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PREFACE

Let X be a rank one Riemannian symmetric space of noncompact type and A
be the Laplace—Beltrami operator of X. The space X can be identified with the
quotient space G/K where G is a connected noncompact semisimple Lie group of
real rank one with finite centre and K is a maximal compact subgroup of G. Thus
G acts naturally on X by left translations. Through this identification, a function
or measure on X is radial (i.e. depends only on the distance from eK'), when it is
invariant under the left-action of K. We consider right-convolution operators © on
functions f on X defined by, © : f +— f % u where u is a radial (possibly complex)
measure on X. These operators will be called multipliers. In particular © is a radial
average when y is a radial probability measure. Notable examples of radial averages
are ball, sphere and annular averages. Another well known example is f — f x hy,
where h; is the heat kernel on X. This will be called heat propagator and will be
denoted by e*”. In this thesis we shall study the questions of the following genre.

Below by eigenfunction we mean eigenfunction of A.

(i) Characterization of eigenfunctions from the equation f % u = f, which gener-

alizes the classical question: Is a p-harmonic function harmonic?

(ii) Fix a multiplier, in particular an averaging operator ©. Suppose that {fi}rez
is a bi-infinite sequence of functions on X such that for all k € Z, O f, = Afri1
and || fi|| < M for some constants A € C, M > 0 and a suitable norm || - ||.

We try to infer that then fj, hence every fx, is an eigenfunction.

(iii) Let B;f be the ball (of radius t) average of f. Plancherel-Pélya (1931) and
Benyamini-Weit (1989) proved that for continuous functions f,g on R", if
B:f — ¢ uniformly on compact sets as t — oo, then ¢ is harmonic. We

endeavour to generalize this result for eigenfunctions on X.

(iv) We explore the behaviour of heat propagator in X in large and small time to
illustrate the differences with the corresponding results in R™. In particular
we study the relation between the limiting behaviour of the ball-averages as
radius tends to co and that of the the heat propagator as time goes to oo and

use this relation for the characterization of eigenfunctions.
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Generalities

N : the set of natural numbers

Z : the set of integers

Z7 : the set of nonnegative integers

Z~ : the set of nonpositive integers
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R : the set of positive real numbers

R* : the set of nonzero real numbers

C : the set of complex numbers
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Chapter 0

Introduction

Let X be a rank one Riemannian symmetric space of noncompact type, which
is equipped with a distance d and the Laplace—Beltrami operator A induced by
its Riemannian structure. We fix a base point o of X, which we call origin. The
prototypical example of such X is the hyperbolic spaces, in particular the upper half
space. In this thesis we study some aspects of sphere, ball and other radial (with
respect to the origin) averages of functions on X, leading to the characterization of
eigenfunctions of A. The details of the problems we study are given in Section

below, after setting up the language in the next section.

0.1

The space X with the origin o can be realized as a quotient space X = G/K where
G is a noncompact connected semisimple Lie group with finite centre and of real
rank one and K a maximal compact subgroup of GG, so that o corresponds to the
coset e, where e is the identity element of G. Through this realization, functions
on X, and radial functions on X are identified respectively with right K-invariant
functions and K-biinvariant functions on GG. Measures and distributions on X are
also similarly identified with the corresponding objects on GG. The group G acts
on X = G/K (and on the functions on X) naturally by left translation which we
denote by ¢4, g € G. The Haar measure on G projects to a G-invariant Riemannian
measure on X. Thus a radial average of a function f on X at a point x € X, can
be written as f * pu(x) where p is a radial probability measure on X (identified as
a K-biinvariant measure on G) and * is the convolution of G. In particular the
average of f on a sphere of radius ¢, centered at € X, denoted by M, f(z) is given

by M,f(z) = f * o4(x) where oy is the normalized surface measure of the sphere of



radius ¢. Similarly the average of f on a ball B(xz,r) of radius r, centered at x € X
is
B.f(x) = fxm,(x)

where m, = Xpr)/Vr, Vr and xp(, are the volume of B(o,r) and its indicator
function respectively. A function f on X is called harmonic if Af = 0. The mean
value theorem asserts that f is harmonic if and only if M, f(x) = f(x) (respectively
Bif(x) = f(z)) for all t > 0. To continue this discussion, we shall introduce some
notation, without much elaboration. For A € C, the elementary spherical function
¢y is the unique radial eigenfunction of A with eigenvalue —(\? + p?) satisfying
©x(0) = 1. Here p is the half-sum of positive roots (counted with their multiplicities),
a positive number associated to the space X. We also have o\ = ¢_, and ¢;, = 1.
The generalized mean value property (MVP) states (see [41,42]) that a continuous
function f on X is an eigenfunction of A with eigenvalue —(\?+ p?) for some \ € C,
if and only if

fxo.=px(r)f for all r > 0. (0.1.1)

Above, @) (z) for z € X is interpreted as a function on distance of x from the origin

o. Therefore such a function f also satisfies the ball mean value property:

I * XB(oy) = </ () dx) f, for all » > 0. (0.1.2)
B(o,r)

Taking A = ip, we get back the standard MVP, characterizing harmonic functions.
To put our study in perspective, let us recall some well known and relevant facts.
These results illustrate the dichotomies between the space X and in particular the
Euclidean spaces, which we shall experience as we shall go through the thesis. For
simplicity we restrict first to harmonic functions. It follows from the Liouville the-
orem that bounded harmonic functions on R™ are constants. More generally if
a harmonic function on R"™ is of sublinear growth or nonnegative then it is con-
stant and harmonic functions on R" of polynomial growth of a fixed degree forms
a finite dimensional vector space. These assertions are valid for any complete non-
compact Riemannian manifold with nonnegative Ricci curvature and beyond. (See
e.g. [19/21,4584].) On the other hand the space X is of nonpositive Ricci curvatures
and these results are not true for X. For instance, there exist nonconstant harmonic
functions which are bounded or nonnegative. Indeed, the space of bounded (respec-
tively nonnegative) harmonic functions in X is infinite dimensional. In general, for

every p > 2, there is a wealth of LP-eigenfunctions with complex eigenvalues in X,



they are the Poisson transforms of suitable functions on the Poisson boundary of
X. Two other distinguishing features of X in the context of the problems we shall
deal with, are the exponential rate of volume growth of ball with radius and the

dependence of LP-spectrum of A on p.

0.2

Below we shall describe the problems we are concerned about, along with their
motivations. The discussion on a particular chapter may be read as the preamble of
that chapter. We hope this will help the readers to navigate through the thesis easily.
Unless stated otherwise, from now on by eigenfunction we shall mean eigenfunction
of A and by spectrum we mean the spectrum of A. Here and throughout this thesis,
p' denotes the conjugate exponent of p, i.e. p' =p/(p —1) and v, = 2/p—1. In
Chapter [I] we shall establish notation, terminologies and gather preliminary results
which will be used in the thesis. We shall however assume the basics of analysis
of A, as a detailed account on this is available in the literature (see e.g. [73-75]).
Chapter [2| to Chapter [5| contain the results of this thesis, some representatives of

which will be stated in these preambles.

Chapter

We take a radial (possibly complex) measure p on X. For a function f on X, f*pu
is a generalization of radial averages of f, whenever f*pu exists. If f+xu = f, then f
is called p-harmonic, because it reduces to the standard mean value property when
i = o,, the normalized surface measure of sphere of radius r. More generally, it
follows from that when f is an eigenfunction with eigenvalue —(A\?+ p?), then
for a radial function (or measure) h on X, fxh = /f;()\) f, whenever the convolution
and the spherical Fourier transform /l{(/\) = [ h(@)px(x) dz makes sense. Ball mean
value property is a particular case where h = xp(, ). We may assume that
ﬁ()\) = 1, so that the equation simplifies to f x h = f. We consider the question
if the converse is true, i.e., if f*xh = f for a radial function h for which /f;()\) =1
for a point A € C, then is it true that f is an eigenfunction of A with eigenvalue
—(A2+p?)? There are a few obvious necessary conditions, which we need to consider
for formulating such a result.

(1) The equation f x h = f requires the existence of f * h, which is equivalent
to the fact £,f € L*(X,h) for all most every g € G where L' (X, h) is the weighted
L'-space on X with weight h.



(2) The function f should be assumed to be in a suitable function space which
accommodates eigenfunctions with the prescribed eigenvalue —(\* + p?).

(3) To determine the eigenvalue —(\?+ p?) uniquely from the equation f*h = f,
we need to assume that h(\) = 1 and h(v) # 1 whenever v # £\ in the domain of
definition of h.

A rather subtle point to note is that by the condition (3) above we are preventing
eigenfunctions with eigenvalues other than —(\?+ p?) to satisfy the equation fxh =
f. We are expecting this to be sufficient to preclude all other functions which are
not eigenfunctions to enter as a solution of fxh = f.

We now repeat the (abstract) formulation of the question. Take suitable f,h
and fix an eigenvalue, so that the necessary conditions are satisfied. We ask what
extra condition on h can ensure that f x h = f implies that f is an eigenfunction
with that specified eigenvalue? Instead of one h we can use several functions say
hy, hs, ... in this formulation and adjust the necessary conditions accordingly, e.g.
in the condition (3) above we can now assume that ;(v) # 1 for at least one i.

Two prominent precursors to this study are Furstenberg’s characterization of
harmonic functions and Delsarte’s two-radius theorem. Furstenberg proved in ( |37,
38]) that if a bounded function f on X satisfies fxpu = f for an absolutely continuous
probability measure p then f is harmonic. (Furstenberg’s proof is probabilistic. For
another proof and a generalization see [81].) Suppose that p above is given by the
density h, i.e. h > 0 and fX h = 1. Then the domain of definition of % is the

Helgason—Johnson strip S, where
S1={AeC[[SA <p},

because, ¢, are bounded if and only if A € S;. Since ¢;, = 1, we have ﬁ(zp) =1
It also follows that ﬁ(l/) # 1 whenever v # +ip in S;, because |p,| < 1 for those v.
Thus a function f € L*(X) and h as above satisfy the necessary conditions given
above. Noting that (ip)* 4+ p? = 0, we arrive at the question answered affirmative
by Furstenberg: does f % u = f implies f is harmonic? But the question, which is
paraphrased as: is a g harmonic function harmonic, can be asked for other measures
p. Delsarte ([2930]) considered a characterization of harmonic functions through
the (spherical) mean-value property. It was shown that if a continuous function on
R" satisfies the mean value property on spheres of two radii, then f is harmonic,
unless the ratio of the radii belong to some finite set in R*. But there are nonhar-
monic functions which satisfy the mean value property with one radius. Once we

notice that average of a function f over a sphere of radius r is f * o, where o, is the

4



normalized surface measure on the sphere of radius r around the origin, this falls in
the genre of the questions we discussed above. It also indicates that sometimes we
may have to use more than one measure to characterize harmonicity. Motivated by
these results many authors considered various measures p on X (and related spaces
e.g. trees) and endeavored to find when a pg-harmonic function is harmonic. The pa-
per by Ahern, Flores and Rudin [2] is of particular interest for us. They considered
the Hermitian hyperbolic space and took the Lebesgue measure on B,,, the unit ball
in C" (as the standard ball model of the space) as u. Subsequently this result was
explained and generalized by Koranyi [49] and Ben Natan, Weit [10], who intrigued
our study. (See also |17,58].) However, it appears that not much attention was paid
in the literature for eigenfunctions other than the harmonic functions. Aim of this
chapter is to consolidate and extend the ideas and methods from the results dealing
with harmonic functions, after finding the proper set up to formulate the question
for eigenfunctions. Our basic tool here can be described largely as spectral analysis
and synthesis. But we recall that the Fourier transforms of LP-functions extend an-
alytically in a complex domain for p € [1,2), which prevents us to use the standard

method of determining the support of the Fourier transform of a dual object.

Chapter
In [67], Roe proved the following characterization of the sine function.

Theorem 0.2.1 (Roe). Let { fi}rez be a bi-infinite sequence of functions on R such
that fry1 = ‘g—; and | fr(x)] < C for all k = 0,£1,4£2,--- and © € R for some

C > 0. Then fo(x) = asin(xz + b) where a and b are real constants.

This theorem was generalized by Strichartz in [76] and Howard—Reese [44], where
d/dz was replaced by the standard Laplacian Ag. of R™ and a characterization of
bounded eigenfunctions of Ag» with eigenvalue —1 was obtained, although the proof

works for other eigenvalues, for which there are bounded eigenfunctions.

Theorem 0.2.2 (Strichartz). Let { fi}rez be a bi-infinite sequence of functions on
R"™ with Agn fi, = afyr for some a > 0, for all k € Z. If || fi|lpoemny < C for all
k € Z, for some C' > 0, then Agn fo = —afp.

Among other things, it was demonstrated by a counter example in [76] that
the result is not true for the hyperbolic 3-space. As observed in [52], such counter
examples can be constructed in any Riemannian symmetric space of noncompact

type. Indeed, the shape of the LP-spectrum of A and the growth/decay of the

5



elementary spherical functions are responsible for the failure of this result. Taking
this into account, the story was further extended in [52], where they proved a version
of Theorem for eigenfunctions of A corresponding to nonzero real eigenvalues
belonging to the interior of the L!-spectrum, replacing L®-norm by suitable weak
LP-norm (denoted below by || - ||p.0) in the formulation. A representative result

in [52] is the following.

Theorem 0.2.3. Let { fy}rez+ be an infinite sequence of functions on X such that
for some p € (1,2), Afy = —4p*/pp fr1 for all k € ZF. If || fillyoo < C for some
C >0, for all k € Z*, then Afo = —4p*/pp’ fo.

If we take f, = f for all k € ZT, where f is a weak L¥ -eigenfunction with eigen-
value —4p?/pp/, then it is trivially true that || f¢||y 0o < M where M = || f||,/.co. The-
orem [0.2.3] asserts that the apparent weak assumption of uniform-norm-boundedness
of such a sequence leads to the strong conclusion that f; and hence all f; are eigen-
functions. Perhaps, due to intrinsic difficulties, eigenfunctions with other (in par-
ticular complex) eigenvalues were not considered in [52].

We consider translation invariant continuous linear operators © on function
spaces of X, which will be called multipliers. Indeed, they are radial (right) con-
volution operators f — f * u with p radial, which include suitable functions of the
Laplacian. In the previous chapter we have considered them as generalization of
radial averages. It appears to be natural to formulate the result above replacing
A by such O, as we recall (and endeavour to extend) the heuristic principle: “an
equation involving the Laplacian implies an analogous equation involving functions
of the Laplacian” (see [74]). However, we realize that we cannot cast our net too
wide to consider all such © and therefore content ourselves with some examples of ©,
e.g. ball and sphere averages, heat operators etc, which conforms with the concern
of this thesis. Nevertheless, for the case p = 2, we strive to address the question
in this generality and succeed partially, taking advantage of the one-dimensional
L?-spectrum. We may conjecture at this point that such an assertion for all multi-
pliers should be true for other admissible p (i.e. for which there are eigenfunctions

in LP(X)). The typical results we prove here are the following:

Theorem 0.2.4. Fizt > 0. For 1 < p < 2, let {fi}rez be a bi-infinite sequence of
measurable functions on X such that for oll k € Z, My fr, = Afi11 for some constant
A e C and | filly.co < C for a constant C > 0.

(a) If |A] = wiy,plar), then fo is the Poisson transform at —ivy,p of a function
F e LV (K/M), in particular, Afy = —%fo.

6



(b) If |A| < @iy,plar), then fo may not be an eigenfunction.
(c) If [Al > piyplar), then fo = 0.

Below by CP(X) we denote the Harish-Chandra LP-Schwartz space on X for
0 < p < 2. Elements of the dual space of C?(X) are called LP-tempered distributions.

Theorem 0.2.5. Let © : C*(X) — C*(X) be a multiplier with real valued symbol
m(A) € C®(R). Let {fx}trez be a bi-infinite sequence of measurable functions such
that © fr, = Afiy1 for all k € Z, for a nonzero constant A € C and || fi||2,00 < C for
a constant C' > 0. Let m(R) = {m(\) | A € R}. We have the following conclusions.

(a) If |A| € m(R) but —|A| ¢ m(R), then © fo = |Al fo.
(b) If —|A] € m(R) but |A| ¢ m(R), then © fy = —|A|fo.

(c) If both |A|,—|A| € m(R), then fo can be uniquely written as fo = f+ + f-
where fi, f_ € L**°(X) satisfying O f, = |A|fy and Of_ = —|A|f_.

(d) If neither |A| nor —|A| is in m(R), then fo = 0.

We note that apart from the spherical, ball mean value operators and heat prop-
agator or simply a polynomial in A, Riesz and Bessel potentials, resolvent operator,
heat operator in complex time z with Rz > 0, right convolution by a radial CP-
function for 0 < p < 2 or by a radial Li-functions with 1 < ¢ < 2 are some easily
found examples of such multipliers acting on C*(X).

These results cover eigenfunctions with eigenvalues in (—oo, —p?], which are in
some weak LP-spaces. To enlarge the scope to all real eigenvalues, and to accommo-
date eigenfunctions without such growth condition (e.g. the powers of the Poisson
kernel itself), we also formulate these results, using Hardy-type norms (see [13]) and
LP-tempered distributions instead of LP or weak LP as size estimates.

Finally, we shall also try to complement Theorem by extending it for all
complex eigenvalues, where A is replaced by a perturbation of it (see Theorem m

and Corollaries |3.2.9] |3.2.10]).

Chapter

Let V; = |B(o,r)|, the volume of the ball of radius r and m, = V, 'xp@,). We
shall use these notation both for Euclidean spaces and symmetric spaces. Char-

acterization of harmonic functions through asymptotic behaviour of ball or sphere



averages of a function as the radius goes to zero is classical. For instance, we recall

that [14,/15], f is harmonic on an open set D of R™ if and only if
%|f>x<ar(x)—f(x)| —0 as r—0+ forallzeD.
”

See e.g. Gray and Willmore [40] for more general results on Riemannian manifolds.
However, the asymptotic behaviour of these averages as the radius tends to infinity
seems to be less well known. We understand that the earliest result which considered

this to characterize harmonic functions on R and R? is by Plancherel and Pélya [59)].

Theorem 0.2.6 (Plancherel and Pdélya 1931). Suppose that for a function f €
L}OC(R2)7

lim f *m,.(z) = ¢(z) for all z € R%

r—00

If there are ¢ € L] (R*)™ and ro € L2.(R?)™, such that for all x € R?,

loc loc
|fxm.(x)] <(x),  forall r > ro(z),

then ¢(x) is a harmonic function on R2.
In more recent years, Benyamini and Weit [12] obtained a version for R™.

Theorem 0.2.7 (Beniyamini and Weit 1989). If for a continuous function f on R™,

lim f*xm,=f
r—00

uniformly on compact sets, then f is a harmonic function.

In fact, apart from Lebesgue measure, more general radial measures were con-
sidered on R™ and on the unit disc in [12]. It is plausible to formulate these for any
metric-measure space, (where harmonic functions can be defined by spherical MVP,
if there is no Laplacian), in particular for complete Riemannian manifolds. We set
our goal to have such asymptotic version of the (generalized) mean value theorem

as radius tends to infinity. As an analogue of Theorem (0.2.7| we offer,

Theorem 0.2.8. Let f and g be two continuous functions on X. If for some A € C,

—1
{/B( )%(?J) d’y] f* XBon(r) = g(x) asr — oo

uniformly on compact sets, then Ag = —(\* + p?)g.



We shall also prove an exact analogue of Theorem [0.2.6| characterizing eigenfunc-
tions on X. A takeaway from these results is that any condition on the growth of
f is unnecessary. However, assumption on growth of f, may allow different (pos-
sibly easier) proof, and the conclusion can be sharpened, by getting more concrete
realization of the limit function ¢ as a Poisson transform of some LP-function on
the boundary. We pause briefly, to review the situation in the Euclidean spaces,
for functions with growth conditions. To keep the discussion simple we restrict to
the case of harmonic functions. We recall that if f € L>°(R") is harmonic, then by
MVP, f(x) = fxm,(z) for any point = € R™. Let A(r, R) be the annulus with outer

radius R and inner radius r. We have, if f is harmonic, then as r — oo,

[A(r = |z],r + [2])]
| B(o,7)]

[£(0) = f(@) = [f *mu(0) = f 5 mp(2)] < O flloo — 0.
This shows that f € L*(R") is harmonic implies that f is constant. This proof
works for functions with sublinear growth. The proof in fact shows that for an

arbitrary (i.e. not necessarily harmonic) f € L>*(R"),

[A(r — ||, r + [])]

— 0 asr — 0.
|B(o,7)|

| mp(0) = froema(2)] < Cf| flloo

We conclude that if f *m,.(zo) oscillates at a point zo € R", then it oscillates ‘the
same way’ at other points and if fxm,.(z¢) — C, for a constant C then fxm,(z) — C
for any other point x as r — 00. So, f * m,.(z) — g(x), implies g is constant, hence
harmonic. The crucial fact used in the proof is the polynomial growth of the ball.
Indeed, growth of the ball is an important ingredient for similar results in other
manifolds (e.g. see [21]). As mentioned above, in the symmetric spaces X, which
we deal with here, geodesic balls grow exponentially which vindicates the failure of
these results and prevents us to foresee the asymptotic behaviour of the ball averages
of a function, even with appropriate growth assumption on it.
Let us come back to the space X. For convenience we shall use these notation:

1
Vr)‘ = / ox(z) dz, m,)) = WXB(O’T)’ for any A € C.
B(o,r) r

A concern about the statement of Theorem [0.2.8is that V* = fB(O " ©x(y) dy in the

denominator can possibly be zero for some r > 0. Fortunately, for A ¢ R*, it can
be shown that there exists C)\ > 0, such that for all r > Cy, V* # 0. This resolves
the issue for A ¢ R* as r — co. If A € R*, then V* can be zero for some r. Let Dy



be the set of discrete zeros of the analytic function r — [ Blow) ox(y)dy = V. We
interpret r — oo as r — oo through Rt \ Dy. But the situation is more involved
in this case. We need to find a sequence {r,} of radii with r, T oo and a § > 0
independent of n, such that for r € [r, — 9,7, + ], V> # 0. We may stay away from
these interpretational worries in this introduction, as they will be explained in detail
in the chapter. But it may be worth pointing out that this adds difficulties to the
proof and finding this sequence of intervals of a fixed minimum length where V?* is
nonzero is a crucial point of the proof. Another key-feature of X, we use, is the fact
that distance function is geodesically convex in X. The proof is rather geometric
than Fourier analytic and is influenced by [12].

From the result above for continuous or locally integrable functions, we can
derive result for functions with growth conditions. A representative theorem is the

following.

Theorem 0.2.9. For f,g € LP(X), 2 <p < oo and XA € C with |I\| < |yp|. if
1 m2 = gllp = 0 as 7 — oo,

then Ag = —(\* + p?)g.

For such a result for functions in Lebesgue or weak Lebesgue spaces, but with
pointwise convergence replacing norm convergence, we shall wait till the next chap-
ter.

We shall also consider theorems of this genre under spherical and annular aver-
ages, for functions with and without growth conditions. While the ball, spherical or
annular averages are mean-value operators (i.e. eigenfunctions satisfy the MVP for
them), we shall note that there are “averages” which are not mean-value operators,
but still lead to the desired conclusion asymptotically. See e.g. Propositions
and [£.4.6]

Chapter

We shall explore some properties of the heat propagation on X, in large as well
as in small time, again in the context of characterizing eigenfunctions and exhibit
the differences with their Euclidean counter parts. We believe that the results here
vindicate the well known fact that geometry of the space affects its heat kernel and
the heat kernel illustrates many distinguishing features of the space.

Our first aim is to relate the large time behaviour of the heat operator acting on a

function with the asymptotic property of its ball average. Using Wiener’s Tauberain
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theorem on R, Repnikov and Eidel’'man ( [65,66]) proved that for f € L>°(R") and
a fixed point o € R", f % m,(z9) — L for a constant L as r — oo if and only if
ethrn f(20) — L as t — oo, where Agn is the Laplacian on R™. This result was
generalized by Li in [53] to complete n-dimensional Riemannian manifolds M with
nonnegative Ricci curvature with the property that | B(zg, )| > 6r" for all large r for
some constant #, which by Bishop—Gromov comparison theorem (see [56]) implies
that ball around zy has polynomial volume growth. The proof uses the Euclidean
result of Repnikov and Efdel'man mentioned above. We shall see that one side of
the theorem fails for X, which, as mentioned above, is of nonpositive Ricci curvature
and in which balls grow exponentially. Precisely there are functions f € L>*(X),
such that e!®f(x) converges for any # € X as t — oo, but f * m,(z) does not
converge as r — 00. But the direct side of the assertion will be shown to be true for
X, although Tauberain argument cannot be used here. We shall prove the following
general statement. Here h; is the heat kernel, the kernel of the operator e'®. We
define b} = e!™+")h, which is the kernel of the operator e®+¥+7°) in other words

h} is the fundamental solution of the perturbed heat equation:

0

A+ +pf =51

The notation m? is as defined above in the discussion of Chapter .

T

Theorem 0.2.10. Fiz ap > 2. Let \ =i(2/p—1)p. Then for any weak LP-function
f and a point xq € X,

lim f*m)} (o) = L implies lim f * h)})(xo) = L,

r—00 t—o00
where L is a constant. The converse is not true, i.e., there exists weak LP-function

f on X and point zg € X, such that f x h)}(xg) converges to a limit as t — oo but

f*m}wo) does not as r — oo.

Through this relation and using that ) is a semigroup, we shall get a version
of Theorem [0.2.9| under pointwise convergence. The upshot of this new argument is
that it is free from the use of the geometric property of convexity of distance, albeit
at the cost of the assumption on growth of the function f (so that f * h) makes
sense).

Our next aim is to illustrate that results involving heat propagation in small
time also differs from the corresponding Euclidean results. Although these results are

closely related to those in Chapter [2] we have included them here for the convenience
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of the presentation and to vindicate this point.

We start with the simple observation that if Af = 0 for a suitable function
f then e'®f = f for any t > 0, whenever it makes sense. For the converse, we
can appeal to the result of Furstenberg [37] (mentioned above in our discussion on
Chapter [2) which states that if f* u = f for any function f € L*°(X) and an
absolutely continuous radial probability measure p on X, then f is harmonic. The

A is given by convolution with the heat kernel h;, i.e. for a suitable

operator e’
function f, e'®f = f * h,. Since, for every ¢t > 0, h, is a nonnegative radial function
and [, hy(x)dz =1, we can apply the result of Furstenberg, taking du = hy(z) dz.
Thus if for a function f € L®(X), e!®f = f for some t > 0, then f is harmonic, i.e.
Af=0.

As in other chapters, instead of only harmonic functions we consider eigenfunc-
tions of A with nonzero eigenvalues. It is evident that if Af = cf, for a function
f € LP(X) and a complex number c in the LP-point spectrum of A, then e!® f = ef¢f
for any £ > 0. Here we endeavour to explore the converse of this. The precise ques-
tion is: if for f and c as above, e!® f = e f for some ¢ > 0, is it necessarily true that
Af = cf? Indeed, while this converse holds true for Euclidean spaces, the situation
is different for X as above. We shall show that the answer to such a question is af-
firmative only when t lies within a sharp range 0 < ¢t < T, where the critical time T
depends on the proposed eigenvalue ¢ and the integrability of the eigenfunction (or
temperedness of the eigendistribution). In fact f € LP(X) in the above discussion
can be replaced by appropriately tempered distributions. As mentioned above, the
tempered distributions being less restrictive, perhaps the ideal objects to consider in
this setup. However as noted in the discussion on Chapter [2 the complex analytic
extension of the LP-Schwartz class functions on X, precludes the FEuclidean tech-
nique of locating the support of the Fourier transform of a tempered distribution
and adds to the difficulties.

0.3

We conclude with the following remarks. We recall that the Damek-Ricci (DR)
spaces S are solvable Lie group N x A, where N is a nilpotent Lie group of Heisenberg
type and A is isomorphic with R. They are also known as harmonic NA groups.
Through the Iwasawa decomposition G = NAK of G, a rank one Riemannian
symmetric space X = G/K of noncompact type, can be realized as a DR space.

Indeed, they are the most distinguished prototypes of the DR spaces, though they

12



account for a very thin subcollection in the set of all DR spaces (see [5]). In general
a DR space is not a symmetric space. The absence of semisimple group-action in
a general DR space S offers many fresh challenges, as one tries to carry forward
the results on X to them. One instance of the difficulties is that unlike on X, the
decomposition of a function in K-types is unavailable in S, in particular the radial
functions (and radialization) on S cannot be defined by group action. Keeping these
in mind we have completely avoided such well-known techniques in our proofs. Most
of the basic ingredients we used in the proofs are available for DR spaces. Thus the
results in this thesis should be readily extendable to these spaces.

It is also plausible to ask questions similar to those considered in this thesis for
higher rank symmetric spaces. We, however, note that some of the key results used
in this thesis, e.g. Proposition [1.5.2] and Theorem [2.1.1] are specific to rank one
symmetric spaces. They are used in Chapter [2] and Chapter [3] A starting point in
Chapter [ is the sphere or ball mean value property. We recall here that the mean
value property in higher rank symmetric spaces is about averaging on the K-orbit of
a point, which is not a geodesic sphere. In general, we feel that while some versions
of the results in this thesis should be true in higher rank, in most of them, it may

not be a straightforward extension.
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Chapter 1

Preliminaries

The aim of this chapter is to establish the notation and to introduce some of the
terminologies (especially those which are not so standard), that we assume in this
thesis. List of symbols given in pages covers most of the notation and we shall
try to remind the readers at the places where it will be used. Therefore we omit
repeating the basic notation, except a few important ones.

We shall follow the practice of using the letters C,Cy, Csy, C’, ¢ etc. for positive
constants, whose value may change from one line to another. The constants may
be suffixed to show their dependencies on important parameters. Everywhere in
this thesis the symbol f; < f, for two positive expressions f; and f; means that
there are positive constants C7,Cy such that Cif; < fo < Cyf;. For any set E,
we will denote its indicator function by yz. For a set S in a topological space S
is its closure and S° is its interior and for a set S in a measure space |S| is its

measure. For p € [1, 00|, by L? we denote the Lebesgue spaces. The space of locally

1

integrable functions and locally bounded functions are denoted respectively by L; .

and L$°

loc*

shall not distinguish between two locally integrable functions which differ on a set

The space of compactly supported C'*° functions is denoted by C:°. We

of measure zero. For two functions fi, f2, the notation (fi, f2) means [ fifs if the
integral makes sense. The expression (f1, fo) may also mean that the distribution
f1 is acting on the function fo. For p € (0,1) U (1,00), let p’ = p/(p— 1), p' = ¢
if p=1and p' = 1if p = co. Note that p’ is negative for 0 < p < 1. Support
of a function f and the (distributional) support of a tempered distribution 7" are

denoted by Supp f and Supp T respectively.
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1.1 Lorentz spaces

Let (M, m) be a o-finite measure space, f : M — C be a measurable function and

p € [l,00), q € [1,00]. We define

(q [[tds ()70 )T it g < oo,

1fllpq =

sup tdf(t)l/p if ¢ = oo,

>0
where for a > 0, df(o) = m({z | |f(z)| > a}) is the distribution function of
f. Note that instead of the usual definition using the decreasing rearrangement
f*(t) = inf{s | ds(s) < t} of f, we have used an alternative definition. For the
equivalence see [63]. Let LP?(M) be the set of all measurable functions f : M — C
such that || f]|,, < co. We note the following.

(i) The space LP*°(M) is known as the weak LP-space.
(i) LPP(M) = LP(M) and [| - [, = [| - || for 1 <p < o0.

