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Abstract

In this thesis, we propose a cryptographic technique for an authenticated, end-to-end ver-

ifiable and secret ballot election. Currently, almost all verifiable e-voting systems require

trusted authorities to perform the tallying process except for the DRE-i and DRE-ip sys-

tems. We have shown a weaknesses in the DRE-ip system and proposed a solution. We have

modified the DRE-ip system so that no adversary can create and post a valid ballot on the

public bulletin board without detection. We provide security proofs to prove the security

properties of the proposed scheme. We propose two methods to store these ballots using

blockchain and cloud server. To the best of our knowledge, it is the first end-to-end verifiable

Direct-Recording Electronic (DRE) based e-voting system using blockchain. We introduce

an improved non-interactive zero-knowledge proof (NIZK) that boosts the efficiency of the

system. We propose a method for publishing the final tally without revealing the tally

from individual DRE machines using secure multi-party computation and NIZK proof. The

experimental data obtained from our tests show the protocol’s potential for real-world de-

ployment. We also propose a secure and verifiable voter registration and authentication

mechanism. The proposed system prevents ballot stuffing attack.

We also propose the first self-tallying decentralized e-voting protocol for a ranked-choice

voting system based on Borda count. Our protocol does not need any trusted setup or

tallying authority to compute the tally. The voters interact through a publicly accessible

bulletin board for executing the protocol in a way that is publicly verifiable. Our main pro-

tocol consists of two rounds. In the first round, the voters publish their public keys, and in

the second round they publish their randomized ballots. All voters provide Non-interactive

Zero-Knowledge (NIZK) proofs to show that they have been following the protocol spec-

ification honestly without revealing their secret votes. At the end of the election, anyone

including a third-party observer will be able to compute the tally without needing any tally-

ing authority. We provide security proofs to show that our protocol guarantees the maximum

privacy for each voter. We have implemented our protocol using Ethereum’s blockchain as

a public bulletin board to record voting operations as publicly verifiable transactions. The

experimental data obtained from our tests show the protocol’s potential for the real-world

v



deployment.

We then propose a deniable secret handshake protocol. The notion of deniability ensures

that the transcript generated in an interactive protocol does not yield any evidence of the

interaction. In the context of key-exchange protocols for secure message transmission, the

notion of deniability is well-explored. On the other hand, a secret handshake protocol enables

a group of authorized users to establish a shared secret key and authenticate each other.

Recently, a framework for deniable secret handshake is proposed by Tian et al. in ISPEC

2018. We analyze the protocol, show three flaws and give solutions to prevent them.
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Chapter 1

Introduction

Election is one of the most important process of a democratic government. Conducting a

secure election is also one of the most challenging task as its requirements and constraints

are remarkably strict. The idea of using cryptography in developing secure voting systems

was first suggested by Chaum in 1981 in his highly influential paper [30] on untraceable

electronic mail. Chaum described the possibility of conducting remote election using new

cryptographic primitives. This idea proved to be popular in academic research community,

and several voting systems were appeared in the literature over the next two decades, some

of which resulted in actual prototype solutions [38, 63]. In the last two decades, research

in developing secure electronic voting systems has received significant boost mainly for two

reasons: First, the United States presidential election in 2000 caused much stir and cast

a spotlight on United States voting infrastructures where voters faces much difficulties in

casting their votes due to confusing ballot design and punch card voting machines [90]. This

flurry of national attention led to allocation of a generous amount of funding for research

and development of voting systems [36]. Secondly, several investigations on e-voting systems

have raised the security issues related to both the vote secrecy and the integrity of the

election [84, 61]. There have also been several documented instances of voting machine

malfunctioning during live elections, altering candidate votes, adding and subtracting votes.

This leads to extensive research on e-voting systems.

We now describe the security properties of e-voting systems.
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1.1 Security Properties of Voting systems

In this section, we introduce some security properties of E2E verifiable voting systems. Many

properties are related to each other whereas some other properties are in direct conflict. The

merit of a system depends on what properties it satisfies.

1.1.1 Vote Privacy

The privacy of the vote is a fundamental human right. The reason behind it is that if an

outsider gets to know the voter’s choice, she may intimidate the voter or bribe the voter

to vote in a certain way, ultimately corrupting the election. These fears led to the notion

of secret ballot. Typically, voter privacy is maintained by providing the voter a private

voting booth at the polling station. Her vote is cast in a ballot box and it does not bear

any distinguishing marks. It is then mixed with all other ballots making it very difficult to

determine her vote.

In early research literature, voting systems (for example, [35, 16, 11]) maintained a voter-

ballot linkage by providing a receipt to the voter so that she can trace her vote on the public

bulletin board. However, in 1994, Benaloh et al. [15] raised an issue and pointed out that

this strategy enables a voter to prove how she voted to a third party, and thereby facilitating

vote-buying and coercion. The authors introduced the notion of receipt-freeness. After that,

due to this issue, several voting systems (such as [15, 103]) dispensed the receipt entirely

and focused on integrity and transparency of the tallying process. However, in his highly

influential paper in 2004, Chaum [31] introduced the use of receipt again in the e-voting

system with an important distinction that the contents of the receipt are cryptographycally

masked, and thereby it maintains privacy of the voter.

In 2005, Juels et al. [73] argued that a coercer may yet influence a voter’s choice without

any knowledge of a voter’s choice. The authors mentioned three such way of coercion: a co-

ercer may force the voter to abstain from voting, the coercer may seize her voter credentials,

she may also force her to randomly vote for a candidate. Note that there is a difference

between the receipt-freeness and coercion resistance: in receipt-freeness, it is assumed that

the coercer is restricted to observing the election and the evidence given by a coerced voter.
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However, in coercion resistance, the coercer is more powerful and may even talk to the voter

in some way while she is voting.

Over the few years, the notion of vote privacy has been refined into following important

properties:

• Ballot Secrecy: The voting system must keep the voter’s choice of candidate secret.

• Receipt-freeness: The voting system should not provide any evidence to the voter

so that she can prove to a third party how she voted.

• Coercion-resistance: The voter should be able to cast her vote for her choice of

candidate even when she is appeared to be cooperating with the coercer.

Note that coercion-resistance implies receipt-freeness and receipt-freeness implies ballot-

secrecy.

1.1.2 Vote verifiability

Generally, in real-world elections, the voting machines and the polling stuff need to be

trusted for integrity of the election process. Over the last two decades, the academic research

community attempt to use cryptography to reduce the trustworthiness on the voting machine

and polling personnel for integrity of the election. Sako et al. [118] described the following

two kinds of verifiability.

• Individual verifiability: A voter can verify that her vote has been included in the

set of all cast ballots.

• Universal verifiability: Any observer can verify that all the cast votes has been

correctly tallied.

The notion of E2E verifiable voting systems refers to the following three properties.

• Cast-as-intended: A voter can verify that her choice of candidate has been correctly

marked on the ballot by the voting system.
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• Recorded-as-cast: The voter can verify that her vote has been correctly recorded

by the voting machine.

• Tallied-as-recorded: The voter can verify that her vote has been tallied as recorded.

These three properties can be ensured as follows: first, the voter verify that her vote is

correctly encrypted by the voting machine. She can then verify that her ballot has been

recorded on the bulletin board using her receipt to ensure her vote is recorded as cast. Then

the voter or any observer can verify that the votes are tallied as recorded on the bulletin

board. The voting system also provided proofs of its correct operations.

The above two kinds of verifiability are related to each other. The cast-as-intended and

recorded-as-cast together ensure that they provide individual verifibility. The tallied-as-

recorded property can be carried out by the voter or any observer, and hence it ensures

universal verifiability.

1.1.3 Other important properties

We now describe some other important properties of a voting systems.

• Eligibility verifiability: Any observer of the election can verify that all the cast

votes were cast by an eligible voter.

• Usability: The voter can cast her vote easily and effectively using the voting machine.

• Accessibility: The voting machine should be accessible to all voters including voters

with disabilities, and still provides vote secrecy and verifiability.

• Accountability: If, at any stage of the election, the vote verification fails, the voter

should be able to provide the proof or evidence of that failure to the relevant election

authorities without compromising her ballot secrecy.

• Robustness: The voting machine should be robust i.e. it can provide correct result

even when there are some small degree of malfunction or corruption without disrupting

the election.
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1.1.4 Conflict between different properties and challenges in developing

voting system

There are some properties described above that are in direct conflict with each other. For

example, vote privacy clashes with vote verifiability. If she can prove her candidate of choice

to a third party, she can easily sell her vote and be coerced into voting for adversary’s choice

of candidate. The prevention of this conflict is described in [72]. The vote verifiability may

also clash with usability since vote verifiability may require some extra steps for verifica-

tion, which may be confusing to the voter [77] or make the voting system slightly complex.

Similarly, accessibility may conflict with vote privacy. Providing human assistance or au-

dio/visual aids to the voter with disabilities may disclose her vote to a third party. In case

of internet voting, where voter casts her vote over the internet from her home, the voter is

vulnerable to coercion and her ballot secrecy is not guaranteed.

Keeping such conflicts in mind, the researchers provide several technological remedies

in their proposed voting systems. We now briefly describe some of the well-known voting

systems proposed in the literature.

1.2 Some well-known voting systems

In this section, we briefly describe some of the well-known voting systems in the literature.

These systems are categorised depending on cryptographic versus non-cryptographic ballots,

and their ballot format, for physical ballots (i.e. paper based) versus electronic ballots, and

their mode of deployment, for precinct-based voting (i.e. polling station based) as opposed

to remote voting (i.e. internet voting).

1.2.1 Precinct-based voting with paper ballot

This category of voting systems consists of polling station based voting using paper ballots.

The tally is computed from the paper ballots containing the voter’s choice. These systems

are descendent from Votegrity [31], and some of these systems are Scantegrity [33], Prêt à

Voter [116].
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1.2.1.1 Votegrity

Votegrity [31] was the first E2E verifiable e-voting system. It was proposed by Chaum in

2004. It uses visual cryptography for the vote verification process. In Votegrity, an image is

split into two shares using visual cryptography, such that individual shares do not yield any

information about the original image and seems randomly generated. However, when two

shares are super-imposed the original image is reconstructed. Vote processing is performed

by a group of trusted authorities using decryption mixnet, invented by Chaum [30]. A

system’s security will be compromised only if all the trustees collude with each other.

On the election day, Alice goes to a polling station to cast her vote. She enters her

choice of candidate on the voting machine. A printer prints pattern corresponding to her

vote on two strips using visual cryptography. Her candidate choice is clearly visible when

these strips are superimposed under a custom viewfinder. These two strips are generated

using a pseudorandom function using a deterministic manner so that it appears random to

an observer. The machine also prints some validating information and serial number on

both the receipts. Alice chooses any one of the strips as her receipt and takes it home. The

voting machine provides the chosen strips to the voter and shreds the other receipt. The

machine saves a digital copy of the chosen receipt.

At the end of the voting phase, the machine publishes all the saved receipts on a public

bulletin board. The voter can check that her receipt is correctly published on the bulletin

board. If her chosen receipt does not match with those on the bulletin board, she can raise

an issue with the election authority.

Although the receipts appear random, the printed information are digital encoding of

data that enables the system to reconstruct both the receipts, and hence the vote itself.

First the serial number is being detached from the saved receipt and then it is then passed

through a set of decryption mixnet [30] servers and finally shows the vote without revealing

any correspondence between the voter and her vote. The mixnet also publishes the proof of

correct stuffing. Then any observer can compute the tally by observing these votes.

Votegrity is E2E verifiable and has proved to be immensely influential in literature.

Several voting systems that followed Votegrity uses the same receipt and mixnet concepts,
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such as Scantegrity [33], Prêt à Voter [116], which are deployed in real-world elections.

Punchscan [49] and Scratch & vote [3] also takes inspiration from Votegrity and improve the

system.

1.2.2 Precinct-based voting with electronic ballot

In this category of systems, voters cast their electronic votes in a polling station. These sys-

tems use various cryptographic primitives. Some highly influential systems in this category

are MarkPledge [101] and the notion of Voter Initiated Auditing. Here we briefly discuss

the notion Voter Initiated Auditing.

1.2.2.1 Voter Initiated Auditing:

For most of the voting systems mentioned earlier, random checks are performed to check

the security of the systems. There is no explicit guarantee that a voter’s vote is correctly

encrypted by the machine. For some systems such as Punchscan and Scantegrity that

use paper ballots, the voter has no explicit assurance that the candidate randomization or

marking options are encoded correctly. Instead, he gets that assurance from random audits

conducted by multiple trustees. With these random verification, the voter can be assured

that any significant changes will be detected. In 2006, Benaloh introduced the notion of

Voter Initiated Auditing. In this system, the voter gets immediate assurance that her vote

has been corrected cast.

In this paradigm, when a voter chooses her candidate on the voting machine, the machine

encrypts her vote and provides a printed receipt consisting that encryption to the voter. The

machine then gives the voter an option to either audit (i.e. challenge) or cast her vote. If

she wishes to audit the vote (i.e. challenge the machine), the machine provides her another

receipt containing her choice of candidate, the encrypted data and the randomness used

to generate the encryption. With this information, the voter or anyone can regenerate the

encryption to verify that the machine has correctly encrypted her vote. On the other hand, if

she trust on the machine, she casts her voter. The machine then provides her a confirmation

receipt.

The main difference here with other voting systems is that the machine first commits
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to the encryption of the vote by printing it on a receipt before asking the voter whether to

audit or cast her vote. If she wishes to audit, she can verify that the machine has correctly

encrypted her vote. The voter can audit her vote as many times as she wishes before finally

casting her vote. If the machine encrypts a vote for different candidate, the possibility that

it will be detected increase with every audit performed by a voter. This technique ensures

E2E verifiability.

Voter Initiated Auditing was not proposed as a new voting system, but as a vote casting

procedure than can be augmented to existing voting systems to ensure E2E verifiability.

Several well-known voting systems, such as Helios [1], VoteBox [119], Star-Vote [13] and

DRE-ip [123], follow similar paradigm. Some other precinct based electronic voting systems

are Bingo Voting [18], Wombat [9], DRE-i [59].

1.2.3 Remote voting over the Internet

Using this category of systems, a voter can cast her electronic vote over the Internet. Some of

the prominent E2E verifiable voting machines in this category are JCJ/Civitas [73], Helios

[1]. Some other well-known E2E verifiable remote voting systems are Adder [80], Pretty

Good Democracy [117] and Remotegrity [147]. As discussed earlier in section 1.1.4, remote

systems are vulnerable to coercion and the ballot secrecy is not guaranteed, and it restricts

the use of remote voting systems in large scale elections.

1.2.4 Non-cryptographic verifiable voting systems

There are some voting systems that provides E2E verifiability without using cryptography.

For instance, ThreeBallot [127], Twin and Aperio [47] voting systems ensures E2E verifiabil-

ity in a polling station based paper ballot format. These systems have provided some new

insights about the E2E voting systems.

1.3 Motivation of our work

This dissertation contributes to teaching, practice and the theory of cryptographic E2E

verifiable e-voting systems using zero-knowledge proofs and blockchain. We also contribute
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to the deniability of secret handshake protocols and discuss its usability in the e-voting

systems. This thesis is based on the papers [109, 108, 106, 107].

1.3.1 Precinct-based Plurality Voting

In chapter 3, we propose a precinct-based E2E verifiable plurality voting system. This

chapter is based on the papers [109, 108]. In a precinct-based voting system, each voter

should receive assurance that her vote is cast as intended, recorded as cast and tallied as

recorded. By contrast, in traditional paper-based voting system, a voter cannot verify how

her vote is recorded and tallied in the voting process. As with traditional elections, voters go

to their polling station, prove their eligibility for casting votes by presenting their identity

card. The voter is given a token [84] that allows her to cast vote for her candidates of

choice. Therefore, the system depends on trustworthy individual at the polling stations, thus

leading to the introduction of automated paperless secure e-voting system. In this paper, we

propose a secure authenticated DRE based E2E verifiable e-voting system without tallying

authorities.

Hao et al. proposed a voting system, called DRE-i (DRE with integrity) [59], to

achieve E2E verifiability without involving any tallying authorities (TAs). However, the

pre-computation strategy requires that the pre-computed data is securely stored and ac-

cessed during the voting phase. This introduces the possibility for an adversary to break

into the secure storage module and compromise the privacy of all ballots. To overcome

this issue, Shahandashti et al. provided a voting system, called DRE-ip [123] (DRE-i with

enhanced privacy). DRE-ip achieves E2E verifiability without TAs and simultaneously a

significantly stronger privacy guarantee than DRE-i. However, both DRE-i and DRE-ip

systems necessitate the requirement of a secure append-only public bulletin board (BB). If

the BB or the voting machine or the private key of the signature is compromised, an attacker

can change some ballots and add additional ballots as well in such a way that it cannot be

detected by the DRE-ip tally verification algorithm. The private key of the signature might

be compromised at the setup stage.

In his PhD thesis, Benaloh [11] assumes BBs with a secure append-only write operations,

also stressing out that "implementing such bulletin boards may be problem unto itself".
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Although the assumption that the BB is a trusted centralized entity is common in the

literature, the importance of removing the BB as a single point of failure has been extensively

discussed in the recent works of Culnane and Schneider [40], Chondros et al. [34] and Kiayias

et al. [81]. In [81], Kiayias et al. show a weakness of the bulletin board proposed in [40]

and improve the system. However, in [81], for n peers, the minimum number of honest item

collection peers that receive and store submitted items must be greater than 2n/3 to ensure

correct behavior of their bulletin board design. In [86], Küsters et al. raise awareness of an

attack, which they call a clash attack, on the verifiability of some of the well-known e-voting

systems (for example, ThreeBallot and VAV voting systems [127], a variant of the Helios

voting system [1] and the Wombat Voting system [9]). Küsters et al. show that, if the voting

machine and the bulletin board collaborate, a bulletin board can replace some ballots by its

choice so that it cannot be detected. In [14], Benaloh et al. describe their Trash attack on

some well-known verifiable e-voting systems if the bulletin board is compromised.

Instead of assuming a secure append-only public bulletin board, we have modified the

DRE-ip algorithm to make it tamper-evident and proposed two methods (depending on

how the election is arranged) to store the ballots. We have measured the costs in terms

of Ethereum Gas (and US dollars) to verify and store each ballot on Ethereum blockchain

[142]. In this case, all the ballots and public keys of the system remain tamper-resistant. This

system prevents coercion even when voters are willing to be influenced. For example, voters

may collude with an adversary to vote in favour of adversary’s choice of candidate and may

intend to prove their choice of vote after the voting process. Our proposed system uses the

exponential ElGamal cryptosystem to encrypt a vote. The system generates two distinct

generators of the group whose logarithmic relationship is unknown. The system securely

deletes the random variable and the vote (‘confirmed’ vote) for each voter. Consequently, the

voter cannot prove her choice of candidate to the adversary. Thus, this kind of voter coercion

can be avoided. In addition, since each DRE machine normally covers voting process for

small regions, revealing the tally from each DRE machines discloses the voter’s distribution

in small regions. This is also a breach of voter’s privacy to some extent. Disclosure of voter’s

distribution may impact the financial investments, development and social security of those

small regions. We apply a secure multi-party computation method with non-interactive
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zero-knowledge (NIZK) proof to compute the final tally correctly while keeping the tally

from each DRE machine secret.

We also propose a novel method for voter registration and authentication in a verifiable

manner using Fuzzy Vault algorithm [99]. As opposed to the traditional biometric based

authentication systems, we do not store the biometric template (fingerprint) of individual

voters. There are some privacy and security advantage of our proposed voter registration and

authentication system. First, we store a biometrically encrypted key corresponding to an

individual voter from which neither the biometric nor the key can be retrieved. The secret

key itself is independent of the biometric and can be changed or modified. Secondly, we

do not rely on fingerprint alone for authentication since people leave fingerprint everywhere

inadvertently. In addition, there may be Mafia-owned businesses that collect fingerprint data

in large quantities if there is any exploit path. Thirdly, we present a two factor authentication

scheme relying on fingerprint of the voter and a smart card (containing a secret key) given

to the voter. Fourthly, our scheme is publicly verifiable. We show that the correctness of

our system is verifiable by the public. As a result, the system thwarts ballot stuffing attack.

1.3.2 Internet-based Borda Count Voting

In chapter 4, we propose an internet-based verifiable Borda Count voting system. This

chapter is based on the paper [106]. In a Borda count voting system, the voters cast their

vote by ranking the candidates according to the order of preference. Each candidate obtains

some points according to her position in the ranking done by a particular voter. In the end

all the points obtained by her from all the voters are summed up and on the basis of this

sum the winner is selected. For example, the least preferred candidate may get 0 point, the

next one may get 1 point and so on. The Borda count voting system has been employed

in the elections in Nauru [114], Slovenia [51] and in Kiribati [114]. In Ireland, a modified

version of the Borda count system has been used by the Green party to elect its president

[46]. Unlike the plurality voting system, the Borda count systems are designed to gather

more information from the voter regarding her predilection toward more than one candidate.

Borda count voting using traditional paper ballot is not only time consuming, but also

prone to human errors. Hence, there is a desirable need to advance toward using an electronic
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voting system. However, with the advent of e-voting systems comes the need to ensure

privacy and integrity of the voting system. An electronic system can be vulnerable to

several attacks like intrusion, software alteration/modification, eavesdropping etc.

The lack of assurance on the integrity of e-voting systems has encouraged researchers

to devise e-voting systems that provide end-to-end verifiability and that are proven to be

secure. The research on end-to-end verifiable e-voting systems started with the pioneering

work by Chaum [31]. Chaum’s scheme uses visual cryptography to protect the privacy of

voters. Every voter is issued with two strips of paper corresponding to a vote. Each one of

the two strips does not divulge any secret on their own. When the two strips are superposed

on one another under a custom viewfinder, the vote is revealed. The voter retains one strip

and the other one is digitized before getting destroyed. Once the polling station voting has

finished, all the saved voter receipts are published on the bulletin board, so that the voters

can verify that their ballots are not discarded. This work first highlighted the notion of end-

to-end verifiability in voting. A voting system is called end-to-end verifiable if it ensures

that 1) every vote is cast as intended, 2) every vote is recorded as cast, and 3) every vote

is tallied as recorded. Some other notable research works in this area are MarkPledge [101],

Prêt à Voter [116], Punchscan [49], Scantegrity [29], Scantegrity II [32], Scratch & Vote

[3], STAR-Vote [13], Adder [80], and Helios [1]. These systems use either mix-net [31] or

homomorphic encryption [2], but they all involve a set of trustworthy tallying authorities

(TAs) to perform the decryption and tallying process in a publicly verifiable way.

A major difficulty of implementing the above schemes is to find and manage a set of

trustees who perform complex cryptographic operations as tallying authorities. Threshold

control schemes can be applied to distribute the trust among TAs. Nonetheless, if a sufficient

number of trustees collude, they can trivially breach the privacy of the e-voting system.

Hao, Ryan and Zielińksi proposed a decentralized online voting scheme in [60]. This

scheme allows a finite number of voters to conduct voting without requiring the help of any

tallying authorities. This scheme is called Open-Vote network (OV-net). OV-Net consists

of two rounds. In the first round each voter publishes her public key on the public bulletin

board. In the second round each voter publishes her randomized ballot that is generated

using the public keys of other voters, the secret key of that voter and her secret vote. Once
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all the encrypted ballots are available on the bulletin board, anyone can easily calculate the

tally from them. This scheme relies on non-interactive zero-knowledge proofs for proving

the well-formedness of each ciphertext. The scheme offers the maximum possible privacy

guarantee as each voter learns nothing more than the tally and their own vote. A public

observer learns nothing more than the tally from the bulletin board.

