whole system can be obtained.

Part of this graph is shown in Fig. 6.13c. Thus, the occupants can learn from these

explanations whether a recommended action is important based on how various variables

are affected by it.

6.7.3 Using the Building Energy Management Framework

The concerned framework [133] (Fig. 1.6) is essentially a human-machine-interaction inter-

face which can take input from the occupants’ to set various preferences and accordingly

output an energy-efficient schedule of actions, equipped with simple explanations. The

working of this interface (Fig. 6.14) is described as follows:

1. For a certain day (past or future), the context variables (PB, recorded or forecasted)

and the action variables (X̃B, performed or planned) simulate the physical knowledge

models, which assist in effects (objectives) evaluation (F̃B).

2. Using the same context (PB) and the physical models, the Pareto-optimal Set of

schedules (AGmax) is obtained by minimizing occupants’ discomfort (thermal and

aeraulic), energy expenses and the number of recommended changes. Thereafter, the

selection of the most-relevant scenario (X ?B with F?B) is guided by the appropriate

decision-making strategy (Sections 6.6.1 to 6.6.5).

3. The recommended scenario (X ?B with F?B) is compared with the actual scenario (X̃B

with F̃B) to generate explanations. The occupants may opt-out of an optimal action

6.7. GENERATING EXPLANATIONS
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Figure 6.14: Flowchart of the energy manangement scheme for the office room [133].

at a certain hour. The modified scenario (X̂B with F̂B and PB) is again compared

to the optimal scenario (X ?B with F?B) to yield the associated impacts of the change.

This step loops until the occupants are satisfied with the recommendations.

Thus, the framework recommends the optimal actions to the occupants and associates

them with the building energy systems for adapting their actions towards a greener future.

6.7. GENERATING EXPLANATIONS
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6.8 Conclusion

This chapter presents a framework for building energy management which recommends a

relevant Pareto-optimal approximation of a schedule of occupants’ actions by minimizing

occupants’ discomfort (thermal and aeraulic), energy expenses and the number of recom-

mended changes. Furthermore, to motivate the occupants to adopt such a framework, it

explains how the optimal plan determines the maximum gain in occupants’ comfort by

revealing the embedded physical phenomena. The primary application of this framework

is to find contextually similar days in the recorded database, based on forecasted data for

the next day and accordingly recommend the optimal plan of actions to the occupants.

In this chapter, the associated MaOO problem (search for the optimal schedule) is ad-

dressed using two algorithms developed in this thesis: NAEMO (for fast optimization) and

LORD (for exploring the multi-modality). However, a practical application can implement

only one relevant solution from the set of Pareto-optimal solutions, resulting from these

algorithms. Hence, based on the different characterization of the occupants’ preferences,

various decision-making strategies are presented in this chapter for selecting the relevant

schedule of occupants’ actions.

While the strategies developed across all the previous chapters are capable of addressing

various real-world optimization problems, there remain several avenues open for further

research. A summary of the issues addressed in this thesis and various open areas are

described in the concluding chapter, presented next.

6.8. CONCLUSION



Chapter 7

Conclusions and Scope of Further

Research

7.1 Conclusions

This thesis is a comprehensive attempt to develop several computational strategies for

improving the performance of EAs while tackling a variety of the MaOO problems. To

deal with such problems, EAs are integrated with strategies like objective reduction and

reference vector assisted decomposition of objective space, which aid in improving the

solution distribution and selection pressure. Additionally, graph Laplacian based cluster-

ing of solutions in the decision space is performed to address the multi-modality of the

optimization problems. Some of the developed EAs are applied to address the real-world

many-objective building energy management problem (Chapter 6). This chapter also

presents a few decision-making strategies (for varied scenarios) to recommend a context-

relevant solution from the estimated set of Pareto-optimal solutions.

Chapter 2 presents IDEMO [142] with a revised elitist selection and ranking scheme

(using a combination crowding distance with distance from the ideal point) to improve

the selection pressure, convergence and diversity of the solutions. By integrating IDEMO

in an online objective reduction framework, DECOR [142] is developed with a novel deci-

sion indicator for cohesive and distinctive clusters. When compared to several other EAs,

DECOR shows superior convergence to PF on 10- and 20-objective DTLZ problems. How-

ever, the scope of improvement in its diversity characteristics motivates designing further

better EAs for MaOO problems.

165
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To improve the diversity attainment behavior of the EAs, Chapter 3 considers the

reference vector assisted decomposition of objective space and presents ESOEA [138].

It uses an ensemble of SaNSDE [185] with PBI-based scalarization of MaOO problems.

ESOEA adapts to the problem characteristics by adjusting the sub-population sizes in

accordance with their contribution towards the global population. Furthermore, its reg-

ulated elitist scheme with d2-based sorting promotes further exploration. Results exhibit

good convergence and superior diversity of ESOEA for test problems with attributes like

multiple modalities, biased solution densities, disconnected PFs and PFs with sharp-tails,

imbalance difficulties and variable linkage difficulties. However, the lack of any theoretical

analysis hinders the understanding of the search behavior of such decomposition-based

strategies.

To understand the working of such reference vector assisted decomposition based al-

gorithms, Chapter 4 identifies the neighborhood property for MaOO problems [160]. It

is used to develop NAEMO [160], where the neighborhood property dictates the solu-

tion mating for generating new solutions. Moreover, NAEMO monotonically improves the

diversity through its periodic filtering module (proven using the novel D metric [161]).

Results establish the efficacy of NAEMO for several problem characteristics like unimodal-

ity, multi-modality, biased solution density, meta-variable mapping, imbalance mapping

difficulty and variable linkage difficulty. While such algorithmic designs perform excep-

tionally well in the objective space, it does not consider the solution distribution in the

decision space. Such an analysis of solution distribution in both the objective and decision

space forms the basis of developing EAs for MMMOPs [171].

In Chapter 5, the crowding illusion problem for MMMOPs is identified and LORD is

devised to deal with the challenges of MMMOPs. It uses graph Laplacian based clustering

to maintain the solution diversity in the decision space and reference vector based decom-

position to maintain the solution diversity in the objective space. The filtering module

of LORD eliminates the maximally crowded solution from the last non-dominated rank.

To avoid dominance resistance in problems with a large number of objectives, LORD-II

is presented, which eliminates the candidate with maximal PBI from the maximally large

cluster. Both LORD and LORD-II retain solutions from singleton sub-spaces during fil-

tering for diversity maintenance. The efficacies of these EAs are established on CEC 2019

test suite [112] and polygon problems [76] (multi-modal or otherwise).

7.1. CONCLUSIONS
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In Chapter 6, NAEMO (Chapter 4) and LORD (Chapter 5) are used to address the

MaOO problem involved in building energy management. It aims at recommending an

optimal schedule of actions by minimizing the thermal discomfort, air quality discomfort,

energy-related cost and successive changes in recommended actions [133]. However, from

the set of trade-off solutions resulting from the EAs, only one relevant solution could

be recommended for implementation. Chapter 6 presents four distinct schedule selection

strategies (considering equal compromise in all objectives, considering a slider prototype

to interact with optimal objective ranges, considering different comfort preferences of

multiple occupants [135] and considering minimum changes from the occupants’ usual

schedule [139]). Thereafter, the causal impact of the recommended changes is explained

by comparing the recommended and the usual scenario. These explanations guide the

occupants to adopt an energy-efficient schedule of actions. The next section presents the

scope of extending the computational strategies developed in this thesis.

7.2 Limitations and Future Scope

This thesis develops several computational strategies beneficial for obtaining solutions

from various kinds of MaOO problems. However, there remain a few areas open with

scope for future study. Such areas are enlisted as follows:

• Performance analyses of these EAs on recent [107,108] and minus problems [84] are

necessary to investigate their search behavior for other problem characteristics.

• Some parameters (such as th in DECOR [142], Pmut in NAEMO [160], LORD and

LORD-II [140], etc.) are required to be tuned. Hence, future studies can investigate

the adaptation of such parameters to the fitness landscape.

• An advantage of ESOEA is its inherent parallelism (Fig. 3.2b), which could be fur-

ther exploited to obtain much faster results. Similarly, the parallel implementation

of the other EAs developed in this thesis can be explored for faster execution.

• With the recent spike in research works for MMMOPs, the possibility of better

mating operators and performance indicators in the decision space could be foreseen.

As the LORD variants [139, 140] use spectral clustering, inter- and intra-cluster

mating along with correlation among the equivalent solution subsets can be studied.

7.2. LIMITATIONS AND FUTURE SCOPE
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• From the decision-making perspective, selecting one out of multiple equivalent so-

lutions from the PS mapping to the same solution in the PF (i.e., decision-making

without preference in decision space) is an important direction. Integrating imprecise

preferences with the developed strategies is another vital future direction.

