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Abstract

Haze and fog are atmospheric phenomena where the particles suspended in the air obscure

visibility by scattering the light propagating through the atmosphere. As a result only

a part of the reflected light reaches the observer. So, the apparent intensity of the

objects get reduced. Apart from that, the in-scatter of the atmospheric light creates a

translucent veil, which is a common sight during haze. Image dehazing methods try to

recover a haze-free version of a given image by removing the effects of haze. Although

attempts have been made to accurately estimate the scene transmittance, the estimation

of environmental illumination has largely been ignored. Only a few methods have been

proposed for its estimation and the only the recently proposed methods have considered

to estimate this when proposing an end-to-end method. So, that methods that we propose

here mainly motivated by the how we can estimate the environmental illumination under

different settings.

We start with relaxing the haze imaging model to account for the situations when the

sky is not cloudy. Normally during fog and haze the sky remains cloudy. As a result

the entire scene receives the same amount of light. But the sky may not always remain

cloudy when a scene is being photographed in haze or fog condition. If we only consider

daytime scenes, the direct sunlight plays a role in the illumination when the sky is clear.

But, when this happens, the scene receives different amount of light in different portion

of the image. The imaging model is relaxed to capture this situation. The method that

is proposed here is based on the color line based dehazing, extended to work under this

relaxed model. Since, the proposed relaxation is done with the assumption of daytime

scenes, this model is not applicable for night-time scenes. So, in the next chapter, the

imaging model is further relaxed to include the night-time haze situations. This is done

by allowing the environmental illumination to vary spatially within the image. But this

introduces a challenge. Given a hazy image the color and even the number of different

illuminants present in the scene is not known. Moreover it can vary across the scene,

especially in the night-time images. We have shown the construct of color line based

dehazing to estimate both the possible illuminants present in the scene and the patches

they affect, by the simple technique to Hough Transform. This has enable us to propose

a method that works for both day and night-time images.



Although, these color line based methods works well in the default value of the

parameters, its performance degrades if the parameter values are not well suited for

the given image. But tuning the parameters, which are around 10 in number, is not

straight forward. So Convolutional Neural Networks (CNN) are utilized in the subsequent

chapters to automatically learn the haze-relevant features. In the initial attempt (Chapter

4), we work with the original imaging model (constant environmental illumination for the

whole scene) and by taking small patches from the input image. The transmittance and

environmental illumination is estimated from patches using a CNN based model. This

CNN predicts transmittance and environmental illumination given a hazy patch as input.

But it is seen, trying to estimate the environmental illumination from small patches is

error prone. So, in the next chapter we work by taking bigger patches from images. We

have utilized a Fully Convolutional Network to handle the big patches. This network

is trained using our proposed loss, called the Bi-directional Consistency Loss. This loss

requires only pair of hazy and haze-free images and favors only those transmittance and

airlight by which the haze-free image can be obtained from the hazy image and vice-versa.

Instead of just directly regressing the parameter values using a CNN, in the last chapter

a method has been proposed to estimate the transmittance by comparing various dehazed

version of a hazy patch with the original hazy one. This is motivated by the fact that

comparing which has patch has more haze is easier than estimating the level of haze from

a single patch. To automate the process of comparison, we have designed a CNN based

module, called the patch quality comparator. By finding the transmittance in this way, we

only obtain its value in such a way so that it does not produce bad looking outputs. It is

also seen that the quality of estimate of environmental illumination greatly affects the

transmittance computation. A correct estimate of environmental illumination produces

very good outputs.
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Chapter 1

Introduction

Our five senses provide us the interface to the physical world. We continuously collect

data through these ‘sensors’ and try to respond accordingly. Among these five senses,

our visual sensors, i.e., the eyes provide the most feature rich data. For this reason,

visual data plays an important roles in our lives. This visual data is generated from the

light that our eyes receive. This light can reach our eyes either directly from some light

sources or after getting reflected or refracted by some object. Light may be attenuated

or interfered by medium before reaching our eyes or some artificial visual sensors like

cameras. In such cases, the visibility gets impaired. Therefore, the existence of obstacles

in the path between our eyes and the object, through which the light propagates before

reaching our eyes, diminishes or obstructs the visibility of that object. Now depending

on the type of the obstruction, the visibility can vary in a broad spectrum. If the light

is completely blocked the visibility becomes zero. This is termed as occlusion. If the

light is attenuated partially, the visibility gets reduced and we receive only a partial

information about the scene. The partial attenuation can happen in various ways. For

example, if we look at an object through a colored glass, we won’t be able to see the

object in its true color because the glass is going to absorb some colors from the reflected

light that is passing through it. Similar thing happens in bad weather conditions like fog,

haze, sandstorm, rain and snow (Figure 1.1). The particles present in the atmosphere,

i.e. haze and fog particles, raindrops, snowflakes obstruct the light and only a part of it

reaches our eyes. As a result, it becomes difficult to distinguish the objects. Reduced

visibility greatly increases the risk of accidents in all kind of transportation system.

Navigation becomes hard in these situations. Therefore, from the point of visibility,

these situations are, no doubt, undesirable. From the point of view of outdoor computer

vision systems, the reduction in contrast and degradation in color greatly impacts the

performance of the systems. This is because most of them have been proposed with

assumption of “clear” scenes in mind. However these weather conditions are natural

phenomena, and we have little control over them. So, if we are able to somehow design
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(a) Sunny and Foggy (By Alan Mak - CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=

308097)

(b) Haze (By Philo Vivero - CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.

php?curid=600129)

(c) Sandstorm (By Drummyfish - Own work,

CC0, https://commons.wikimedia.org/w/

index.php?curid=76893288)

(d) Rain (By Malinaccier - Own work, CC

BY 3.0, https://commons.wikimedia.org/w/

index.php?curid=6675965)

(e) Snow (By Amareshwara Sainadh - Own work,

CC BY-SA 3.0, https://commons.wikimedia.

org/w/index.php?curid=25890658)

Figure 1.1: Adverse weather conditions that reduces visibility
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1.1 Image formation under haze

a method that can virtually “clean” these obstruction so as to increase the visibility,

then it would be of immense help. However simple image processing techniques falls

short in overcoming these situations. Therefore to be able to remove these obstructions,

an understanding of how light undergoes changes in these situations becomes necessary.

But the change depends on the weather condition. So, each weather condition is usually

treated separately. The methods proposed in this thesis, i.e. image dehazing methods,

focus on improving the visibility of images taken under fog and haze condition. In the

following section we provide the theoretical basis of how images are formed during haze.

1.1 Image formation under haze

Haze and fog are atmospheric phenomena where the particles suspended in the air obscure

visibility by scattering the light propagating through the atmosphere. Because of the

scattering the scene radiance gets attenuated. The relationship between scattering and

attenuation of a light beam is modeled by the following equation [40].

Ex = E0e−xβλ , (1.1)

where, E0 is the irradiance of the light at position x = 0, that is without the effect of

scattering, while Ex denotes the irradiance of light after traveling a distance x in the

scattering medium. βλ is called the scattering coefficient that quantifies the amount of

scattered flux per unit length of path. The amount of scattering in general depends

on the wavelength of light. The subscript λ is used to denote this dependence. On

the other hand, attenuation is not the only phenomena that occurs during haze. A

simple observation reveals, that objects become lighter as their distance from the horizon

decreases (Figure 1.1a). It seems as if the atmosphere acquires a certain luminance.

This phenomenon is known as the airlight and it occurs due to the scattering of light

from the sun, the sky and the ground, towards the observer by the particles present in

the atmosphere between the observer and the object. In this situation, the apparent

luminance of a black object at a distance x is given by the following [32, 42, 40].

Bx = Lh(1 − e−xβλ), (1.2)

where, Bx is the apparent luminance of a black object at distance x. Lh is the luminance

of the horizon sky and βλ is the scattering coefficient of the medium. But objects are

not always black. If we consider an object with an intrinsic luminance L0, then their
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apparent luminance becomes the following, when they are observed from a distance x.

Lx = L0e−xβλ + Lh(1 − e−xβλ), (1.3)

where, Lh is the luminance of the horizon sky and βλ is the scattering coefficient of the

medium. The first part of the equation, called the direct transmission, and the second

part is known as the airlight. Since we are interested in working with images, we will

be working with irradiance of objects as measured by some camera. If we assume the

response of the camera is linear to the observed luminance, then the image captured

during haze can be presented as, following equation 1.3 [45].

I(x) = J(x)t(x) + A(1 − t(x)), (1.4)

t(x) = eβλd(x). (1.5)

Here I(x) is the intensity observed by the camera at pixel x = (x, y). J(x) is the true

intensity at the same position without the effect of haze. t models the attenuation due

to scattering, and it is called the scene transmittance. d(x) denotes the depth of

pixel x from the camera or observer. Equation 1.5 shows that attenuation depends

on the distance of the pixel from camera. The radiance at the horizon is denoted by

A. As this quantity is directly affected by environmental illumination, this is usually

considered to be the global environmental illumination. This stems from the fact that

during foggy weather the sky tends to remain cloudy [44]. Now for RGB images we can

use equation 1.4 for each channel. But it has been shown by Narasimhan and Nayar

[45] that for fog and haze the transmittance does not vary much with wavelength of

light within the visible spectrum. Therefore, for RGB images the following form of the

imaging equation is generally used.

I(x) = J(x)t(x) + A(1 − t(x)). (1.6)

Here I(x), J(x) and A are 3 × 1 vector and t(x) is a scalar.

1.2 Motivation and Objective

For the purpose of image dehazing we are interested in recovering the J, that is the scene

radiance without the effect of haze, while having access to only the hazy image (I) [see

equation 1.6]. This makes the problem an ill-posed one, because here only I(x)’s are

known and all the other variables, including t and A, are unknown. Another challenging

aspect of the problem is its dependence on depth (equation 1.5). With increase in distance
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from the camera, the degradation also increases. Although the image dehazing methods

aims to completely eradicate haze, it may not always be possible. The methods can only

recover the information that is available in the image.

Although it is common to assume that the environmental illumination is constant over

a scene, this assumption does not always hold true. In most of the foggy situation the sky

remains cloudy and the light from the sun gets diffused by the clouds. As a result, the

whole scene receives more or less the same amount of illumination. Only in this situation

the constant environmental illumination holds. But during haze and fog the sky may

not always remain cloudy. Then direct sunlight plays a role in illuminating part of the

scene. In this situation the intensity of illumination may vary within the scene. Here the

assumption of constant environmental illumination does not hold. Another thing that

is implicitly assumed in the imaging model is that a single illuminant is illuminating

the scene. But this does not hold true for hazy images taken during the night. Because

during the night there may be multiple artificial light sources in the scene. These lights

can be of different colors also. So, the constant environmental illumination assumption

also does not hold in this situation. Therefore, relaxing of the equation [equation 1.6]

becomes necessary. In this thesis we have proposed methods to recover the J under

varied environmental illumination. This is more challenging because relaxation of imaging

model increases the number of unknowns further.

1.3 Related Works

Till date a variety of image dehazing methods have been proposed. These methods can

be categorized in various ways. Division can be made depending on the type of the image

e.g. daytime or night-time. Another way of division is based on the number of required

image i.e. multi-image method and single image method. Although there are different

varieties of the problem, dehazing of daytime scenes using a single image has received the

most attention. But these are only broad categories, not all methods can be categorized

in this way. There exits a separate line of research that tries to restore images taken

under water. The image formation process is in way similar to haze and fog, but this is

a completely different problem and normal image dehazing methods does not work for

these images. So, we don’t go into the detail of those methods. For a bit more detailed

overview of the daytime dehazing methods the reader may refer to the survey by Li et al.

[37].

Since the reduction of visibility due to haze a very common problem, there have been

attempts to solve the problem without considering image formation model. Oakley and

Bu [47] have proposed to restore the contrast loss due to airlight. They have assumed
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that the airlight is constant throughout the image and have proposed a method to detect

and remove its existence. Possibly the first work in image dehazing that has attempted

to use the image formation model is by Narasimhan and Nayar. They are among the first

people who have studied how haze affects the scene from the perspective of computer

vision. In their work [45] they have first described how light undergoes changes under

fog and haze by building upon the works of McCartney [40]. They have also shown

how the scene structure may be extracted from two images of the same scene captured

under different weather condition. They have also given the formulation of dichromatic

atmospheric scattering model. Using this model they have shown various information of

the scene can be extracted (e.g. the color of the haze, relative depth, “clear day” scene

radiance) using two or more images. In their later work [44], they have further refined

the model for outdoor scenes and homogeneous atmosphere. Using this model they have

proposed method to extract scene structure and restore contrast using two images taken

under different weather conditions. Since getting images of the same scene under different

weather condition is difficult in practice, there have been attempts to use image of the

same scene under different polarization states. The work by Schechner et al. [55] is

based on the fact that scattered airlight is partially polarization. Although polarization

filters cannot remove haze completely, they have shown using the imaging model and two

images taken through a polarizer at different orientation. This relaxes the requirement of

two images to be taken under different weather condition. The method of Shwartz et al.

[57] uses the same idea of the Schechner et al. [55] but relaxes the requirement of sky to

be present in the input image. The method uses independent component analysis (ICA)

to estimate the haze parameters.

All the methods mentioned till now take the help of multiple images due to the ill-

posed nature of imaging model. Another challenging aspect of the problem is its depth

dependent degradation, that means with increasing depth, the amount of degradation

increases. Estimating depth from a single image is an ill-posed problem. So, some

methods try to dehaze an image when depth map of the scene is somehow available.

Narashiman and Nayar [43] have proposed a method when the additional information of

depth is provided interactively by the user. Using this provided depth and the imaging

model the effects of weather is removed from a single image. Hautiére et al. [26] proposed

a dehazing method for the specific case of in vehicle on-board camera. They have assumed

the scene contains mainly road and the camera properties, height from ground is known.

Kopf et al. [31] attempted to dehaze an image by using a exact 3D model of the scene.

Only more recent methods have focused on dehazing with only a single image as input.

These methods achieve this by making stronger assumptions about the input and/or the

output images. Tan [60] made an observation that haze-free images have more contrast

6



1.3 Related Works

than the hazy ones. So, in his method he tried to obtain a dehazed image by maximizing

the local contrast in a Markov Random Field (MRF) based framework. Although, the

resulting images attain more visibility, they tend to contain saturated colors and look

unnatural. Fattal [21] tried to estimate scene transmittance with the assumption that

surface shading and scene transmittance are locally statistically uncorrelated. This

method fails in case of fog and dense haze when surface shading and scene transmittance

does not vary sufficiently. Ancuti et al. [7] proposed a fast pixel level method using

a ‘semi-inverse’ of the original image. Based on the hue disparity between the hazy

image and its semi-inverse haze is detected and removed. He et al. [28] have proposed

dark channel prior to estimate scene transmittance. Dark channel prior is based on the

observation that in haze-free images, in most of the local regions not covering the sky,

pixels often have low intensity in at least one color channel. In case of hazy images the

intensity of those color channels is mainly contributed by the airlight. This information

is utilized to estimate the transmittance. Nishino et al. [46] have used a Bayesian method

to jointly estimate depth and albedo. They model the image using the framework of a

factorial MRF assuming depth and albedo to be statistically independent. They enforce

natural image and depth statistics as priors when estimating the latent albedo and

depth from the image. Tarel et al. [62] has mainly focused to handle the problem of

image dehazing from the perspective of driver assistance systems. The method they have

proposed is focused towards better handling of road images. The planar road assumption

introduces further constrains which results in a fast restoration algorithm. Ancuti and

Ancuti [6] has proposed a image fusion based pixel level method. Their method work by

fusing a white-balanced and global contrast enhanced input image. The fusion weights

are computed in terms of luminance, chromaticity and saliency. Gibson and Nguyen

[25] proposed a framework called the color ellipsoid framework. This is based on the

observation made by Omer and Werman [48] that in a small patch the colors are usually

distributed normally. Therefore they form an ellipsoidal structure and depending on

the haze the form and the position of the ellipsoid changes. The estimated ellipsoid

serves as the key to estimate the transmittance. They have also shown existing dehazing

methods like Fattal [21] and He et al. [28] can be explained from the point of view of

the proposed framework. In that sense this framework is a unification of these methods.

Meng et al. [41] had proposed to estimate the scene transmittance by exploiting the

inherent boundary constrain enforced by the radiance cube. This extends the idea of

Dark Channel [28] in transmittance computation with the help of this boundary constrain

using simple morphological closing operation. This estimate is regularized using a �1

norm based contextual regularization to obtain more robust estimate for the whole image.

Yan et al. [65] proposed a method to remove the effect of dense scattering layer from
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images. In regular methods after removing the scattering layer (e.g. haze) originally

unnoticable artifacts gets largely amplified. Their method proposed to solve this issue by

using non-local structure aware regularization. They have also present a way to efficiently

solve the proposed optimization. Fattal [22] adopted the idea of color line [48] to image

dehazing. Omer and Werman [48] made an observation that colors in a small patch of

a natural image ideally lie on a line (color line) passing through the origin in the RGB

space. But due to sensors and other distortions they form elliptical color clusters. In

hazy condition, this ideal color line gets shifted in the direction of airlight. From this

shift the transmittance is estimated. Galdran et al. [24] has proposed a method from

the point of view of contrast enhancement. This method is based on a perceptually

inspired variational contrast enhancement framework. They have adapted the contrast

enhancement method so that it conforms to the haze imaging model. The method of

Sulami et al. [59] is solely dedicated to the estimation of environmental illumination.

They have estimated the orientation of environmental illumination using the color line

model and its magnitude using a global regularity that is observed in hazy images. Tang

et al. [61] have tried to solve the problem of image dehazing in a learning framework.

They took existing haze-aware features like dark channel, local max contrast, local max

saturation, hue disparity to regress the transmittance from image patches. The training

data for the regressor was generated by synthetically adding haze to patches of haze-free

images. Choi et al. [15] have proposed a no-reference perceptual fog density predictor

model (FADE) that works by only using fog aware statistical features. It measures the

deviations from statistical regularities from natural foggy and fog-free images to predict

fog density. They have utilized this prediction to propose a defogging algorithm. But Ma

et al. [39] has made a perceptual study and have shown that FADE and other proposed

metrics does not perform well in predicting the quality of dehazed images. [68] have

proposed color attenuation prior to model the scene depth. This prior is based on the

observation that difference between the brightness and saturation can approximately

represent the concentration of haze. So, they have modeled depth as a linear function of

brightness and saturation. The parameters of this function is learned in a supervised

fashion. With the recovered depth information they dehaze the given image. Bahat

and Irani [10] have utilized the patch recurrence property of images to estimate the

haze parameters. The patch recurrence property says, a small image patch tend to

repeat within a natural image, both within and across scale. In case of fog and haze the

recurrence property diminishes because the patch can occur at different depths. This

is utilized to recover the airlight color and transmittance of the patches. The method

proposed by Berman et al. [11] is based on the observation that the colors of a haze-free

image can be approximated by a few hundred colors and they form tight clusters in
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the RGB space. In case of haze, these cluster form lines (termed as haze-lines). These

haze-lines are used to estimate the transmittance at different pixels. Later they have

proposed another work [12] based on the haze line to estimate the airlight.

The recent success of Convolutional Neural Networks in the domain of computer vision

[34, 18, 38] has encouraged its use in image dehazing. Cai et al. [14] have proposed a

CNN based end-to-end learning framework to estimate medium transmittance. Instead

of using handcrafted features, a CNN is utilized to learn the haze relevant features and

predict the transmittance. Ren et al. [53] have also employed a CNN to the estimate

scene transmittance. To be able to properly estimate the transmittance in the whole

image they have used multi-scale CNN to capture both coarse and fine scale structures.

Li et al. [35] works using a reformulated atmospheric scattering model that unified the

transmittance and environmental illumination using a single parameter (named K(x)).

They have proposed a CNN to estimate this K(x) and generate the clean image directly.

They have also shown their dehazing network improves the detection and recognition

results when used in conjunction with Faster R-CNN [52].

The image dehazing methods proposed for daytime scenes does not work well for

night time images. The common atmospheric model used by the daytime methods

does not work for the night time images, mainly because of assumption of the constant

environmental illumination. Although the initial attempt by Pei and Lee [50] the imaging

model of the daytime methods. But to compensate for the night-time images a color

transfer method is utilized. Then they have applied Dark Channel Prior [28] and Guided

filter [27] to estimate the scene radiance. To increase the brightness and overall contrast,

bilateral filter is applied as the post-processing filter. The method propose by Zhang et al.

[67] works using a modified version of the imaging model to account for the changes in

night-time images. Since in night-time images artificial lights are the only source of the

illumination, overall image intensity can be low and colors can be biased by the color of

the lights. Due to these reasons, the authors have compensated for the intensity loss by

balancing the illumination and have corrected the possible color bias. Then the method

of He et al. [28] is used to obtain the dehazed image while estimating the environmental

illumination in local neighborhood. The night-time dehazing method proposed by Li

et al. [36] is more focused on removing the glows caused by multiple scattering of the

light near the light sources. For that they use a modified version of imaging model that

incorporates this multiple scattering term. Then they separately estimate the glows

in addition to estimating the transmittance and environmental illumination to obtain

the dehazed image. The night-time dehazing method of Ancuti et al. [5] is build on

the previously proposed multi-scale daytime dehazing method by the same authors [6].

For the fusion process the derived inputs are local airlight estimation at two scales and
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the Laplacian of the input. The fusion weights are computed based on local contrast,

saturation and saliency. The derived input and the weights are blended in multi-scale

using a Laplacian and Gaussian pyramid respectively.

1.4 Contribution

Although attempts have been made to accurately estimate the scene transmittance, the

estimation of environmental illumination has largely been ignored. Only a few methods

have been proposed for its estimation [59, 12] and the only the recently proposed methods

have considered to estimate this properly when proposing an end-to-end method [35].