(iii) For 1 < p,q < oo, the dual space of LP4(M) is LP¢ (M) and the dual of
LPY(M) is LP">°(M).

(iv) If g1 < g < oo then LP4 (M) C LP42(M) and || fllp.g; < [ fllp.a:-

The Lorentz “norm” || - ||, is actually a quasi-norm and LP?(M) is a quasi Banach
space. For 1 < p < oo, there is an equivalent norm which makes it a Banach space
(see [72, Chapter V, Theorem 3.21, Theorem 3.22]). We shall slur over this difference

and use the notation || - ||,,. For more details on Lorentz spaces we refer to [72].

1.2 Symmetric space

Notation and preliminaries required for symmetric spaces are standard and can be
found for example in [41,42]. We recall that a rank one Riemannian symmetric space
of noncompact type (which we denote by X throughout this thesis) can be realized
as a quotient space G/ K, where G is a connected noncompact semisimple Lie group
with finite centre and of real rank one and K a maximal compact subgroup of G.
Thus o = {eK} is the origin of X. We shall frequently identify a function on X
with a function on G which is invariant under the right K-action. The group G acts
naturally on X = G/K by left translations ¢, : tK' — gz K for g € G. The Killing
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form on the Lie algebra g of GG induces a G-invariant Riemannian structure and a G-
invariant measure on X. Let d(-,-) be the distance and A be the Laplace-Beltrami
operator on X, associated to this Riemannian structure on X. For z € X, by |z| we
denote d(o, z), the distance of = from the origin o = eK. Let ¢ be the Lie algebra
of K, g = €@ p be the corresponding Cartan decomposition and a be a maximal
abelian subspace of p. Then dima = 1 as G is of real rank one. We denote the real
dual of a by a*. Let ¥ C a* be the subset of nonzero roots of the pair (g,a). We
recall that either ¥ = {—~,~} or {—2v, —v,~, 27} where  is a positive root and the
Weyl group W associated to ¥ is {Id, —Id} where Id is the identity operator. Let
m, = dim g, and my, = dim go, where g, and go, are the root spaces corresponding
to v and 2v. Then p = %(m7 + 2my, )7y denotes the half sum of positive roots. Let
Hy be the unique element in a such that y(Hy) = 1/2 and through this we identify
a with R as t — tHy. Then ay = {H € a | y(H) > 0} is identified with the set of
positive real numbers. We identify a* and its complexification af respectively with
R and C by t — ty,t € R and z — 27, z € C. By abuse of notation we will denote
p(Hp) = 3(my + 2ma,) by p. Let n =g, + go,, N =expn, A=expa, AT =expay
and A+ = expa;. Then N is a nilpotent Lie group and A is a one dimensional
vector subgroup identified with R. Precisely A is parametrized by as = exp(sHy).
The Lebesgue measure on R induces a Haar measure on A by das = ds. Let M be
the centralizer of A in K. The groups M and A normalizes N. We note that K/M
is the Furstenberg boundary of X.

The group G has the Iwasawa decomposition G = K AN and the polar decom-
position G = K ATK. Through polar decomposition X is realized as A+ x K. Using
the Iwasawa decomposition G = KAN, we write an element x € G uniquely as
k(x)exp H(xz)n(x) where k(x) € K,n(z) € N and H(x) € a. Let dk and dm respec-
tively be the normalized Haar measures on K and M. let dg be the Haar measure

on GG uniquely given by the Reimannian measure on X and the measure dk on K

so that
/Gf(g)dgz/G/K/Kf(gk)dk’d(gf(),

holds for all integrable functions f on G. Corresponding to Iwasawa and polar de-

compositions of G we have the following integral formulae for any integrable function

fon G,
/Gf(g)dg:/I(A/]Vf(katn)ezptdndtdk, (1.2.1)

/Gf(g)dg:/K/W/Kf(klatkg)J(t)dkldtde, (1.2.2)

17
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where J(t) is the Jacobian of polar decomposition given by

s A t\"
= inh — h—
J(t) ) (sm 2) (COS 2)

and n = m., + mgy + 1 is the dimension of the symmetric space. Since sinht =<

te'/(1+t) for t > 0, it follows from (1.2.2)) that

1
/If(g)ldg = 01// / | f(kyagks) [t~ dky dt dk,
G xkJo Jk
02// /!f(/{:1atk2)|62ptdk;1dtdk2 (123)
KJ1 JK

For an integrable function f on X, [, f(g9)dg = [y f(x)dx where in the left hand

side f is considered as a right K-invariant functlon on G and dg is the Haar measure
on (G, while on the right hand side dx is the G-invariant measure on X. We shall
slur over the difference between integrating over G and that on X = G/K as we
shall deal with functions on X.

A function f on X is called left K-invariant if f(kz) = f(z) for all k € K and
x € X. Thus a left K-invariant function on X can be identified with a K-biinvariant
function on G. Note that for a K-biinvariant function f, f(x) = f(y) if |z| = |y|,
i.e. they are radial. We shall use both the terms radial and K-biinvariant for such
functions. For any function space £(X), by L(G//K) we denote the set of radial
functions in £(X). A measure x4 on X is radial or K-biinvariant if y is invariant
under left translation by elements on K, ie. [, f(z = [ f(kz)du(z) for
every k € K. We note that for a radial function f, f( ) = f(x_l), as |z| = ]x 1.
For a function f € L] (X) we define its radialization Rf by

= /Kf(k:x) dk

Then Rf is a radial function and if f is radial then Rf = f. We also note that for
o, € CX(X), we have (i) (Ro,v) = (¢, RY) and (ii) R(A¢) = A(R¢). From (i)
it follows that [, f(z)de = [ Rf(x)dz and hence |[Rf|j; < ||f|l;. We have also
the trivial Lm—boundedness of the operator R; ||Rf|| < ||f|lco- Then a standard
interpolation argument (see e.g. (72, p. 197]) yields that

HRJCHp,q < Hf”p,q for 1 <p<oo,1<q< 0.
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For any A € C, we define the elementary spherical function ¢, by
NED) :/ e~ (IATAHE@MR) g (1.2.4)
K

Then ¢y, is K-biinvariant, oy = ¢_x, @a(1) = pa(z7) and Apy = —(A2 + p?)py. Tt
can be verified that |px] < @iga, pa(e) =1 for A € C and ¢;, = 1. For A € C we

denote

E\y={ue€ C®X):Au=—(\+p’)u}.

It is well known that u € E) if and only if u satisfies the following functional equation
(see |41} Proposition 2.4, p. 402]):

/ u(zky) dk = u(x)px(y), for all x,y € X. (1.2.5)
K

Thus in particular

/KQO,\(xky) dk = pr(2)oa(y), 7,y € X.

If w € E) is radial, then putting x = e in (1.2.5) we get u(y) = u(e)pa(y). For

SA < 0 and t > 0, we have the following asymptotic estimate of ),

lim e~ (A=P 0, (a) = () (1.2.6)

t—o00

where ¢(A) is the Harish-Chandra c-function (see [41], Theorem 6.14, Ch IV). Since
the c-function has neither zero nor pole in the region S\ < 0, from this we obtain
the following. For any A € C with S\ # 0, there is a t) > 0 such that

loa(ar)| = piga(a) < SN for |t > t,. (1.2.7)

In particular for 0 < p < 2 and for large ¢ > 0,

2pt

|Pinpplar)] < e 7", (1.2.8)

where v, = 2/p — 1. For A = 0 we also have (see [3])

wol(ag) = (1 + |t))e M. (1.2.9)
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For p € C and k € N, let

akz
Pur(T) = W@A@)h:u-

It satisfies the following estimate ( [42, Ch 3, §1 Lemma 1.18 (iv)]):

()

for some constant C' > 0, where P is a polynomial of degree r and |z| = d(o, ).

< C(1+|z)) pisa(x), z € X (1.2.10)

We also observe that g = 0 for odd k£ € N as ¢,(z) is an even function in A for
any fixed x € X and hence ¢, j(z) is an odd function in A. For a measurable radial

function f on X and A\ € C, we define the spherical Fourier transform of f at A by

FO) = /Xf(x)%(m) dz, (1.2.11)

whenever the integral makes sense. When the function f is radial we may simply
refer fas the Fourier transform of f. For a suitable function f on X, A € C and
k € K/M, we define the Helgason Fourier transform of f by

FNK) = /X Fla)e FAHEE) ga (1.2.12)

If f is K-biinvariant then f(\, k) is independent of k € K/M and reduces to its
spherical Fourier transform fA()\)

Let B(z,t) be the geodesic ball of radius ¢ > 0 centered at x in X and |B(x,t)]
be its volume. For f € Li .(X), let M, f(x) denote the average of f over the geodesic

loc

sphere of radius ¢ with center at /K in X. Precisely,

M, f(z) = fxoy(x) = /Kf(xk:at)dk:,

where o, is the normalized surface measure of the geodesic sphere of radius ¢ with

center at the origin o = eK. The volume average of such a function f is denoted by

B, f and is defined by,

1 1
B f(z) = mf * XB(oyt)(T) = 1B(o.0)|

f(z) dz,
Oat)’ B(z,t) ()

where x p(o,)(2) is the indicator function of B(o,t).
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For a fixed A € C we define
Ve[ pwde= [ e d,
B(o,r) 0

where J(t) is the Jacobian of the polar decomposition defined in (1.2.2)). Thus V

is the spherical Fourier transform at A, of xp(. Let

Note that, V,"» = |B(o,r)| and m¥ = (1/|B(0,7)|)XB(os)-

1.3 Jacobi functions

For o, f > —1/2 and t > 0, let gbf\a’ﬁ )(t) denotes the Jacobi functions defined by
(a7ﬂ) 1 . 1 - . 2
Nt = o 5(@—1—5—}—1—2)\),§(oz+/3—|—1+2)\);a—|—1;—smh (t)

where o F} (a, b; ¢; z) is the Gaussian hypergeometric function. For a detailed account
on Jacobi functions we refer to [48]. We recall that for rank one symmetric spaces,
elementary spherical functions are Jacobi functions. They are related in the following

way. Let m = m., k = mg, and n =m + k + 1. Then

palar) = o7 (t/2) (1.3.1)

fora=(m+k—1)/2and = (k—1)/2 (see [5], p. 650).
For SA < 0 we have the following asymptotic estimate for Jacobi functions
(see [48, 2.19, p. 8], cf. (1.2.6) — (T.2.8)).

AP (1) = cas(\)e™ (1 4 0(1)) as t — oo (1.3.2)
where AT (i)
207 T (a + DI'(2
Cag(A) = — . and p = a+ 08+ 1.
75( ) P(z)\;-9>r(z)\+a2—ﬁ+l) e /6

It follows that gzﬁf\a’ﬁ ) = ng(_a/\’ﬁ ) for all A € C and Ca,5(A) has neither zero nor pole
in the region S\ < 0. Hence from and the fact that ¢E\a’ﬁ ) = ¢(_a/\’ﬁ ), we get
for A € R,

16" ()] = IS0 a5 ¢ — o0, (1.3.3)
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Following theorem (proved in [57, lemma 5.2(a)]) shows that V}, that is, the

Fourier transform of xp(,,) can be expressed in terms of the Jacobi functions.

Theorem 1.3.1. Let o/ = %’““,ﬁ’ = % andn=m+k+1, for m,k as above.

Then for A € C and r > 0,

2”7]’% . n T T a/’ﬁl T
VA = pr gy () cost™ (3) o2 (3)- (134)

This theorem is proved in [57), lemma 5.2(a)]. However, we are including the proof

here to remove a minor error involving the power of cosh(r/2) in the statement there.

Proof.
VA = ' NJ(t) d
r / or(a) (1) dt

2w [T t t
= F(%Q /0 sinh™ " (§> cosh” <§> ox(ay) dt

)
gy [T m k m k m+k+1 t
—_— AntRE P 2 Y i S D ')\'—'—'h2<—) dt
F(%)/0 ¢ 214—1—2 Z,4+2+Z, 5 ; —sin 5

where

AR = ginh™ (%) cosh® (%)

For convenience we temporarily put

|
g—m, OO P

=4
a=—
4 4 2 2

and substitute z = — sinh?(#/2) in the integral above to get,

m m k .m ko om+k+1 5/t
/At Rk (Z+§ — i\ T 5 ik T —sinh’ <§>) dt

= (—1)“/,20_1(1 — z)atbe 2F1(a,b; c; z) dz

c
_1)e
= uzc(l —2) R (a+ L,b+ e+ 1;2) + C
m+k+3

1 m k m k t
_ lymtktlkrr p (TR T R TR TS 2 (_) C.
P 214—1-2—1— 2,4—|—2+ + 1A 5 ; — sin 5 +
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Above we have used the following fact (see [1, 15.2.9]):

d

d_<zc(1 o Z)a+b+lfc2F1 (a + 1,b—|— 1; c+ 1; Z)) = 62671(1 o Z)a+b7c2F1 (a’ b; ¢ Z)

z
Thus

k , k N m+k+3 )
‘/;)‘ = CnA;nJrkJrl’kJrl 2F1 (% + 5 +1-— 7/)\, % + 5 + 1+ Z)\, T, — Slnh2 <g
a/7 / T
= AT gla 5)(§>

where a’z%’““,ﬂ’:% and cn:%. O

Let 1, (r) denotes the spherical Fourier transform of i;B((O"TT))| at A\. Then from

Theorem [1.3.4] we have

vt )
() = 0 = (1.3.5)
Vel ()

where o = 2L 30 — B Uging (1.3.3)) and (L.3.5)) for A ¢ R we obtain a 7, > 0
depending on A such that

Ua(r) < eBSN=2" for > 1. (1.3.6)
For p € C and k € N, let
ak
Vup(r) = W%(TNA:M-

1.4 Properties of elementary spherical function

In this section we shall gather some properties of ¢, and ¥, which will be used
throughout this thesis. We shall include proofs only when a suitable reference could
not be found.

For 0 < p < 0o, we define v, := % — 1 and v := —1. Let
Sp={AE€C|ISA < |nlp}, 98, :={ A€ C|[SA = |nlp}.

Proposition 1.4.1. The elementary spherical function @, satisfies the following

properties.

(1) For1<p<2, oy € LP>(G//K) if and only if X € S,,.
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(ii) Forl<p<2and1<r<oo, p)€ L' (G//K) if and only if X € S5.
(iii) wo & L**(G//K), (1+|z])" w0 € L>*(G//K) and ¢5 € L**(G//K) for
0#XeR.

See [60, Proposition 2.1] and [50] for the proof of above proposition which uses

the estimates and .

Proposition 1.4.2. Fizt > 0. Let 0 <p <2 and A € S, with \ # £iy,p. Then
(a) lea(ar)] < @iy, pla),
(b) [¥a()] < in,p(t)-

Proof. (a) Since ) = ¢_, without loss of generality we assume that S\ > 0.
Clearly |pa(a:)| < @iga(ar) for any A € C. As A — @, (a;) is analytic, by maximum
modulus principle, [¢x(a¢)| < @iy,p(a;) for A € Sp. Therefore it remains to prove the
result for A = r + iy,p, r € R. Seeking a contradiction, we assume that |py(a;)| =

Qinpp(a¢). Then for some b € R,

‘Pivpp(at) = e_irb%\(aﬁ = / eirbe=(Ir—mp+p)H(a k) gp..
K
This implies that,
/ =P H (e B[ _ =i @+H e )] g, —
K
and taking the real part,
/ [1 —cosr(H(a; k) + b)]e(%p_p)H(a;lk) dk = 0.
K

Since 1 — cosr(H(a; 'k) + b) is a nonnegative continuous function, we have [1 —
cosT(H(a;'k) +b)] = 0 for all k € K. But then H(a; 'k) + b has to take values in
a discrete set. As k ~— H(a;'k) + b is continuous and K is connected, it must be
constant, which implies that k + H(a; 'k) is constant which contradicts Kostant’s
convexity theorem ( [41, Theorem 10.5, p. 476]). This completes the proof of (a)

and (b) is an immediate consequence of (a). O
Proposition 1.4.3. Fizt >0 and 0 < p < 2. Then as |\| = oo,

(a) |pa(ar)] = 0 uniformly on S, and
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(b) |¥x(t)] = 0 uniformly on S,.
Proof. For (a) see [34, Corollary 3] and (b) is an immediate consequence of (a). [
Proposition 1.4.4. Fizt > 0. Then we have the following conclusions:

(a) wo2(at) #0 and py1(ar) # 0 for nonzero \ € iR,

(b) wo2(t) # 0 and ¥y1(t) # 0 for nonzero X € iR.

Proof. We shall prove only (a). Proof of (b) will be similar. It follows from
that for A € iR, pa(a;) > 0 and @y 2(a;) < 0, so in particular ¢g2(a;) # 0. Since for a
fixed ¢, A — ) (a;) is a non-constant entire function, by maximum modulus principle
we have ;y, (ar) < iy, (ar), for 0 < y; < yo. That is, the function f : y +— ¢ (a;) is
strictly increasing. As observed above, the second derivative in y of the function f
is strictly positive. This implies that f has nonzero derivative at any y > 0, because

otherwise it will have a local minimum. Therefore ¢, ;(a;) # 0 for any nonzero
A €R. n

1.5 Schwartz spaces and tempered distributions

For 0 < p <2, we define CP(X) to be the space of all u € C*°(X) such that for any
D € U(g) and integer r > 0, we have

. _2
ro(u) = sup (1 + |z]) o(x) 7| Dufz)] < o0
xre
where U(g) is the universal enveloping algebra of g. The seminorms 7, p induce a
Fréchet topology on CP(X). Let CP(G//K) be the set of radial functions in CP(X).
For 0 < p < 2, let CP(G//K) be the set of even continuous functions on S, which

are holomorphic on the interior of S, and satisfy

l

d
o) = sup | S5OV (14 W)™ < o0

AES,

for all nonnegative integers [, m. For p = 2, CQ(G//_/7( ) is the set of even Schwartz
class functions on R. We topologize C? ((;'///7( ) by the seminorms v;,,. Then (see
[41132,)39]) f — f is a topological isomorphism from CP(G//K) to Cp(G//ﬁ(). Let
CP(X)" denote the set of LP-tempered distributions on X, i.e. the continuous linear
functionals on CP(X). When f € C?(X)’ is a function, then the distribution is given
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by ¥ = (W, f) = [y ¢ ) dz, for ¢ € CP(X). An LP-tempered distribution 7 is
called radial if

(T, ) = (T, R(vy)), for all v € CP(X).

In general the radial part R(T) of an LP-tempered distribution 7" is an LP-tempered
distribution defined by

(R(T), ) = (T, R(¥)), for all ¥ € C7(X).

For future use we note that C?(X) C L»'(X) for 1 < p < 2 ( [52, Lemma 6.1.1]).
Therefore any [ € Lp/’OO(X ) defines an LP-tempered distribution for 1 < p < 2.

Following proposition collects some other examples of LP-tempered distributions.
Proposition 1.5.1.

(a) Let 1 < p <2 and f be a measurable function on X such that (1 + |z|)"f €
LP°(X) for some r € Z. Then there exists a fized seminorm v of CP(X) and

a constant C' independent of f satisfying

(s o) < CIIA A+ [2])" fllpr 0ov(0)

for all ¢ € CP(X). In particular f is an LP-tempered distribution.

(b) Let 0 < p < 2 and A € S,. Then for each fired k € K, the map x

—(iA+p)H(z~1k)

e 15 an LP-tempered distribution.

(c) Let p € (0,2] and X € S,. Then the map v — @y ,.(x) is an LP-tempered

distribution for any r € Z™.

Proof. (a) The case r = 0 is proved in [52, Lemma 6.1.1]. Similar arguments can be
used to prove other cases. For (b) see [52, Lemma 6.1.1].

(c ) If r = 0, using and it is easy to see that the map ¢ —

Jx v ) dx is a continuous hnear functlonal on CP(X). For other cases use
1.2.10. O

Following theorem, which is immediate from [10, Theorem 3.2] and isomorphism

of CP(G//K) with CP(G//K), will be used in the thesis.

Proposition 1.5.2. Fiz 0 <p <2 and0 < q <p. Let{g0, 91,92, -+ , gr} be a finite
collection of functions in C1(G//K) with go satisfying
|t

limsupe 2w log|go(t)| = 0.

[t|—o0
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Let A be the set of common zeros of §o, g1, 92, - - , Gr 1 Sy and ny denote the minimal
order of zero of the functions g; at the point \. Assume that A is finite and A C S,.
Then the ideal generated by {go, g1, 92, ,gr} is dense in the closed subspace V' of
CP(G//K) of functions whose spherical Fourier transform vanish at all X € A with

order greater than or equal to ny.

1.6 Hardy-type spaces

We shall follow [13] for defining the Hardy-type norms for functions on X. Let
p € (0,2] be fixed. For a measurable function f on X let,

1/r
[l = sup 9in,(ar)” ( [ 15ty dkz) l<roo
t>0 K

and

[f]poo = sUp ‘Pi'ypp(x)_1|f(x)’-
reX

Let H,(X) and H°(X) be the set of functions on X such that [f],, < oo, re-
spectively, [flpoo < 00. We shall refer these spaces as Hardy-type spaces. Let
LY(G//K, ¢i,,) be the space of radial functions on X satisfying

/X|f($)|90mpp(x) dr < oo.

These can be verified in a straightforward way using ((1.2.8]) and (1.2.9):

(i) LYG//K, ¢ir,,) is contained in the dual space of HJ (X)),
(ii) @x € Hy(X) if and only if A € S,

~

(iii) for h € LY(G//K, @i,p), h(A) extends analytically to Sg and is continuous on
Sp.

Following are some other observations which we state in the form of a proposition.

Proposition 1.6.1. Let 0 < p < 2 and r € [1,00| be fized. Then we have the

following conclusions.
(a) For1 <r <s<oo, Hy(X) CH(X).
(b) For0<q<p<2, H)(X)CH(X).
(c) If f € H,(X) then R(f) € H,(X).
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(d) For h € LYG//K, ¢i,,) and f € H)(X), f*h e H(X) and

5 By < [flpr /X ()| piny ()

(e) For 0 < q<p<2 let f e H(X). Then there exists a fived seminorm v of
CU(X) and a constant C' independent of f satisfying

[(f, &) < Clf]par(0)
forall ¢ € CU(X). Hence H(X) C (C1(X))" for0<q<p<2.
(f) For f e H (X) and ¢ € CU(G//K) with0 < q<p <2, fx¢ € C®(X).

Proof. Assertions (a) and (b) are clear from the definition of H;(X), (1.2.8) and
(1.2.9). Assertion (c) is a consequence of Minkowski’s integral inequality.
(d) Using Minkowski’s integral inequality we have for a € A¥,

(/K|f*h(ka)|rdk)w
[ ([ sy ar) "o
/ |h ()| @iy, p(az) [gp%p ax) (/ |f(kax)|" dk‘) T] dx

< e /X () iy p(a) d

VAN

IN

Since [, pa(zky) dk = @r(x)@a(y), we get from above,

([ irnara)” <is, / ) i)

< Pirp(a flor / |h(z |‘P27pp

This proves (d).
For (e) let
1) = sup [$(x) g " () (1 + ||)

zeX
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for some suitably large M > 0 be a seminorm of C?(X). Then

x)dx

<5(0) [ 1@l @)1 + o) da

1/r
<20 [ @slay ([ 15t ar) ) do
< AW lpr / &2/"(a)(1+ [al) Mg, (@) T (a) da.

At

From (1.2.8) and (1.2.9)), it follows that the integral in the last step converges for

the given p, q. This proves the assertion.
(f) This is a consequence of the fact that translation commutes with convolution
(see e.g. [68, Theorem 7.19]). O

1.7 Characterization of eigenfunctions and the
Poisson transform
The following proposition is quoted from [52}, Proposition 3.1.1].

Proposition 1.7.1. Let u be a measurable function on X. Suppose that u satisfies

one of these conditions:
(i) uw e L?*>*(X) and Au = —p*u,
(ii) u € L*Y(X) for some 1 < q < 0o and Au = —(N\?+ p?)u for a nonzero A € R,

(iil) uw € LY (X) and Au = —(N2 + p?)u for some 1 <p<q<2,1<7r <00 and
A€ DS,

(iv) u € LP"(X) and Au = —(N* + p*)u for some 1 < p <2, 1 <r < oo and
A€ 0S,.

Then v = 0.

For any A € C and F € L'(K/M), we define the Poisson transform Py of F'
(see |41} p. 279]) by

PrF(z) = / F(k)e R0 gk for ¢ € X.
K/M
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Since for each fixed A € C and k € K/M, the kernel: x — e~ (ATAHETF) g ap

eigenfunction of A with eigenvalue —(A\? + p?), it follows that,
AP\EF = —(\* + p*)P\F.

There are many results in the literature characterizing eigenfunctions of A which
satisfy various size estimates as the Poisson transform of an appropriate object (e.g.
a function in a Lebesgue class or a measure) on the boundary K/M of X. We shall

mainly use two of them, which we state here.

Theorem 1.7.2 (Ben Said et. al.). Let S\ = —v,p for some 0 < p < 2 (respectively
A = 0). Suppose that for a function u € C®(X), Au= —(A2+p*)u. Thenu = Pyf
for some f € L"(K/M) if and only if u € H,(X) (respectively u € Hy(X)) for
1 <r<oo. Ifr=1 then u = Pxu for some signed measure p on K/M.

The next one is an immediate corollary of the following theorem of Sjogren

( [70, Theorem 6.1]).

Theorem 1.7.3 (Sjogren). Let u € C®(X) and Au = —(\* + p?)u for some
A€ C with SN\ < 0or A =0. Forl < p < oo and 8 > 0, the function
ka; — ¢galar) " te PPu(ka,) belongs to LP>°(X, mg) if and only if u = Pyf for some
f € LP(K/M). Here dmg(z) = dmg(ka;) = P2 J(t)dkdt, t >0, k € K/M.

Corollary 1.7.4. Let u € C*(X).

(i) Then (1+ |z|)"'u € L**(X) and Au = —p*u if and only if u = Pof for some
feL*(K/M).

(i) Let 1< q <2 and A = a —iy,p # 0 for some a € R. Then u € L9*°(X) and
Au = —(N? 4 p?)u if and only if u = Pyrf for some f € LY (K/M).

Proof. For (i) take 5 = 2p and p = 2 in Theorem and use (1.2.9). For (ii)
when 1 < ¢ < 2, take § = 2p and p = ¢’ in Theorem and use ((1.2.7). For the
case ¢ = 2 (consequently A € R, A # 0) see |52, Theorem 4.3.5] and [50, Theorem
1.1]. O

Remark 1.7.5. The growth estimates on u in the hypothesis of Corollary are
justified by Proposition and Proposition [I.4.1 We also note that to interpret
the equation Au = —(\? + p?)u, it is enough to assume that w (in Theorem ,
Theorem and Corollary is locally integrable because a locally integrable
function is a distribution and hence wu is infinitely differentiable by elliptic regularity
theorem ( 35, Corollary 6.34, p. 215]).
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1.8 Kunze—Stein phenomenon and Herz’s ma-
jorizing principle

We have the following result due to Herz [43] on convolution operators. (See also
[23].)

Proposition 1.8.1 (Herz’s majorizing principle). Let h be a radial function on
X, and let Ty, : f — f = h be the corresponding right convolution operator on
LP(X), p € [1,00]. Then the operator norm of T), : LP(X) — LP(X) obeys the
following bound:

IThllznsr < [Bl(ivpp)

where the equality holds if h is nonegative.

From Herz’s majorizing principle we get the following results which we shall use

in this thesis. See [51}, Section 5] for more results.

Proposition 1.8.2 (Kunze-Stein phenomenon). (a) Let f € LP'*°(X) and h be
a radial function on X such that |h|(iv,p) < oo for some 0 < ¢ < p < 2. Then
fxheLP>(X) and

1F 5 2l 00 < CllFllpr ool Rl (i940).-

(b) Let f € LP"*°(X) and h € LY(G//K) for1 < q < p < 2. Then fxh € LF"*°(X)
and
1 Al oo < ClIfllpr oo llllg-

(¢) Let f € LP"*(X) and h € L (G//K) for 1 < p < 2. Then f*h € LV*>°(X)
and
1S Pl o < Clllpr sl Pllp1-

Proof. We observe first that for functions f, g and h on X with h radial,

(f*h,g)=(fg*h) (1.8.1)

whenever both sides of the expression make sense.
(a) Choose p1,ps with ¢ < p1 < p<py <2ifp<2andqg<p <2<p <
if p = 2. Then @i, ,(7) < Qiy,p(z) and i, (1) < @iy,,(z) for all x € G and
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consequently,

o~ — —

[71(i%9,) < [Rl(i746) < 00 and [R] (i) < [Rl(i7,0) < oo. (1.8.2)
From Proposition [1.8.1] and a standard duality argument it follows that

1 * Blly, < [BlGp) |l for i = 1,2

Using interpolation for restricted weak type operators ( |72, Theorem 3.15, p. 197]),
we get the assertion.

(b) We take a ¢; satisfying ¢ < ¢; < p. From (a) it follows that

Lf # Poll oo < ClF 1l ool Al (174 0)-

The assertion follows from above as

Ihl(i’vqlp)z/th(ﬂf)!%qlp(x)dwﬁ 12 llgllping, pllar

and by Proposition M(ii), Divg,p € L7(X).
(c) Note that for 1 < p < 2, L»'(G) is a Banach algebra (see [23]). From this,
(1.8.1)) and duality, the assertion follows.

]
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Chapter 2

Characterization of eigenfunctions

from the equation [ *pu = f

In this chapter we shall explore the following question. Suppose that a function f
on X satisfies the equation f*pu = f where pu is a radial measure (or function) on X.
When can we infer that f is an eigenfunction of A with a given eigenvalue z € C?
We of course have to take f and p from appropriate spaces of functions/measures, to
make it meaningful. Here is a (non-exhaustive) list of some pairs of suitable spaces
for f and h which conform to the necessary conditions (1) and (2), we mentioned

in the introduction:
(a) f e C(X) and h is a compactly supported radial measure,
(b) f € C>(X) and h is a compactly supported radial distribution,
(c) fis an LP-tempered distribution and h € CY(G//K),0<q<p <2,
(d) fe LP"*°(X)and h € LY(G//K) where 1 < ¢ <p<2,
(e) feLF'>*(X)and h € LP(G//K), 1<p<2,

(f) f € LP"*°(X) and h is a radial function on X such that ]/h\|(i”yqp) < oo for
some 0 < q<p<2,

(g) feH(X),he L' (G//K,pi,,) where 0 < ¢ <p < 2,1 <7 < oo,

(h) f € Ly, (X)and h € L5 (G//K), 0 < ¢ < p < 2, where L,, (X) is the set of

measurable functions g on X such that

Amm%m%m<w
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and LY

57,(G//K) is the set of radial functions g on X such that

sup |g(x)]po(z) > < oo.
rzeX

The last pair of spaces above was considered in [10]. We shall recall this list a
few times in this chapter. We note that for each item in this, except perhaps
(h), right convolution by h takes the space containing f to itself. For some cases,
e.g. Lebesgue, Lorentz and Hardy-type spaces, the Kunze—Stein phenomenon (and
Herz’s principle) on X (see Proposition and Proposition can determine
this condition. Although this is not a necessary criterion, the equation f x h = f
may appear as a suggestion for it.

We can distinguish the spaces above containing f in the following way. While in
(a) and (b) f can be an eigenfunction with any eigenvalue in C, the conditions in
(¢) to (h) restrict f to be an eigenfunction with eigenvalue in LP-spectrum. We also
note that apart from (c), (d), (e) and (f), other cases do not preclude unbounded
functions, e.g. the oscillatory wave z — e (ATIHETR) for k€ K. However for
our proofs, we divide these spaces in two classes, namely (i) the functions having
some regularity, but no restriction on growth and (ii) measurable functions which
satisfy certain growth conditions. Our working examples are (a) (and (b)) for (i)
and (g) for (ii). A consequence of the first is a version of the two radius theorem for
eigenfunctions.