• Two major caveats surfaced while deploying the developed building energy manage-

ment framework [133] in an extended human-machine interface [1] (Fig. 7.1). For any

geographical location, extensive research on simulation models for various physical

variables (like humidity and pollutants) and selection of necessary contextual pa-

rameters are necessary. Thus, hybridizing EAs with machine learning models (such

as ensemble of neural networks [99]) could estimate the relevant physical variables.
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Figure 7.1: A real building energy management interface [1] using the developed approach
of generating explanations for changes in occupants’ actions.

This thesis develops several EAs for addressing a wide range of MaOO problems. These

EAs can be utilized for enhancing the performance in different aspects (like dimensionality

reduction [136, 189], model tuning [158], scheduling [131], and many more) of any real-

life application. This research also contributes towards simplifying the decision-making

process by selecting the relevant trade-off solutions. Although a significant amount of work

has been done, as expected there is scope to do a lot more. Research in Many-Objective

Optimization and its application in real-life domains will remain important in the coming

years.

7.2. LIMITATIONS AND FUTURE SCOPE
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Appendix A

Benchmark Test Problems

A.1 Deb, Thiele, Laumanns, Zitzler (DTLZ) Test Suite [50]

The performance of several algorithms (presented in this thesis) are tested on DTLZ test

problems [50,141] among DTLZ1 (multimodal), DTLZ2 (unimodal), DTLZ3 (multimodal),

DTLZ4 (biased, unimodal) and DTLZ7 (disconnected) [50, 74, 138]. These test problems

are described below while illustrating their true Pareto-Fronts (PFs) in Fig. A.1.

A.1.1 DTLZ1 problem

This M -objective problem is defined as:

Minimize: f1 (X) =
1

2
x1x2 · · ·xM−1 (1 + h (XM ))

Minimize: f2 (X) =
1

2
x1x2 · · · (1− xM−1) (1 + h (XM ))

...

Minimize: fM−1 (X) =
1

2
x1 (1− x2) (1 + h (XM ))

Minimize: fM (X) =
1

2
(1− x1) (1 + h (XM ))

subjected to 0 ≤ xi ≤ 1, for i = 1, 2, · · · , N

where, h (XM ) = 100

|XM |+
∑

xi∈XM

{
(xi − 0.5)2 − cos(20π(xi − 0.5))

} (A.1)

Optimal PF of Eq. (A.1) is linear and corresponds to x?i = 0.5 where x?i ∈ XM and∑M
i=1 fi (X) = 0.5. According to the literature [50, 138, 142], kD = |XM | = 5 and the

number of variables defining the decision space is N = M + kD − 1 = M + 4.
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A.1.2 DTLZ2 problem

This M -objective problem is defined as:

Minimize: f1(X) = (1 + h(XM )) cos
(
x1
π

2

)
· · · cos

(
xM−1

π

2

)
Minimize: f2(X) = (1 + h(XM )) cos

(
x1
π

2

)
· · · sin

(
xM−1

π

2

)
...

Minimize: fM−1(X) = (1 + h(XM )) cos
(
x1
π

2

)
sin
(
x2
π

2

)
Minimize: fM (X) = (1 + h(XM )) sin

(
x1
π

2

)
subjected to 0 ≤ xi ≤ 1, for i = 1, 2, · · · , N

where, h(XM ) =
∑

xi∈XM

(xi − 0.5)2 (A.2)

Optimal PF of Eq. (A.2) corresponds to x?i = 0.5 where x?i ∈ XM and
∑M

i=1 f
2
i (X) =

1. According to the literature [50,138,142], kD = |XM | = 10 and the number of variables

defining the decision space is N = M + kD − 1 = M + 9.

A.1.3 DTLZ3 problem

This M -objective problem is defined similar to DTLZ2 except that the h(.) function from

DTLZ1 is used. Optimal PF of this problem corresponds to x?i = 0.5 where x?i ∈ XM

and
∑M

i=1 f
2
i (X) = 1. According to the literature [50, 138, 142], kD = |XM | = 10 and the

number of variables defining the decision space is N = M + kD − 1 = M + 9.

A.1.4 DTLZ4 Problem

This M -objective problem is a modification of the DTLZ2 problem. The modification

involves a meta-variable mapping: xi → xαDi while leads to biased density of solutions

towards the f1-fM plane. Optimal PF of this problem corresponds to x?i = 0.5 where

x?i ∈ XM and
∑M

i=1 f
2
i (X) = 1. According to the literature [50,138,142], kD = |XM | = 10,

αD = 100 and the number of variables defining the decision space is N = M + kD − 1 =

M + 9.

A.1. DEB, THIELE, LAUMANNS, ZITZLER (DTLZ) TEST SUITE [50]
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Figure A.1: Cartesian coordinate plots of true PFs for 3-objective DTLZ test instances.

A.1.5 DTLZ7 problem

This M -objective problem is defined as:

Minimize: f1(X) = x1

Minimize: f2(X) = x2

...

Minimize: fM−1(X) = xM−1

Minimize: fM (X) = (1 + h1(XM ))h2(f1, f2, · · · , fM−1, h1)

subjected to 0 ≤ xi ≤ 1, for i = 1, 2, · · · , N

where, h1(XM ) = 1 +
9

|XM |
∑

xi∈XM

and

h2(f1, f2, · · · , fM−1, h1) = M −
M−1∑
i=1

[
fi

1 + h1
(1 + sin (3πfi))

]
(A.3)

Pareto-optimal solutions of Eq. (A.3) correspond to XM = 0 and the optimal PF has

2M−1 disconnected regions. According to the literature [50,138], kD = |XM | = 20 and the

number of variables defining the decision space is N = M + kD − 1 = M + 19.

A.2 Walking Fish Group (WFG) Test Suite [74]

The performance of several algorithms (presented in this thesis) are tested on WFG1 and

WFG2 test problems [74]. These test problems are described below while illustrating their

true PFs in Fig. A.2.

A.2. WALKING FISH GROUP (WFG) TEST SUITE [74]
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Figure A.2: Cartesian coordinate plots of true PFs for 3-objective WFG1-2 problems.

A.2.1 WFG1 problem

This M -objective problem is defined as:

Given: Z ={z1/2, z2/4, · · · , zN/(2N)}

Minimize: f1(X) =

M−1∏
i=1

(1− cos(xiπ/2))

Minimize: f2(X) =
M−2∏
i=1

(1− cos(xiπ/2)) (1− sin(xM−1π/2))

...

Minimize: fM−1(X) = (1− cos(x1π/2)) (1− sin(x2π/2))

Minimize: fM (X) =

(
1− x1 −

cos(10πx1 + π/2)

10π

)
where xi=1:M−1 =r sum

(
{y(i−1)kW /(M−1)+1, · · · , yikW /(M−1)},

{2((i− 1)kW /(M − 1) + 1), · · · , 2ikW /(M − 1)})

xM =r sum ({ykW+1, · · · , yN}, {2(kW + 1), · · · , 2N})

yi=1:N =b poly
(
y′i, 0.02

)
y′i=1:kW

=y′′i

y′i=(kW+1):N =b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:kW
=zi

y′′i=(kW+1):N =s linear(zi, 0.35)

with r sum (|y| , |w|) =

∑|y|
i=1wiyi∑|y|
i=1wi

b poly(y, αW ) =yαW
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b flat(y,AW , BW , CW ) =AW +min(0, by −BW c)
AW (BW − y)

BW

−min(0, bCW − yc)
(1−AW )(y − CW )

1− CW

s linear(y,DW ) =
|y −DW |

|bDW − yc+DW |

subjected to 0 ≤ zi ≤ 1, for i = 1, 2, · · · , N (A.4)

This problem is characterized as unimodal and has convex PF. A solution of WFG1

is Pareto-optimal iff zi = 0.35, for i = (kW + 1), · · · , N . As per [187], WFG1 is realized

with kW = N −M + 1 distance related variables and (M − 1) position related variables.

A.2.2 WFG2 problem

This M -objective problem is defined as:

Given: Z ={z1/2, z2/4, · · · , zN/(2N)}

Minimize: f1(X) =

M−1∏
i=1

(1− cos(xiπ/2))

Minimize: f2(X) =
M−2∏
i=1

(1− cos(xiπ/2)) (1− sin(xM−1π/2))

...