For this reason, the methods that we propose here is mainly motivated by the cause how

we may estimate the environmental illumination more accurately under different settings.

The contributions of the proposed methods can be summarized as follows.

• Commonly it is assumed that during fog, the sky remains cloudy and the whole

scene is receiving the same amount of illumination. But during fog and haze sky

does not always remain cloudy, especially during haze condition. In that situation,

mainly the direct sunlight contributes to the environmental illumination. Since in

this case the whole scene may not receive the same amount of light, we say in this

situation the intensity of environmental illumination can vary within the scene, but

not its color. We have used the idea of Fattal [22] i.e. color line prior and have

extended it to dehaze images under the proposed relaxation.

• The relaxation proposed for the previous method does not work for night-time

images. Since during the night artificial lights are the only light source, the

environmental illumination can vary both in terms of intensity and color. So, the

imaging model is further relaxed to account for the spatially variant environmental

illumination. But this introduces a new challenge. The number of illuminants

is not known. Moreover, it is not possible to know in advance which illuminant

affected which pixels. This has been tackled by the simple technique of Hough

Transform. This has helped us to propose a method that works for both day and

night-time images. Methods proposed till now works for only one kind of image,

either daytime or night-time, not both.

• The use of color line introduces many assumptions and subsequently thresholds

(around 10) to check the validity of the assumptions. This also results in the use of

only a part of all possible patches in the estimation step. Others are not considered

due to failure in the validity test. The tuning of the threshold values can also get
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quite hard in practice. For that, we move our attention to Convolutional Neural

Networks (CNN). The CNNs have proved to be quite effective in automatic feature

extraction, and have enjoyed success in many application [34, 18, 38].

• In our first CNN based method, we work with the basic atmospheric scattering

model (equation 1.6) i.e. with assumption of constant environmental illumination

and try to estimate transmittance and environmental illumination jointly from

patches. Since quality of estimated transmittance depend on the evironmental

illumination, we have proposed to estimate them jointly. But, it is seen trying to

estimate environmental illumination from a small patch is error prone. The network

learns to report the average color of the patch as the environmental illumination.

• In the next method we work with bigger patches to fix the issue with environmental

illumination. But when using bigger patches the assumption of constant trans-

mittance within a patch gets violated. So, given a big patch we need to estimate

the transmittance of the same size. For this reason we use a Fully Convolutional

Network to estimate the transmittance and airlight of the same size as the input.

Although our network predicts the transmittance and airlight, the network is trained

using pair of hazy and haze-free images only. This is enabled by our newly proposed

loss (Bi-directional Consistency Loss), that facilitates the training of the network

without ground-truth transmittance and airlight while conforming to the imaging

equation at the same time. A multi-level strategy is also proposed to deal with the

problem of resolution arising from variation in input image size. This method has

originally been proposed for NTIRE 2018 challenge on image dehazing, and it is

placed 5th in the competition [8].

• In our last method, we have proposed to estimate transmittance in each patch by

comparing the dehazed version of the input image with the input hazy one, instead

of directly regressing using a CNN. The desired transmittance is obtained by finding

the one that clears the haze but does not overdo and produce bad looking output.

Now whether the dehazed patch looks good or bad is decided by our proposed

CNN based module called the patch quality comparator. But note that using

this comparator we are only able to estimate the transmittance. Obtaining the

environmental illumination in this way is not this much straight forward and left

as a future work.
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1.5 Organization of thesis

The thesis proposes methods to dehaze hazy images with a focus on estimation of

environmental illumination. The thesis contains, apart from the introduction, six chapters.

Their organization is described in the following subsections.

1.5.1 Variable environmental illumination intensity

Image dehazing methods commonly assume that the environmental illumination constant

within the whole scene. But this does not remain true in many situations. In Chapter

2, we propose method where the constrain of constant environmental illumination is

relaxed. The relaxation is made to handle the case when the intensity of environmental

illumination varies within the scene but its color remains the same. The proposed method

is based on the idea of color line based dehazing by Fattal [22], but unlike the method of

Fattal [22] it estimates both the environmental illumination and the airlight to dehaze

an image.

Related publication: Sanchayan Santra, and Bhabatosh Chanda. “Single image

dehazing with varying atmospheric light intensity.” In Computer Vision, Pattern Recog-

nition, Image Processing and Graphics (NCVPRIPG), 2015 Fifth National Conference

on, pp. 1-4. IEEE, 2015.

1.5.2 Variable environmental illumination intensity and color

In the next chapter (Chapter 3), the imaging model is further relaxed to handle the night-

time images. In night time situations, both the color and intensity of the environmental

illumination may vary spatially due to the presence of artificial lights. So, the imaging

model is relaxed to model a spatially variant environmental illumination. With the help

of this relaxed version of imaging model a dehazing method is proposed that works for

both day and night-time images. Methods proposed till now work exclusively for either

day or night-time images. But the method proposed here works independent of this

criterion. This method is also based on the color line, but the relaxation introduces new

challenge. From a given image obtaining the different illuminants present in the scene is

not straight forward. But this is easily tackled with the use of Hough Transform.

Related publication: Sanchayan Santra, and Bhabatosh Chanda. “Day/night

unconstrained image dehazing.” In Pattern Recognition (ICPR), 2016 23rd International

Conference on, pp. 1406-1411. IEEE, 2016.
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1.5.3 Supervised with transmittance and environmental illumination

In this chapter (Chapter 4) we propose a method of image dehazing that jointly estimates

transmittance and environmental illumination from image patches using a CNN. Methods

have been proposed that employ a CNN to estimate the transmittance, but they don’t

focus the estimation on the estimation of environmental illumination. But the quality of

dehazed image depends on the estimated environmental illumination. So, in the method

proposed in this chapter, we estimate them jointly.

Related publication: Sanchayan Santra, Ranjan Mondal, Pranoy Panda, Nishant

Mohanty, and Shubham Bhuyan. “Image Dehazing via Joint Estimation of Transmittance

Map and Environmental Illumination”, In Advances In Pattern Recognition (ICAPR),

2017 Ninth International Conference On. IEEE 2017.

1.5.4 Supervised with haze-free image only

The method proposed in Chapter 5 also jointly estimates the transmittance and airlight,

but it works with bigger sized image patches. We work with bigger patches because it is

seen, estimating environmental illumination from small patches is error prone. Since we

work with bigger patches, we can’t assume the transmittance to be constant within a

patch. So, given a patch transmittance and airlight is estimated at each pixel. For this

reason, a Fully Convolutional Network is utilized here. The network is trained using a

newly proposed loss, called Bi-directional Consistency Loss. It requires only pair of hazy

and haze free images and directs the network to estimate the transmittance and airlight

in such a way, so that the haze-free image may be obtained from the hazy image using

those estimates and vice versa. The method also proposes to tackles the challenge of

image resolution by utilizing a muti-level approach.

Related publication: Ranjan Mondal, Sanchayan Santra, and Bhabatosh Chanda.

“Image Dehazing by Joint Estimation of Transmittance and Airlight using Bi-Directional

Consistency Loss Minimized FCN.” In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pp. 920-928. 2018.

1.5.5 Patch quality comparator

In this chapter (Chapter 6) we propose a method that dehazes a given image by comparing

various dehzed version of a given hazy patch with the original hazy version and choosing

the best one. The comparison is performed by our proposed Convolutional Neural

Network (CNN) based module called patch quality comparator. To select the best

dehazed patch we employ binary search to find a dehazed patch such that its haze is
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cleaned, but at the same time quality has not degraded. This is quite different from the

existing methods where a network is utilized to directly regress the haze paremeters.

Related publication: Sanchayan Santra, Ranjan Mondal, and Bhabatosh Chanda.

“Learning a Patch Quality Comparator for Single Image Dehazing.” IEEE Transactions

on Image Processing (TIP) 27, no. 9 (2018).

1.5.6 Conclusion

In the last chapter we conclude this thesis by discussing the issues addressed in the

previous chapter and also outline the possible future directions where the effort needs to

be foucsed at to further progress the state-of-the art.
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Chapter 2

Variable environmental illumination

intensity

The commonly used atmospheric scattering model, what we have already described in

chapter 1, is given by the following equation.

I(x) = J(x)t(x) + (1 − t(x))A. (2.1)

In this equation the environmental illumination (A) is assumed to be constant throughout

the scene. This is true if the sky is cloudy as the light from the sun gets diffused by

the clouds and the whole scene receives more or less the same amount of light. In foggy

weather the sky usually remains cloudy, and this assumption holds. But the sky does

not always remain cloudy in these situations, specially in the haze conditions. Then the

contribution of the direct sunlight in illumination becomes significant. So, different parts

of the scene can receive light of different intensity. An example of such situation is shown

in figure 2.1. That means, in this kind of situation the intensity of the environmental

illumination can vary within the scene, but its color remains the same as sun is the

only source of illumination. To model this scenario equation 2.1 needs to be modified as

follows.

I(x) = J(x)t(x) + (1 − t(x))m(x)Â. (2.2)

= J(x)t(x) + a(x)Â. (2.3)

This modification says that the color of environmental illumination (given by Â) remains

constant throughout the scene, but its intensity (m(x)) can vary. Now to recover haze free

image using this equation, we need to estimate a single Â, and the airlight component,

denoted by a(x)(= (1 − t(x))m(x)), at each pixel. For this we take the idea of color

line based dehazing by Fattal [22] and customize it to work under the modified imaging

model. However, the method of Fattal [22] estimates transmittance only. It assumes
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Chapter 2 Variable environmental illumination intensity

Figure 2.1: If the sunlight is dominant, the intensity of the environmental illumination can vary
within the scene.

that the environmental illumination is known in advance. However, it is far from reality,

especially when it is space variant. So, here we estimate the Â and a(x). Unlike other

methods, we do not estimate the transmittance of the medium directly.

2.1 Proposed Solution

The method that we propose here is based on color line [48]. So, in this section we first

describe the color line model and how it is utilized in image dehazing. Then we outline

how Â can be estimated with the help of the information obtained from the color line.

2.1.1 Color line and Hazy image

The color line model, as described in Omer and Werman [48], states that if we take a

small patch of a natural image then the colors in that patch ideally lie on a line passing

through the origin in the RGB space. But due to sensor and other camera related

distortions, the colors spreads out and forms a cluster in the RGB space (figure 2.21).

This can be seen in the following way. Suppose for the colors within a patch we can write

I(x) = l(x)R, where l(x) is the shading component and R is surface reflectance vector.

Then we may say that, R provides the direction of the color line and l(x) provides the

position of the color points (I(x)) in that direction. But this happens only if the patch

contains a single object, that is, a constant surface reflectance R. Now, if we assume that

1Original image by Diego Delso, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?

curid=29956015
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Figure 2.2: Colors of two different patches of an haze-free image plotted as points in the RGB
space. As described by color line, these colors forms a cluster in the RGB space. The
first patch contains a single object only, as a result the colors form a single elongated
cluster. But the second patch contains more than one object (i.e. boat, water), so
there are more than one cluster. Color line model fails in this case.
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Figure 2.3: Colors in a patch of an hazy image plotted as points in the RGB space. Due to added
haze the corresponding color line gets shifted and does not pass through origin.
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Figure 2.4: Colors in a patch plotted as points in RGB space and the corresponding fitted line ls.
The original line lo got shifted due to haze in the direction given by Â to form ls.

17



Chapter 2 Variable environmental illumination intensity

all the pixels within the patch are affected by the same amount of haze (i.e. within a

patch t(x) and m(x) is constant), then this line gets shifted by the amount given by the

airlight component (a(x)) in the direction given by Â (figure 2.3 and 2.4). This occurs

due to the additive airlight ((1 − t(x))m(x)Â) present in equation 2.3. So, if we know Â

and can determine this color line from small image patches, then the airlight component

(a(x)) can easily be estimated by computing the magnitude of shift of the color line. But

as mentioned before, for this to work we require following two information.

1. The patch should contain a single object only.

2. All the pixels in a patch should be affected by the same amount of haze.

These conditions hold, although not always, if the patches are sufficiently small. So one

needs to use small patches to estimate the color line and the airlight component.

2.1.2 Estimation of Â

In the previous section we have seen that from a patch of a natural image we may get a

line passing through the origin formed by the RGB vector of the pixels in the patch. If

the patch is affected by haze then this line (color line) gets shifted in the direction given

by Â. Note that the shifted line, the vector Â and the origin (of RGB space) lie on the

same plane. In other words, the plane containing the shifted line and the origin, let us call

them patch planes, also contains Â. Since in our relaxed model (equation 2.3) we have

assumed Â to be constant throughout the scene, each color line is shifted along the same

Â. So, a line depicting the direction Â is contained in all the patch planes. Therefore,

if we get two patch planes that are not parallel then Â lies in the intersection of the

patch planes (figure 2.5). Now instead of finding only a pair of non-parallel patch planes

and computing their intersection, we compute the intersection of the all patch planes

to obtain a more robust estimate of Â. Note that each of the patches being considered

for computing intersection should have a non-zero airlight component. Otherwise, the

estimate will be error prone. Since, the normal to a plane is perpendicular to any line

lying on the plane, the Â is also perpendicular to the normal of the patch plane. As,

same direction vector Â lies in all the patch planes, we try to find a vector that is

perpendicular to all the normals of the patch planes. Thus, we yield the desired Â.

2.2 Dehazing Steps

Our proposed dehazing method takes the following 5 main steps to dehaze an image.
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I1(x)
I2(x)Â

Figure 2.5: From two different patches we obtain two fitted line l1 and l2 and two patch planes.
Since both the lines are shifted by the same Â, both of the patch planes will contain
the Â. So, Â lies in the intersection of the two patch planes.

1. Color line and patch plane estimation: Since our method is based on color

line, in the very first step we estimate it. We also estimate the patch planes in this

step, as they are required for estimating the Â.

2. Estimation of Â: Once we obtain the patch planes, we can estimate the Â by

determining their intersection as described previously.

3. Estimation of airlight component (a(x)): Once we have both the color line

and Â, we compute the amount of shift of color line from the origin in the direction

of Â.

4. Aggregation and Interpolation of estimated a(x): The color line works only

under certain assumptions and those assumptions may fail in many patches. In

such cases, estimated a(x)’s are used to be erroneous and using those estimates in

dehazing the image usually produces degraded output. So, we retain just the good

estimates and then interpolate a(x) at rest of the pixels.

5. Haze free image recovery: Once we have estimated a(x) at all the pixels, we

recover the haze-free image.

In the following subsections we describe each of the step in detail.

2.2.1 Color line and patch plane estimation

Our method hinges on the idea of color line. So, in the very first step we estimate the

color line. For that we take the help of RANSAC [23]. We first divide the image into

patches of size ω × ω with 50% overlap. Then on the RGB vectors of each patch we apply

RANSAC to fit a line. After the fitting, RANSAC provides a set of points (inliers) that

lies close to the estimated line and two points (say I1, I2) that lie on the line estimated
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using the reported inliers. Let’s write the equation of the line in the following form:

L = ρD + P0. (2.4)

Here L denotes points on the line. D gives the direction of the line and P0 is a point

through which line passes. ρ is a free parameter. So, from the points provided by the

RANSAC (I1 and I2), we can estimate the parameters of the color line as follows.

P0 = I1, (2.5)

D =
I2 − I1

||I2 − I1||
. (2.6)

We also need to estimate the patch planes to be able to compute the Â. Since the patch

plane we are trying to estimate contains the origin and the estimated line, the normal to

this plane can be computed using the vectors joining the origin and the points on the

line. So, from the output of the RANSAC the normal (Â) can be computed as follows,

n̂ =
I1 × I2

||I1 × I2||
. (2.7)

Note that in the subsequent steps of our method only the inlier points of the patch are

used, because the outliers are not part of the color line. However, the color line estimated

in this way can be erroneous, if the assumptions made in section 2.1.1 (i.e., the patch is

a part of a single object and, thus, is affected by same amount of haze) are violated or

the data is noisy. Thus, using those patches may lead to wrong estimation of the airlight

component. So, the estimates need to be validated using the following tests.

• If the number of inliers reported by RANSAC is small, then the estimated color line

is likely to be bad. In fact, an estimated color line that would be used in further

computation only if the number of inliers is greater than a fraction (θr) of total

number of points in the patch.

• Since color line direction D represents hue (in some form) of the patch, its all three

components should be positive.

• If a patch contains more than one object then there exists a possibility of depth

discontinuity. In that case, our assumption of color line is violated. The assumption

of all pixels being affected by same amount of haze is also violated. So, we check for

the existence of an edge in the patch by thresholding (θg) the gradient magnitude

of the patch, and only the patches without edges are used to estimate the color line.
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• If the estimated color line lies close to the origin, then the patch is not much affected

by haze. Using the patch plane obtained from this line can affect the estimate of

Â. So, a patch plane is used for computing Â only if the corresponding estimated

color line be at least d0 distance away from the origin.

2.2.2 Estimation of Â

In the previous step we have obtained normal (n̂) of the patch planes and we have already

shown that Â is (ideally) perpendicular to all the normal of the patch planes. But, in

reality we may only get a vector that is perpendicular to most but not all n̂. So, we

compute Â by minimizing the following error

E(Â) =
�

i

(n̂i · Â)2. (2.8)

Here n̂i denote the normal of the ith patch plane. Minimizing this equation boils down

to solving the following equation,

�

�

i

n̂in̂
T
i

�

Â = 0. (2.9)

As we know Â denote the color of the environmental illumination, it can’t be a null

vector. So, we need a non-trivial solution of this equation. Therefore, we compute the

eigen vectors of
�

i n̂in̂
T
i . Ideally, the eigen vector with eigen value 0 gives the solution.

But due to estimation errors we may not always get a 0 eigen value. So, we accept the

eigen vector corresponding to the smallest eigen value as the solution.

Although all the normals together yields the result, to make the estimate more robust

we discard some of the normals from our selection based on the dark channel value [28] of

the corresponding patch. This is done to ensure that only the patches with high amount

of haze contributes to the computation of Â. The dark channel value of a patch Ωi is

given by

DH(Ω) = min
x∈Ω

�

min
c∈{R,G,B}

Ic(x)
�

. (2.10)

Thus, the normal corresponding to patch Ωi is discarded if the following condition holds.

DH(Ωi) ≤ θD max
Ωj

DH(Ωj). (2.11)
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2.2.3 Estimation of Airlight Component (a(x))

In the previous steps we have estimated the color lines from the patches and also the

vector Â. So, the airlight component (a(x)) can be obtained by computing the amount

of shift of the fitted line in the direction of Â. If we use the form of equation of line

given previously (equation 2.4), then the shift can be computed by solving the equation

P0 + ρD − δÂ = 0. (2.12)

where δ gives the amount of shift in the direction of Â. This equation basically says that

the fitted color line (P0 + ρD) needs to be shifted by δ amount in the direction given by

−Â, so that the color line would pass through the origin under dehazed condition. But

due to noise and error in estimation the color line and Â may not always intersect. So,

it may not always be possible to make the fitted line pass through the origin by shifting

it in the direction of −Â. So, instead we estimate the shift (δ) in such a way that the

distance of the fitted line from the origin is minimum when it is shifted by −δÂ. This is

achieved by minimizing the following equation.

El(ρ, δ) = �P0 + ρD − δÂ�2. (2.13)

As shown in Fattal [22], the ρ and δ that minimizes this equation can be found by solving

the following equation

�

||D||2 −(Â · D)

−(Â · D) ||Â||2

� �

ρ

δ

�

=

�

−(D · P0)

Â · P0

�

. (2.14)

Here both D and Â provides direction only. So, we can say ||D|| and ||A|| is 1. Then

solution is given by following.

�

ρ

δ

�

=
1

1 − (Â · D)2

�

1 (Â · D)

(Â · D) 1

� �

−(D · P0)

Â · P0

�

. (2.15)

Since we are working under non-ideal conditions, the computed estimates needs to be

validated before they are used in subsequent steps. After validation the estimated δ is

assigned to all the inlier pixels of the patch (as reported by RANSAC) as the a(x). For

the validation the following checks are employed by our method.

• We are trying to compute the airlight component by finding the shift of the fitted

color line in the direction given by Â. But if the fitted line is parallel to Â, then

shift cannot be determined. In general, the estimate of shift (δ) becomes sensitive
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to noise as the angle between D and Â decreases. So, to retain only the good

estimates we use the computed shift only if the angle between D and Â is more

than some threshold θE .

• Ideally, the fitted line and Â should intersect in the RGB space. But as this may

not happen always, we minimize the error function El(ρ, δ). If the obtained error

after minimization is quite high (i.e., greater than some threshold Eθ), that means

the fitted line remains quite far from the origin after being shifted by −δÂ. Use of

such estimate of shift is likely to introduce error. So, these are not used in further

computation.

• We are trying to estimate the airlight component (a(x) = (1 − t(x))m(x)) by

computing the shift (δ). From the imaging model, we know t(x) varies between 0

and 1. Apart from that we are working with pixel values between 0 and 1. That

means, m(x) should lie between 0 and
√

3 (when m(x)Â is [1, 1, 1]T ). So, δ should

also lie between 0 and
√

3. Any estimate of δ that goes beyond this range is invalid.

But this bound sometimes allows overestimation of a(x). So, we use the smallest

intensity present in the patch as the upper limit. If the estimate of shift falls outside

this range it is not considered.

• We are trying to estimate the color line by fitting a line to the pixel colors in the

RGB space. If the colors do not spread much in the direction of the line, then the

fitted line becomes sensitive to noise. To discard such badly fitted lines, we project

the inlier points on the estimated line and compute the standard deviation. If this

standard deviation falls below a certain threshold (θs) we discard the fitted line

and the corresponding estimated shift as well.