We need some results from spectral synthesis, which we shall take up next.

2.1 Results from Spectral synthesis

In this section we collect some facts about mean periodic functions which is required
for this chapter. See [57], [58] for more details. Let C*°(G//K) and C*(G//K)’
denote respectively the spaces of C'*°-radial functions and compactly supported ra-
dial distributions on X. Let C(X) denote the space of continuous functions on X,
C(G//K) be its subspace of radial functions and C(G//K)" be the space of com-
pactly supported radial regular complex Borel measures. For f € C*(G//K), we
define

V() ={f*T|T € C=(G//K)'}.

If a closed subspace V' of C*°(G//K) is invariant under convolution with elements
of C*(G//K)', then we shall call V an invariant subspace. It is clear from the
definition that V' (f) is a closed invariant subspace of C*(G//K). We call a function

34



f e C®(G//K) mean periodic when V (f) is a nonzero proper invariant subspace of
C>*(G//K). Henceforth we shall write dy, 34 to denote 9/0N, d"/ON" respectively.
For p € C and k € N, we recall that ¢, x(z) = 0px(z)[r=y. We shall need the

following results.

Theorem 2.1.1. Let V' be a nonzero proper closed invariant subspace of C*°(G//K).
Then

V = span {@xk|lorr € V,k € N and X € C}.

Hence any mean periodic function f s the limit of finite linear combinations of

ok € V(f) with k e N, € C.
Proof. See [57, Theorem 4.3]. O

Lemma 2.1.2. Let V C C*(G//K) be as in Theorem [2.1.1, If prr € V' \ {0},
then py; €V for all 0 <1 < k.

Proof. See [57, Lemma 4.2]. O

Lemma 2.1.3. Both the sets {¢xr | k = 0,1,2,...} for X # 0 and {pox | k =
0,2,4...} are linearly independent.

Proof. We assume that A # 0. Then A € S, for some p € (0,2]. Suppose that for

some N > 0 there exists a nontrivial linear combination satisfying

N
ZCW?M = 0 with ay # 0.

=0
Choose f € CP(G//K) with af\f()\) =0 for 0 <i< N and 8f\vf()\) # 0. Then
N ~
0= (Z ai@A,f) « [ =andy f(N),
i=0

which is a contradiction. Similar arguments can be used for the case A\ = 0. O

2.2 Set up, statements and proofs of the results

The pair of function spaces collected in (a) to (h) can be divided in two different
groups: functions without growth conditions and functions satisfying some integra-
bility conditions. We shall prove one representative result from each group. Two
radius theorem is a consequence of the result for the first group, i.e. for functions

without growth conditions.

35



2.2.1 Result leading to the two radius theorem

We need the following result of complex analysis.

Lemma 2.2.1. Let f be a nonconstant entire function such that | f(z)| < Ce? for
some constants ¢,C' > 0 and

lim f(z)=1L (2.2.1)

z€R,|z| >0
for some constant L € C. Then f has infinitely many zeros in the complex plane.

Proof. Let o be the order of growth of f. Then it follows from the hypothesis that
o < 1. Assume that f has finitely many zeros and let z1, 29, - - - , 2, be the nonzero
zeros of f. If 0 < o < 1, then by Hadamard’s Factorization theorem ( [71, Theorem
5.1, Chapter 5)),

f(z)= A" - Z—i) = Q(2)

for some polynomial @, m € Z* and constant A. If ¢ = 1, then again by Hadamard’s

Factorization theorem,

- zZ z
z) = e™Ftaoym 1——)es =e*P(z
(2) [[0-2) (-

for some polynomial P, m € Z* and constant .. Thus for both the cases, f(z) =
e®*P(z). This contradicts (2.2.1) as f is nonconstant. O

We note that spherical Fourier transform of a radial compactly supported distri-

bution 7T is entire and of exponential type, i.e.
IT(N)| = (T, p2)] < Ce™ for all A € C (2.2.2)

for some positive constants C, ¢ (see [31]). Thus it is clear from Lemmal[2.2.1]that for
any compactly supported distribution 7', whose Fourier transform satisfies (2.2.1)),
there are infinitely many A € C, such that f()\) = 1. This rules out the possibility
of characterization of eigenfunctions from an equation of the form f T = f for T
as above. However if more than one such T satisfy the equation f x T = f, then
they may serve the purpose. Spherical and ball averages are particular examples of
such convolution by radial compactly supported distributions. Thus it follows that
the (spherical or ball) mean value property for one single radius cannot characterize

eigenfunctions of A. To illustrate, let us fix a ¢ > 0. Let f(z) = ¢.(a;) — 1. Owing
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to and Proposition it follows that f satisfies the hypothesis of Lemma
2.2.1} Hence we can find 21, 2o € C with 21 # £25 and ¢, (a;) = 1 = ¢,,(a;). Clearly
both f = ¢,, and f = ¢,, satisfy the equation M;f = ., (a;)f. This precludes the
characterization of eigenfunctions with a particular eigenvalue from this equation.
Argument is similar for the ball mean value property.

We shall take up the convolution equation f % u = f for continuous functions f
and compactly supported complex measures p, which is the case (a) (and (b)) of the
list. The two-radius theorem for eigenfunctions can be obtained as a consequence

of this theorem.

Theorem 2.2.2. Let f be a continuous function on X and M be a family of nonzero
compactly supported radial regular Borel compler measures such that f * pu =0 for
each p € M. Assume that Ay € C is the only common zero of {ji | u € M}. Further
assume that:

1. if Ao # 0, then there exists u € M with O\ji(Ao) # 0 and

2. if Ao = 0 then there exists p € M with 031i(\g) # 0.

Then Af = —(XN® + p?)f.

Proof. Without loss of generality we assume f to be smooth as f can be approxi-
mated uniformly on compact sets by functions of the form f x h, where h is a radial
function in C°(X).

We shall first prove the assertion when f is a radial function.
Let V={f]| f*p=0forall pe M}.

Then V is a proper invariant subspace of C*°(G//K). Hence by Theorem [2.1.1]

V = span{px. | ook € V}.
We take a ¢y, # 0 from V. Then for any p € M, ¢y * = 0 and

k
A Z( )

1=

From Lemma [2.1.3| we have the following conclusions.
(a) If XA # 0, then 951(N\) =0 for 0 < i < k.

(b) If A = 0, then 9;7i(\) = 0 for all even ¢ in 0 < i < k. On the other hand as i
is an even function, 9i7i(\) = 0 for all odd i in 0 < i < k as A = 0.
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Thus a nonzero ¢y  satisfies ¢y, * 1 = 0 if and only if 9571(A) = 0 for 0 < i < k. But

Ao is the only common zero of {fi | u € M}. Therefore, V = span{py, x | ¥r,x € V}-
Additional conditions in the hypothesis along with Lemma further assert that
if \g # 0, then @y, ¢ V for k > 1 and if \y = 0, then ¢, ¢ V for kb > 2.
As odd derivatives of an even function are odd functions we also have ¢o; = 0.
Thus in both the cases, V = m. This implies f = cyp), and in particular
Af ==+ f.

We recall that ¢, denotes the left translation by x and R(¢,f) is the radial part
of ¢, f. To extend the result to the case when f is not radial, we first note that if
for a continuous function g on X, R(¢,g) = 0 for all x € G, then g is identically
zero. Indeed R({,g) = 0 implies that g x h(z) = [ R({.9)(y)h(y) dy = 0, for any
radial function A supported on a compact neighbourhood of 0. Thus g« h = 0. As
we can approximate g by functions g x h, for such h, uniformly on compact sets, we
conclude that g = 0.

If f+u=0,then clearly for all x € G, R({,.f) * u = 0 for u € M. Hence by the
assertion proved above for radial functions, AR((, f) = —(A\2 + p?)R({..f). That is,
for all z € G,

R(LAf) = R(L(—=(X5 + ) f))-
Hence by the argument given above Af = —(\? + p?) f. O

It is clear from the proof of the theorem above that if we take f € C*(X), then
M can be replaced by a set of compactly supported distributions. Theorem

along with Proposition [1.4.4] will establish the following two-radius theorem.

Theorem 2.2.3. Let f be a continuous function on X and o € C be fized. Suppose
that for ti,t9 > 0,

(i) My, f = @alay,)f (respectively, By, f = a(t;)f) for j =1 and 2,

(i) the equations px(ay) = valay) and pr(ay,) = @alag,) (respectively, ¥y(t1) =
Yo(t1) and x(t2) = Ya(t2)) have no common solution for X € C\ {£a},

(iii) of o ¢ iR, then either wa1(ay,) # 0 or pan(aw,) # 0 (respectively, either
wa,l(tl) #0 or %,1(752) # O)'

Then Af = —(a® + p?) f.
Proof. Let 0, denotes the Dirac mass at the origin. Then the hypothesis M, f =

¢alay,)f can be written as f * p; = 0, where p; = 0y, — @a(ay,)d for j = 1,2. It
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follows from Proposition [1.4.4] and the conditions of the theorem, that p; and o
satisfy the hypothesis of Theorem [2.2.2] from which we assert that A f = —(a?+p?)f.
The version for ball average follows in a similar way, where we replace M,

walar;) and oy, by By, ¥a(t;) and Xp(oy;)/|B(0,1;)| respectively. O

Remark 2.2.4. For a fixed ¢t; > 0, almost every ¢ty > 0 satisfy the hypothesis of
Theorem [2.2.3] To see this we fix a t; > 0. As A — py(as,) — palay,) is analytic,
the set Z = {\ | pa(ay,) = palay ), A # ta} is countable. For each fixed A € Z, we
exclude those ty which satisfy: py(as,) = @a(ar,) and @q1(a,) = 0. Since py(a;) is
real analytic in ¢, we have to discard only countably many ¢, for each fixed A € Z.

This settles the argument. For the ball mean value property the argument is similar.

Next result shows instead of taking two carefully chosen radii we can work with an
arbitrary sequence of distinct radii for characterizing eigenfunctions with eigenvalues

in [—p?, 00).

Theorem 2.2.5. Let a € iR and {t;}jen be a sequence of distinct positive real
numbers. Suppose that for a function f € C(X), My, f = pa(as,)f or By, f = a(t;) f
for all j € N. Then Af = —(a® + p?)f.

Proof. We assume the first condition. In view of Theorem [2.2.3] it is sufficient to
show that given any A # +a, there exists at least one j € N such that px(ay,) #
90a<atj)'

Let A # +a. It follows from Proposition that if |SA| < [Sal, then
loa(as,)| < @alay,) for any t; > 0. Hence it is sufficient to consider A such that
ISA| > |Sal. We divide it in two cases.

Case 1: The sequence {t;};cy is unbounded. Since py(a;) < elSN=Pt for ¢,
sufficiently large px(as,) # wa(ar,).

Case 2: The sequence {t;};en is bounded and px(ay,) = @a(ay,) for all j. Passing
to a subsequence if necessary, we assume that the sequence {tj} converges to a point
s. But as the function t — @)(a;) — pa(a;) is real analytic, that will imply that
oa(ay) = pa(ay) for all ¢, which is not possible unless either A = « or A = —a. For

the ball average the proof is similar. O]

We conclude this section with a counter example to show that Theorem [2.2.5
is not true for nonzero A € R. To illustrate this consider X = SL(2,C)/SU(2).
Then py(a;) = sin(2At)/Asinh(2t) ( [41, p. 433]). Take a nonzero A € R and
define t,, = nw/X\. Then @oy(as,) = @a(ay,) = 0. It is clear that f = o) satisfies

hypothesis of Theorem [2.2.5, but Af # —(A\? + p?)f.
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2.2.2 Characterization of eigenfunctions with some integra-

bility conditions

In the previous subsection we have used spectral synthesis crucially to solve the
convolution equations f * pu = 0 for compactly supported complex measures p. Now
we consider such equations when p is no longer compactly supported. Following is

a representative result for the cases (c) to (h).

Theorem 2.2.6. Let f € Hj(X) for some 0 < p < 2,1 < r < oo and
let p be an absolutely continuous radial measure on X with density h satisfying
Jx [7(2) ]y, p(x) dz < 00 for some 0 < q < p. Suppose that f* pu = f and for a
point 8 € S,

(i) A(£5) = 1 and (8) £0,

(ii) p(£X) # 1 for any A € S, \ {£5}.
Then Af = —(8*+ p?)f. Further, if 8 € 3S, and if we assume (changing B to —03
if necessary) that IB < 0, then we have these conclusions:

(a) f =PsF for some FF € L"(K/M) when 1 < r < oo,

(b) f = Pgv for some signed measure v on K/M when r = 1.

Proof. Let us first assume that f is a radial function. It is clear that h extends
analytically on 57 D 5, and is continuous on S,. By the hypothesis if A € S5}, and
A # 0, then h(\) # 1. It can be verified that there exists a 6 > 0 such that
Sps C Sy and for any A € S5\ {£0}, E()\) # 1 where

Sps i ={A € C [ [SA| < (% +0)p}-

Here is the argument. We start with a §; > 0 such that S, C S¢. Since h(A\) =0
uniformly in S, 5, as |A| = oo ( [60, Proposition 4.5]), there exists N > 0 such that
Ih(\)| < 1 whenever A € S5, and [RA| > N. Astheset {A | XA € S,5,, |RA| < N}is
compact and h()) is analytic, cardinality of Z = {\ | A € Spors |[RA| < N, h(\) =1}
is finite. If Z = {8, =} then take § = 6;. Otherwise let d = minyecz\ (5 |[SA|. Then
Ypp < d < (7, + 61)p and any 6 < d/p — 7, serves the purpose.

From analyticity and uniform boundedness of hon Sp.s, mentioned above and by
a standard argument using Cauchy’s integral formula, it follows that he= 3 +9") is in
cr (G///7( ). Let W be the closed subspace of CP(G//K) of functions whose Fourier
transform vanishes at +3. Let g € CP(G//K) be such that §(A) = (h(A)—1)e~*¥*+")
for A € S,. Then by Proposition [1.5.2] {g*u | u € C*(G//K)} is dense in W. We
rewrite the hypothesis f+xh = f as f*(h—0,) = 0, where §, is the Dirac measure at
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the origin. Then f*g = 0 and hence (f,g*u) = (f*g,u) = 0 for all u € C*(G//K).
Using the continuity of ¢ — (f, ¢) on C*(G//K), we conclude that (f, ¢) = 0 for all
¢ € W. But as g annhilates W as an LP-tempered distribution, we have f = cyopp

( |68, Lemma 3.9]). In particular, Af = —(8% + p?)f. The argument used in
Theorem extends the result Af = —(8%+ p?) f for nonradial f. An application
of Theorem [1.7.2] completes the proof of the assertion. n

Remark 2.2.7. As mentioned above, we can formulate and prove such a theorem
using any of the pair of spaces in (c¢) to (h) from the list given at the beginning of this
chapter. For instance, we may take up (h) (which is similar to what was considered
in [10] for the characterization of harmonic functions). That is, we substitute H, (X)
by L;,(X) and take the density h from L35 (G//K) for some 0 < ¢ < p < 2,
keeping the other conditions same, then the argument in the proof above, mutatis
mutandis, leads the conclusion: Af = —(8% + p?)f. We shall not give the details,
but add some preliminary results here, that are necessary for the proof. It is clear
that CP(G//K) C LY (G//K) for 0 < p < 2 and if f € L}, (G//K), then the

2/p 2/p

map Ty : CP(G//K) — C defined by ¢ — [, f(z)i(x) dx is a continuous linear
functional on CP(G//K). We also have the following properties.

Proposition 2.2.8. (a) IfA €S} for 0 <p <2, then ) € Ly, (G//K).

(b) If h € LY (G//K) for 0 < p < 2, then /i;()\) exists for each A € S; and is

2/p
analytic on Sp.

(c) L5y, (G//K) C LYG//K), for any 0 <p <2 and q > p.

(d) For f € Lé/p(X) with 0 < p < 2 and 1,19y € CP(G//K), (f, 11 * 1) =
(f * 1, 19).

Proof. Parts (a) and (b) follow from the asymptotic estimates of ) and ¢ (see
(1.2.7), (1.2.9)). For (c) we have from definition of L3 (G//K) and estimate of ¢y,

< [swpintale®] [ ot an) v

<c [sup |h<x>rsoaz/”} .

zeX

Part (d) follows from Fubini’s theorem along with the fact that C?(G//K) is a

convolution algebra. O
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Instead of one measure we can use a (finite) family of measures for the formula-

tion, which we state below for the sake of completion.

Theorem 2.2.9. Let 0 < ¢ < p < 2 and M be a finite set of radial absolutely
continuous complex radial measures on X of the form du(x) = h(x)dz with h €
Lg?q(G//K) and ﬁ(ﬁ) =1 for some 8 € S,. Suppose that the only points in S,
where 1 =1 for all uw € M are £ and for at least one € M, i — 1 has a simple
zero at A = 8. Let f € L}, (G//K) be such that f *p = f for all p € M, then

2/p
Af=—(B+ )],

2.2.3 A generalization of Furstenberg’s result on harmonic

function

We come back to the Furstenberg’s result ( [37,81]) that for any probability g,
all bounded p-harmonic functions are harmonic. This result was reproved for unit
disk in |11] using a Wiener’s Tauberain theorem proved in the same paper. Our
generalization for eigenfunctions is a adaptation of that proof using a more general

Wiener’s Tauberain theorem proved in [25]. Here is the statement of the result.

Theorem 2.2.10. Fiz a0 < p < 2. Let X be the quotient space SL(2,R)/SO(2) and
let i be a (essentially positive) non-atomic radial measure on X such that [i(iv,p) =
L < oo and f € Hy(X) for some 1 < r < oo. If f satisfies f+p = Lf, then
Af = —4p*/pp' f. Moreover,

f="P_i,,F for some F € L"(K/M) if 1 <r < oo

and

[ =P_iy,pv for some measure v on K/M when r = 1.

If p=1and L = 1 then p is a probability. If also f € L*>°(X) then f € H}(X) for
any 1 <r < oo and we get back Furstenberg’s result mentioned above. We need the
following Wiener’s Tauberian theorem which is a particular case of |25, Theorem 2.1].
Let us explain the notation used in it. Let us fix a p € (0,2). Let L'Y(G//K, ¢s,,) be
the set of radial measurable functions g on X satisfying [, |g(z)|@iy,,(x) dz < co.
Then it is clear that for g € L'(G//K, ¢;y,,), g extends as a continuous function on
Sp which is analytic in the interior of S, and

lim g(£+in) =0

|§]—o0
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uniformly in € [—7,p, Ypp] (see [60, Proposition 4.5]). Let \g = a+i7,p be a point
in 05, for some o € R. We define,

Lio (G//K, ‘:Oivpp) = {g el (G//K, Qpivpp> | :C/\()‘O) = 0}'

For a function g € L'(G//K, ¢i,,), we also define

t | log|g(t

0oo(g) = — lim sup exp (— 2
p

t—-+o00

and
dx0(9) = —limsup(y,p — t) log [g(RA + it)].

t=ypp~

For a collection of functions F in L'(G//K, ¢ir,,), let

Joo(F) = inf 050(g) and 0y, (F) = inf d,,(g).

geF geF
Here is the statement of the Wiener’s Tauberian theorem.

Theorem 2.2.11 (Dahlner). Fiz a p € (0,2). Let G = SL(2,R) and K = SO(2).
Let F be a family of functions in L'Y(G/ /K, ¢i,,) and N\g = a+iy,p for some a € R.
Let I(F) be the smallest closed ideal in L'(G//K, ¢i,,) containing F and X be a
point in 9S,. Then I(F) = L} (G//K, ¢i,,) if and only if the only common zero
of {g| g € F} is Ay and 9o (F) = 05,(F) = 0.

Proof of Theorem [2.2.10. Without loss of generality we assume that L = 1 and f is
radial, for arguments used in Theorem extend the result for nonradial f. Thus
the hypothesis is fi(i7,p) = 1 and f*(u—d,) = 0. Clearly, (u—0d,)*L*(G//K, ¢i,,) C
L (G /K 9.

Step 1: Since for any A € S, \ {£ivpp}, |oa(ar)| < @iy,p(ay) when t > 0 (Propo-
sition [1.4.2)), it follows that 7i(\) # 1 for any such A. Let hy € L}(G//K) be defined
by hi(\) = e~O*)) Then the function g; = (1 — 8,) * by € L, G/ K, ¢i,,) and
the only zero of g; in S, is Ao.

Step 2: It is clear that there exists a function g € (u — 6,) * L'(G//K, i, )
which satisfies 0o (g2) = 0.

Step 3: Since p # 9, we can find A C X not containing o, such that 0 <
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S @inpn(@) du(z) < 1. Let [, @iy, p(2) du(z) = p,(A). Then for 0 <t < y,p,

L= 1) = [ (fr,plo) = (e di(0)
X
> 1(4) [ (frypla) = oul@)p ) di(a).
Since log is increasing and concave we have

— (vpp — t)log|g1(it)]|
— (0~ D) log | (1 = f(it))e" 1]

< —(npp—t) {log pp(A) + log/A(gp%p(I) — i)y (A) "  du(z) + log (PP —?)
< —(wp — 1) (log p(A) + /Alog(@%p(x) — @it()) pp(A) ™" dp(z) + log e*(pQ*tQ)).

Since ;; is a strictly increasing function for ¢t > 0, we have,

lim (7,0 — 1) log(ir,p() — pu(x)) =0

t—=ypp—

From this using dominated convergence theorem, we conclude from above that
5%’7;:/)(91) =0.

Thus the hypothesis of Theorem [2.2.11| are satisfied. Therefore the smallest
closed ideal containing (u — 0,) * LY(G//K, ¢i,,) is Ly, (G//K,¢i,,). Thus it

follows from the hypothesis fxh = 0 for any h € L}WPP(G//}?, Pingp)- AsCP(G//K) C
LYG//K, ¢i,p), we get that (f,h) = fxh(e) = 0 for all h € C°(G//K) with
ﬁ(i”ypp) = 0 vanish at iy,p. Since ¢;,,, also annihilates all such h as an LP-tempered
distribution, therefore we get f = Cy;y,, (see [68, Lemma 3.9]) as LP-tempered

distribution. Hence the claim. O

Remark 2.2.12. Wiener’s Tauberain theorem proved in [11] was generalized for all
rank one symmetric spaces X of noncompact type in [9,61]. It is expected that an
adaptation of the proof of Theorem will extend it to all such X. As the proof
of Theorem above does not use anything specific to X = SL(2,R)/SO(2), we

may conjecture that it will be true for all rank one symmetric spaces.
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Chapter 3

Characterization of eigenfunctions

via Roe—Strichartz type theorems

We recall briefly that generalizing a result of Roe [67], Strichartz [76] and Howard-
Reese [44] proved that if a doubly infinite sequence { fi} of functions in R" satisfying
Agn fr, = fry1 for all k € Z, is uniformly bounded then Agnfy = —fy. A counter
example in [76] also shows that the result fails in hyperbolic 3-space. Similar counter
examples can be constructed for any Riemannian symmetric space of noncompact
type, as the failure can be explained by the spectral properties of the Laplace Bel-
trami operator A on X. However the situation was saved in [52] for X by choosing
appropriate norm-boundedness replacing the uniform-boundedness of {f;}. In this
chapter, we aim to obtain versions of this result for translation invariant linear op-
erators O, replacing A. While we achieve this goal when f; are assumed to be
L?-tempered distributions, we have to restrict ourselves with particular examples,
e.g. spherical and ball averages or heat operators, which is however coherent with
the theme of this thesis. We shall also enlarge the scope of the theorem proved
in [52], by including all complex eigenvalues. We shall begin with some definitions,

preparatory discussions and results.

3.1 Preparations

Let us recollect the following notation from Chapter[I]as we shall use them frequently
in this chapter. For a locally integrable function f, M, f and B,f respectively are

sphere and ball averages of radius ¢ of f. More explicitly we have

M f(x) = fxoi(x) and B f(z) = f*my(x),
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where o, is the normalized surface measure of sphere of radius ¢ and m; =
|B(0,t)]"'XB(o)- Spherical Fourier transform of o, and m; at A € C are respec-
tively, pa(a;) and 95 (t). We recall that for t > 0, heat kernel h; is defined as a
radial function in CP(X) for each p € (0,2], whose spherical Fourier transform is
given by i?t()\) — ¢tV 0%\ € C. We define the heat propagator, denoted by e&

as f — f * h; whenever the convolution makes sense.

3.1.1 Spectrum of the Laplacian

We recall that for 0 < p < o0, 7, =2/p—1, 7 =—1land S, = {A € C | |[S\| <
|7p]p}. Consider the map A : C — C, given by A(\) = —(A\? + p?). It follows that
for 0 < p < oo, A(S,) is the closed region,

; 2 2 2 4p?
z=x+iyeCly < —dyp”lz+— )¢,
pp
whose boundary OA(S,) is the parabola (see Figure [3.2] (a)):

4 2
)= —dy2p (m v p—;) . (3.1.1)

For p = 2, the parabolic region degenerates to aray A(Sy) = {r e R | z < —p?}. We
note that A(S,) € A(S,) for 0 < ¢ <r < 2. It is well known that the LP-spectrum
of the Laplace-Beltrami operator A is A(S,) for 1 < p < oo ( [78]). We shall call
A(S,), the LP-spectrum for any 0 < p < oo.

3.1.2 Multiplier operator

Fix 0 < p < 2. Let m be an even C*-function defined on R, which (if p # 2)
extends analytically on S; and is continuous on 95,. A continuous linear operator
O : CP(X) — CP(X) given by

OF(\ k) =m(\)f(\ k), forall f €CP(X),\E€R, ke K/M

will be called a multiplier on C?(X) with symbol m(\A). The operator © commutes
with radialization operator I? and left translations ¢,,z € G and satisfies é? (N =
m(N)f(\ k) for every f € CP(X),A € S, and k € K/M. See e.g. [22,/62] where

multipliers on Schwartz spaces were considered. In our context some examples

include the following:
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(i) Let g € CU(G//K) for 0 < ¢ < p < 2. Then O, : f — f * g is a multiplier on
CP(X) with symbol g(\).

(i) Let g € LYG//K) for 1 < ¢ <p < 2. Then O, : f — f % g is a multiplier on
CP(X) with symbol g(\).

(iii) For any polynomial P, P(A), spherical mean value operator M; and volume
mean value operator B, are such multipliers on CP(X) for 0 < p < 2 with
symbols P(—(\? + p?)), pa(as) and () respectively.

(iv) The heat propagator e*® given by convolution with heat kernel h; is a mul-

tN+p%)

tiplier having symbol e~ This is a particular case of (i) above as

h, € CP(G//K) for all p € (0, 2].

(v) Heat kernel h, for complex time z € C with Rz > 0 defines multiplier © :
C*(X) — C*(X) given by f + f* h, and symbol o~ 7 (N2 +0?)

For (i) it is enough to recall that C?(G) is a convolution algebra and C4(X) C CP(X)
for 0 < ¢ < p. For (ii) we note that g extends to an analytic function on S; O 5,
and g — 0 uniformly on S,, for any ¢ < ¢; < p. Hence by Cauchy’s integral formula,
its derivatives are also uniformly bounded on S, for any ¢ < ¢ < ¢» < p. In (iii) for
P(A) it follows from the definition of C?(X'). For M, we can use its symbol ¢, (a;),
estimates of its derivatives in A and isomorphism of Schwartz spaces ( [32]).
For B, whose symbol is 1, (t), the proof is similar. The following proposition gives

a straightforward proof of this.

Proposition 3.1.1. Let 0 <p <2 and f € CP(X). Then for anyt > 0, M, f, B.f €
CP(X).

Proof. We note the following inequalities (see [39, Proposition 4.6.11 (iv)]):
(Ut [/ (L + [xkad) < T4t (L4 [oka])/(1+ [z]) < T+ 2.
Consider a seminorm =, p of C?(X), for r € N and D € U(g):
p(f) = sup (1+[al) go(2)#IDF (@)
Then using triangle inequality, the inequalities above and we have,

e (Mf) = /K (1+ [2])"go(e)"s Df (zkay) dk
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_ /K< L+ 2] )( #o(2) >_§(1+\xkat\)rgoo(xkat)_iDf(a:k’at) i

1+ |xkay] wo(xkay)

(1 + |zkay|)e—rlzkal ; ik
(14 |z|)erll

C%,D(f)(1+|t|)i+r/ L2 (Jal—aharl) g,

K
Crp(f) (1 + [t])r e

= Ct”Yr,D(f)'

IN

(D)L + 1) /

K

IN

Cen(F)(1+ [t /

K

IN

IN

This proves that M;f € CP(X). Since, B f(z) = m fOt(MTf)(x)J(r) dr, it is also
clear that B, f € C?(X). O

The action of a multiplier © on C?(X) extends naturally to the LP-tempered
distributions. For T' € CP(X)’, ©T is an LP-tempered distribution defined by

(OT)(u) = T(Ou) for u € CP(X).

3.1.3 One radius theorem

The following result characterizes eigenfunctions of A through the generalized mean
value theorem (see |42, p. 76, Prop 2.6; p. 414, Cor 2.3]).

Proposition 3.1.2. Let f be a continuous function on X and A\ € C. Then f
satisfies Af = —(\2 + p?)f if and only if M;f(x) = f(z)px(as) for all z € X and
allt > 0.

An analogue of this result for ball-averages, which (in our notation) is obtained
by substituting M; by B, and @y(a;) by ¥,(t) in the statement above, is also true.
Recall that in Chapter [2 we have seen that a continuous function satisfying the
generalized mean value property for a single radius is not necessarily an eigenfunction
of A. However for functions with suitable growth conditions or for distributions with
appropriate temperedness and for real eigenvalues in [—p?, c0), it might be possible
to characterize eigenfunctions/distributions through the mean value property using
only one radius. We shall now state and prove such a one radius theorem. This
theorem is structurally close to Theorem [2.2.10] in the previous chapter. We have

however placed it here as it will be used for the main theorems of this chapter.
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Theorem 3.1.3. Let t > 0 be fized and p € (0,2]. Let T be an LP-tempered
distribution on X such that MyT = i, ,(a)T or ByT = 1, ,(t)T. Then T is an

eigendistribution of A with eigenvalue —%.

Proof. Let 9, be the Dirac mass at the origin o = eK. We recall that o; denotes the
surface measure of the geodesic sphere of radius t. As M,;T = T * o;, the hypothesis
M,T = iy, p(a;)T implies that T x v = 0 where v = 0 — ;i p(@r)do.

First we shall assume that T is radial and p € (0,2). Let ¥1(\) = D(\) =
ox(ar) — @iy,p(ay) for A € C. We claim that it is possible to choose a § > 0 such
that 11 (\) does not vanish on

Sps ={A € C[[SA| < (7 +0)p}-

except when A = =ivy,p. From Proposition it follows that if A € S, and
A # Fivpp, then py(a;) # iy,p(ar). Fix a 6, > 0. By Proposition [1.4.3| there
exists a N > 0 such that |py(a;)| < %”#M whenever A € S5, and |RA| > N. As
the set {\ | A € S,5,, |RA| < N} is compact and A — py(a;) is analytic, the set
Z =A{X€ Sps, | A # Eivpp, [RA| < N, @alar) = @in,plaz)} is finite. If Z is empty,
take 6 = d1, otherwise any § < % — 7, will serve our purpose if d = infyecz |IA| as
it is evident that only zeros of ¢; in S, 5 are ivy,p. As @iy, ,1(a¢) # 0 (Proposition
, it follows that 1); has simple roots at fiv,p.