Minimize: fM−1(X) = (1− cos(x1π/2)) (1− sin(x2π/2))

Minimize: fM (X) =
(
1− x1cos2(5πx1)

)
where xi=1:M−1 =r sum

(
{y(i−1)kW /(M−1)+1, · · · , yikW /(M−1)}, {1, · · · , 1}

)
xM =r sum

(
{ykW+1, · · · , ykW+l/2}, {1, · · · , 1}

)
yi=1:kW =y′i

yi=(kW+1):(kW+lW /2) =r nonsep({y′kW+2(i−kW )−1, ykW+2(i−kW )}, 2)

y′i=1:kW
=zi

y′i=(kW+1):N =s linear(zi, 0.35)

with r sum (.) and s linear (.) same as Eq. (A.4)

subjected to 0 ≤ zi ≤ 1, for i = 1, 2, · · · , N (A.5)

This problem is characterized as unimodal, non-separable and has convex and dis-
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(a) IMB1 (b) IMB2 (c) IMB3 (d) IMB4 (e) IMB5

(f) IMB6 (g) IMB7 (h) IMB8 (i) IMB9 (j) IMB10

Figure A.3: Cartesian coordinate plots of true PFs for imbalanced multi-objective test
instances showing favored parts in blue and unfavored parts in red.

connected regions in the PF. A solution of WFG2 is Pareto-optimal iff zi = 0.35, for

i = (kW + 1), · · · , N . As per [187], WFG2 is realized with kW = N −M + 1 distance

related variables and lW = (M−1) position related variables. It also requires even number

of distance related variables due to its nature of non-separable reductions (r nonsep (.)).

A.3 Imbalanced Multi-objective Test Suite [115]

Imbalanced test suite [115] consists of 10 unconstrained (box-constrained) multi-objective

problems characterized by regions which are difficult to find as illustrated in their true PF

in Fig. A.3. In this test suite, IMB1 to IMB6 problems demonstrate imbalance mapping

difficulties whereas IMB7 to IMB10 problems demonstrate variable linkage difficulties. For

analyzing the versatility of the algorithms presented in this thesis, their performance is

noted on various instances from this test suite.

A.3.1 IMB1 problem

This 2-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1

Minimize: f2(X) = (1 + h(X))
√

1− x1

where h(X) =


0, if 0 ≤ x1 ≤ 0.2∑N

j=2 0.5×
(
−0.9u2j + |uj |0.6

)
, otherwise
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with uj = xj − sin(0.5πx1), for j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.6)

Optimal PF of Eq. (A.6) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

The favored part of the PF is within 0 ≤ f1(X) ≤ 0.2 and the (1, 0) point in the objective

space. The remaining of the PF is the unfavored (difficult to explore) part which comes

from non-linear combination of variables: xj = sin(0.5πx1) with 0.2 ≤ x1 ≤ 1 and

j = 2, · · · , N .

A.3.2 IMB2 problem

This 2-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1

Minimize: f2(X) = (1 + h(X)) (1− x1)

where h(X) =


0, if 0.4 ≤ x1 ≤ 0.6∑N

j=2 0.5×
(
−0.9u2j + |uj |0.6

)
, otherwise

with uj = xj − sin(0.5πx1), for j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.7)

Optimal PF of Eq. (A.7) corresponds to f2(X) = 1 − f1(X) with 0 ≤ f1(X) ≤ 1.

The favored part of the PF is within 0.4 ≤ f1(X) ≤ 0.6 along with the (0, 1) and (1, 0)

points in the objective space. The remaining of the PF is the unfavored (difficult to

explore) part which comes from non-linear combination of variables: xj = sin(0.5πx1)

with x1 ∈ [0, 0.4) ∪ (0.6, 1] and j = 2, · · · , N .

A.3.3 IMB3 problem

This 2-objective problem is defined as:

Minimize: f1(X) = (1 + h(X)) cos
(πx1

2

)
Minimize: f2(X) = (1 + h(X)) sin

(πx1
2

)
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where h(X) =


0, if 0.8 ≤ x1 ≤ 1∑N

j=2 0.5×
(
−0.9u2j + |uj |0.6

)
, otherwise

with uj = xj − sin(0.5πx1), for j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.8)

Optimal PF of Eq. (A.8) corresponds to {f1(X)}2 + {f2(X)}2 = 1. The favored part

of the PF is within 0 ≤ f1(X) ≤ 0.309 and the (1, 0) point in the objective space. The

remaining of the PF is the unfavored (difficult to explore) part which comes from non-linear

combination of variables: xj = sin(0.5πx1) with 0 ≤ x1 ≤ 0.8 and j = 2, · · · , N .

A.3.4 IMB4 problem

This 3-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1x2

Minimize: f2(X) = (1 + h(X))x1 (1− x2)

Minimize: f3(X) = (1 + h(X)) (1− x1)

where h(X) =


0, if 2/3 ≤ x1 ≤ 1

2cos
(
πx1
2

)∑N
j=3

(
−0.9u2j + |uj |0.6

)
, otherwise

with uj = xj − (x1 + x2) /2, for j = 3, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.9)

Optimal PF of Eq. (A.9) corresponds to f1(X) + f2(X) + f3(X) = 1 with 0 ≤

(f1(X), f2(X), f3(X)) ≤ 1. The favored part of the PF is within 0 ≤ f3(X) ≤ 1/3 and the

(0, 0, 1) point in the objective space. The remaining of the PF is the unfavored (difficult

to explore) part which comes from linear relationships among variables: xj = (x1 + x2) /2

with 0 ≤ (x1, x2) ≤ 1 and j = 3, · · · , N .

A.3.5 IMB5 problem

This 3-objective problem is defined as:

Minimize: f1(X) = (1 + h(X)) cos
(πx1

2

)
cos
(πx2

2

)
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Minimize: f2(X) = (1 + h(X)) cos
(πx1

2

)
sin
(πx2

2

)
Minimize: f3(X) = (1 + h(X)) sin

(πx1
2

)

where h(X) =


0, if 0 ≤ x1 ≤ 0.5

2cos
(
πx1
2

)∑N
j=3

(
−0.9u2j + |uj |0.6

)
, otherwise

with uj = xj − (x1 + x2) /2, for j = 3, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.10)

Optimal PF of Eq. (A.10) corresponds to {f1(X)}2 + {f2(X)}2 + {f3(X)}2 = 1 with

0 ≤ (f1(X), f2(X), f3(X)) ≤ 1. The favored part of the PF is within 0 ≤ f3(X) ≤
√

2/2

and the point (0, 0, 1) in the objective space. The remaining of the PF is the unfavored

(difficult to explore) part which comes from linear relationships among variables: xj =

(x1 + x2) /2 with 0 ≤ (x1, x2) ≤ 1 and j = 3, · · · , N .

A.3.6 IMB6 problem

This 3-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1x2

Minimize: f2(X) = (1 + h(X))x1 (1− x2)

Minimize: f3(X) = (1 + h(X)) (1− x1)

where h(X) =


0, if 0 ≤ x1 ≤ 0.75

2cos
(
πx1
2

)∑N
j=3

(
−0.9u2j + |uj |0.6

)
, otherwise

with uj = xj − (x1 + x2) /2, for j = 3, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.11)

Optimal PF of Eq. (A.11) corresponds to f1(X) + f2(X) + f3(X) = 1 with 0 ≤

(f1(X), f2(X), f3(X)) ≤ 1. The favored part of the PF is within 0.25 ≤ f3(X) ≤ 1 and

along f3 = 1 in the objective space. The remaining of the PF is the unfavored (difficult

to explore) part which comes from linear relationships among variables: xj = (x1 + x2) /2

with 0 ≤ (x1, x2) ≤ 1 and j = 3, · · · , N .
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A.3.7 IMB7 problem

This 2-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1

Minimize: f2(X) = (1 + h(X)) (1−
√
x1)

where h(X) =


∑N

j=2

(
−0.9u2j + |uj |0.6

)
, if 0.5 ≤ x1 ≤ 0.8∑N

j=2 |xj − 0.5|0.6 , otherwise

with uj = xj − sin(0.5πx1), for j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.12)

Optimal PF of Eq. (A.12) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

The favored part of the PF is within f1(X) ∈ [0, 0.5] ∪ [0.8, 1]. The remaining of the PF

is the unfavored (difficult to explore) part which comes from non-linear combination of

variables: xj = sin(0.5πx1) with 0.5 < x1 < 0.8 and j = 2, · · · , N .