The OV-Net scheme is designed to support plurality voting where every voter gets to

vote for a single candidate. In this paper, we propose a decentralized Borda count e-voting

scheme by extending OV-Net to support ranking-based voting. Similar to the OV-Net

scheme, our Borda count scheme also has two rounds. In the first round, the voters publish

their public keys, and in second round they publish their encrypted ballots under a public

key re-constructed by combining every other voter’s public keys. Each encrypted ballot

comes with a Non-interactive Zero-Knowledge (NIZK) proof to prove the well-formedness

of the ballot. Once all the voters submit their ballots, the tally can be computed from

the published information available on the bulletin board. Anyone can compute the tally

and verify the correctness of all operations with the help of the NIZK proofs. Our scheme

offers strong privacy guarantee. A probabilistic polynomial time adversary learns nothing

other than the tally and whatever she can interpret from the tally. We have implemented the

Borda count e-voting scheme on Ethereum’s [142] platform and have evaluated the efficiency

of our scheme.

1.3.3 Deniable secret handshake protocol

In chapter 5, we propose a deniable secret handshake protocol. This chapter is based on

the paper [107]. Privacy concerns in modern day electronic communications triggers the

need of examining familiar security services such as authentication and key agreement. The

paramount importance of protecting user’s security and privacy, especially when two users

want to communicate between themselves in a hostile network condition, initiated the study

of secret handshake protocols. Consider the situation when two parties A and B want to

identify each other as member of a secret agency and then communicate. However, the

situation is really hostile and they do not know each other. Consequently, A wants to make

sure that if B is not a member of the group then he will learn nothing about A′s identity
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once the protocol is run. If only B is a member of the group then he can identify A as

a member of the group, otherwise not. In a secret handshake protocol there is a central

authority (CA) who creates a group of authorized users and is responsible for generating

keys, certificates etc. for the users. Due to the deniability property, this deniable secret

handshake protocol could be used as a coercion resistant internet-based voting system. We

mention that this could be a potential future work.

14



Chapter 2

Background

Protocols for secure E2E verifiable e-voting systems rely on various cryptographic primitives

or building blocks. In this chapter, we review those cryptographic primitives. We first review

zero-knowledge proofs, a component used for E2E verifiable e-voting. We then discuss the

mixnet protocol, another component of universal verifiable voting. We also discuss secure-

multi party computation protocol. Then we briefly describe blockchain. Finally, we discuss

biometric encryption protocols that will be required for registration and authentication of a

voter using her biometric.

Over the years, researchers in the field of e-voting literature use various public key

cryptosystems to make their system secure and verifiable. A comprehensive review of various

public key cryptosystems and their security properties could be found in the book by Stinson

[130]. We use ElGamal encryption and its variation in our proposed e-voting systems.

2.1 Zero-knowledge proof

In many verifiable e-voting systems, zero-knowledge proof has been used as a component

to perform the verification process. Using a zero-knowledge proof paradigm, a prover P

communicates with a verifier V to prove that an assertion is true without revealing its

secret. If the prover possesses the secret information and the assertion is valid, then the

verifier should accept this proof. However, if the assertion is invalid and the prover does

not posses the secret information i.e. the prover is dishonest, then the verifier should reject

this proof with noticeably high probability. In the end, after verifying the proof, the verifier

should not learn anything more than the truth of the assertion. In other words, no matter
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what knowledge the verifier gains after executing the protocol, it could have got the same

knowledge without interacting with the prover. Thus, although the verifier can verify the

validity of the proof while interacting with the prover, it can not gain any new information

and, in particular, he can not turn around and regenerate the proof on his own.

Using Zero-knowledge proof protocol, a prover proves an assertion of the form ‘x is in

language L’ to a verifier, where x is a string and L is a language, generally an NP language.

The inputs to the prover are x and an witness w for x such that RL(x,w) = 1. The verifier

is only given x as input. The protocol is zero-knowledge if, after execution of the protocol,

the verifier knows nothing about the witness w, except what it can deduce from the input

x.

The definition of a perfect zero-knowledge proof is given below.

Perfect zero-knowledge proof: An interactive proof system < P, V > for language L is

said to be a perfect zero-knowledge proof if there exists a negligible function η(.) such that

the following three properties hold:

• Completeness: ∀x ∈ L, P r[OUTCOMEV (< P (x,w) >, V (x)) = 1] > 1− η(k), where

OUTCOMEV (< P (x,w) >, V (x)) = 1 means that output of the verifier V is success

(i.e. the assertion is true) after execution of the protocol between the prover P and

the verifier V . The prover P takes x and the corresponding witness w as input. The

verifier V only gets x as input.

• Soundness: For any prover P ∗ (other than P ) that does not know the witness w,

∀x /∈ L, P r[OUTCOMEV (< P ∗(x) >, V (x)) = 1] < η(k)

• Zero-knowledgeness: There exists a probabilistic polynomial time simulator S such

that for all verifier V ∗, ∀x ∈ L, S(x) = V IEWV ∗ < P (x,w), V ∗(x) >, where V IEWV ∗ <

P (x,w), V ∗(x) > is a record of the interactions between the prover P and the verifier

V ∗.

2.1.1 Variants of zero-knowledge:

There are some variants of zero-knowledge exist in the literature.
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• Statistical zero-knowledge: A protocol is called statistical zero-knowledge if the dis-

tributions produced by the simulator S and the proof protocol < P (x,w), V ∗ > are

statistically close i.e. the statistical difference between the two distributions is a neg-

ligible function.

• Computational zero-knowledge: A protocol is called computational zero-knowledge

if no efficient algorithm can distinguish between the distributions produced by the

simulator S and the proof protocol < P (x,w), V ∗ >. In this paradigm, the verifier

V and V ∗ are assumed to be probabilistic polynomial time. However, a surprisingly

powerful verifier V ∗ or V might be able to extract some more knowledge (about the

witness w) from the execution of a computational zero-knowledge protocol than the

simulator S.

• Zero-knowledge argument: The prover P is assumed to be probabilistic polynomial

time on the security parameter k. However, the prover may spend significant amount

of time preparing the execution of the protocol.

• Honest-verifier zero-knowledge: The verifier V is expected to be honest (i.e. TO follow

the protocol correctly) during execution of the protocol. In particular, according to

the zero-knowledge proof protocol, the verifier is expected to send a random challenge

to the prover. An honest verifier will always choose a random challenge and will not

choose it depending on the prover’s messages. In honest-verifier zero-knowledge proof

protocol, the simulator simulates the transcript of the interactions between the prover

and the verifier rather than simulating anything that the verifier could output. An

interactive honest-verifier zero-knowledge proof can be made non-interactive by using

Fiat-Shamir heuristics. In Fiat-Shamir heuristics, the verifier generates the random

challenge by using the hash of the previous messages generated during the execution

of the protocol. This hash function is modeled as a random oracle.

Generally in a verifiable voting system, zero-knowledge proofs are used to prove that

the voting system follows its actions correctly in a verifiable manner without revealing the

secret vote and the randomness used to generate the encryption.
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2.2 Blockchain

Since the invention of Bitcoin, research on bitcoin [98] and blockchain has become a thriving

field. One other blockchain that has become highly influential in research community is

Ethereum [142]. In this section, we briefly describe the Blockchain. Blockchain uses its

peer-to-peer network to accept and store the transactions in a decentralized fashion. The

network stores the transactions by hashing the into the ongoing blockchain. While adding

a transactions into the blockchain, it uses a hash-based proof-of-work mechanism to form a

record that can not be changes without redoing the proof-of-work. The longest chain in the

blockchain network serves as the proof of sequence of events witnessed. As long as majority

of the CPU power in the network is controlled by the honest nodes, they will generate

the longest chain outpacing the dishonest nodes. In a blockchain’s network, messages are

broadcast, nodes can leave or rejoin the network at their will, accepting the longest chain

as a proof of what happened while they were gone.

• Transaction: Each transaction bears the digital signature of its owner. Transactions

are broadcast and all the nodes agree to accept the longest chain of blocks as the

current record of the blockchain. Transactions are stored in the order in which they

were received into the blockchain. The structure of a transaction is defined by the

corresponding blockchain.

• Blocks and hashing: A block may contain several transactions arranged in a Merkle

tree fashion. The transactions are hashed into a Merkle tree and only the root of the

tree is included in the block’s hash. A cryptographic collision resistant hash function is

used to take hash of the block and published widely. Each hash includes the previous

hash in its hash to form a chain with each additional hash reinforcing the previous

one, and hence any modification in the chain will be detected by checking the hash

values. Each node checks the hashes of all blocks in the blockchain and accept the

longest chain whose hashes match correctly. The network avoids double inclusion of

the same transaction or block that has already been added earlier.

• Proof-of-work: A proof-of-work is a computationally expensive task that will be
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performed by a miner to include a transaction or a block into the blockchain. As the

blocks are added one after the another into the blockchain after performing proof-of-

work and the previous hashes are included into the current block, to modify a prior

block in the blockchain, an attacker has to redo the proof-of-work computation for that

block as well as all the blocks after it in the blockchain so that it can readjust all the

hashes in the blockchain from that block. The exact proof-of-work algorithm depends

on the corresponding blockchain. In Bitcoin, the proof-of-work system is similar to

Adam Back’s hashcash [4]. The proof-of-work involves searching for a value that when

hashed begins with a predefined number of zero bits. Therefore, to perform this task,

the average work to be done is exponential with the number of predefined zero bits;

however, it can be verified performing only a single hash computation. In Bitcoin,

this proof-of-work is performed by incrementing a nonce in the block until a value is

found such that the block’s hash begins with the required number of zero bits. Once a

block is appended into the blockchain after performing this proof-of-work, it cannot be

changed without redoing the proof-of-work. As new blocks are appended one after the

another into the blockchain, modifying a block requires to perform the proof-of-work

task again for that block as well as all the blocks appended after it in the blockchain.

• Network: The network is similar to Bitcoin’s peer-to-peer network [98].

2.3 Mixnet

Consider a set of messages sent by various senders who wish to shuffle the messages without

reveling the secret permutation. This functionality was first introduced by Chaum [30] in

1981 and called the protocol as mixnets. Since then, several mixnet protocols are proposed

in the literature based on different definitions and constructions. These mixnets can be

classified into two types: heuristics-based mixnets and robust mixnets.

In heuristics-based mixnets, the shuffling is usually done for low latency applications and

executed almost synchronously, for instance, web browsing. This kind of mixnet protocols

maintain some level of privacy; however, some mixnet servers may be dropped or corrupt

messages, although the impact of this may be not serious. In this case, a different set of
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mixnet server can be used to perform proper mixing.

In robust mixnets, the requirements are very strict such as inputs messages can not be

modified or dropped. These mixnets can be used in applications like voting. The shuffling

may take significant time like hours or even a day since the mixing is done in large batches.

The privacy of the shuffled permutation should also be preserved and should be provably

secure and protected.

Over the years, various mixnet protocols have been proposed. Some interesting attacks

have been discovered and fascinating technique proposed to improve efficiency. Figure 2.1

depicts a mixnet diagram.

Figure 2.1: An example of mixnet with N messages and l mixnet server. Ri represents
the i-th message. The encryption function is denoted by E. Mk are mixnet servers ∀k ∈
{1, 2, ..., l}. Ck−1,j ,∀j ∈ {1, 2, ..., N} are the inputs to the mixnet Mk, and its outputs are
Ck,j , ∀j ∈ {1, 2, ..., N}.The last mixnet server’s output (s1, s2, ..., sN ) is a permutation of
(R1, R2, ..., RN ).
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2.3.1 Categorization of mixnets based on security provided

For mixnets that provide proof of correctness, two important security properties needs to be

considered: privacy and soundness of the protocol. The mixnets provide interactive proofs

that it performs the permutation correctly.

Privacy: In a mixnet, it is assumed that the adversary is computationally bounded.

Since the inputs to the mixnets and its outputs are ciphertexts, a computationally un-

bounded adversary can decrypt the messages and get the corresponding permutation. Sev-

eral mixnets are proposed in the literature with different levels of privacy.

• In some mixnets, all input to output permutations are possible and the permutations

remains secret to a computationally bounded adversary. If, from some other sources,

some correspondence of a permutation are revealed, it does not leak any additional

information about the rest of the correspondence of the permutation. Clearly, these

types of mixnets are more interesting than other types of mixnets.

• In some mixnets, although any input can go to any output, some permutations are

not possible. If, from some other sources, some correspondence of a permutation are

revealed, it may leak some additional information about the rest of the correspondence

of the permutation.

• Some mixnets provides the proofs of their permutation in such a way that the proof

itself narrows down the possible permutation.

Soundness: The soundness property proves that under what condition a mixnet server

can cheat the proof protocol. Different mixnet protocol provides different levels of soundness.

There are mainly three different types of mixnets based on the soundness property.

• Some mixnet protocols provide overwhelming soundness property i.e. even a compu-

tationally unbounded adversary has a negligible chance to cheat the proof protocol.

Clearly, this kind of mixnet protocols are more interesting.

• In some mixnet protocols, a computationally bounded adversary has a negligible

chance to cheat the proof protocol. This kind of mixnet protocols are used in many
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practical purposes.

• In some mixnet protocols, a prover has a small but not negligible chance to cheat the

proof protocol and provide a seemingly correct suffle.

2.3.2 The public bulletin board

Most verifiable robust mixnet protocols use a public bulletin board (BB) so that the public

can check the proof protocol to verify its correctness. All the entries of the mixnet servers

are posted on this public bulletin board. There are several algorithms for implementation

of a public BB proposed in the literature. For instance, In [81], Kiayias et al. propose a

public bulletin board. However, in [81], for n peers, the minimum number of honest nodes

must be greater than 2n/3 to ensure correct behavior of their bulletin board protocol.

2.3.3 Early Mixnets:

Chaum first introduced the mixnet protocol in 1981 in his highly influential paper on un-

traceable electronic mail [30]. Chaum used RSA encryption (i.e. RSA onions) with random

padding. Let us assume that there are l number of mixnet servers. Let us denote the i-th

mixnet server as Mi, its public key as pki and the corresponding secret key as ski. Let the

random number used for the j-th message mj and the k-th mixnet server be rk,j . All the

public keys of the mixnet servers are announced publicly. For the j-th messagemj , the input

to the first mixnet server will be of the form C0,j = E(r1,j , E(r2,j , E(r3,j , ...E(rl,j ,mj)....))).

After receiving the input from the (i− 1)-th mixnet server, the i-th mixnet server decrypts

outer layer of the input ciphertext (onion) using her secret key ski and removes the random

padding ri,j . It then outputs the reduced onions in lexicographic order.

Attacks on Chaum’s mixnets: Pfitzmann and Pfitzmann analyzed this Chaum’s

mixnet and showed a potential attack on it. They use the multiplicative homomorphic

property of the RSA and the randomness of the padding [112] to attack the mixnet protocol.

They also provide possible countermeasure to prevent that attack.

In 1993, Park et al. [110] proposed the first reencryption mixnet protocol. In reencryp-

tion mixnets, each mixnet server rerandomizes the ciphertexts with fresh random values that

get combined with the existing random values. The authors used ElGamal cryptosystem in
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their proposed mixnet protocol.

2.3.4 Universally verifiable cryptosystems

In 1990, Sako and Kilian [118] proposed a new kind of mixnet protocol with a new property,

called universally verifiable mixnet. The proof of correct shuffling provided by the mixnets

can be verifiable by the public or any observer of the protocol. Since the generation of the

proof for the correct shuffling takes a significant amount of time, the efficiency of this mixnet

protocol decreased. Generally, these kind of universally verifiable mixnet protocols publishes

all its inputs, outputs and the proof of correct shuffling on a public BB so that anyone can

verify the correctness shuffling. Neff [100] proposed a universally verifiable mixnet protocol

that requires 8N exponentiations (not counting bulk modexp optimisations).

To preserve the privacy and the integrity of the system, it is assumed that not all mixnet

servers cooperate with the adversary. This means that, to preserve the privacy and the

integrity, at least one mixnet server must be honest who does not reveal its secret key and

the random permutation to the adversary.

2.4 Secure multi-party computation

In 1986, Yao [144] proposed garbled circuit representation to perform any secure multi-party

computation. In this method, decomposition of the computation is performed bit-by-bit

basis using several gates. Although Yao’s protocol can compute any multi-party computation

securely preserving the secrecy of their input, it is inefficient in practice. In 1987, Goldreich

et al. [53] proposed the GMW protocol to perform secure multi-party computation with

honest majority. Ben-Or et al. [10] proposed a secure multi-party computation protocol,

called BWG protocol. BWG protocol defines how to compute addition and multiplication

on secret shares and is often used with Shamir secret sharing schemes. A comprehensive

study on secure multi-party computation can be found in [54].

2.5 Biometric Encryption

Biometric technologies add a new level of authentication to various applications; however,

there are always risks and challenges related to privacy and security of the biometric. Some
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of technical challenges in biometric authentication algorithms include accuracy, reliability

and security of the biometric. The main privacy and security risk related to the biometric

technologies is creating a digital artifact of the biometric from the stored biometric template

data in such a way that I will match with the original biometric data, called masquerade

attack. Some other security and privacy risks include spoofing attack, replay attack, over-

writing YES/NO result attack, tempering attack, Trojan horse attack, substitution attack,

misuse of the biometric image (data theft), unauthorised secondary uses of the biometric etc.

These kinds of risks limits the uses of biometric technologies in practical applications. Bio-

metric encryption technologies can enhance both the security and privacy of the biometric

data.

In 1996, Tomko et al. [134] first introduced the the concept of biometric encryption. A

comprehensive review of biometric encryption technologies can be found in papers [67, 137,

26, 27].

Biometric encryption is a technique that either binds a randomly generated key with the

biometric or generates a key from the biometric. The resulting data is called biometrically

encrypted key or biometrically encrypted data. This biometrically encrypted key is then

stored. This key can be regenerated only when a correct fresh biomtric is presented. These

algorithms are fuzzy in nature since the biometric image may slightly vary each time. The

major challenges in developing a biometric encryption algorithm is that how to generate the

same key on verification even if the biometric sample may be slightly different each time.

After a successful verification, the key can be regenerated from the biometrically encrypted

key, and then it can be used in other cryptographic algorithms or as a password. Biometric

encryption can be done in two methods: key binding with biometric and key generation

from biomtric. Some biometric encryption is designed to work on both the methods. For

instance, the Fuzzy Vault [99] and Fuzzy commitment [76] works on both the key binding

and key generation mode.

In key binding method, a randomly generated key is securely bound to the biometric.

The resulting biometrically encrypted data is then stored from which neither the biometric

nor the key can be derived. The random number is generated by algorithm on enrollment

in such a way that neither the user nor anybody knows it. This random number is different
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on every different enrollment process and is independent of the biometric. At the end of the

enrollment, both the random number and the biomentric are securely deleted. On verifica-

tion process, a fresh biometric is presented which when applied on a legitimate biometrically

encrypted key (or biometrically encrypted data), the same random number which was used

during enrollment will be regenerated. The biometric encryption algorithm is designed in

such a way that it can work on an acceptable variety of the fresh biometric image during

verification process. At the end of the verification process, the biometric template is dis-

carded again. The generated key can then be used in other cryptographic algorithms, or it

can be used as a password.

In key generation method, a key is generated from the biometric during enrollment. This

key is then stored. At the end of the enrollment, the biometric template is securely deleted.

On verification, when a fresh biometric is presented, the algorithm will generate the same

enrolled biometric template from the stored key.

Most of the biometric encryption algorithms use a suitable Error Correcting Code (ECC).

Error Correcting Codes are used in applications where error can occur such as communication

and data storage. For example, a binary block ECC, denoted by (n, k, d), encodes k bit

data in n bit data (where n > k) by adding some redundancy in it. k is the length of the

key. These n bit strings are called codewords. The distance (generally Hamming distance)

between any two codewords must be greater than or equal to k. This ECC can correct up to

(d−1)/2 bits among n bits. On verification, if the fresh biometric is taken from a legitimate

user, the number of error bits will be within the ECC bound and the original codeword will

be generated. For an imposter, it is highly likely that the number of error bits will be out

of ECC bound and the original key will not be recovered.

Some biometric system applies a non-invertible transformation in the middle to improve

their security of their system. This transformation is kept secret.

Some advantages of the biometric encryption based systems are:

• Unlike conventional biometric systems, in biometric encryption systems, the biometric

images need not be stored, and it can not be retrieved from the saved biometrically

encrypted data.
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• For different applications, the biometrically encrypted data can be different for the

same biometric. The biometrically encrypted data can be revoked or modified.

• Different biometric encrypted data for the same biometric can not be linked.

• After successful verification, the generated key can be used in cryptographic algorithms

or as a password.

• These systems provide stronger security than the conventional biometric systems by

binding the key with the biometric.

• These systems thwarts Trojon horse attack, overriding YES/NO result attack, substi-

tution attack and lessen the possibility of masquerade attack.

These advantages of the biometric encryption systems makes it attractive in biometric

based authentication systems as well as cryptographically secure authentication applications.

Some of the well known biometric encryption systems proposed in the literature are Mytec1

[134], Mytec2 [129], Fuzzy Vault [99], Fuzzy commitment [76] etc.

2.6 Related work

We now focus on the related works done in literature.

2.6.1 Precinct-based Plurality Voting

There has been extensive research on e-voting system over the past two decades. Researchers

have proposed a number of E2E verifiable schemes and some of these are used in practice.

Notable E2E e-voting system include Votegrity [31] (proposed by Chaum), Markpledge

[101], Prêt à Voter [116], STAR-Vote [13], Punchscan [49], Scratch & vote [3], Scantegrity ,

Scantegrity II [33], Helios [1], Bingo Voting [18], Wombat [9], DRE-i [59], DRE-ip [123]. A

review of these systems can be found in [61]. Many other schemes follow similar approaches,

in particular, a variant of Prêt à Voter, vVote, has been used in 2014 state election in Victoria,

Australia [39]. Scantegrity [33] was trialled in local elections in Takoma Park, Maryland,

USA [24]. Helios [1] was used to elect Universitè catholique de Louvain in 2009 and it has

been used in universities and associations (IACR and ACM). Other schemes that have been
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used in internal university or party elections include Punchscan [49], Bingo Voting [18],

Wombat [9] and DRE-i [59]. However, almost all DRE based E2E verifiable systems require

a secure bulletin board. Our system relaxes the requirement of secure BB and provides

efficient solution using blockchain and cloud server. All of the above systems consider voter

registration and authentication outside of their scope. In our proposed system, we have

incorporated a secure voter registration and authentication mechanism using biometric in a

verifiable manner.

There are few online internet voting systems based on blockchain. In [149], authors

propose a voting system using Bitcoin [98]. In their voting system, the vote does not need

to be encrypted and decrypted. Random numbers are used to hide the ballot that are

distributed using zero-knowledge proof. There are few other cryptocurrency based voting

systems (such as, [131]). These systems are based on the payments that she receives from

the voter. The problem with these systems is that malicious voters may refuse to “pay” the

candidate to retain the money. Furthermore, a centralized trusted authority who coordinates

between the candidates and voters must exists. There are smart contract based internet

voting systems [96], which only support two candidates(“YES”/“NO” voting ) and voting

is restricted to limited (approximately 50) participants. Tivi and Followmyvote ([50],[141])

are commercial internet voting systems that use the blockchain as ballot box. They claim

to achieve verifiability and accessibility anytime and anywhere; however, the voter’s privacy

in these systems are hard to evaluate.