Let ¢5(\) = =¥ 0y, (\) for A € S,. Then ¢, € C?(G//E). Let g € CP(G//K)
such that § = 1. Applying Proposition we get {gxh | h € C°P(G//K)} is
dense in the space of all functions in C?(G//K) whose Fourier transform vanishes
at +iy,p. Since (T, g * h) = 0, we have, (T, ¢) = 0 for all ¢ € C?(G//K) with
g(z’ypp) = </;§\(—z'fypp) = 0. But ¢;,,(x) is also a radial LP-tempered distribution
which annihilates all ¢ € C?(G//K) whenever qAﬁ(z"ypp) = 0. Therefore, T' = Bpj,,
(see [68, Lemma 3.9]) for some constant §. In particular, 7" is an eigendistribution
of A with eigenvalue —%.

Now we shall deal with the case p = 2 and T is radial. Applying Lemma |3.3.1],
we will get that Supp 7' C {0}(where each T}, = T'). Hence using Lemma along
with the fact that ¢, = 0 for k odd, we get T' = Zg:o axpo 2k for some constants
ag, ay, - ,ay with ay # 0. We claim that N = 0. To establish the claim we note
that,

a2k 82k
Mo or(x) = 9% L (or*oy(z)) = %) L (oa(ar)ea(z))
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— Z (%) ©o.i(ar)po.or—i( Zk: (%) ©0,2i (@) Po,2(k—i) (T)-

1=

If N > 1 and T satisfies M;T = @o(a;)T, comparing the coeflicient of g on_2 in
both sides we get N (2N — 1)anpo2(a;) = 0. But since pg2(a:) # 0 (see Proposition
1.4.4)), we get ay = 0 which is a contradiction. Hence T' = agpg and AT = —p*T.
This completes proof of the theorem for radial distributions.

Now we withdraw the assumption of radiality of 1. This part of the argument
is essentially same as that of Theorem First we note that if for all z € G,
R(¢,Ty) = 0 for T} € CP(X)', then T} is zero as distribution. Indeed, we take a
h € C*(G//K) supported on a neighborhood of the origin o = eK. If R(¢,T1) =0
for all , then Ty % h(x) = (R(¢,T1),h) = 0. As we know that we can approximate
T1 by distributions of the form T} % h in the topology of CP(X)’, we conclude that
Ty = 0. This proves the claim. The hypothesis T * 0, = ©;y,,(a¢)T implies that

R(0,T) * 0y = R(T * 0) = R(U(T % 04)) = iy, p(as) R(ET).

Hence R(¢,T') satisfies the hypothesis of the theorem. Therefore by the result proved
above for radial distributions A(R(E T)) = —ﬁR(ﬁ T) for all x € G. This implies
4p2 .
that R({,(AT)) = R((, ( -T)) for all x € G. That is ]i;(éx(AT +5T)) =0
for all z € GG. As noted above this implies that AT = _WT' Thus the proof of
the theorem for M, is complete. For By, replace ¢x(ar), @iy, p(a:r) by ¥a(t), Yiy,,(t)
respectively. O]

We have an analogue of the theorem above for the heat operator which we state

here. It will be proved in Chapter [5] as part of a more general result.
Theorem 3.1.4. Lett > 0 be fized.

(i) Let T be an L3-tempered distribution on X such that e!®T = e "3 +2)T for
some A\ € R. Then T is an eigendistribution of A with eigenvalue —(\* + p?).

(11) Let p € (0,2) and T be an LP-tempered distribution on X such that e'AT =

_4p
pp’ T. Then T is an eigendistribution of A with eigenvalue —i—‘;.

Proof. For (i) see Theorem [5.4.5 and for (ii) see Theorem [5.4.2] O

Remark 3.1.5. In the theorems above, if we substitute the distribution 7" by func-
tions f with suitable decay, then clearly f can be characterized as a Poisson trans-

form of an appropriate object on K/M. (See Theorem Corollary|1.7.4} Propo-
sition and Proposition [1.6.1)).
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3.2 Characterization of L’-tempered eigendistri-

butions

In this section we consider possible analogue of the Roe-Strichartz theorem (see
Theorem , for spherical (and ball) averages and the heat operator. We begin
with a couple of preparatory lemmas. The first one is essentially proved in [44]
(see also [52]) where the multiplier was the standard Laplacian of R™ acting on
L>*(R™). To make it applicable in a wider context we shall rewrite it with suitable

modifications for a general multiplier © : C?(X) — CP(X).

Lemma 3.2.1. Fiz 0 < p < 2. Let © : CP(X) — CP(X) be a multiplier and
{Ty}kez+ be an infinite sequence of radial LP-tempered distributions. Suppose that
for all k € Z*, OT, = ATyyq for a nonzero constant A € C and |(Ty,v)| < M~(v))
for a fived seminorm v of CP(X) and a constant M > 0. If (© — B)N*1Ty =0 for
some B € C with |B| = |A| and N € N, then ©T, = BTy.

Proof. Since (6 — B)N*T, = 0, we have
Span{Ty,T1,--- } = Span{Ty, OTy, - -- ,©0"Ty} = Span{Ty, T4, -- , Tn}.

Suppose that (0 — B)Ty # 0. Let ko be the largest positive integer such that
(@ - B)kOTO 7£ 0. Then k’o S N.
Let T = (© — B)k~1Ty. Then T € Span {Ty, Ty, - ,Tx}. We assume that

T:a0T0+"'+aNTN.
Then

(© — B)’T = (© — B)**"'T) = 0 and (3.2.1)
(0 - B)T = (0 - BT, £0.

Using binomial expansion and ([3.2.1)) we get for any positive integer k,

o' = ((6-B)+B)r
= kB*'(© - B)T + B*T.

This implies for any ¢ € C*(G//K),
1 _ 1
(O = BIT.0)| < HAP O Tl + HAIT . (322)
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Since,

OMT, )| = |[(O%(agTh+ arTh + -+ anTy), V)|
a0 A*( Ty, ) + -+ + an ATy, )|
< |AMao(Te, )] + - + lan (T x, ¥)]
MIA[*(Jao] + - - + lan )y(¥),

IN

it follows from (3.2.2)) that,

4]

{(© = BT )] < M (fag] 4+ lan () + 21T w3

The right hand side of the inequality above goes to 0 as kK — oco. Hence by (3.2.1)),
(© — B)*Ty = 0 which contradicts the assumption on ky. Therefore N = 0, i.e.,
(@ — B)T) = 0. O

Lemma 3.2.2. Lett >0 and 0 < p < 2 be fixed.

(i) For A € C with |A| < @iy,,(ar), there ewists infinitely many X\ € S, with
loalar)| = |A|. Further if A # 0, then there are distinct A1, Ay € S, such that

o ()| = [A] = |, (ar)] and @y, (ar) 7 x, (ar).

(ii) Ewact analogue of (i) holds true when p, ,(a:), pr(ar) are replaced respectively

by ¢i’y;,p (t) UM (t) .

Proof. We will only prove (i). Proof of (ii) will be similar. Let A # 0. Then as
|Al < @in,plar), there exists py with 0 < p < p; < 2 with ¢, ,(a;) > |A]. Since
oa(ar) — 0as|A| = coin S, (see Proposition, for each fixed g with p < ¢ < p1,
we easily obtain a A € C with |\ = 7,p and |px(a;)| = |A|. Since cardinality of
such X is uncountable and zeros of analytic functions are isolated, one can choose
A1 and Ag with py, (a;) # o, (ar) and |y, (ai)| = | (ar)| = |A]. Tt follows from
the explicit expression of Jacobi function that ¢y (a;) = 0 for infinitely many real A
(see e.g. |79, page 235, Proposition 2.2]). This takes care of the case A = 0. O

The first main result of this section is the following.

Theorem 3.2.3. Fizt > 0. For 0 <p <2, let {T}rez be a bi-infinite sequence of
LP-tempered distributions on X satisfying for k € Z,

(i) MyTy = ATyyq for some A € C and

(ii) (Tk,¥)| < M~(¢) for all € CP(X), for some fized seminorm v of CP(X)

and M > 0. Then we have the following conclusions.
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(a) If |A] = @iy plar), then ATy = —%To.
(b) If |Al > @iy, p(ar), then Ty = 0.

(c) If |A| < @iy,plar), then Ty may not be an eigendistribution of A. If A is also

assumed to be nonzero, then Ty may not be an eigendistribution of M,.

Proof. (a) Let us first assume that T are radial. Then from hypothesis it follows
that MFT_, = A*T, for all k > 0 and hence ARTy = @A(at)kf_\k. Therefore for
¢ € CP(G//K) and N € N we have,

[{(r(ar) = @inyp(a)) ¥ To, )]
T N+190>|

= (B (oalar) = @iyl
k

= T (25 (onta) = piola) ¥ )

<T—k7 <(%\Xlt)) (pa(ar) _%vpp<at))N+180> >

((Wﬁf‘”)k(w(ao - %pmt»“lw) ]

A ) (@A(at) - (;Oi’ypp(a't))N—i_lQO] 5 (323)

where for any ¢ € CP (G///7( ), ¥ € CP(G//K) is its image under the Fourier inver-

sion and the seminorm u is given by

T

dAT

(¢) = sup P(N)p(N)

AES,

Y

for some even polynomial P(A\) and derivative of even order 7. We shall first
show that for N = 177 + 7, (M — @i, p(a))V 1Ty = 0, equivalently, ((pa(ar) —
gompp(at))N+17A}),g0> =0 for p € CP(G///7(). In view of (3.2.3), it suffices to show
that sup,cg, F*(A) — 0 as k — oo where

FF(\) =

dCiTP()\)<%z(4at)) (ox(ar) = iryp(a)) M el
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Note that,

% (P(A)(%) (#a{ar) = <Pwpp(at))N“90> (3.2.4)

& eala) t N+1 d
= i+§ﬂ OijlW( A w(%(at) - @iypp(at)) WUD()\)@)

Using the estimates of the derivatives of ¢, (see (1.2.10))) along with the facts that

_——

|ox(a) /Al = lealar) [ @imp(ar)| < 1 and ¢ € CP(G//K) we get for A € 5,

QO)\(CLt) N+1—71

@ivpf)(at)

FE(\) < Clsz( oa(ar) )k_ —1 (3.2.5)

‘Piwp(at)

for some constant Cf.

Since @y (a;) — 0 uniformly in S, as |A| = oo (Proposition [1.4.3|(a)), we can
find a compact connected neighborhood V' of iy,p in S, such that if A\ ¢ V, then
loa(ar)] < @iy p(ar)/2. From , it is clear that F'* — 0 as k — oo uniformly on
Sp\ V.

We need to show that

.
sup kr( pala) )
eV Spi’ypp(at)

Let D be the open unit disk. Clearly, we can cover DU{1} by {D,U{1} |0 < s < 1}

where D, is a one-parameter family of open disks of radius s bounded by the circle

Cs : (z—(1—38)*+y? = s® (see Figure B.1[a)). It is clear that, if s < &,

then Dy C Dy. Since V is compact and connected and since (see Proposition

loa(ar)/pir,plas)| < 1 for X € Sy, A # Fiypp, the image of V' under the map

A = oa(ar)/iy,plar), is a connected set contained inside the set D, U {1} for some

0 < s < 1. Without loss of generality we may assume 0 € D,. In view of ,

it suffices to show that k2% 7|z — 1|N*1=7 — 0 uniformly as k — oo on D, U {1},

N+1-1
alar) 0. (3.2.6)

-1
SOZ"Y;DP (at>

which we shall take up now.

Let pr and ¢ be two points on C given by
pr = (1 — ) + se” and g, = (1 — s) + se ",

for some 0 < & < /2 so that s — scosd, = k~'/%. Let V; be the intersection of

1/4

D, U {1} with the minor circular segment of width k~'/* joining the points py, g
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and 1 (as shown in Figure 3.1(b)). Precisely,
Vi={zeD, ||l —R()| <k Fu{1.
Note that,
Ipe|®> =1 — (25 — 25?)(1 — cos(0;)) = 1 — 2(1 — )k~ /4 (3.2.7)

and
o — 12 =1 = ((1 = 8) + ™)) > = 25k~ 1/4, (3.2.8)

For z € D \ Vi, |2| < |px| and hence for some constant C’,

kT|z|k—T|2_1|N+1—T S ClkT|pk|k—T
= CkT(1-2(1—s)k V. (3.2.9)

For z € Vj, |z — 1| < |pr — 1] and therefore for some constants C’ and C”,

]{JT|Z|k_T|Z o 1|N+1—T S C/kﬂ'|pk o 1|N+1—T
177+7+1—7

_ Clk7(25k71/4) 2
< Ok, (3.2.10)

It is now immediate from (3.2.9)) and (3.2.10)) that as k — oo,

1|N+1—T

sup k7|z|"T|z — — 0.

D.U{1}

Thus we have (px(a;) — 9i,p(a)) N T = 0, hence (M; — ¢4, p(a,)) VT = 0. From
this and Lemma , we get that M, Ty = @i, ,(a¢)Th.

Now we shall extend the result to the case when T}.s are not necessarily radial. To
make this part of the argument applicable in other situation in this chapter, we shall
write M; as © and consider it as a multiplier from CP(X) to itself (see Subsection
for 0 < p < 2 with symbol m(\) = ¢x(a;). Thus we have established above
that ©Ty = m(iv,p)To when T}, are radial. Coming to the case of general T}, we
shall show that the condition in the hypothesis on the sequence {7}, } implies that for
any y € G, the sequence { R(,/T},} of radial distributions also satisfies the hypothesis.
Since © commutes with radialization and translations, it follows from the hypothesis
that ©T, = ATy that OR((, 1)) = AR((,Ti+1). It remains to show that for
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Figure 3.1:

the seminorm ~ of C?(X) in the hypothesis of the theorem and ¢, € C*(G//K),

{R(,T), in)] < CyMy(i). Using (TZ) along with the fact [zy| < || + |y]
(|39, Proposition 4.6.11]) we have for any ¢ € C?(X),

V(b)) = sup |DY(y " w)|po(x) 5 (1 + o))t

zeX

= sup | D)o (yar) T (1 + [yz|)*

_ 22 |yz| L-2
= sup |Dy(z)|er V(1 + |yx|)" >
zeX
20 -2 Ll 5
< €7 |y|<1 + ’y|)L P su_)r() |D¢(J])|6p| |(1 + |CL’|)L P
Te
2p -2 -3
= er (14 |yt su)g | D () o () "7 (1 + |z|)*
Te
== Cy (2/})7

where the constant C}, depends only on y € G. Since [(Ty, )| < M~y(y) for any
Y € CP(X), it follows that for ¢, € CP(G//K),

!<R(€ka),¢1>\ = |<€ka>¢1>| = ’<Tk>€y‘1wl>‘ < MPY(gy‘le < Cy‘lM'Y(w1>'

Therefore from the result proved for radial distributions we conclude that
OR(l,(To)) = m(ivp)R(L,(Ty)) for all y € G.

Now appealing again to the fact that © commutes with translations and radi-
alization we have R({,(01y)) = R({y(m(ivpp)Ty)) for all y € G. This implies
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©Ty = m(ivyp)To which was to be proved. In the last step we have used the fact
that if for some 7' € CP(X)', R(¢,T) = 0 for all x € G, then T' = 0, which was noted
in the proof of Theorem m Thus we have MyTy = ;. ,(a;)Th. An application of
Theorem |3.1.3| yields ATy = —%To.

(b) In view of (a), it suffices to prove the result in radial setup. For ¢ € CP(G//—/7(),

we have

@opl = 1 (220
e,
()
< Cp <%£ft))kgo].

Since for A € Sy, [pa(ar)| < @iy,p(ar) < A, it follows that
(@A(at)>k
A ¥

(c) As |A] < @iy,p(a), by Lemma there exists infinitely many As in S, with
loa(ar)] = |A|. Let Ay and Ag be two such distinct As with A; # £Xs. Let ¢y, (a) =
|Alet and @y, (a;) = |Ale?2. Let Ty, = ey, + e*%20p,, for k € Z. Then M,T}, =
e Moy, +e*%2 Moy, = |A|Ty41. Clearly the sequence {T} } ez satisfies hypothesis

— 0 as k — oo.

Hence Ty = 0.

of the theorem (see Propositions |1.4.1| and [1.5.1)) but T is not an eigendistribution
of A. If A # 0, in the above example choose \; and Ay such that ¢y, (a;) # @, (a;)

and |1, (ar)] = o, (ar)] = ] (see Lemma B22(1)). =

Remark 3.2.4. In Theorem if we substitute sphere average M, by ball average
By and ;. ,(t) by iy, ,(t), we get the corresponding statement for ball average. To

prove this we only need a step by step adaptation of the proof of Theorem [3.2.3]
We omit this for brevity.

We now consider an analogous result for the heat operator.
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Theorem 3.2.5. Fizt > 0. For 0 <p <2, let {T}}rez be a bi-infinite sequence of
LP-tempered distributions on X satisfying for all k € Z,

(i) e"ATy, = ATy1y for some A € C and

(ii) (T, ¥)| < M~(¥) for all ¢ € CP(X), for some fized seminorm v of CP(X)

and M > 0. Then we have the following conclusions.

(a) If[Al = ¢, then ATy = — 21T,
24
(b) If |A| > 674;7, then Ty = 0.
(c) If 0 #|A| < 67%, then Ty may not be an eigendistribution of e*.

(d) If A= 0, then each Ty, =0 for all integer k.

Proof. (a) Here again only a step by step adaptation of the argument given in the
proof of Theorem is required with the substitutions of M, px(ar), iv,e(a¢) by

_4tp2
) and e

eth et +p? respectively to conclude that

_4p2t
BTy = e v Ty,

Applying Theorem [3.1.4] we get the desired result.

(b) Use exactly the same argument as in (b) of Theorem with suitable modi-
fication of appropriate symbols.

2 402t

(c) As |A] < 67%, there exists p; with 0 < p < p; < 2 with e #7171 > |A.
Since e !™*+7*) 5 0 as |A\| = oo for A in Sy, for each fixed ¢ with p < ¢ < py
we have uncountably many A € C with |SA| = ~,p and |e *"**+7*)| = |A|. Since
the zeros of analytic functions are isolated one can always choose \; and Ay with
et oL =t and |€ft(A%+p2)| — |eft(A%+p2>| = |A|. Let e tAI+p%) — | Alei®
and e fO3H0%) — |Ale®2. Let Tj, = e*1¢,, + e*%2p,, for k € Z. Then T} =
ko1 tA k02 A

O te ©ry = |A|Tk41. Clearly the sequence {7} }rez satisfies hypothesis

of the theorem but T} is not an eigendistribution of e.

(d) It suffices to prove that T' = 0 whenever e!2T = 0 for a LP tempered distribution
T. Passing to R({,T) for some = € G, if necessary, without loss of generality we
may assume that 7" is radial (see proof of Theorem . If 2T = 0, we have
(e!AT, ¢) = 0 for all ¢ € CP(G//K). That is (T, ¢ x h;) = 0 for all ¢ € CP(G//K).
Since by Proposition [1.5.2 {h;* ¢ | ¢ € CP(G//K)} is dense in in C?(G//K), hence
(I',¢) =0 for all ¢ € C?(G//K). Therefore T' = 0. O
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Restricting to measurable functions with appropriate growth as particular ex-
amples of LP-tempered distributions, we have following consequences of the two

theorems above.

Corollary 3.2.6. Fiz at > 0. Let {fi}rez be a bi-infinite sequence of measurable
functions on X such that for all k € Z,

M, fi = Afepr (respectively Byfy = Afrsr, €2 fr = Afer),

and
| fllp oo < M for a fized p € [1,2),

for some constants A € C and M > 0. If |A| = iy, ,(a:) (respectively |A| = iy, ,(t),
_4pt /
|A| = e #»"), then Afy = —%fo and fo = P_iy,,F for some F € LV (K/M).

Corollary 3.2.7. In the previous corollary if we substitute the condition | fi||y 0o <
M forp e [1,2)” by “Ufilpr < M for a fived p € (0,2) and r € [1,00]”, keeping the
rest of the hypothesis same, then Afy = —%fo. Moreover fo = P_i,,F for some
F e L'(K/M) ifr > 1 and fo = P_i,pit for some signed measure pr on K/M if
r=1.

The proofs of these corollaries are evident from the following steps.

(1) Functions f;, in LP**°(X) or in H,,(X) are LP-tempered distributions. The
uniform norm-boundedness condition i.e. || fx||y00 < M or [fi]p, < M, implies
that

|(fr )] < Cy(¥)

for a fixed seminorm v of C?(X), for all ¢ € C?(X) and for some constant C
(see Proposition [1.5.1f(a) and Proposition [1.6.1e)). Thus the hypotheses of

Theorem [3.2.3] (along with Remark [3.2.4) and Theorem are satisfied.

(2) Eigenfunctions of A satisfying suitable size estimates can be realized as the

Poisson transforms of appropriate objects (functions, measures) on the bound-

ary K/M. See Theorem and Corollary

Following the results of Strichartz [76], Howard—Reese [44] on R" and of Kumar
et. al. [52] on X, we have considered the problem of characterizing eigenfunctions
with real eigenvalues. So far we have dealt with eigenfunctions having eigenval-
ues in (—p? 00) and in the next section we shall take up that for eigenvalues in

(—o0, —p?], which are in the L?-spectrum. It is natural to try to extend the results
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for complex eigenvalues. It appears that there are intrinsic difficulties in addressing
this question. We conclude this section with the following theorem which strives
to formulate and prove such a result, characterizing eigenfunctions with arbitrary
complex eigenvalues, although only for A as the multiplier. This will complement
the results in [52].

We recall (see Section[3.1.1)) that A(S,) is the LP-spectrum of A and in particular
A(Ss) = (=00, —p?]. For p # 2, the boundary dA(S,) of A(S,) is a parabola given
by (3.1.1). If z is a point in C\ A(S,), then simple computation shows that z lies
on OA(S,) for a unique p € (0,2), which we shall denote by p(z). If z € A(Sy) we
define p(z) = 2. Precisely, for any z € C,

(0= 2
! VRGE+) + 2+ +V2p

For p(z) # 2, we define N(z) to be the set of all points on the outward normal drawn
to the parabola JA(S,(.)) at the point z as shown in Figure[3.2| (a) (where z = A(«)

and zp is a point on the normal). Using these notation we now state the theorem.

Theorem 3.2.8. Let \g € C\ (=00, —p?], p = p(\o) and 29 € N(X\o). Let {T} }rez+
be an infinite sequence of LP-tempered distributions on X satisfying for all k € Z7T,
(i) (A — 200)T}, = ATy y1 for some nonzero A € C and
(ii) (Tx,¥)| < M~(¥) for all ¢ € CP(X), for some fized seminorm v of CP(X)

and M > 0. Then we have the following conclusions.
(a) If |A| = | Ao — 20|, then ATy = \Tp.
(b) If |A| < |XAo — 20|, then Ty = 0.
(c) If |A] > | Ao — 20|, then Ty may not be an eigendistribution of A.

We note that A is outside the L*-spectrum and hence p = p()\g) # 2. The results
involving L2-spectrum will be considered in the next section. If —p? < Ay < 0 (hence
1 < p(Ao) < 2), then z; in the statement above can be taken to be the origin 0 in
C. In this case with zy = 0, the theorem above reduces essentially to Theorem [0.2.3

proved in [52].

Proof. 1t suffices to prove the theorem under the assumption that T are radial.
The arguments at the end of Theorem [3.2.3] (a) extends the result from radial to the
general case. Let \g = —(a®+p?) with Sa > 0. Observe that |[A(X)—z| > [A(a)— 2z
for A € S, (see Figure|3.2|(a)).
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From hypothesis it follows that (A — 291)*Ty = A*T}, and hence
(_1)k()\2 + p2 + Zo)kj-\b _ Akﬁ,

where by (\2+p?+29)* we mean the function A = (A2+p%+20)*. Let ¢ € CP(G///7().
Then

(Tod) = | (Lo)kw

VAN
=
-2
/N
7N
i
+
bw D
+
&
N~
Bl
N~
| |

IN
=

A k
()\2 +_p2+20> ¢], (3.2.11)

where for any ¢ € CP (G///7( ), ¥ € CP(G//K) is its image under the Fourier inver-
sion and the seminorm g is given by u(¢) = sup,eg, L= P(AN)p(N)| for some even
polynomial P(\) and derivative of even order 7. We note that in the definition of ,
it suffices to consider the supremum on S = {A € S, | SA > 0} as ¢ € Cp(G//_ﬁ()

is an even function.

(a) Our aim is to show that for some N € N, (a2 — A)N+1T, = 0, equivalently,
((a® = N)NHTy ¢) = 0 for all ¢ € CP(G//K). Substituting ¢ by (a? — A2)N+14 in
(13.2.11]) we get,

(2 = NPT = [(Fasla® = 20
A k
(v ) (“2”2)%4'

We note that from hypothesis |A] = |a? + p? + zy|. We fix N = 67 + 1, and write

IN

M p

Py = | poy () (@2 ey
d\T A2+ p2 + 2 '

We need to show that SUD e gt FE(X\) — 0 as k — oo. We note that for constants
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Clmn7

. k
5 (P00 (wifes) (@2 = 20¥010)

d A tdm s oy 4"
= Y G ( ) dm (e = NP (9)

2 2

l+m+n=T1 A + P + 0

I,mnezt
Since ¢ € CP(G///7() and /\2+;42+Z0 ijizijzg < 1for A € S} we get for some
constants C; and Cy,

o+ p* + 2 g N+1—
FFO) SOk | —5——| [ =X 3.2.12
() < Ok St 2 ot = (3212)
and i
2, 2
k o+ pt 20

Choose a compact connected neighborhood U of « in S;r such that if A ¢ U, then

f\‘zi‘;iiﬁ < 1. Tt follows from (3.2.13) that that F*(\) — 0 uniformly in S;\ Y.

Next we shall show that

k

2 2
sup k™ QAP ta |oz2—/\2|5T+2—>Oask—>oo. (3.2.14)
AU A+ p? + 20
Since
2 2
sup 7 | S22 a2 - 2T
N=7 A +p + z
Ala) — 2 : 5742
= supk” |—=——| [(Ala) — 29) — (A(N) — i
sup” | T 22| 1A (0) — 20) = (A) —z0)

a careful examination of Figure (a) shows that this is equivalent to prove that

k
|/B . Z|5T+2

sup k" — 0,

2€Q
where () is a compact region containing 3, bounded by the parabolic arc and vertical
line, lying on one side of tangent drawn at S opposite to the origin (shaded in Figure

3.2(b)). Again by applying a suitable rotation, we may assume that [ lies on positive

imaginary axis. We shall show that sup, k" g‘k |18 — 2]5T+2 — 0 as k — oo where
H={ze€C|-n<Rz <n |l <Iz) <6} for any n > 0 and § > |5| which
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suffices to establish our claim. Let Vy = {z € H | [R(z — B)| < k74 |S(2 — B)| <
k=Y4Y and Vi¢ = H\ V.. It follows that if z € V¢, then |z| > (|3 +k~'/2)"/2. Hence
for z € V¢,

B 8] _ O\
> =(1+—=)""

=B+ ke~ VR

-2 .
where ¢; = |3]77. As H is compact, for some constant Cj,

Y

k

18— 2 < Csk™(1+ %)—W. (3.2.15)

If \ € Vi, then |R(z — B)] < k7Y% and |3(z — B)| < k=4 Therefore for some

constant CYy,

sup k”
ve

k
|6 B 2‘57'-1-2 < C4krk,f(57+2)/4 _ C4/€7(T+2)/4. (3216)

sup k™
Vi

From (3.2.15) and (3.2.16)), it is clear that supy k™ }§|k 18— 2 = 0as k — oo.

Thus it is established that Fj(\) — 0 uniformly as k — oc.

If © = A—zI, then © is a multiplier given by the symbol m(\) = —(A\%+p*+z).
We have shown that (© — m(a))N ™7y = 0. An application of Lemma then
gives (0 —m(a))Ty =0, i.e. ATy = —(a? + p?)Ty = XoTop.

(b) By hypothesis |A|/]a? + p? 4+ 20| = |A|/| Ao — 20| < 1. Therefore for A € S,

A
A+ p*+ 2

A
o+ p?+ 2

A
o+ p?+ 2

a2—|—p2—|—z0
N+ p?+ 2

— < <1. (3.2.17)

Hence from (3.2.11)), it follows that |<f0, ¢)| =0forall ¢ € CP(G///7(). Thus T = 0.

(c) As |A| > |\ — 20|, it is evident that there exist distinct Ay, A2 € A(S,) with
A1 — 20| = |A] = |\ — 2| (see Figure 3.2(a)). Suppose that A\; = —(a? + p?),
Ao = —(a3 + p?), for some ay, s € S,, | A1 — 20| = |A]e?* and |Ay — 2| = |Ae?? for
01,0, € R. Define T}, = e*1p,, + "2, for k € Z*. Then T} are LP-tempered
distributions (see Propositions [1.4.1| and [1.5.1]), they satisfy the hypothesis and

(A = 20)Tx = €™ (A = 20)@a, + € (A = 20)Pa, = |A|Ths1.

But Ty is not an eigendistribution of A. m
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Figure 3.2:

Following results are immediate from the theorem above and Corollary [1.7.4]
Theorem [[.7.2]

Corollary 3.2.9. Let Ay € A(S)) \ (—o0, —p?], p = p(\o) and 29 € N(X\g). Let
{fx}rez+ be an infinite sequence of measurable functions on X such that || fi||y 0o <
M for some constant M. If (A — 201)fi, = Afxsa for all k € Z and for some
constant A € C with |A| = [Xo — 2!, then Afy = Mo fo and fo = Pa—iy,,F for some
F e L”(K/M) and a € R,

Corollary 3.2.10. Let Ay € C\ (—o0,—p?], p = p(Xo) and z0 € N(X\y). Let
{fx}rez+ be an infinite sequence of measurable functions on X such that [fil,, < M
for 1 < r < oo and for some constant M. If (A — zoI)fr. = Afry1 for allk € ZF
and for some constant A € C with |A| = |Ao — 20|, then Afy = Xofo. Moreover
Jo = PazinypF for some o € R and F € L"(K/M) if r > 1 and fo = Pa—iy,pit for

some o € R and signed measure p on K/M if r = 1.

3.3 Characterization of L?-tempered eigendistri-

butions

In the previous section we have dealt with polynomials in A, sphere and ball average
and heat operator as multiplier from CP(X) to itself for 0 < p < 2. In this section
we shall take up the case p = 2. Taking the advantage of the one-dimensionality
of the L%-spectrum, here we shall be able to deal with all the multipliers on C?(X)

together. We begin with a lemma.
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Lemma 3.3.1. Let © be a multiplier on C*(X) with symbol m(\) € C*®(R). Let
{Tx}rez be a bi-infinite sequence of radial L*-tempered distributions on X such that
for all k € Z, |{Ty,, )| < M~(3p) for a fived seminorm v of C*(X) and a constant
M > 0. Let A be a complex constant. Then the following conclusions hold.

(i) If for all k € Z+, OT}, = ATy, then SuppTy C {X € R | [m(N)| < |A}.
(ii) If for allk € Z—, OT,_1 = ATy, then SuppTy C {)A € R | [m(\)| > |Al}.
(iii) If for all k € Z, OTy = ATy11, then Supp Tp € {ANeR | |m(N)| = |Al}.

Proof. (i) Let Q@ ={X € R | |m(\)| < |A|}. We take a § ¢ €. Then there exists a
positive constant ¢ < 1 and a compact neighborhood V' of 8 such that |A| < ¢/m())]
for all A € V. Let ¢ € C*(G//K) be such that Suppp C V. We claim that

(To, ¢) = 0.