A.3.8 IMB8 problem

This 2-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1

Minimize: f2(X) = (1 + h(X)) (1− x1)

where h(X) =


∑N

j=2

(
−0.9u2j + |uj |0.6

)
, if 0.5 ≤ x1 ≤ 0.8∑N

j=2 |xj − 0.5|0.6 , otherwise

with uj = xj − sin(0.5πx1), for j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.13)

Optimal PF of Eq. (A.13) corresponds to f2(X) = 1−f1(X) with 0 ≤ f1(X) ≤ 1. The

favored and unfavored part of the PF for IMB8 problem is same as that of IMB7 problem

except that for the for the parts lie on a linear PF whereas for the latter the parts lie on

a parabolic PF.
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A.3.9 IMB9 problem

This 2-objective problem is defined as:

Minimize: f1(X) = (1 + h(X)) cos
(πx1

2

)
Minimize: f2(X) = (1 + h(X)) sin

(πx1
2

)

where h(X) =


∑N

j=2

(
−0.9u2j + |uj |0.6

)
, if 0.5 ≤ x1 ≤ 0.8∑N

j=2 |xj − 0.5|0.6 , otherwise

with uj = xj − sin(0.5πx1), for j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.14)

Optimal PF of Eq. (A.14) corresponds to {f1(X)}2 + {f2(X)}2 = 1 with 0 ≤ (f1(X) ,

f2(X)) ≤ 1. The favored part of the PF is within f1(X) ∈ [0, 0.309] ∪ [0.707, 1]. The

remaining of the PF is the unfavored (difficult to explore) part which comes from non-

linear combination of variables: xj = sin(0.5πx1) with 0.5 < x1 < 0.8 and j = 2, · · · , N .

A.3.10 IMB10 problem

This 3-objective problem is defined as:

Minimize: f1(X) = (1 + h(X))x1x2

Minimize: f2(X) = (1 + h(X))x1 (1− x2)

Minimize: f3(X) = (1 + h(X)) (1− x1)

where h(X) =


∑N

j=2

(
−0.9u2j + |uj |0.6

)
, if 0.2 ≤ (x1, x2) ≤ 0.8∑N

j=2 |xj − x1x2|
0.6 , otherwise

with uj = xj − (x1 + x2) /2, for j = 3, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, · · · , N (A.15)

Optimal PF of Eq. (A.15) corresponds to f1(X) + f2(X) + f3(X) = 1 with 0 ≤

(f1(X), f2(X), f3(X)) ≤ 1. The unfavored (difficult to explore) part of the PF is within

0.04 ≤ f1(X) ≤ 0.64 and 0.2 ≤ f3(X) ≤ 0.8 which comes from non-linear combination of

variables: xj = sin(0.5πx1) with 0.2 < (x1, x2) < 0.8 and j = 3, · · · , N .
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(a) UF1, UF2, UF3 (b) UF4 (c) UF5 (d) UF6

(e) UF7 (f) UF8, UF10 (g) UF9

Figure A.4: Cartesian coordinate plots of true PFs for multi-objective test instances from
CEC 2009 session.

A.4 CEC 2009 Multi-objective Problems [191]

As the ensemble based algorithms from literature [101, 182, 195] have been tested on this

test suite, the performance of ESOEA (presented in this thesis) is also analyzed on this

test suite for comparison. The CEC 2009 test suite [191] consists of 10 unconstrained

(box-constrained) multi-objective problems whose true PF are illustrated in Fig. A.4. In

this thesis, N = 30 is considered as per [138,191].

A.4.1 UF1 problem

This 2-objective problem is defined as:

Minimize: f1(X) = x1 +
2

|J1|
∑
j∈J1

u2j

Minimize: f2(X) = 1−
√
x1 +

2

|J2|
∑
j∈J2

u2j

where, J1 = {j|j is odd and 2 ≤ j ≤ N} and J2 = {j|j is even and 2 ≤ j ≤ N}

and uj = xj − sin
(

6πx1 +
jπ

N

)
, for j = 2, · · · , N,

subjected to 0 ≤ x1 ≤ 1 and − 1 ≤ xj ≤ 1, for j = 2, · · · , N (A.16)

Optimal PF of Eq. (A.16) corresponds to f2(X) = 1−
√
f1(X) with 0 ≤ f1(X) ≤ 1.
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A.4.2 UF2 problem

This 2-objective problem is defined as:

Minimize: f1(X) = x1 +
2

|J1|
∑
j∈J1

u2j

Minimize: f2(X) = 1−
√
x1 +

2

|J2|
∑
j∈J2

u2j

where, J1 and J2 are same as in Eq. (A.16)

and uj =


xj −

[
0.3x21cos

(
24πx1 + 4jπ

N

)
+ 0.6x1

]
cos
(

6πx1 + jπ
N

)
if j ∈ J1

xj −
[
0.3x21cos

(
24πx1 + 4jπ

N

)
+ 0.6x1

]
sin
(

6πx1 + jπ
N

)
if j ∈ J2

subjected to 0 ≤ x1 ≤ 1 and − 1 ≤ xj ≤ 1, for j = 2, · · · , N (A.17)

Optimal PF of Eq. (A.17) corresponds to f2(X) = 1−
√
f1(X) with 0 ≤ f1(X) ≤ 1.

A.4.3 UF3 problem

This 2-objective problem is defined as:

Minimize: f1(X) = x1 +
2

|J1|

4 +
∑
j∈J1

u2j − 2
∏
j∈J1

cos

(
20πuj√

j

)
+ 2


Minimize: f2(X) = 1−

√
x1 +

2

|J2|

4 +
∑
j∈J2

u2j − 2
∏
j∈J2

cos

(
20πuj√

j

)
+ 2


where, J1 and J2 are same as in Eq. (A.16) (A.18)

and uj = xj − x
0.5

(
1+

3(j−2)
N−2

)
1 , j = 2, · · · , N

subjected to 0 ≤ xj ≤ 1, for j = 1, 2, · · · , N (A.19)

Optimal PF of Eq. (A.19) corresponds to f2(X) = 1−
√
f1(X) with 0 ≤ f1(X) ≤ 1.

A.4.4 UF4 problem

This 2-objective problem is defined as:

Minimize: f1(X) = x1 +
2

|J1|
∑
j∈J1

h (uj)
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Minimize: f2(X) = 1− x21 +
2

|J2|
∑
j∈J2

h (uj)

where, J1, J2 and uj are same as in Eq. (A.16), and h (uj) =
|uj |

1 + e2|uj |

subjected to 0 ≤ x1 ≤ 1 and − 2 ≤ xj ≤ 2, for j = 2, · · · , N (A.20)

Optimal PF of Eq. (A.20) corresponds to f2(X) = 1− {f1(X)}2 with 0 ≤ f1(X) ≤ 1.

A.4.5 UF5 problem

This 2-objective problem is defined as:

Minimize: f1(X) = x1 +

(
1

2kU
+ εU

)
|sin (2kUπx1)|+

2

|J1|
∑
j∈J1

h (uj)

Minimize: f2(X) = 1− x1 +

(
1

2kU
+ εU

)
|sin (2kUπx1)|+

2

|J2|
∑
j∈J2

h (uj)

where, J1, J2 and uj are same as in Eq. (A.16),

h (uj) = 2u2j − cos (4πuj) + 1, kU is a positive integer and εU > 0

subjected to 0 ≤ x1 ≤ 1 and − 1 ≤ xj ≤ 1, for j = 2, · · · , N (A.21)

Optimal PF of Eq. (A.21) consists of (2kU+1) points having coordinates at (i/2kU , 1−

(i/2kU )) for i = 0, 1, · · · , 2kU . In this thesis, kU = 10 and εU = 0.1 are considered as

per [138,191].

A.4.6 UF6 problem

This 2-objective problem is defined as:

Minimize: f1(X) = x1 +max {0, h (x1)}+
2

|J1|

4 +
∑
j∈J1

u2j − 2
∏
j∈J1

cos

(
20πuj√

j

)
+ 2


Minimize: f2(X) = 1− x1 +max {0, h (x1)}+

2

|J2|

4 +
∑
j∈J2

u2j − 2
∏
j∈J2

cos

(
20πuj√

j

)
+ 2


where, J1, J2 and uj are same as in Eq. (A.16)

and h (uj) = 2

(
1

2kU
+ εU

)
sin (2kUπuj) with kU as a positive integer and εU > 0

subjected to 0 ≤ x1 ≤ 1 and − 1 ≤ xj ≤ 1, for j = 2, · · · , N (A.22)
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Optimal PF of Eq. (A.22) consists of one isolated point at (0, 1) and kU disconnected

parts lying on f2(X) = 1 − f1(X) where f1(X) ∈ ∪kUi=1 ((2i− 1)/(2kU ), i/kU ). In this

thesis, kU = 2 and εU = 0.1 are considered as per [138,191].

A.4.7 UF7 problem

This 2-objective problem is defined as:

Minimize: f1(X) = 5
√
x1 +

2

|J1|
∑
j∈J1

u2j

Minimize: f2(X) = 1− 5
√
x1 +

2

|J2|
∑
j∈J2

u2j

where, J1, J2 and uj are same as in Eq. (A.16)

subjected to 0 ≤ x1 ≤ 1 and − 1 ≤ xj ≤ 1, for j = 2, · · · , N (A.23)

Optimal PF of Eq. (A.23) corresponds to f2(X) = 1− f1(X) with 0 ≤ f1(X) ≤ 1.