2.2.4 Aggregation and Interpolation of Estimated a(x)

The estimates obtained till now are done on patches extracted from an image. For that

we have extracted patches with 50% overlap. So, naturally a pixel may receive more than

one estimate and these need to be aggregated. In this work, aggregating is implemented

as max function. That means, we retain the value with the maximum airlight component.

Thus we obtain a single estimate of a(x) at the pixels. But, as mentioned earlier, in

the process of estimating the airlight component (a(x)) we have discarded quite a few

patches, where the estimates are potentially incorrect. So, at those pixels we don’t have

an estimate of a(x), which is required to recover the haze free image at every pixel. So,

we interpolate the a(x) at those pixels by minimizing the following function [inspired
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from Fattal’s [22] GMRF based regularizer].

ψ(a(x)) =
�

Ω

�

x∈Ω

(a(x) − ã(x))2

(σa(Ω))2
+ α

�

x

�

y∈L(x)

(a(x) − a(y))2

�I(x) − I(y)�2
+ β

�

x

a(x)

�I(x)� . (2.16)

where ã(x) is the estimated airlight component. ã(x) is 0 where the estimates are not

obtained. L(x) denotes the neighborhood of x, normally it is the 4-neighborhood. a(x)

is the airlight component to be interpolated. Here α and β are two scalars that controls

the importance of the corresponding terms in this function. Ω denotes a patch and σa(Ω)

is the error variance of the estimate within the patch. σa(Ω) is taken to be 0 where the

estimates are not available; otherwise it is estimated assuming the colors in the patch is

corrupted by Gaussian noise with 0 mean and variance σ2. The estimate of the error is

computed in the same way what is done by Fattal [22]. Let’s assume E is the error in the

estimated line offset (P0). That means P0 = δÂ + E . Then the estimated shift becomes

δ� =
(Â · (δÂ + E)) − (D · (δÂ + E))(Â · D)

1 − (D · Â)2

=
δ + (Â · E) − δ(D · Â)2 − (D · E)(D · Â)

1 − (D · Â)2

= δ
1 − (D · Â)2

1 − (D · Â)2
+

(Â · E) − (D · E)(D · Â)

1 − (D · Â)2

= δ +
(Â − D(D · Â)) · E

1 − (D · Â)2
(2.17)

Therefore, the variance of the estimated shift is

σ2 ||Â − D(D · Â)||2

(1 − (D · Â)2)2
. (2.18)

The first term of the function to be minimized (equation 2.16) ensures that the computed

airlight component is close to the estimated one while considering the estimate to contain

Gaussian noise with variance σa(Ω). The second term is the regularization term that

penalizes the variation of a(x) in the local neighborhood based on the smoothness of I(x).

This also acts as an interpolator at pixels where estimates are not computed, because the

first term becomes effectively 0 for those pixels. The last term ensures that the airlight

component would be a small fraction of I(x). Since I(x) is the combination of both direct

transmittance and airlight (equation 2.3), the airlight component should not be greater

than ||I(x)||. Now instead of using the equation 2.16 directly, we use the following form
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of this optimization function to minimize it.

Ψ(a) = (a − ã)T
Σ(a − ã) + αaT Lga + βbT a. (2.19)

Here a and ã are the vector form of a(x) and ã(x). Σ is a diagonal matrix with its

entries given by σa(Ω). Lg is the Laplacian matrix of the graph constructed by taking

each pixel as one vertex and connecting it with its neighbors as defined by L(x). In this

graph the weight of an edge between the vertices x and y is taken as 1
�I(x)−I(y)�2 . Each

element of b is 1
�I(x)� , and α and β are the same importance controlling scalars. The

equation 2.19 is minimized by solving the following equation.

(Σ + αLg)a = (Σã − βb). (2.20)

2.2.5 Haze-free Image Recovery

We have obtained Â and a(x) at each pixel. So, airlight can now be obtained by

computing a(x)Â. Subtracting this airlight from the input image, we get the airlight

removed image.

Iā(x) = I(x) − a(x)Â. (2.21)

This removes the translucent veil of the haze. But it does not fix the reduction in intensity

due to scattering. For that we require the transmittance (t(x)). But this can’t obtained

directly from the computed airlight. So, instead we enhance the contrast of the airlight

removed image based on the amount of intensity that is removed from it as airlight. If

we denote the recovered image as J�(x), then it is obtained as follows.

J �
c(x) =

Iā(x)

1 − Y (a(x)Â)
, where, c ∈ {R, G, B} (2.22)

Y (a(x)Â) = 0.2989 × a(x)ÂR + 0.5870 × a(x)ÂG + 0.1140 × a(x)ÂB. (2.23)

For many images the output stays dark even after this operation so we use gamma

correction to improve the overall brightness.

2.3 Experimental Settings

The setting under which we generate the results are given as follows. To generate all the

results we have used the MATLAB implementation of our method. For the line fitting

part with RANSAC, we have used the code of Peter Kovesi [33]. The default values that

we have used for the different parameters are given in Table 2.1. These values are kept
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Table 2.1: Default parameter values

θr θg d0 θE Eθ θs θD

0.4 0.06 0.005 15◦ 0.05 0.006 0.45

same throughout our experiments and for all the images, although fine tuning them may

improve the result in some cases. The parameters α and β usually take small values

(typically around 2 × 10−4 and 1 × 10−5) depending on the input image. Note that in

our implementation pixel values lie between 0 and 1. The parameter values also depend

on this range.

2.4 Results

To evaluate the performance of our method we have used a hazy image dataset provided

by Fattal [22] in addition to using some real-world hazy images obtained from the internet.

The dataset provided by Fattal [22] contains both synthetic and real-world hazy images.

For comparative study, we have used the results of two methods. One is by He et al. [28]

and the other by Fattal [22]. We have used our own implementation of the method of He

et al. [28] to generate its results, while the results of Fattal’s method are obtained from

the author’s website2. Note that in Fattal’s method the environmental illumination is

not computed. It is supplied manually; whereas in our method and method of He et al.

[28] the environmental illumination is computed from the image.

2.4.1 Quantitative Results

For the real-world hazy images, most of the time, we don’t have the corresponding

ground-truth (i.e., haze-free) images. Image of the same location can be taken both

during haze and haze-free situation. But this may not always be feasible. So, the common

approach is to use synthetically generated hazy images generated by adding haze to

haze-free images using the atmospheric scattering model (equation 1.6 and 1.5). Fattal

has provided one such set of synthetic images to facilitate quantitative evaluation. This

dataset contains 12 synthetically hazy images of both indoor and outdoor scenes. The

hazy images has been generated assuming constant scattering coefficient and using the

same environmental illumination ([0.5, 0.6, 1]T ) for all the images. As we have the ground

truth haze-free images for each of the hazy images, we employ three full-reference metrics

to quantitative evaluation of the results: Peak signal-to-noise raio (PSNR), Structural

2http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/results/
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Table 2.2: Quantitative Comparison on the images of Fattal’s dataset. High PSNR and SSIM
indicates better results, while it is the opposite for ∆E00. The best results are bold
and the second best results are underlined. Note that in Fattal’s method only t(x) is
computed and A is manually provided.

Image
Fattal [22] He et al. [28] Our

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 21.43 0.96 6.34 11.16 0.78 28.74 14.84 0.76 15.54
couch 20.8 0.9 6.71 18.4 0.86 13.89 16.08 0.78 16.11
dolls 21.29 0.77 6.1 19.73 0.85 10.65 15.5 0.77 17.61
flower1 30.01 0.98 3.91 14.1 0.88 23.26 16.8 0.89 13.86
flower2 31.94 0.99 2.92 14.37 0.86 20.94 17.02 0.85 13.92
lawn1 24.49 0.97 6.65 13.84 0.8 22.38 14.71 0.82 20.01
lawn2 24.94 0.97 6.46 11.2 0.74 29.32 14.52 0.83 20.23
mansion 26.96 0.97 4.04 17.45 0.87 19.35 17.49 0.85 16.62
moebius 19.01 0.9 10.61 12.66 0.78 26.7 15.85 0.86 17.46
raindeer 26.22 0.94 4.1 18.12 0.83 14.22 13.59 0.73 22.54
road1 25.74 0.96 5.24 12.95 0.8 26.11 14.16 0.84 20.78
road2 23.6 0.96 7.11 15.84 0.84 22.13 15.88 0.86 20.13

Average 24.7 0.94 5.85 14.98 0.82 21.47 15.54 0.82 17.9

Similarity Index (SSIM) and CIEDE2000 (∆E00). PSNR is a measure of the quality of

reconstruction of signals. In this context it measures how much the dehazed image is

close to the original haze-free image. A higher PSNR value indicates that the output is

closer to the haze-free image. SSIM [64] determines the similarity between two images

based on how human perceive change in structural information. It gives scores between

-1 and 1. An SSIM value of 1 indicates two images are structurally similar. ∆E00 [56]

measures the perceptual dissimilarity between colors. So, a small value indicates the

colors are similar. As restoration of colors is a crucial aspect of image dehazing, we use

the average ∆E00 to measure how much the colors are restored to their original state.

The quantitative results obtained on the three above mentioned metrics are reported in

Table 2.2. We see the results of Fattal [22] is always leading with a significant margin

mainly because the environmental illumination is supplied manually. The method of He

et al. [28] fails in most of the cases because it has not been able to estimate A properly.

Our method performs better than the method of He et al. [28] as we are estimating the

Â from all parts of the image.

2.4.2 Qualitative Results

For qualitative evaluation of our method we have used both synthetic and real world

hazy images. The four synthetic images on which we show the results are the part of

the images that we have utilized for quantitative evaluation. The comparative results
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(a) Input (b) Fattal [22] (c) He et al. [28] (d) Our (e) Ground Truth

Figure 2.6: Visual comparison of the results on four synthetic images: church, couch, flower2, and
lawn1.

are given in figure 2.6. The results reflect what we have already seen in the quantitative

scores. The method of Fattal [22] performs the best. The method of He et al. [28]

performs the worst. It could not clear the color introduced by the haze. A blueish tint

remains in all the images. Our method is not as good as the Fattal’s method, but it

performs well in many cases (e.g. flower2 ).

For comparing the performance on real-world hazy images, we have used five images:

four benchmark images (figure 2.8) and one obtained from Wikimedia Commons3 (fig-

ure 2.7). We see that the results obtained by Fattal has high contrast which may not

always be visually pleasing. He et al. [28] has not been able to clear the haze in all

the cases. The sky is not handled properly by our method in the first two images of

figure 2.8 (dubai and florence); the noise has been amplified. The colors appear much

more soothing in the results obtained by our method especially in the last two images

(tiananmen and ny12 ). Fig. 2.7 shows an image where the intensity of environmental

illumination varies within the scene, because sunlight is dominating the illumination.

Here we see that he He et al. [28] has completely failed to clear the haze; Whereas our

method is able to clear the haze, handling the variation in the sunlight within the scene.

The results of figure 2.7 shows a case of varying environmental illumination where not

all parts of the image is receiving the same amount of light. This has been very well

3“Oberfallenberg4” by böhringer friedrich - Own work. Licensed under CC BY-SA 2.5 via Wikimedia
Commons
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Figure 2.7: (from left to right) Input image, result of He et al. [28] and our method.

tackled by our method other than the ‘god-rays’ that are visible in the output of our

method. Although the variation in illumination has been handled successfully, mainly

in the top of the image some of the rays are visible. The estimate of color line using

RANSAC becomes error prone if the patch being considered is smooth. The top of

the image, where the ‘god-rays’ are visible, appears to be smooth because the airlight

brightness in the area is oversaturated and no trace of obscured reflectance is available.

As a result the color line is not estimated at those places and the transmittance is

interpolated from the near-by locations. For this reason our method is not able to detect

variations in those regions; while the variations present at other places of the image has

been handled successfully. Another factor is that the color of the rays are different from

the color of the airlight. So, those are not considered to be a part of the haze.

2.5 Summary

In this chapter we have proposed an image dehazing method using a relaxed haze image

formation model. We use the color line model to estimate color line direction Â from

multiple patches of the image, then we estimate the contribution of airlight in each patch.

We interpolate airlight magnitude at pixels where the estimates are unreliable. Then

the image forming equation is used to recover haze free image. Here we have estimated

the airlight contribution (a(x)Â) at each patch but not the scene transmittance t(x).

So, unlike other methods we do not compute the depth map. Our method assumes that

within an image, Â is constant but the magnitude of airlight varies. So, our method may

fail to give satisfactory results where this is violated, e.g. nighttime haze images. We

discuss this problem next.
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(a) Input (b) Fattal [22] (c) He et al. [28] (d) Our

Figure 2.8: Visual comparison of results on dubai, florence, herzeliya, tiananmen, and ny12 image.
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Chapter 3

Variable environmental illumination

intensity and color

In the previous chapter we have considered the situations where only the intensity

of environmental illumination varies within the scene but its color remains the same,

and modified the imaging model accordingly. As said before, that model can’t handle

variations in color of the illumination within the scene, e.g. in the images taken during

the night when artificial lights are the main illuminants. However, light undergoes the

same change under foggy environment at night as it is in day time. The only change that

occurs when we move from day-time imaging to night-time imaging is that instead of

the sun we have artificial lights as illuminants. These artificial lights may not have the

same color or the same intensity. So, the assumption of constant A (or Â) fails in this

situation. Therefore to dehaze night-time images one common approach is to modify the

atmospheric scattering model to the following form [67].

I(x) = J(x)t(x) + (1 − t(x))A(x). (3.1)

Put it simply, the constant A is relaxed to A(x) to account for the spatially varying

illumination (both intensity and colour). Although this relaxed model is being used for

dehazing night-time images, this can also be used to dehaze day-time images. The model

used for day-time imaging (equation 1.6) is just a special case of this model (equation 3.1).

Therefore using this relaxed model (equation 3.1) it is possible to dehaze both day-time

and night-time images. Usually, image dehazing methods focus on dehazing either

day-time or night-time images. So day-time image dehazing methods fail on night-time

images, and night-time image dehazing methods fail on day-time images (figure 3.1). In

this chapter we propose a method that can dehaze both day-time and night-time images.

In fact, this method extends the method proposed in the previous chapter so that it

also works for night-time hazy images. Here the basic approach remains the same, only

the method of estimating the environmental illumination is changed to account for the
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(a) Input (b) He et al. [28] (c) Li et al. [36]

Figure 3.1: Day time dehazing methods [28] works well for daytime images, but does not work
satisfactorily in night time images. Whereas night-time dehazing methods ([36]) works
well for night-time images, but fails to work properly for daytime images.

relaxation made to the imaging model (equation 3.1). The method being proposed here is

also based on the color line model and applies the same principle to compute the airlight

component. That is, as before, for a patch of a natural image we may get a line formed

by the RGB vectors of the patch and the line passes through the origin of the RGB-space.

For a hazy image this line gets shifted in the direction of Â. But, this has two inherent

assumptions.

• All the pixels of the patch are affected by the same amount of haze.

• The color of environmental illumination (Â) incident on the patch is same for all

of its pixels.

The first assumption holds if the patch is sufficiently small so that it does not contain

depth discontinuity. The second assumption did not have any effect in the previous

method, because we have only tackled the case where Â remains constant throughout

the image. But in the relaxed model we are considering here, A varies spatially. So, we

need to make also the second assumption. Since illumination varies smoothly within the

scene, this holds if the patch size is sufficiently small. So in addition to estimating the

color line from the patches, we have to estimate the A it got affected with. For that we

decompose the relaxed model (equation 3.1) to the following form similar to what is done
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in the previous chapter.

I(x) = J(x)t(x) + (1 − t(x))m(x)Â(x), (3.2)

= J(x)t(x) + a(x)Â(x). (3.3)

That is, A(x) is decomposed into its magnitude m(x) and direction Â(x) both of which

are space variant. We denote the airlight component with a(x). We first estimate Â(x)

and a(x) from patches, and then I(x) at each pixel in order to recover the dehazed image.

3.1 Proposed Method

The method we propose here is based on the same principle as the previous method

[see Chapter 2]. That is why the five main steps remain almost the same as stated

before. Only a few of them are modified to account for the space-variant environmental

illumination. So, the set of updated steps is as follows.

1. Color line and patch plane estimation: We start with estimating the color

line from patches, as the rest of the steps hinges on this estimation. Moreover, we

estimate the patch planes (i.e. their normals) which are required for estimating the

Â’s.

2. Estimation of Â’s: To estimate the amount of shift of the color line, we first

need to know the direction along which it got shifted (here Â). Since under the

relaxed model (equation 3.1) the Â can vary spatially, different patches get affected

by different Â’s. So, in this step for each patch we estimate the corresponding Â,

and this association between Â and the patch is maintained through out.

3. Estimation of airlight component (a(x)): Once we have the color line and Â

for a patch, we estimate the shift of the color line in the direction of Â to get the

airlight component of that patch.

4. Aggregation and Interpolation of estimated A’s and a(x): The assumptions,

under which the concept of color line holds, may not be valid for all the patches. So,

we don’t use the estimates (of both Â and a(x)) obtained at those patches where

the assumptions can potentially fail. But, for image dehazing, we have to have

Â and a(x)) at those places. So, instead of using unreliable estimated values, we

interpolate the values at those patches (or pixels) based on neighbouring estimates.

5. Haze free image recovery: Once we have Â and a(x)) for all the patches we

can recover the haze-free image by applying the imaging model (equation 3.2).
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In the following subsections we describe each of the steps. Since steps 1, 3, and 5 remain

almost the same, we describe them very briefly.

3.1.1 Color line and patch plane estimation

We want to estimate the color line from the patches. So, we first divide the image into

patches of size ω × ω with 50% overlap. Then on the points in RGB space due to pixels

of each patch we apply RANSAC to fit a line. Here also we compute the normal (n̂)

(figure 3.2) to the patch plane (the plane containing this color line and the origin). We

consider the equation of the line to be in the following form

L = ρD + P0, (3.4)

and estimate its parameters and the normal to the patch plane as follows.

P0 = I1, (3.5)

D =
I2 − I1

||I2 − I1||
, (3.6)

n̂ =
I1 × I2

||I1 × I2||
. (3.7)

Here I1 and I2 are two points on the fitted line as estimated by RANSAC. Now the fitted

line may be wrong or may not follow the properties we assume for the color line. So, the

estimates need to be validated. For validation we do the following.

• The fitted line should have a high number (> θrω2) of inliers. Otherwise the fit is

potentially wrong.

• The D denotes a color in the RGB space. So, all of the components of D should

be positive.

• As per the assumption of color line, a patch should not contain more than one

object. Therefore, sum pf gradient magnitude over the patch should be low (< θg).

• If the fitted line is close (< d0) to the origin then the effect of haze in this patch

is quite less. So, the normal computed from this patch may not be reliable and,

hence, should not be used for computing the Â.

• If the colors don’t spread out well in the RGB space, the estimated line becomes

sensitive to noise. So to avoid this, the standard deviation of the inlier points

should be high (> θs) in the direction of D.
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R
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I1(x)

I2(x)Â

n̂

Figure 3.2: The plane containing the color line and origin will also contain the I(x)’s and Â.

3.1.2 Estimation of A’s

To compute the airlight component we require, apart from the color line, the Â at each

patch. We know that the color line gets shifted in the direction of Â by the amount

given by the airlight component. So, the plane containing the fitted color line and the

origin also contains Â. If we have two patches such that they are affected by the same Â

and their patch planes are not parallel, then this Â lies in the intersection of these two

patch planes. But under our relaxed model each pixel can have a different Â. On the

other hand, we have assumed Â to be constant in a patch. So, these two assumptions

together imply that Â may differ across patches, but not within a patch. Therefore, we

can’t just take two arbitrary patches and intersect their patch planes to get an Â. The

patches may not be affected by the same Â. But we don’t know the Â’s or the patches

they affect; we are trying to estimate them. So, the only way out is estimating both the

patch plane and corresponding Â at the same time.

We know that a Â lies on the intersection of the patch planes corresponding to the

patches it affects. So we can say that this Â is perpendicular to the normals of those

patch planes. If we consider the normals as positional vectors in the RGB space, we get

some points in the RGB space corresponding to the normals. Since we are trying to find

a vector that is perpendicular to the normals, this can be achieved by a fitting a plane to

those points and finding the normal of the fitted plane (figure 3.3). But we don’t know

the number of distinct illuminants in the scene and therefore the number of planes to fit.

So, basically we want to fit multiple, but unknown number of planes. For this we utilize

a Hough Transform based technique, because of its simplicity. Here each normal of the

patch plane (now a point in the RGB space) votes for the plane it can reside in. The

planes with high number of votes denote a good fit of the plane. Let’s say the plane we

are trying to fit to the normal of the patch planes is given by the following equation.

nxa + nyb + nzc = 0. (3.8)
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Figure 3.3: Normals obtained from image patches plotted as points in RGB space (colored circles)
and their associated Â. Each color denotes a group of n̂’s and the corresponding Â
is also colored the same. Left figure denotes the case when number of illuminants is
only one. In the right figure the number of illuminants is more than one. So, we get
many groups of the normals and their associated Â.

Here [nx, ny, nz]
T = n̂ and [a, b, c]T denote the normal to this plane (equation 3.8).

Therefore this [a, b, c]T gives our Â. Using different values of a, b and c, we can obtain

any point, therefore a vector, in the RGB space. But we are interested in only the

direction of the environmental illumination, not its magnitude. This information can be

utilized to reduce the number of parameters of the plane we are trying to fit (equation 3.8).

In 3D polar coordinate system a point is denoted by (r, θ, φ), where r denote the distance

of the point from the origin and θ and φ denote the angles from the reference directions.