Since ¢ is compactly supported and m € C*®(R), we have, ¢(\)A*/m(\)F €
C2(G//K). Suppose that for ¢ € C2(G//K), (X) = ¢(A)A* /m(\)*.

The hypothesis implies that for all k € Z*, OFT, = A*T},, equivalently,

m(\ Ty = AT,

Therefore,

(Fod) = |, (i)) ) = (T, )]

where the seminorm p, , is given by,
AN a (AN
— =sup(1+|A)" |-—= | —— A

(%) qs] sup(1 -+ )" |7 (5 ) o)
for n,7 € Z*. Since m(A\),1/m(\) € C*(V) and |$| < ¢, it is clear that as
k — 400,

[ AN\

L) s

i (o)

Thus 8 ¢ Supp’fo. Hence Suppﬁ) C . This completes the proof of (i). A

similar argument with negative integers and taking k — —oo will prove (ii) and (iii)

o , (3.3.1)

sup(l + |A])" — 0.

AEV

evidently follows from (i) and (ii). O
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We state our first main result in this section.

Theorem 3.3.2. Let © : C*(X) — C*(X) be a multiplier with real valued symbol
m(\) € C*®(R). Let {Tj}rez be a bi-infinite sequence of elements of C*(X)'. Suppose
that for all k € Z, ©T, = ATg1 for a nonzero constant A € C and |(Ty, V)| <
M~() for a fized seminorm ~ of C*(X) and a constant M > 0. Let m(R) =
{m(\) | A € R}.

(a) If |A] € m(R) but —|A| € m(R), then ©Ty = |A|To.

(b) If —|A] € m(R) but |A| ¢ m(R), then ©T, = —|A|Tp.

(c) If both |A|,—|A| € m(R), then Ty can be uniquely written as Ty = Ty + T-

where Ty, T € C*(X)' satisfying OT, = |A|T, and OT_ = —|A|T_.

(d) If neither |A| nor —|A| is in m(R), then Ty = 0.

Proof. (a) First we shall prove the assertion with the assumption that the distribu-

tions T, are radial. Let |A| = m(a) for some a € R. In view of the Lemma it
suffices to show that for some N € N,

(© —m(a)NTy =0, (3.3.2)

equivalently, ((m(\) — m(a))¥ 1Ty, ¢) = 0 for all ¢ € C>(R). Using that m is real
valued and —|A| ¢ m(R) and Lemma [3.3.1iii), we conclude that

SuppTy € {A € R | [m(V)| = A} = {A € R| m(}) = m(a)}.

Let g be an even function in C°(R) such that g =1 on [—1/2,1/2] and support of
g is contained in (—1,1). For r > 0, let g, be defined by ¢,(¢) = g(¢/r).
Let B = max{|%g()\)] : A€ [—1,1],k < N}. Hence we have

dk
‘Wgr()\)‘ < B/r* for all k < N. (3.3.3)

Let p(A) = m(A) — m(«). For ¢ € CX(R), define
H, (M) = (m(A) = m(a))™ g, (p(X)$(N).

Clearly H, € C2(G’///7(). Suppose that for h, € C2(G//K), hy, = H,. Since H,(\) =
(m(\) — m(a))¥ () in a neighborhood of Supp Ty, we have,

[((m(\) = m()) T, @) = [(To, H)| = [(To, hy)| < My(h) < Mg (H,),
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for some n, 7 € Z* where the seminorm p,, , is as given in . The proof of this
step will be completed if we show that p, ,(H,) — 0 as r — 0 when H, is defined
using suitably large V.

Since g, vanishes outside the set {\ € R | |p(\)| > r}, it is enough to consider
the supremum over the set £ = {\ € R | |p(\)| < r} N Supp ¢. We note that for
A€ E, Im(A\) —m(a)|] <r. Since ¢ is compactly supported,

(1 4+ [(AD"[p® N)mO (N *+D(\)] < Ky for 0 < k,1 < 7. (3.3.4)

for some constant K;. Above the superscript (I) of a function denotes its [-th

derivative. Using (3.3.3) and (3.3.4)) we have for N > 1,

sup(1 -+ )" [ 5 [0 = )" 60000V

=sup(L+A)"| D Crag® (pO))p® M) (m(A) = m(a) MmO (n)p - FHI ()

AEE

0<ki<T
k+I<T
<sup > Cry |1+ (M) (N)mO (N ED N [g,.5 (p(N) (m(A) = m(a) V]
AEE o cpi<r
k+I<t
<C Z kN1
0<k i<t
k+I<T

which goes to zero as r — 0. Thus for N > 7, [{((m()\) — m(a))N*Ty, ¢)| = 0. By
Lemma this implies that (© —m(«a))T, = 0. The assertion is thus proved when

T}, are radial. The assumption of radiality can be withdrawn as done in Theorem
3.2.3| (a).

(b) Since —O satisfies the hypothesis of part (a) with A replaced by —A, it follows
from (a) that —©Ty = |A|T,. Consequently ©T = —|A|T

(c) Let ©¢ = ©% Then OyTy, = A*Tyy,s for all k € Z. Hence the sequence {Toy }rez
satisfies the hypothesis of part (a), substituting © by ©y and |A| by |A|?>. Therefore
0Ty = |A|"Ty. Set T, = AIOT apng 7 = D=9  Eyidently Ty = T, + T-

2|A] 2[A]
and Ty and T_ satisfy the required property. Uniqueness of this decomposition
is clear because if Ty = S, + S_ with ©5; = |A|S; and ©S_ = —|A|S_, then
OT) = |A|Sy — |A|S_. Therefore S, = GO and 5 = MAE=ET,

(d) From Lemma and proof of Theorem [3.2.3|(a), it follows that distribu-
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tional support of R(¢,T}) is empty for every z € G. Hence R({,T;) = 0 for every

x € G. Consequently T, = 0 by the argument given at the end of proof of Theorem

B.I13

O

Restricting to particular multipliers we have interesting corollaries of the theorem

above. Here are a few representatives, written as a list for brevity.

Let { fx}xez be a bi-infinite sequence of measurable functions on X such that for
the multiplier © (which will be specified below), © fy, = Afy. for all k£ € Z and for

a constant A € C. We have these conclusions.

(i)

(i)

© = A: Suppose that for all k& € Z either (a) || fill2,00 < M or (b) [fr]o, < M,
where r € [1, 00] for some M > 0; and |A| > p*.

Then Afy = —|A|fo. Moreover under condition (a) f = P,F for some F €
L*(K/M) and for « € R satisfying o? + p? = |A].

O = e'2 for a fixed t > 0: Suppose that for all k € Z either (a) || fill2.00 < M
or (b) [frla, < M where 7 € [1,00], for some M > 0; and |A| = e #**+#") for

an o € R*.

Then Afy = —(a? + p?)fo. Moreover under condition (a) f = P,F for some
F e L2(K/M).

© = M, or By or e'® for a fixed t > 0: Suppose that for all k& € Z either (a)
1L+ D)~ frllz,00 < M or (b) [fila,r < M where r € [1, 00] for some M > 0;
and |A| = po(a;) (respectively |A| = 1o(t), |A| = e*tPQ),

Then Afy = —(a? + p?) fo. Moreover under condition (a) f = PyF for some
F € L*(K/M) and under (b) fo = PoF for some F € L"(K/M) if r > 1 and
fo = Pop for some signed measure p on K/M if r = 1.

© = M,; or By for a fixed t > 0: Suppose that for all k € Z either (a)
| fell2.co < M or (b) [f]o, < M for r € [1,00] for some M > 0 for all k € Z;
and |A| < po(a;y) (respectively |A| < wo(t)).

Then either fj is an eigenfunction of M;, respectively of B; or f; is sum of two

eigenfunctions of M;, respectively of B; with eigenvalues |A| and -|A|.

The main argument of the proof of these assertions can be divided as the following:

A:

Observe that parts (a) and (b) of Theorem imply that when m(\) for
A € R, takes only positive or only negative values, then fj is an eigenfunction
of the multiplier. We note that the symbol of A i.e. —(A? + p?) takes only
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negative values, while the symbol of e'® assumes only positive values on R.
On the other hand symbols of M; and B; which are respectively ¢, (a;) and

¥ (t) can have both positive and negative values.

B: The uniform norm-boundedness condition on functions fj i.e. || fi|l2,00 < M or

11+ ]2z])  fellzoo < M or [fi]z, < M implies that each fj is an L*-tempered

distribution and

(s )] < CMAy(y)

for some constant C' > 0, for a fixed seminorm ~y of C?(X) and for all ¢ € C?*(X)
(see Proposition [L.5.1(a) and Proposition [1.6.1fe)). Thus the hypothesis of
Theorem [3.3.2 is satisfied.

C: We use the one radius theorem given in Section |3.1.3| which reduces an eigen-

function of a multiplier to an eigenfunction of A in some cases.

D: Eigenfunctions of A satisfying suitable condition on its growth can be realized
as the Poisson transform of an appropriate object on K/M. See Theoremm

and Corollary [1.7.4

Remark 3.3.3. We emphasize that in (iv) above, both of the situations, i.e.,
fo is an eigenfunction of the multiplier or f; is a sum of two eigenfunctions of
the multiplier are possible. Let us restrict to © = M,. It is easy to construct
such examples for the particular symmetric space X = SL(2,C)/SU(2), for which
oa(ar) = sin(2At)/Asinh(2t) ( [41, p. 433]). The function A — ¢,(a;) is an even
oscillating function on R with decay. We can consider it as a function on R*. If
|A| < @o(ay) is sufficiently close to ¢g(ay), then it is possible that ¢y (a;) # —|A| for
any A € R. Hence for such an A in the hypothesis of (iv), fo will be an eigenfunction
of M;. On other hand if |A| is small compared to ¢o(a:), then it is clear that there
can be finitely many distinct A € R, where ¢, (a;) assumes the values |A| and —|A].
Suppose that for A\j, Ay € RT with Ay # Ao, ¢y, (a;) = A and ¢),(a;) = —A. Let us
take fi(z) = oz, (7)+(—1)*lpy, (z) for k € Z. Then M, fy = Afyy1 and the sequence
{fr}rez satisfies the hypothesis of (iv) above, but fy is sum of two eigenfunctions of
M, with eigenvalues |A| and —|A|.

For an arbitrary rank one symmetric space X, we can use the same argument,
both for sphere and ball averages. Fixing a t > 0, we consider the map A — ¢, (a;)
for M; and the map A — 1, (t) for B; and momentarily call both of these functions

h. Then h is an even function on R, hence can be considered as a function on RT.
Relating h to Jacobi functions (see ([1.3.1)), (1.3.5)) and using properties of Jacobi
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functions (see e.g. [79, Proposition 2.2, page 235]), we conclude that A — h()) is a
damp oscillation on R*, decaying to 0 as A\ — co. Therefore again we can argue as
above to conclude that we cannot get rid of any of the two possibilities. Lastly, we
stress that the example of f; given above shows that in this case we cannot arrive

at the conclusion that fy is an eigenfunction of A.

So far in this section (in Theorem and its consequences), we have dealt
with multipliers whose symbols are real valued. Below we shall consider multipliers
with complex valued symbols. Along with those we have already taken up in this
section, the result we aim at will accommodate more multipliers, e.g. real sum of
odd degree monomials in i/, heat operator with complex time i.e. e*® with Rz > 0.

We shall now state the result.

Theorem 3.3.4. Let {fr}rez be a bi-infinite sequence of measurable functions on
X and © : C*(X) — C*(X) be a multiplier with (possibly complex valued) symbol
m(A\) € C®(R). Suppose that for all k € Z, || fello.co < M and Ofy = Afiia
for constants M > 0, A € C. If {\ € R | |/m(\)| = |A|} is finite, then fo can
be uniquely written as fo = g1 + go + - -+ + g, for functions g;,1 = 1,--- ;v on X
satisfying ©g; = A;g;, where A; € C are distinct and |A;| = |A|. Further if m(\) = c,

a constant for all X\ € E, then fqy is an eigenfunction of © with eigenvalue c.

We shall prove Theorem [3.3.4] through these intermediate steps, written as lemma

and proposition.

Lemma 3.3.5. Let A\, A\a, - -+, A\p be distinct nonzero real numbers and Py, Py, Py, - -+ , Py
be polynomials. If Py(Ox)palazo + Pi(Ox)palaca, + + - + Pu(0x)ealren, € L2 (X)),
then Py =0 and P;,i =1,...,k are constant polynomials.

Proof. Without loss of generality we assume that each P; # 0 for 0 <1 < k. Let n;
be the degree of P; and N; = max;,; n;. Let

f=Po(0x)¢rlazo + - - + Pe(0x)Prlaza,-

Choose a function ¢ € C?(G//K) such that: 8{1;“:& =0forl <i<k,0<j <Ny
& [r=0 = 0 for 0 < j < ng; and (9;°¢)(0) # 0. Then,

fr = Po(0x)(wn* V) |a=0 + Pr(Ox)(@a * ) a=a, + -+ Pe(0x)(@x % 1) a=x,

-~ -~ ~

= Fo(0\) (W (N)pa)a=o + Pr(Ox) (@ (AN)oa)a=x, + -+ Pe(92) (0 (A)on) [a=,

-~

= C{p20"(¥(N)}Ha=o

-~

= Cpo(3" ¥)(0).
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Since by the hypothesis f € L?**(X) and ¢ € C?(G//K), it follows that (see
[69, Proposition 3.2 (iv)]) f *¢ € L*>*°(X). This leads to the conclusion that
¢o € L**(X) which is a contradiction (see Proposition [L.7.1)). Hence Py = 0.
Using similar arguments and the fact that O\gxla=y, & L?>*(X) for any A\g > 0
( [69, Lemma 4.5]), it can be shown that P;, 1 < i < k are constant polynomials. [

Lemma 3.3.6. Let T be a radial L?>-tempered distribution on X such that distribu-
tional support ofT\ is {1, A2, -+, Ak}, then T = Pi(O\)@a|a=x, + Po(Ox)@alr=r, +
oo+ Pp(00)@alazy, for some polynomials Py, Py, - - -, Py. In particular if T is given
by a measurable function f € L*>*(G//K), then f = c1pox, + Car, + - -+ + Cripn, for

some constants ci,Ca, -+, Ck-

Proof. As Supp T = {A1, A2, -+, A}, it follows that (see [68, Theorem 6.25]), there
exist polynomials P; for 1 < ¢ < k such that

k
T = Z P;(0))6x,
i1

where ), is the Dirac mass at ;. But if S = P;(0y)@alr=y,, it is easy to see that
S = P,(0))d,. By injectivity of the spherical Fourier transform of L?-tempered

distribution we conclude that

T = Pi(Ox)oala=r; + Pa(Ox)@aln=ny + -+ Pr(0x)0ala=r, -

If T is given by a measurable function f € L>*(G//K), then owing to Lemmal3.3.5]

we get [ = cipn, + capa, + -+ + ey, for some constants ¢, ca, -+, . O

Remark 3.3.7. From the proof of the previous result, Propositions[1.7.1] and [T.4.1
it is clear that 0 ¢ Supp Fitfe L***(G//K) and Supp ¥ is finite.

Proposition 3.3.8. Let f be a measurable function on X which can be written as
a finite sum f = fi+ fo+---+ fn where for some linear operator ©, © f; = a, f; for

t=1,--- . n with ay,as,--- ,a, € C distinct. Then
O —a)(©—al) - (©—a,l)f =0. (3.3.5)

Conversely, if a measurable function f on X satisfies (3.3.5)) for distinct o, ..., o, €
C, then f can be uniquely written as a finite sum of eigenfunctions of © correspond-

ing to the eigenvalues oy, g, -+, Q.
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Proof. To prove the direct side we note that when n = 1, the result is trivially true.
We shall use induction on n. We assume that the result is true for n = m — 1. Let
f=hH+fo+ -+ fnwithOf, =a;f;;1 <i<m. Then f — f; :Z;n:ij is a sum
of m — 1 eigenfunctions. By induction hypothesis

(II©—a;0)(f = f1) =0.
j=2
Applying (© — a;q 1) to this equality, we get the result.

To prove the converse, we define polynomials

Pl-(a:):Hax.__zj', for 1 <i <n.
g

It is easy to see that Pj(«a;) = 0;; for 1 < i,5 < n, where §;; is the Kronecker
delta and P, + P+ ---+ P, = 1. Indeed, if P = P+ P, +---+ P, — 1, then
P is a polynomial of degree n — 1, with n roots (namely «;, 1 < i < n). Hence
P =0. Let f; = P(O)f for 1 <i <mn. If f satisfies , then it is clear that
(© —a;l)P(©)f = 0. Hence O(F(0)f) = a,;P,(©)f. Therefore ©f;, = a,f; for
1<i<mn. Since PP+ P, +---+ P, =1, we have f = f1 + fo +--- + f,. Lastly,
to prove the uniqueness of the representation f = f; + fo + -+ + f,., we note that
Ol f = a{fl + O./%fz +---+ad f, for 1 < j < n, which can be written as the following

matrix equation.

1 o1 S f
a ap ey Ll | ©f
O/lz—l a;z—l L azfl fn @nflf

As «; are distinct, the square matrix above is invertible. Thus f; for 1 < i < n are
uniquely determined in terms of f,Of, .-, Q" 1f. O]

We shall now complete the proof of Theorem

Proof of Theorem [3.5.4). If we assume that fg, k € Z are radial, then from Lemma
M(iii)7 we get that distributional support of fo is contained in the set E = {\ €
R | [m(A)] = |Al}. Let E = {A,As,--+ ,\,}. By Lemma [3.3.6] we get that fo =
1P, + Caox + - - -+ cppa. Writing those ¢y ’s together which have same eigenvalues

(i.,e. m(A)) for ©, we get that fo = g1 + g2 + -+ + g, where g1,¢92,--- , g, are the
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eigenfunctions for © corresponding to distinct eigenvalues say Ay, Ao, --- , A,.. Hence
appealing to Proposition [3.3.8] we get that (© — A11)(© — Ax1)--- (0 — A1) fo = 0.

Rest of the argument is similar to one in the proof of Theorem We include
a quick sketch. If the sequence {f;} (whose elements fj are not necessarily radial)
satisfies the hypothesis, then for any y € G, the sequence {R(¢, fi) }kez is a sequence
of radial functions which satisfies the hypothesis. Hence by the first part of the
proof, (@ — A 1)(© — Ayl)---(© — A 1)R({, fo) = 0 for every y € G. Therefore
R(l,(© —A11)(© — AxI)--- (© — A1) fy) = 0 for every y € G. Hence we get that
(0 — A1) (0 — Ad)---(©— A.Q)fo = 0. Applying Proposition [3.3.8 we have the

desired conclusion. The last part of the assertion is immediate. O

The following are versions of the result listed as (i) after Theorem The first
one captures eigenfunctions with eigenvalues in (—oo, —p?) and the second targets
those with eigenvalue —p?. While a bi-infinite sequence { fi}xez is used in (i), here

we shall use a sequence { fy}rez+ of functions.

Theorem 3.3.9. Let 2 = a? + p* £ if} for some o € B* and § > 0. Let { i} ez
be a sequence of measurable functions on X such that for all k € Z7F, || fxll2.00 < M
and (A + zol) fr = Afiy1 for constants M > 0 and A € C with |A| = 5. Then
fo =PuF for some F € L*(K/M).

Proof. As the previous result we may assume that f; are radial. Let © = A + z,1.
Then © is a multiplier with symbol a? — A? & i3. From Lemma [3.3.1]i) it follows

that Suppﬁ) C {a,—a}. Hence by Lemma 3.3.6, fo = cpa, in particular Afy =
—(a® + p?) fo. Rest is an application of Corollary [1.7.4(ii). O

Theorem 3.3.10. Suppose that for all k € Zt, Afy, = Afyo1 for a constant A € C
with |A| = p*. If some constant M > 0, either (a) ||(1+ |z]) " fill2.00 < M, or (b)
[felor < M for 1 <r < oo, then Afy = —p®fo. We further conclude the following.

(i) If { fx}rez+ satisfies (a), then fo = PoF for some F € L*(K/M).
(i) If {fx }rez+ satisfies (b) with r > 1, then fo = PoF for some F € L"(K/M).

(iil) If {fr}rez+ satisfies (b) with r =1, then fo = Pov for a signed measure v on
K/M.

Proof. Tt is enough to prove the assertion assuming that f; are radial. The result can
be extended to the general case by argument used in Theorem m (a). Let ©@ = A,
which has the symbol m()\) = —(A\? + p?). Since (a) and (b) in the hypothesis imply
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that fp are L2-tempered distributions (see Proposition [1.5.1]), we have by Lemma
3.3.1{(i) that distributional support of ]?0 is contained in the set

PeR[ImN)] <A} ={A R[N +p% <p*} = {0} = {A e R| [m(N)| = |A]}.

From this it can be verified (see the proof of Theorem (a) for the required line

of argument) that, A fy = —p?fo. Realization of f; as the Poisson transform follows
from Corollary [1.7.4(i) and Theorem [1.7.2] O

3.4 Comments on the sharpness of the results

We conclude this chapter pointing out that the growth estimates and the condition
on the constant A, used in various results are not arbitrary. We shall take up
Corollary for the spherical mean value operator M; only for this discussion.
For other cases, the argument will be similar. We recall that a nonzero eigenfunction
fo of A cannot be contained in LP"(X) with any p < 2. Thus we have to take
fr € L9"(X) with ¢ > 2. If we take f € L9"(X), with either 1 < p < ¢ < 2 and
1<r<ooorg=pandl <r < oo, then any f; cannot be an eigenfunction of A
with the eigenvalue —4p? /pp’, without being identically 0 (see Proposition .
The only possibility we are left with is f, € L¢"(X), with 1 < ¢ < p < 2 and
1 <r < oo. For this case, we can find A\, Ay € S, with Ay # £Xs and |p), (a)] =

|oxo(@r)| = @iy p(ar) (see Lemma |3.2.2). Suppose that ¢y, (a;) = %%p(at)eiel and
Ox,(ay) = goi'ypp(a/t>ei02. We define

fr = eikelaph + eik’e?cp)\,z for k € Z.

Then
M, fi, = e Mypy, + €™ Myps, = inyplar) frr-

It can be verified that the sequence { fi}rez satisfies the hypothesis of the theorem
with || -|| 4 »-norm replacing || -||,# «o-norm. However, f is clearly not an eigenfunction
of A. Thus the only suitable Lorentz norm in this case is the || - ||,/ co-norm.

It is also clear from Theorem [3.2.3] (b) and the example given to establish The-
orem m (c), that taking an A € C with |A| # ¢4, ,(a;) in the hypothesis of
Corollary is not meaningful.
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Chapter 4

Mean value property in limit, a
result of Plancherel-Pdlya and

Benyamini—Weit

In this chapter we set our task to obtain analogues of the theorems of Plancherel-
Pélya and Beniyamini-Weit (Theorem and Theorem for ball, sphere
and shell (i.e. annular region) averages of functions f on X which characterize
eigenfunctions of A with arbitrary eigenvalues, instead of only harmonic functions.
In these results, no restriction on the growth of f will be assumed. Using them
we shall prove versions for functions in appropriate Lebesgue class, where pointwise
convergence of the averages (as radius tend to infinity) will be replaced by norm

convergence.

4.1 Ball-MVP in limit for functions without growth

restriction

4.1.1 Statements of the results

We retain the notation used in the previous chapters. We recall, in particular that
X is a rank one Riemannian symmetric space of noncompact type, B(o,r) is the
geodesic ball of radius r > 0 centered at the origin o in X, |B(o,r)| is its volume

and X p(o, is its indicator function. For a fixed A € C, let

VA = / ox(x) da = / oa(ar)J(2) dt,
B(o,r) 0
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where J(t) denotes the Jacobian of the polar decomposition (see Section and
m;} = (Vr)\)_1XB(0,r)-

For a function f, by abuse of language, f * m? will be frequently referred to as the
ball-average, when X is fixed. Sphere and shell-average which will be taken up in
sections [1.2] and [4.3] will have similar connotations.

Main result of this section is the following analogue of Theorem [0.2.6|

Theorem 4.1.1. Suppose that for a function f € L} (X) and a X € C,

loc

lim f*m)(x) — g(x)

T—00

for some function g on X and for every x € X. If there is a positive function
Y € L (X) and a positive function ro € L°(X) such that |f * m}x)| < ¥(z)

loc loc

whenever r > ro(x), then Ag = —(\? + p?)g.
We also state a simpler version which is structurally similar to Theorem [0.2.7]

Theorem 4.1.2. Fiz a A\ € C. Let f,g be two continuous functions on X. If

for all z € X, f*xmMx) — g(x) as r — oo uniformly on compact sets, then
Ag = —(N+p*)g.

It follows from ((1.2.8]), (1.2.9) that for large r > 0,

Viwe < e for 0 < p<2, and V" < re”. (4.1.1)

In fact, except for nonzero real \, the quantity V* is nonzero for large r. For nonzero
real ), the situation is more delicate as V* can be zero for a countable discrete set
of r. So we have to consider r — oo avoiding these points. See Remark below
for more details which will justify the statements. We shall prove these results in
Subsection after gathering necessary ingredients.

4.1.2 Convexity of distance

We recall that the distance function is convex for hyperbolic spaces X. It is indeed
a very general phenomenon ( [16, p. 176, Prop 2.2, Chap II]). The result we shall

use is the following.

Proposition 4.1.3. If X is a CAT(0) space, then the distance from a point zo € X,

x +— d(xg, x) is a convex function from X — R, i.e. given any geodesics 7 : [0,1] —
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X, parameterized proportional to arc length, the following inequality holds for all
tel0,1]:
d(zo,v(t)) < (1 = t)d(zo, ¥(0)) + td(zo, ¥(1)).

Note that Riemannian manifolds of non-positive curvatures (hence in particular
all rank one Riemannian symmetric spaces of noncompact type and Damek-Ricci
spaces) are CAT(0) spaces. See also [8, p. 24, Chap 1, Prop 5.4].

4.1.3 Characterization of eigenfunctions by the mean value
property

We recall that for a suitable function f on X, its mean value on the geodesic sphere
of radius ¢ > 0 is denoted by M, f(z) and is defined by

M,f(z) = /K F(wkay) dk.

We note that M, f is also a function on X and M, f(x) = f * oy(x) where o, denotes
the normalized surface measure of the geodesic sphere of radius ¢t. Note that we can

also define

M,f(x) = . f(zky) dk for y € G.

Then it is clear that M, = M, where d(o,yK) = t. Eigenfunctions of A can be

characterized through the following generalized mean value theorem [41, p. 402,

Prop. 2.4], |42, p. 76, Prop 2.6; p. 414, Cor 2.3].

Proposition 4.1.4. Let f be a continuous function on X and X € C. Then f
satisfies Af = —(A? + p?)f if and only if M, f(x) = f(2)px(y) for all z,y € X.

It is indeed enough to assume this mean value property for almost all “radii”
taken from a neighbourhood of the origin of X = G/K. To establish this, let us
rewrite the main argument of the converse side. Precisely, we have the following

proposition.

Proposition 4.1.5. Let f € L}, .(X) and A € C. Let [ satisfy M, f(z) = f(z)oa(y)

for almost every x € X and for almost every y € N, for some neighbourhood N, of
the origin o in X, then Af = —(\* + p?)f.

Proof. We take a ball B(o,r) of radius r with center o inside N, and a radial func-
tion h € C*(X) with its support contained inside B(o,r) C N, which satisfies
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fB(o " ©x(2)h(2) dz = 1. Then for almost every = € X,

f*xh(x) = /Gf(xz)h(z)dz
_ /0 ' /K Flakad)h(ap)J () dk dt

— ) / " on(an)h(a).J(t) de
— fl).

Therefore M, (f*h)(x) = (f*h)(z)pr(y). We can thus assume that f is smooth.
Consequently, for any fixed z, y — M, f(x) is a smooth function and

M,f(x) = / fzky) dk = f(x)pa(y) for all x € X, and for ally € N,. (4.1.2)
K
We define F,(y) = M, f(z). Then clearly F, is a function on X and

AyFo(y) = f(@)Ayea(y) = —(N + p%) f(2)ea(y) (4.1.3)

for all z € X and y € N,. Here we write A, for A to emphasize that A is acting on
F, which is a function in y variable. Hence in particular A, F,(0) = —(A\2+ p?) f(z).
On the other hand from (4.1.2)) we have

A =8, [ Skt = [ Ay ftaknii = [ (A7) (k)ar
by translation invariance of A and hence
A F(0) = / (Af)(ak)dk = Af(x). (4.1.4)
K

From (L13) and (1) we get
Af(x) = —(V + ) f ().

4.1.4 Proof of the main results

We shall first prove Theorem [1.1.2] We shall isolate a few steps of the proof in the

following lemmas.
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Lemma 4.1.6. Let xg € X and r > d(zg,0) be fizred. Suppose that for some sy > 0,
d(xg,as,) = r. Then for any positive s, d(xg,as) > r if and only if s > sq.

Proof. We note that by triangle inequality,

S0 = d(as,,0) > d(as,, o) — d(xg,0) = r — d(xg,0), (4.1.5)
and for any s, satisfying 0 < sy < r — d(z9,0),

d(as,, o) < d(as,,0) + d(o,z9) = s2 + d(0,z9) < 1. (4.1.6)

To prove the converse side of the assertion, let us take a s; > sg. Then for s; as

above we have by (4.1.5)),
Sy <1 —d(xg,0) < 50 < 81.

Thus we have sy < s9 < s1, and by (4.1.6) d(as,,zo) < r. We assume that
d(as,,x0) < r and take y(t) = a@—¢)sy1ts,,t € [0,1]. Then there exists a ty € [0, 1]
such that (1 — tg)sg + tos1 = so. Applying Proposition we get

d(zo, as,) = d(x0,v(to)) < (1 —to)d(zg, as,) + tod(xo, as,) < (1 —to)r + tor =1,

which contradicts the hypothesis.

We shall now prove the forward side of the assertion. We have, d(xg,as) >
which implies that d(x, 0) +d(0, as) > d(xg,as) > r,i.e. s > r—d(zg,0). Hence for
so as above,

Sg <1 —d(xg,0) < 5.

Therefore if we assume that s < sg, then we have sy < s < s¢, d(as,,zo) < 1 by
(4.1.6) and d(as,, o) = r by the hypothesis. Applying Proposition as before
we conclude that d(as, zg) < r which contradicts the hypothesis. Therefore s > sq.
But d(as,, o) = r by hypothesis. Hence s > sy5. This completes the proof of the

forward side and hence the lemma. O

Lemma 4.1.7. Fiz a A € C. Then there exists a sequence {r,}nen of positive
real numbers with r, T oo and a 6 > 0 such that for any r,s € [r, — 0,1, + 0],
VA /|IVX < C for some constant C independent of n,r and s.

Proof. We shall deal with three separate sets of A which will exhaust C.
Case 1: We take complex X such that A ¢ R. Since ¢y = ¢_y, we have VA = V.

Hence without loss of generality we may assume that S\ < 0. As for large t,
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sinht < cosht =< e' and ¢E\a’ﬁ)(at) = elSAN=0) (see (1.3.3))), from (1.3.4) we can find
7o > 0 and constant C’ such that [V} < e“" whenever r > r,. Hence for any § > 0
and any R > 0 with R— & > ro, for any r, s € [R— 8, R+ 0] we get Ll < €200 < (.