A.4.8 UF8 problem

This 3-objective problem is defined as:

Minimize: f1(X) = cos
(π

2
x1

)
cos
(π

2
x2

)
+

2

|J1|
∑
j∈J1

u2j

Minimize: f2(X) = cos
(π

2
x1

)
sin
(π

2
x2

)
+

2

|J2|
∑
j∈J2

u2j

Minimize: f3(X) = sin
(π

2
x1

)
+

2

|J3|
∑
j∈J3

u2j

where, J1 = {j|3 ≤ j ≤ N, and j − 1 is a multiple of 3},

J2 = {j|3 ≤ j ≤ N, and j − 2 is a multiple of 3},

J3 = {j|3 ≤ j ≤ N, and j − 3 is a multiple of 3}

and uj = xj − 2x2sin

(
2πx1 +

jπ

N

)
, for j = 3, · · · , N,

subjected to 0 ≤ xi ≤ 1 and − 2 ≤ xj ≤ 2, for i = 1, 2 and j = 3, · · · , N (A.24)

Optimal PF of Eq. (A.24) corresponds to {f1(X)}2 + {f2(X)}2 + {f3(X)}2 = 1 with

0 ≤ fi(X) ≤ 1 for i = 1, 2, 3.
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A.4.9 UF9 problem

This 3-objective problem is defined as:

Minimize: f1(X) = 0.5
[
max

{
0, (1 + εU )(1− 4(2x1 − 1)2)

}
+ 2x1

]
x2 +

2

|J1|
∑
j∈J1

u2j

Minimize: f2(X) = 0.5
[
max

{
0, (1 + εU )(1− 4(2x1 − 1)2)

}
− 2x1 + 2

]
x2 +

2

|J2|
∑
j∈J2

u2j

Minimize: f3(X) = 1− x2 +
2

|J3|
∑
j∈J3

u2j

where, J1, J2, J3 and uj are same as in Eq. (A.24) and εU > 0,

subjected to 0 ≤ xi ≤ 1 and − 2 ≤ xj ≤ 2, for i = 1, 2 and j = 3, · · · , N (A.25)

Optimal PF of Eq. (A.25) has two parts corresponding to Eq. (A.26) and Eq. (A.27).

In this thesis, εU = 0.1 is considered as per [138,191].

0 ≥ f3 ≥ 1,

0 ≥ f1 ≥
1

4
(1− f3) ,

f2 = 1− f1 − f3

(A.26)

0 ≥ f3 ≥ 1,

3

4
(1− f3) ≥ f1 ≥ 1,

f2 = 1− f1 − f3

(A.27)

A.4.10 UF10 problem

This 3-objective problem is defined as:

Minimize: f1(X) = cos
(π

2
x1

)
cos
(π

2
x2

)
+

2

|J1|
∑
j∈J1

[
4u2j − cos (8πuj) + 1

]
Minimize: f2(X) = cos

(π
2
x1

)
sin
(π

2
x2

)
+

2

|J2|
∑
j∈J2

[
4u2j − cos (8πuj) + 1

]
Minimize: f3(X) = sin

(π
2
x1

)
+

2

|J3|
∑
j∈J3

[
4u2j − cos (8πuj) + 1

]
where, J1, J2, J3 and uj are same as in Eq. (A.24)

subjected to 0 ≤ xi ≤ 1 and − 2 ≤ xj ≤ 2, for i = 1, 2 and j = 3, · · · , N (A.28)

Optimal PF of Eq. (A.28) corresponds to {f1(X)}2 + {f2(X)}2 + {f3(X)}2 = 1 with

0 ≤ fi(X) ≤ 1 for i = 1, 2, 3.
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Table A.1: Cartesian coordinate plots of true PSs and true PFs for multi-modal multi-
objective test instances from CEC 2019 session showing global surfaces in shades of blue
and local surfaces in shades of red.

PS PF PS PF PS PF

MMF1 MMF1 z MMF1 e

MMF2 MMF3 MMF4

MMF5 MMF6 MMF7

MMF8 MMF9 MMF10

MMF11 MMF12 MMF13

MMF14 MMF14 a MMF15

MMF15 a SYM-PART simple SYM-PART rotated

Omni-test

A.5 CEC 2019 Multi-Modal Multi-objective Problems [112]

As the multi-modal multi-objective evolutionary algorithms (MMMOEAs) from literature

[91, 113, 120, 188] have been tested on instances from this test suite, the performance of

MMMOEAs (presented in this thesis) is also analyzed on this test suite for comparison.

The CEC 2019 test suite [112] consists of 22 box-constrained multi-modal multi-objective

problems. As for MMMOEAs explores the decision space along with the objective space,
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true Pareto-optimal Sets (PSs) are illustrated with true PF in Table A.1 for this test suite.

A.5.1 MMF1 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1 − 2|

Minimize: f2(X) = 1−
√
|x1 − 2|+ 2 (x2 − sin (6π |x1 − 2|+ π))2

subjected to 1 ≤ x1 ≤ 3 and − 1 ≤ x2 ≤ 1 (A.29)

Global PF of Eq. (A.29) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PS of Eq. (A.29) corresponds to x2 = sin (6π |x1 − 2|+ π) with 1 ≤ x1 ≤ 3.

A.5.2 MMF1 z problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1 − 2|

Minimize: f2(X) =


1−

√
|x1 − 2|+ 2 (x2 − sin (2kMπ |x1 − 2|+ π))2 , if x1 ∈ [1, 2)

1−
√
|x1 − 2|+ 2 (x2 − sin (2π |x1 − 2|+ π))2 , if x1 ∈ [2, 3]

where kM > 0 controls the degree of deformation in the PS corresponding to x1 ∈ [1, 2)

subjected to 1 ≤ x1 ≤ 3 and − 1 ≤ x2 ≤ 1 (A.30)

Global PF of Eq. (A.30) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.30) are at: (i) x2 = sin (2kMπ |x1 − 2|+ π) with 1 ≤ x1 < 2 and

(ii) x2 = sin (2π |x1 − 2|+ π) with 2 ≤ x1 ≤ 3. In this thesis, kM = 3 is considered as

per [112].

A.5.3 MMF1 e problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1 − 2|
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Minimize: f2(X) =


1−

√
|x1 − 2|+ 2 (x2 − sin (6π |x1 − 2|+ π))2 , if x1 ∈ [1, 2)

1−
√
|x1 − 2|+ 2

(
x2 − ax1Msin (6π |x1 − 2|+ π)

)2
, if x1 ∈ [2, 3]

where aM > 0 and aM 6= 1 controls the amplitude of the PS corresponding to x1 ∈ [2, 3]

subjected to 1 ≤ x1 ≤ 3 and − a3M ≤ x2 ≤ a3M (A.31)

Global PF of Eq. (A.31) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.31) are at: (i) x2 = sin (6π |x1 − 2|+ π) with 1 ≤ x1 < 2 and (ii)

x2 = ax1Msin (2π |x1 − 2|+ π) with 2 ≤ x1 ≤ 3. In this thesis, aM = e is considered as

per [112].

A.5.4 MMF2 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1

Minimize: f2(X)

=


1−√x1 + 2

(
4
(
x2 −

√
x2
)2 − 2cos

(
20π(x2−

√
x2)√

2

)
+ 2
)
, if x2 ∈ [0, 1]

1−√x1 + 2
(

4
(
x2 − 1−√x2

)2 − 2cos
(
20π(x2−1−

√
x2)√

2

)
+ 2
)
, if x2 ∈ (1, 2]

subjected to 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 2 (A.32)

Global PF of Eq. (A.32) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.32) are at: (i) x1 = x22 with 0 ≤ x2 ≤ 1 and (ii) x1 = (x2 − 1)2 with

1 < x2 ≤ 2.

A.5.5 MMF3 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1
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Minimize: f2(X)

=



1−√x1 + 2
(

4
(
x2 −

√
x2
)2

−2cos
(
20π(x2−

√
x2)√

2

)
+ 2
)
, if x2 ∈ [0, 0.5], x2 ∈ (0.5, 1) & x1 ∈ (0.25, 1]

1−√x1 + 2
(

4
(
x2 − 0.5−√x2

)2
−2cos

(
20π(x2−0.5−

√
x2)√

2

)
+ 2
)
, if x2 ∈ [1, 1.5], x1 ∈ [0, 0.25) & x2 ∈ (0.5, 1)

subjected to 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.5 (A.33)

Global PF of Eq. (A.33) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.33) are at: (i) x1 = x22 when x2 ∈ [0, 0.5], x2 ∈ (0.5, 1) & x1 ∈

(0.25, 1] and (ii) x1 = (x2 − 0.5)2 when x2 ∈ [1, 1.5], x1 ∈ [0, 0.25) & x2 ∈ (0.5, 1).