2.6.2 Internet-based Borda Count Voting

In most of the e-voting systems, trustworthy election authorities are required to preserve

voter’s privacy, to decrypt the vote and to compute the tally in a verifiable manner. Gen-

erally, threshold cryptography is used to distribute this trust among multiple tallying au-

thorities; see, for example, Helios [1]. However, while using threshold cryptography, if the

tallying authorities collude among themselves altogether, voter’s privacy will be lost.

Several researchers have proposed e-voting systems based on blockchain. In [149], Zhao

and Chan propose a voting system using Bitcoin. In their voting system, random numbers

and zero-knowledge proofs are used to hide the vote. In [131], Tarasov and Tewari propose
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an e-voting system based on cryptocurrency. In this system, a centralised trusted authority

exists to coordinate the election. Tivi [141], Followmyvote [50] and The Blockchain Voting

Machine [64] are Internet voting systems that use blockchain as a ballot box. These systems

depend on trusted authorities to achieve voter’s privacy. In Tivi, the trusted authority

shuffles the encrypted votes before decrypting and computing the tally. In Followmyvote,

the trusted authority obfuscates the link between a voter’s identity and her voting key before

the voter casts her vote. In our proposed protocol, the voter’s privacy and the tally procedure

do not depend on trusted election authorities. We implement the proposed protocol using

smart contract in such a way that the Ethereum bockchain’s consensus mechanism enforces

the execution of the voting protocol. Recently, the Abu Dhabi Securities Exchange [65] has

launched a blockchain-based voting service. In Estonia, blockchain-based voting systems [19]

have been proposed for the internal elections of political parties and shareholder voting. The

possibility of using blockchain in e-voting is also discussed in a report [19] by the Scientific

Foresight Unit of the European Parliamentary Research Service. Recently, in [5], Bag et

al. propose an end-to-end verifiable Borda count voting system. However, their scheme

is on a centralised setting where a central facility (i.e., a touch-screen voting machine) is

used to directly record votes from voters. In such a setting, it is inevitable that the touch-

screen machine learns the voter’s choice. In this paper, we propose the first self-tallying

decentralized Borda count voting protocol, in which voters cast votes using their own devices

in a distributed manner. No third-party entity can learn the voter’s input unless all other

voters are compromised (i.e., in a full-collusion attack).

The first self-tallying voting protocol was proposed by Kiayias and Yung [82] for board-

room voting. Their protocol has the following three attractive features: it is self-tallying;

it provides the maximum voter privacy; and it is dispute-free. We discuss these properties

in detail in a later section. Their protocol executes in three rounds. However, the com-

putational load for each voter is heavy and it increases linearly with the number of voters.

A subsequent protocol by Groth [57] improves the computational complexity. The compu-

tational load for each voter is less than the Kiayias and Yung’s protocol [82] and remains

constant with the number of voters; however, the protocol trades off round efficiency for

less computation. It requires (n + 1) rounds, where n is the number of voters. The round
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efficiency is worse than the Kiayias and Yung’s protocol [82]. Hao, Ryan and Zieliński

investigated the computation complexity and proposed the Open Vote Network (OV-Net)

protocol [60]. Their protocol significantly improves computational complexity. Their proto-

col executes in only two rounds. In fact, their protocol is a generalization of the anonymous

veto network (AV-net) protocol [62] with the added self-tallying function. McCorry et al. [96]

provided the first implementation of the OV-Net protocol using the Ethereum blockchain.

2.6.3 Deniable secret handshake protocol

The concept of secret handshake was first introduced by Balfanz et al. [6]. The security

of the scheme was based on the hardness of bilinear Diffie-Hellman problem in random

oracle model. The scheme was constructed from a pairing-based key agreement scheme.

Castelluccia et al. [25] gave a more efficient scheme under the computational Diffie-Hellman

assumption in the random oracle model. Tsudik-Xu [136] proposed a protocol where in a

single run any number of members can authenticate themselves to other members in the

group. Yamashita-Tanaka [143] gave a scheme with multiple groups that can accommodate

change of memberships. That is, if a member is added to a new group or is deleted from one,

it is not necessary to change his other memberships. This work was forwarded by Kawai

et al. [78] to achieve a monotonicity condition. Apart from anonymity (which is inherent)

of the participant, few other properties e.g. affiliation-hiding [68], unlinkability [70], and

user untraceability [94] are also explored in the literature of secret handshake protocol.

Tian et al. [133] proposed a solution to achieve full-unilinkability based on a k-size one-

time certificate set. Untraceable secret handshake allows authorized users (participants) to

remain untraceable if the issuing authority is not trusted. To cope against untrusted CA,

Manulis et al. proposed two solutions [94, 95].

Deniability in the context of authentication was formally introduced by Dwork et al. [45].

Raimondo et al. [113] explored the notion of deniability for secure key-exchange protocols

and put forward the notion of strong deniability and partial deniability. Jiang-Naini [71] gave

an efficient key exchange protocol that achieves full deniability in the public random oracle

model. Public random oracle model was defined by Pass [111], which is a weaker assumption

than the random oracle. Unger-Goldberg [138] studied deniable authenticated key exchanges
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in the generalized universal composability framework. They gave two protocols offering

forward secrecy and both full and strong deniability. Later, they extended their study

[139] to propose three strongly deniable key exchange protocols- deniable authenticated key

exchange with zero-knowledge, zero-knowledge Diffie-Hellman and extended zero-knowledge

Diffie-Hellman. Yao-Zhao [145] proposed a provably secure internet key exchange protocol

which provides simultaneous strong deniability for both the participants. Their construction

achieves deniability in the restricted random oracle model (defined in [146]). Recently, Tian

et al. proposed a framework for deniable secret handshake protocol (DSH) [132]. They have

given a generic construction of a DSH protocol from any forward-secure secret handshake

protocol.
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Chapter 3

A secure end-to-end verifiable
e-voting system using blockchain and
cloud server

3.1 Introduction

This chapter is based on papers [109, 108]. In this chapter, we propose a secure E2E verifiable

e-voting system based on blockchain and cloud server. We have shown one weakness in the

DRE-ip system [123]. An attacker can post ballots in such a way that it cannot be detected

by the tally verification process. We have proposed a solution to prevent this attack. We

provide security proofs to show that the proposed protocol is end-to-end verifiable as well

as preserves each voter’s privacy and the integrity of the system. We prove that the efficient

NIZK proof algorithm proposed by Lin et al. [91] is not correct since it does not satisfy the

properties of a zero-knowledge proof. We propose an efficient 1-out-of-n NIZK algorithm (i.e.

the prover Algorithm 3 and the verifier Algorithm 4 described in section 3.5.4) involving

conjunction and disjunction of multiple assertions. The security proofs of the proposed

efficient NIZK proof algorithm are given in section 3.5.4.4. Depending on how the election

is organised, we propose two methods to store the ballots on a public bulletin board. We have

measured the costs of verifying and storing the ballots on the Ethereum blockchain using

the proposed efficient 1-out-of-n NIZK proof. We have also measured the computation time

of the proposed efficient 1-out-of-n NIZK proof. To the best of our knowledge, it is the

first end-to-end verifiable DRE based e-voting system using blockchain. We also propose a

method for publishing the final tally when multiple DRE machines are used in a regional
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zone keeping the result (i.e. tally) from each DRE machine secret. By a regional zone, we

mean a constituency from where a candidate is to be elected such as a district instead of the

whole country. Thus, our system hides the voter’s distribution in small areas where DRE

machines are used. In addition, we propose a secure and verifiable voter registration and

authentication mechanism using voter’s biometric information (fingerprint). The proposed

system prevents the well-known ballot stuffing attack.

Components of the proposed system 1) A fingerprint scanner with fingerprint pulse

at the sensor, a smart card reader must be attached to a device that will verify the eligibility

of the voter. It generates a token that will be presented to the DRE machine to proceed with

the voting process. It also requires a public bulletin board to display the voter registration

data. 2) The proposed voting system consists of all the devices required for the DRE-ip [123]

system. Therefore, it requires a DRE machine with a printer attached to it and a public

bulletin board to show the recorded ballots in public. The bulletin board can be a publicly

accessible web site.

3.2 Preliminaries

In this section, we focus on the trust requirements and cryptographic assumptions based on

which we prove the security properties of our proposed protocol.

3.2.1 Trust requirements

We describe our trust requirements that our scheme is expected to meet.

• Integrity. We assume that the voting machine or the BB may alter the voter’s vote

or change the tallying results. It may happen by accident (for example, due to some

software bugs) or by malice (for example, due to some adversarial attack). However,

we require that any such changes will be detected even when the machine is completely

controlled by an adversary.

• Vote secrecy. When a voter selects her choice of candidate on the touch screen, the

DRE machine learns her vote by definition. This is inevitable. We assume that the
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DRE machine keeps the voter’s choice secret. However, we require that when the DRE

machine is completely compromised by an adversary, the adversary will only learn the

partial tally at the time of compromise, but nothing beyond that.

3.2.2 Cryptographic assumption

We first describe some notations that we use throughout our paper.

Notation. We use the same notations that are used in the DRE-ip system. These

notations were introduced by Camenisch and Stadler [23]. We use PK{λ : Γ = γλ} to denote

a non-interactive proof of knowledge of a secret λ such that Γ = γλ for publicly known Γ and

γ. We shorten the notation to PK{λ} where context is clear. We use PWF {A : X, ..., Y, Z} to

denote a proof of well-formedness of A with respect to X, ..., Y, Z. We shorten the notation

to PWF {A} where context is clear.

Zero-knowledge proof was first introduced by Goldwasser, Micali, and Rackoff [56] to

prove the truth of a statement without conveying any other information. Subsequently,

Bellare and Goldreich [7] refined the definition of zero-knowledge proofs to distinguish them

from proofs of knowledge. We use Schnorr’s proofs of knowledge of discrete logarithm

[122]. We then apply the technique proposed by Cramer, Damg̊ard Schoenmakers [37] to

construct proof of disjunctive, conjunctive and combination of both. Fiat-Shamir heuristic

[48] is applied to make the constructed proof non-interactive. The security proofs are in

random oracle model [8]. The index i of the transaction is embedded as input to the hash

function to bind the proof to the transaction. In this paper, we propose an efficient NIZK

proof. The proposed prover (Algorithm 3) and the verifier (Algorithm 4) algorithms are

described in section 3.5.4.

Cryptographic setup. Our proposed system works over an ECDSA like group setting

or a DSA like multiplicative cyclic group setting where the decisional Diffie-Hellman (DDH)

assumption holds. In particular, we can choose two large primes p and q such that q divides

(p − 1). Then we choose the subgroup Gq of order q of the group Z∗p and assume that g is

the generator of Gq. q must be greater than the number of voters. The decisional Diffie-

Hellman assumption [42] is given below. We use the DDH assumption to prove the security

properties of our proposed protocol.
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Assumption 1. (DDH) The two probability distribution {(ga, gb, gab) : a, b are uniformly

and independently chosen from Z∗q} and {(ga, gb, gc) : a, b, c are uniformly and independently

chosen from Z∗q} are computationally indistinguishable in the security parameter n = log(q).

3.3 A weakness of the DRE-ip system

In this section, we recall the DRE-ip [123] system, present one weakness of the system and

provide a countermeasure. We describe the DRE-ip algorithm almost verbatim as given in

[123].

3.3.1 The DRE-ip system

We describe the DRE-ip algorithm for the case when there are only two candidates contesting

in the election. The DRE-ip algorithm does not require any tallying authority. Let vi

represents the vote for the i-th ballot then we have vi ∈ {0, 1}. During the setup phase,

the algorithm chooses two generators g1, g2 of the corresponding group Gq such that their

logarithmic relationship is unknown. The DRE keeps track of the partial sum s = Σri for

the random numbers ri generated on the fly and the running tally t = Σvi for the cast

(confirmed) vote vi. The system incorporates Benaloh-style voter-initiated auditing [12] in

which the voter gets option to audit their vote generated by the DRE to get confidence that

the DRE generates the ballot according to her choice of vote. An audited ballot cannot be

used to cast a vote. At the end of the voting phase, the set of total ballot B will be comprised

of the set of all audited ballot A and the set of all confirmed ballot C i.e. B = A ∪ C.

Voting phase: This phase involves the DRE, voter and the bulletin board:

1. The voter enters the booth, starts voting and keys in her vote vi ∈ {0, 1}.

2. The DRE generates random ri ∈ Zq and computes Ui = gri1 , Vi = gri2 g
vi
2 , PWF {Vi :

g1, g2, Ui}.

The DRE provides a signed receipt including the unique ballot index i and contents of

the ballot Ui, Vi, PWF {Vi} to the voter.

3. The voter notices that the first part of the receipt is provided, then she chooses to

either audit or confirm her vote.
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In case of audit:

4. The DRE adds i to the set of audited ballot A and provides a signed receipt to the

voter. The receipt is clearly marked as audited including ri and vi.

5. The voter takes and keeps the receipt. The voter verifies that vi reflects her choice. If

the verification succeeds, the voting continues from step 1; otherwise if the verification fails,

the voter should raise a dispute immediately.

In case of confirmation:

4. The DRE adds i to the set of confirmed ballot C. The DRE updates the tally and

the sum: t =
∑
j∈C

vj and s =
∑
j∈C

rj .

The DRE provides a signed receipt, clearly marked as confirmed to the voter. The DRE

securely deletes ri and vi.

5. The voter leaves the polling booth with her receipts.

6. The DRE posts all receipts provided to the voter on the bulletin board.

7. The voter matches her receipts with those on the bulletin board to verify that her

receipts are posted on the bulletin board.

Tallying phase: This phase involves the DRE, the bulletin board and the public:

1. The DRE posts the final tally t and the sum s on the bulletin board.

2. The public:

- verify that all the well-formedness proofs on the bulletin board are correct (well-

formedness verification);

- verify that, for all audited ballots on the bulletin board, Ui and Vi included in the first

part of the receipt are consistent with ri, vi provided in the second part (along with the

system parameters g1, g2) (audit consistency verification);

- verify that following equations hold (tally verification):∏
j∈C

Uj = gs1 and
∏
j∈C

Vj = gs2g
t
2.

If at any point during voting phase or tallying phase, any of the verification by the

voter or the public fails, the election stuff should be notified. These includes step 5 (for

the audited votes), step 7 of the voting phase and step 2 of the tallying phase. The proof

of well-formedness PWF {Vi : g1, g2, Ui} can be implemented as PWF {Vi} = PK{ri : ((Ui =

gri1 ) ∧ (Vi = gri2 )) ∨ ((Ui = gri1 ) ∧ (Vi/g2 = gri2 ))}. PWF {Vi} is a non-interactive zero-
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knowledge proof of well-formedness of the ballot. The DRE-ip system records each audited

and confirmed vote on the BB in a tabulated form given in Table 3.1.

Initial: g1, g2

i : Ui, Vi, PWF {Vi} audited, ri, vi
... ...

j : Uj , Vj , PWF {Vj} confirmed
Final: t, s

Table 3.1: DRE-ip bulletin board. Vj ∈ {g
rj
2 , g

rj
2 g2}, s is the sum of all random variables of

confirmed ballots and t is the final tally.

The Theorem 1 in [123] analyzes the security of the DRE-ip algorithm. The Theorem 1

states that, in DRE-ip, assuming that all proofs of well-formedness are proofs of knowledge,

if the public well-formedness and the tally verification succeed, then the reported tally is

the correct tally of all confirmed votes on the bulletin board.

In [123], Shahandashti et al. also consider an intrusive adversary that apart from the

ability to determine an arbitrary number of votes, gets read access to the DRE storage

for a period during the voting phase. The authors consider that the adversary can control

arbitrary number of voters, hence in effect she can cast an arbitrary number of votes. During

the access period, the adversary is able to observe the votes cast and read the partial tally

t and partial sum s.

The Theorem 2 in the paper [123] analyzes the ballot secrecy in case of an intrusive

attack. It states that, in DRE-ip, assuming that all proofs of well-formedness are zero-

knowledge, if the DDH assumption holds, then an adversary that determines an arbitrary

number of votes and gets temporary read access to the DRE storage cannot get any infor-

mation about the non-adversarial votes cast before and after the adversarial access period

other than their partial tallies.

3.3.2 Analysis of the protocol:

1) Weakness. If the voting machine and the election authority collaborate, the following

attack is possible. The election authority who is responsible for publishing the total number

of voters cast their votes in the election needs to increase the total count of cast votes. The
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attacker can add some valid ballots in favour of her choice of candidate at the end of the

bulletin board in such a way that it cannot be detected by the DRE-ip tally verification

algorithm.

Suppose an attacker would like to add some ballots in favour of her candidate. The

attacker can choose some random numbers r1, r2, ..., rk from Zq such that
k∑
i=1

ri ≡ 0 (mod q).

The attacker generates encrypted ballots of the form ((j+ i : Ui, Vi, PWF {Vi}), confirmed),

where Ui = gri1 , Vi = gri2 g
v
2 , PWF {Vi} = PWF {Vi : g1, g2, Ui} = PK{ri : ((Ui = gri1 ) ∧ (Vi =

gri2 )) ∨ ((Ui = gri1 ) ∧ (Vi/g2 = gri2 ))} and v (v ∈ {0, 1}) is the vote in favour her candidate.

Since the attacker knows ri and v, she can generate the non-interactive zero-knowledge proof

PWF {Vi}.

Initial: g1, g2

j + 1: U1, V1, PWF {V1} confirmed
j + 2: U2, V2, PWF {V2} confirmed

... ...
j + k : Uk, Vk, PWF {Vk} confirmed

Final: t+ k.v, s

Table 3.2: Additional ballots added by an adversary

If an attacker posts encrypted ballots in favour of her candidate in the above form

(Table 3.2) with zero-knowledge proof of well-formedness PWF {Vi} and changes the final

tally from t to (t+ k.v) as soon as the DRE publishes the final tally t on the BB, then such

attack cannot be detected by the tally verification procedure of the DRE-ip system. The

attacker does not need to change the sum s. This is because g
∑k
i=1 ri

1 = g
∑k
i=1 ri

2 = g0
2 = e,

the identity element of the group. The attacker can increase the final tally to (t + k.v).

The tally verification procedure verifies all zero-knowledge proofs and checks the following

equations:
∏
j∈C Uj = gs1,

∏
j∈C Vj = gs2.g

t+k.v
2 , which will succeed in this case. The first of

the two tally verification equations:
∏
j∈C Uj = g

s+
∑k
i=1 ri

1 = gs1g
∑k
i=1 ri

1 = gs1 and the second

of the two tally verification equations:
∏
j∈C Vj = g

s+
∑k
i=1 ri

2 gt+k.v2 = gs2g
∑k
i=1 ri

2 gt+k.v2 =

gs2g
t+k.v
2 . This is a weakness of the system. The above mentioned ballots can be added at

the end of the bulletin board. Note that the proof of well-formedness of the above mentioned

confirmed ballots are correct, and hence the tally verification procedure of DRE-ip algorithm
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[123] satisfies. The DRE-ip algorithm is developed to eliminate requirement of the tallying

authority. However, as described above, an attacker can mount the above attack in the

following scenario:

(i) The bulletin board is secure and append-only; however, the adversary gets access

to the DRE machine to get the signature of above ballots. Additionally, if the election

authority colludes with the adversary, an attacker can post the above mentioned ballots at

the end of the bulletin board. The election authority who has colluded with the adversary

needs to increase the total count of cast votes. The signature key can be compromised at

the setup stage, or a malicious DRE-ip software can generate such ballots.

Possible countermeasure. To prevent the weakness 1, we assume that the names

of voters who have cast their votes are not published on the bulletin board since it has

a disadvantage: everybody learns who abstained from voting. Such information in some

cases might be illegal to be revealed (see, for example, [2]). We have provided a secure and

verifiable voter registration and authentication procedure that will generate a token. This

token is presented to the DRE machine. The DRE checks the validity of the token. If the

verification succeeds, the DRE allows the voter to cast her vote. We have described this in

section 3.4.

To prevent this kind of attack, in our proposed algorithm described in section 3.5.1.1,

we include hash of the previous ballot and a NIZK proof of a valid token number (generated

by the voter authentication procedure) with each ballot. The hash of the previous ballot

is included in the signature (for example, using Digital Signature Algorithm) of the current

ballot. This creates an append-only list of ballots that cannot be modified by an adversary.

The hash of the last ballot in the election is published with the final tally message along

with two NIZK proofs: one of these two NIZK proofs proves the knowledge of the partial

sum s; the other NIZK proof proves the knowledge of s.prev_hash.

Note that the idea of a running hash is not new in the e-voting system. In 2007, Sandler

and Wallach described the idea of hash linking of votes to ensure the integrity of their system

[120] and later applied in the VoteBox system [119]. In 2011, Benaloh and Lazarus proposed

a similar idea to mitigate their Trash attack [14], and in 2013, Bell et al. used a similar idea

in their Star-Vote system [13]. We extend a similar idea to our proposed e-voting system.
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3.4 Voter registration and authentication

In this section, we propose a secure and verifiable voter registration and authentication

algorithm. We use a biometric encryption algorithm to bind a secret key with her biometric

data (fingerprint). This secret key is one of the secret keys used for verifying the authenticity

of the voter. We first describe the voter registration algorithm, and then we describe the

voter authentication algorithm.

3.4.1 Voter registration

In this phase, voters will provide their personal information including voter identification

number and fingerprint to register for the election. The voter registration process may

occur throughout a year before the election. The voter registration data corresponding to

each voter are displayed on a public bulletin board so that the public can verify the one-

person-one-vote requirement. The following steps are performed to register a voter for the

election.

1. The i-th voter provides her foundational identity card (for example, election ID card

or Passport) to the voter registration official at the registration centre. The officer verifies

the election ID card. Then the voter has her fingerprint scanned at the registration centre.

2. We use a biometric encryption algorithm proposed by Nandakumar et al. [99], called

Fuzzy Vault, to bind a randomly generated key into the voter’s fingerprint data. As shown in

Figure 3.1 (a), a random number ri1 is generated on enrollment uniformly and independently

from Zq so that neither the voter nor anybody knows it. This random number acts as one of

the secret keys used in the registration process. The random number ri1 itself is independent

of the biometric, and hence it can be changed or modified. The random number ri1 and the

fingerprint template are securely deleted at the end of the enrollment.

In Fuzzy vault algorithm [99], the secret random key ri1 is represented as coefficients of a

polynomial in a Galois Field, for example, GF (216). This scheme is designed to secure a key

of length 16n bits, where n is the degree of the encoding polynomial. For example, if n = 8,

we can secure a key of size 128 bits. The 16 bit x-coordinate value of the polynomial com-

prises the fingerprint minutiae location and the angle, and the corresponding Y-coordinate
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Fingerprint

Fingerprint Image

1010001111...

...001

Fingerprint Template

Fuzzy Vault

binding algorithm
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Randomly generated key

Optional

secret 

transform

1001011...010

Biometrically encrypted data D is stored

Securely delete it
Securely delete it

Securely delete it

Enrollment

Fingerprint

Fresh Fingerprint Image

10000101111...