A
T
Al

Case 2: We take A € R with A # 0. It is enough to consider A > 0 as ¢\ = p_j.
We shall use the notation of Subsection . From (1.3.4) we have

V= C'sinh ™" <Z> cosh? <i)u,\(7"),
2 2
where

ux(r) = sinh™z " (g) cosh' 2 <g> g’ﬁl) (g) (4.1.7)
a7 Bt (TN (@) (T
= sinht o <2) cosh 72 <2>¢2A (2)
It follows that (see [83, (6.12)-(6.15)]),
ux(r) = Cx(cos(Ar + 0,) + €5(1)), (4.1.8)

where C > 0, 0, € R and €;(r) = O(e™"). We find a ¢ty > 0 such that for all r > ¢,
lex(r)] < 1/4. For n € N, we define r, = (2nm — 6,)/X and take 6 = 7/3\. For
r € [rn—0,rn+0], \r+0,\ € 2nm—m/3, 2nm+7/3|, consequently cos(Ar+6,) > 1/2.
Hence for large n € N so that r, — 0 > tq and for r € [r, —,r, + ¢}, from (4.1.8))
we have
0 < Ch/4 <uy(r) <2C,.

Therefore for r,s € [r, — §,7, + 4], V> and V) are positive and

M:EXM<CB2O'6
VA VA eCsuy(s) —
S S

for some constants C', C' independent of n.

Case 3: We take A = 0. We shall use the estimate pg(a;) < (1 + t)e " and the
estimate of the Jacobian of the polar decomposition that for s > 1, J(s) < e2*.
Let V) = fol wo(as)J(s)ds. Then
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= W +/ wolas)J(s)ds
1
= Vi+ / sefds
1
= ref for some r > . (4.1.9)
We choose any § > 0. For sufficiently large R > 0 and r,s € [R — 0, R + 4],

VO rerr < (R + 0)erfi+d)
VO ™ sers = (R — §)ep(R=9)

Hence 0

v
li - <C
1rnsup po S s

for some constant Cs. It is now easy to get the desired sequence.
Thus for each A € C, there is a sequence {r, },en of positive real numbers with
7, T 0o and there exists a § > 0 such that for any r, s € [r, =3, 7, +4], [V} /|V}] < Cs

for some constant Cs which depends on ¢ and is independent of n. O

Remark 4.1.8. It is clear from Case 1 and Case 3 of the lemma above, that for
a complex A which is not a nonzero real number, there exists a constant C\ > 0,
such that for all » > C), the quantity V* is nonzero. Therefore for these \ all
the statements of theorems and lemmas above, involving (V*)~!, do not lead to any
confusion. However if A is a nonzero real number, it can be easily deduced from Case
2 of Lemma that V» is zero for countably many radii r. Hence for the nonzero
real ), in all the statements r — oo is interpreted as r — oo through R\ Dy where

Dy is the set of these discrete zeros.

Lemma 4.1.9. Fiz a A\ € C. Let f be a radial function in L},.(X) such that it

satisfies lim f *m?(o) = L for some constant L. Then there exists a neighbourhood
T—00

N, of the origin and a sequence {r,}nen of positive real numbers with r,, 1 0o such

that lim f*m) (z) = Lpx(z) for any z € N,.
n—oo

Proof. As X is fixed, in this proof we shall write m, for m}, V, for V} etc. for
convenience. Since m, is radial, hence m,.(ky) = m,(y) and m,(y~') = m,(y), we

have

oxx iy (x) = /X ox(zy)mn (y) dy = oa(x) /X ox®)me(y) dy = o1 (0).
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In particular ¢y * m,(0o) = 1. Take g(x) = f(x) — Lpx(z). Then
g*m.(0) = f*xm.(0) — Loy *m.(0) = f *m,(0) — L.

Therefore from the hypothesis we have g*m,.(0) — 0 as r — oo. It suffices to prove

that g *x m,(z) — 0, because
g*xm.(x) = fxm,(x) — Loy xm,.(z) = f*m,.(x) — Lpx(x).

Thus our modified statement to prove is the following: Let f be a radial locally
integrable function on X. If lim fx*m, (o) = 0, then there exists a neighbourhood N,
r—00
of the origin and positive sequence {r, },en with 7, T 0o such that lim fxm,, (x) =0
n—oo

for any x € N,. Let s,t > 0. We have by triangle inequality,
d(o,a_skay) < d(o,a_s) + d(a_s,a_ska;) = d(o,a_s) + d(o, ka;) = s+t
and

s=d(o,a_s) < d(o,a_skay) + d(a_ska,a_y)
= d(o,a_ska;) + d(o, ka;) = d(o,a_ska;) + t.

Hence for s > 0,¢ > 0,
s—t<d(o,a_ska;) < s+t, forall k € K.

Therefore for t < r, if s < r —t then d(o,a_ska;) <r forall k € K and if s > r+1¢
then d(o,a_ska;) > r for all k € K.

For a fixed k € K and t > 0, define a continuous function @ = oy, in s by
a(s) = d(kay, as).

Then
a(s) <rifs<r—tand a(s) >rif s >r+t.

So there exists sy = so(k) € [r — t,r + t] such that a(sg) = r. By Lemma [4.1.6]
s > sp if and only if a(s) > 7.
Therefore, we have forar >0 and 0 <t <,

frm.(ar) = Vir/xf(x)XBr(x_lat)dx (4.1.10)
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= —/ flas)xs, (a_skay)J(s) ds dk

= —//Sofas s)ds dk

_ ) J(s)ds dk
vvso/f“ i

where sg depends on k.
By Lemma [£.1.7] we have a sequence r,, T 0o and a fixed ¢ > 0 such that for any

Vs
s, 8 € [rp— 8,1, + 4], ‘|V$/||

show that for this sequence {r,},en and for 0 < ¢t <6, f*xm,, (a;) = 0 as n — oo.
In (4.1.10) we take r = r, and 0 < t < §. Then r,,s9 € (r, —t,7, +1) C

(rp, — 9,7, +9) and I%O‘\ < C. Hence
1+ (a)] < c/ ! / F(a0)J(s) ds| di
K ‘/So 0

By hypothesis for any given € > 0 there is a M such that for u > M,

/ Flas)J(s)ds

Thus if we take n so large that r, > M + ¢, then s = so(k) > r, —t > M and

< (C for some constant C' independent of n. We shall

< €.

|f *m,, (a;)| < Ce.

This proves the assertion for N, = B(o,0). O
We shall now complete the proof of Theorem [4.1.2]

Proof of Theorem[{.1.3. Since X is fixed, as above we shall drop the superscript A
and write m, for m} in this proof. We recall that the left translation of a function
f by x € GG is denoted by 4, f.

The proof is now based on these observations.
(i) As m, is radial, R(f *m,) = R(f) *xm,.

(ii) Since for any fixed z € X, the set Kx is compact in X, from hypothesis we
conclude that f *m,.(y) — g(y) uniformly for y € Kx. As

R(f *m,)(z /f*mrka: ,
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we have, R(f *m,)(z) — R(g)(x). Together with (i) above this gives R(f) *
my(x) = R(g)(x).

(iii) We note that £, f * m,(z) = £,(f * m,)(z) for any y € G,z € X. Therefore if
f *m, — ¢ uniformly on compact subsets of X, then for any fixed y € G,

Cyf sm, =L, (f+xm,) = l,g
uniformly on compact subsets of X.
(iv) By (ii) and (iii) R(¢,f) * m,(z) — R(¢,g)(z) for all z € X and any y € G.
(v) For any locally integrable function F' on G/K, RF(0) = F(o).
From (iv), we have for any y € G,
R(,f) * mr(0) = R(fyg)(0) = £yg(0) = 9(y)-

Since R({, f) is K-biinvariant, from this and Lemma|4.1.9, we have a neighbourhood

N, of the origin and positive sequence {r, },en with 7, T 0o such that
R(l,f)*m,, () = g(y)er(z) for any z € N,
Together with (iv) this implies that for all z € N, and all y € G,
Mag(y) = R(yg)(x) = g(y)ea(x)-

An application of Proposition |4.1.5| now completes the proof. O]

Proof of Theorem[{.1.1. Our target is to reach the step (iv) of the previous proof.
The result follows from that step and Lemma [4.1.90 By the hypothesis for all
reX,yeGand k € K,

0 (f xm))(kx) — €,9(kx) as r — oo.

We need to show that as r — oo,

/Kﬁy(f*m?)(kx)dk%/Kﬁyg(k:m)dk,

which is same as (iv) above.
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Since 7 is locally bounded, for almost every fixed x € X and y € G, there exists
a constant C,, > 0 which depends on z,y, such that ro(ykz) < C,, for all k € K.
By the hypothesis

|fxmp ()] < ¥(x)

if r > Cye. Therefore |g(z)] < ¢(z) for almost every € X. Hence g € L,.(X).
Similarly by the hypothesis for almost every fixed r € X,y € G, k € K,

[y (f *m) (k)| < €0 (ka)

whenever r > C,,,. We also note that, k — ¢,1(kx) is an integrable function on K

for almost every fixed x € X, y € G. Therefore by dominated convergence theorem,

/Kéy(f*m?)(k;x)dk—>/K€yg(k;x)dk;,

which was our target. O

4.2 Shell-MVP in limit for functions without

growth restriction

Aim of this section is to prove an analogue of Theorem replacing ball-averages
by shell-averages. For technical reasons and for keeping the exposition simple, we
shall only consider eigenvalues in (—oo, —p?], vis-a-vis, the spectral parameter X in

iR.

4.2.1 Statement of the main result

For 0 < r; <y, let A, ,,(z) denote the annulus or shell centered at x with inner

radius r; and outer radius r5. For A € iR we define

o= [ i
Arl,v‘Q (33)

_ / ¥ on(a) J(0) dt

1

— V)\_V}\

T2 Tt
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We recall from (1.3.3) and (1.3.4)) that for each A ¢ R there exists an 7y, > 0
depending on A, such that for all r > r),

VA < elSAlFR)r (4.2.1)
From (4.1.1)) we also have
VO < ref” for all sufficiently large r. (4.2.2)

For 0 <ry <7y and X\ € iR, let

A . A —1
aﬁﬂ"z T (‘/;“1,7“2> XATL"’Q (0)

We fix d > 0,0 > 0 and consider radii 7, 7y which satisfy
d<7”2—7"1 <d+0.

For a continuous function f, we say

fap, (@) = g(@)

uniformly on compact sets as r; — oo with d < r9 —r; < d+ 9, to mean that for a
compact set I of X, given an € > 0, there exists M > 0, such that for all r; > M
and all ro > 0 satisfying d < ry —ry <d+ 9,

[f*ar, (7)) = g(@)] <

for all z € K. When K = {z}, we simply write lim,, ,o, f * a’ . (z) = g(z) with

1,72

d<re—r; <d-+ 6. With this notation we offer the main result of this section.

Theorem 4.2.1. Fiz a A € iR, d > 0 and § > 0. Let f be a continuous function
on X such that

frap, (@) = g(@)

uniformly on compact sets as 1y — oo with d < r9 —r1 < d+ 6. Then Ag =
— (A +p?)g.
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4.2.2 Proof of the main result

Following lemma is an intermediate step. Below A, d,d and ai‘lh are as in Theorem
4.2.1. For convenience, we shall write r; — 0o to mean ry — oo with d < ry —ry <
d+9.

Lemma 4.2.2. Let p; = a’\J+d+5 for 7 € N. Let f be a radial continuous function
on X such that it satisfies hm f* arl v (0) = L. Then there exists a neighbourhood
N, of the origin such that llm [ pj(x) = Lox(x) for any x € N,.
j—00

and V,, ,, for V2

1y unless it is

Proof. As X is fixed we shall write a,, ,, for a} .,
required to mention A. It is also easy to see that ¢y * a,, ., () = pa(z) and hence
in particular ¢y * a,, ., (0) = 1.

Take g(z) = f(z) — Lya(x). Then

g * Qryry (0) = f * Qpy g (O) - LQDA * Qpy g (O) - f * a""177'2(0) — L.

Therefore the modified hypothesis is g *a,, ,,(0) — 0. Using this hypothesis we shall
show that g * pj(x) — 0 as j — oo. Indeed this is enough, because,

g* pj(x) = f* pj(w) — Loy * pj(z) = f pi(x) — Lpr(x).

Thus our modified statement to prove is the following:
Let f be a radial continuous function on X. If lim f*a,, ,(0) =0, then there
r71—>00

exists a neighbourhood N, of the origin such that lim f *p;(z) = 0 for any = € N,
Jj—00

As f is radial, it follows from polar decomposition that

fxap ,(0) = / f(kas)J(s)ds dk
7"1 T2 7‘17«2
- / flas)J(s)dsdk
= Vrm ; " fa)J(s) ds.

Hence from hypothesis we have

lim
71—>00

/ flas)J(s) ds = 0 whenever d < ro —r; < d+ 9. (4.2.3)

r1 ;T2
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Fix z € X with |z| < 2. For t > 0 and k € K, we claim that
t— x| <la_ikx| < t+ x|, (4.2.4)

as
la_tkx| = d(0,a_tkz) < d(0,a_k) + d(a_ik,a_tkz) =t + |x|

and
t=d(0,a_tk) < d(0,a_tkz) + d(a_tkz,a_k) = |a_tkz| + |z|.

From it follows that

la_tkx| > 1o if t > o + |z| and |a_tkx| < ro if t < 1y — |2|.

Hence by continuity and by Lemma for fixed k € K, we can find a unique
tr € (rg — |x|, 72 + |z|) With |a_s kx| = 9 and |a_;kz| < 7o if and only if ¢ < ¢.
Similarly for fixed k¥ € K, we can find a unique s, € (ry — |z|,71 + |z|) with
la_s, kx| = r; and |a_ikx| < ry if and only if ¢ < s;. Clearly s < t; and

ro — 11 — 2|z| < tp — sk <719 — 11 + 2|7 (4.2.5)

Therefore

el = [g [ 10,070 (4.2:6)

1,72

|2 / f<kat>xAm,r2<a_th>J<t> it
R+

7"1 T2

7'1 T2 Sk
_ / Vorstu / Flan)J dtdkz‘
7"1 ,T2 ktk Sk
< /V}1 ||, ro+|z| / Flan)J ‘
K T1,T2 Sk ty

We recall that there exists ry > 0 and C € R such that V,,)‘ = e for 0 # )\ € iR
and V? < re®" for all r > ry ( see (4.1.1)). Hence there exists ro > 0 such that

Vi —lalratlal/ Virre < Cy for some constant C, whenever r; > 7. Hence from (4.2.6))

we get for r; > 7,

1 %ty ()] = /

f a;)J dt‘ dk (4.2.7)

sk t Sk
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Ifri=jandry=j+4+d+ g in (4.2.6)), then from (4.2.5)) we get

d< ty — 5 < d+ 6. (4.2.8)

From (4.2.3)), (4.2.7)) and (4.2.8)), it follows that jlggof*ﬂj(@ —0asj —oo0. O

Completion of proof of Theorem[{.2.1. Let {h;}ien be a sequence of continuous
functions converging uniformly to h over compact sets. Then we have the following

observations.
(a) For any fixed = € G, £, h; — {,h as i — oo uniformly over compact sets.
(b) R(h;) — R(h) pointwise as i — o0 .

Fix a point € G. By the hypothesis and observations (a), (b) we have

Co(f % Qpyry) = Lag

uniformly on compact sets as r; — oo and

R(Co(f * ar, ) = R(L2g),

pointwise as 1 — 0o. Since R((,f) * ay, », = R(l.(f * ay, r,)), we have
Rl f) % ayy oy — R(L29),

pointwise as ;1 — oo. In particular R(¢,f) * a,, ,(0) = R({;g)(0), where o is the
origin of X. By Lemma (and using its notation), there exists a neighbourhood
N, of o, such that for all y € N,,

lim R(€.f) * 115(y) = R(Lz9)(0)pr(y).

Jj—o0

Hence R((,9)(y) = R((r9)(0)pa(y) for all y € N,. But as Myg(x) = R(l(,9)(y),
we have Myg(x) = g(x)pa(y) for all y € N,. Proposition now asserts that
Ag=—(N+p*)g. O
4.2.3 Not a mean value operator

We conclude this section with an example of a right convolution operator which is

not a mean value operator, yet shares the property with ball and shell-averages in
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the limit. Fix 0 < a < [ and a complex number A which is not a nonzero real

number. We define for every t > 0,

—1
w () = (V2 g)  XBos) ().

Then right-convolution by w; is not a mean value operator, e.g. in general for a
harmonic function f, f % wip =# f. However we shall see that it has the property in
the limit.

Proposition 4.2.3. Let 0 < a < § and X\ ¢ R\ {0} be fized. If for a continuous
function f on X such that lim,_, f*w}(z) — g(x) uniformly on compact sets, then
Ag=—(\+p%)g.

Proof. From (4.2.1) and (4.2.2)) it follows that

V)\
lim —& = 0. 4.2.9
v (42:9)
We also note that
1 Vof;f pr 1
o [ty =T [ gy
ngt B(z,ft) VB)% Vo;\t,,é’t B(z,5t)
Vi) o1
=(1- & / fy) dy. (4.2.10)
< Vé)) Vé\t,ﬁt B(z,pt)
Therefore lim, o f * m}(x) — g(z) uniformly on compact sets. Applying Theorem
we get the desired result. m

Remark 4.2.4. From (4.2.9) and (4.2.10)) it follows that for a locally integrable

function f on X and z € X, limy_,o f*wp(x) — L if and only if lim,_,, f*m}(z) —

L, where w; is as defined in the proposition above.

4.3 Sphere-MVP in limit for functions without

growth restriction

In this section we shall prove an analogue of Theorem for sphere averages. We
shall see that the result can actually be proved for an arbitrary normalized measure
on K/M, in particular for surface measure on sphere. Let X be a Riemannian

symmetric space of non-compact type of rank one and o; be the normalized surface
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measure of geodesic sphere of radius ¢ with center at the origin o = eK. We recall

that the average of a function f on a sphere of radius ¢ > 0 is

Mif(@) = fxoue) = [ k) di = [ foky) dk = My (o)
K K
where o, is the normalized surface measure on the sphere of radius t and y € X

satisfies |y| = d(y, 0) = t. The statement we aim to prove is the following.

Theorem 4.3.1. Fiz a A € C. Let pu be a finite (normalized) Borel measure on
K/M. If for two functions f,g € C(X),

1
o)

/K f(ky) dpu(k) — o(z)

uniformly on compact sets of X as |y| — oo, then Ag = —(\2 + p?)g.
See [80] for the result on R™ characterizing harmonic function.

Remark 4.3.2. We recall that ¢, (y) is positive for A € iR and for A ¢ R, p,(y) # 0
when |y| is sufficiently large (see ((1.2.7])). However for nonzero real A, ¢, (y) = 0 for
a set of measure zero of y. Hence for those A, the statement of Theorem is in-

terpreted as |y| — oo avoiding a discrete set of positive real numbers. See statement
of Theorem for similar situation and Remark for the interpretation.

If 1 is the normalized surface measure o on the unit sphere and (Tt)‘ = ©x (at)flat,
where o, is as defined above, then the result in Theorem reduces to an analogue
of Theorem [4.1.2] which reads as follows.

Theorem 4.3.3. If for a A € C and for two functions f,g € C(X),
fxo} =g
uniformly on compact sets of X as r — oo, then Ag = —(A? + p?)g.

4.3.1 Proof of Theorem [4.3.1]

We shall slur over the difference between a compact subset K of G' and its projection
7m(K) on X. As in other places we shall not distinguish between integration on K/M

and that on K. The following functional equation will be used frequently:

/K oa(rky) dk = ox(2)oa(y). (4.3.1)
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First we shall show that it is enough to prove the result for the surface measure
0. Since y converges to oo through any direction, we can replace y by kiy for any
ki € K, to get from the hypothesis that as |y| — oo,

1
ox(y)

/K /K F(wkkyy) du(k) diy — g(z).

Since [, du(k) = 1, the left side reduces to

1 1
oa(y) /K/Kf(xkkly) dky dp(k) = W) /Kf(xkly) dk;.

Therefore our modified aim is the following which is Theorem stated in a

different way:

Theorem 4.3.4. Fiz a A € C. If for two functions f,g € C(X),

1
oY)

/K f(aky) dk — g(z)

uniformly on compact sets of X as |y| — oo, then Ag = —(\? + p*)g.
Rest of the subsection is devoted to the proof of this theorem.

Proof of [{.3.4, Observe that the theorem will be proved if we can show

M.(g9) = ¢r(2)g

for all z € G (or for z € G with |z| < € for some € > 0) (see Proposition [4.1.5). We

shall divide the proof in two cases.

Case 1: We take A € C\ R*. Fix z € G. We shall verify that

1
()

M, (M,f) — Mg (4.3.2)

uniformly on compact sets of X as |y| — oc.
Let us fix a compact subset K of G. Then K = KKz is also a compact subset of
G. By the hypothesis for a given € > 0 we have a r, > 0 such that if |y| > r,, then

1
oY)

/ f(wky) dk — g(w)| < € for all w € K.
K
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Take x € K. Then zk,z € I%, for k; € K. Hence for |y| > r, we have

1
w(y

1
= / / f xklzkgy dkg dkl / (mklz) dkl
ex(y)

= /K[SO /kalzkgy)dk:g (azklz)} dky
S/K /Kf(a:klzkgy) dky — g(xki2)| dky

<e€.

M. (My f)(x) — M.g(x)

ox(y)

This completes the verification that

oa(y) M(Myf) = Mg

uniformly on the compact set K as |y| — oo, which is asserted above.
We fix a compact subset K of G. From the hypothesis we know that there exists
ro, > 0 such that if |w| > r,, then

for all z € K.

'ﬁw) | ftaku)dr — glo)] <

901'%/\(2)

Take |y| > r, + |z|. Then

1
go,\(y) z(Myf)(m) - SOA(Z)Q(‘%)
1
_ %y / / F(kizhay) dis dky — px(2)g(x)
|- //kalzm)dkld@ ox(2)9(x)

(
- 1(y / / F (ks 2hoy) dhy ey — /K Mﬁy)g(x) dky

oa(zkay) / }
- (xkyzkay) dky — dk
/K ©x(y) |:(,0)\ zk2y f(akizkay) dky — g(x) | dky

< K’ﬁgj(];?ﬁ)’ / ki zhay) dky — ()| dks. (4.3.3)

25 Zkzy
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Since |y| > r, + ||, by triangle inequality we have |zkey| > |y| — |2| > r,. Hence

©A Zka /f whizhay) din = 9(7)) < visa(z)
Thus
: vt € [ eaRay)l
‘MMZ(Myf)(x) PA9@)| < o— | T dke (4.3.4)

If X € iR, then ¢, (y) is positive. For such A using [, ¢a(zkay) dka = px(2)@a(y),
we get from (4.3.4]) that

1
ox(y)

M.(My f)(x) = ¢a(2)g(x)

<€

for A\ belonging to imaginary axis and for all |y| > r, + |z|.
Otherwise i.e. for A ¢ RU R from (4.3.4) we get

o2k
P /*D A(Zhay) gy (4.3.5)
visa(2) Jk  loa(y)]

Since C'piga(y) < |pa(y)| < C’”gpwk( ) for some constants C” and C” and suffi-
cient large |y| (see (1.2.7)), from it follows that

1 € / visa(zk2y)
< dks.
‘ oY) C'oisa(2) Jx  pisa(y) ?

M= (Myf)(x) — pa(2)g(x)

‘ <PA1(Z/)

MMy f)(x) — ¢a(2)g(x)

Hence
1

o)

for sufficiently large |y| and for some constant C'. Hence

< Ce

M- (My f)(x) — ea(2)g(x)

1
oA(y)

M.(Myf) — pa(2)g

uniformly on compact sets of X as |y| — oo which combined with (4.3.2)) gives
M.(g) = ¢a(2)g for all z € G. Thus Ag = —(\* + p?)g.

Case 2: We now take A € R*. We shall find a § > 0 and a sequence {y,} of

elements in GG with the following properties:

(a) @a(yn) is positive and ¢, (y) > 0 whenever |y,| — 6 < |y| < |yn| + 9,
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(b) @a(z) is positive for 0 < |z| <0,
(€) |yn| = o0 as n — oco.

We recall that for A € R* and ¢ > 1 the Harish-Chandra series for ¢, implies
ox(ar) = e P le(N)e 4 c(=N)e ™ + E(\ 1))

where |E()\, t)| < Ce 2 (see 46, (3.11)]). Let c(\) = a(\) +ib()\). Using c(—=\) =
m, we get

palar) = e R(c(\)e™) + E(A 1))
= e "[a(N) cos(Mt) — b(A) sin(\t) + E(\, t)]
= e P[C) cos(At + 6)) + E(\ 1))

for some constant C, > 0. Thus the zeros of ,(a;) are the zeros of
u(t) = Cy\cos(At 4 0y) + E(\, t).

We find a ty > 0 such that [E(\,t)] < £ for t > to. Let R, = 222=% and §; = .
If R, —0 <s<R,+ 91, then

1
2n7r—g§>\s+«9A§2n7r+gandﬁgcos(/\s—kﬁ,\)gl.

Hence if R,, — 01 > to, then py(as) > 0 whenever R, — §; < s < R,, + 6;. Therefore
oa(y) > 0 for R, — 01 < |y| < R, + 6;. Further as @, is real valued and continuous
on R and @, (e) = 1, there exists d, > 0 such that ¢,(z) is positive for 0 < |z| < Js.
Choose 0 = min{dy, 2} and y, = ag,. It is clear that we get the desired sequence
{Yn }nen possibly after re-indexing suitably.

Through steps similar to that of Case 1, we get for z € G with |z| < ¢,

1

—F—M. (M, ) — M.g, as n — oo, 4.3.6

uniformly on compact sets of X. Rest of the proof is also similar to Case 1. We
shall only include a sketch for brevity.
We fix a compact subset K of G and z € G with |z| < §. From the hypothesis

we know that there exists r, > 0 such that if |w| > r,, then

1
pa(w)

€

for all z € K.
vo(2)

/Kf(mkw) dk — g(x)| <
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Choose Ny such that |y,| > r, + ¢ for all n > Ny. Then by triangle inequality we
have

Therefore both ¢, (zkay,) and @\ (y,) are positive. For n > Ny we have,

1 € |‘p>\(2k2yn)|
———M.(M,, f)(z) — or(z)g(z)| < dk
P (Yn) ! w0(2) Ji leawa)l
k
< € / 90)\(2 Qyn) de
wo(2) Ji ayn)
—ea2)
P
vo(2)
< €
Hence ]
——M, (M, ) = ¢xr(2)g as n — oo
@A(yn) ( Y ) )\( )
uniformly on compact sets of X. This and (4.3.6) imply that M.g = p,(z)g for all
z € G with |z| < 4, hence Ag = —(A\? + p?)g (see Proposition [4.1.5)). O

Remark 4.3.5. Note that in the first part of the argument in Case 2 in the proof
above we have used a result about ¢, available in the literature. Alternatively one

can use properties of Jacobi function, as done in Lemma [£.1.7]

4.4 Results for functions with growth conditions

In this section we shall consider functions in some integrability classes and endeavour
to obtain results analogous to those of the previous section. Indeed, we shall use
Theorem to prove the corresponding results for such functions, where pointwise
convergence of the averages will be replaced by the convergence in these integrability
classes. We shall mainly work with ball averages, although similar results can be
obtained for other two averages, considered in the last section. The growth condition
enables us to get a more concrete realization of the limit function g (see Theorem
below) as the Poisson transform of an LP function on the boundary K /M of
X for an appropriate p.

We start with LP and weak LP-functions. We recall that no eigenfunction of A
can reside in LP(X) with p < 2 (see Proposition [1.7.1). Thus the range of p to
consider is 2 < p < co. We also recall that for a fixed 2 < p < oo, if [SA| > |79
then —(A\? + p?) is not in the LP-point spectrum (see e.g. [5, Corollary 4.18]). These
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restrictions justify the formulation of the theorem we state below.

Theorem 4.4.1. If for two functions f,g € LP*(X), 2 <p < oo, and X € S,
£ *m} = gllpoo — 0 as r — oo,

then g is a C™-function satisfying Ag = —(A\ + p*)g. Moreover if S\ < 0, then
g = P\F for some F € LP(K/M), otherwise g = P_,F for some F € LP(K/M).

Proof. We note that f, g are L”-tempered distributions (see Proposition [1.5.1[a)),
hence in the statement of the theorem Ag is interpreted in the sense of an L”-
tempered distribution.

We take h € C”(X). Noting that f*h = f* R(h),g* h = g * R(h) and that
|R(h)||1 < [|h|ly,1 we have for all x € X,

| * hxmp () — g x h(z)| = |f * R(h) + m)(x) — g+ R(h)()]
= |f xm * R(h)(x) — g+ R(h)(x)|

< 1S my = gllpsollllya — 0

as r — oo. Thus ||[f*h*m} —g*h|e — 0asr — co. Since f*h and g xh
are continuous functions, by Theorem we have A(g* h) = —(A2+ p¥)g* h. Tt
can be verified that g x h € C°(X) N LP*>*(X) (see Proposition and hence in
particular an L”-tempered distribution. We note that A(g * h) = (Ag) * h. Indeed
writing ¢ = R(h) for convenience we have, for any ¢ € C? (X)),

(A(gxh), ¢) = (g*h, Ad) = (g, Ad* ) = (g, Al x 1)) = (Ag, 9 x) = (Ag*, $).

Thus as a distribution Agxh = A(g=*h) and hence (Ag)*h = [—(A\?+ p?)g] * h. We
note that Ag  h(z) = Ag(l,h), where £, h is the left translation of h by z. Putting
x = eK, we have Ag x h(eK) = Ag(h). Therefore from above (taking x = eK) for
all h € CP(X),

(Ag, h) = (=(N* +p*)g, h).

That is, as an L -tempered distribution, Ag = —(\? + p?)g. Since A — (X2 + p?)[ is
hypoelliptic this implies that g € C*°(X). (see [35, Corollary 6.34, p. 215]). Final
part of the theorem follows from Corollary [1.7.4]

0

Remark 4.4.2. Instead of weak LP-functions we can take LP-functions for 2 < p <
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o0, but in that case the spectral parameter A has to be in 7 (see Subsection [3.1.1)).

Our next result is an analogue of Theorem 4.4.1| using Hardy-type norm.

Theorem 4.4.3. Let p € (0,2] and f,g € H,(X) for some r € [1,00]. If for a
Ae Sy, frm)—giin Hy(X) asr — oo, then Ag = —(N* + p?)g. In particular if
|SA| = vpp and SA <0 or A =0,

(i) 7 > 1, then g = P\F for some F € L"(K/M),
(ii) » =1, then g = Py for a signed measure p on K/M.

Proof. Take a function h € CP(X). Then using Propsition [L.6.1](d) it follows that
ELE: m;}(x) —gxh(x)| <[f * m;\ — g]w/ \h(2)|@in,p(x) dz — 0, as 7 — oo.
X

Following the steps of Theorem we can prove Ag * h = —(A\? + p?)g * h and
finally Ag = —(\% + p?)g. Assertion (i) and (ii) are immediate consequences of this
and Theorem [.7.2] O

Remark 4.4.4. One can formulate an annulus versions of Theorem [4.4.1] and The-

orem {4.4.3| replacing m} by a ., (defined for Theorem [4.2.1). A step by step
adaptation of the proofs and application of Theorem [4.2.1| will prove the assertions.

The following theorem, (in which pointwise convergence replaces norm conver-
gence) will be proved in Chapter , although we shall use it to derive some results

in this section.

Theorem 4.4.5. Fiz a p € [1,2) and let A = iv,p. Suppose that for f € LV (X)

and a measurable function g on X,

lim f*mMx) = g(x), for almost every x € X.

r—00
Then Ag = —(A\* + p?)g.

(See Theorem and its proof in the next chapter.)