Since we are trying to find a unit vector in the RGB space to get Â, we can say in polar

coordinate system we are trying to find points of the following form (1, θ, φ) with θ and φ

ranging from 0◦ to 90◦. In the Cartesian coordinate its equivalent points are of the form

(cos θ sin φ, sin θ sin φ, cos φ). So, instead we fit a plane whose equation has the following

form.

nx cos θ sin φ + ny sin θ sin φ + nz cos φ = 0. (3.9)

The fitting is done using the technique of Hough Transform. Each of the n̂ cast a vote

for the combination of θ and φ such that equation 3.9 gets satisfied. In the computed

Hough space a cell with high count denotes a good fit of the plane. We know that

number of distinct Â’s in the image can be more than one. So, taking only the cell

with highest count won’t suffice. We need to consider all good fits. But considering

neighboring cells with high count would generate spurious Â’s having similar values. So,

in the computed Hough space we find local maximas that have count above a threshold

(tH) to get prospective Â’s. To make this computation more robust we discard some

patches based on its dark channel value [28], because dark channel value gives a rough
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estimate of the amount of haze present in a patch. The dark channel value of a patch Ωi

is computed as

DH(Ωi) = min
x∈Ωi

�

min
c∈{R,G,B}

Ic(x)
�

. (3.10)

A patch (Ωi) is kept if the following condition is satisfied

DH(Ωi) > θD × max
Ωj

DH(Ωj), (3.11)

where 0 < θD < 1. From the obtained Â’s we get the patches affected by it using the

information of the patches that voted for the selected Â. Now two problems arise if we

use only the patches that voted for the selected maximas (i.e. Â’s). First, one patch

may vote for more than one of the selected Â’s. Second, a patch may not vote for any

of the selected Â’s. So instead each patch is assigned to one of the Â’s based on its

cosine distance (| cos ψ| to be precise) from the corresponding patch plane’s normal (n̂).

We associate a patch to that Â with which the distance is minimum. Then we can

group patches based on its associated Â. We update Â of each group by computing the

intersection of the patch planes of the patches in that group. Similar to our previous

method, the eigenvector corresponding to the minimum eigenvalue of
�

i n̂in̂
T
i is used as

the solution to the intersection. Now it may happen that for some groups the computed

eigenvector has some of its components negative. But being a vector in the RGB space,

we know all the components of Â should be positive. So, the eigenvectors with negative

component are discarded and the normals belonging to the group of the discarded

eigenvector, is assigned to one of the remaining Â based on the angular distance as done

previously. Then we update the Â of the existing groups. This process is repeated till all

the computed Â’s is a valid RGB vector.

3.1.3 Estimating airlight component (a(x))

In the previous steps we have computed from the patches their associated color line and

Â. We can now compute the airlight component by finding the amount of shift of the

color line from the origin in the direction of Â. Similar to our previous method, this is

obtained by minimizing the following error.

El(ρ, δ) = �P0 + ρD − δÂ�2. (3.12)

That is we try to shift the line (P0 + ρD) in the direction of −Â, so that the line reaches

as close to the origin as possible. Here δ provides the amount by which the color line needs

to be shifted. Therefore we get the airlight component. In some specific situations this
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minimization may not give the desired value. So the estimated δ needs to be validated.

Above mentioned situations and corresponding tests are briefly discussed below.

• If the color of the patch is similar to the environmental illumination, this shift

computation fails. In general as the angle between the Â and the color line reduces,

this shift computation becomes more sensitive to noise. So, we use the estimated

shift in subsequent computations if the angle between the fitted line and the Â is

sufficiently large (> θE).

• The minimized value of equation 3.12 denotes how far the line is from the origin

after being shifted in the direction of −Â. If this value is large that means the line

is far from the origin even after being shifted. This estimate is likely to be wrong.

So, we accept the estimate of shift as correct, if the value of equation 3.12 after

minimization is less than Eθ.

• We know that the estimated airlight component (a(x)) should have a value between

0 and
√

3. Naturally, if the estimated shift is beyond this range, then it is erroneous.

But in practice the upper bound of
√

3 allows overestimation of a(x) in some

patches. So, the smallest intensity that is present in the patch is used as the upper

limit.

3.1.4 Aggregation and Interpolation of estimated A’s and a(x)

In the steps described till now we have worked on patches extracted from the image with

50% overlap. So, quite naturally for many pixels more than one shift value and Â are

computed. So they need to be aggregated. We retain the maximum value of the shift

and the corresponding Â as the aggregated data for a pixel. However, during estimation

the estimated values are validated, and as a result, some estimates are discarded which

are potentially incorrect. So, there are some pixels without any estimate of Â and a(x).

Since these values are required at every pixel to dehaze the input image, we need to

interpolate the values at those pixels before applying the dehazing transformation. Here

we need to interpolate bot the quantities: Â and a(x), or sometimes a(x) alone. Since,

each Â is 3 × 1 vector, it may not be interpolated it directly. To each of the Â’s a label

is assigned and their influence at all the pixels is computed. The influence of each label

is obtained by minimizing the following function.

EA(F ) = (F − P )T (F − P ) +
λ

2
F T LF. (3.13)
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Figure 3.4: (From left to right) Input image, its airlight removed image and corresponding
enhanced image.

where F is a matrix of size n × k, and n k denote the total number of pixels in the image

and the number of obtained Â’s, respectively. F (i, j) denotes the influence of j-th Â

on i-th pixel. P is also a n × k matrix with P (i, j) = 1 if j-th Â is assigned to i-th

pixel during aggregation; otherwise it is 0. The scalar λ controls the smoothness of the

influence being compute here. L is the laplacian matrix of the graph constructed from

the given image considering each pixel as a vertex and 1/||I(x) − I(y)||2 as the weight of

the edge between pixel x and pixel y. 4-connected neighborhood is considered here. The

final interpolated Â(x) is a normalized weighted sum of the Â’s where the weights are

the influences obtained by minimizing equation 3.13.

The interpolation of a(x) is done similar to our previous method by minimizing the

following function.

Ψ(a) = (a − ã)T
Σ(a − ã) + αaT Lga + βbT a. (3.14)

where ã is the estimated airlight component after aggregation and a is its interpolated

value, both in the vector form (n × 1). ã is zero at the positions where the estimate is

discarded. Σ is a diagonal matrix with its diagonal entries containing the error variance

of a(x) where it is estimated and 0 at other places. Lg is a laplacian matrix constructed

similarly as before, but with a larger neighborhood. Each element of b is 1/||I(x)||. α

and β are scalars that controls the importance of the corresponding terms.

3.1.5 Haze free image recovery

By following the steps described till now, we have obtained Â’s and a(x) at each pixel.

So, we can compute the airlight of an image (a(x)Â(x)). Subtracting this from the

observed image we get airlight removed image.

Iā(x) = I(x) − a(x)Â(x). (3.15)
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This removes the color cast introduced by the haze, but also reduces the overall intensity

of the image (figure 3.4). For restoring the overall brightness of the image we need

to divide Iā(x) by t(x). But we can’t obtain t(x) from the computed airlight. So, we

enhance the contrast of the airlight removed image depending on the proportion of

original intensity removed from it when the airlight is removed. Let’s say the recovered

image is J�(x), and each color channel of it is computed as follows.

J �
c(x) =

Iā(x)

1 − Y (a(x)Â(x))
, where, c ∈ {R, G, B} (3.16)

Y (a(x)Â(x)) = 0.2989a(x)ÂR(x) + 0.5870a(x)ÂG(x) + 0.1140a(x)ÂB(x). (3.17)

Though this transformation works well for some images, its good performance can’t be

guaranteed. Sometimes the dehazed image turns out dark, and further enhancement

becomes necessary.

3.2 Experimental Settings

All the results that we have reported here have been generated using a MATLAB

implementation of the proposed method. The parameters have been kept at their default

values unless otherwise stated to generate the results. Their default values are reported

in Table 3.1. For fitting the color line, we have used the code of RANSAC as provided

by Peter Kovesi [33] while taking 0.02 as the inlier threshold. Patch size of 8 × 8 has

been used throughout the experiment. θD has been varied between 0.1 and 0.45. The

threshold used in the Hough space (tH) is taken to be 30% of the maximum Hough space

response. The step value parameter in the Hough space (hs) is taken to be 3◦. For α and

β, small values are used depending on the input image. Their typical values are 2 × 10−4

and 1 × 10−5 respectively.

Table 3.1: Default parameter values

θr θg d0 θE Eθ θs λ

0.4 0.06 0.0005 15◦ 0.05 0.006 1

3.3 Results

We have run our method on a variety of day-time and night-time images, since our

method works for both types of images. The image set includes benchmark images used
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for testing day-time and night-time dehazing methods. To evaluate the performance of

day-time dehazing we have used both synthetically generated hazy images with ground-

truth as well as real world hazy images. However, in case of night-time images, we

have used only real world hazy images for evaluating the performance of night-time

dehazing. We have compared our method with two day-time dehazing method [22, 28]

and also two night-time dehazing methods [67, 36]. The results of Fattal [22] have been

obtained from the author’s website1 while the results of Zhang et al. [67] and that of Li

et al. [36] are generated using the code provided by the respective authors keeping the

parameters at their default values. For generating the result of He et al. [28], we have

used our own implementation. To quantitatively measure the quality of results obtained

for synthetically generated hazy images, we have used three full reference metrics: PSNR,

SSIM [64] and ∆E00 [56]. The real world images have been evaluated only qualitatively.

3.3.1 Daytime Images

We have used the benchmark hazy images provided by Fattal [22] to evaluate the

dehazing performance on day-time images. This benchmark image set contains both

synthetic and real world hazy images. For the synthetic images we report both the

quantitative and qualitative results. The scores (PSNR, SSIM, ∆E00) obtained on the

synthetic images is reported in Table 3.2. Figure 3.5 shows the qualitative results on

a few of the synthetic images. The scores in Table 3.2 shows similar trend that we

have seen in the previous chapter. The results of Fattal [22] are always the best and

He et al. [28] performs comparatively well in a few cases only. Our current method has

improved considerably, specially in terms of ∆E00. This implies the estimate of the

color of environmental illumination (Â) is much more accurate. This can also be seen

in figure 3.5: a bluish tint is present in the outputs of the method of Chapter 2, but it

has been successfully neutralized by our current method. We have also included results

of night-time dehazing methods [67, 36] on these day-time images to show that they

perform poorly for such images. This is clearly seen in figure 3.5, where the colors are

saturated and the enhancement has introduced noise and artifacts in the image. These

attributes are not present in the results of any day-time dehazing methods.

Now if we turn our attention to the day-time real-world images, we see that the

methods perform similarly like they have performed on synthetic images (figure 3.6).

The results of Fattal [22] has the highest contrast but have a little bias towards yellow

tint in the dehazed images. The method of He et al. [28] has cleared the haze to some

extent, but it could not clear the color cast present in the image. Both of the night-time

1http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/results/
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Table 3.2: Quantitative Comparison on the images of Fattal’s dataset. The best results are bold
and the second best results are underlined. Note that in Fattal’s method only t(x) is
computed and A is manually provided.

Image
Fattal [22] He et al. [28] Our (ch2) Our

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 21.43 0.96 6.34 11.16 0.78 28.74 14.84 0.76 15.54 16.99 0.9 11.59
couch 20.8 0.9 6.71 18.4 0.86 13.89 16.08 0.78 16.11 16.23 0.78 15.84
dolls 21.29 0.77 6.1 19.73 0.85 10.65 15.5 0.77 17.61 13.64 0.8 18.14
flower1 30.01 0.98 3.91 14.1 0.88 23.26 16.8 0.89 13.86 19.27 0.89 11.19
flower2 31.94 0.99 2.92 14.37 0.86 20.94 17.02 0.85 13.92 21.93 0.9 7.79
lawn1 24.49 0.97 6.65 13.84 0.8 22.38 14.71 0.82 20.01 17.14 0.84 13.78
lawn2 24.94 0.97 6.46 11.2 0.74 29.32 14.52 0.83 20.23 15.79 0.8 15.9
mansion 26.96 0.97 4.04 17.45 0.87 19.35 17.49 0.85 16.62 19.65 0.84 9.2
moebius 19.01 0.9 10.61 12.66 0.78 26.7 15.85 0.86 17.46 18.72 0.86 12.59
raindeer 26.22 0.94 4.1 18.12 0.83 14.22 13.59 0.73 22.54 15.47 0.74 17.23
road1 25.74 0.96 5.24 12.95 0.8 26.11 14.16 0.84 20.78 15.91 0.78 14.45
road2 23.6 0.96 7.11 15.84 0.84 22.13 15.88 0.86 20.13 15.02 0.82 15.74

Average 24.7 0.94 5.85 14.98 0.82 21.47 15.54 0.82 17.9 17.15 0.83 13.62

(a) Input (b) Fattal
[22]

(c) He et al.
[28]

(d) Zhang et
al. [67]

(e) Li et al.
[36]

(f) Our (ch2) (g) Our (h) Ground
Truth

Figure 3.5: Visual comparison of the results on four synthetic images: church, couch, flower2, and
lawn1.
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(a) Input (b) Fattal
[22]

(c) He et al.
[28]

(d) Zhang et
al. [67]

(e) Li et al.
[36]

(f) Our (ch2) (g) Our

Figure 3.6: Visual comparison of results on dubai, florence, herzeliya, tiananmen, and ny12 image.

dehazing methods [67, 36] perform poorly. The images are over enhanced and the colors

are saturated. The current proposed method and the method proposed in the previous

chapter perform almost similarly as the present method is a general case of the previous

method, and both of them are equally competent to handle day-time images.

3.3.2 Night-time images

We have only qualitatively evaluated our results on night-time hazy images, since we

don’t have the ground truth of the night-time hazy images. Second, it is very difficult and

unrealistic too to synthesize night-time hazy images as that require set many parameters

heuristically. Here we present the results of our method for dehazing night-time images.

Our results are compared with that of night-time dehazing methods proposed by Zhang

et al. [67] and Li et al. [36]. We have also included the results of the day-time dehazing

method of He et al. [28] for comparison. This method, as it is exclusively for day-time

hazy images, does not work well for night-time hazy images. This can clearly be seen

in figure 3.7. The method of He et al. [28] is able to clear only the overall appearance

of haze. It cannot clear the local color cast due to artificial lighting. But both of the

night-time dehazing method is able to clear those features. In the results of Zhang et al.

[67] we see that the method is trying to enhance the brightness of the whole image,
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(a) Input (b) He et al. [28] (c) Zhang et al.
[67]

(d) Li et al. [36] (e) Our

Figure 3.7: Visual comparison of results on night-time images.

which makes the results look unnatural. The method proposed by Li et al. [36] controls

this enhancement a little better and successfully removes the glows around the lights.

However, it is not removed by our method as our model does not focus on the glow

around the artificial lights. In our method, we only remove the airlight and enhance the

image based on contrast intensification. Hence, the over enhancement does not occur.

3.4 Summary

We have proposed in this chapter a unified dehazing method that works for both night-

time and day-time images. This is achieved by using a relaxed haze imaging model

(equation 3.1) where traditional assumption of constant atmospheric light is relaxed

to a spatially variant one. We determine possible directions of the atmospheric light

vectors using color line and Hough transform. These directions are used to calculate

airlight component in each patch of the image. We have computed the airlight component

(a(x) = (1 − t(x))m(x)) as a whole, and explicit computation of t(x) is not attempted.

For this reason objects with low intensity and color similar to airlight becomes dark

after dehazing, and we employ contrast enhancement in the last phase of our method
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to overcome this problm. This contrast enhancement procedure idoes not guarantee to

work satisfactorily in all images. Apart from that, by discarding some patches and the

discretizing Hough space, some of the Â cannot be computed. Moreover, the computed

airlight at some pixels is not accurate one due to the interpolation. So, in this case the

input image may not be dehazed properly. Another major problem is that we have used

around 10 parameters in the method as thresholds and weights. Their default values

work well in most of the images, but in some images they perform poorly. Manipulation

of the parameters is not straight forward. Decreasing the thresholds allow estimates to be

computed in more patches, consequently this may potentially allow incorrect estimates

of the airlight component. This is an inherent problem of the color line based method, so

exploration of other haze related features becomes necessary. So, in the next chapter we

explore the use of Convolutional Neural Networks in this regard.
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Chapter 4

Supervised estimation of transmittance

and environmental illumination using

CNN

Convolutional neural network (CNN) is a class of neural network that uses convolution

operation for feature extraction. Convolution with particular kernels (e.g. Gaussian,

Laplacian, Sobel) has traditionally been used for extracting features from images or

signals in general. Instead of using predefined kernels, in a CNN the network learns

the convolution kernels from the data so that the network outputs the desired target

values. Additionally, when these convolution operations are stacked together, the network

effectively learns a hierarchy of features. These two characteristics have proven to be

very effective in various computer vision and image processing tasks like classification

[34, 29], segmentation [38], object detection [51] and many more. This has motivated

its use in the domain of image dehazing. However, the main hurdle of using a CNN in

the problem of dehazing is the lack of training data. It is quite hard, if not impossible,

to obtain the corresponding haze-free image (precisely pixel-level registered) of an hazy

image. So, the common route is to use images with known depth maps and adding haze

synthetically to those. So we have both haze-free image (original) and corresponding

hazy image (synthesize). This strategy has been applied to estimate scene transmittance

from images. But not much attention has been given to estimate the environmental

illumination barring a few methods such as [49, 59]. Note that the quality of dehazed

image depends on the accuracy of estimated environmental illumination [59]. Due to

this interdependence of transmittance and environmental illumination, in this chapter

we propose to estimate them jointly. For that we work with the basic version of the

atmospheric scattering model, assuming space-invariant environmental illumination, that

is

I(x) = J(x)t(x) + A(1 − t(x)), (4.1)

47



Chapter 4 Supervised estimation of transmittance and environmental illumination using CNN

 

Feature maps:8@15x15 
Kernel size: 1x1
Activation: Relu

 

Feature maps:8@12x12 
Kernel size: 5x5
Activation: Relu

Feature maps:8@9x9 

Kernel size: 3x3

Activation: Relu

Feature maps:8@7x7 

Kernel size: 3x3

Activation: Relu

Feature maps:8@5x5 

Kernel size: 3x3

Activation: Relu

Feature maps: 8@15x15 

Kernel size: 1x1

Activation: Relu

Feature maps: 8@15x15 

Kernel size: 1x1

Activation: Relu

Feature maps: 8@9x9 

Kernel size: 7x7 

Activation: Relu

Feature maps: 16@5x5 

Kernel size: 5x5

Activation: Relu

Feature maps: 8@9x9 

Kernel size: 7x7 

Activation: Relu

Feature maps: 16@5x5 

Kernel size: 5x5

Activation: Relu Feature maps: 8@3x3 

Kernel size: 3x3

Activation: Relu

Dense(40)

Activation: Relu

 

 

Flatten

Feature maps: 8@3x3 

Kernel size: 3x3

Activation: Relu

 

Concatenation

Concatenation

Dense(4)

Activation: Relu

 

 

Figure 4.1: The architecture of our joint t-A estimator network

t(x) = e−βd(x). (4.2)

Where I(x) and J(x) are the observed hazy image and the clear scene radiance, A is the

global environmental illumination, and t(x) is the scene transmittance. Assuming that

the haze is homogeneous, we can express t(x) by equation 4.2, where β is the scattering

coefficient and d(x) is the scene depth. Since recovering the scene radiance from the input

hazy image is ill-posed, we make a simplifying assumption that has also been utilized

in the color line based dehazing. We assume t to be constant within a patch, as depth

variation becomes negligible if the patch is sufficiently small. This does not hold true for

patches with depth discontinuities and using those patches results in wrong estimate. So,

these patches are not considered when estimating the haze parameters. For each eligible

image patch, we try to estimate both t and A using the following equation.

I(x) = J(x)t + (1 − t)A. (4.3)

Moreover, if a patch is smooth then estimation of its transmittance and environmental

illumination becomes quite hard. Because in a smooth patch, where all pixel values are

same, it becomes almost impossible to discriminate whether the pixel values are due to

haze or object radiance. So, such patches are also not considered. Now, to estimate the

haze parameters (t and A) from patches, we learn the mapping from I(x)’s of a patch to

a t and A using a CNN. So, given a patch this CNN estimates both t and A. Although

we obtain from the CNN a specific A for each patch, we use an aggregated global A

while dehazing the input image.

48



4.1 Joint t-A Estimator Network

4.1 Joint t-A Estimator Network

We are trying to estimate both t and A from patches using a CNN. So, we need to

extract both coarse and fine scale features from a patch, because the transmittance

depends on fine scale features while A is comparatively a more coarse quantity. We

estimate them jointly maintaining their dependency. This suggest the architecture of

our model (figure 4.1) for computing features in three different paths. The extracted

features are then concatenated and fed to the dense layers for the joint estimation of t

and A. The convolution layers on the top two paths have bigger convolution kernels

while the bottom one uses small kernels. The output feature maps of the bottom two

paths are concatenated and combined using convolution. The output of the top most

path is then concatenated with the combined output of the two lower paths and flattened.

This flattened feature map is further processed using a dense layer of neurons before

producing the output through 4 neurons (1 for t and 3 for A). ReLU is used as the

activation function throughout the network.

4.2 Dehazing Method

The proposed method consists the following steps in order to dehaze a given image.

1. Estimation of t and A from patches: In the very first step the input image is

divided into overlapping patches. Then each patch is fed to the estimator network

to estimate the corresponding haze parameters.

2. Aggregation and interpolation of estimate: Since overlapping patches are

used, a pixel may get multiple estimates due to its belongingness to various patches.

These estimates are aggregated. On the other hand, some patches are discarded

during the estimation, some pixels may not get any estimate. The estimate at these

pixels is interpolated based on estimates at neighbouring pixels.

3. Recovering the scene radiance: After estimating the necessary haze parameters

at all pixels, we just invert the haze model to obtain the dehazed image.

Now, these steps are discussed in details in the following subsections.