...101

Fresh Fingerprint Template

Fuzzy Vault

retrieval algorithm

1001011...010

Biometrically generated data D

Optional

secret 

transform

1101000...01

Retrieved key

Securely delete it
Securely delete it

Verification

Figure 3.1: High level diagram of the Fuzzy Vault process to bind a key (ri1 in the de-
scription) with the fingerprint. (a) Enrollment process that binds a randomly generated
key (ri1 in the description); (b) Verification process that retrieves the same key (ri1 in the
description).

is computed from the polynomial at the point x. Both the values x and y are stored with

chaff points to hide the real minutiae. It also stores fingerprint alignment information. On

verification, if a sufficient number of minutiae points coincide with some genuine recorded

points, the full polynomial can be constructed using an error-correcting code (for example,

Reed-Solomon error-correcting code) or Lagrange interpolation. The secret will be correctly

decrypted only if the polynomial is correctly constructed. The performance results show

that FRR (False Rejection Rate) is about 6% to 17% and FAR (False Acceptance Rate) is

about 0.02%. The FRR is due to poor samples that are fact of life in biometric systems.

However, the FRR could be significantly reduced through reties.

Since Fuzzy Vault actually stores real minutiae even though they are buried inside the
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chaff points, this may become a source of potential vulnerability [67, 26, 27]. As a coun-

termeasure, in [67], Jain et al. proposed a transform-in-the-middle approach (shown in the

dashed-square in Figure 3.1) in which the fingerprint minutiae data are permuted based on

a secret user’s password.

3. The machine at the registration centre generates another random number ri2 uni-

formly and independently from Zq. Then it computes E(gH(ri1||ri2)), where g is the genera-

tor of the group Gq, E(gH(ri1||ri2)) is the encryption of gH(ri1||ri2) and ‘||’ is the concatenate

operation. We discuss this encryption procedure E later in this section. Then the machine

provides a signed receipt consisting (V OTER_IDi, E(gH(ri1||ri2))) to the voter.

4. The random number ri2 is given to the voter in a smart card or token. The voter

keeps the smart card safely with her. It will be required during the voter authentication

phase.

5. It publishes (V OTER_IDi, E(gH(ri1||ri2))) on the public bulletin board. We assume

that the device sends all the data to the BB over an authenticated channel using digital

signature. The biometrically encrypted data Di along with V OTER_IDi is securely stored

by the government in a database or locally (for example, a token or smart card). The

biometrically encrypted data Di will be used for verification of the voter during the voter

authentication phase. It securely deletes the random numbers ri1, ri2 and the fingerprint

template.

6. The voter leaves the registration centre, and checks that her receipt is recorded on

the public bulletin board.

7. When the enrollment process finishes, all the receipts (V OTER_IDi, E(gH(ri1||ri2)))

are published on the public bulletin board. The bulletin board uses some mixnet servers pro-

posed by Neff et al. [100] to permute the set of data gH(ri1||ri2). The input to the mixnet are

(E(gH(ri1||ri2))),∀i ∈ {1, 2, ..., N}, where the encryption algorithm E depends on the mixnet

servers [100], N is the total number of voters. It outputs gH(ri1||ri2), ∀i ∈ {1, 2, ..., N} in a ver-

ifiable manner. Figure 3.2 depicts the mixnet servers. The mixnet [100] servers provide NIZK

proofs to prove a permutation between the input data (E(gH(ri1||ri2))), ∀i ∈ {1, 2, ..., N} and

output gH(ri1||ri2), ∀i ∈ {1, 2, ..., N} without revealing the exact permutation. We assume

that at least one mixnet server is honest, who does not reveal its secret keys and the per-
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Figure 3.2: Public bulletin board displaying voter registration data of N voters along with
l mixnet servers. Here, Name i represents the name of the i-th voter. Datai represents the
i-th voter’s data (V OTER_IDi, E(gH(ri1||ri2))). Ri represents H(ri1||ri2). Mk are mixnet
servers ∀k ∈ {1, 2, ..., l}. Ck−1,j ,∀j ∈ {1, 2, ..., N} are the inputs to the mixnet Mk, and
its outputs are Ck,j , ∀j ∈ {1, 2, ..., N}.The last mixnet server’s output (gs1 , gs2 , ..., gsN ) is a
permutation of (gR1 , gR2 , ..., gRN ).

mutation.

3.4.2 Voter authentication during the voting phase

In this section, we discuss the voter authentication procedure using the biometrically en-

crypted data collected during the voter registration phase. The voter authentication is

performed in parallel with the voting phase. The following steps are performed to verify the

authenticity of a voter. After a voter’s verification is successful, it generates a token number

that will be used to cast her vote. All the voter’s biometrically encrypted data Di along

with V OTER_IDi that were collected during the voter registration phase are presented

(for example, in a smart card) here at this phase for verification of voters.

1. The voter goes to the polling station and provides her V OTER_IDi, fingerprint, the

smart card containing ri2 to verify her eligibility to vote.

2. We use the verification procedure of the Fuzzy Vault algorithm proposed by Nan-

dakumar et al. [99] to verify her eligibility to vote. Figure 3.1 (b) illustrates the verification
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procedure of the Fuzzy Vault algorithm [99]. On verification, the user provides her fresh

fingerprint data which, when applied to the legitimate biomerically encrypted data Di, will

let the Fuzzy Vault algorithm recreate the same key ri1. At the end of verification, the

algorithm securely deletes the fingerprint template once again. The Fuzzy Vault algorithm

is designed to account for an acceptable variations of the input fingerprint. On the other

hand, an imposter with different enough fingerprint will not be able recreate the key.

3. It provides tokeni = H(ri1||ri2) as a token number to the voter. The token number

tokeni is given to the voter in an encrypted format using a symmetric key encryption. At

the end of verification procedure, it securely deletes ri1, ri2, tokeni and the fingerprint once

again.

4. The voter goes to the DRE machine and presents her encrypted token.

Voters must observe the public bulletin board (Figure 3.2) throughout the election stage

to ensure that their registration data are not being changed. If, at any point between the

voter registration and the final tallying phase, any of the entry on the public bulletin board

is changed based on her receipt, the voter must raise an issue with the election official. Note

that the proposed voter registration and authentication scheme can also be incorporated

into other verifiable e-voting systems.

3.4.3 Performance analysis of voter registration and authentication

The voter registration phase is conducted well before the actual election. For each voter,

the voter registration procedure includes execution of the Fuzzy Vault algorithm and com-

putation of one encryption E(gH(ri1||ri2)), where the encryption algorithm E depends on

the mixnet server [100]. The mixnet [100] requires 8N exponentiations, where N is the

total number of voters registered for the election. Voter authentication includes execution

of the Fuzzy Vault key retrieval algorithm and computation of a symmetric key encryption

of H(ri1||ri2).
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3.5 Voting system

In this section, we discuss the proposed voting scheme, analyse its security properties, pro-

pose efficient NIZK proofs, measure its performance and finally compare it with some well-

known DRE-based voting systems.

3.5.1 Proposed voting scheme

We now describe the algorithm for the voting phase and the tallying phase.

3.5.1.1 Voting and Tallying Phase

We have modified the DRE-ip system to prevent the weakness and the ballot stuffing attack.

The system requires a publicly accessible bulletin board (BB). We assume that the BB can

be insecure. However, in our system, if the adversary tries to modify the content of the BB,

it could be detected by the public because of the use of hashchain.

We assume that one DRE machine is used to elect a candidate in a regional zone.

Extension to multiple DRE machines is discussed in section 3.5.1.2. We assume that the

DRE sends recorded ballots to BB over an authenticated channel using standard technique

such as digital signatures. We describe the case where there are only two candidates i.e. if vi

represents the vote for the i-th ballot, we have vi ∈ {0, 1}. Extension to multiple candidates

is discussed in subsection 3.5.1.3. An audited ballot is not used to cast a vote. Let A, C and

B are the set of all audited ballots, confirmed ballots and all ballots respectively. Thus, at

the end of the voting phase, B = A ∪ C. We use the exponential ElGamal cryptosystem to

encrypt the votes in which no party knows the decryption key. Figure 3.3 depicts a public

bulletin board of our proposed e-voting system.

Key Generation Phase. 1. The system generates an efficient description of a cyclic

group Gq of order q with two distinct generators g1, g2 whose logarithmic relationship is

unknown.

2. The DRE publishes description of the group (Gq, q, g1, g2, Pksign), where Pksign is the

public key of the digital signature scheme (for example, DSA) used by the DRE machine..

The group descriptions are shared between DRE and BB and it is published on the
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BB. Initially, t = 0 and s = 0. The DRE calculates hash of this transaction and stores it

in prev_hash. The hash value prev_hash will be included in the next ballot. This hash

must be verified by public during the tallying phase to ensure that this transaction remains

unaltered.

Voting Phase. This phase involves the voter, the DRE and the BB.

1. The voter goes to the DRE machine and presents her encrypted token. The DRE

decrypts (using symmetric key) it to get the token (generated during the voter authentication

phase). The DRE checks for an entry gtoken on the voter registration bulletin board (Figure

3.2) corresponding to her token. It also verifies that this token has not been already used to

cast a vote, by checking all confirmed ballots on its own public bulletin board (that displays

all ballots, Figure 3.3). If the verification succeeds, it allows the voter to proceed to the next

step.

2. The voter initiates the voting and keys in her vote vi ∈ {0, 1}.

3. The DRE generates random ri ∈ Z∗q , and evaluates

Ui = gri1 , Vi = gri2 g
vi
2 ,

PWF {Vi : g1, g2, Ui} = PK{ri : ((Ui = gri1 ) ∧ (Vi = gri2 )) ∨ ((Ui = gri1 ) ∧ (Vi/g2 = gri2 ))}

= PK{ri : (Ui = gri1 ) ∧ ((Vi = gri2 ) ∨ (Vi/g2 = gri2 ))},

and PK{token : (Wi = gtoken)}.

Here, PWF {Vi : g1, g2, Ui} is a NIZK proof to show that the ballot is an encryption of

either vi = 0 or vi = 1 (i.e. the ballot is well-formed). PK{ri} is a NIZK proof of knowledge

of ri. Algorithm 3 (resp. Algorithm 4) and Algorithm 7 (resp. Algorithm 8) describe the

creation (resp. verification) of the NIZK proof PWF {Vi} and PK{token} respectively. The

DRE machine provides a signed receipt including the unique ballot index i and the ballot

content (i, gtoken, prev_hash, Ui, Vi, PWF {Vi}, PK{token}, sign) to the voter, where sign is

the signature of (i, gtoken, prev_hash, Ui, Vi, PWF {Vi}, PK{token}).

4. The voter receives the first part of the receipt and chooses to either audit or confirm

her vote.

In case of audit:

5. The DRE adds i to A. The DRE provides a signed receipt of the audit, marked as

‘audited’, including ri, vi to the voter.
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6. The voter takes and keeps the receipt. She verifies her choice of vote vi. If the

verification succeeds, it continues to execute next step, otherwise the voter should raise a

dispute.

7. The DRE merges both parts into a single part ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi},

PK{token}), audited, ri, vi, sign), where sign is the signature of ((i, gtoken, prev_hash, Ui,

Vi, PWF {Vi}, PK{token}), audited, ri, vi). The DRE posts this receipt (or transaction) on

the BB. The DRE computes hash of this transaction and updates prev_hash value. This

prev_hash will be attached to the next ballot (or transaction). The DRE repeats the

process from step 2.

In case of confirmation:

5. The DRE adds i to C, updates the tally, the sum and evaluates:

t =
∑
j∈C

vj , s =
∑
j∈C

rj . (3.5.1)

The DRE provides a signed receipt, marked as ‘confirmed’ to the voter. Then the DRE

securely deletes both ri and vi.

6. The voter leaves the booth with her receipts.

7. The DREmerges both parts into a single part, ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi},

PK{token}), confirmed, sign), where sign is the signature of ((i, gtoken, prev_hash, Ui, Vi,

PWF {Vi}, PK{token}), confirmed). The DRE posts this transaction on the BB. The DRE

computes hash of this transaction and stores it in prev_hash. This prev_hash will be

attached to the next ballot (or transaction).

8. The voter verifies that all her receipts match with those on the BB. The voter should

raise an issue if her receipts do not match with those on the BB.

Verification by bulletin board (cloud or blockchain). This phase involves the

DRE and the underlying BB. The BB can be implemented using cloud server, Ethereum

blockchain (method 1) or a combination of both blockchain and cloud server (method 2).

The BB verifies the ballot well-formedness proof and the signature of the transaction before

adding it into the BB.

Tallying Phase. This phase involves the DRE, the BB and the public.
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1. The DRE evaluates: Γ1 = gs1, Γ2 = gs2, Γ3 = g
s.prev_hash
1 and Γ4 = g

s.prev_hash
2 . Then

the DRE posts the final tally t, Γ1, and Γ2 on the BB with the zero-knowledge proofs PK{s :

(Γ1 = gs1) ∧ (Γ2 = gs2)} and PK{s.prev_hash : (Γ3 = g
s.prev_hash
1 ) ∧ (Γ4 = g

s.prev_hash
2 )}.

The Algorithm 9 (resp. Algorithm 10) provided in section 3.5.4.5 describes the procedure to

create (resp. verify) these NIZK proofs. Let the tuple (t,Γ1,Γ2, PK{s}, PK{s.prev_hash}))

be denoted by ‘MESSAGE’. To post i-th message, say ‘MESSAGE’, on the BB, the following

procedure is adopted.

i) The DRE creates a transaction consisting of the data (i, prev_hash,MESSAGE,

final, sign), where sign is the signature of (i, prev_hash,MESSAGE, final). The DRE

posts this transaction on the BB.

2. The public:

i) verify that the hash of each transaction matches with the prev_hash value of the next

ballot (or transaction).

ii) verify that the zero-knowledge proofs provided in step 1 of this tally phase are correct,

provided the hash of the last ballot on the bulletin board. This step involves verification

of the two NIZK proof: (a) verification of PK{s}, given Γ1 and Γ2; (b) verification of

PK{s.prev_hash}, provided Γ3 (= Γ
prev_hash
1 ) and Γ4 (= Γ

prev_hash
2 ), where prev_hash is

the hash of the last ballot on the bulletin board.

iii) verify that all the well-formedness proofs of each transactions on the BB (well-

formedness verification) are correct.

iv) verify that for all the audited ballots ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi},

PK{token}), audited, ri, vi, sign) on the BB: the first part of the receipt (i, gtoken, prev_hash,

Ui, Vi, PWF {Vi}, PK{token}) are consistent with ri and vi.

v) verify that the signature of each transaction is valid.

vi) verify that all the NIZK proofs provided by the mixnet servers (Figure 3.2 in section

3.4.1) are correct.

vii) verify that all gtoken in all confirmed ballots on the BB (Figure 3.3) are different

and there exists only one entry with value gtoken on the BB generated during the voter

registration phase ( Figure 3.2 in section 3.4.1).

viii) verify that all the NIZK proof PK{token} are correct.
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ix) verify that all the following equations hold (tally verification):

∏
j∈C

Uj = Γ1, and
∏
j∈C

Vj = Γ2.g
t
2. (3.5.2)

During the voting and tallying phase, if any of the verification carried out by the voter

or the public fails, the election authority should be notified. We assume that there are

procedures in place to deal with such verification failures. In practice, a truncated hash

function may be used to calculate short digest e.g. 32 bit long for each part of the receipt so

that a voter can easily compare their receipt with those on the bulletin board. In this case,

voters are expected to verify their receipts with those on the bulletin board. We assume

that there are facilities provided for them to do so in the polling station.

If sufficient resources are available, there can be another optional module that takes a

transaction from the proposed algorithm and checks whether it has been added to the BB.

3.5.1.2 Extension to multiple DRE machines

If multiple DRE machines are used in a regional zone to elect a candidate, then instead

of disclosing the tally from each DRE machine and then adding them together to get the

final tally, we publish the final tally by combining the tallies from all DRE machines so

that the tally from each DRE machine remains secret. The correctness of the procedure are

realized by producing the corresponding zero-knowledge proof. This is particularly done to

avoid revealing voter’s distribution in small areas (where DRE machines are used to cast the

vote) of a regional zone. Let the total number of DRE machines used in a regional zone be

η(η ∈ N). Let t(i) and s(i) represent the tally t and sum of random variables s respectively

for the i-th DRE machine.

1. Each DRE performs following tasks.

i) The i-th DRE posts Γ2(i) = g
t(i)+s(i)
2 on the BB instead of total tally t(i) with PK{t(i) +

s(i) : Γ2(i) = g
t(i)+s(i)
2 }, the non-interactive zero-knowledge proof of knowledge of the sum of

tally t(i) and s(i) for this DRE machine. The DRE also posts Γ1(i) = g
s(i)
1 with PK{s(i) :

Γ1(i) = g
s(i)
1 }, the zero-knowledge proof of the sum of random variables s(i) for all confirmed

ballots.
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Figure 3.3: A public bulletin board of our system.

ii) Provided above information, the public perform all tasks stated in step 2 of the

Tallying Phase.

2. (a) Let the group information g1 and g2 are same for every DRE machine. If they are

different for each DRE machine, we perform step (b) instead of this step.

i) Now all DRE machines perform two secure multi-party computations ([53],[54],[10])

to evaluate tfinal = Ση
i=1t(i) and sfinal = Ση

i=1s(i). It publishes tfinal and sfinal as the final

tally and the final sum of random variables.

ii) The public verifies
∏η
i=1Γ2(i) = g

tfinal
2 g

sfinal
2 ,

∏η
i=1Γ1(i) = g

sfinal
1 .

(b) Let g1(i) and g2(i) represent the group information g1 and g2 respectively for the i-th
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DRE machine.

i) Since, for every i-th DRE, g1(i) is public information, each DRE can send their g1(i)

to each other to compute ga =
∏η
i=1g1(i), gb =

∏η
i=1g2(i). We assume that DRE machines

can communicate with each other over an authenticated channel using digital signatures. It

evaluates Γb(i) = g
t(i)+s(i)
b , Γ2(i) = g

t(i)+s(i)
2(i) , Γa(i) = g

s(i)
a , Γ1(i) = g

s(i)
1(i),.

ii) Each DRE posts (Γb(i),Γ2(i)), (Γa(i),Γ1(i)) on the BB with PK{t(i) + s(i) : Γb(i) =

g
t(i)+s(i)
b ∧ Γ2(i) = g

t(i)+s(i)
2(i) } and PK{s(i) : Γa(i) = g

s(i)
a ∧ Γ1(i) = g

s(i)
1(i)}. The public must

verify these proofs.

iii) Now all DRE machines perform two secure multi-party computations ([53],[54],[10])

to evaluate tfinal = Ση
i=1t(i) and sfinal = Ση

i=1s(i). It publishes tfinal and sfinal as the final

tally and the final sum of random variables.

iv) The public verifies
∏η
i=1Γb(i) = g

tfinal
b g

sfinal
b ,

∏η
i=1Γa(i) = g

sfinal
a .

Secure multi-party computations to compute Σt. Here we briefly describe the

secure multi-party computation for summation of their private inputs. Suppose three parties

have private inputs t1, t2, t3 respectively. The first party chooses random t11 ∈R Zq, and

t12 ∈R Zq uniformly and independently. Then it computes t13 = (t1 − t11 − t12). The first

party sends t12 to the second party and t13 to the third party in encrypted format over

an authenticated channel. Similarly, the second chooses random t21 ∈R Zq, and t22 ∈ Zq

uniformly and independently. Then it computes t23 = (t2−t21−t22). The second party sends

t21 to the first party and t23 to the third party in encrypted format over an authenticated

channel. Similarly, the third party chooses random t31 ∈R Zq, and t32 ∈ Zq uniformly and

independently. Then it computes t33 = (t3− t31− t32). The third party sends t31 to the first

party and t32 to the second party in encrypted format over an authenticated channel. Now,

after receiving t21 and t31 from the second and the third party respectively, the first party

computes T1 = t11 + t21 + t31. Similarly, the second party computes T2 = t12 + t22 + t32

and the third party computes T3 = t13 + t23 + t33. Now all the three parties send their

Ti’s to a fourth party who computes T = T1 + T2 + T3, which is the sum of t1, t2, t3. Note

that the private input ti of each party remains secret after computation of their sum for all

i ∈ {1, 2, 3}. In a similar fashion, untrusted parties can compute the sum of their private

inputs without revealing it. The zero-knowledge proofs, verification by the public and the
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final tally verification checks (step 2 of the Tallying Phase) collectively prove that all parties

follow the protocol faithfully.

3.5.1.3 Extension to multiple candidates

If there are n(n >= 3) candidates contesting in the election, we will consider an upper bound,

say N , on the number of voters and will encode the vote for the j-th candidate as v = N j−1.

The i-th ballot in that case will of the form ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi}, PK{token}),

audited, ri, vi, sign) in case of audit or ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi}, PK{token}),

confirmed, sign) in case of confirmed vote, where Vi = gri2 g
Nj−1

2 . The well-formedness proof

PWF {Vi} will be 1-out-of-n disjunctive proof and can be stated as:

PWF {Vi : g1, g2, Ui} = PK{ri : ∨nj=1((Ui = gri1 ) ∧ (Vi/g
Nj−1

2 = gri2 ))}

= PK{ri : (Ui = gri1 ) ∧ (∨nj=1(Vi/g
Nj−1

2 = gri2 ))}.

The well-formedness proof PWF {Vi} is a NIZK proof to show that the ballot is an

encryption of vi, where vi ∈ {1, N,N2, ..., Nn−1}.

3.5.2 Storing recorded ballots

Depending on how the election is arranged, there can be several methods to store the ballots.

In our modified DRE-ip system, any ballot is linked to the previous ballot by using the hash

of the previous ballot in the digital signature of the ballot. This creates an append-only list

that can be maintained by anyone. In this section, we highlight one existing method and

propose two new methods to store these ballots.

Using cloud server. The cryptographic group information, the public keys of the

ElGamal encryption and digital signature, all the ballots and the final tally messages can

be stored in cloud server. The public bulletin board accesses the cloud storage to show the

ballots. As stated previously, the hash of the previous ballot is included in the signature of

the current ballot. This makes an append-only list of ballots that cannot be modified by

an adversary without being detected by the public. Multiple cloud servers could be used to

remove a single point of failure (see, for example, the public BB proposed by Palngipang et.

al. [105]).
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Using public blockchain (method 1). The cryptographic group information, the

public keys of ElGamal encryption and digital signature, all the ballots and the final tally

messages can be stored on a public blockchain such as Ethereum. The public and the

individual voters can verify that their ballots are included into the blockchain. Once a ballot

is posted on the blockchain, it remains tamper-proof. In our proposed system, each ballot

includes a ballot well-formedness proof. Casting a ballot using our proposed protocol involves

verifying the ballot well-formedness by the blockchain and storing it into the blockchain.

We have improved the performance of the 1-out-of-n NIZK proof by reducing the number

of exponentiations to almost half as compared to the NIZK proof described in [123]. The

experimental results in section 3.5.6.1 shows the financial costs to mine each ballot in the

blockchain. A small cartel of miners (< 51%) may delay transactions from being accepted

into the blockchain by using selfish mining or feather forking. Such ability of miners to delay

a transaction is a fundamental problem for every smart contract. Figure 3.4 (resp. Figure

3.5) highlights how the cost in gas (resp. in US dollar) for storing and verifying each ballot

on Ethereum blockchain vary with different number of candidates contesting in the election

using the proposed efficient 1-out-of-n NIZK proof. We discuss the performance analysis

(both cost and timing measurements analysis) of the procedure in detail in section 3.5.6.

Using both the cloud server and the public blockchain (method 2). Another

method to implement a public bulletin board is to use both the blockchain and the cloud

server. The cryptographic group information and the public keys of ElGamal encryption

and digital signature are stored on a blockchain such as Ethereum in a single transaction

before beginning of the polling phase. According to our proposed protocol, the hash of

this transaction is included in the first ballot as well as in the signature of the first ballot.