In Subsection we have seen that there are right convolution operators 7;
which are not mean value operators (e.g. for a harmonic function f, T, f # f), but
they act as mean value operator in the limit. We shall consider below two examples

of the averages. The first one falls in this category.
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Fix 0 < a < # and A € C which is not a nonzero real number. For ¢t > 0, we
define:

(@) = (VA Xar o (@),
and
@ (@) = (Vi) Xor o)),
where 0 = eK is the origin. It is clear that the right-convolution operator defined by

¥ is not a mean value operator. In the following two propositions we will investigate

their asymptotic behaviour.

Proposition 4.4.6. Fiz a p € [1,2). Let 9} be as defined above. If f,g € LP*>°(X)
satisfy one of these conditions:

(a) lim;_o f x9N (x) = g(x) for almost every x € X where X = i7y,p,

() |If * 9} — gllyoo — 0 as t — oo, where X € 3S,,

then Ag = —(\* + p*)g.

Proof. Tt is clear from ({#.2.1) and ([{.2.2)) that lim . V3 /V3 = 0. Further we note
that for any f € L}, (X) and any A € C which is not a nonzero real number,

1
frmya) =gy [ f)dy
pt J B(z,pt)

1
-7 ( /B @y / W dy>

! Fly) dy+ (Yot ) ! [ swa
=T y)ay - | 7% y) ay
VB/\t A V,B/\t Vc;\t B(z,ot)

at,ﬁt(m)

_f 2 0(x) + (V—> F e m(a) (1.4.1)
- t VIB);( ot . s

For f € LP"* and A\ € 9S,, by Kunze-Stein phenomenon ( [51, Theorem 5.6(e)])
and (4.2.1) we have

)"~ o (4.4.2)

| f * m3t||p/,m < OHpr’,oongt”p,l < Ol o0

for some constant C’, since LP'-norm of Y p(z.ar is (Viey)'/?. Tt is clear that (£.4.1)),
(4.4.2), hypotheses (a) and (b) and applications of Theorem and Theorem [4.4.1]

prove the assertion. O

Proposition 4.4.7. Fiz ap € [1,2). Let @) be as defined above. If f,g € LV*>°(X)

satisfy one of these conditions:
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(a) limy o f * @w}(z) = g(x) for almost every x € X where X = iv,p,
) |If * @} — gllproo — 0 as t — oo where X € S,
then Ag = —(\* + p*)g.

Proof. As we have noted in the proof of Theorem W, limy_,o0 V3, / Vi, = 0. For

any f € Lj,.(X) and any A € C which is not a nonzero real number we also have,

1

fem () = / £() dy
gt J B(z,Bt)

V>‘

1
—— ( [ twas | W dy)
Bt B(z,at) Ant,pe(w)
Viaa) 1 / VAN 1
[ Lo} _L Fly) dy+ | Lt —/ f(y) dy
( Vﬂi ch);f,ﬁt Ant, e () VB>1\€ V>;5 B(z,at)
Va1 / Va1
o Fly) dy+ | Lt —/ f(y) dy
( V,(%ﬁ)‘/oif,ﬂt e Vi ) Vai Jan

v Vi
:( _ @)f*wf<x>+ <Z) f o) (1.3)

Using (4.4.3) and applying Theorem on the hypothesis (a), we get the assertion
(a). From (4.4.3) it follows that

v Vo
Hf*mgt_ng’,oo = ( - V_;) Hf*wt)\_ng’,OO‘i_ (V_;> Hf*mﬁﬁng',oo (4.4.4)
Bt Bt

If X\ € 05, from (4.4.4), (4.4.2) and Theorem assertion (b) follows. O

Remark 4.4.8. It may be of some interest to note that it follows from (4.4.1)) and
([4.4.3) that for f € L. (X), A € C\ R*, and some = € X, if f*m}(z) — L as
r — oo then f* 9} (z) — L and f*w}(x) = L as t — oo.

4.5 Examples and counter-examples

In this concluding section of the chapter we shall:

(1) present a simple illustration of asymptotic behaviour of ball averages f * m
of some continuous functions f and

(2) construct a counter example to show that the condition r — oo in the hy-
pothesis of the results obtained, cannot be replaced by “r approaches to oo through

a sequence”.
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We begin with a lemma on Jacobi functions (see Section [L.3)).

Lemma 4.5.1. Let A,y € C with A\ # p. Let ¢x(t) = o7 (1) and ¢,(t) =

La/’ﬁ/)(t) where of = %’““ and B’ = k—gl Then we have the following conclusions.

—>Oast—>oo

(a) 17 19N > S, then 240

(b) If |SA| < ||, then ]i‘;gg] diverges to 0o ast — 00.

(c) If |SA| = |Sp| and X # 0, 1 # 0, then 249 oscillates as t — oo.

oa(t)
(d) If |SA] = |Sul, A =0 and p # 0, then i‘;g; — 0 ast — oo.
(e) If |SA| = |Su|, A # 0 and u =0, then ’¢> 0 )| diverges to 0o as t — .

Proof. Without loss of generality we shall assume that S\, Su < 0. If SA < 0 from

(1.3.2) and (1.3.3]), we have

lim e, (1) = ¢ pr(N) and [ (1)] < e CAD ag t — 0. (4.5.1)

t—o00

From we get

LG+ VR
¢2>‘ 9 m r ry’
<2) 2n7% sinh™ (L) cosh* (%)

As for large 7, V' < ref" (see Case 3 of Lemma [4.1.7) and sinh(r) < cosh(r) < e",

hence

ore2(F+5)r o
|¢0(T)| = m = re 9, (452)

Similarly for 0 # A € R, using and (4.1.8) we get
loa(T)] < Ce™?" (4.5.3)

for some constant C' and for sufficiently large r.

Using (4.5.1)), (4.5.2)) and (4.5.3), it is clear that if Su > S\, then

18]
1 —
@] = °

and if Sp < SN, then

lim |9u(D)] _
100 [x(t)]
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This proves (a) and (b).

For (c) we have the following two cases.

Case (i)

Case (ii)

Let S =S\ < 0. Then,

lim du(t) — lim e(—z‘u+@)(t)¢#(t) pl—irto)t _ Co 5 (12) i w5
tooo gy (1) tooo e(CiMOLG, (1) e(Zintdl ¢ g(N) too : -9

Since A — p € R, limy_,o ¢, (t) /@1 (t) is oscillatory.

Let Su =S\ = 0. Using (4.1.7) and (4.1.8)) we get

‘m Qb“(t) — lim Uu/2(2t) B C’N/Q im COS(/Lt—}-Qu/Q) + E;/2<2t)
t—00 (b)\(t) t—00 U,A/Q(Qt) C)\/Q t—o00 COS()\t + 9)\/2> + 6;/2<2t) ’

(4.5.5)

We shall show that
cos(ut + O,.2) + € 5 (2t)

lim
t=00 coS(AL + O/2) + €5 5(2t)

is oscillatory, dividing it in two subcases.

We assume first that £ = p/\ is irrational. Then by Kronecker’s approximation
theorem {2n7¢ (mod 27) | n € N} is dense in [0, 27]. We construct a sequence
{tn}nen where

_ 2nmw /2

n= T el

Then
lim cos(At, + 6 2) + €} 5(2t,) = 1.

n—o0

Since pty, + 0,2 = 2nw§ — 02§ + 0,2, it follows that
{uty 4 0,2 (mod 27) | n € N}

is also dense in [0, 27]. Therefore for any L € [—1,1], there is a subsequence
{tn, tren of {t, }nen such that

lim cos(uty,, + 6,u2) = L.

k—o0

Hence,

_cos(plpy, 4+ 0pp2) + €, 5 (2,
lim

= L.
k—o0 COS()\an,C + (9)\/2) + 6;/2(2tnk)
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If u/X is rational we assume that u/A = m/n, for m,n € Z. We choose a
¢ € R such that cos(A§ + 0y/2) # 0 and construct a sequence {t;}reny With
t =&+ 2™ k € N. Then,

cos(pty + 0,/2) + Eu/2(2t ) o cos(pé + 0,,2)

lim ,
koo COS(Ay + O /2) + € 5 (2tk)  cOS(AE + 0y 2)

which is oscillatory as £ € R is arbitrary and g # A. Since

lim cos(pt + 0pp2) + €], 5(2t)
t—00 COS()\t + 9)\/2) + EA/2(2t>

is oscillatory, we have the assertion for this case. This completes the proof of

(¢). Using (4.5.3) and ( - ) and (e) also follows easily. O

An immediate consequence of this lemma is the following.

Proposition 4.5.2. Let A\, € C with A # p and f = o) + ¢,. Then we have the

following conclusions.
(a) If ISA] > [Sul, then f*m)(z) — pa(z) for allz € X asr — oo.
(b) If |SA] < |Spul, then fxmMx) diverges for all x € X asr — oo.

(c) If |SA = |Su| and X # 0, # 0, then fx m}(z) oscillates for all x € X as

r — 00.

(d) If SN = |Spul, A =0 and p # 0, then f*m}z) — pa(z) for all z € X as

r — 00.

(e) If |SN| = |Sul, A # 0 and u = 0, then f* m)(x) diverges for all v € X as

r — 0Q0.

Proof. Without loss of generality we shall assume that S\, Su < 0. It is easy to see
that f*m}(z) = pa(z) + %@u(m) for all z € X. From ([1.3.4)) we get

ve o)
A /75/ r .
VA e ()
Hence in view of Lemma [4.5.1] the proposition follows. m

On R" it was shown in [12] that there exists a non-harmonic continuous function

f and a sequence r, 1 oo such that f % m,_ — f uniformly on compact sets. We

103



shall conclude this section with a counter example of the same genre. Precisely we
shall show that given a o = —(\? + p?) € C there exist continuous functions f, g
with g not an eigenfunction with eigenvalue o and a sequence r, T oo such that
f*m} (z) = g(z) uniformly on compact sets. That is Theorem is not true if
the radius r approaches oo via an arbitrary sequence. Here is the example.

We fix a A € C with S\ < 0 and then take € C,u # A, but S = SA. Let
f(z) = ¢u(x). Since A — p € R, we have the sequence 7, = 2nm /(A — p) of positive

real numbers diverging to oo and e**~#7 = 1. We recall that
vy Y o5 (5)

frmi(z) = V—:A%(l') = W%@f)'

N3

N3

oy 2 C./ g/
Hence by (4.5.4) we have lim f*m) (z) = %gpu(:c). If g= %@m then
n—oo Ca/’ﬁl o B!

Ag # —(A?+p?)g. In a similar fashion, it is possible to construct a counterexample
for the case 0 # X € R. Precisely, take f(z) = ¢, (z) with A # p € R*. As p # A,
owing to Lemma[£.5.1|c), we can obtain a real number L # 0 and sequence {r, }nen

with 7, 1 co and

Hence we get

and the limit is not an eigenfunction of A with the prescribed eigenvalue.
Here we have dealt only with ball-averages. Similar results and counter examples
can be obtained for other two averages. For instance, as ¢, (a;) is a Jacobi function,

arguments as above will lead to the following.

Proposition 4.5.3. Let A\, € C with A\ # p and f = o) + ¢,. Then we have the

following conclusions.
(a) If |SN| > [Sul, then f*o)Mx) — pa(z) for allz € X asr — oo.
(b) If ISA| < |Spul, then f x o)x) diverges for all z € X as r — oo.

(c) If ISA| = |Su| and X # 0,u # 0, then f * o}z) oscillates for all x € X as

T — 0O0.

(d) If |SA = [Sul,\ =0 and u # 0, then f* o)x) — pa(z) for all x € X as

T — O0.
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(e) If |SA| = |Sul, A # 0 and u = 0, then f x o)(x) diverges for all v € X as

r — 00.

We can also show that it is not possible to take a sequence in Theorem [4.3.3] As

an example take f = ¢, and r, as above.
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Chapter 5

Large and small time behaviour of
heat propagation and the

characterization of eigenfunctions

Aim of this chapter is to illustrate some distinguishing features of the heat propaga-
tion on X and relate them to the characterization of eigenfunctions. Repnikov and

Eidel'man [65,(66] proved the following theorem.

Theorem 5.0.1 (Repnikov and Eidel'man). For a function f € L®(R") and a
fized point xy € R™, f xm,.(xg) — L for a constant L as r — oo if and only if
etAen f(1g) — L ast — oo,

This result was generalized by Li [53], to complete n-dimensional Riemannian
manifolds M with nonnegative Ricci curvature with the property that |B(zg,7)| >
Or™ for all large r for some constant 6, where the Euclidean result stated above was
used. We shall see that one side of the theorem fails for X, precisely, there are
functions f € L>(X), such that e'® f(x) converges for any z € X as t — oo, but
f*m,(x) does not converge as r — 0o, however, the forward side of the assertion is
true for X. In fact we shall obtain a generalized version of the forward side of this
result for X (see Theorem below). We shall use this to pass from ball averages
to heat kernel averages. Using the heat semigroup we shall get a result of the genre
of Chapter [4] i.e. a mean value property in limit, for functions in Lebesgue or weak
Lebesgue classes, but with pointwise convergence replacing norm convergence. This
argument is free from the use of the geometric property of convexity of distance.

Using another non-Euclidean feature of the heat propagation in X, we shall rein-

force our observation in Chapter [4] that there are certain right convolution operators
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for which eigenfunctions do not satisfy the mean value property, but asymptotically
they can also characterize eigenfunctions.

While the results described above are about large time behaviour of heat propa-
gation, we shall show that in small time also heat propagation in X has distinctive

behaviour, in the context of the characterization of eigenfunctions.

5.1 Estimates of the heat kernel

We recall that the heat operator e'® on X is the same as the convolution operator
¢ — ¢ * hy where h; is the heat-kernel, i.e. the fundamental solution of the heat

equation

0
ot
Precisely, for ¢ > 0, h; is defined as a radial function in the Harish-Chandra L”-

Af =
Schwartz space CP(X),0 < p < 2, whose spherical Fourier transform is given by (see
(3.1) [6], [5, Section 5]),
h(N\) = e '+ N e g = R.

We need the following estimates of the heat kernel and its derivative (see [5, Theorem
5.9, Corollaries 5.49, 5.55]).

n—3)/2
hi(a,) < t’%(l +7r (1 + —) e Pl Prem ’"2/4t, fort >0,r >0. (5.1.1)
d 1 —|— T (n— 1 2
- d—ht(ar) = {2y ( ) e M fort > 0,r > 0. (5.1.2)
,
We note that |[Zhi(a,)| = —L£hi(a:) ( [5, p. 669]) and hence —Zh(a,) is
nonnegative.

For A € C and t > 0 we define,

B = OOy,
Thus h} is the fundamental solution of the perturbed heat equation
0
A+ AN = ).

From above it is clear that k) = h;* and e/®=9 f = f x h)} where ¢ = —(\> + p?).
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5.2 Large time behaviour of the heat propagation

We offer the following generalization of the Euclidean result (Theorem [5.0.1]), con-
necting the large time behaviour of (perturbed) heat operator with asymptotic be-
haviour of the ball average. The notation h} is defined in the previous section and

m is as given in Section , precisely,

T

mi\ = (‘/r/\)_lXB(o,r)a V;)\ = / QO,\(t)J(t) dt.
0

Theorem 5.2.1. Fiz ap € [1,2). Let A = iv,p. Suppose that for f € LP'*°(X) and
for a fized xo € X,

lim f *m)(xo) = L.
r—00

Then
lim f * h)(zo) = L.
t—o00

Unlike the proof of the Euclidean result cited above, Wiener’s Tauberian theorem
cannot be used to prove this result. We shall show in Subsection that the
converse of this result is not true, i.e. there exists weak LP-function f on X and
point g € X, such that f * h}(x) converges to a limit as t — oo but f * m} (o)
does not converge as r — 00. As a technical tool, we require to estimate LP'-norm

of ht, which we shall do next. For estimate on LP-norm of h; see [6}24].

Lemma 5.2.2. Fort>1 andp € [1,00),
4 2
[Fullps < Ce™ "

for some constant C'. Further if p € [1,2) we have,

_ 4%
lellp = ",

Proof. We write h(r) for hi(a,) with r > 0 and view h; as a function on (0, c0).
Since hy(r) is a strictly decreasing function in r (as %h(a,) is negative), using the
explicit expression of the G-invariant measure in polar coordinate (see Section |1.2))

we find the distribution function of h; for o € (0, 00) as,

e2phi (@) _

hy ' (a)
dn () = [{r € (0,00) | he(r) > a}| < / iy =
0
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Let M = h:(0) = max,s>¢ h¢(s). Therefore

M [ 2ph (@) _
e“Pi 1
< [ (=5
H 0 2p

where we have used the substitution aw = hy(s). Using (5.1.2)) and dominating s and
t+ 1+ s by 2t + s, we have

3=

da = 0/ (€205 — 1)7|hl(s)| ds
0

n—1
00 s 1 = .
R e (R
0

N 24 > ntl s _s?
< Ct2e” (2t +5) 2 e™PPe 4 ds.
0

By the substitution s = 2tu and collecting powers of ¢ we get,

n+1

|hellpy < Ct%e_p%/ (1+u)> et =2ump) g,
0

n+1

= Ct%e_th(l_’yIQ)) /00(1 _|_ u)Te_t(u_'YPp)2 du
0

2 14+vpp 00
= Ct%e_4;p/t [/ ’ (1 +u>nT+1€*t(’u*'YpP)2 du+/ (1 + u)%ﬂe—t(ufﬂmp)z du
0 1

+YpP

For u € [1 + 7,p, 00) we have u — v,p < u. Using the elementary estimate e~ <
(D! it follows that

(tu2)n+1

/ (14 u)nTle_t(“_W))2 du < G :
1

+vpp

By the substitution v = s + 7,p we also get

14+vpp " 1 e’} C!
/ (1+ u)%e_t(“_%’p)2 du < C'g/ et ds < 02/ et ds = 22,
0 0 Vi

—YpP
Hence o o 2
_4p ,t 1 2 _4p /t
e[ p1 < CVte v Lnﬁ + %} < (Che »

This completes the proof of first assertion. Since f;(i’ypp) — ¢~ PY e have

e~40%t/er < [hellp,1llPinppllpr 00s for T<p < 2.
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Owing to Proposition [1.4.1] we get the second assertion. O]

As a step towards the proof of Theorem [5.2.1| we shall first prove a lemma.

Lemma 5.2.3. Let f € L9®(X) and A = iv,p for some p,q € [1,00]. Then for
any x € X and for all r > 0,

[ sy = — [ VA ) ds + VS ) )
B(o,r) 0 S

Consequently for any x € X,

Foid) = [ fandydy =~ [ VA0 € ds
0

r—00 B(Oﬂ‘)

We need to use the following result on integration by parts (see e.g. |27, p. 163])

to prove Lemma [5.2.3]

Proposition 5.2.4. Let ¢,v € L'(a,b) for a,b € R with a < b. For each x € (a,b),
let

O(x) = /z o(t)dt and ¥(x) = /z Wp(t) dt.

Then ®v, oW € L'(a,b) and for each z € (a,b),

O(2)U(z) — B(a)T(a) = / (@ + 6 (1) dt.

Proof of Lemmal[5.2.5 Let x € X be fixed. We recall that o,,u > 0 is the normal-
ized surface measure on the sphere around the origin of radius v and M f = f x o,.

We take J
d(u) = f*ou(x)J(u) and Y(u) = @h;\(au), for u > 0.

Then,
#1200 S/o /K'f (wkau)| dk J(u) du = /B< Iy < el Bl

where B(z,r) is the ball in X of radius r around z. Above we have used that
IxEllq1 = |E|Y9. From (5.1.2) it is clear that ¢» € L'(0,7). We have

B(s) = /O o) du = /O () () du = /0 S /K f(wkay) dk J(u) du.

Thus ®(s) = Vi*(f * m?)(x) = VXMf » m))(z), where V},m} are as defined in
Section [1.2] and Subsection It is clear that W(s) = h}(as) — h)'(0). Applying
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Proposition with these ¢ and ¢ and noting that ®(0) = 0 = ¥(0), we get,
" d
| 1@ 0020~ R ds+ [ VA om0 ) ds
0 s
= VA mp)(@) (B (ar) — 1i\(0)).

This implies

0

Since [| f % o5(2)J(s)ds = VX f *m})(x) we have,

/ fro(x)J(s)hi(as) ds = —/OT Vﬁ(f*mi)(x)d%(h?(as))dS+W(f*m?)(x)h?(ar)-

Finally we note that,

/19(07r>f<xy)h?<y)dy:/K/Orf(xkas)h?(as) (s) dkds_/ Froy(x)hMas)J(s) ds

and this proves the first part of the assertion. For the second part we note that

(le)l/q

|f xmif ()] </ [f(@y)lmyf (y) dy < (| Fllg ocllm?llan < Cllf oo Ve

for some constant C'. It follows from and (5.1.1)) that (V%) Y ‘hi(a,) — 0 as

r — 00. Hence

lim VA f * mM)(z)h) (a,) = et H0%) Tim VP (f % m?)(x)h(a,) = 0. O

r—00 r—00

We are now ready to complete the proof of the theorem.

Proof of Theorem |5.2.1]. Since

V=T and [ M@)o = [ Rladena) I ds = 1

X
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we have,

~ d %
/ v <_d—h?(as)) ds = / PN ag)ea(as)J(s) ds = 1.
0 s ;
We fix xp € X and an € > 0. Hence by Lemma [5.2.3

|f * 1) (wo) — L| =

[ (i) e mion -

Then by hypothesis there exists 7o > 0 such that for r > ro, | f*m}(xg) — L] < e.

Therefore

"0 d o0 d
|f*h§(x0)—L|go/ VA ——hay) ds—i—e/ VA ——h)ay) ) ds.
0 ds , ds

0

We have

/T:O v (_%h?(as)) ds < /000 v, (—d%h?(as)) ds = /OOO ox(as)hMas)J(s)ds = 1.

Since V) < VX for 0 < s < 1o, it follows from the estimate (5.1.2) that

A d
/0 % (_%ht (as)> ds <€
when t is suitably large. Therefore from above we conclude that
|f * B (o) — L] < 2e
for appropriately large ¢ > 0. [

Using that h} is a semigroup, we have the following results.

Proposition 5.2.5. Let A\ = iy,p for a fived p € [1,2). Suppose that for f €

LP°(X) and a measurable function g on X,
tli)r?o f*h)x)=g(x), for almost every x € X.
Then Ag = —(A? + p?)g.
Proof. Since ||h}]|,.1 is uniformly bounded for ¢ > 1 (see Lemma we note that,

[f * b ()] < /X @y D)2 () dy < 1 f oo 12 llpa < CllFlly oo
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for a fixed constant C. Hence |g(z)| < C||f|ly 0 for almost every € X. Thus

g € L*°(X) and the convolution g * h} makes sense. Therefore,
|(f * byt = )@y DIh3(y) < Cllflly oo (y), for all t > 0.

Applying dominated convergence theorem, we get as t — oo, fxh}*h) (1) — gxh)(z)

for almost all x € X. On the other hand for almost every z,
frh)«h)(x) = f*h)(z) — g(z) as t — oo.

Therefore for any s > 0, g * h)(z) = g(z) for almost every z € X and equivalently,
g*hy(z) = e 5O+ g(z). Using these relations and the fact that g h, is a solution

of the heat equation, we have,
Ag=A(g*h) = N PIA(gxh)

(

— 407 Gt(g*ht)

_ A2+p (9t(€ t(A24p?) )
)

= —(M+p%)g.

Here is a version of the proposition above under norm-convergence.

Proposition 5.2.6. Let A = iv,p for a fived p € [1,2). Let f € LP"**(X) and g be a

measurable function on X such that tlim 1 f%h} =gl co = 0. Then Ag = —(N2+p?)g
—00

and g = P_\F for some F € L' (K/M).

Proof. Using Kunze-Stein phenomenon (Proposition [L.8.2(c)) and uniform bound-
edness in t of ||h}|,1 (Lemma , we get

1f il o < C'llF oo 12 11 = ClLf o
for all large ¢t > 0. So ||g|ly.c0 < C|lf |l ,00- Also
1(f 1 = g) * Wil oo < CIF %1 = gllyr.oo — 0 as t — 0.

Thus we get f * b}, — g* h) in LP*°(X). Therefore, g() = g x h)(z) for almost
every x € X and for every s > 0. In the last part of the proof of Proposition [5.2.5

it is shown that this implies Ag = —(\? + p?)g. Last assertion is immediate from
Corollary [1.7.4] |
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Instead of weak LP-norm we can use convergence in Hardy-type norm (see Section

. This enables us to capture eigenfunctions with eigenvalues in [—p?, 00).

Proposition 5.2.7. Fiz a p € (0,2] and r > 1. Let A = iy,p. Suppose that for
functions f € H;(X) and a measurable function g on X,

. A _
Jm [ bt =gl = 0.
Then Ag = —(\% + p?)g. In particular g = P_\F for some F € L"(K/M) ifr > 1
and g = P_\p for a signed measure p on K/M if r = 1.
Proof. From Proposition [1.6.1] (d) we have,
500 < e [ D@00 di = [l
for all £ > 0. Hence [g],, < [f]p, and

[umwww@msUM%MWA@@meM:UMAﬁMﬁO

as t — oo. Therefore f« h}« h} = fxh}, — g*h} in H(X) as t — oo. Thus
g(z) = gxh)(x) for almost every z € X and s > 0. Applying exactly same argument
as in last part of Proposition we get Ag = —(\? + p?)g. Last assertion follows
from Theorem [.7.21 O

Finally we use Theorem to prove an analogue of Theorem[£.1.1] for functions

with integrability condition and under pointwise convergence on X.
Theorem 5.2.8. Fiz ap € [1,2) and let A = iv,p. Suppose that for f € LV (X)

and a measurable function g on X,

lim f*mMx) = g(x), for almost every x € X.
7—00

Then Ag = —(A? + p?)g.

Proof. From Theorem it follows that lim; ., f * h}(z) = g(z) for almost every

x € X. The assertion now follows from Proposition [5.2.5| O

5.2.1 Counterexamples

(a) We shall show that Theorem is not true for A = a + iy,p with a # 0.

Fix p € (0,2). Let A = a + iv,p for some nonzero real number o. Choose ¢ with
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p < q < 2 sufficiently close to p such that o > (72 —12)p°. Take f = Qatirypt Pivgp-
If p € [1,2) then f € LP°°(X). It follows from Propositionm (a) that fxm)(x) —
©r(x) as ¥ — oco. On the other hand,

fx h?(x) _ et[(oc+i’ypp)2+p2](f?t(Oc+i’ypp)sﬁa+i~/pp(l’)+};(qu)%vqp(l‘))

a1 2 21 _ i 2 2
Patingp(T) + etllativpp)+p*] ,=t[(ivgp)+p ]%%p(I)

t(a?—(v2—2)p?) 2tiaypp
€ P € ? S01‘7«19(‘1’) + 9004+i7pp(x)7

which diverges as t — +oc.
(b) As mentioned above, unlike in R™, converse of Theorem is not true for
X. We take for instance f = ©ativy,p + Piv,p for some nonzero real number o and

0 < p < 2. Then,

“p i) +0% (7, ; A D (s ,
| o* ht’y p(:E) = elltmwe) ] <ht(a + Z’Vpp)ﬂpa-kwpp(x) + ht(z'Vpp)Sprp(zU

= et[(wpp)2+p2}e*t[(a+iwpp)2+p2]Spaﬂ.%p(x) + Piny ()

= efmzefztmvppéoaﬂvpp(x) + Pinyp(T)-

Therefore as t — +o0, f % hy*’(z) — ©iy,p(x). But on the other hand, it follows
from Proposition (c) that f % mi"(z) oscillates as r — co. Note that when
p € [1,2) then f defined above is in LP"*°(X). We can somewhat strengthen this
(counter) example by producing a nonnegative function f, having the same property.
We fix again a p € (0,2). Let @aiiy,,(2) = u(z) + iv(z), where u, v are real-valued

functions on X. Then,

Wi BP(2) 4 0% BT (@) = Paringy * hP(2)

PP (0 4 i) Paring p ()

etl@vpp)?+p%] o —tl(ativpp)* +p7] Patingp(T)

_ —ta?  —2tiaypp
= € € P 90a+i7pp($);

which tends to 0 as ¢ — co. Therefore as t — oo, both u * h,""(z) — 0 and
v % hi""(z) — 0. But since (see Proposition , ativgp * mi(z) oscillates as

r — 0o, we conclude that either uxm,*”(z) or v¥m,”””(x) do not converge as r — oo.

If wx mi?? (7) does not converge take f = 24, — u, otherwise take f = 2p;, , — v.
Then it is easy to see that f > 0 (see Proposition ) and f * h?”p(x) — 204, p(T)

as t — oo but f xm,*”(x) does not converges as r — oo.

Remark 5.2.9. In passing we observe the following immediate consequences of
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Lemma [5.2.3] although they are not connected with our concern in this thesis.
1. Let M f be the central Hardy-Littlewood maximal function of f, i.e.

M f(z) = sup|f| * m,(x).

>0
From the second assertion of Lemma [5.2.3] it follows (for A = ip) that

< o d
Feal <= [ v

S

(he(as))f *ms(x)ds

<M f() / " hu(as)J(s) ds = M (z),

where V, = V? and m, = m’. Thus the heat maximal function is bounded by the
central Hardy-Littlewood maximal function. From this and the mapping properties
of M f ([20], [77], [5]), we get the mapping properties of the heat maximal opera-
tor. In [5] the mapping properties of heat maximal operator was obtained directly,
without comparing it with M f.

2. A nonempty subset I' C X is said to be a non-analytic set if the only real
analytic function defined on an open set containing I' which vanishes on I' is the
zero function. If closure of I' has positive measure then clearly I' is such a set. But
there are interesting “thin” non-analytic sets I'. See [55] for various examples. It
can be shown that for a function f € LP*°(X) with 1 < p < oo and such a set I, if
[ * XB(ro)(x) = 0 for all z € I" and for all » > 0, then f = 0. In other words, the
linear span of elements of the set {x g | 7 > 0,2 € I'} is dense in LP!'(X), hence
in LP(X). Indeed by the second assertion of Lemma , I * XB(ro)(x) = 0 for all
x € I" and all » > 0 implies that f % h; vanishes on I'. Since f * h; is a solution of
the heat equation, it follows from analytic regularity theorem of parabolic equation
(see [36, p. 324]) that f x h,(z) is analytic in x. This reproves the result (for the

particular case of rank one symmetric spaces) obtained in [54}|55].

5.3 Asymptotic property of heat propagation and

the characterization of eigenfunctions

In the previous section, we have proved that for p € [1,2), A = iv,p, f € LP>°(X)
and a measurable function g on X, if f * h}(z) — g(z) for almost every z € X,
then Ag = —(\? + p?)g. We shall revisit the result in the light of finite propagation
speed of heat diffusion, as observed by Davies [26, Corollary 5.7.3] for real hyperbolic
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spaces, and was generalized by Anker and Setti [7] for a class of manifolds which
includes all Riemannian symmetric spaces of noncompact type (see also [18]). It
was shown that on these spaces, heat concentrates at a finite speed to an annulus

moving to infinity. Restricting to rank one symmetric spaces the statement reads:

Theorem 5.3.1 (Davies, Anker—Setti). Let r(t) be a positive function with
r(t)/t"? — 0o ast — oo and

Al = {kiasky | 2pt — r(t) < |s| < 2pt +7(t), k1, ks € K}.

Then
/ hi(z)dz — 1, ast — 0.
A

As pointed out in [7,26] this behaviour sharply differs from what happens in R™.
For 1 < p < 2, an LP-version of this result is given in |6, Theorem 4.1.2]. Our aim
in this section is to obtain a suitable version of this result, and use it to modify the
results characterizing eigenfunctions (obtained in the previous section) through this

asymptotic behaviour of the heat propagation.