4.2.1 Estimation of t and A from Patches

Input image is divided into 15 × 15 patches with a stride of 5 pixels both horizontally

and vertically. As mentioned earlier, among these patches, we process only the patches

that does not contain any edge and has intensity variance more than a threshold. All the
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patches that are selected are fed to our joint estimator network to obtain t and A for the

patches. The t obtained for a patch is taken to be transmittance for all the pixels in that

patch.

4.2.2 Aggregation and Interpolation of estimate

In the previous step for estimating t and A, we have considered overlapping patches. So,

multiple values of t and A may be assigned to a pixel if it belongs to multiple patches.

For multiple values of transmittance t, we aggregate these to a single value per pixel by

taking their average. For aggregating the environmental illumination, we take average of

all the A’s obtained from different patches to get the global A.

On the other hand, since we discard many patches, even after aggregation it is quite

likely that at some pixels t is not available. Note that we require transmittance value at

each pixel to dehaze an image. So, we interpolate the t values at those places to create

complete transmittance map. Similar to the previous chapters this is done by minimizing

the following function which is inspired from the method of Fattal [22].

ψ(t(x)) =
�

x

s(x)(t(x) − t̃(x))2 + λ
�

x

�

y∈N(x)

t(x) − t(y)2

||I(x) − I(y)||2
. (4.4)

Here t̃(x) denotes existing estimate of scene transmittance. t(x) is the interpolated

transmittance that we are trying to obtain. s(x) is either 1 or 0 depending on whether

an estimate of transmittance exists at pixel x or not. N(x) denotes the four-connected

neighborhood of pixel x. λ is a scalar controlling the smoothness of the interpolated

transmittance. After the minimization we get a transmittance value at all the pixels.

4.2.3 Recovering the scene radiance

From the above mentioned steps, we obtain t(x) at each pixel and A for the whole image.

So, we can compute the scene radiance (J(x)) corresponding to the input hazy image

(I(x)) as follows:

J(x) = A +
I(x) − A

max {0.1, t(x)}
(4.5)

In the denominator the value of t is bounded from below to avoid arbitrary large values

in the output (J(x)).
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4.3 Experimental Details

4.3.1 Training Data Generation

We need hazy patches and their corresponding haze parameter values (t and A) to train

our joint estimator network. But acquiring that data from natural scenes is difficult in

practice. So, this data is generated synthetically by adding haze to haze-free images. For

that purpose we have used NYU Depth Dataset [58]. Hazy images are generated from

the clean haze-free images by applying the atmospheric scattering model (equation 4.1

and equation 4.2) with different values of environmental illumination (A) and scattering

coefficient (β). The value of the transmittance t at pixel x depends both on the depth

at x and as well as β (equation 4.2). Since the dataset we are using to generate the

hazy images contains indoor images only, the variation of depth is not in the same

order of magnitude as outdoor images. But we only need to estimate transmittance

from patches, not the actual depth. So, we can compensate the lack of proper depth

variation by varying β between 0.5 and 1. This ensures that in the training data we have

transmittance values that encompasses the whole range (figure 4.2a). The values of A

has been chosen in similar way so that the training data contains all possible values of A

(figure 4.2b, figure 4.2c, figure 4.2d). After generating the hazy images, 15 × 15 patches

are extracted out of them while taking a stride of 5 pixels. To ensure that the network

gets only proper information as the training data, we discard a portion of the generated

patches. As discussed earlier, estimating the parameters from the smooth patches is

difficult. So, if the variance of the intensities of a patch lies below a threshold, that patch

is discarded. In some of the depth maps, the depth information is not present in all the

pixels. We discard patches with missing depth information. After these pre-processing

we get around six hundred thousand patches as the training data.

4.3.2 Experimental Settings

The results that we report here are generated by keeping the parameters fixed to the

mentioned values. Our joint t-A estimator network has been trained by minimizing the

mean squared error between the estimated t and A and the corresponding ground truth.

The network is trained using the Adadelta optimizer with a batch size of 1000. The

network is trained for 90 epochs and it takes approximately 10 hours on a computer with

a 2.4 GHz CPU.
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Figure 4.2: Histogram of the transmittance values and each of the RGB channel of environmental
illumination present in the training data.

4.4 Results

The method we propose here works with the assumption of a constant global A. So, this

method is not likely to work with night time images. For this reason we have applied

this method on daytime images only. In this experiment we have used the synthetic hazy

image dataset by Fattal [22] and also some real world hazy images. For the synthetic

images we have used metrics like PSNR, SSIM, and ∆E00 to quantitatively evaluate

the results. We have compared our results with that of the method by Fattal [22], He

et al. [28] and Ren et al. [53] as well as with the method proposed in the previous

chapter. Among these works, the method of Ren et al. [53] is based a CNN that estimates

scene transmittance from the given image. The environmental illumination is computed

separately from the estimated transmittance. The results of Fattal [22] are obtained

from the author’s website1. The results of He et al. [28] are generated using our own

implementation of the method. For generating the results of the method of Ren et al.

[53], we have executed the code provided by the authors’ with its default setting.

1http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/results/
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Table 4.1: Quantitative Comparison on the images of Fattal’s dataset. High PSNR and SSIM
indicates better results, while it is the opposite for ∆E00. The best results are bold
and the second best results are underlined. Note that in Fattal’s method only t(x) is
computed and A is manually provided.

Image
Fattal [22] He et al. [28] Ren et al. [53] ch3 Our

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 21.43 0.96 6.34 11.16 0.78 28.74 14.17 0.87 20.25 16.99 0.9 11.59 17.17 0.84 14.68
couch 20.8 0.9 6.71 18.4 0.86 13.89 17.99 0.88 12.91 16.23 0.78 15.84 19.96 0.79 10
dolls 21.29 0.77 6.1 19.73 0.85 10.65 16.93 0.86 12.37 13.64 0.8 18.14 12.55 0.82 16.6
flower1 30.01 0.98 3.91 14.1 0.88 23.26 9.08 0.43 24.64 19.27 0.89 11.19 16.3 0.8 20.87
flower2 31.94 0.99 2.92 14.37 0.86 20.94 10.81 0.6 22.45 21.93 0.9 7.79 18.08 0.82 16.43
lawn1 24.49 0.97 6.65 13.84 0.8 22.38 14.37 0.83 21 17.14 0.84 13.78 14.26 0.84 24.82
lawn2 24.94 0.97 6.46 11.2 0.74 29.32 13.29 0.77 22.27 15.79 0.8 15.9 14.64 0.82 24.84
mansion 26.96 0.97 4.04 17.45 0.87 19.35 17.69 0.89 17.52 19.65 0.84 9.2 19.64 0.82 14.5
moebius 19.01 0.9 10.61 12.66 0.78 26.7 16.36 0.9 19.85 18.72 0.86 12.59 16.84 0.82 17
raindeer 26.22 0.94 4.1 18.12 0.83 14.22 16.82 0.81 15.49 15.47 0.74 17.23 17.92 0.74 14.85
road1 25.74 0.96 5.24 12.95 0.8 26.11 14.11 0.84 22.22 15.91 0.78 14.45 16.83 0.81 22.51
road2 23.6 0.96 7.11 15.84 0.84 22.13 16.45 0.88 20.17 15.02 0.82 15.74 18.2 0.86 19.45

Average 24.7 0.94 5.85 14.98 0.82 21.47 14.84 0.8 19.26 17.15 0.83 13.62 16.86 0.82 18.05

4.4.1 Quantitative Results

We have quantitatively evaluated the results obtained by the proposed method using the

synthetic hazy image dataset of Fattal [22]. The results are reported in Table 4.1. From

that it is seen the results of Fattal [22] is still at the top. The method of Ren et al. [53]

performs a litter better than He et al. [28] in terms of SSIM and ∆E00 in many images.

But its ∆E00 values are higher (a low value is better) in many images compared to both

of our proposed methods. The table also shows this method performs comparably to our

color line based method without the need of large number of user tunable parameters.

This shows the potential of CNNs in this task. But it is observed that the value of ∆E00

varies quite a bit across images. This behavior is analyzed in Section 4.5.

4.4.2 Qualitative Results

For qualitative evaluation, the results on both synthetic and real world images are used.

However, only a subset of results on synthetic images is shown here as the qualitative

results. From the figures containing results of synthetic images (figure 4.3), it is seen that

the results reflect what is already seen in the quantitative results (Table 4.1). The result

of Fattal [22] is the cleanest. The method of Ren et al. [53] has performed a little better

in removing haze from the images, but it could not neutralize the color cast introduced

by the haze. Both of our proposed methods are able to clear the color cast, but the

currently proposed method has performed a little poorly in this regard. In terms of

removing the haze, the currently proposed method has performed comparably.

Among the results of real-world images figure 4.4, we see that the output of Fattal

[22] and our method proposed in the previous chapter is the cleanest in most of the

53



Chapter 4 Supervised estimation of transmittance and environmental illumination using CNN

(a) Input (b) Fattal
[22]

(c) He et al.
[28]

(d) Ren et al.
[53]

(e) Our (ch3) (f) Our (g) Ground
Truth

Figure 4.3: Visual comparison of the results on four synthetic images: church, couch, flower2, and
lawn1.

images. But the output obtained by the method of Fattal [22] is a little yellowish, and

the outputs due to our previously proposed method are a bit dark. He et al. [28] and

Ren et al. [53] has performed more of less similarly for all the images. The proposed

method has performed well in some of the images (e.g. dubai, florence, and herzeliya).

However, it fails to remove the haze from the others. This is mostly due to improper

estimation of environmental illumination. Note that the proposed method works without

requiring any post-processing step that are required by our previous method.

4.5 Discussion

In the result section it is seen that our proposed network performs well in terms of PSNR

and SSIM but falls short in ∆E00. That means the method has failed to restore the

original colors of the image, although it is able to uncover the structures. According

to the imaging model (equation 4.1), the color cast during haze is introduced by the

environmental illumination. So, an incorrect estimate of this quantity results in color shift

of the output image (figure 4.5). The proposed method averages all the A’s estimated

from the patches to obtain the global A. If some of the A’s estimated from the patches

is wrong, there is a possibility that the estimated global A would be wrong. To avoid

this, we assign the estimated A for a patch to all of its pixels and average A at a pixel

if it receives more than one estimate. That means we aggregate A in the same way as

done for transmittance. From figure 4.5 it is seen that the estimated A is varying quite

a bit within the image depending on the content of the patch. For example, the network

has estimated A to be red near the flag and a little greenish near the tree. Since the
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(a) Input (b) Fattal [22] (c) He et al. [28] (d) Ren et al.
[53]

(e) Our (ch3) (f) Our

Figure 4.4: Visual comparison of results on dubai, florence, herzeliya, tiananmen, and ny12 image.
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(a) Input (b) Transmittance (c) Patch aggregated A (d) Output

Figure 4.5: Input hazy image, estimated haze parameters and the output. The estimated A’s are
aggregated and shown as image. It is observed that A is sensitive to patch content
and at times taken as the average. Different parts of the image reports different A’s.

network is jointly estimating both t and A, the wrong estimate of A has affected the

estimate of t. As it can be seen that in the output the haze is not fully removed. Since

A is more of a global quantity it should be estimated by looking at larger area of the

image as far as possible.

4.6 Summary

Unlike previous chapters, here a method is proposed to estimate the scene transmittance

and environmental illumination jointly from image patches using a CNN. The estimated

values are then utilized to dehaze the given image. The results show the effectiveness of a

CNN trained to estimate t(x) and A while requiring only a few user tunable parameters to

obtain obtain the final result. However, we note that trying to estimate the environmental

illumination from small patches may produce wrong estimate at times and thereby affects

the quality of the output. The network is also biased towards the average color of the

patch as the estimated A if there is not much color variety in the patch. Working with

bigger patches may solve this problem as the bigger patch is likely to contain diverse

set of objects. But, in bigger patches the assumption of constant transmittance fails as

the variation of depth may not remain insignificant. So, we need to estimate a spatially

varying transmittance in this case.

We have used an indoor image dataset (NYU v2) to synthetically generate the training

data. Indoor and outdoor images usually have different statistics. When using small

patches this difference does not have much effect (as seen from the results), but when

bigger patches are used difference becomes significant. In the next chapter we try to

tackle these issues.
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Chapter 5

Supervised estimation of transmittance

and airlight using FCN

In the previous chapter, an attempt has been made to jointly estimate the scene trans-

mittance and the environmental illumination. Although the method works well in many

images, its performance varies with the goodness of the estimated of environmental illu-

mination. Use of small patches is the main factor behind this, because in small patches

it gets difficult to decide whether the colors in the patch are due to color of illumination

or the color of the object present in it. So, working with bigger patches is inevitable.

However, this only reduces the chances of confusion rather than completely eliminating

them. But on the other hand when working with bigger patches, the assumption of

constant transmittance within a patch gets violated. So, in this case estimating the

transmittance for all the input pixels becomes necessary. In this type of problems that is

where the size of the output is same as the input, Fully convolutional networks (FCN)

[38] has shown promising results. For this reason in this chapter we propose to use a

FCN based estimator network to estimate the haze parameters of a given patch. But

instead of working with the model with constant environmental illumination, we work

with the relaxed version of the imaging model.

I(x) = J(x)t(x) + (1 − t(x))A(x). (5.1)

That is, in this model the environmental illumination can vary from pixel to pixel. So,

given a hazy image if one is able to estimate both transmittance (t(x)) and environmental

illumination (A(x)), the dehazed image can be obtained using this model. But estimating

t(x) and A(x) independently can be hard because of the way they are related in the

imaging equation. For example, when t(x) is close to 1, the effect of A(x) becomes

negligible in the hazy image. For this reason, we estimate (1 − t(x))A(x) (denoted by

K(x)) as a whole. So, in our method we use the following form of the relaxed equation
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Figure 5.1: Proposed t(x)-K(x) estimator network

(equation 5.1).

I(x) = J(x)t(x) + K(x), (5.2)

and try to estimate transmittance (t(x)) and airlight (K(x)) using an FCN in order

to recover the haze-free image. This method was originally proposed for NTIRE 2018

challenge on image dehazing [8].

5.1 t(x)-K(x) Estimator Network

As mentioned in the previous section, an FCN based neural network is utilized to estimate

the haze parameters. The network is trained using a custom loss (named Bi-directional

Consistency Loss) and a multi-scale training approach. All these are described in the

following subsections.

5.1.1 Network Architecture

Our proposed estimator network is a two-way forked FCN that jointly estimates the

scene transmittance and airlight (Fig. 5.1). There are two separate paths in the network

to estimate the two parameters. One path for estimating the transmittance and the

other one for estimating the airlight. The path to estimate airlight has more convolution

layers than the transmittance estimation path. Success of the earlier methods point out

the fact that transmittance can be well estimated from small patches. So, the receptive

field can be kept small for computing transmittance. But airlight needs to be estimated

from a large portion of the image. Therefore, to obtain an effectively large receptive
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field, the airlight estimation path contains more convolution layers. We have also taken

convolutions with shift of 2 pixels instead of 1 to increase the size of the receptive field

while keeping the number of layers, and therefore the number of training parameters less.

Without this shift of 2 pixels, we would require more layers to get similar sized receptive

field. The convolution layer are matched by same number of convolution transpose [20]

layers in each path. Similar to the FCN of semantic segmentation [38], we have added

some skip connections to combine small scale features with the upsampled feature maps.

It helps in retaining fine details in the output. This also helps in the propagation of the

gradient during the training. In the path for estimating the airlight, ‘elu’ [17] is used as

a activation function after each convolution layer except the last layer, whereas in the

transmittance estimation path ‘sigmoid’ activation function is used. In the last layer

of both the paths ‘sigmoid’ activation function is used. Batch-Normalization [30] layer

is employed in the last few layers of the airlight estimation path to reduce the chance

of over-fitting. Note that the network is designed in such a way that it can take input

whose dimension is integer multiple of 128, e.g., 128 × 128, 256 × 256 and so on. This is

possible due to the fully convolutional nature of the network.

5.1.2 Bi-directional Consistency Loss

In training neural networks the common approach is to use categorical cross-entropy or

mean squared error (MSE) as the loss depending on the task at hand (e.g. classification

or regression). But using MSE to train the estimator network can give rise to certain

problems. The dehazed output that we obtain from the estimated t(x) and A(x) is quite

sensitive to the value of t(x). This happens mainly because of the division by t(x) when

trying to obtain J(x) (J(x) = I(x)−K(x)
t(x) ). This is specially true when the value of t(x) is

quite small. A small error in the estimate can produce large deviations in the output.

So, it is better to use the corresponding haze-free image as the target output instead of

targeting accurate haze parameter values. But it is also desirable that the atmospheric

scattering model (equation 5.1) is not violated. So, we may simply use the following as

the loss.

L =
1

N
|I(x) − J(x)t(x) − K(x)|. (5.3)

But due to the ill-posed nature of the problem, the network may learn some wrong t(x)

and A(x) while still minimizing the loss. Also the network may get stuck at trivial

solutions like t(x) = 0 and A(x) = I(x). So, we propose a new loss to train our estimator
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network. We define the loss (L) as follows,

L =
1

N

�

x

�

L1(x) + L2(x)
�

where, (5.4)

L1(x) = |I(x) − J(x)t(x) − K(x)|, and (5.5)

L2(x) =

�

�

�

�

J(x) − I(x) − K(x)

max{t(x), �}

�

�

�

�

. (5.6)

Here I(x) and J(x) are Input hazy image and ground truth clean image respectively.

N is the number of pixels in each image, K(x) is the estimated airlight and t(x) is the

estimated the transmittance we obtain using our estimator network. This design of the

loss ensures that the haze parameters (t(x) and K(x)) is estimated in such a way so that

the following two conditions are satisfied.

• Using the estimated t(x) and K(x), the hazy image can be generated from the

ground-truth haze-free image.

• The hazy image can be dehazed using the estimated t(x) and K(x) so that the

ground-truth haze-free image is obtained.

This imaging model inspired loss has certain advantages. First of all, this loss only

requires a pair of hazy and haze-free images, apart from the network outputs. Ground-

truth parameter values are not necessary. This design also helps in joint estimation of

the parameters that conforms to the imaging model (equation 5.1).

5.1.3 Multi-level Strategy to Training

One of the weakness that is inherent in CNNs is that it works with a fixed image dimension

and resolution. The dimension problem is usually tackled by resizing the input image.

But re-sizing blindly may not maintain the aspect ratio and can cause the network to

perform poorly due to the mismatch with the training data. An FCN may be used to

solve this problem depending on the application the application at hand, but it does not

solve the problem of resolution. If the resolution (physical area taken by a single pixel)

of training and testing images does not match, the network performance can degrade.

But we don’t have any control over the dimension of an input image or its resolution.

For these reasons we take a multi-level approach in both training and application phase.

Here only the multilevel training part is described. The multilevel approach used in the

dehazing step is described in the next section.

From the training data overlapping patches with 75% overlap from the both clear and

corresponding hazy images. The extraction is done at multiple levels. In the first level,
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patches of size P × P are extracted, where P = min{H, W } for a given image of size

H × W . In the second level, we extract patches of size P
2 × P

2 . In the third level patches

of size P
4 × P

4 is extracted. This halving process is repeated until the patch size being

considered falls below 128 × 128. Following this procedure, the extraction occurs at l

levels where,

l = �(log2(min(H, W )) − log2(128)) + 1�. (5.7)

All the extracted patches are resized to 128 × 128 before they are used. These hazy and

haze-free patch pairs are used to train our estimator network.

5.2 Dehazing Steps

The proposed method takes the following steps to dehaze an image.

1. Multi-level estimation of transmittance (t(x)) and airlight (K(x)) : The

method starts with extracting patches are multiple levels from the input image.

Then t(x) and K(x) are estimated from the extracted patches with the help of the

estimator network.

2. Aggregation of t(x) and K(x) : The obtained t(x) and K(x) maps are aggregated

to form single full sized maps.

3. Regularization using guided filter : The obtained maps are further regularized

to smooth out the artifacts arising from the patch based processing.

4. Recovery of haze-free image : At last the dehazed image is obtained by inverting

the haze model.

Each of the step is described in detail in the following subsections.

5.2.1 Multi-level estimation of t(x) and K(x)

The method begins with downscaling the input image. Although this is not essential

but it facilitates fast estimation on large images. An image is downscaled only if its

number of both row and column is greater than L. The input image is scaled with a

factor of k = L/ min{H, W} for an image of size H × W . In our experiments, we have

taken L = 850, but this may be increased depending on the availability of resources.

After scaling the image attains a dimension of �kH� × �kW �. This scaled image is used

in the subsequent steps.

Similar to the multilevel training strategy, the estimation of t(x) and K(x) is also done

at multiple levels. The number of levels is restricted to maximum 3, because of the chosen
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downscaling factor. Now depending on the whether the image is downscaled or not the

number of levels and the patch size at each level is decided. If an image is downscaled,

then the image surely has dimensions bigger than L. For this reason these images are

operated at three levels while working with patches of size 256 × 256, 384 × 384 and

512 × 512 in level one, two and three respectively. But the input image may not always

be that big (number of rows or cols less than L). So, these needs to be handled separately.

In this case the method starts working with patches of size 128 × 128. Increasing it to

256 × 256 in the second level and 384 × 384 in the third level. Note that this increment in

the level, thereby increment in the patch size, is only done if the images are bigger than

the corresponding patch size. If the images are not that big, the method may work at one

or two levels only. This implicitly enforces that the images should be at least 128 × 128

for this method to work. So, after deciding the number of levels and the corresponding

patch sizes, at each level, we take overlapping patches of the specified size, resize them to

128 × 128 and feed them to our estimator network. The network outputs t(x) and K(x)

maps of size 128 × 128. The obtained t(x) and K(x)-maps are then resized back to their

actual sizes depending on the level the operation is being done. Then in each level we

aggregate the patches to form t(x) and K(x)-maps of size �kH� × �kW �, by averaging

the estimates in the overlapping portions. After this step, we obtain transmittance and

airlight maps for each level.