A.5.6 MMF4 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1|

Minimize: f2(X) =


1− x21 + 2 (x2 − sin (π |x1|))2 , if x2 ∈ [0, 1)

1− x21 + 2 (x2 − 1− sin (π |x1|))2 , if x2 ∈ [1, 2]

subjected to − 1 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 2 (A.34)

Global PF of Eq. (A.34) corresponds to f2(X) = 1 − {f1(X)}2 with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.34) are at: (i) x2 = sin (π |x1|) with −1 ≤ x1 ≤ 1 and (ii) x2 =

sin (π |x1|) + 1 with −1 ≤ x1 ≤ 1.

A.5.7 MMF5 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1 − 2|

Minimize: f2(X) =


1−

√
|x1 − 2|+ 2 (x2 − sin (6π |x1 − 2|+ π))2 , if x2 ∈ [−1, 1]

1−
√
|x1 − 2|+ 2 (x2 − 2− sin (6π |x1 − 2|+ π))2 , if x2 ∈ (1, 3]

subjected to 1 ≤ x1 ≤ 3 and − 1 ≤ x2 ≤ 3 (A.35)
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Global PF of Eq. (A.35) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.35) are at: (i) x2 = sin (6π |x1 − 2|+ π) with 1 ≤ x1 ≤ 3 and (ii)

x2 = sin (6π |x1 − 2|+ π) + 2 with 1 ≤ x1 ≤ 3.

A.5.8 MMF6 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1 − 2|

Minimize: f2(X) =


1−

√
|x1 − 2|+ 2 (x2 − sin (6π |x1 − 2|+ π))2 , if x2 ∈ [−1, 1]

1−
√
|x1 − 2|+ 2 (x2 − 1− sin (6π |x1 − 2|+ π))2 , if x2 ∈ (1, 3]

subjected to 1 ≤ x1 ≤ 3 and − 1 ≤ x2 ≤ 3 (A.36)

Global PF of Eq. (A.36) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PSs of Eq. (A.36) are at: (i) x2 = sin (6π |x1 − 2|+ π) with 1 ≤ x1 ≤ 3 and (ii)

x2 = sin (6π |x1 − 2|+ π) + 1 with 1 ≤ x1 ≤ 3.

A.5.9 MMF7 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = |x1 − 2|

Minimize: f2(X) = 1−
√
|x1 − 2|+[

x2 −
{

0.3 |x1 − 2|2 cos (24π |x1 − 2|+ 4π) + 0.6 |x1 − 2|
}
sin (6π |x1 − 2|+ π)

]2
subjected to 1 ≤ x1 ≤ 3 and − 1 ≤ x2 ≤ 1. (A.37)

Global PF of Eq. (A.37) corresponds to f2(X) = 1 −
√
f1(X) with 0 ≤ f1(X) ≤ 1.

Global PS of Eq. (A.37) corresponds to Eq. (A.38) with 1 ≤ x1 ≤ 3.

x2 =
{

0.3 |x1 − 2|2 cos (24π |x1 − 2|+ 4π) + 0.6 |x1 − 2|
}
sin (6π |x1 − 2|+ π) (A.38)
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A.5.10 MMF8 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = sin |x1|

Minimize: f2(X) =


√

1− (sin |x1|)2 + 2 (x2 − sin |x1| − |x1|)2 , if x2 ∈ [0, 4]√
1− (sin |x1|)2 + 2 (x2 − 4− sin |x1| − |x1|)2 , if x2 ∈ (4, 9]

subjected to − π ≤ x1 ≤ π and 0 ≤ x2 ≤ 9 (A.39)

Global PF of Eq. (A.39) corresponds to {f1(X)}2 + {f2(X)}2 = 1 with 0 ≤ fi(X) ≤ 1

for i = 1, 2. Global PSs of Eq. (A.39) are at: (i) x2 = sin |x1| + |x1| with −π ≤ x1 ≤ π

and (ii) x2 = sin |x1|+ |x1|+ 4 with −π ≤ x1 ≤ π.

A.5.11 MMF9 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1

Minimize: f2(X) =
h(x2)

x1

where h(xi) = 2− sin6 (kMπxi) with kM denoting the number of PSs

subjected to 0.1 ≤ xi ≤ 1.1, for i = 1, 2 (A.40)

Global PF of Eq. (A.40) corresponds to f2 (X) = h
(

1
2kM

)
/f1 (X) with 0.1 ≤ f1(X) ≤

1.1. The ith global PS of Eq. (A.40) is at x2 = 1
2kM

+ i−1
kM

, x1 ∈ [0.1, 1.1] for i = 1, · · · , kM .

In this thesis, kM = 2 is considered as per [112].

A.5.12 MMF10 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1

Minimize: f2(X) =
h(x2)

x1

where h(xi) = 2− exp

[
−
(
xi − 0.2

0.004

)2
]
− 0.8 exp

[
−
(
xi − 0.6

0.4

)2
]
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subjected to 0.1 ≤ xi ≤ 1.1, for i = 1, 2 (A.41)

Global PF of Eq. (A.41) corresponds to f2 (X) = h (0.2)/f1 (X) with 0.1 ≤ f1(X) ≤ 1.1

and its local PF corresponds to f2 (X) = h (0.6)/f1 (X) with 0.1 ≤ f1(X) ≤ 1.1. Global

PS of Eq. (A.41) is at x2 = 0.2, x1 ∈ [0.1, 1.1] and its local PS is at x2 = 0.6, x1 ∈ [0.1, 1.1].

A.5.13 MMF11 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1

Minimize: f2(X) =
h(x2)

x1

where h(xi) = 2− exp

[
−2 log(2)

(
xi − 0.1

0.8

)2
]
sin6 (kMπxi)

with kM denoting the number of PSs

subjected to 0.1 ≤ xj ≤ 1.1, for j = 1, 2 (A.42)

Global PF of Eq. (A.42) corresponds to f2 (X) = h
(

1
2kM

)
/f1 (X) with 0.1 ≤ f1(X) ≤

1.1 and its ith local PF corresponds to f2 (X) = h
(

1
2kM

+ i−1
kM

)
/f1 (X) with 0.1 ≤ f1(X) ≤

1.1 and i = 2, · · · , kM . Global PS of Eq. (A.42) is at x2 = 1
2kM

, x1 ∈ [0.1, 1.1] and its ith

local PS is at x2 = 1
2kM

+ i−1
kM

, x1 ∈ [0.1, 1.1] for i = 2, · · · , kM . In this thesis, kM = 2 is

considered as per [112].

A.5.14 MMF12 problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1

Minimize: f2(X) = h1(x2)h2(f1, h1)

where h1(xi) = 2− exp

[
−2 log(2)

(
xi − 0.1

0.8

)2
]
sin6 (kMπxi)

and h2(f1, h1) = 1−
(
f1
h1

)2

− f1
h1
sin (2πaMf1)

with kM and aM denoting the number of PSs and discontinuous pieces in PF(PS)
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subjected to 0 ≤ xi ≤ 1, for i = 1, 2 (A.43)

Global PF of Eq. (A.43) has discontinuous pieces at f2 (X) = hg?1 h2(f1, h
g?
1 ) and its

local PF has discontinuous pieces at f2 (X) = hl?1 h2(f1, h
l?
1 ) where hg?1 and hl?1 are the

global and local optima of h1(.), respectively. The ranges of discontinuous pieces depend

on the minima of f2 (X) = hg?1 h2(f1, h
g?
1 ). Global PS of Eq. (A.43) is at x2 = 1

2kM
,

x1 ∈ [0, 1] and its ith local PS is at x2 = 1
2kM

+ i−1
kM

, x1 ∈ [0, 1] for i = 2, · · · , kM . In this

thesis, kM = 2 and aM = 4 are considered as per [112].