This transaction is the first transaction of the hash chain of ballots. During the tallying

phase, the final tally message is also stored on a public blockchain such as Ethereum. The

DRE sends the final tally message to the blockchain and verifies that it is included into

the blockchain. According to our proposed protocol, the hash of the last valid cast ballot

is included in the final tally message as well as in the signature of the final tally message.

However, all the audited and confirmed ballots during the voting phase can be stored in a

cloud server. Thus, if any of the already recorded ballot in the cloud is modified, it can
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be detected by the public by observing the final tally message transaction and the group

information transaction stored in the blockchain. It also prevents a malicious bulletin board

from successfully adding a new ballot or deleting a recorded ballot in the cloud without

detection. Since, for each DRE machine, we add only two transactions (the first and the

last transaction of the hashchain) into the blockchain, the total financial cost towards mining

these ballots is at most 16 million gas. Therefore, in this case, the cost of mining is almost

negligible. In section 3.5.6.2, we analyse the timing measurements for posting each ballot.

3.5.3 Security analysis of the proposed system

In this section, we discuss the security properties of the proposed voter registration and au-

thentication system. We also show that the proposed voting system is end-to-end verifiable,

and it preserves ballot secrecy under both the intrusive and non-intrusive attacks.

3.5.3.1 Security analysis of the voter registration and authentication procedure

We first discuss the correctness and the verifiability of the voter authentication procedure.

One-Person-One-Vote without revealing any correspondence between the

person and her ballot (encrypted vote). Only one vote per one voter is ensured by the

fact that an entry (V OTER_IDi, E(gH(ri1||ri2))) on the public bulletin board (Figure 3.2)

corresponds to only one entry gH(ri1||ri2) on the output of the last mixnet server without

revealing the exact correspondence via mixnet servers [100]. The correctness of the shuffling

procedure can be verified by checking all the NIZK proofs provided by the mixnet servers

[100]. This hides any relation between the voter’s voter id V OTER_IDi (or voter’s name)

and gH(ri1||ri2). This means that it does not reveal any correspondence between the voter

and her token number H(ri1||ri2) (say, tokeni). Figure 3.2 illustrates this fact. Now since

gtokeni and PK{tokeni} are included in her ballot on the BB (Figure 3.3), one vote per one

person is ensured by verifying the fact that gtokeni in all confirmed ballots (described in

section 3.5.1.1) on the BB (Figure 3.3) are different and there exists only one entry gtokeni

on the BB (Figure 3.2) generated during the voter registration phase (section 3.4.1) and by

verifying the correctness of the NIZK proof PK{tokeni}. This can be verified by the public.
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Legitimacy of each voter. On successful verification of a voter, the voter authentica-

tion procedure proves three things: the entry corresponds to the fingerprint of the legitimate

voter, it can retrieve the correct random number ri1 from her biometrically encrypted data

Di and the voter has presented the correct random number ri2 by providing her smart card.

Therefore, the voter has provided all her secret keys and her fingerprint correctly. Hence,

the legitimacy of the voter is ensured.

An imposter has to know two the secret keys ri1 and ri2 to generate a correct token

number H(ri1||ri2) . The random number ri1 is biometrically encrypted with the voter’s

fingerprint. The biometrically encrypted data Di is kept securely by the government. The

random number ri2 is kept by the voter in a smart card. Therefore, the probability to

generate a correct token is (1/2)κ, where κ = min{l4, l1 + l2}, l4 is the number of bits in

the output of the hash function H, l1, l2 are the number of bits in ri1 and ri2 respectively.

Thus, the ballot stuffing attack is prevented.

3.5.3.2 End-to-End verifiability and integrity of the voting system.

We show that the proposed system achieves end-to-end verifiability. We also discuss the

integrity of the election tally in our system. We show how voter-initiated auditing ensures

that the votes are cast as intended and recorded as cast. We also prove that, assuming all

well-formedness proofs are proof of knowledge, if all public verification succeed, votes are

tallied as recorded. The number of voters is assumed to be less than the size of the group q.

Voter initiated auditing performs three checks. First, the voter observes that the first

part of the receipt is provided before deciding whether to audit or confirm a ballot. Second, if

the voter chooses to audit a ballot, she is provided with another receipt reflecting her choice

of vote vi and randomness ri. Thus the voter can verify that her choice of vote vi is correctly

captured by the DRE. Third, the voter matches her receipts with those on the BB. Thus,

the voter makes sure that her receipts are recorded by the BB without any modification.

The public verification of the consistency of the audited ballots guarantees that the DRE

has been successful to respond to the challenges made by the voter. Hence, the individual

verification (step 6 of the voting phase in case of audit and step 8 of the voting phase)

and the public audit consistency verification (step 2(iv) and 2(v) of the Tallying phase)
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collectively guarantee that the votes are cast as intended and recorded as cast.

In the following theorem, we show that if the ballot well-formedness, signature and tally

verification succeed, and hash of each transaction matches with the prev_hash field of the

next transaction, the proposed system achieves tallied as recorded property.

Theorem 3.5.1. In the proposed system, assuming that all proofs of well-formedness are

proofs of knowledge, if the public ballot well-formedness, signature and token number and

tally verifications succeed, and hash of each transaction matches with the prev_hash field

of the next transaction, then the reported tally t is the correct tally of all confirmed votes on

the bulletin board.

The proof of the above theorem is rather straightforward and hence omitted here. In

the proposed algorithm, any ballot is linked to its previous ballot by using the hash of the

previous ballot in the signature of the ballot. This creates an append-only list of valid

ballots. Having ballots linked to its previous ballot prevent a malicious bulletin board from

adding new ballots. It can be shown how all the public verification, proof of well-formedness

and the first tally verification checks (i.e. first of the two in equation 3.5.2) collectively

guarantee that the second tally verification (i.e. the second of the two in equation 3.5.2)

holds if and only if t =
∑

i∈Cvi, where C is the set of all confirmed votes. Hence, if hash of the

previous ballot matches with the prev_hash field of the current ballot and well-formedness,

signature, token number and tally verification succeed, the reported tally t is the correct

tally of all confirmed ballots on the BB (Figure 3.3).

If the adversary does not get access to both the secret key of the underlying signature

algorithm and a valid unused token number token, she cannot post a valid ballot on the BB.

However, if the adversary gets access to the secret key of the underlying signature algorithm,

a valid unused token number token and gets read access to the DRE storage variables (for

example, partial sum s, partial tally t and prev_hash), then she can post adversarial ballot

on the BB; however, it will be detected immediately since the DRE will not be able to post

the next ballot on the BB. The voter will not be able to match her receipts with those

on the BB. Therefore, this attack can be detected immediately. The invalid transactions

(adversarial ballots) that are causing this inconsistency can also be determined immediately
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by observing the prev_hash field of the current ballot generated by the DRE. If facilities

are available, the bulletin board may remove those invalid transactions from the end of the

bulletin board to add the current valid ballot.

Note that, in DRE-ip, if an adversary gets access to the secret key of the underlying

signature algorithm, the adversary can post ballots on the bulletin board in such a way that

it cannot be detected by the tally verification process (including the public verification and

tally verification process) in the tallying phase. A malicious DRE-ip system can also add

such valid ballots on the BB. This has been described earlier in section 3.3.

3.5.3.3 Ballot secrecy and the voter’s privacy.

In this section, we prove that our scheme is secure against all probabilistic polynomial time

adversary that try to deduce a particular voter’s vote. We show that the public bulletin

board does not reveal any information about a voter’s vote except what a tally normally

does. In an election with n1 voters, if an attacker colludes with some m1 number of voters,

she will learn the partial tally of the remaining (n1 −m1) voters; however, she will not be

able to deduce any honest voter’s vote. Note that the attacker can compute the partial tally

by subtracting the colluding voter’s votes from the final tally.

We assume that the discrete logarithm between g1 and g2 is either not known to any

party or deleted securely (see, for example, [58] for secure deletion) during the voting phase.

In addition, we assume secure deletion of the random value ri and the vote vi after each

vote is cast.

We consider intrusive attacks to the DRE machine in which the adversary gets read

access to the DRE storage for a certain period during the voting phase. The adversary

is able to observe the vote cast during that access period and also gets read access to the

running tally t, partial sum s and the running hash prev_hash. The adversary can also

read the publicly available information on the bulletin board. We prove that if an adversary

can make temporary access to the DRE machine at a certain time T , she will only learn the

partial tally of all cast votes from the start of the election to the time T and from the time

T to the end of the election.

For the purpose of this proof, we consider an abridged bulletin board where the zero-
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knowledge proofs of well-formedness are simulated. Assuming that the zero-knowledge proofs

are secure, the adversary will only have negligible advantage while dealing with them. In

the rest of the proof, we’ll not mention the zero-knowledge proofs with each ballot; however,

it is provided with each ballot.

Lemma 3.5.1. In our proposed scheme, if an attacker colludes with some m1 (m1 < n1)

number of voters and gets read access to the DRE storage after n1 voters cast their votes,

she will only learn the partial tally of (n1 −m1) uncompromised voters, not the individual

votes of the uncompromised voters.

Proof. Without any loss of generality, we assume that the indices of the uncompromised

(honest) voters are {1, 2, ..., n1−m1}, and that of the colluding voters are {n1−m1 +1, n1−

m1 + 2, ..., n1}. The DRE stores only four variables: the sum of all randomness s generated

so far for creating the ballots; the running tally t of all cast (confirmed) votes, the running

hash prev_hash (hash of the previous ballot) and the unique ballot index i. Since s, t are

initialized with 0 at the beginning of the election, if the attacker gets read access to the DRE

storage after n1 voters have cast their votes, she will learn the partial tally of n1 voters and

partial sum of randomness used to create their ballots and the running hash prev_hash after

n1 ballots. The attacker will know all the colluding voters’ vote; however, the randomness

used to create their ballots will remain secret to the attacker. This is because, after a vote

is cast, the DRE securely deletes the corresponding random number and the vote used to

compute the confirmed ballot. Each ballot is of the form (Ui, Vi) along with the unique ballot

index i, running hash prev_hash,gtoken, PK{token}, NIZK proof of ballot well-formedness

and the signature of the ballot, where Ui = gri1 and Vi = gri2 g
vi
2 ∀i ∈ {1, 2, ..., n}. The attacker

will know the colluding voters’ votes vn−m+1, vn−m+2, ..., vn. Hence, she can compute the

partial tally of uncompromised voters’ vote by subtracting these votes from the overall tally

t. However, the randomness ri will remain secret to the attacker ∀i ∈ {1, 2, ..., n−m}. The

randomness of an uncompromised voter, ri = s−{r1 + r2 + ...+ ri−1 + ri+1 + ...+ rn}. Now

all ri’s are uniformly and independently distributed over Zq. The partial sum s is known to

the attacker. Now if at least one of the random values rj where j ∈ {1, 2, ..., i−1, i+1, ..., n}

is unknown to the attacker, ri will be a random value unknown to the attacker. Hence, for
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all uncompromised voters, the value ri to compute the ballot (Ui, Vi) is random, uniformly

distributed over Zq and unknown to the attacker even if the attacker knows the partial

sum s and the running hash prev_hash. Moreover, according to the protocol, the secret

key of the encryption i.e. the discrete logarithm between g1 and g2 is either not known to

any party or securely deleted during the setup stage. Hence, to deduce an uncompromised

voter’s vote from the ballot (Ui, Vi), the attacker has to solve a discrete logarithm problem

(DLP). Therefore, if the discrete logarithm problem (DLP) is hard to solve in the group Gq,

an attacker will not be able deduce an uncompromised voter’s vote.

The adversary can control arbitrary number of voters, and in effect she can cast arbitrary

number of votes. We call the votes cast or observed by an adversary adversarial votes. The

adversary can compute the tally of non-adversarial votes cast before and after the adversarial

access period by using the knowledge of adversarial votes, final tally and the partial tally

during the adversarial access period.

Theorem 3.5.2. Let the elections begins at time Tbegin and finishes at time Tend. If the

attacker who determines arbitrary number of votes and gets temporary read access to the

DRE storage during a certain period [T0, T1] ⊂ [Tbegin, Tend] will only learn the partial tally

of non-adversarial votes cast between the time Tbegin to T0 and between T1 to Tend, but not

the individual non-adversarial votes.

Proof. The proof of this theorem follows from Lemma 3.5.1.

We have proved the theorem for one adversarial access period only. However, it can also

be extended to multiple adversarial access period.

Receipt-freeness. We consider a definition of receipt-freeness which requires that a

voter cannot produce a receipt to prove that she votes in a particular way (i.e. for a particular

candidate). Its purpose is to protect against vote buying. This definition originates from

Benaloh [15]. The proposed system provides a receipt to the voter; however, the voter cannot

prove that she votes in a particular way since her vote is encrypted. The public key g1 of

the ElGamal encryption algorithm can be generated from the group generator g2 using a

hashing algorithm in such a way that the discrete logarithm (secret key) relationship is not
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known to any party including the DRE (or this secret key is securely deleted during the

setup stage). Furthermore, after encrypting each confirmed vote, the DRE securely deletes

corresponding random variable ri and the vote vi. These information are not provided to

the voter or stored in the DRE machine. Therefore, a voter using her receipts provided by

the DRE cannot prove that she voted for a particular candidate. Hence, the the proposed

scheme is receipt-free.

3.5.4 Zero-knowledge proofs

In this section, we present the NIZK proof algorithms that is required for well-formedness

proof of the ballot. We first recall the NIZK proof algorithms used in DRE-ip [123]. We

then recall the efficient NIZK proof algorithm proposed by Lin et al. in [91]. Subsequently,

we analyze the efficient NIZK proof protocol proposed in [91] and show that it does not

satisfy the required security properties of a zero-knowledge proof. In particular, the efficient

NIZK proposed in [91] does not satisfy the completeness and the witness indistinguishability

properties of zero-knowledge proof. Thereafter, we propose a NIZK proof algorithm that is

more efficient than the NIZK proof presented in DRE-ip [123]. We prove that our proposed

efficient NIZK proof algorithms satisfy all the required security properties of a NIZK proof.

The security proofs of our proposed efficient NIZK proof algorithms are given in section

3.5.4.4.

Assume that there are n candidates contesting in the election. Let us assume that the

vote vi in the i -th ballot is given to the j-th candidate, where j ∈ {1, 2, ..., n}. As discussed in

section 3.5.1.3, we encode the vote for the j-th candidate as v = N j−1, where j ∈ {1, 2, ..., n}.

In this case, the i-th ballot will be of the form ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi},

PK{token}), audited, ri, vi, sign) in case of audit or ((i, gtoken, prev_hash, Ui, Vi, PWF {Vi},

PK{token}), confirmed, sign) in case of confirmed vote, where Ui = gri1 and Vi = gri2 g
Nj−1

2 .

The well-formedness proof PWF {Vi} is a 1-out-of-n disjunctive proof and can be stated as:

PWF {Vi : g1, g2, Ui} = PK{ri : ∨nj=1((Ui = gri1 ) ∧ (Vi/g
Nj−1

2 = gri2 ))}

= PK{ri : (Ui = gri1 ) ∧ (∨nj=1(Vi/g
Nj−1

2 = gri2 ))}.

Some notions are defined in Table 3.3.
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Notation Description
N An upper bound on total number of voters
n The number of candidates contesting in the election, n(n >= 2)
vi The vote corresponding to i-th ballot, the value N j−1, where j ∈ {1, 2, ..., n}
λ The secret ri corresponding to the i-th ballot
Ui For the i-th ballot, gri1

Vi For the i-th ballot, gri2 .g
Nj−1

2 , where j ∈ {1, 2, ..., n}
Γ′ Ui (i.e. gri1 ) corresponding to the i-th ballot
γ′ It represents g1

Γ′′l Vi/g
N l−1

2 corresponding to the i-th ballot, where l ∈ {1, 2, ..., n}
γ′′l It represents g2, ∀l ∈ {1, 2, ..., n}

Table 3.3: Notations

3.5.4.1 Revisiting the 1-out-of-n NIZK proof used in DRE-ip

Algorithm 1 (resp. Algorithm 2) represents the prover algorithm (resp. verifier algorithm)

for generation (resp. verification) of the 1-out-of-n NIZK proof used in DRE-ip. This 1-out-

of-n NIZK proof is extended from the 1-out-of-2 NIZK proof given in [123]. Algorithm 1

(resp. Algorithm 2) is written to prove (resp. verify) a proposition of the form ∨nl=1((Γ′ =

{γ′}λ) ∧ (Γ′′l = {γ′′l }λ)).

Algorithm 1: A prover with identifier ID generates a proof of knowledge of a secret
λ such that ∨nl=1((Γ′ = {γ′}λ) ∧ (Γ′′l = {γ′′l }

λ)) for known ID, n,Γ′, γ′, (Γ′′l , γ
′′
l )nl=1,

where the vote is given to the j-th candidate, j ∈ {1, 2, ..., n}.
Input : ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1, λ, j such that Γ′ = {γ′}λ and Γ′′j = {γ′′j }λ

Output: Π = PK{λ : ∨nl=1((Γ′ = {γ′}λ) ∧ (Γ′′l = {γ′′l }λ))}
begin

choose random w, r1, c1, r2, c2, ..., rj−1, cj−1, rj+1, cj+1, ..., rn, cn ∈ Zq
calculate t11 = {γ′}r1{Γ′}c1 , t12 = {γ′′1}

r1{Γ′′1}c1 , t21 = {γ′}r2{Γ′}c2 , t22 =
{γ′′2}

r2{Γ′′2}c2 , ...., tj−11 = {γ′}rj−1{Γ′}cj−1 , tj−12 = {γ′′j−1}
rj−1{Γ′′j−1}cj−1 , tj1 =

{γ′}w, tj2 = {γ′′j }
w, tj+11 = {γ′}rj+1{Γ′}cj+1 , tj+12 =

{γ′′j+1}
rj+1{Γ′′j+1}cj+1 , ..., tn1 = {γ′}rn{Γ′}cn , tn2 = {γ′′n}

rn{Γ′′n}cn
calculate
c = H(ID, (γ′,Γ′, γ′′l ,Γ

′′
l )
n
l=1, (tl1, tl2)nl=1),

calculate
cj = c− (c1 + c2 + ....+ cj−1 + cj+1 + ...+ cn)
calculate rj = w − cjλ
return Π = (c1, c2, ...., cj−1, cj , cj+1, ..., cn, r1, r2, ..., rj−1, rj ,
rj+1, ..., rn)

end
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Algorithm 2: Verification of proof Π generated by Algorithm 1 given
ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1. However, the verifier does not know to which candidate

(i.e. j) the vote is given.
Input : ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1,Π = (c1, c2, ..., cn, r1, r2, ..., rn)

Output: success or failure
begin

calculate
t11 = {γ′}r1{Γ′1}c1 , t12 = {γ′′1}

r1{Γ′′1}c1 , t21 = {γ′}r2{Γ′2}c2 , t22 =
{γ′′2}

r2{Γ′′2}c2 , ...,
tn1 = {γ′}rn{Γ′n}cn , tn2 = {γ′′n}

rn{Γ′′n}cn
calculate
c′ = H(ID, (γ′,Γ′, γ′′l ,Γ

′′
l )
n
l=1, (tl1, tl2)nl=1)

if c′ = (c1 + c2 + ...+ cn) then
return success

else
return failure

end

end

3.5.4.2 Revisiting the efficient 1-out-of-n NIZK proof proposed by Lin et al.

[91]

Lin et al. have proposed a 1-out-of-n NIZK proof [91] and claimed that it is more efficient

than the original NIZK proof. We describe the 1-out-of-n NIZK proof proposed by Lin et al.

[91] almost verbatim. We then analyze this NIZK proof and show that it does not satisfy

the properties of zero-knowledge proof. We describe the 1-out-of-n NIZK proof in our case.

1-out-of-n NIZK proof by Lin et al. [91]. The prover and the verifier are divided

into two parts respectively depending on the parity of j (even or odd), where the vote is

given to the j-th candidate.

The prover chooses a random number w. If j is even, the prover chooses random

numbers rβ, dβ,∀β ∈ {2, 4, ..., n}; otherwise, if j is odd, the prover chooses random num-

bers rη, dη,∀η ∈ {1, 3, ..., n − 1}. Thereafter, the prover calculates the vote (Ui, Vi) =

(gri1 , g
ri
2 g

Nj−1

2 ) and (tj1, tj2) = (gw1 , g
w
2 ). The prover then calculates (tl1, tl2) = (grl1 U

dl
i ,

grl2 {Vi/gN
l−1

2 }dl), where l = 2, 4, ..., n if j is even or l = 1, 3, ..., n − 1 if j is odd. For non-

interactiveness, call = H(ri||Ui||Vi). Then the prover computes ceven = H(ri||Ui||Vi||

{tl1, tl2}nl=2(l∈even)) if j is even or codd = H(ri||Ui||Vi||{tl1, tl2}n−1
l=1(l∈odd)) if j is odd.
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Then the prover computes the following parameters based on the parity of j.

If j is even, the prover calculates (tβ1, tβ2) = (g
rβ
1 U

dβ
i , g

rβ
2 {Vi/gN

β−1

2 }dβ ), codd = call −

ceven, dj = ceven −
∑

βdβ, rj = w − ridj .

If j is odd, the prover calculates (tη1, tη2) = (g
rη
1 U

dη
i , g

rη
2 {Vi/gN

η−1

2 }dη), ceven = call −

codd, dj = codd −
∑

ηdη, rj = w − ridj .

Finally, the verifier sends ({tl1, tl2, dl, rl}nl=2(l∈even), Ui, Vi, codd) to the verifier if j is even

or ({tl1, tl2, dl, rl}n−1
l=1(l∈odd), Ui, Vi, ceven) to the verifier if j is odd.

The verifier verifies the correctness of ceven or codd =
∑

ldl, call = ceven + codd and

(tl1, tl2) = (grl1 U
dl
i , g

rl
2 {Vi/gN

l−1

2 }dl), where l = {2, 4, ..., n}or{1, 3, ..., n − 1}. If the verifier

verifies these conditions successfully, it returns success; otherwise, it returns failure.

Analysis of this 1-out-of-n NIZK proof. According to the protocol, the verifier has

to compute H(ri||Ui||Vi) or H(ri||Ui||Vi||{tl1, tl2}nl=2(l∈even)) if j is even or H(ri||Ui||Vi||

{tl1, tl2}n−1
l=1(l∈odd)) if j is odd to verify the conditions: ceven or codd =

∑
ldl, call = ceven+codd.

However, the verifier cannot compute these hash functions since she does not know the secret

value ri used in the argument of the hash function. Therefore, this 1-out-of-n NIZK proof

does not satisfy the completeness property of the zero-knowledge proof.

Moreover, according to the protocol, the verifier has to verify the conditions (tl1, tl2) =

(grl1 U
dl
i , g

rl
2 {Vi/gN

l−1

2 }dl), where l = {2, 4, ..., n}or{1, 3, ..., n−1}. To verify these conditions,

the verifier has to know whether j is even or odd. This means that the verifier has to know

whether the voter has given her vote to an even numbered candidate or an odd numbered

candidate. In other words, if the verifier verifies it successfully when l = {2, 4, ..., n}, the

verifier will know that the voter has given her vote to an even numbered candidate (since

j is even). Similarly, if the verifier verifies it successfully when l = {1, 3, ..., n − 1}, the

verifier will know that the voter has given her vote to an odd numbered candidate (since j is

odd). Therefore, this 1-out-of-n NIZK proof does not satisfy the witness indistinguishability

property of the zero-knowledge proof.