5.2.2 Aggregation of t(x) and K(x)

In the previous step, we have obtained transmittance and airlight map for each level.

These needs to be aggregated to form single transmittance and airlight map. To aggregate

them, we take weighted average of the estimates obtained at each level to generate t(x)

and K(x).

t(x) =

�l
i=1 w

(t)
i ti(x)

�l
i=1 w

(t)
i

, (5.8)

K(x) =

�l
i=1 w

(K)
i Ki(x)

�l
i=1 w

(K)
i

. (5.9)

Here w
(t)
i , w

(K)
i are the weights that we use to aggregate t(x)’s and K(x)’s respectively.

ti(x) and Ki(x) denote the estimates we have obtained at level i and l denotes the

number of levels the image is operated on in the previous step. In our experiment, we

have taken all the weights to be 1.
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(a) Input (b) Transmittance (c) Airlight (d) Dehazed Image

Figure 5.2: Halos appear due to patch based processing of the image. This affects the output.

(a) Input (b) Transmittance (c) Airlight (d) Dehazed Image

Figure 5.3: Use of guided filter successfully removes the halos.

5.2.3 Regularization using Guided Filter

We have obtained transmittance and airlight maps of size �kH�×�kW � after aggregation.

But due to the patch based processing, these maps usually contain halos at the border

of the patches (Figure 5.2). Using them directly results in artifacts in the output. So,

these estimates needs to be refined before they are used in the recovery of the haze-free

image. For this purpose, an edge-preserving smoothing filter is required that smooths

the estimates but at the same time respects the object boundaries present in the image.

We have used Guided Filter [27] for this purpose because of its efficiency (Figure 5.3).

The Guided Filter filters a given input image while considering the content of a guidance

image. We utilize this as an edge-preserving smoothing filter. For smoothing the airlight

(K(x)), each of its color channel is smoothed separately with corresponding channel of

the hazy image as the guidance image. For smoothing the transmittance (t(x)), the

gray-scale version of the hazy image is utilized as the guide.

5.2.4 Recovery of haze-free image

After obtaining the smooth transmittance and airlight maps, the dehazed image can

be obtained by simply inverting the haze formation model (equation 5.2). But the

bigger images has been downscaled before processing. For those images the obtained

transmittance and airlight maps are of size �kH� × �kW �. So, they are rescaled back

to the original image size i.e. H × W to get the dehazed image of the same size as the
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input. After that, inverting equation 5.2, we obtain the dehazed image as follows,

J�(x) =
I(x) − K(x)

max{t(x), �}
. (5.10)

Here J�(x) is the estimated dehazed image. Note that we have clipped the value of J�

between 0 and 1 so that the output stays within the valid range of image intensity. � is a

small value used in the denominator to avoid division by zero.

5.3 Experimental Settings

All the results that is reported here is generated using a 3.6GHz quad core machine with

32 GB RAM and one Nvidia GeForce GTX 745 GPU, with Ubuntu 16.04 running on

top of them. The estimator network is trained with the help of Keras [16] deep learning

library with tensorflow backend [1]. The training data is generated using the training

images of I-HAZE [2] and O-HAZE [3] dataset. The network is trained for 300 epochs

with a batch size of 10 with the help of Adagrad optimizer [19]. For smoothing the

transmittance and the airlight maps, the guided filter is applied a radius size of 60 and

an epsilon value of 0.001.

5.4 Results

The model we have considered here is the relaxed version of the imaging model, where

the environmental illumination varies from pixel to pixel. As shown in chapter 3, this

relaxed version works for both day and night-time images. So, we have evaluated this

method on both day and night-time images. The daytime images include synthetic hazy

images of Fattal [22], the validation images of I-HAZE [2] and O-HAZE [3] dataset and

some benchmark hazy images. The night-time images include only some benchmark

images without any ground truth. For synthetic images and the images of I-HAZE and

O-HAZE dataset we have used metrics like PSNR, SSIM and ∆E00 to quantitatively

evaluate the results. For a comparative study the results of He et al. [28], Fattal [22],

Ren et al. [53], Berman et al. [11] and Li et al. [35] has been included. The results of

Fattal [22] has been obtained from the authors website1. The results of He et al. [28]

has been generated using our own implementation of the method. The results of the

remaining methods are generated using the code provided the respective authors in their

default setting. For the images of I-HAZE [2] and O-HAZE [3] dataset, the results of He

1http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/results/
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et al. [28] and Li et al. [35] could not be generated due to the resource requirement of

the implementation on large images.

5.4.1 Quantitative Results

Table 5.1: Quantitative Comparison on the images of Fattal’s dataset. High PSNR and SSIM
indicates better results, while it is the opposite for ∆E00. The best results are bold
and the second best results are underlined. Note that in Fattal’s method only t(x) is
computed and A is manually provided.

Image
He et al. [28] Fattal [22] Ren et al. [53] Berman et al. [11]

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 11.16 0.78 28.74 21.43 0.96 6.34 14.17 0.87 20.25 15.68 0.89 16.9
couch 18.4 0.86 13.89 20.8 0.9 6.71 17.99 0.88 12.91 17.24 0.87 14.18
dolls 19.73 0.85 10.65 21.29 0.77 6.1 16.93 0.86 12.37 15.69 0.83 15.73
flower1 14.1 0.88 23.26 30.01 0.98 3.91 9.08 0.43 24.64 12.15 0.72 20.99
flower2 14.37 0.86 20.94 31.94 0.99 2.92 10.81 0.6 22.45 11.86 0.68 21.16
lawn1 13.84 0.8 22.38 24.49 0.97 6.65 14.37 0.83 21 14.78 0.86 17.92
lawn2 11.2 0.74 29.32 24.94 0.97 6.46 13.29 0.77 22.27 15.32 0.87 17.8
mansion 17.45 0.87 19.35 26.96 0.97 4.04 17.69 0.89 17.52 17.33 0.87 15.83
moebius 12.66 0.78 26.7 19.01 0.9 10.61 16.36 0.9 19.85 14.58 0.85 22.39
raindeer 18.12 0.83 14.22 26.22 0.94 4.1 16.82 0.81 15.49 16.59 0.82 15.28
road1 12.95 0.8 26.11 25.74 0.96 5.24 14.11 0.84 22.22 16.3 0.88 19.06
road2 15.84 0.84 22.13 23.6 0.96 7.11 16.45 0.88 20.17 18.22 0.9 16.82

Average 14.98 0.82 21.47 24.7 0.94 5.85 14.84 0.8 19.26 15.48 0.84 17.84

Image
Li et al. [35] ch3 ch4 Our

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 9.44 0.62 34.64 16.99 0.9 11.59 17.17 0.84 14.68 14.46 0.9 24.39
couch 16.77 0.83 17.32 16.23 0.78 15.84 19.96 0.79 10 19.51 0.85 12.94
dolls 17.21 0.85 10.88 13.64 0.8 18.14 12.55 0.82 16.6 14.9 0.84 13.51
flower1 12.22 0.79 29.41 19.27 0.89 11.19 16.3 0.8 20.87 21.31 0.95 14.72
flower2 13.13 0.79 25.26 21.93 0.9 7.79 18.08 0.82 16.43 22.7 0.95 11.38
lawn1 11.32 0.69 31.74 17.14 0.84 13.78 14.26 0.84 24.82 16.13 0.88 20.21
lawn2 10.98 0.68 31.7 15.79 0.8 15.9 14.64 0.82 24.84 14.89 0.89 20.92
mansion 14.24 0.7 24 19.65 0.84 9.2 19.64 0.82 14.5 21.89 0.93 13.64
moebius 13.22 0.77 27.61 18.72 0.86 12.59 16.84 0.82 17 18.22 0.9 15.28
raindeer 16.53 0.8 18.5 15.47 0.74 17.23 17.92 0.74 14.85 22.63 0.9 10.7
road1 11.75 0.66 29.31 15.91 0.78 14.45 16.83 0.81 22.51 16.14 0.9 18.41
road2 11.96 0.62 30.96 15.02 0.82 15.74 18.2 0.86 19.45 15.88 0.91 20.79

Average 13.23 0.73 25.94 17.15 0.83 13.62 16.86 0.82 18.05 18.22 0.9 16.41

We have quantitatively evaluated the results obtained by the proposed method on the

synthetic hazy images given by Fattal [22] and I-HAZE [2] and O-HAZE [3]. The results

obtained on Fattal [22], I-HAZE [2] and O-HAZE [3] dataset is reported in Table 5.1 and

5.2 respectively. For the synthetic hazy images Fattal [22] still remains as the top scoring

method in all three metrics, except the dolls image. For our method it is seen in terms

of PSNR and SSIM the scores have improved quite a bit than the previous methods, but

the color line based method still has better ∆E00 scores by quite a big margin. So, we
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Table 5.2: Quantitative Comparison on the images of I-HAZE and O-HAZE dataset. The best
results are bold and the second best results are underlined. (I) in the image column
denotes indoor image whereas (O) denotes an outdoor image.

Image
Ren et al. [53] Berman et al. [11] Our (ch3) Our (ch4) Our

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

26 (I) 11.02 0.78 22.36 12.41 0.77 20.15 8.74 0.52 32.09 14.84 0.76 15.54 15.7 0.87 13.85

27 (I) 17.6 0.84 12.3 14.79 0.75 18.03 15.36 0.77 16.39 16.08 0.78 16.11 21.84 0.87 8.25

28 (I) 13.1 0.79 17.05 13.29 0.72 19.24 13.41 0.7 22.55 15.5 0.77 17.61 16.11 0.82 13.7

29 (I) 17.6 0.89 11.42 14.66 0.79 15.73 9.91 0.72 29.48 16.8 0.89 13.86 21.82 0.91 9.33

30 (I) 16.78 0.79 14.2 13.92 0.71 19.08 10.99 0.7 25.66 17.02 0.85 13.92 20.62 0.83 12.19

36 (O) 19.46 0.81 11.84 16.92 0.72 14.42 11.68 0.68 28.63 14.52 0.83 20.23 23.11 0.82 7.6

37 (O) 17.72 0.73 13.27 14.98 0.63 15.13 15.42 0.81 18.33 17.49 0.85 16.62 21.32 0.76 8.52

38 (O) 16.2 0.77 19.01 15.54 0.75 16.92 10.48 0.68 28.39 15.85 0.86 17.46 22.25 0.82 8.51

39 (O) 15.75 0.75 16.74 17.64 0.77 16.42 11.81 0.64 27.48 13.59 0.73 22.54 19.9 0.8 10.84

40 (O) 18.66 0.81 11.95 17.04 0.76 15.06 12.65 0.76 25.48 14.16 0.84 20.78 22.1 0.84 7.85

Average (I) 15.22 0.818 15.46 13.81 0.748 18.44 11.40 0.658 23.75 15.18 0.828 16.24 19.21 0.86 11.46

Average (O) 17.55 0.774 14.56 16.42 0.726 15.59 13.62 0.624 19.08 18.17 0.764 13.22 21.73 0.81 8.66

may conclude that the estimate of A is still not very good. For the results obtained on

the images of I-HAZE and O-HAZE dataset, the scores have some similarities but due

to the large size of the images (e.g. 4476 × 2882) there have been some changes in the

trend. The current proposed method has gone to the top in most of the images in all

three scores. The happens mainly due to the fact that the network has been trained

using the training images of I-HAZE and O-HAZE dataset and it has been designed to

handle large sized images. The scores of Ren et al. [53] was just below the scores of our

method in the dataset of Fattal [22]. For I-HAZE and O-HAZE dataset we see scores

obtained by the results of Ren et al. [53] are ranked second most of the time. It has

even beaten our color line based method in terms of ∆E00. This happens due to the

multi-scale nature of their proposed method. Our color line based has performed poorly

in most of the cases due to the resolution of the hazy images. As it works with a fixed

patch size in these large images it had failed to perform satisfactorily.

5.4.2 Qualitative Results

In this section we qualitatively compare results obtained on different kind of images.

These include the some synthetic images of Fattal [22], the images from the validation set

of I-HAZE and O-HAZE dataset, some real-world images. We have also included some

night-time images as this method works with the relaxed version of the imaging model.

The figure 5.5 shows the actual results obtained on the synthetic images given by Fattal

[22]. It is seen that the results follow the pattern that we have seen in the quantitative

results (Table 5.1). The method of Fattal [22] is performing the best. There is color

distortions in all the contending method. The current method has performed a litte

poorly in the church and lawn1 image than our pervious method. The blue haze part
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has become dark. But the results does not have the yellowish tone that is present in the

results obtained by our previous method. The figure 5.4 shows the results of the I-HAZE

and O-HAZE datasets. Our method has performed well in cleaning the haze. The other

methods have performed relatively well in the indoor images, but they have failed in the

outdoor ones. The results on real world images is shown in figure 5.6. Apart from Fattal

[22], the method of Berman et al. [11] is performing quite well, except the ny12 image.

The same thing can’t be said for the other methods. The results obtained by our method

is not good in the some images (tiananmen and ny12 ). Since the images of I-HAZE and

O-HAZE is not like these real-world hazy images, our network has failed to properly

estimate the haze parameters. Among the results of night-time images (figure 5.7) we

see that the daytime dehazing methods ([28, 53, 11, 35]) are not able to clear the haze.

The method of Berman et al. [11] is an exception in this regard. Despite being a daytime

deahzing method it could clear haze to some extent all the images. Our method is

performing poorly despite using a relaxed imaging model. The training data is to be

blamed here. Since the training data did not contain night-time images, our method is

performing poorly.

(a) Input (b) Ren et al.
[53]

(c) Berman
et al. [11]

(d) Our
(ch3)

(e) Our (ch4) (f) Our (g) Ground
Truth

Figure 5.4: Visual comparison of the results on two images of I-HAZE and two images of O-HAZE
dataset
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(a) Input (b) He et al. [28] (c) Fattal [22] (d) Ren et al. [53] (e) Berman et al.
[11]

(f) Li et al. [35] (g) Our (ch3) (h) Our (ch4) (i) Our (j) Ground Truth

Figure 5.5: Visual comparison of the results on four synthetic images: church, couch, flower2, and
lawn1.
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(a) Input (b) He et al.
[28]

(c) Fattal [22] (d) Ren et al.
[53]

(e) Berman et
al. [11]

(f) Li et al. [35] (g) Our (ch3) (h) Our (ch4) (i) Our

Figure 5.6: Visual comparison of results on dubai, florence, herzeliya, tiananmen, and ny12 image.
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(a) Input (b) He et al. [28] (c) Ren et al. [53] (d) Berman et al.
[11]

(e) Li et al. [35]

(f) Zhang et al.
[67]

(g) Li et al. [36] (h) Our (ch3) (i) Our

Figure 5.7: Visual comparison of results on night-time images.
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(a) Input (b) Output (c) Transmittance (d) Airlight

Figure 5.8: Transmittance and airlight obtained by our method.

5.4.3 Discussion

From the quantitative and qualitative results it is seen that the proposed method works

well in the synthetic images and on the images of I-HAZE and O-HAZE, but is not

working satisfactorily in the real world images. This clearly shows that the training data

is not a good representative of the real world hazy images. Since our method hinges

on the trained model to estimate the haze parameters, the results of the method gets

decided by the training data. On the other hand the transmittance and airlight estimated

is not always accurate. This has been reflected in the dehazed results. If we see the

results in figure 5.8, it is seen that the airlight is almost similar to the input image and

the transmittance is almost same throughout the whole image. But the network has

learned to predict this because this kind of prediction is giving good dehazed results (in

terms of the loss) in the training data. This can be confirmed from the second image of

figure 5.8, although this raises a question on the imaging model.

5.5 Summary

In this chapter we have proposed a image dehazing method that can work if hazy and

haze-free image pairs are given as the training data. It does not require ground truth

transmittance and environmental illumination. It has been enabled by our proposed loss

(Bi-directional Consistency Loss). Using this loss we have trained an FCN to predict

transmittance and airlight from patches. The utilization of FCN has facilitated the use

of bigger patches. As this type of network can yield output that has size similar to the

input, we are able to work with patches where transmittance can vary. We have also

proposed a multi-level approach to the training and inference to mitigate the problem of
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scale that is faced when working with big images. But how it affects the performance

needs to be evaluated. One problem that has negatively results is the training data. The

network we have used was trained using the training images of I-HAZE [2] and O-HAZE

[3] dataset, and those images are quite different from real world images. We hope to

reduce this dependency in the method proposed in the next chapter.
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Chapter 6

Dehazing based on patch quality

comparator

In the previous chapter we have seen that the haze parameters predicted by the network

heavily depends on the data used to train it. This issue of learning based systems is

usually tackled by using a variety of samples in the training data. But collecting hazy

and haze-free image pairs of the same scene can quite hard in practice. So, the usual

way is synthesizing hazy images and training a regressor network to estimate the haze

parameters. But here we take an altogether different approach. Instead of predicting

the transmittance directly from a given hazy patch, we propose to find it by comparing

different dehazed versions of the hazy patch with the original hazy one. This is motivated

by the fact that comparing two patches and saying which one has more haze is easier

than saying the haze level of a given patch. For this method we again start with the

original version of the atmospheric scattering model.

I(x) = J(x)t(x) + (1 − t(x))A. (6.1)

Where I(x) is the observed intensity, J(x) is the intensity of light coming from the

scene objects and before getting scattered, t(x) is the scene transmittance denoting the

amount of light that reaches the observer after getting scattered and A denotes the global

environmental illumination. From this the aim is to recover the J(x) by estimating the

remaining parameter values. Since the mapping J(x) → I(x) is not one-to-one, as t(x)

varies from pixel to pixel, the estimation of J(x) independently at each pixel x can be

inconclusive. The value of I(x) could be due to only J(x) when t(x) = 1 or due to only

A when t(x) = 0. This confusion exists even if we know A for the given image. To

surmount this hurdle a simple assumption is adopted which is common in the literature

[22, 61]: within a small patch of the image the depth of the scene and consequently, the

transmittance t is assumed to be constant. This assumption is valid because a patch of

the image usually corresponds to a small part of a single surface in the scene, which may
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be approximated by a relatively smooth surface except at the places where the patch is

on the boundary between two surfaces. Therefore the following equation is utilized to

estimate transmittance within a patch.

I(x) = J(x)t + (1 − t)A (6.2)

But, if the patch that we consider is very smooth, i.e., I(x) = const for all x and contrast

is nil, the effect of haze is neither apparent nor measurable. So, we may argue that

using equation 6.2 is not advantageous in two cases: very smooth patches and patches

with strong depth discontinuity. Therefore, when we process patches for estimating the

parameters, we discard these two kinds of patches, only the remaining ones are considered.

In our method we concentrate only on the t(x) estimation part an assume that A can

computed by any one of the existing methods. Here A is computed as it described by He

et al. [28].

6.1 Proposed Approach

The method that we propose here is a daytime image dehazing method that finds the

transmittance at each patch (and subsequently at each pixel) by comparing the dehazed

version of the patch with the hazy one. This comparison is performed by our proposed

module called the patch quality comparator. This comparator, when given two patches

as input, can indicate which one is of better quality in terms of haziness. We build the

comparator in such a way, that the natural looking patches (e.g., without saturated

colors, noise etc.) and the patches with less haze are declared as the better one. With the

help of this comparator, we search for a transmittance value that can dehaze the given

hazy patch and at the same time does not degrade the dehazed output by overdoing.

This patch quality comparator is described in the following subsection, after discussing

the principle behind this approach.

6.1.1 Principle

Our approach is built on the following principle. Given a hazy patch there is a t = t�

that properly dehazes this patch. Dehazing this patch with t > t� retains some haze in

the dehazed output, and on the other hand, using t < t� produces over contrasted, bad

looking, unnatural output. So, dehazing a given patch with t = t�, we get the actual J(x)

by the following equation.

Jc
t�(x) = Ac − Ac − Ic(x)

t�
. (6.3)
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Haze added with t =0.65 
and A=[1, 1, 1]T

Dehazed with

t = 0.8 t = 0.7 t = 0.4 t = 0.2

Figure 6.1: Haze is added in a patch. This haze patch is dehazed with t values less than 0.65 and
greater than 0.65.

Where c ∈ {R, G, B} is one of the color channels. If the same patch is dehazed with a t

that is not equal to t�, we can write the following.

Jc
t (x) = Ac − Ac − Ic(x)

t
. (6.4)

From these two equation the following can be written

∆Jc(x) = Jc
t (x) − Jc

t�(x) = (Ac − Ic(x))
� t − t�

tt�

�

. (6.5)

So, depending on the value of ∆Jc(x) we can say whether the dehazed output Jc
t (x) is

more than the actual Jc(x) or less. Since A is the environmental illumination, everything

in the scene is illuminated by it. So, the value of Ic(x) (= r(x)Ac, where r(x) ∈ [0, 1]

denotes the reflectance property of the scene object) can’t be more than Ac. So, the first

term of equation 6.5 always remains positive. Therefore the value of ∆Jc(x) depends

only on the relation between t and t�. If t < t� then ∆(x) is negative. That means the

dehazed output is less than the actual one, therefore darker. On the other hand, if t > t�

then the dehazed output is more than actual one: it can be further refined. This principle

is also illustrated using an example in figure 6.1. We take a patch from an unhazed clear

image. From this patch we generate a hazy patch using equation 6.2) with t = 0.65 and

A = [1, 1, 1]T . This generated hazy patch is then dehazed using the same A but with

different t’s (e.g., 0.8, 0.7, 0.4, and 0.2). It is seen from the figure that dehazing the hazy

patch with t less than the ideal (0.65) produces bad output and the patches dehazed

with t greater than 0.65 are better than the original hazy patch. In these hazy patches

some haze is still present and it can be further cleaned. We say these are good dehazed

patches. Now if we dehaze a given patch with different values of t, we get some good

dehazed patches and some bad dehazed patches (Figure 6.2). If we arrange these dehazed
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0.10.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t-values

Figure 6.2: Same haze patch is dehazed with different t’s. At t = 1 the dehazed patch is same as
the original haze patch.

patches, say, in ascending order based on the value of t that has been used to obtain

these patches, then starting from t = 1 down to t = t�, we get good dehazed patches, and

bad dehazed patches for the remaining values of t. Thus the transition from good to bad

dehazed patches occurs at t = t� if we vary the value of t between 0 and 1. We use this

fact to obtain the appropriate value of t for any given hazy patch. However, note that to

be able to find the point of transition, we must be able to tell, without the knowledge of

desired value of t, i.e. t�, whether a dehazed patch is a good dehazed patch or a bad one.