A.5.15 MMF13 problem

Defined on 3-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = x1

Minimize: f2(X) =
h1(u)

x1

where h1(u) = 2− exp

[
−2 log(2)

(
u− 0.1

0.8

)2
]
sin6 (kMπu)

with kM denoting the number of PSs and u = x2 +
√
x3

subjected to 0.1 ≤ xi ≤ 1.1, for i = 1, 2, 3 (A.44)

Global PF of Eq. (A.44) corresponds to Eq. (A.45) with i = 1 and its ith local

PF corresponds to Eq. (A.45) with i = 2, · · · , kM . Global PS of Eq. (A.44) is at

x2+
√
x3 = 1

2kM
, x1 ∈ [0.1, 1.1] and its ith local PS is at x2+

√
x3 = 1

2kM
+ i−1
kM

, x1 ∈ [0.1, 1.1]

for i = 2, · · · , kM . In this thesis, kM = 2 is considered as per [112].

f2(X) =

2− exp

−2 log(2)

((
1

2kM
+ i−1
kM

)
−0.1

0.8

)2
 sin6 (kMπ ( 1

2kM
+ i−1

kM

))
f1(X)

(A.45)

A.5.16 MMF14 problem

Defined on N -dimensional decision vector, this M -objective problem is given by:

Minimize: f1(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
cos
(πxM−1

2

)
(1 + h(XM ))

Minimize: f2(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
sin
(πxM−1

2

)
(1 + h(XM ))
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Minimize: f3(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · sin

(πxM−2
2

)
(1 + h(XM ))

...

Minimize: fM−1(X) = cos
(πx1

2

)
sin
(πx2

2

)
(1 + h(XM ))

Minimize: fM (X) = sin
(πx1

2

)
(1 + h(XM ))

where h(XM ) = h (xM , xM+1, · · · , xM−1+aM ) = 2− sin2 (kMπxM−1+aM )

with aM = N − (M − 1) and kM denoting the number of PSs

subjected to 0 ≤ xj ≤ 1, for j = 1, 2, · · · , N (A.46)

Considering the global optima of h(.) as h?, the global PF of Eq. (A.46) is located at∑M
j=1{fj (X)}2 = (1 + h?)2. The ith global PS of Eq. (A.46) is located at xN = 1

2kM
+ i−1

kM
,

xj ∈ [0, 1] with i = 1, · · · , kM and j = 1, · · · , N − 1. In this thesis, aM = 1 and kM = 2

are considered as per [112].

A.5.17 MMF14 a problem

Defined on N -dimensional decision vector, this M -objective problem is given by:

Minimize: f1(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
cos
(πxM−1

2

)
(1 + h(XM ))

Minimize: f2(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
sin
(πxM−1

2

)
(1 + h(XM ))

Minimize: f3(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · sin

(πxM−2
2

)
(1 + h(XM ))

...

Minimize: fM−1(X) = cos
(πx1

2

)
sin
(πx2

2

)
(1 + h(XM ))

Minimize: fM (X) = sin
(πx1

2

)
(1 + h(XM ))

where h(XM ) = h (xM , xM+1, · · · , xM−1+aM )

= 2− sin2
(
kMπ

(
xM−1+aM − 0.5sin (πxM−2+aM ) +

1

2kM

))
with aM = N − (M − 1) and kM denoting the number of PSs

subjected to 0 ≤ xj ≤ 1, for j = 1, 2, · · · , N (A.47)

Considering the global optima of h(.) as h?, the global PF of Eq. (A.47) is located

at
∑M

j=1{fj (X)}2 = (1 + h?)2. The ith global PS of Eq. (A.47) is located at xN =
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0.5sin (πxN−1) + i−1
kM

, xj ∈ [0, 1] with i = 1, · · · , kM and j = 1, · · · , N − 1. In this thesis,

aM = 1 and kM = 2 are considered as per [112].

A.5.18 MMF15 problem

Defined on N -dimensional decision vector, this M -objective problem is given by:

Minimize: f1(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
cos
(πxM−1

2

)
(1 + h(XM ))

Minimize: f2(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
sin
(πxM−1

2

)
(1 + h(XM ))

Minimize: f3(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · sin

(πxM−2
2

)
(1 + h(XM ))

...

Minimize: fM−1(X) = cos
(πx1

2

)
sin
(πx2

2

)
(1 + h(XM ))

Minimize: fM (X) = sin
(πx1

2

)
(1 + h(XM ))

where h(XM ) = h (xM , xM+1, · · · , xM−1+aM )

= 2− exp

[
−2 log(2)

(
xM−1+aM − 0.1

0.8

)2
]
sin2 (kMπxM−1+aM )

with aM = N − (M − 1) and kM denoting the number of PSs

subjected to 0 ≤ xj ≤ 1, for j = 1, 2, · · · , N (A.48)

Considering the global and the ith local optima of h(.) as h? and h?i , the global and the

ith local PF of Eq. (A.48) are located at
∑M

j=1{fj (X)}2 = (1 + h?)2 and
∑M

j=1{fj (X)}2 =

(1 + h?i )
2, respectively. The ith PS of Eq. (A.48) is located at xN = 1

2kM
+ i−1

kM
, xj ∈ [0, 1]

with j = 1, · · · , N − 1, i = 1 for the global PS and i = 2, · · · , kM for the local PSs. In this

thesis, aM = 1 and kM = 2 are considered as per [112].

A.5.19 MMF15 a problem

Defined on N -dimensional decision vector, this M -objective problem is given by:

Minimize: f1(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
cos
(πxM−1

2

)
(1 + h(XM ))

Minimize: f2(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · cos

(πxM−2
2

)
sin
(πxM−1

2

)
(1 + h(XM ))

Minimize: f3(X) = cos
(πx1

2

)
cos
(πx2

2

)
· · · sin

(πxM−2
2

)
(1 + h(XM ))

...
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Minimize: fM−1(X) = cos
(πx1

2

)
sin
(πx2

2

)
(1 + h(XM ))

Minimize: fM (X) = sin
(πx1

2

)
(1 + h(XM ))

where h(XM ) = h (xM , xM+1, · · · , xM−1+aM )

= 2− exp

[
−2 log(2)

(
u− 0.1

0.8

)2
]
sin2 (kMπu)

with u =

(
xM−1+aM − 0.5sin (πxM−2+aM ) +

1

2kM

)
,

aM = N − (M − 1) and kM denoting the number of PSs

subjected to 0 ≤ xj ≤ 1, for j = 1, 2, · · · , N (A.49)

Considering the global and the ith local optima of h(.) as h? and h?i , the global and the

ith local PF of Eq. (A.49) are located at
∑M

j=1{fj (X)}2 = (1 + h?)2 and
∑M

j=1{fj (X)}2 =

(1 + h?i )
2, respectively. The ith PS of Eq. (A.49) is located at xN = 0.5sin (πxN−1) + i−1

kM
,

xj ∈ [0, 1] with j = 1, · · · , N − 1, i = 1 for the global PS and i = 2, · · · , kM for the local

PSs. In this thesis, aM = 1 and kM = 2 are considered as per [112].

A.5.20 SYM-PART simple problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = (J1 + aM )2 + J2
2

Minimize: f2(X) = (J1 − aM )2 + J2
2

where J1 = x1 − {sgn (u1)min (|u1| , 1)} (2aM + cM )

and J2 = x2 − {sgn (u2)min (|u2| , 1)} bM

with u1 = sgn(x1)

⌈
|x1| −

(
aM + cM

2

)
2aM + cM

⌉
and u2 = sgn(x2)

⌈
|x2| − bM

2

bM

⌉

subjected to − 20 ≤ xj ≤ 20, for j = 1, 2 (A.50)

Global PF of Eq. (A.50) corresponds to f1(X) = 4a2Mu
2
3 and f2(X) = 4a2M (1 − u3)2

with u3 ∈ [0, 1]. Global PSs of Eq. (A.50) are at x1 = J1, x2 = 0. In this thesis, aM = 1,

bM = 10 and cM = 8 are considered as per [112].
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A.5.21 SYM-PART rotated problem

Defined on 2-dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) = (J1 + aM )2 + J2
2

Minimize: f2(X) = (J1 − aM )2 + J2
2

where J1 = x1 − {sgn (u1)min (|u1| , 1)} (2aM + cM )

with u1 = sgn(u2)

⌈
|u2| −

(
aM + cM

2

)
2aM + cM

⌉
, u2 = (cos ω)x1 − (sin ω)x2

and J2 = x2 − {sgn (u3)min (|u3| , 1)} bM

with u3 = sgn(u4)

⌈
|u4| − bM

2

bM

⌉
, u4 = (sin ω)x1 + (cos ω)x2

subjected to − 20 ≤ xj ≤ 20, for j = 1, 2 (A.51)

Global PF of Eq. (A.51) corresponds to f1(X) = 4a2Mu
2
5 and f2(X) = 4a2M (1 − u5)2

with u5 ∈ [0, 1]. Global PSs of Eq. (A.51) are at x1 = J1, x2 = 0. In this thesis, aM = 1,

bM = 10, cM = 8 and ω = π/4 are considered as per [112].