3.5.4.3 Our proposed efficient 1-out-of-n NIZK proof

We propose an efficient 1-out-of-n NIZK proof. Our proposed 1-out-of-n NIZK proof satisfy

all the required security properties of the zero-knowledge proof. The security proofs of
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Algorithm 3: A prover with identifier ID generates a proof of knowledge of a secret
λ such that (Γ′ = {γ′}λ) ∧ (∨nl=1(Γ′′l = {γ′′l }λ)) for known ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1,

where the vote is given to the j-th candidate, j ∈ {1, 2, ..., n}.
Input : ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1, λ, j such that Γ′ = {γ′}λ and Γ′′j = {γ′′j }λ

Output: Π = PK{λ : (Γ′ = {γ′}λ) ∧ (∨nl=1(Γ′′l = {γ′′l }λ))}
begin

choose random w, r1, c1, r2, c2, ..., rj−1, cj−1, rj+1, cj+1, ..., rn, cn ∈ Zq
calculate
w1 = w+(r1+r2+...+rj−1+rj+1+...+rn)+(c1+c2+...+cj−1+cj+1+...+cn)λ

calculate t1 = {γ′}w1 , t12 = {γ′′1}
r1{Γ′′1}c1 , t22 = {γ′′2}

r2{Γ′′2}c2 , ...., tj−12 =
{γ′′j−1}

rj−1{Γ′′j−1}cj−1 , tj2 = {γ′′j }
w, tj+12 = {γ′′j+1}

rj+1{Γ′′j+1}cj+1 , ..., tn2 =

{γ′′n}
rn{Γ′′n}cn

calculate
c = H(ID, γ′,Γ′, (γ′′l ,Γ

′′
l )
n
l=1, t1, (tl2)nl=1),

calculate
cj = c− (c1 + c2 + ....+ cj−1 + cj+1 + ...+ cn)
calculate rj = w − cjλ
return Π = (c1, c2, ...., cj−1, cj , cj+1, ..., cn, r1, r2, ..., rj−1, rj ,
rj+1, ..., rn)

end

Algorithm 4: Verification of proof Π generated by Algorithm 3 given
ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1. However, the verifier does not know to which candidate

(i.e. j) the vote is given.
Input : ID, n,Γ′, γ′, (Γ′′l , γ

′′
l )nl=1,Π = (c1, c2, ..., cn, r1, r2, ..., rn)

Output: success or failure
begin

calculate
t1 = {γ′}r1+r2+...+rn{Γ′1}c1+c2+...+cn , t12 = {γ′′1}

r1{Γ′′1}c1 , t22 = {γ′′2}
r2{Γ′′2}c2 , ...,

tn2 = {γ′′n}
rn{Γ′′n}cn

calculate
c′ = H(ID, γ′,Γ′, (γ′′l ,Γ

′′
l )
n
l=1, t1, (tl2)nl=1)

if c′ = (c1 + c2 + ...+ cn) then
return success

else
return failure

end

end

the proposed 1-out-of-n NIZK proof are given in section 3.5.4.4. We have modified the

zero-knowledge proof involving the conjunction and disjunction of predicates to improve

its performance. The 1-out-of-n (Algorithm 3 and Algorithm 4) proofs presented here are
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efficient than the proofs presented in DRE-ip [123]. Algorithm 3 (resp. Algorithm 4) is

written to prove (resp. verify) a proposition of the form ∨nl=1((Γ′ = {γ′}λ) ∧ (Γ′′l = {γ′′l }λ))

which is equivalent to (Γ′ = {γ′}λ)∧(∨nl=1(Γ′′l = {γ′′l }λ)). As we assumed previously, the vote

is given to the j-th candidate. We assume that the simultaneous multiple exponentiation

(SME) [97] technique is used to optimize the computation of a term of the form gxhy. The

computation cost of the term gxhy is around 1.2 exponentiation using SME technique. The

prover algorithm (Algorithm 3) requires (1.2(n−1)+2) exponentiations; however, the prover

algorithm (Algorithm 1) presented in DRE-ip requires (2.4(n− 1) + 2) exponentiations. To

verify such zero-knowledge proof, the verifier algorithm (Algorithm 4) requires 1.2(n + 1)

exponentiations; however, the verification algorithm (Algorithm 2) presented in DRE-ip

requires 2.4n exponentiations. In Table 3.4 , we theoretically analyse the cost of execution

of the prover and the verifier of the 1-out-of-n NIZK proof and our proposed efficient 1-out-

of-n NIZK proof. Since exponention operations are the most time consuming operations, we

only include the number of exponentiations in theoretical analysis (Table 3.4).

Scheme Prover Verifier
1-out-of-n NIZK proof (2.4(n− 1) + 2)e 2.4ne

Proposed 1-out-of-n NIZK proof (1.2(n− 1) + 2)e 1.2(n+ 1)e

Table 3.4: Computation complexity of the 1-out-of-n NIZK and the proposed 1-out-of-n
NIZK proof. e represents the exponentiation operation.

These algorithms can be extended to prove any proposition of the form ∧ki=1ϕi∧(∨nl=1)ψl)

for a set of assertions {ϕ1, ϕ2, ..., ϕk, ψ1, ψ2, ..., ψn}, where the number k and n are known

to both the prover and the verifier. To generate such zero-knowledge proof, the prover al-

gorithm (extended version of Algorithm 3) requires (1.2(n − 1) + k + 1) exponentiations;

however, the prover algorithm (extended version of Algorithm 1) presented in DRE-ip re-

quires (1.2(k + 1)(n − 1) + k + 1) exponentiations. To verify such zero-knowledge proof,

the verifier algorithm (extended version of Algorithm 4) requires 1.2(n+k) exponentiations;

however, the verification algorithm (extended version of Algorithm 2) presented in DRE-ip

requires 1.2n(k+1) exponentiations. Therefore, the proposed NIZK proofs are almost (k+1)

times more efficient than the NIZK proofs presented in [123].
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3.5.4.4 Security properties of zero-knowledge proof of the prover Algorithm 3

and the verifier Algorithm 4.

Algorithm 5: A prover with identifier ID generates a proof of knowledge of a
secret λ such that (Γ′ = {γ′}λ) ∧ ((Γ′′1 = {γ′′1}λ) ∨ (Γ′′2 = {γ′′2}λ)).
Input : ID,Γ′, γ′, (Γ′′l , γ

′′
l )2
l=1, λ such that Γ′ = {γ′}λ and Γ′′1 = {γ′′1}λ

Output: Π = PK{λ : (Γ′ = {γ′}λ) ∧ ((Γ′′1 = {γ′′1}λ) ∨ (Γ′′2 = {γ′′2}λ))}
begin

choose random w, r2, c2 ∈ Zq
calculate w1 = w + r2 + c2λ
calculate

t1 = {γ′}w1 , t12 = {γ′′1}w, t22 = {γ′′2}r2{Γ′′2}c2 (3.5.3)

calculate
c = H(ID, γ′,Γ′, (γ′′l ,Γ

′′
l )

2
l=1, t1, (tl2)2

l=1),

c1 = c− c2 (3.5.4)

calculate
r1 = w − c1λ (3.5.5)

return η = (c1, c2, r1, r2)

end

Algorithm 6: Verification of proof Π generated by Algorithm 5 given
ID,Γ′, γ′, (Γ′′l , γ

′′
l )2
l=1. The discrete logarithmic relationships for the pairs (γ′, γ′′1 )

and (γ′, γ′′2 ) are unknown.
Input : ID,Γ′, γ′, (Γ′′l , γl)

2
l=1,Π = (c1, c2, r1, r2)

Output: successful or failure
begin

calculate
t1 = {γ′}r1+r2{Γ′}c1+c2 , t12 = {γ′′1}r1{Γ′′1}c1 and
t22 = {γ′′2}r2{Γ′′2}c2
calculate
c′ = H(ID, γ′,Γ′, (γ′′l ,Γ

′′
l )

2
l=1, t1, (tl2)2

l=1)
if c′ = c1 + c2 then

return successful
else

return failure
end

end

We have proved the security properties of the proposed efficient NIZK proof for two

candidates i.e. for 1-out-of-2 NIZK proof. The security proofs can be easily extended for n
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candidates i.e. for 1-out-of-n NIZK proof. Algorithm 5 (resp. Algorithm 6) is presented to

prove (rep. verify) a proposition of the form ϕ′ ∧ (ϕ1 ∨ ϕ2) for three assertions ϕ′, ϕ1 and

ϕ2, where the prover knows discrete logarithms for the pair (ϕ′, ϕ1). Here ϕ′, ϕ1 and ϕ2 are

assertions (Γ′ = {γ′}λ), (Γ′′1 = {γ′′1}λ) and (Γ′′2 = {γ′′2}λ) respectively. In order for prover P

and verifier V to achieve the security properties, we must restrict the computational power of

V or any attacker so that it is bounded by a polynomial in the size of common input. Clearly,

without this restriction we need not talk about zero-knowledge since V of an unbounded

computational power can find P ’s private input hidden behind common input. The discrete

logarithm for the pairs (γ′, γ′′1 ) and (γ′, γ′′2 ) are unknown. Note that this assumption is also

made in [123] for construction of 1-out-of-n NIZK. Otherwise, an attacker can find out the

set corresponding to the witness i.e. the witness indistinguishability property will be lost.

Completeness:

By direct observation of the protocol, it is straightforward to see that the completeness

property is preserved. This means that, if the prover generates (c1, c2, r1, r2) and follow the

protocol instruction, the honest verifier will always accept it.

Soundness:

We need to find soundness error probability.

Let us assume that for the same commitment (t1, t12, t22) with fixed r2, c2, w, two different

response viz. (c1, c2, r1, r2) and (c1
1, c

1
2, r

1
1, r

1
2) are generated, where c1 6= c1

1. Now we can

compute a witness for λ i.e. λ = (r1 − r1
1)/(c1

1 − c1). Therefore, the prover P knows the

witness λ. Similarly, let us assume that for the same commitment (t1, t12, t22) with fixed

r1, c1, w, two different response viz. (c1, c2, r1, r2) and (c1
1, c

1
2, r

1
1, r

1
2) are generated, where

c2 6= c1
2. Now we can compute a witness for λ i.e. λ = (r2− r1

2)/(c1
2− c2). Therefore, in this

case also, the prover P knows the witness λ.

Suppose a prover, P ∗, is a cheater, i.e., he does not know the correct discrete logarithm

value for any of the pair (ϕ′, ϕ1) or (ϕ′, ϕ2).

For a commitment (t1, t12, t22) he chooses in equation 3.5.3, the verifier is waiting for a

response (c1, c2, r1, r2) such that

c1 + c2 = H(ID, γ′,Γ′, (γ′′l ,Γ
′′
l )

2
l=1, {γ′}r1+r2{Γ′}c1+c2 , {γ′′1}r1{Γ′′1}c1 , {γ′′2}r2{Γ′′2}c2). (3.5.6)
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Since the prover, P ∗, does not know the correct discrete logarithm, the best known strategy

to compute such response is to guess (r1, r2) and any one of c1 or c2 first as follows:

1. picking random r1 ∈R Zq and r2 ∈R Zq uniformly;

2. picking either of c1 or c2 uniformly from the image space of the hash function H i.e.

picking c2 ∈R Image(H) (assume H has the same large output space as Zq)

3. computing

c1 = H(ID, γ′,Γ′, (γ′′l ,Γ
′′
l )

2
l=1, {γ′}r1+r2{Γ′}c1+c2 , {γ′′1}r1{Γ′′1}c1 , {γ′′2}r2{Γ′′2}c2) − c2. (or

c2 = H(ID,

γ′,Γ′, (γ′′l ,Γ
′′
l )

2
l=1, {γ′}r1+r2{Γ′}c1+c2 , {γ′′1}r1{Γ′′1}c1 , {γ′′2}r2{Γ′′2}c2)− c1, if he picks c1 ∈R

Image(H) in step 2).

This is a well-known computationally hard problem to find such a c1 since H is a random

oracle and gx is a one-way function. Now since he does not know the discrete logarithm

corresponding to any of the pair (ϕ′, ϕ1) or (ϕ′, ϕ2) and H is a random oracle and gx is a one-

way function, the soundness error probability is (1/2n), where n is the security parameter

log(q).

Zero-knowledgeness:

We’ll show that although the algorithm is not a full zero-knowledge, the algorithm does

not reveal any information about P ’s private input λ. Note that the Schnorr signature

scheme (NIZK) and the 1-out-of-n zero-knowledge proof described in [123] are also not a

full zero-knowledge but they does not reveal any information about P ’s private input.

For a response (c1, c2, r1, r2) to be valid and accepted by the verifier V , they must satisfy

the equation

c1 = H(ID, γ′,Γ′, (γ′′l ,Γ
′′
l )

2
l=1, {γ′}r1+r2{Γ′}c1+c2 , {γ′′1}r1{Γ′′1}c1 , {γ′′2}r2{Γ′′2}c2)− c2. (3.5.7)

Viewed by a third party, equation 3.5.7 means either of the following two cases:

1. the equation is constructed by P using her private input, hence P discloses that she

has been in interaction with verifier V , or

2. an attacker or a verifier has successfully broken the random oracle hash function H

of large output space Zq and another one-way function gx, because she has constructed the
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equation 3.5.7.

This is a well-known hard problem since H is a random oracle and gx is a one-way

function.

Since an attacker or verifier is polynomially bounded, the third party will of course believe

that (1) is the case. The response (c1, c2, r1, r2) is precisely a signature under Schnorr’s

signature scheme. Since only P could have issued such signature, the third party has made

correct judgement.

A simulator cannot generate such response (c1, c2, r1, r2) without knowing the discrete

logarithm corresponding to any of the pair (ϕ′, ϕ1) or (ϕ′, ϕ2).

Therefore, it is not a full zero-knowledge. However, we’ll show that the proof transcript

(c1, c2, r1, r2) does not reveal any information about P ’s private input (discrete logarithm).

Let us consider the equation 3.5.5 calculated by prover P i.e.

r1 = w − c1λ. Here w is chosen uniformly from Zq independent from all previous

instances and λ is P ’s private input. After receiving a valid response (c1, c2, r1, r2), c1 and

r1 are known to the verifier V and any attacker.

Note that c2 and r2 are chosen uniformly from Zq independent from all previous instances.

Let C̃2 and R̃2 denote random variables corresponding to c2 and r2 respectively.

c being the output of the hash function H is also uniformly distributed over the image

space of H. Let us assume the image space of H is Zq. Let C̃ denote the random variable

corresponding to c.

We assume that there is a probability distribution for λ which determines a random

variable λ̃. Let W̃ denotes the random variable corresponding to w. The three random

variables viz. C̃1, W̃ and λ̃ determine a random variable R̃ over Zq representing r1, where

r1 = w − c1λ.

Let t̃1, ˜t12 and ˜t22 denote the random variables representing t1 = {γ′}w1 , t12 = {γ′′1}w

and t22 = {γ′′2}r2{Γ′′2}c2 respectively, where w1 = w + r2 + c2λ.

Now, since r2 and c2 are chosen uniformly and independently from Zq, the random

variables C̃2 and ˜t22 are also independent.

Also since r2, c2 and w are chosen uniformly and independently from Zq, the random

variables C̃2 and t̃1 are also independent.
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Hence the random variables C̃2 and C̃ are also independent, where the random variable

C̃ represents c = H(ID, γ′,Γ′, (γ′′l ,Γ
′′
l )

2
l=1, t1, (tl2)2

l=1).

Consider the equation 3.5.4 i.e. c1 = c − c2. Here c2 is uniformly distributed and

independent of c. Therefore, the random variable C̃1 is also uniformly distributed and

independent of C̃. This follows from following well-known result from probability theory.

Two random variables X1 and X2 are such that (X1, X2) ∈ G × G, where (G,+) is

a group. Given that (1) X1 and X2 are independent and (2) X1 is uniform over G. Let

X3 = X1 + X2, then (1) X2 and X3 are independent and (2) X3 has uniform distribution

over G.

Since C̃1 is independent of C̃, C̃1 is also independent of W̃ and λ̃.

Therefore, three random variables W̃ , C̃1 and λ̃ are uniformly distributed over Zq and

independent of each other. Let n denotes the security parameter log(q). Now, Pr[R̃ = r1]

= Σw∈ZqΣc1∈ZqPr[W̃ = w]Pr[C̃1 = c1]Pr[λ̃ = (w − r1)c1
−1] = (1/2n)Σw∈ZqΣc1∈ZqPr[C̃1 =

c1]Pr[λ̃ = (w − r1)c1
−1] = (1/2n)2Σw∈ZqΣc1∈ZqPr[λ̃ = (w − r1)c1

−1] = (1/2n)2Σw∈Zq1

= (1/2n)2.(2n) = (1/2n).

Pr[R̃ = r1|λ̃ = λ] = Σc1∈ZqPr[C̃1 = c1]Pr[W̃ = r1 + c1λ] = (1/2n)Σc1∈ZqPr[W̃ =

r1 + c1λ] = (1/2n).

Therefore, Pr[λ̃ = λ|R̃ = r1] = (Pr[λ̃ = λ]Pr[R̃ = r1|λ̃ = λ]/Pr[(R̃ = r1]) = (Pr[λ̃ =

λ].(1/2n))/(1/2n)

= Pr[λ̃ = λ]. (3.5.8)

Therefore, the r1 does not reveal any information about P ’s private input λ. r1 forms a

one-time pad (shift cipher) encryption of P ’s private input λ, which provides information-

theoritic quality of security i.e. it has prefect secrecy.

Although we have used the same λ for constructing t1 = {γ′}w1 , where w1 = w+r2+c2λ.

Due to hardness of the discrete logarithm problem, an attacker or a verifier cannot find w1

from {γ′}w1 . Also, the logarithmic relationship for the pairs (γ′, γ′′1 ), (γ′, γ′′2 ) are unknown.

t1 does not reveal any more information about P ’s private input λ than that has already

been revealed by their common input Γ′ = {γ′}λ.

Therefore, the algorithm does not reveal any more information about P ’s private input
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λ than that has been revealed by their common inputs Γ′, Γ′′1, and Γ′′2.

Witness Indistinguishability:

We have to show that the distribution of the conversation is independent of the qualified

set A corresponding to P ’s private input λ. Since the prover generates a proof of knowledge

of a secret λ such that (Γ′ = {γ′}λ) ∧ ((Γ′′1 = {γ′′1}λ) ∨ (Γ′′2 = {γ′′2}λ)). A verifier and

an attacker already know that the assertion (Γ′ = {γ′}λ) is in the qualified set A. Our

aim is to prevent an attacker or a verifier to know that which one among (Γ′′1 = {γ′′1}λ)

and (Γ′′2 = {γ′′2}λ)) corresponds to the P ’s private input λ. Let ϕ′ = (Γ′ = {γ′}λ) and

ϕl = (Γ′′l = {γ′′l }λ), where l = 1, 2.

We use the same notation and random variables described in the previous section.

Since, w, c2 and r2 are chosen uniformly and independently from Zq(i.e. t1∈RGq and

t12∈RGq), t̃1, ˜t12 are independent from the qualified assertion ϕ1. Since the logarithmic

relationships for the pairs (γ′, γ′′1 ) and (γ′, γ′′2 ) are unknown to attacker, t̃1, ˜t12, ˜t22 are also

independent from the qualified assertion ϕ1.

Therefore, C̃ is also independent from the qualified assertion ϕ1.

Since c2 is chosen uniformly and independently from Zq, then the distribution of (c1, c2)

is also independent of the qualified assertion ϕ1.

Since c1 is uniformly distributed and independent from w, from equation 3.5.5 we can

conclude that R̃ is independent from W̃ and hence R̃ is independent of the assertion ϕ1.

Therefore, the conversation (c1, c2, r1, r2) is independent of the qualified assertion ϕ1 and

hence the algorithm is witness-indistinguishable.

3.5.4.5 Other NIZK proofs used in section 3.5.1.1.

In this section, we present the NIZK proof algorithms that are required in section 3.5.1.1.

Algorithm 7 (resp. Algorithm 8) represents the prover algorithm (resp. verifier algorithm)

for generation (resp. verification) of the NIZK proof PK{token : Γ′ = gtoken} required in

the voting and tallying phase in section 3.5.1.1 for an encrypted vote (Ui, Vi). Algorithm 9

(resp. Algorithm 10) represents the prover algorithm (resp. verifier algorithm) for generation

(resp. verification) of the NIZK proof PK{s : (Γ1 = gs1)∧ (Γ2 = gs2)} and PK{s.prev_hash :

(Γ3 = g
s.prev_hash
1 )∧(Γ4 = g

s.prev_hash
2 )} required in the voting and tallying phase in section
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Algorithm 7: A prover with identifier ID generates a NIZK proof of knowledge of
a secret x such that (Γ′ = gx) for known ID,Γ′, g and the encrypted vote (Ui, Vi).
Input : ID,Γ′, g, x, Ui, Vi such that (Γ′ = gx)
Output: η = PK{x : (Γ′ = gx)}
begin

choose random w ∈ Zq
calculate
t1 = gw.
calculate
c = H(ID,Ui, Vi, g,Γ

′, t1)
calculate r = w − cx
return η = (c, r)

end

Algorithm 8: Verification of proof η generated by Algorithm 7 given ID,Γ′, g and
the encrypted vote (Ui, Vi).
Input : ID,Γ′, g, Ui, Vi, η = (c, r)
Output: success or failure
begin

calculate
t1 = grΓ′c

calculate
c1 = H(ID,Ui, Vi, g,Γ

′, t1)
if c1 = c then

return success
else

return failure
end

end

Algorithm 9: A prover with identifier ID generates a NIZK proof of knowledge
of a secret x such that ((Γ1 = gx1 ) ∧ (Γ2 = gx2 )) for known ID,Γ1, g1,Γ2, g2.
Input : ID,Γ1, g1,Γ2, g2, x such that ((Γ1 = gx1 ) ∧ (Γ2 = gx2 ))
Output: η = PK{x : ((Γ1 = gx1 ) ∧ (Γ2 = gx2 ))}
begin

choose random w ∈ Zq
calculate
t1 = gw1 , t2 = gw2 .
calculate
c = H(ID, g1,Γ1, g2,Γ2, t1, t2)
calculate r = w − cx
return η = (c, r)

end
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Algorithm 10: Verification of proof η generated by Algorithm 9 given
ID,Γ1, g1,Γ2, g2.
Input : ID,Γ1, g1,Γ2, g2, η = (c, r)
Output: success or failure
begin

calculate
t1 = gr1Γc1, t2 = gr2Γc2
calculate
c1 = H(ID, g1,Γ1, g2,Γ2, t1, t2)
if c1 = c then

return success
else

return failure
end

end

3.5.1.1.

3.5.5 Comparison

In this section, we’ll discuss how our proposed system compares with other DRE-based

verifiable e-voting systems. In particular, we compare with Chaum’s Votegrity [31], Neff’s

MarkPledge [101], VoteBox [119], Star-Vote [13], DRE-i [59], vVote [39], and DRE-ip [123].

All of these systems consider voter registration and voter authentication outside of their

scope and assume that they are performed securely and correctly. We propose a voter

registration and authentication mechanism. All of the above mentioned systems rely on a

secure bulletin board. In our proposed system, if the BB is insecure, it will be detected by

the public or individual voters during the voting phase or tallying phase. We use either the

cloud server or the blockchain (method 1) or both the blockchain and cloud server (method

2) to store the ballots. A comparison of these systems in terms of their underlying security

assumptions is given in Table 3.5 (also see DRE-ip [123] for security assumptions of these

systems).