For this purpose we build the patch quality comparator.

6.1.2 Patch Quality Comparator

The patch quality comparator we propose here compares two patches, say, a given patch

and its dehazed version, and reports whether the dehazed patch is good or bad. If we

know beforehand whether a dehazed patch is good or bad, we can use this information

to train a classifier to perform this comparison. Now instead of using some handcrafted

features and employing a two-class (good and bad) classifier to do this task, we use a

CNN to learn the features and do the classification simultaneously. The proposed network

takes two patches as input and produces two outputs to denote which one of the input

is better (figure 6.3). The ideal output is [1, 0]T if the first input is better and [0, 1]T

otherwise. Here the assumption is that the two patches differ only in the amount of haze,

and represent the same part of the same scene. The basic structure of the network is

inspired from the common CNN based classifiers i.e. convolutional layers for feature

extraction followed by dense layers for classification based on the extracted features. Our

network is designed in the same way. As our network takes two patches as input, we

process both of them by the same set of convolutional layers so as to extract the same

features from each of them. Another advantage of extracting the same set of features

from both the inputs is that, this reduces the dependence of the network on the ordering
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Featute maps: 64@8x8
Kernel size: 3x3 
Activation: Tanh

Featute maps: 16@4x4
Kernel size: 3x3 
Activation: Tanh 

Featute maps: 32@6x6
Kernel size: 3x3 
Activation: Tanh

 
Patch1

Patch2

Output

 

Merge: 
Feature maps: 32@4x4

Flatten:512

Dense: 8
Activation: Tanh

Dense: 2
Activation: Softmax

Dense: 16
Activation: Tanh

Shared weights

Featute maps: 64@8x8
Kernel size: 3x3 
Activation: Tanh

Featute maps: 16@4x4
Kernel size: 3x3 
Activation: Tanh 

Featute maps: 32@6x6
Kernel size: 3x3 
Activation: Tanh

 

Figure 6.3: Architecture of our Patch Quality Comparator

of the training data. Now, the usual classification networks stack around 8 to 19 layers

to classify an image. But in our case, we are processing small image patches (10 × 10).

Therefore, we need only small number of convolutional layers to extract features. On

the other hand, we have to take small number of dense layers to avoid overfitting of

the classifier. We have used tanh function as the non-linear activation throughout the

network except the last layer. In the last layer we use softmax activation function [13,

p. 198] as we are training the network as a classifier. The use of tanh results in relatively

large gradients compared to sigmoid during backpropagation which leads to speed up of

the optimization process. Moreover, the problem of vanishing gradients associated with

tanh is not likely to occur as the network is not very deep.

We train the comparator to distinguish the haziness of patches making sure the

following conditions are met:

1. The haze patch is better than a bad dehazed patch.

2. A good dehazed patch is better than the haze patch.

Using this comparator we find at what value of t the transition from good dehazed patch

to bad dehazed patch occurs, by repeatedly dehazing a given patch using different values

of t. As we have already mentioned, this point of transition gives the desired value of

t for this patch. Now, instead of arbitrarily searching for this point, we employ binary

search to do this computation efficiently.

6.2 Implementation of the Method

The proposed dehazing method has the following 4 main steps
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1. Computation of environmental illumination: When a hazy image is given as

input, first A is computed.

2. Transmittance finding using binary search: From the input image, we take

patches of size ω × ω with 50% overlap (both horizontally and vertically) and find

t in each patch based on the response of the patch quality comparator, following

binary search.

3. t(x) aggregation and interpolation: Because of the overlap, a pixel receives

more than one estimate of t. We take the average of these estimates while deter-

mining the value of t at that pixel. Now, it is quite likely that at some pixels the t

is not estimated as they belong to either very smooth patches or to patches with

strong edges, which are discarded from being processed as stated earlier. At those

positions the value of t is interpolated.

4. Haze-free image recovery: Finally, the dehazed image is obtained by dehazing

the image with the obtained t(x) and already computed A.

Details of each step is provided in the following subsections.

6.2.1 Computation of Environmental Illumination

The environmental illumination (A) is computed as it is described by He et al. [28]. We

describe it here briefly for the sake of completeness. Environmental illumination can be

estimated from the color of the most haze opaque region, i.e., where value of the t is

least or, in other words, depth is large. This region is detected with the help of the dark

channel of the hazy image. Dark channel of an image I is given by

D(x) = min
y∈Ω(x)

�

min
c∈{R,G,B}

Ic(y)
�

, (6.6)

where Ic is a color channel of I and Ω(x) is a local patch centered at x. As dark channel

approximates denseness of haze, the most haze opaque region selected by picking the

top 0.1% brightest pixels in the dark channel. Within this region, the pixel with highest

intensity in the input image is selected as the environmental illumination. This is utilized

as the environmental illumination in the subsequent steps.

6.2.2 Transmittance finding using binary search

In this step we estimate t from a given patch. For that the image is first divided into

patches of size ω × ω with 50% overlap. We find the ideal t(= t�) for each hazy patch
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using patch quality comparator following binary search strategy. The search is guided by

the principle described in the Section 6.1.1, that is, we get a good dehazed patch when

t > t�, and a bad dehazed patch when t < t�. We need to find the point of transition

from good dehazed patch to bad dehazed one, and this good/bad decision is taken by

the patch quality comparator.

We begin the process with te = 1 and tb = 0. We compute tm = (tb + te)/2. Then the

input patch (Ip) is dehazed with the t = tm and A computed in the first step, and the

input hazy patch and the dehazed patch is compared. If the dehazed patch is bad then

we can say that tm < t�. Therefore t� lies in the range (tm, te). So, we set tb to tm. On

the other hand, if the obtained dehazed patch is good, then tm > t�. So, we set te to tm

as t� lies in the range (tb, tm). This process is repeated (i.e. computing tm, dehazing with

new tm, comparing new dehazed patch with the hazy one, and finally updating te or tb)

until (te − tb) becomes small enough (≤ θt). When the search stops, tm = (tb + te)/2

is declared as the desired t for this patch. The above mentioned steps are written in

algorithmic form in Algorithm 1. Here function dehaze() dehazes a given patch with the

provided t and A using equation 6.2). The haze_patch_comparator() is the function

for Patch Quality Comparator described in Section 6.1.2. It takes two patches as input

and produces output depicting which one of the input patches is better.

Algorithm 1 t searching algorithm

Input: Ip, A, θt

Output: tm

1: te ← 1

2: tb ← 0

3: while (te − tb) > θt and te > tb do

4: tm ← (te + tb)/2

5: Id = dehaze(Ip, tm, A)

6: (a, b) = haze_patch_comparator(Ip, Id)

7: if a > b then {dehazed patch is bad}

8: tb ← tm

9: else {dehazed patch is good}

10: te ← tm

11: end if

12: end while

13: tm ← (te + tb)/2
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6.2.3 t(x) aggregation and interpolation

Thus the transmittance parameter t is estimated from the patches as described in the

previous step. If we consider overlapping patches, a pixel is likely to receive more than

one estimate of t. These values are combined to obtain a single value of t at each pixel.

Apart from that, during processing we discard some patches that are either very smooth

or have strong depth discontinuities depicted by presence of edge. Therefore even after

aggregation it is likely that there are pixels without any estimate of t. Value of t at

those pixels needs to be interpolated. Now, we can’t employ any generic interpolation

technique (e.g. bilinear) as they won’t be able to preserve the underlying image structure

that the transmittance map is expected to follow. Therefore, we apply a Laplacian based

interpolation similar to Fattal [22]. The interpolated result is obtained by minimizing

the following function.

φ(t(x)) =
�

x

s(x)(t(x) − t̃(x))2 + λ
�

x

�

y∈Nx

(t(x) − t(y))2

||I(x) − I(y)||2
(6.7)

where t̃(x) is the aggregated estimate obtained after processing the patches. t(x) is

the transmittance obtained through interpolation. Nx denotes the neighborhood of the

pixel location x. The presence map s(x) is taken as 1 if the estimate of transmittance is

available at x and 0 if it is not. The regularization parameter λ controls the importance

between the two terms. The first term is the error term that enforces the interpolated

solution to be as close as the aggregated estimate. The second term is responsible for

maintaining the smoothness in the transmittance map while interpolating t(x) from

the estimates available in the neighborhood. The smoothing is performed based on

||I(x) − I(y)||2. The lower its value, the more similar are the neighboring t(x) values.

So, this term ensures that transmittance map becomes smooth where the input image

is smooth, while allowing it to retain sharp profile near the edges. Now for the whole

image, the equation 6.7 can be written as

Φ(to) = (to − t̃a)
T S(to − t̃a) + λtT

o Lto. (6.8)

Here t̃a is t̃(x) in vector form. Similarly, to is the vector form of t(x). S is a diagonal

matrix with s(x) as its diagonal entries. L is a laplacian matrix of the graph constructed

from the input image considering each pixel as a vertex and 1/||I(x) − I(y)||2 as the

edge weights between pixels x and y. Each vertex is connected to their neighbors. Now,

minimizing equation 6.8 we obtain t(x) for the whole image. The vector to that minimizes
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equation 6.8, is uniquely defined by the solution of the following linear equation,

(S + λL)to = St̃a. (6.9)

6.2.4 Haze-free image recovery

Once we obtain t(x) at every pixel, we can dehaze the input image. We use this computed

t(x) along with the environmental illumination (A) obtained at the first step to get the

dehazed result. Using the following equation we calculate the estimated dehazed image

as follows.

Jc
e (x) = Ac − Ac − Ic(x)

max{t(x), 0.0001}
. (6.10)

Note that, Jc
e(x) values lying beyond the valid intensity range are clipped to the valid

range. Second, we assume t(x) should be greater than zero, otherwise no scene information

would reach the observer or the sensor (camera). To ensure this, we clip the value of t(x)

arbitrarily at 0.0001 from lower. Third, unlike many other methods we do not employ

any kind of post-processing technique.

6.3 Experimental Details

In this section we describe in detail the setup we have used to train our comparator and

to generate the dehazed images that we report in the next section.

6.3.1 Training Data Generation

To train our patch comparator we synthesize hazy patches from clean haze-free patches.

These clean patches are taken from 421 natural haze-free images. These images are

member of a subset of the 500 fog-free images used by Choi et al. [15]. We have discarded

some images where haze is present, specially at distant objects. We have extracted

patches from these images while discarding very smooth ones and the ones with strong

edges. This generates around 2.5 million patches. However, using the training data

generated using all of the extracted patches, may bias the comparator. Since all kind

of patches may not have similar number of samples among the extracted ones. As a

result the trained network is likely to perform well for the type of patches that contains

more samples than the ones with less number of samples. To alleviate this situation, we

have clustered the patches taking their RGB values and their gradient in horizontal and

vertical directions as the feature. The patches are clustered using k-means [9] with 1 ×105

cluster centers. Then the patches closest to the cluster centers are used as clean patches
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(only the RGB part) to generate the training data. Each training datum contains a patch

pair and corresponding labels indicating the better patch as defined earlier. Each pair

consists of a hazy patch and its dehazed version. To generate these patch pairs, we first

generate a hazy patch from a clean patch using the haze imaging model (equation 6.2)

with a random t(= t�) between 0 and 1 and two random A. As A is a 3 × 1 vector, we

take 3 random values between 0 to 1 to get a single A. We dehaze this generated hazy

patch with the corresponding A’s and 30 different values of t. Half of the t’s are greater

than t� and half of them are less than it. The values of ts’ are taken in such a way that

the values are concentrated near t� and are sparse as we go far from it. To achieve this

we first divide each range ((0, t�) and (t�, 1)) into 5 varying length bins with smaller bins

near t� and larger bins at distant. For example, we take bins of size 1
2 , 1

4 , 1
8 , and 1

16 on

either half of the length. From each of the bins, however, we sample equal number of

t’s. As stated earlier we say the dehazed patches obtained with t < t� are bad dehazed

patches and dehazed patches obtained with t > t� are good dehazed patches and label

them accordingly. This process is done for each patch obtained from the haze-free images

to generate the training data to train the comparator.

6.3.2 Parameter Settings

We have taken patches of size 10 × 10 to train our comparator and also to dehaze

a given image. The patches with standard deviation less than 0.02 are discarded as

smooth patch. To discard patches with depth discontinuity (i.e., having strong edge), we

check if it contains pixels with gradient magnitude greater than 0.5. The comparator

is trained with mean squared error loss for 50 epochs with batch size of 500 using the

Adadelta optimizer [66]. This setup is build on Keras 1.2.2 [16] with Theano 0.9.0 [63]

and libgpuarray backend. With this setup the training of the comparator is done on

a machine with Intel R� CoreTM i7-4790 CPU @ 3.60GHz and Nvidia GTX 745. For

computing the environmental illumination using the method of dark channel, we have

taken patches of size 15×15. But for determining t from the patches, we have used 10×10

patches. For t-searching algorithm θt is taken to be 5 × 10−4. Lastly for interpolation,

the regularization parameter λ (see equation 6.7 and 6.8) is taken to be 0.1.

6.4 Results

We have evaluated the results obtained by our method on a variety of images using both

A computed using the method of He et al. [28] and ground-truth A values when available

(denoted with GT A). The images we have used include synthetic hazy images from the
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dataset of [22] and D-HAZY [4], images from I-HAZE [2] and O-HAZE [3] dataset, and

some real world hazy images that have been used in the previous chapters. We have

compared our results with the results obtained by the methods of He et al. [28], Fattal

[22], Ren et al. [53], Berman et al. [11] and Li et al. [35], as well as with the method of

last chapter and Chapter 3. To compare with the method of Fattal [22] we have used the

dehazed images provided by the author. The results of He et al. [28] has been generated

using our own implementation of the method. For the remain methods we have used the

code as provided by the respective authors in their default setting. For the images of

I-HAZE [2] and O-HAZE [3] dataset, the results of He et al. [28] and Li et al. [35] could

not be generated due to the resource requirement of the implementation on large images.

6.4.1 Quantitative Results

We quantitatively evaluate the results we obtain for synthetic hazy images with known

ground-truth. For this purpose we have used synthetic images provided Fattal [22] and

D-Hazy dataset [4]. D-Hazy dataset [4] is synthesized from Middlebury [54] dataset and

NYU Depth [58] dataset. The images given by Fattal [22] contains both indoor and

outdoor images, while the D-Hazy dataset [4] contains images of various indoor scenes.

We quantitatively evaluate the results obtained on these images using PSNR, SSIM and

CIEDE2000 metric. Here the results are reported separately for synthetic images of

Fattal dataset, and Middlebury and NYU section of D-Hazy dataset.

For Fattal dataset the quantitative results are given in Table 6.2. For the first time the

method of Fattal [22] has been beaten in terms of score in a few images by our proposed

method when the ground truth A is supplied. We also see the scores takes a big leap

when the ground truth A value is used in the dehazing process (compare the score of our

and our (GT A)). This suggests the importance of quality of the estimated A. This has

been also reflected by the ∆E00 score of Our (GT A) method. So, we can say wrong

estimate of A can make the dehazing method fail.

For the NYU section of D-Hazy dataset we only report the average values of the metrics

in Table 6.1, as the dataset contains 1449 images. Surprisingly the method of He et al.

[28] is performing the best in terms of the score and our method becomes a close second.

The value of A is taken to be [1, 1, 1]T when generating the dataset and in most of the

images an haze opaque region is present. This features have facilitated easy computation

of A and transmittance using the Dark Channel Prior [28]. Hence we see the high score.

Our color line based method proposed in Chapter 3 is giving the worst results, mainly

due to the indoor environment of the scene and dense haze.

For the Middlebury section of the D-Hazy dataset [4] we see varied results. Table 6.4
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Table 6.1: Average metrics obtained on NYU portion of D-Hazy dataset. GT A denotes ground
truth A is supplied to the method.

PSNR SSIM ∆E00

He et al. [28] 15.07 0.8 11.7

Ren et al. [53] 13.03 0.76 15.45
Berman et al. [11] 13.58 0.73 15.22
Li et al. [35] 12.38 0.76 16.61
Our (ch3) 11.36 0.67 21.24
Our (ch5) 11.87 0.74 19.63
Our 14.02 0.73 13.77
Our (GT A) 14.17 0.78 13.10

reveals that on an average our method performs quite well, but it can perform poorly if

the computed A is wrong. Here also, the method of He et al. [28] is performing quite

well due to the fact that these hazy images are constructed in the same way as the NYU

section of the dataset. The only difference is that these images are quite big (3000 × 2000

approx). The method of Ren et al. [53] has also performed well in many images. The

methods proposed in Chapter 3 and 5 also has not performed well.

The scores of the images of I-HAZE [2] and O-HAZE [3] dataset as reported in Table

6.3 tell a little different story. The method proposed in Chapter 5 performs the best while

the method of Ren et al. [53] becoming the second. The performance of the proposed

method is not good at all. One possible reason is the huge size of hazy images. A visual

inspection can reveal the issues.

Table 6.3: Quantitative Comparison on the images of I-HAZE and O-HAZE dataset. High PSNR
and SSIM indicates better results, while it is the opposite for ∆E00. The best results
are bold and the second best results are underlined. (I) in the image column denotes
indoor image whereas (O) denotes an outdoor image.

Image
Ren et al. [53] Berman et al. [11] Our (ch3) Our (ch5) Our

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

26 (I) 11.02 0.78 22.36 12.41 0.77 20.15 8.52 0.61 30.43 15.7 0.87 13.85 8.01 0.6 32.74

27 (I) 17.6 0.84 12.3 14.79 0.75 18.03 12.94 0.65 21.27 21.84 0.87 8.25 12.23 0.65 22.5

28 (I) 13.1 0.79 17.05 13.29 0.72 19.24 11.98 0.72 23.51 16.11 0.82 13.7 12.89 0.69 20.53

29 (I) 17.6 0.89 11.42 14.66 0.79 15.73 10.62 0.63 24.02 21.82 0.91 9.33 10.81 0.59 23.42

30 (I) 16.78 0.79 14.2 13.92 0.71 19.08 12.96 0.68 19.52 20.62 0.83 12.19 14 0.72 19.55

36 (O) 19.46 0.81 11.84 16.92 0.72 14.42 14.05 0.59 15.97 23.11 0.82 7.6 15.86 0.7 16.29

37 (O) 17.72 0.73 13.27 14.98 0.63 15.13 14.4 0.62 17.41 21.32 0.76 8.52 15.3 0.68 16.77

38 (O) 16.2 0.77 19.01 15.54 0.75 16.92 14.62 0.63 21.14 22.25 0.82 8.51 14.21 0.69 23.21

39 (O) 15.75 0.75 16.74 17.64 0.77 16.42 13.73 0.7 18.16 19.9 0.8 10.84 13.65 0.69 21

40 (O) 18.66 0.81 11.95 17.04 0.76 15.06 11.32 0.58 22.73 22.1 0.84 7.85 13.18 0.68 22.31

Average (I) 15.22 0.818 15.46 13.81 0.748 18.44 11.40 0.658 23.75 19.21 0.86 11.46 11.59 0.65 23.74

Average (O) 17.55 0.774 14.56 16.42 0.726 15.59 13.62 0.624 19.08 21.73 0.81 8.66 14.44 0.69 19.91
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Table 6.2: Quantitative results obtained on Fattal dataset in terms of SSIM (higher the better)
and CIEDE2000 (lower the better) metric. GT A denotes ground truth A is supplied
to the method.