Below by f < g we mean that |f| < C|g| for some constant C. For a p € (0,2),
let
af =2y,pt —r(t) and BY = 2vy,pt + r(t)

where 0 < r(t) < 27,pt for all t > 0 and r(t)/v/t — 00 as t — co. We define the
annulus,

A? = {kiasks | s € [of, BY], k1, ko € K}

Let
hip = XAfht and /_%,p = XX\Ag'ht-

In these notation, Theorem asserts that ||hq1]1 — 0. Next two propositions

are generalizations of Theorem [5.3.1] in two different set up.

Proposition 5.3.2. For any fized p € [1,2),

2

9%t _
e’ |[hypllpa =0

ast — oo.

Proof. Since p is fixed we shall drop the superscript p and write a4, 5; and A, for

of, B7 and A} respectively. As hy,, is a nonnegative radial function, it can be viewed
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as a function on (0, 00). For a > 0, let dj, (a) denotes the distribution function of
77,757}7, 1. e.

d}’“’p(a/) = ‘{7‘ € (0,00) | Bt,p(r) > 04}! )

From (b.1.2) it is clear that h; is a radial decreasing function. As for r € [0, ),
hi (1) = he(r), we have for o € [hy(ay), he(0)],

hi (@) B
dy, () < / e dr < 2 (@), (5.3.1)
0

For o € [he(By), he(aw)],

i) < [ e g o (5:3.2)
0
and for a € [0, hy(5y)],

at hy (@)

dp, (@) < / e dr—i—/ " dr (5.3.3)
0 Bt
< ey (e2Phe Ho) _ e%rPt)
< @ (as B, > ay).

Let M = hy(0) = max,s>¢ ht(s). Then

M
sl = [ dij ()} da (5:3.4)
0

ht(Be) 1 hi (o) 1 M 1
= / dp, ,(a)? do +/ dp, ,(a)? do +/ dp, ()7 da.
0 ht(Bt) he(at)

Let us denote the first, second and third integral above respectively by I, I and I3.
Then for ¢ > 1 sufficiently large so that 7(t) > 4/,

192t 1921 ht (Bt)
ew’ [} = ew dy, ,(a)? do

=

where we have used the substitution a = h(s). Using (5.1.2) and V1 +u =< 14+ /u
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for u > 0 we get,

n—1
2 . oo 2 (s— )2
64:P’t11 S t;/ S (1 + 1—:8) e S ds
Bt

[e’¢) n—1 . 2
thg/ s(l—i—f) ’ e*( e ds

3 t

o n—1 3 9
St_g/ 8(1—1—\/%) e_< 22“) ds.

t

Expanding the second term of the integrand binomially, substituting (s — 2tv,p) by
2V/ts we get,

o 2
epp’ I <Ztk+3/ R PP
X:t’ﬂ /() (2V/'ts + 2tfypp) L=/t ds
t

<Z s—|—1 2+1 =% ds.

For I3 we proceed through steps as above to conclude first that for ¢ large as

above,
4p?t ot T4+s\ 2 20
eppp’ I3 < t_/ s1+ e~ a  ds.
0 t
Hence,
2 Qg 1 nd 2
4p°t ‘s + s 2 (s—2tvpp)
e I3 < t_/ -1+ em T ds
o 1 ¢
a 1 ntl 9
2 o
<2 / IR RS T2
0 t
a 1 ntl 9
2 o
S t_é/ 1+ o e_( g s
0 t
i o 2
St_;/ e : 2210[3) S
0

In the last step we have used that for large ¢, 1 + (1 + ay)/t < 1. Substituting
(s — 2ty,p) by 2v/ts, we have from above

r(t)
4p2t

L
e’ I3 < 2 w e’ 2Vt ds
—Vtypp
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he(Be)
) ht (o) 5
<e” t(l_%)/ er ™ da
he(Bt)
gep t(1 'Yp)e%patht(at)
Using ([5.1.1)) we have,
n—3
2, e oy —2t7pp)2
64:17/125757% L+a 1—|—1+at : e’( fae
t t
n—1
<73 (1+ 1+at> T <
~Y t ~Y

As limy_,oo 7(t)/y/t = oo, from the estimates of I1, Iy, I3 obtained above, the

assertion follows. O
Below is another generalization of Theorem [5.3.1

Proposition 5.3.3. Forp € (0,2),

4p2t

e v’ / hi(2) @iy, p(x) do — 1, ast — oo.
A7

Proof. For convenience we shall drop the superscript p and write a4, 8y and A,

respectively for of, 57 and A}. Since

4p2t

ev” [ hy(x)piy,p(x) de =1, (5.3.5)
X

we need to show that

4p2t

e’ / he(2)Qin,p(x) dz — 0, as t — oo. (5.3.6)
X\Aq

For p € [1,2), this follows from the proposition above, as,

4p2t

. 4pit —
err ht(x)@i’vpp(x) de < ew Hht,pHp,lH(Pi'yppHp’,oo
X\Ay
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However, in the proof below we consider all p € (0,2). We assume that ¢ > 1 and

such that r(¢) > 4v/t. Using (1.2.2)), (1.2.8) and (5.1.1]) we get,

EVO
0
o (n=3)/2 SZ 2
< t—S’/ (1+45) (1 + ?) e ds
0
at (n=3)/2 ST 2
< t‘é/ 1+S(l+1+5> et L
0 t ¢
” (n—1)/2 . 2
¢ e[ ()
0 t
o (n—1)/2 . 2
[ )
0

We substitute (s — 2tv,p) by 2v/ts and note that 1 + (1 + ay)/t < 1 to get from

above,

Similarly we get,

4%t o0
b= / he(s)@in, plas)J () ds
Bt
00 (n—3)/2 . 5
S t‘g/ (1+s) (1+ +S> e s
Bt
A (e H

A
N

é/ °° (1 4 Jtr 8)(“)/2 o~

Since for u > 0, v/1 4+ u =< 1+ \/u, from this using binomial expansion we have,

00 n—1 9
_1 S _(S*Zt’YpP)
I, < t72 1+4/- e o ds
\ t
n—1 %) 9
n—1 k41 k _ (s—2typp)
< t 2 sze it ds
~Y
k
k=0 t
n—1 %) 9
< k41 k _ (s—2typp)
S E 72 sze @ ds.
k=0 Bt
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Substituting s — 2tv,p by 2v/ts we get,

n—1

k
I, < Zt / (2Vts 4 2ty,p) e ~2V/t ds
v
D3 / 1)ie ds.
k=0

As limt_m r(t)/v/t = oo, from the estimates of I, I; obtained above, it follows

that e’ fX\A 1(@s) i, p(as)J(s)ds — 1 as t — oo. O

As immediate consequences of the two propositions above, we get the following
modifications of Propositions [5.2.5] [5.2.6] and [5.2.7] Below for any \ € C,

A t(A24p?
hy, o= N0 n,

Theorem 5.3.4. Fiz ap € [1,2). Let A = iv,p. Suppose that for f € LP'*(X) and

a measurable function g on X

hmf*h o) =g(z)

t—0o0
for almost every x € X. Then Ag = —(\* + p?)g.

Proof. By Holder’s inequality we have,

/ Flzy™")hi (y) dy
X\AP

Therefore by Proposition the left side of the inequality above goes to 0 as

a? T,
= e [fxhyp(@)] < || fllp oo™ [ hepllp-

t — oo. Thus the hypothesis implies that, tlim f* h}x) = g(x) for almost every
—00
xr € X. Owing to Proposition the result follows. O

Theorem 5.3.5. Let p, A\, f and g be as in the previous theorem. If
lim | f %5, — glly 0 =0,

then Ag = —(\2 + p*)g and g = P_,F for some ' € L (K/M).

Proof. We have,

|f B} (x) — g(x)] < Flay R (y) dy — g(x)

AY

/ fly™ " hNy) dy| +
X\AP
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= e |fx hup(@)| + | % by (x) = g()]-

From this, using Kunze—-Stein phenomenon (Proposition [1.8.2(c)) we get,

4% _
1f %78 = gllproo < €27 [ flly ol hepllps + I1f * Ry = gl oo
From the hypothesis, Proposition and Proposition the result follows. [

Theorem 5.3.6. Let p, A and g be as in the previous theorem and f € H(X). If
. A .
tlirc{lo[f * ht,p - g]p,r - 07

then Ag = —(\? + p?)g. In particular g = P_\F for some F € L"(K/M) ifr > 1
and g = P_\p for a signed measure p on K/M if r = 1.

4p2t

Proof. Following steps as in the previous theorem, we have [f % h) — g],, < e’ [f x
hiplpr + [f % hi, — glpr. From Proposition m(d) we have

4p“t

1%t . 4%t
e’ [f* htyp]p,r < [f]pm {6 p?’ / ht@)@i%p(x) dr|,
X\ A

which goes to zero as t — oo owing to ([5.3.6)). From hypothesis it also follows that
[f *hy, — glpr = 0 as t — co. Consequently [f * h} — g],, — 0 as t — oo. From
Proposition we get the desired result. O

Remark 5.3.7. We note that unlike {h}'}, {h,} is not a semigroup. Right-
convolution by hf"p is not a mean value operator. Thus the three theorems above
are somewhat parallel to Proposition [4.2.3] and Proposition 4.4.6| in the previous

chapter.

5.4 Small time behaviour of heat propagation

We consider again the heat propagator e'®

on X, which, we recall, is given by
the right-convolution by h;. Purpose of this section is to illustrate that in the
results characterizing eigenfunctions through heat propagation in small time also
manifests dichotomies with the Euclidean spaces. If f is a suitable eigenfunction
with eigenvalue —(\2+p?) for some \ € C, it is straightforward to see that f*h} = f
for any t > 0. We shall explore here when the converse of this result is true.

Note that if A\ = ip, then h} = h; which is a probability and a classical result of
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Furstenberg [37] asserts that the converse is true for this case when f € L>(X). We
shall consider other A € C, and appropriate function (or distribution) spaces on X
which can accommodate eigenfunctions with eigenvalue —(\? + p?). A reader will
observe that the main result in this section is closely related to the result in Chapter
2l We have chosen to isolate it here to emphasize this difference.

We begin with the corresponding result on the Euclidean spaces.

5.4.1 Review of the result for Euclidean spaces

It follows from the mean value property that there is no nonzero harmonic func-
tion belonging to LP(R"™) for 1 < p < co. More generally, there are no nonzero
eigenfunction of Ag» belonging to any LP(R™) except for negative eigenvalues and if
Agn f = —cf for some ¢ > 0 and f € LP(R™) with 1 <p < %, then f is necessarily
zero. Keeping these in view, we formulate the following theorem. Temporarily for
this subsection only, by fwe denote the Euclidean Fourier transform of a function

f on R".
Theorem 5.4.1. Let f be a nonzero measurable function.
(i) If f € L®(R"™) and satisfies e'*=" f = f for some t > 0, then f is harmonic.

(ii) If f € LP(R™) with p > 2% and satisfies e'*=" f = e~*f for some ¢ > 0 and

n—1

t >0, then Agn f = —cf.

As we could not locate a reference, we shall include its proof. We shall use these
notation. For A,y € C, x € R” and k € N, let

ona) = [ 9ya(o) = Geon(acs

Proof. Suppose that ¢ = o? with a > 0. Let py, pf be the Gaussian, respectively
the shifted Gaussian defined through their Fourier transforms: p,(¢) = e ¢ and
p(€) = e "EP=9) Then the hypotheses in (i) and (ii) can be rewritten as f *p$ = f
where ¢ = 0 for (i). Let g(z) = exp(—|z|°) and K = g * p where p = p¢ — dy and
8o is the dirac at 0. We note that K € L'(R"), K(¢) = 0 if and only if |¢| = a,
g*f € L>®(R™) and the hypotheses further boils down to f*p = 0. This implies that
Kxg*f = 0. By [68, Theorem 9.3], support of the Fourier transform of the tempered
distribution g * f is contained inside the set {{¢ € R™ | [¢| = a}. Consequently, same
is true for the support of f. We shall now deal with (i) and (ii) of the statements

separately.
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(i) As ¢ = 0 we have supp (f) C {0}. Therefore f= ZCﬁDﬁ(SO (see 68,
B
Theorem 6.25]). From this we get f(z) = Zngﬁ. But as f € L>®(R"), it is a

B
constant function, in particular harmonic.

(ii) We shall first prove the result under the assumption that f is radial. Here
¢ > 0, hence a # 0 and the tempered distribution f is supported on the sphere
|| = a. Therefore, f = chvzo apdaq for some nonzero constants agp,ai, - ,an.
(see [64, Lemma 2.2]). We claim that N = 0. To establish the claim we note that,

o o 2
= 95 r=a (& * pe(7)) =35y o <€_M ¢A(I)>

:,Z; (’:) %(e‘t/\Q)

If N > 1, comparing the coefficient of ¢, y_1 in both sides of identity e!~#" f =

et f we get any = 0 which is a contradiction. Hence f = ag¢, and Agrnf = —cf.

etARn gba’k (x)

:agboc,k—i(x) .

A

This completes the proof for radial functions.

Now we withdraw the assumption that f is radial. Seeking to meet a contradic-
tion, we suppose that Agn f # —cf. Then by Godement’s mean value theorem ( [41]
p. 409]), there exists a point zg € R" such that [q,) f(z0 + Ay) dA # ¢a(y) f(z0),
where dA is the Haar measure on SO(n). Let F(y) = fso(n) f(zo+ Ay) dA. Then F
is a radial function and the hypothesis f * yu = 0 implies that F' x 4 = 0. Applying
the result for radial functions proved above, we have Agn F' = —cF. But this implies
that

/ f(w0 + Ay) dA = F(y) = / F(Ay) dA = 6a(y)F(0) = da(y) f(x0)
SO(n)

SO(n)
which is a contradiction. Thus it is proved that Ag» f = —cf. O]

See [82] for the characterization of harmonic functions on weighted spaces in R”,

which is close in spirit to the results of this section.

5.4.2 Results on symmetric spaces

For p € (0,2), recall from Subsection that A(S,) is given by

A(S,) ={z+iy € C |z < —4p°/pp, |y < 2vpp(—4p%/pp' — 2)'/?},  (5.4.1)
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which is a closed region in C enclosed by the parabola : y* = —4~2p? (2 + %). For

p = 2 the region A(S,) degenerates to the ray (—oo, —p?]. For a fixed p € (0,2] and
c € A(S,), we define the critical time T? by

2 Se -1,
w (7 —R) o+ 1) it p # 2 and ¢ # 402y

oo otherwise.

TP = (5.4.2)

The definition makes sense since for ¢ € A(S,), % + Re < 0. Whenever p is fixed,
we shall write T, for TP.
First we shall deal with LP-tempered distributions with p € (0,2) and withhold

the case p = 2 until the end of this subsection.
Theorem 5.4.2. Following conclusions hold.

(a) Fiz ap € (0,2). Let v be an LP-tempered distribution on X which satisfies
!By = ety for some c € A(S,) and 0 < t < T,.. Then v is an eigendistribution

of A with eigenvalue c.

(b) Suppose that p € [1,2) and for a function f € LP'=°(X), e!™f = e'f, for some
c € A(S,y) and 0 <t < T.. Then f =P for some F € L*(K/M) and a € C

satisfying a® + p* = —c and Sa < 0.

(c) Suppose thatp € (0,2), 1 < r < 0o and for a function f € H(X), e f = e f,
for some ¢ € A(S,) and 0 <t <T,. Then f = P,F for some F € L"(K/M)
and o € C satisfying o + p> = —c and Sa < 0 if r # 1, and f = P.u for

some signed measure i on X and « as above if r = 1.

(d) Fiz a p € (0,2). Then for any T > T, there exist a nonzero LP-tempered
distribution v on X such that e?™y # ey for all t < T, but ™y = eT°y. In

particular v is not an eigendistribution of A.

Proof. (a) We suppose that ¢ = ¢; +icg, ¢1,c2 € R and ¢ = —(a? + p?) for a € S,,.
First we shall assume that v is a radial LP-tempered distribution. For A € C, we
define a function ¥ (\) = e~ A**+7*+9t _ 1 which is the spherical Fourier transform
of h¥ — 6, at A, where ¢, is the dirac at the origin o. For any o > 0 we define an

augmented p-strip Sy, 5 by

Sps = AN SA < (14 0)vp)-
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We claim that there exists a § > 0 such that if A € S,5 is a zero of iy then
N+ p? = —c. Indeed, 91 (N) = 0 implies t(A\? + p* + ¢) = i2n7 for some n € Z. We
write A =z 4+ iyy,p € Sy for y € R with |y| < 1+ 4, to get

i2nm =t((x + iyypp)® + p* + ¢)

=t(x® — y* 0 + 2izypp + 90 + )

=t(z* + (1 — y*7)0° + 1) + i(2tzypp + tea).
Equating the real and imaginary parts, we have

= —c; —(1— yQV;)pQ, 2txyypp + tey = 2nm.

When (—% — Re)V 2,0 + |C‘\;—C‘ # 0 then from (5.4.2)) and the hypothesis t < T,

we have 1o
4p? T e
- - <- -2
( Y Cl) WPEET

If (_% — Re)V 2, + |‘°;_C| =0, then trivially
4p? V2 T e
T ) TR

Thus in both the cases

4p° 12 _ 2\ 2\1/2 T el
o smal) e = (e = (L= p)pT) e < -

We choose ¢ > 0 sufficiently small so that

™ |02|

(=1 = (L= *)p")"? Jylwp < i

whenever 1 < |y| <14 4. For |y| <1,

T _ el

(—er = (L= 9P lylpp < (—er = (L= )p") P < = 5

Hence

2|n|m = |2txyy,p + tes|
< 2t|z|[y|vpp + tleo|
1/2
=2t (~c1 — (1= 5*32)6%) " [yl + tles|
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< 2t (% - %) + tlco| = 2.

This is possible only when n = 0. Therefore A\?> + p> = —c and A\ = £a. This

establishes the claim about the zero of the function ;.

Let ¢s(\) = e~ W+ (\). Then vy € C?(G//K). Let g € C°(G//K) be
the inverse image of ¥y under the spherical Fourier transform. We note that the
hypothesis, e!®v = ey equivalently, v+ h® = ~ implies that v (h® —d,) = 0. Hence
v % g =0 as a LP-tempered distribution. We also observe that (i) if a # 0, then 1,
has a simple root at o and (ii) if @ = 0 then v, has a zero of order two at a. We
shall deal with these two cases separately.

If o # 0, then by Proposition [L.5.2] {g & | £ € CP(G//K)} is dense in the
space of all functions in C?(G//K) whose Fourier transform vanish at «. Since 7 is

a radial LP-tempered distribution and

(V,9%&) = (yxg,§) =0, forall {€C’(G//K),

we have, (v,¢) = 0 for all ¢ € CP(G//K) whenever ¢(c) = 0. But ¢, is also
a radial LP-tempered distribution which annihilates all ¢ € C?(G//K) whenever
(}5(04) = 0. Therefore by [68, Lemma 3.9], v = C'¢, for some constant C. Thus 7 is

an eigendistribution of A with eigenvalue c.

We take now a@ = 0. As a = 0 is a zero of order two of 1, by Proposition [1.5.2],
{g*x&| € €CP(G//K)} is dense in the space of all functions in CP(G//K) whose
Fourier transform and its first derivative vanish at zero. Since (7, g*&) = 0 we have,
(y,¢) = 0 for all ¢ € C?(G//K) whenever ¢(0) = 0 and %L\:O = 0. But as ¢ is
an even function, %h:o = 0. Hence (v,¢) = 0 for all ¢ € C?(G//K) whenever
»(0) = 0. Therefore v = Cypy for constants C' (see [68, Lemma 3.9]). Thus 7 is
an eigenfunction of A with eigenvalue c¢. This completes the proof of (a) under the
assumption that ~ is radial.

Now we remove the assumption that ~ is radial. We claim that for an LP-
tempered distribution v, if R(¢,y) = 0 for all z € G, then v = 0. Indeed, R({,y) =0
for all z € G implies that for any ¢» € CP(G//K), v * 1 = 0 as a distribution. We
take ¢ = 1), where {1} is a C>-approximate identity to conclude that v = 0.

Since A commutes with radialization R and translation /., from the hypothesis
ethy = ely, it follows that e R({,y) = e“R((,) for all # € G. Applying the
result for radial function we have AR({,7v) = cR({,7) for all z € G. Using again
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the commutativity of A with R and ¢, we conclude that R({,(Ay —c¢y)) = 0 for all
x € G. This implies that Ay = ¢y by the claim established above. This completes
part (a).

(b) and (c) By Proposition and Proposition f is an LP-tempered
distribution, hence by part (a) an eigendistribution with eigenvalue c¢. Assertions
now follow from Corollary and Theorem [1.7.2]

(d) Asin (a) we take ¢ = ¢ +icy for ¢1, ¢ € R and ¢ = —(a®+p?) for a € S,,. We
claim that given any 7' > T, we can find a 8 € S, such that either T'(8*+p*+c) = 2mi
or T(B*+ p*+c¢) = —2mi. To see this let us first assume that c; > 0. Since ¢ € A(S,)
and T > T, we have by (5.4.1)) and (5.4.2)

4)02 1/2 o 4p2 1/2
—2%p (_W - Cl) Sy < S 2P )

Therefore there exists 3 € S, (see (5.4.1)) such that —(8% + p?) = ¢; + i(co — 35).
This implies
T(8* + p* + ¢) = 2im.

Similarly, if ¢o < 0, then the conditions ¢ € A(S,) and 7' > T, implies that

and hence again by (5.4.1]) we can find a 3 € S, such that —(3*+p?) = ¢ —l—i(cﬁ—z%).
That is T(8* + p* + ¢) = —2ir.
Let f = @o + ps. Then f is an LP-tempered distribution which is clearly not an

eigenfunction of A, but
c — 24 p24c
f*hT:90a+eT(B+p+)¢ﬁ:¢a+9@ﬁ:f-

That is e?2 f = eT°f. Tt is also clear that if t < T, then fxh® # f as t|32+p?+¢| <
2|m| for such t. Thus v = f is the LP-tempered distribution, required to find for
part (b). O

A consequence of Theorem is the following.

Corollary 5.4.3. Let v be an LP-tempered distribution on X for some p € (0,2)
and ¢ = —(a? 4 p?) € A(S,) for some o € C. Suppose that for two distinct positive
numbers ty,ty with [ty —ta| < T, v* hi =y x hi. Then f is an eigendistribution

of A with eigenvalue c. For two arbitrary positive numbers ty,ty with |t; — to] > T,
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there exist a nonzero LP-tempered distribution v which is not an eigendistribution of
A but satisfies vy * hii = v * hg,.

Proof. First we shall show that for an LP-tempered distribution vy, 71 * Ay = 0
for some fixed ¢ > 0 implies that 73 = 0. Passing to R(¢,7:) for some = € G, if
necessary, without loss of generality we may assume that each ~; is radial (see proof
of Theorem [5.4.2). If v x b = 0, we have (v * h{',¢) = 0 for all ¢ € CP(G//K).
That is (1, ¢ * h) = 0 for all ¢ € CP(G//K). Since by Proposition {he x ¢ |
¢ € CP(G//K)} is dense in CP(G//K), we have (y1,¢) = 0 for all ¢ € C?(G//K).
That is the distribution vy, = 0.

Without loss of generality we assume that ¢; >ty and let t = t; —to. If |t; — 1] <
T, and 7 * hi = «* h{,, then it follows that v, * hf = 1 for 0 < t < T, where
2 = 7 * hf,. Hence from Theorem (a) it follows that A(y * hf)) = c(y * h{,),
which in turn implies that (Ay — ¢y) * hg = 0. From the argument given in the
preceding paragraph, first part of the assertion follows. For the second part if ¢t > T,
using (b) of Theorem , we can obtain a nonzero 7y satisfying v * h* = v but v is

not an eigendistribution of A. It is also easy to see that v satisfies yxh = yxhg . O

Thus if we miss the critical time, we need two observations in a small interval
of time. The corollary we state and prove below finds another way to determine
whether f is an eigendistribution, taking observations in the intermediate time.
This is a reminiscent of the two radius theorem for the spherical mean operator
( [28], [33]).

Corollary 5.4.4. We fiz a p € (0,2) and a point c = —(a® + p*) € A(S,), for some
a € C. Suppose that for an LP-tempered distribution v on X, yxhS =~ = yxhy for
some s,t > 0 with t/s irrational, then ~y is an eigendistribution of A with eigenvalue

C.

Though the proof is a simple consequence of Corollary and Kronecker’s
approximation theorem, we need to check the necessity of the hypothesis. We note
that if s < T, or t < T, or |s —t| < T, then v * hy =~ = v*h? implies Ay = ¢y by
Theorem and Corollary and thus in these cases it is irrelevant whether
s/t is irrational or not. Therefore we have to check the necessity only for the
complementary cases. We shall see below that for a fixed p € (0,2), given s > 0,¢ > 0
with s # t and s/t rational, there exist a point ¢ € A(S,) such that s > T,, t > T,
|s —t| > T, and an LP-tempered distribution v which is not an eigendistribution of

A but satisfies v * hY = v = v x h® where ¢ = —(a? + p?).
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Suppose that s/t = m/n where m,n are relatively prime positive integers. Let
co = 2mm/s. We choose ¢; < 0 sufficiently negative such that ¢; +icy € A(S,). It
can be verified in a straightforward way from that s = 2mn/co > T,,,t =
sn/m =2nm/cy > T,, and |s —t| = 2ln—m|1/cy > T,,. We find «, 8 € S, such that
—(a?+p?) = ¢; and —(B%+p?) = c1+icy. This is possible as both ¢y, ¢1+icy € A(S,).

We take ¢ = ¢;. Since —(a? + p?) = ¢; = ¢ we have
Vo * My = Qo = ©q * hy.

We also have

i8C2 2mm

pp=¢€ "pg=E¢€ Y5 = ¥p

_ es(cl +ica—c1)

pp * g
and using t = (n/m)s,

et(A—Cl) itco

¥Yp=¢c

i(n/m)sca i2nm

wp * h = pp = €' g =€ = pp.

It is established that v = ¢, + ¢g then v x hY = v = v * h{ but v is not an
eigendistribution of A.

Lastly, we note that in the hypothesis of Corollary [5.4.4] the condition y * h$ =
v = yxh{ cannot be substituted by y*h? = yxh{. Because by Corollary [5.4.3 when
|s—t| > T, there exists an LP-tempered distribution v which satisfies v+ hY = y*hy
but v is not an eigendistribution of A. For the sake of completion, let us now prove

the corollary.

Proof. As discussed above, it is enough to prove the assertion with the assumption
that t > T,,s > T,. Let & = t/s. Then £ > 0 is an irrational number. We take
0 < e < T, which implies 0 < €¢/s < 1. By Kronecker’s approximation theorem,
there exist n € N, such that 0 < n{ —m < €/s, where m € N is the integer part of
né > 0. Hence 0 < nt —ms < e < T.. Since h{ is a semigroup, it follows from the
hypothesis that f * h?, = f * Al .. The assertion follows from these and Corollary
0.4, 3| O

So far we have not considered L3-tempered distributions, which we shall do now.

First we recall some relevant information.

(i) The space CQ(G//_/7( ) is isomorphic to the space of even Schwartz class func-
tions on R. In particular, for a function ¢ € C2(G//K), ¢ has no complex

analytic extension, in general.
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(ii) The L2-spectrum A(Sy) = (—o0, —p?].
(i) For p =2 and any ¢ € A(Ss), T. = oo (see (5.4.2))).

(iv) Weak L?-functions and functions in H45(X) are L2-tempered distributions

(Proposition [L.5.1] (a), Proposition [1.6.1] (d)).

v) If Au= —p?u for some u € L*>*(X), then u = 0 (see Proposition [1.7.1]).
p
(vi) (14 |z]) " g € L>*(X) and Apy = —p?*py (see Proposition [1.4.1)).

As, (i), (ii) and (iii) suggest that (for p = 2) the situation is close to Euclidean,
in particular the proof of Theorem [5.4.2] which deals with analytic functions on

complex domain will not work in this situation.

Theorem 5.4.5. Let v be an L*-tempered distribution on X and let t > 0 be fized.
Let [ be a measurable function on X. Lett > 0 be fized.

(a) If ey = ey for some ¢ = —(a® + p?) < —p?, then Ay = ¢v.

(b) If v in (a) is a function f € L**(X) and ¢ < —p?, then f = P,F for some
F € L}(K/M).

(¢) If v in (a) is a function f satisfying (1 +|z|)""f € L**(X) and ¢ = —p?,
then f = PoF for some F € L*(K/M).

(d) Ifv in (a) is a function f € H5(X) for 1 <r < oo and c = —p? then f = PyF
for some F' € L"(K/M). If r = 1 and other conditions are same then f = Py

for some signed measure p on K/M.

Proof. As we have seen in the proof of Theorem it is enough to prove (a) under
the assumption that « is radial. The hypothesis can be rewritten as v * h{f = ~.

This implies that v * A, = =, hence

~N= e”t(a2_”\2)/7\ for any n € N.

We take ¢, € CQ(G///\K ). As ¢, are even functions on R, we consider them as
functions on [0,00). Let us first assume o > 0. Suppose that ¢ is supported on

[a+ €,00), and 1) is supported on [0, « — €] for some 0 < € < a.. For n € N, define

Uur(N) = $(N)e" N0 € (G /).
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Then for any n € N,

F,6) = (7, ™) and (7, 9) = (Fe"™ @) oMUY = (5 ).

We note that e **~*)¢ — 0 and 1,; — 0 as n — oo in the topology of CZ(G///T().
Therefore (7, ¢) = 0 and (7,v) = 0. This establishes that 7 is supported on {+a}.
If a = 0, we argue the same way, except that we need to consider only ¢ and
not ¢ above to conclude that 7 is supported on {0}.
From this and since + is radial, we conclude that (see [68, Theorem 6.25]), there

exists a polynomial P such that

~ = P(0\)0x]r=a-

Using injectivity of the spherical Fourier transform we get,

N
Y= E A1Pal,
1=0

for some ay,as,...,ay € C, ay # 0, and N € 2Z for the case a = 0 (as odd
derivatives in A of ¢, is identically 0). Rest of the argument is as the proof of
Theorem : we assume that N > 1, use the hypothesis e!®y = e'®y, i.e. yxh; =
ety equate the coefficients of ©aN—1 if a # 0 and coefficients of ¢, y_o2 if @ =0 in
the both sides, and conclude that ay = 0. Thus v = Cp,, in particular Ay = ¢v.
This completes the proof for radial v and hence of the assertion (a).

Assertions (b), (c), and (d) follow from (a), applying Propositions [1.6.1]
Corollary and Theorem [1.7.2] O

See [47] for other characterization of eigenfunctions with real eigenvalues as the
Poisson transform of L2-function on K /M, arising from Strichartz conjecture ( [75]).

This can be used instead of weak L2-norm to obtain analogous result.

Remark 5.4.6. Following remarks are in order.

(1) If we take ¢ = 0, then ¢ € A(Sy) and ¢ ¢ A(S,) for any other 1 <p < 2. In
this case Theorem m gives back the classical result: f*h, = f for f € L>®(X)
implies that f is harmonic, which we have discussed at the beginning.

(2) We have used the results for the characterization of L”, weak LP-eigenfunctions
or eigenfunctions in the Hardy-type spaces as the Poisson transform (of Lebesgue

functions or measure on K/M). As mentioned above, unlike the Lebesgue spaces
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and Lorentz spaces for 1 < p < oo, the Hardy-type spaces can accommodate eigen-
functions with arbitrary complex eigenvalues. There are other size estimates in the
literature, through which such characterization is possible. See for instance subsec-

tion 4.1 in [51] for a brief survey.
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