We now look at the computational complexity of different DRE-based e-voting systems

and compare it with our proposed system. We do not consider Votegrity, MarkPledge, and

vVote since they use mixnets and the computational complexity depends on the implemen-

tation of those mixnets. Here, we have computed all calculations based on a two-candidate
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system A B C D E F G H I J
Votegrity • • • • • • ◦ • • •
MarkPledge • • • • • • ◦ • • •
VoteBox • • • • • • ◦ • • •
STAR-Vote • • • • • • ◦ • • •
DRE-i ◦ • • • • • • ◦ • •
vVote • • • • • • ◦ • • •
DRE-ip ◦ • • • • • ◦ ◦ • •
Proposed system using cloud server ◦ • ◦ • • • ◦ ◦ ◦ ◦
Proposed system using blockchain (method 1) ◦ • ◦ • • • ◦ ◦ ◦ ◦
Proposed system using both cloud and
blockchain (method 2)

◦ • ◦ • • • ◦ ◦ ◦ ◦

Table 3.5: Security assumptions for some DRE-based verifiable e-voting systems. Columns
are represented as - A: Reliable Tallying authorities, B: Sufficient Voter-initiated auditing,
C: Protection against malicious bulletin board, D: Secure setup, E: Secure random number
generator, F: Secure Deletion, G: Secure Ballot Storage, H: Trust-worthy tallying authorities,
I: Secure computation (with proof of correctness) of the final tally without revealing the
results from each DRE machine when multiple DRE machines are used, J: voter registration
and authentication. •: assumption is required, ◦: assumption is not required.

election, encryption based on ElGamal cryptosystem and one tallying authority (TA) if

present. If the number of TAs increases, the complexity of tally calculations and verifica-

tion of the systems requiring tallying authorities also increases. We assume that the TA, if

present, provides proof of correctness as required by the end-to-end verifiability. We assume

that the simultaneous multiple exponentiation (SME) [97] technique is used for optimiza-

tion. Using this technique, the computation cost of the term gxhy is equivalent to around 1.2

exponentiations. The voter authentication process and the voting phase can be performed

in pipeline. Table 3.6 summarizes the computational complexity of different systems (also

see DRE-ip [123] for performance comparison of these systems).

The ElGamal encryption for a ballot takes around 2 exponentiations. The zero-knowledge

proof PWF {Vi} takes 3.2 exponentiations to generate and 3.6 exponentiations to verify us-

ing the proposed efficient NIZK proof Algorithm 3 (for generation) and Algorithm 4 (for

verification) described in the section 3.5.4. Therefore, a ballot creation requires 5.2 ex-

ponentiations for both audited and confirmed ballot. The computation complexity of some

well-knwon e-voting systems are summerized in Table 3.6. All of these systems consider voter

registration and authentication outside of their scope; however, We have introduced a voter
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system A B C D
VoteBox 6.4|B|e (6.8|A| +

4.8|C|)e
|C|m +
3e

|C|m+ 2.4e

STAR-Vote 6.4|B|e (6.8|A| +
4.8|C|)e

|C|m +
3e

|C|m+ 2.4e

DRE-i 10.8|B|e (9.6|A| +
4.8|C|)e

|B|m+ 1e

DRE-ip 6.4|B|e (6.8|A| +
4.8|C|)e

2|C|m+ 2e

Proposed system 5.2|B|e (5.6|A| +
3.6|C|)e

8e (2|C| + 1)m +
4.8e

Table 3.6: Computation complexity of some DRE-based verifiable e-voting systems assuming
two-candidate election. Columns are represented as - A: Ballot calculation, B: Ballot well-
formedness and consistency verification, C: Tally calculation, D: Tally verification. B,A,C
represent all, audited and confirmed ballots respectively. e: exponentiation and m: multi-
plication.

authentication mechanism in the system. This introduces some additional computations in

our system. The computation of gtoken requires one exponentiation. The zero-knowledge

proof PK{token} takes 1 exponentiation to generate and 1.2 exponentiations to verify using

the NIZK proof Algorithm 7 (for generation) and Algorithm 8 (for verification) described

in section 3.5.4.5. Therefore, a ballot creation requires about 7.2 exponentiations for both

audited and confirmed ballot. The ballot well-formedness and consistency verification takes

about 6.8 exponentiations and 4.8 exponentiations for audited ballot and confirmed ballot

respectively. The tally calculation and tally verification require about 8 exponentiations and

(2|C| + 1)m + 4.8e computations respectively, where ‘m’ and ‘e’ denote the multiplication

and exponentiation respectively.

However, in case of n(n ≥ 2) candidates, the zero-knowledge proof PWF {Vi} takes

(1.2(n− 1) + 2) (= (1.2n+ .8)) exponentiations to generate and 1.2(n+ 1) exponentiations

to verify using the proposed efficient NIZK proof Algorithm 3 (for generation) and Algo-

rithm 4 (for verification) given in the section 3.5.4. Therefore, in this case, ballot calculation

requires (1.2n+4.8) exponentiations for both an audited and confirmed ballot including the

computations introduced due to voter authentication. Table 3.7 summarizes the computa-

tional complexity of DRE-ip (without voter authentication) and our proposed system (with

voter authentication) in case of n candidates.
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system (multiple
candidates)

A B C D

DRE-ip (2.4n+ 1.6)|B|e ((2.4n+ 2)|A|+ 2.4n|C|)e 2|C|m+ 2e
Proposed system (1.2n+ 4.8)|B|e ((1.2n + 4.4)|A| + 1.2(n +

2)|C|)e
8e (2|C| +

1)m+ 4.8e

Table 3.7: Computation complexity of DRE-ip (without voter authentication) and our pro-
posed e-voting systems (with voter authentication) while supporting for 1 out of n (n ≥ 3).
Columns are represented as - A: Ballot calculation, B: Well-formedness and consistency
verification, C: Tally calculation, D: Tally verification. B,A,C represent all, audited and
confirmed ballots respectively. e: exponentiation and m: multiplication.

3.5.6 Performance analysis

3.5.6.1 Experiment on Ethereum (only for method 1).

 2×10
6

 2.5×10
6

 3×10
6

 3.5×10
6

 4×10
6

 4.5×10
6

 5×10
6

 5.5×10
6

 6×10
6

 6.5×10
6

 7×10
6

 7.5×10
6

 8×10
6

 0  1  2  3  4  5  6  7  8  9  10

G
a

s

Number of candidates contesting in the election

Using the original 1−out−of−n NIZK proof
Using the proposed 1−out−of−n NIZK proof

Figure 3.4: Gas cost for casting a ballot based on the number of candidates contesting in the
election while using the original 1-out-of-n NIZK proof and our proposed 1-out-of-n NIZK
proof.

We deployed our implementation on Ethereum’s private network that mimics the pro-

duction network. The private network was built based on geth 1.9.0 and Ethereum Wallet

0.8.10. We have developed smart contract in Solidity language. We have tested our imple-

mentation for different number of candidates contesting in the election. We have performed

experiments with 2, 3, 4, 5, 6, 7, 8 and 9 candidates using our proposed efficient 1-out-of-n

NIZK ballot well-formedness proof (Algorithm 3 and Algorithm 4 described in section 3.5.4)

and plotted the results to show how the costs for casting a ballot vary with different number
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Figure 3.5: Costs for casting a ballot based on the number of candidates contesting in the
election while using the original 1-out-of-n NIZK proof and our proposed 1-out-of-n NIZK
proof. The costs are approximated in USD ($) using the conversion rate of 1 Ether=$243
and the gas price of 0.000000001 ether that are real world costs in July, 2020.

of candidates. We have also tested with 2, 3, 4, 5 candidates using the original 1-out-of-n

NIZK ballot well-formedness proof (Algorithm 1 and Algorithm 2 described in section 3.5.4)

and plotted the results to compare the performance. Figure 3.4 depicts the average gas

consumption cost for casting a ballot based on the number of candidates competing in the

election and while using the original 1-out-of-n NIZK ballot well-formedness proof and our

proposed efficient 1-out-of-n NIZK ballot well-formedness proof. Casting a ballot involve

verifying the 1-out-of-n NIZK ballot well-formedness proof and storing the ballot into the

blockchain. From this figure, we see that the proposed 1-out-of-n NIZK proof is about twice

more efficient than the original 1-out-of-n NIZK proof used in [123]. The maximum gas

capacity that an Ethereum block can consume is about 8 million as in July, 2020. From the

figure, we see that each transaction for casting a ballot reaches the computation and stor-

age limit for about 9 candidates while using our proposed efficient 1-out-of-n NIZK proof;

whereas, it reaches the maximum gas limit for about 5 candidates while using the original

1-out-of-n NIZK proof. Figure 3.5 shows the costs for casting a ballot based on the number

of candidates competing in the election and while using the original 1-out-of-n NIZK bal-

lot well-formedness proof and our proposed efficient 1-out-of-n NIZK ballot well-formedness

proof. We have calculated the costs in US dollar (denoted by ‘$’ in the figure) and rounded

it to two decimal places.
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3.5.6.2 Timing analysis (in case of using cloud server, method 1 and method 2

).
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Figure 3.6: Computation time to create the 1-out-of-n NIZK proof using the proposed
algorithm and the original NIZK algorithm.
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Figure 3.7: Computation time for verification of the 1-out-of-n NIZK proof using the pro-
posed algorithm and the original NIZK algorithm.

We implemented the proposed 1-out-of-n NIZK ballot well-formedness proof which is

the most time consuming part for generation and verification of a ballot. Figure 3.6 depicts

the timing analysis measurements for generation of 1-out-of-n NIZK ballot well-formedness

proof using our proposed NIZK proof (Algorithm 3 described in section 3.5.4) as well as using

the original NIZK proof (Algorithm 1 described in section 3.5.4), where n is the number of

candidates contesting in the election. Figure 3.7 shows the timing measurement analysis for
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verification of 1-out-of-n NIZK ballot well-formedness proof using the proposed NIZK proof

(Algorithm 4 described in section 3.5.4) as well as using the original NIZK proof (Algorithm

2 described in section 3.5.4). All tests were performed on a HP Laptop running Windows

8.1 equipped with 2 cores, 1.8 GHz Intel Core i3 and 4 GB RAM. All time measurements

are rounded up to the next whole millisecond. We implemented the protocol over an elliptic

curve. The time to create and verify a ballot depends on the number of candidates competing

in the election. However, it is independent of the number of voters.

To see how the time for generation and verification of the 1-out-of-n NIZK proof using

the proposed NIZK proof vary with different number of candidates, we have carried out

experiments with 2, 4, 6,..., 24 candidates. Figure 3.6 (resp. 3.7) highlights that the compu-

tation time to create (resp. verify) the 1-out-of-n NIZK ballot well-formedness proof using

the proposed algorithm is almost reduced to half of the time required to create (resp. verify)

that using the original NIZK proof algorithm given in [123].

3.6 Concluding Remarks

In this article, we have proposed a secure and verifiable voter registration and authentication

mechanism. Thereafter, we have proposed an end-to-end verifiable DRE-based voting system

that preserves voter’s privacy and integrity of ballots without any tallying authority or secure

hardware storage even if the adversary gets temporary access to the DRE machine.

The system prevents the well-known ballot stuffing attack and a weakness of the DRE-ip

system. Depending on how the election is arranged, we have proposed two methods to store

the ballots using blockchain and cloud server. We have presented security proofs to prove

the security properties of the protocol. We have proposed an efficient 1-out-of-n NIZK proof.

Both the theoretic analysis and the experimental results show that the scheme is feasible to

be used in practice. In future work, we plan to design DRE-based voting solution without

tallying authorities for more complex voting systems such as STV and Condorcet.
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Chapter 4

A Smart Contract System for
Decentralized Borda Count Voting

4.1 Introduction

This chapter is based on paper [106]. Our contributions in this chapter include the following.

We propose the first self-tallying decentralized Borda count voting protocol. The proposed

protocol provides maximum voter privacy: an individual vote can only be revealed by a

full-collusion attack that involves all other voters. All voting data is publicly available, and

the correct execution of the protocol can be verified by any public observer. The proposed

protocol does not require any trusted authority to compute the tally; the tally can be

computed by each voter, as well as by any observer of the election. We provide security

proofs to prove the security of the proposed scheme. In particular, we show that the proposed

scheme guarantees the maximum voter privacy against colluding voters. We provide an

implementation of the proposed protocol over Ethereum Blockchain. It is a boardroom-

scale voting system implemented as a smart contract in Ethereum. Our implementation

demonstrates the feasibility of using Ethereum for secure Borda count voting with public

verifiability.

4.2 Preliminaries

In this section, we describe the security definitions that our proposed protocol is expected

to satisfy. We also state the assumptions based on which we prove these security properties.
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4.2.1 Desirable properties

In a decentralised voting system, some voters may collude with each other to breach other

voters’ privacy or manipulate the voting outcome. A full collusion against a particular voter

occurs when all other voters involve in the collusion. No decentralized system can preserve

an honest voter’s privacy in case of full collusion since the honest voter’s vote can be obtained

by subtracting the colluding voters’ votes from the final tally. Therefore, we only consider

partial collusion which involves some voters, but not all.

Under the threat model of partial collusion, the following three properties (also see [82,

57]) should be fulfilled by a decentralized voting protocol.

1. Maximum ballot secrecy: This is an extension of the usual ballot secrecy requirement.

In a voting system with maximum ballot secrecy, an attacker who colludes with a

group of voters will only learn the partial tally of the remaining voters, but nothing

beyond that.

2. Self-tallying: During the tallying phase, the final tally can be computed by anyone

including voters and third-party observers without external help. This is naturally

expected in a decentralized voting protocol.

3. Dispute-freeness: A voting scheme is dispute-free if every observer of the election can

verify the fact that every voter follows the protocol honestly. This requirement means

that the result should be publicly verifiable.

In a self-tallying voting protocol, the last voter can compute the tally before casting

her vote. This leads to two issues. First, the last voter can use the knowledge of the tally

to decide how she will cast her vote. This issue can potentially influence the result of the

election. To prevent this issue, Kiayias and Yung [82] and Groth [57] suggest that an election

authority can cast the last vote. During the tallying phase, this last vote is excluded from

the final tally. We can apply this method in our implementation, however, in this case, the

election authority needs to be trusted not to collude with the last voter. Therefore, this

method relies on the trusted election authority. Instead, McCorry et al. [96] propose an

extra commitment round to address this issue. In this round, every voter stores the hash of
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their encrypted vote in the blockchain as a commitment. The last voter will still be able to

compute the tally before casting her vote, however, she will not be able to change her vote.

We follow the same approach.

The second issue that since the last voter knows the tally before casting her vote, she

may refrain from casting her vote if she is dissatisfied with the result of the election. In

that case, no one will be able to compute the final tally, and the election will need to be

restarted. To circumvent this issue, Kiayias and Yung [82] and Khader et al. [79] propose

an additional round engaging the rest of the voters. However, in this case, we must assume

the remaining voters do not drop out of the election half-way; otherwise, the election will

be aborted again. To address this issue, we use Ethereum’s blockchain and smart contract

to enforce a financial incentive for all voters using a deposit and refund paradigm as done

in [96]. In our implementation, it is mandatory for all voters to deposit some money into

the smart contract to register for an election. This deposit is refunded automatically to the

voter once her vote is successfully accepted by the blockchain. A voter who registers for an

election but withholds her vote simply loses the deposit. This provides a countermeasure

to this abortive issue. The confiscated deposit could be used as a compensation for all

compliant voters or be donated to a charity.

4.2.2 Cryptographic assumption

We state the cryptographic assumption that we use to prove the security properties of

our proposed protocol. If this assumption holds, the proposed protocol satisfies the above

security properties. We first describe some notations that we use throughout our paper.

Notation: We follow the notation introduced by Camenisch and Stadler [23]. We use

PK{λ : Γ = γλ} to denote a non-interactive proof of knowledge of a secret λ such that

Γ = γλ for publicly known Γ and γ. We shorten the notation to PK{λ} if the context is

clear.

Cryptographic setup: Our system works on a DSA like multiplicative cyclic group setting

or an ECDSA-like group setting over an elliptic curve, where the decision Diffie-Hellman

problem is assumed to be intractable [42]. Let Gq be a subgroup of Z∗p of prime order q,

where q | p− 1. Let g be a generator of that group.
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The decision Diffie-Hellman assumption [42] is defined as follows:

Assumption 1: (DDH) If α, β are randomly and uniformly chosen from Z∗q , given (g, gα, gβ,

ρ) where ρ ∈ {gαβ, R} and R is randomly and independently chosen from Gq, it is hard to

decide whether ρ = gαβ or ρ = R.

4.3 Our scheme

The Borda count scheme is a ranked choice voting method in which voters rank candidates

in order of preference. A score is associated with each rank. Let there are k candidates

competing in an election. Assume a score aj is associated with the j-th rank and aj−1 >

aj ,∀j ∈ {2, ..., k}, i.e., a higher score implies a higher rank of the candidate. At the end of

the election, the scores obtained by a candidate are added together. Finally, the candidates

are ranked according to their scores obtained. The candidate with the highest score wins

the election. In this scheme, a participant’s vote will be of the form (v1, v2, ..., vk), where

(v1, v2, ..., vk) is a permutation of (a1, a2, ...., ak).

In our protocol, we assume that there is an authenticated public channel available for each

participant. This assumption is common in previous e-voting protocols; see, for example,

Kiayias and Yung’s protocol [82], Groth’s protocols [57], the open vote network [60], and

general multi-party secure computation protocols [52, 53]. This authenticated public channel

can be realized by using physical means or a public bulletin board where recorded ballots

are stored securely in an append only manner [96].

Our protocol is inspired by Open Vote Network [60] but we have adapted the protocol

to support Borda count. This results in a new e-voting protocol, which is also the first

ranked-choice voting system based on Borda count in a decentralized setting.

Our protocol works in two rounds. Assume that there are n participants in an election.

We denote the i-th participant as Vi. They all agree on public group parameters (Gq, g). Let

there are k candidates competing in the election. Let us assume that the score corresponding

to the j-th rank is aj , where aj−1 > aj ; ∀j ∈ {1, 2, ..., k}.
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4.3.1 Voting Phase

Each participant Vi generates k random values (xi1, xi2, ..., xik) as their secrets, where xij ∈R

Zq;∀j ∈ {1, 2, ..., k}. Each participant executes the following two-round protocol. We denote

the vote cast by the i-th participant Vi as vi = (vi1, vi2, ..., vik), where (vi1, vi2, ..., vik) is a

permutation of (a1, a2, ..., ak). Here, vij is the score given by the participant Vi to the j-th

candidate.

First round. Every participant Vi calculates Xi1 = gxi1 , Xi2 = gxi2 , ..., Xik = gxik

and publishes (Xi1, PK{xi1}, Xi2, PK{xi2}, . . . , Xik, PK{xik}), where PK{xij} is the non-

interactive zero-knowledge (NIZK) proof for xij ; ∀j ∈ {1, 2, ..., k}. The NIZK proofs are

generated by using Schnorr’s signature [122] (see section 4.4 for more details).

At the end of this round, every participant verifies the validity of all zero-knowledge

proofs. Each participant Vi then computes gyij =
∏i−1
l=1g

xlj/
∏n
l=i+1g

xlj ; ∀j ∈ {1, 2, . . . , k}.

Second round. Each participant Vi calculates Zij = {gyij}xijgvij ; ∀j ∈ {1, 2, ..., k} and

generates a non-interactive zero-knowledge (NIZK) proof to prove the well-formedness of

the ballot. The NIZK associated with each participant’s ballot proves that (vi1, vi2, ..., vik)

is a permutation of (a1, a2, .., ak). In order to prove the statement, it is sufficient to prove

the following k relations.

• a1 ∈ {vi1, vi2, , ..., vik} for the score corresponding to the 1-st rank.

• a2 ∈ {vi1, vi2, , ..., vik} for the score corresponding to the 2-nd rank.

• . . .

• ak ∈ {vi1, vi2, , ..., vik} for the score corresponding to the k-th rank.

The above k relations hold true if and only if the following relations are true:

∨kj=1((Xij = gxij ) ∧ (Zij = {gyij}xijga));∀a ∈ {a1, a2, ..., ak}. We denote this NIZK

proof as Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈ {1, 2, .., k}, where Xi = (Xi1, Xi2, ..., Xik), Zi =

(Zi1, Zi2, ..., Zik). More details about the NIZK proof can be found in section 4.4.

Each participant Vi publishes (Zi1, Zi2, ..., Zik) and k NIZK proofs Πj [xi1, xi2, ..., xik :

Xi, Zi];∀j ∈ {1, 2, ..., k}.
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4.3.2 Tallying phase

Anyone can compute
∏n
i=1{gyij}xijgvij = gΣni=1vij , where j ∈ {1, 2, ..., k}. This equality

follows from the fact that Σn
i=1xijyij = 0;∀j ∈ {1, 2, ..., k} (proposition 1, see also [62]).

Each participant, as well as observers of the election, can check the validity of all the

NIZK proofs to ensure that no badly formed vote has been cast to distort the tally.

The total score obtained by the j-th candidate is Σn
i=1vij , which is normally a small

number for all j ∈ {1, 2, ..., k}. Since the quantity Σn
i=1vij is a small number, the discrete

logarithm of gΣni=1vij can be computed by exhaustive search or Shanks’ baby-step giant-

step algorithm [89]. Finally, each participant and all observers of the protocol can rank

candidates in order of their total scores.

Proposition 1: For xij and yij as defined above Σn
i=1xijyij = 0;∀j ∈ {1, 2, ..., k}.

Proof: According to the protocol, yij = Σl<ixlj − Σl>ixlj ;∀j ∈ {1, 2, ..., k}.

Now for any fix j ∈ {1, 2, ..., k}, Σn
i=1xijyij = Σn

i=1xij(Σl<ixlj − Σl>ixlj) = 0. �

The use of NIZK proofs in the protocol is to ensure that all participants follow the

protocol faithfully. In the first round, each participant posts k NIZK proofs to prove her

knowledge of the exponents (xi1, xi2, ..., xik). The Fiat-Shamir heuristic is employed in our

protocol to construct NIZK proofs [48]. Consequently, our NIZK proofs are in the Random

Oracle Model [8]. The algorithm 11 and algorithm 12 provided in section 4.4 describe the

procedure to create and verify these NIZK proofs respectively.

In the second round, each participant posts k NIZK proofs to prove that her encrypted

vote is a permutation of (a1, a2, ..., ak) without reveling which permutation. In order to

prove this, first note that the terms of our protocol form exponential ElGamal encryptions

of vij , where i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k}. This can be realized by treating gyij as

the public key and using the published terms of 1-st round. Thus, we form

(gxij , {gyij}xijgvij ), where i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k}.

This will be an ElGamal encryption of gvij ; ∀j ∈ {1, 2, ..., k} with public key gyij and ran-

domization xij ; ∀j ∈ {1, 2, ..., k}. Thus, the published terms for the first and second rounds

form an exponential ElGamal encryption of vij , ∀i ∈ {1, 2, ..., n} and ∀j ∈ {1, 2, ..., k}. We

use an efficient NIZK proof technique proposed by Cramer, Damgård, and Schoenmakers
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[37] to construct proofs of conjunctive knowledge, disjunctive knowledge and combination of

both. This essentially proves that (vi1, vi2, ..., vik) is a permutation of (a1, a2, ..., ak) without

revealing which permutation (i.e. which message corresponds to which ciphertext). Note

that we do not need to decrypt these ciphertexts in order to obtain the tally. The algorithm

13 and algorithm 14 provided in section 4.4 describe the procedure to create and verify these

1-out-of-k NIZK proofs respectively.