A.5.22 Omni-test problem

Defined on N -dimensional decision vector, this 2-objective problem is given by:

Minimize: f1(X) =

N∑
j=1

sin (πxj)

Minimize: f2(X) =
N∑
j=1

cos (πxj)

subjected to 0 ≤ xj ≤ 6, for j = 1, · · · , N (A.52)

Global PF of Eq. (A.52) corresponds to f2(X) = −
√
N2 − {f1(X)}2 with −N ≤

f1(X) ≤ 0. Global PSs of Eq. (A.52) are at xj ∈ [2kM + 1, 2kM + 3/2] with j = 1, · · · , N

and kM takes integer values. In this thesis, N = 3 is considered as per [112].

A.6. MULTI-MODAL MANY-OBJECTIVE POLYGON PROBLEMS [76]
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Table A.2: Cartesian coordinate plots of the 2-dimensional PSs of M -objective polygon
and rotated polygon problems.

Polygon problems (9 polygons)

M = 3 M = 5 M = 8 M = 10
Rotated Polygon problems (9 polygons)

M = 3 M = 5 M = 8 M = 10

A.6 Multi-Modal Many-objective Polygon Problems [76]

The performance of MMMOEAs are also analyzed using M -objective polygon and rotated

(by 45 degrees) polygon problems [76, 170], as these problems have variable number of

objectives. For these problems, the number of objectives (M) is equal to the number

of vertices of the polygons and ith objective to be minimized is given by the Euclidean

distance of a solution to its nearest ith vertex over any of the given number of polygons.

Hence, a 3-objective polygon problem searches for triangles, a 5-objective polygon problem

searches for pentagons and so on, as shown in Table A.2. For example, a 3-objective 9-

polygon problem is defined by Eq. (A.53) where V1,i, V2,i and V3,i are the three-vertices

of the ith polygon (as shown in Fig. A.5) and the function DE(.) evaluates the Euclidean

distance between two vectors.

Minimize: f1(X) = min{DE (X,V1,1) , DE (X,V1,2) , · · · , DE (X,V1,9)}

Minimize: f2(X) = min{DE (X,V2,1) , DE (X,V2,2) , · · · , DE (X,V2,9)}

Minimize: f3(X) = min{DE (X,V3,1) , DE (X,V3,2) , · · · , DE (X,V3,9)} (A.53)

The specifications of the eight problem instances, considered in this thesis, are as follows:

• Dimension of decision space: N = 2

• Bounds of decision space (D): XL = [−1,−1] and XU = [2, 2]

A.6. MULTI-MODAL MANY-OBJECTIVE POLYGON PROBLEMS [76]
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Figure A.5: Decision space of a 3-objective 9-polygon problem.

• Dimension of objective space: M ∈ {3, 5, 8, 10}

• Number of Subsets in PS: #Sets = number of polygons = 9

• Vertices of the polygons are obtained from https://sites.google.com/view/nimmopt/.

A.6. MULTI-MODAL MANY-OBJECTIVE POLYGON PROBLEMS [76]

https://sites.google.com/view/nimmopt/


Appendix B

Visualizing an M-objective

Pareto-Front using Polar Plots

B.1 Steps for Visualization

The steps to visualize an M -dimensional Pareto-Front (PF: AF) using the polar coordinate

plot [68] are as follows:

1. The M -dimensional objective space is partitioned into ndir sub-spaces using Das and

Dennis’ approach [40] of reference vectors generation (Section 3.2.1, Python imple-

mentation in http://worksupplements.droppages.com/refvecgen). For example

in Fig. B.1, the set of reference vectors W = [W1, · · · ,Wndir ] is formed with p1 = 4

for M = 2 and with p1 = 2 (boundary layer) and p2 = 1 (inside layer) for M = 3.

2. In the polar plot, ndir uniformly spread directions are chosen to correspond to the

ndir sub-spaces (S1 to Sndir) from the objective space. However, the correspondence

of a sub-space with a direction is randomly fixed. For example, both the transforma-

tions of the objective space to the polar coordinates are equivalent in Fig. B.1. As

a thumb-rule, the ith sub-space (Si) is assumed to be transformed into the direction

at an angle (θradi ) as follows:

θradi =
2π (i− 1)

ndir
. (B.1)

3. The transformation of an objective vector F from the objective space to the polar

coordinates is also dictated by the shape of the PF.
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Objective Space Some Equivalent Transformations

ndir = 5 ndir = 5 ndir = 5
M

=
2

ndir = 9 ndir = 9 ndir = 9

M
=

3

Figure B.1: Multiple equivalent transformations to map sub-spaces from the objective
space into the polar coordinates.

• When the PF has a concave shape (Eq. (4.8) with δc > 1), the radius (ρrad (F))

of the objective vector F in the polar plot satisfies the following equation:

ρrad (F) =

√√√√ M∑
i=1

(
fi − f idei

)2
. (B.2)

• When the PF has a convex shape (Eq. (4.8) with δc < 1), the radius (ρrad (F))

of the objective vector F in the polar plot satisfies the following equation:

ρrad (F) =

√√√√ M∑
i=1

{
ρrad (F)−

(
fi − f idei

)}2
. (B.3)

• When the PF has a linear shape (Eq. (4.8) with δc = 1), the radius (ρrad (F))

of the objective vector F in the polar plot satisfies the following equation:

ρrad (F) =

M∑
i=1

(
fi − f idei

)
. (B.4)

• It can be seen that for any regular PF, ρrad (F) is constant ∀F ∈ AF. Ideally,

for an irregular PF, different parts are locally regular and hence, a mixture of

B.1. STEPS FOR VISUALIZATION
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ρrad (F) using Eqs. (B.2) to (B.4) should be used. However, to keep things

simple, in this thesis, ρrad (F) is obtained by Eq. (B.2) for irregular PF.

4. Assuming an objective vector F is associated with sub-space Si (using Eq. (3.2)),

its polar coordinates are computed as
(
ρrad (F) , θradi

)
. For illustrating the mapping,

the Cartesian-coordinate plots and the corresponding polar coordinate plots are

presented in Fig. B.2a for a 3-objective concave PF (e.g., MMF14), in Fig. B.2b for

a 3-objective linear PF (e.g., DTLZ1), in Fig. B.2c for a 2-objective convex PF (e.g.,

SYM-PART simple), and in Fig. B.2d for a 3-objective irregular PF (e.g., DTLZ7).

(a) Concave PF (b) Linear PF

(c) Convex PF (d) Irregular PF

Figure B.2: Objective space mapping between the Cartesian coordinate plots and the
polar coordinate plots for different shapes of the PF with ndir = 91.

B.2 Knowledge Retained and Lost by Polar Coordinate Plots

The following insights can be obtained from the polar coordinate plot:

• Convergence: For a regular PF, ρrad (F) = ρradAF
is constant ∀F ∈ AF. For two

approximations of the PF (AF,1 and AF,2), if ρradAF,1
< ρradAF,2

, then AF,1 has better

convergence than AF,2.

• Shape: For a regular PF, as ρrad (F) will be constant using one of the rules (Eqs.

(B.2) to (B.4)), the shape of the PF can also be understood using the rule yielding

a constant ρrad (F).

B.2. KNOWLEDGE RETAINED AND LOST BY POLAR COORDINATE PLOTS
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• Diversity : The diversity information can be obtained from the number of solutions

associated with the sub-spaces. Thus, a well-diverse PF will have an equal number

of solutions on each of the directions in the polar coordinate plot. Although the

polar plot is uniformly spread for both concave PF and linear PF, it is not so for

the convex PF in Fig. B.2c. It should be noted that this ambiguity is not from an

information loss due to the transformation. Rather, it is due to the convexity of the

PF, which associates more solutions to the sub-spaces near the objective axes.

• Scalability : The approach is applicable for any number of objectives and can effi-

ciently reflect a large number of solutions. Another important aspect of this polar

plot visualization is the easy comparison of more than one PF using the same plot.

Due to the advantages mentioned above, the polar plot visualization technique is used

in this thesis. However, it suffers from the following disadvantages:

• For a proper representation of an irregular PF, obtaining ρrad (F) locally is cumber-

some. The polar coordinate plot is easier to obtain for the regular PF.

• As shown in Fig. B.1, there can be multiple possible transformations due to the

random ordering of the sub-spaces. Hence, the spatial relation between the sub-

spaces is not preserved.

• The solution distribution within each sub-space cannot be observed through this

visualization method as all the objective vectors within a sub-space are plotted

along the same direction in the polar coordinate plot.

• If the niche count is not uniform across all the sub-spaces, it cannot be ascertained

which particular sub-space has poor diversity. Hence, it becomes difficult to under-

stand the working of the algorithm and the characteristics of the problem.

B.2. KNOWLEDGE RETAINED AND LOST BY POLAR COORDINATE PLOTS
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