Image
He et al. [28] Fattal [22] (GT A) Ren et al. [53]

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 11.16 0.78 28.74 21.43 0.96 6.34 14.17 0.87 20.25
couch 18.4 0.86 13.89 20.8 0.9 6.71 17.99 0.88 12.91
dolls 19.73 0.85 10.65 21.29 0.77 6.1 16.93 0.86 12.37
flower1 14.1 0.88 23.26 30.01 0.98 3.91 9.08 0.43 24.64
flower2 14.37 0.86 20.94 31.94 0.99 2.92 10.81 0.6 22.45
lawn1 13.84 0.8 22.38 24.49 0.97 6.65 14.37 0.83 21
lawn2 11.2 0.74 29.32 24.94 0.97 6.46 13.29 0.77 22.27
mansion 17.45 0.87 19.35 26.96 0.97 4.04 17.69 0.89 17.52
moebius 12.66 0.78 26.7 19.01 0.9 10.61 16.36 0.9 19.85
raindeer 18.12 0.83 14.22 26.22 0.94 4.1 16.82 0.81 15.49
road1 12.95 0.8 26.11 25.74 0.96 5.24 14.11 0.84 22.22
road2 15.84 0.84 22.13 23.6 0.96 7.11 16.45 0.88 20.17

Average 14.98 0.82 21.47 24.7 0.94 5.85 14.84 0.8 19.26

Image
Berman et al. [11] Li et al. [35] Our (ch3)

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 15.68 0.89 16.9 9.44 0.62 34.64 16.99 0.9 11.59
couch 17.24 0.87 14.18 16.77 0.83 17.32 16.23 0.78 15.84
dolls 15.69 0.83 15.73 17.21 0.85 10.88 13.64 0.8 18.14
flower1 12.15 0.72 20.99 12.22 0.79 29.41 19.27 0.89 11.19
flower2 11.86 0.68 21.16 13.13 0.79 25.26 21.93 0.9 7.79
lawn1 14.78 0.86 17.92 11.32 0.69 31.74 17.14 0.84 13.78
lawn2 15.32 0.87 17.8 10.98 0.68 31.7 15.79 0.8 15.9
mansion 17.33 0.87 15.83 14.24 0.7 24 19.65 0.84 9.2
moebius 14.58 0.85 22.39 13.22 0.77 27.61 18.72 0.86 12.59
raindeer 16.59 0.82 15.28 16.53 0.8 18.5 15.47 0.74 17.23
road1 16.3 0.88 19.06 11.75 0.66 29.31 15.91 0.78 14.45
road2 18.22 0.9 16.82 11.96 0.62 30.96 15.02 0.82 15.74

Average 15.48 0.84 17.84 13.23 0.73 25.94 17.15 0.83 13.62

Image
Our (ch5) Our Our (GT A)

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

church 14.46 0.9 24.39 12.46 0.84 25.42 21.54 0.93 7.07
couch 19.51 0.85 12.94 17.33 0.86 14.43 27.36 0.95 3.4

dolls 14.9 0.84 13.51 19.2 0.86 10.71 18.96 0.85 9.05
flower1 21.31 0.95 14.72 15.33 0.89 21.04 21.56 0.94 11.63
flower2 22.7 0.95 11.38 15.23 0.86 18.9 21.92 0.94 10.91
lawn1 16.13 0.88 20.21 14.19 0.84 21.45 24.18 0.96 6.19

lawn2 14.89 0.89 20.92 13.14 0.84 25.49 24.35 0.96 6.17

mansion 21.89 0.93 13.64 17.51 0.89 18.13 24.55 0.93 5.73
moebius 18.22 0.9 15.28 16.33 0.9 20.59 21.11 0.93 8.9

raindeer 22.63 0.9 10.7 18.76 0.86 13.34 27.53 0.96 2.92

road1 16.14 0.9 18.41 13.96 0.84 23.61 25.71 0.96 4.68

road2 15.88 0.91 20.79 15.3 0.83 22.65 23.04 0.95 6.33

Average 18.22 0.9 16.41 15.73 0.86 19.65 23.48 0.94 6.91

85



Chapter 6 Dehazing based on patch quality comparator

Table 6.4: Quantitative results obtained on Middlebury portion of D-Hazy dataset. GT A denotes
ground truth A is supplied to the method.

Image
He et al. [28] Ren et al. [53] Berman Berman et al. [11]

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

Adirondack 16.02 0.82 11.22 14.39 0.89 12.41 16.74 0.88 11.03 14.18 0.89 12.31
Backpack 14.4 0.85 11.32 16.21 0.87 9.81 12.24 0.82 14.02 16.1 0.91 9.67
Bicycle1 12.39 0.81 17.79 20.66 0.93 4.94 12.61 0.82 16.01 23.21 0.96 3.84

Cable 12.95 0.7 16.32 7.65 0.64 29.43 9.93 0.63 24.11 6.95 0.64 32.64
Classroom1 20.17 0.87 6.98 10.91 0.74 22.33 20.95 0.89 7.12 10.02 0.72 24.15
Couch 18.68 0.81 6.1 10.13 0.61 23.16 13.76 0.7 16.5 10.56 0.63 21.11
Flowers 17.73 0.89 8.5 10.47 0.78 21.32 17.45 0.9 11.74 9.25 0.76 24.24
Jadeplant 13.48 0.69 11.79 7.78 0.6 27.65 7.06 0.65 28.93 7.65 0.59 26.81
Mask 15.88 0.89 9.39 14.15 0.85 13.31 14.18 0.84 13.1 14.3 0.91 11.13
Motorcycle 13.81 0.79 14.29 13.2 0.81 14.89 11.6 0.62 19.15 12.25 0.82 16.52
Piano 18.66 0.86 6.68 12.4 0.71 17.34 15.08 0.78 15.14 13.89 0.75 13.93
Pipes 15.52 0.79 10.57 10.9 0.68 21.62 13.81 0.74 17.78 10.34 0.69 22.84
Playroom 17.7 0.85 7.89 13.42 0.77 15.07 17.64 0.83 10.1 13.24 0.78 14.24
Playtable 18.58 0.9 9.17 15.09 0.86 13.04 16.63 0.88 11.08 14.73 0.86 11.38
Recycle 12.5 0.82 17.17 18.3 0.95 7.8 13.43 0.88 14.63 16.62 0.9 8.82
Shelves 15.47 0.83 13.31 20.43 0.94 7.7 16.9 0.88 12.91 19.07 0.92 7.25
Shopvac 13.87 0.8 13.59 7.62 0.66 32.43 11.58 0.78 19.25 6.89 0.64 35.22
Sticks 16.96 0.9 8.87 20.5 0.96 5.39 20.41 0.93 7.54 19.13 0.96 6.3
Storage 17.38 0.88 9.92 11.23 0.82 18.97 16.36 0.88 11.51 10.24 0.79 21.48
Sword1 15.06 0.87 11.08 15.48 0.91 10.19 12.57 0.83 22.47 14.29 0.91 10.94
Sword2 15.66 0.89 7.78 12.89 0.88 13.99 14.89 0.88 14.47 12.8 0.9 13.49
Umbrella 10.4 0.8 20.73 14.92 0.9 12.2 9.63 0.72 27.81 14.58 0.91 11.66

Vintage 14.63 0.86 12.38 19.27 0.96 5.31 14.09 0.83 14.44 16.82 0.94 7.11

Average 15.56 0.83 11.43 13.82 0.81 15.66 14.33 0.81 15.69 13.35 0.82 15.96

Image
Our (ch3) Our (ch5) Our Our (GT A)

PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00 PSNR SSIM ∆E00

Adirondack 11.63 0.82 17.95 13.04 0.87 16.75 15.88 0.9 10.38 16.88 0.91 9.43

Backpack 12.57 0.76 19.62 14.95 0.91 10.98 14.73 0.87 10.27 14.87 0.87 10.06
Bicycle1 14.6 0.82 12.91 18.31 0.94 8.34 20.6 0.95 5.41 20.62 0.95 5.38
Cable 5.96 0.59 37.26 6.28 0.61 37.01 8.89 0.65 25.44 8.9 0.65 25.44
Classroom1 10.1 0.74 26.62 7.03 0.64 34.16 15.98 0.75 12.01 16.01 0.75 11.99
Couch 10.77 0.66 28.62 7.76 0.55 32.78 15.63 0.75 9.34 15.65 0.75 9.3
Flowers 8.76 0.75 25.66 9.38 0.77 23.98 13.27 0.84 14.12 13.29 0.84 14.07
Jadeplant 6.3 0.55 37.42 6.37 0.54 35.85 7.36 0.64 27 7.85 0.66 23.86
Mask 11.78 0.81 17.87 13.71 0.9 13.65 16.72 0.89 9.72 16.68 0.89 9.78
Motorcycle 11 0.72 27.99 10.12 0.78 21.48 15.22 0.83 11.79 15.23 0.83 11.79

Piano 14.1 0.79 20.71 10.15 0.67 24.47 19.75 0.86 6.26 19.72 0.86 6.27
Pipes 12.82 0.69 18.65 8.65 0.65 29.49 14.38 0.77 12 14.39 0.77 11.98
Playroom 13.19 0.75 21.23 10.45 0.72 21.75 18.22 0.85 7.6 18.19 0.85 7.63
Playtable 14.56 0.84 16.7 12.05 0.81 19.25 16.58 0.87 11.97 18.93 0.91 7.17

Recycle 15.47 0.93 14.94 15.05 0.9 14.28 17.81 0.94 8.32 17.89 0.94 7.78

Shelves 16.65 0.85 15.29 13.13 0.87 16.52 19.47 0.92 7.3 19.78 0.92 6.82

Shopvac 6.59 0.65 35.49 8.6 0.67 29.82 10.82 0.76 19.99 10.8 0.76 20.06
Sticks 12.18 0.77 20.98 13.56 0.91 13.85 19.59 0.94 6.13 19.59 0.94 6.12
Storage 9.21 0.76 25.33 11.68 0.81 19.92 13.72 0.85 13.62 14.26 0.85 12.93
Sword1 10.14 0.73 23.99 12.57 0.88 14.01 14.04 0.85 13.45 14.76 0.87 11.52
Sword2 9.87 0.79 23.02 11.29 0.88 16.94 14.68 0.91 11.27 14.68 0.91 11.27
Umbrella 12.81 0.87 18.77 12.8 0.88 15.51 13.32 0.88 13.37 13.54 0.89 12.88
Vintage 14.23 0.84 11.49 16.93 0.94 8.98 16.92 0.92 8.33 16.96 0.92 8.3

Average 11.54 0.76 22.54 11.47 0.79 20.86 15.37 0.84 11.96 15.63 0.85 11.38
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6.4 Results

(a) Input (b) Ren et al.
[53]

(c) Berman
et al. [11]

(d) Our
(ch3)

(e) Our (ch5) (f) Our (g) Ground
Truth

Figure 6.4: Visual comparison of the results on two images of I-HAZE and two images of O-HAZE
dataset

6.4.2 Qualitative Results

In this section now we visually compare the results obtained by different methods on

different images. Starting off with the four synthetic images of Fattal [22] (figure 6.5), it

is seen that color bias exists in the dehazed images obtained by He et al. [28], Ren et al.

[53], Berman et al. [11], and Li et al. [35] and also in our method (with A estimated

using Dark Channel Prior). This suggests that wrong estimation of atmospheric light

may introduce color bias in the dehazed output. This does not happen if the actual

A is supplied to the dehazing method (e.g. in the method of Fattal [22] and our (GT

A)). This is reflected in the CIEDE2000 values for the corresponding output images.

In some cases the results of our (GT A) is a bit yellowish than that of Fattal [22]. For

the NYU part of the D-Hazy dataset [4], we show 4 results in figure 6.7. As indicated

by the quantitative scores, the results of He et al. [28] is the cleanest followed by our

proposed method. The method of Ren et al. [53] and Li et al. [35] could clear the haze

properly. The method of Berman et al. [11] has performed better than these two. On the

other hand our method proposed in Chapter 3 has wrongly estimated the A which has

resulted in color distortions. For the Middlebury section of D-Hazy dataset [4], we have

illustrated the results with four images (figure 6.6): Piano, Bicycle1, Motorcycle, and

Flowers. The results show that the method of Ren et al. [53] and Li et al. [35] have failed
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to dehaze completely, particularly when the value of t is relatively low. For Motorcycle

and Bicycle1 images, the floor is dehazed more by our method because of it’s similarity

in color with airlight. The results also show that the method of Berman et al. [11] tends

to over-enhance the results a bit. Similar to what happens in the NYU section, the

method proposed in Chapter 3 has distorted the colors in the output. Now if we move

our attention to the images of I-HAZE Ancuti et al. [2] and O-HAZE Ancuti et al. [3]

dataset, we only the method proposed in the last chapter is doing well. The currently

proposed method is able to clear the haze in the indoor images, but not in the outdoor

images. Apart from that the intensity of the images has reduced quite a bit. This has

negatively affected the scores, even though the method has cleaned the haze to some

extend. The method of Chapter 3 has again distorted the colors. Among the remaining

the methods Berman et al. [11] has performed well in terms of clearing the haze, but the

method of Ren et al. [53] is not able to do that. Lastly, in figure 6.8 we have shown the

results of the dehazing methods on some real world images. From the results it is seen

that the method of Berman et al. [11] has a tendency to over-enhance the results. This

enhancement is more controlled in the results of Fattal [22]. The method of Ren et al.

[53] is able to clear the haze partially, especially in tiananmen and ny12 images. Li et al.

[35] has performed a little better except in the tiananmen image. Among our methods

the results of the color line based method (Chapter 3) looks more pleasing. The method

proposed in the previous chapter has retained the brightness of the results but also some

haze. The results of our method is a bit similar to results of He et al. [28], because we

have utilized the technique proposed by He et al. [28] to compute the environmental

illumination.

6.5 Summary

In this chapter we have proposed an image dehazing method that tries to estimate

transmittance in each patch by comparing the dehazed version of the input image with the

input hazy one. The comparison is done by our proposed patch quality comparator. With

this CNN based comparator in our hand, we employ binary search to find transmittance

in each patch. Although we have used the method of Dark Channel Prior [28] to compute

environmental illumination, the results show it is not always accurate. The output greatly

improves with correct environmental illumination. This shows that the environmental

illumination is crucial in dehazing an image, although it has not received the required

attention. The future work could be focused on accurate estimation of environmental

illumination for both day and night time cases.
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6.5 Summary

(a) Input (b) He et al.
[28]

(c) Fattal [22] (d) Ren et al.
[53]

(e) Berman et
al. [11]

(f) Li et al. [35]

(g) Our (ch3) (h) Our (ch5) (i) Our (j) Our (GT A) (k) Ground
Truth

Figure 6.5: Visual comparison of the results on four synthetic images: church, couch, flower2, and
lawn1.
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(a) Input (b) He et al. [28] (c) Ren et al. [53] (d) Berman et al.
[11]

(e) Li et al. [35]

(f) Our (ch3) (g) Our (ch5) (h) Our (i) Our (GT A) (j) Ground Truth

Figure 6.6: Visual comparison of the results of Middlebury portion of the D-Hazy dataset on
Piano, Bicycle1, Motorcycle, and Flowers.
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6.5 Summary

(a) Input (b) He et al. [28] (c) Ren et al.
[53]

(d) Berman et al.
[11]

(e) Li et al. [35]

(f) Our (ch3) (g) Our (ch5) (h) Our (i) Our (GT A) (j) Ground
Truth

Figure 6.7: Visual comparison of some Results of NYU portion of D-Hazy dataset
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(a) Input (b) He et al.
[28]

(c) Fattal [22] (d) Ren et al.
[53]

(e) Berman et
al. [11]

(f) Li et al. [35] (g) Our (ch3) (h) Our (ch5) (i) Our

Figure 6.8: Visual comparison of results on dubai, florence, herzeliya, tiananmen, and ny12 image.
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Chapter 7

Conclusion

In this thesis the problem of image dehazing has been explored with an emphasis on

removing the effects of environmental illumination using a variety of tool and techniques.

In Chapter 1, we begin with describing the problem of image dehazing and the atmospheric

scattering model that presents how images are formed under fog/haze condition. We

have also discussed different state-of-the-art methods that exists in the literature.

In chapter 2, the assumption of constant environmental illumination is relaxed, so that

we can handle the cases when the intensity of the illumination changes over a scene. This

situation may occur if the sky is not cloudy and direct sunlight is illuminating some part

of the scene. We have shown that a simple extension of the color line based dehazing can

handle such cases very well. For that we have utilized the color line model to estimate

the intensity of environmental illumination locally from multiple patches of the image, in

addition to estimating its color. Though the transmittance is not computed explicitly,

the computed airlight along with local contrast enhancement is able to recover a dehazed

version of the input image. Since the proposed method assumes that within an image the

color of environmental illumination is constant but its magnitude may vary, the proposed

method is likely to fail in producing satisfactory results where this assumption is violated,

e.g., night-time hazy images. So, in the next chapter (Chapter 3) the imaging model is

further relaxed. The assumption of uniform color of environmental illumination is relaxed

to a spatially variant one. That means over an image both the intensity and color of the

environmental illumination may vary. This relaxed model has enabled the proposal of a

image dehazing method that works for both night-time and daytime images. Although

the relaxed version suggests that A(x) can vary from pixel to pixel, in reality it varies

very slowly and may remain constant over significant large regions. So the number of

unique colors of environmental illumination becomes much less than the total number of

patches. Thus we can find the possible colors of the environmental illumination using

color line model and Hough transform. These colors are then utilized to calculate the

airlight component in the patches of the image. We did not attempt explicit computation
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of t(x), since after the relaxation, the number of unknowns (parameters) becomes even

more than the number of linear equations. It is observed that simple removal of the

airlight reduces the pixel intensity significantly, and the objects with color similar to

airlight becomes dark after dehazing. For this reason applying contrast enhancement as

a post-processing step becomes necessary. It is noted that this enhancement may not

work satisfactorily in all images and gamma correction may be necessary in isolated cases.

The resolution of the Hough space and the inaccuracies introduced by the interpolation

also impacts the dehazed output. The major problem of these two color line based

methods is the total number of user tunable parameters. The method utilizes around

10 parameters as thresholds and weights. The proposed method works well in many

images in the default values of the parameters, but the default values may not be ideal

for all kind of images. But, choosing right parameter values can potentially improve the

results. However, making adjustments to these parameters is not straight forward and

needs lots of tedious effort. For example, lowering the threshold allows more patches in

the estimation step, but can potentially allow incorrect estimates. So, from chapter 4

onward we have explored the use of Convolutional Neural Networks (CNN) for automated

learning of hazing related parameters.

In Chapter 4, as the first step, we have estimated scene transmittance and environmental

illumination jointly from small image patches using a convolutiona neural network (CNN).

The estimate obtained from the patches are then aggregated and utilized to obtain the

dehazed image. The results have shown that the CNN is able to estimate both t(x) and

A effectively from patches based on the given training data. Major advantage is it does

not require any user specified sensitive explicit parameters during run time. But the

method has its own share of pitfalls. It is observed that the average color of the patch is

getting predicted as the environmental illumination in many cases. This error is much

more prominent in those patches where the color does not vary much. The issue lies with

the size of the patches. Given a small patch it is always difficult to distinguish whether

the colors are due to an object or the illumination. On the other hand using bigger

patches give rise to another issue. Let us describe it briefly. We have used an indoor

image dataset with known depth maps (NYU v2) to synthetically generate the training

data. The trained network is applied on outdoor images, although the image statistics of

indoor and outdoor images vary quite a bit. In smaller patches (scale) it did not had

much effect. But when using bigger patches this can become significant. So, in the next

chapter we use two separate datasets (I-HAZE and O-HAZE) to train our network. The

said image dataset is quite big and contains only hazy and haze-free image pairs. It

does not contain any groundtruth transmittance or environmental illumination. So, the

network is trained using these hazy and haze-free image pairs. To achieve that we have
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proposed a new loss (called Bi-directional Consistency Loss), that makes the network

produce haze-free images that conforms to generate hazy image using the imaging model.

Here a Fully Convolutional Neural Network (FCN) is utilized to predict the transmittance

and airlight from bigger patches. The use of bigger patches has been enabled by the

FCN as this type of network can produce output that has same size as the input. Apart

from that, it is also observed that multi-scale approach is able to overcome the problems

of fixed scale in CNNs in dehazing. However, effectiveness of this multi-scale approach

needs to be validated in other situations. Although the network performs well in the

validation images of the I-HAZE [2] and O-HAZE [3] datasets, it does not perform well

in the other images. That means the network trained on this data is not well generalized.

All the methods of dehazing described so far relies on the quality evaluation of dehazed

image. We argue that given an image (hazy or dehazed) it is difficult to evaluate the

quality of the image independently. On the other hand, given two versions of the same

image it is much easier as well as reliable to decide which one is better in terms haze

content and thus leads to an image dehazing method. The idea is implemented and

validated through a patch comparator using CNN in Chapter 6. Here small patches are

taken so that assumption of constant transmittance within a patch remains valid. Thus

we search out the value of transmittance that properly dehaze the given patch with the

assumption that correct A is known before hand. Hence, instead of training a network

to predict the transmittance given a hazy patch, we are utilizing the network to compare

two patches in terms of haziness. This comparison is relatively easier and using this

we obtain a transmittance that does not overdo the dehazing. The results have shown

that a wrong estimate of environmental illumination can result in wrong estimate of the

transmittance. So, the environmental illumination is crucial in image dehazing and it

should be estimated properly.

7.1 Future scope of work

From this thesis, it is seen that hand crafted features work well, but they can be restrictive

in practice. The CNNs have an advantage in this regard due to their automated feature

computation. But these networks feed on data. If the data is not proper the results can

deviate badly from the desired ones.

• So, the design of data agnostic methods, to the extent possible, could be a possible

future direction of work.

Although this problem is common for neural networks, but availability of large datasets

for other computer vision tasks have remedied the problem to some extent. But in the
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context of image dehazing, collecting pairs of hazy and haze-free image of the same scene

is quite hard if not impossible, because the environmental conditions can change between

the two situations. Nonetheless, there have been efforts to make such datasets in real

conditions (e.g. I-HAZE [2] and O-HAZE [3]) apart from the synthetic datasets that are

available. But creating such a dataset for night-time hazy scenes is much more harder.

As a result, currently there are no known night-time hazy image dataset, synthetic or

otherwise. Hence, the CNN based methods focus on the dehazing of daytime images

only. Other than that, the importance of environmental illumination in the estimation of

transmittance is observed.

• So, research efforts should be made in the direction of reliable and systematic

estimation of environmental illumination.

• Another possible direction is questioning the imaging model itself for hazy image

formation.

This model has been formulated by the physicists [32], and then taken up and have been

analyzed by the pioneers of this field. But after that this model has been used almost

blindly followed without questioning the validity of the model and the assumptions made

to reach at the current version of the model. As, it has been shown it is not valid in

all kind of scenarios. So, the model should be looked at to have a better understanding

of the problem and to really improve the results. Finally, it is seen in the previous

chapter (Chapter 6) that the results are best among all the proposed methods. However,

it assumes that environmental illumination is uniform over the whole scene and has

unique color. So the patch comparator based dehazing method should be upgraded to

accommodate non-uniform illumination intensity and variable colors over scene.
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