4.4 The NIZK proof algorithms used in the proposed Borda

count protocol

Algorithm 11: A prover with identifier ID generates a NIZK proof of knowledge
of a secret x such that (Γ′ = gx) for known ID,Γ′, g.
Input : ID,Γ′, g, x such that (Γ′ = gx)
Output: η = PK{x : (Γ′ = gx)}
begin

choose random w ∈ Zq
calculate
t1 = gw.
calculate
c = H(ID, g,Γ′, t1)
calculate r = w − cx
return η = (r, t1)

end

Algorithm 12: Verification of proof η generated by Algorithm 1 given ID,Γ′, g.
Input : ID,Γ′, g, η = (r, t1)
Output: success or failure
begin

calculate
c = H(ID, g,Γ′, t1)
calculate
t′1 = grΓ′c

if t1 = t′1 then
return success

else
return failure

end
end
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Algorithm 13: A prover with identifier ID generates a proof of knowledge of a
secret xij such that ∨kl=1((Γ′l = gxil) ∧ (Γ′′l /g

vm = {gyil}xil)), where vm is the score
associated to the m-th rank, m ∈ {1, 2, ..., k}, and the score vm is given to the j-th
candidate, j ∈ {1, 2, ..., k}.
Input : ID, g, k, (Γ′l,Γ

′′
l , {gyil})kl=1, xij , j, g

vm such that Γ′j = gxij and
Γ′′j /g

vm = {gyil}xij

Output: Πm = PK{xij : ∨kl=1((Γ′l = gxil) ∧ (Γ′′l /g
vm = {gyil}xil))}

begin
choose random w, r1, c1, r2, c2, ..., rj−1, cj−1, rj+1, cj+1, ..., rk, ck ∈ Zq
calculate t11 = gr1{Γ′1}c1 , t12 = {gyi1}r1{Γ′′1/gvm}c1 , t21 = gr2{Γ′2}c2 , t22 =
{gyi2}r2{Γ′′2/gvm}c2 , ...., tj−11 = grj−1{Γ′j−1}cj−1 , tj−12 =
{gyij−1}rj−1{Γ′′j−1/g

vm}cj−1 , tj1 = gw, tj2 = {gyij}w, tj+11 =
grj+1{Γ′j+1}cj+1 , tj+12 = {gyij+1}rj+1{Γ′′j+1/g

vm}cj+1 , ..., tk1 = grk{Γ′k}ck , tk2 =

{gyik}rk{Γ′′k/gvm}ck
calculate
c = H(ID, (g,Γ′l, {gyil}, {Γ′′l /gvm})kl=1, (tl1, tl2)kl=1),
calculate
cj = c− (c1 + c2 + ....+ cj−1 + cj+1 + ...+ ck)
calculate rj = w − cjxij
return Πm = (c1, c2, ...., cj−1, cj , cj+1, ..., ck, r1, r2, ..., rj−1, rj ,
rj+1, ..., rk, (tl1, tl2)kl=1)

end

In this section, we present the NIZK proof algorithms that are required in the first and

second round of the protocol. Algorithm 11 (resp. Algorithm 12) represents the prover

algorithm (resp. verifier algorithm) for generation (resp. verification) of the NIZK proof

required in the first round of the protocol. Let us assume that there are k candidates

contesting in the election. Algorithm 13 (resp. Algorithm 14) represents the prover algorithm

(resp. verifier algorithm) for generation (resp. verification) of 1-out-of-k zero-knowledge

proof required in the second round of the protocol. Algorithm 13 (resp. Algorithm 14) is

written for the i-th voter Vi to prove (resp. verify) a proposition of the form ∨kl=1((Γ′l = gxil)∧

(Γ′′l /g
vm = {gyil}xil)), where vm is the score associated to the m-th rank, m ∈ {1, 2, ..., k},

the score vm is given to the j-th candidate, j ∈ {1, 2, ..., k}, Γ′l represents Xil corresponding

to the l-th candidate in the first round of the protocol, and Γ′′l represents Zil corresponding

to the l-th candidate in the second round of the protocol as discussed in section 4.3.1. The

algorithm for the case when the score vm is given to any candidate other than the j-th

candidate can be obtained by straightforward modifications. The symbol ‘ID’ denotes the
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Algorithm 14: Verification of proof Πm generated by Algorithm 3 given
ID, g, k, (Γ′l,Γ

′′
l , {gyil})kl=1, g

vm , where vm is the score associated to the m-th rank.
However, the verifier does not know to which candidate (i.e. j) the score vm is
given.
Input : ID, g, k, (Γ′l,Γ

′′
l , {gyil})kl=1, g

vm ,Πm = (c1, c2, ..., ck, r1, r2, ..., rk, (tl1, tl2)kl=1)
Output: success or failure
begin

calculate
c′ = H(ID, (g,Γ′l, {gyil}, {Γ′′l /gvm})kl=1, (tl1, tl2)kl=1)
if (c′ 6= (c1 + c2 + ...+ ck)) then

return failure
end

calculate
t′11 = gr1{Γ′1}c1 , t′12 = {gyi1}r1{Γ′′1/gvm}c1 , t′21 = gr2{Γ′2}c2 , t′22 =
{gyi2}r2{Γ′′2/gvm}c2 , ...,
t′k1 = grk{Γ′k}ck , t′k2 = {gyik}rk{Γ′′k/gvm}ck
if ((t11 = t′11)&&(t12 = t′12)&&(t21 = t′21)&&
(t22 = t′22)&&...&&(tk1 = t′k1)&&(tk2 = t′k2)) then

return success
else

return failure
end

end

publicly known identifier of the voter. Following [62, 60], we include the voter’s ID in the

hash for the Fiat-Shamir transformation to bind the identity with the ZKP and to prevent

replay attacks. For example, in our implementation over Ethereum, we use the sender’s

unique identity (msg.sender) as ‘ID’ in the argument of the hash function. The purpose of

using the sender’s unique identity (msg.sender) is already discussed in section 4.7.4. The

symbols Γ′ and x in the Algorithm 11 and Algorithm 12 represent Xij and xij respectively

for each of the i-th voter Vi in the first round of the protocol as described in section 4.3.1,

where j ∈ {1, 2, ..., k}.

4.5 Security analysis

In this section, we prove that our scheme is secure against all probabilistic polynomial

adversaries who try to deduce the vote given by a voter. We also show that the public
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bulletin board does not reveal any additional information regarding the voter’s privacy other

than the tally. In case of partial collusion, we prove that if an attacker colludes with some

m number of voters, then she will learn the partial tally of the n −m voters, but nothing

beyond that. The partial tally of the honest voter’s vote can be obtained by subtracting the

colluding voter’s vote from the final tally. Therefore, colluding voters can always compute

the partial tally of votes of the remaining voters. The security of our scheme relies on the

intractability of the Decisional Diffie-Hellman (DDH) problem. We prove that if the DDH

problem is intractable in the group Gq, then this scheme is secure.

In the following sections, we show that our protocol satisfies the three security require-

ments mentioned in section 4.2.1.

4.5.1 Maximum ballot secrecy

In this section, we show that our protocol is secure under the threat model of partial collu-

sion. In the protocol, each participant Vi sends k ephemeral public keys (gxi1 , gxi2 , ..., gxik)

along with k NIZK proofs of exponents in the first round and sends an encrypted ballot

(gyi1xi1gvi1 , gyi1xi2gvi2 , ..., gyi1xikgvik) with k 1-out-of-k NIZK proofs in the second round.

The k 1-out-of-k NIZK proofs in the second round ensure that (vi1, vi2, ..., vik) is a permuta-

tion of (a1, a2, ..., ak). In this protocol, the value of yij depends on the values of secret keys

xij of all voters except Vi, where j ∈ {1, 2, ..., k}. We now discuss the security properties

of yij . Let us consider any participant Vi, where i ∈ {1, 2, ..., n}. The following properties

hold true for any participant Vi.

Lemma 4.5.1. Considering the threat model of partial collusion against a participant Vi,

the yij is a secret random value in Zq to attackers for all j ∈ {1, 2, ..., k}.

Proof. Let us first fix any j ∈ {1, 2, ..., k}. Since we are considering the partial collusion

against Vi, there exists at least one other participant Vm (m 6= i) who is not involved in the

collusion. Hence, the secret random value xmj generated by the participant Vm is unknown

to the colluders. According to the protocol, xmj is uniformly distributed over Zq and known

only to the participant Vm. Note that for a fixed j, yij is computed from all xij known to

colluders (in the worst case) and a random number xmj unknown to the colluders. Therefore,
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yij is uniformly distributed over Zq and unknown to the colluders. Since the above discussion

holds true for any j ∈ {1, 2, ..., k}, yij is a secret random value in Zq to attackers for all

j ∈ {1, 2, ..., k} even in the worst case.

Lemma 4.5.2. If the assumption 1 (DDH) holds in the group Gq, then given g, gα1 , gα2 , ..., gαm

and gβ1 , gβ2 , ..., gβm ∈ Gq, and a challenge ρ ∈ {ρ1, ρ2}, where ρ1 = (gα1β1 , gα2β2 , ..., gαmβm)

and ρ2 = (R1, R2, ..., Rm), Ri ∈ Gq,∀i ∈ {1, 2, ...,m}, it is hard to decide whether ρ = ρ1 or

ρ = ρ2.

Proof. We prove the lemma by showing that if there exists a probabilistic polynomial time

(PPT) adversary A that can decide whether ρ = ρ1 or ρ = ρ2, then we can use the same

to construct another adversary B against assumption 1. We construct the adversary B as

follows. The inputs to the adversary B are g, gα, gβ . The adversary B receives the challenge

ρ = {gαβ, R}, where R ∈R Gq. It chooses γ1, γ2, ..., γm and η1, η2, ..., ηm uniformly at random

from Zq. It computes δi = ργiηi ,∀i ∈ {1, 2, ...,m}. B calculates gβi = gβγi ,∀i ∈ {1, 2, ...,m}.

B also calculates gαi = gαηi ,∀i ∈ {1, 2, ...,m}. Note that after this step, αi = αηi and

βi = βγi,∀i ∈ {1, 2, ...,m}. Now the adversary B sends (gα1 , gα2 , ..., gαm), (gβ1 , gβ2 , ..., gβm)

and (δ1, δ2, ..., δm) to A. Now if ρ = gαβ , then (δ1, δ2, ..., δm) = (ργ1η1 , ργ2η2 , ..., ργmηm) =

({gαβ}γ1η1 , {gαβ}γ2η2 , ..., {gαβ}γmηm) = ({gαη1}βγ1 , {gαη2}βγ2 , ..., {gαηm}βγm) = (gα1β1 , gα2β2 ,

..., gαmβm); otherwise if ρ = R, then (δ1, δ2, ..., δm) = (R1, R2, ..., Rm). According to our as-

sumption, upon receiving (gα1 , gα2 , ..., gαm), (gβ1 , gβ2 , ..., gβm) and the challenge (δ1, δ2, ..., δm)

from B, A can distinguish between (gα1β1 , gα2β2 , ..., gαmβm) and (R1, R2, ..., Rm). If the ad-

versary A can distinguish between these two values, B can also distinguish between gαβ and

R. Hence, B can identify the correct value of ρ. Thus, we have constructed an adversary B

against the assumption 1 (DDH assumption). Hence, the Lemma 4.5.2 is proved. It can be

easily verified that Adv(A) ≤ Adv(B).

Lemma 4.5.3. Given g ∈ Gq,G = {gxi , gyi : yi = (Σi−1
j=1xj − Σµ

j=i+1xj), i ∈ {1, 2, ..., µ}}

and yi are unknown for all i ∈ {1, 2, ..., µ}. If Σµ
i=1vi = Σµ

i=1v
′
i and vi, v

′
i ∈ Zq, then the

bulletin boards A and B as given in Table 4.1 are indistinguishable.

Proof. Without loss of generality, we assume that Σµ
i=1vi = Σµ

i=1v
′
i = v. Since yi =
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gy1x1gv1 gy1x1gv
′
1

gy2x2gv2 gy2x2gv
′
2

... ...

... ...

... ...

gyµxµgvµ gyµxµgv
′
µ

A B

Table 4.1: Indistinguishability of Bulletin Board A and B

Σi−1
j=1xj − Σµ

j=i+1xj for all i ∈ {1, 2, ..., µ}}, we have Σµ
j=1xjyj = 0. Thus, we may write

gxµyµ = (1/gΣ
(µ−1)
i=1 xiyi). Also, since Σµ

i=1vi = v, we may write gvµ = (gv/gΣµ−1
i=1 vi). Note

that yi’s are unknown for all i ∈ {1, 2, 3, .., µ}. From Lemma 4.5.2, we can write A =

(gy1x1gv1 , gy2x2gv2 , . . . , gyµ−1xµ−1gvµ−1 , gyµxµgvµ) = (gy1x1gv1 , gy2x2gv2 , . . . , gyµ−1xµ−1gvµ−1 ,

gv/
∏µ−1
i=1 g

yixigvi) ≈c (R1 ∗ gv1 , R2 ∗ gv2 , ..., Rµ−1 ∗ gvµ−1 , gv/
∏µ−1
i=1 Ri ∗ gvi) ≈c (R1, R2, ...,

Rµ−1, g
v/
∏µ−1
i=1 Ri) ≈c (R1 ∗ gv

′
1 , R2 ∗ gv

′
2 , . . . , Rµ−1 ∗ gv

′
µ−1 , gv/

∏µ−1
i=1 Ri ∗ gv

′
i) ≈c (gy1x1gv

′
1 ,

gy2x2gv
′
2 , . . . , gyµ−1xµ−1gv

′
µ−1 , gv/

∏µ−1
i=1 g

yixigv
′
i) = (gy1x1gv

′
1 , gy2x2gv

′
2 , . . . , gyµ−1xµ−1gv

′
µ−1 ,

gyµxµgv
′
µ) = B, since gv

′
µ = (gv/gΣµ−1

i=1 v
′
i).

Lemma 4.5.4. Let us assume that R = {a1, a2, ..., ak}, and ν = Σk
j=1aj. Given g ∈ Gq,

Xi = (Xi1, Xi2, ..., Xik) and Yi = (Yi1, Yi2, ..., Yik), where Xij = gxij , Yij = gyij , yij =

(Σi−1
l=1xlj−Σµ

l=i+1xlj) and yij is unknown to the attacker ∀j ∈ {1, 2, ..., k},∀i ∈ {1, 2, ..., µ}, µ ∈

N, the two bulletin boards A and B as in Table 4.2 and Table 4.3 respectively are indistin-

guishable, where

1. vij , v′ij ∈ R,∀j ∈ {1, 2, .., k}, ∀i ∈ {1, 2, ..., µ}

2. ∪kj=1vij = ∪kj=1v
′
ij = R,∀i ∈ {1, 2, ..., µ}

3. Σk
j=1vij = Σk

j=1v
′
ij = ν, ∀i ∈ {1, 2, ..., µ}

4. Σµ
i=1vij = Σµ

i=1v
′
ij ,∀j ∈ {1, 2, ..., k}

Proof. The proof follows from Lemma 4.5.3.

Lemma 4.5.5. Let us assume that R = {a1, a2, ..., ak}, and ν = Σk
j=1aj. Given g ∈ Gq,

Xi = (Xi1, Xi2, ..., Xik) and Yi = (Yi1, Yi2, ..., Yik), where Xij = gxij , Yij = gyij , yij =
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gy11x11gv11 gy12x12gv12 ... gy1kx1kgv1k

gy21x21gv21 gy22x22gv22 ... gy2kx2kgv2k

... ... ... ...

... ... ... ...

... ... ... ...

gyµ1xµ1gvµ1 gyµ2xµ2gvµ2 ... gyµkxµkgvµk

Table 4.2: Bulletin Board A

gy11x11gv
′
11 gy12x12gv

′
12 ... gy1kx1kgv

′
1k

gy21x21gv
′
21 gy22x22gv

′
22 ... gy2kx2kgv

′
2k

... ... ... ...

... ... ... ...

... ... ... ...

gyµ1xµ1gv
′
µ1 gyµ2xµ2gv

′
µ2 ... gyµkxµkgv

′
µk

Table 4.3: Bulletin Board B

(Σi−1
l=1xlj − Σµ

l=i+1xlj) and yij is unknown ∀j ∈ {1, 2, ..., k},∀i ∈ {1, 2, ..., µ}, µ ∈ N, the two

bulletin boards A and B as in Table 4.4 and 4.5 respectively are indistinguishable, where

1. vij , v′ij ∈ R,∀j ∈ {1, 2, .., k}, ∀i ∈ {1, 2, ..., n− µ}

2. ∪kj=1vij = ∪kj=1v
′
ij = R,∀i ∈ {1, 2, ..., n− µ}

3. Σk
j=1vij = Σk

j=1v
′
ij = ν, ∀i ∈ {1, 2, ..., n− µ}

4. Σn−µ
i=1 vij = Σn−µ

i=1 v
′
ij = vj ,∀j ∈ {1, 2, ..., k}

Proof. Let us choose votes vij ∈ R, for all i ∈ {n − µ + 1, n − µ + 2, ..., n} and for all

j ∈ {1, 2, ..., k} such that ∪kj=1{vij} = R, for all i ∈ {n − µ + 1, n − µ + 2, ..., n}. Now we

set v′ij = vij , for all i ∈ {n − µ + 1, n − µ + 2, ..., n} and for all j ∈ {1, 2, ..., k}. After this

step, Σn
i=1vij = Σn

i=1v
′
ij = vj + Σn

i=n−µ+1vij , for all j ∈ {1, 2, ..., k}. Now, if an attacker can

distinguish between the two bulletin boards, she will be able to disprove Lemma 4.5.4.

Lemma 4.5.6. Considering a partial collusion where an attacker colludes with µ < (n− 1)

voters, the attacker will only learn the partial tally of n−µ honest voters, not the individual

votes of honest voters.

Proof. Without loss of generality, we assume that {Vn−µ+1, Vn−µ+2, ..., Vn} is the set of col-

luding voters and {V1, V2, ..., Vn−µ} is the set of honest voters. In the proposed Borda count
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scheme, each voter Vi chooses (xi1, xi1, ..., xik) uniformly at random from (Zq)k and pub-

lishes (gxi1 , gxi2 , ..., gxik) in the first round along with k zero-knowledge proofs PK{xij},∀j ∈

{1, 2, ..., k}. In the second round, each voter Vi publishes (Zi1, Zi2, ..., Zik), where Zij =

{gyij}xijgvij , yij = Σl<ixlj − Σl>ixlj ,∀j ∈ {1, 2, ..., k}. The attacker will know votes of

the colluding voters and their randomness, i.e. attacker will know (vi1, vi2, ..., vik) and

(xi1, xi1, ..., xik) for each colluding voter Vi, where i ∈ {n − µ + 1, n − µ + 2, ..., n}. There-

fore, the attacker can compute (Zi1, Zi2, ..., Zik) for each colluding voter Vi, where i ∈

{n − µ + 1, n − µ + 2, ..., n}. According to the protocol, yij = (Σi−1
l=1xlj − Σn

l=i+1xlj),

∀j ∈ {1, 2, ..., k},∀i ∈ {1, 2, ..., n}. From Lemma 4.5.1, in case of partial collusion, we can

conclude that yij ’s are unknown ∀j ∈ {1, 2, ..., k},∀i ∈ {1, 2, ..., n}. Hence. the attacker’s

view of the bulletin board will be same as given in Table 4.4.

Now according to the Lemma 4.5.5, the attacker will not be able to distinguish the two

bulletin boards given in Table 4.4 and Table 4.5 with the same partial tally for honest voters.

Therefore, the attacker will only learn the partial tally of honest voters, not the individual

votes of honest voters.

gu11gv11 gu12gv12 ... gu1kgv1k

gu21gv21 gu22gv22 ... gu2kgv2k

... ... ... ...

... ... ... ...

... ... ... ...

gun−µ1gvn−µ1 gun−µ2gvn−µ2 ... gun−µkgvn−µk

gun−µ+11 gun−µ+12 ... gun−µ+1k

gun−µ+21 gun−µ+22 ... gun−µ+2k

... ... ... ...

... ... ... ...

... ... ... ...

gun1 gun2 ... gunk

Table 4.4: Bulletin Board A, where uij = yijxij ,∀j ∈ {1, 2, ..., k} and ∀i ∈ {1, 2, ..., n}.

4.5.2 Self-tallying

In our protocol, during the tallying phase, the final tally can be computed by anyone,

including voters and observers of the protocol, without any external help. This can be easily
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gu11gv
′
11 gu12gv

′
12 ... gu1kgv

′
1k

gu21gv
′
21 gu22gv

′
22 ... gu2kgv

′
2k

... ... ... ...

... ... ... ...

... ... ... ...

gun−µ1gv
′
n−µ1 gun−µ2gv

′
n−µ2 ... gun−µkgv

′
n−µk

gun−µ+11 gun−µ+12 ... gun−µ+1k

gun−µ+21 gun−µ+22 ... gun−µ+2k

... ... ... ...

... ... ... ...

... ... ... ...

gun1 gun2 ... gunk

Table 4.5: Bulletin Board B, where uij = yijxij ,∀j ∈ {1, 2, ..., k} and ∀i ∈ {1, 2, ..., n}.

checked by observing the protocol and the Proposition 1. In the first round of the protocol,

voters choose their private key, and in the second round their public keys are combined

in such a way that the random factors vanishes after the second round. Thus, during the

tallying phase, the final tally can be computed correctly by any observer of the protocol.

Therefore, our protocol satisfies the self-tallying property. The use of zero-knowledge proofs

in the protocol is to ensure that all voters follow the protocol faithfully.

4.5.3 Dispute-freeness

Our protocol also satisfies the dispute-freeness property. The use of k non-interactive zero-

knowledge proofs in the first round of the protocol ensures that the voter knows the secret

keys (xi1, xi2, ..., xik) corresponding to the public keys (gxi1 , gxi2 , ..., gxik). The use of k non-

interactive Cramer, Damgård, and Schoenmakers [37] zero-knowledge proofs ensures that

each ballot will encode exactly one permutation of (a1, a2, ..., ak). Furthermore, since we

use a public authenticated channel, any attempt to cast more than one vote can be detected

by other participants of the protocol. Thus, our protocol enforces the one-man-one-vote

requirement, which, combined with the public verifiablity of all operations in the protocol,

ensures dispute-freeness.
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4.5.4 Limitation

In this section, we discuss the limitations of our protocol. One limitation is that all voters

must follow the protocol till the tally process. If some voters do not send data in the second

round of the protocol, no one will be able to compute the tally, and hence the tallying will

fail. However, this attack is conspicuous since everyone will be able to identify the attackers.

In that case, voters can exclude the attackers from the election and restart the protocol to

recover from the attack. Note that the voter’s privacy is still preserved. Nevertheless, there

would be delay in the election process.

In our implementation of the protocol using Ethereum Blockchain and smart contract,

we use a deposit and refund paradigm [85] to enforce a financial incentive to all voters as a

countermeasure to this issue. All voters are required to deposit some money into the smart

contract to register for the election. This deposited money is refunded to the voter after she

successfully casts her ballot. However, a registered voter will lose her deposit if she does not

cast her vote successfully in the second round of the protocol.

Our protocol is not coercion-resistant since a voter can be coerced to vote for a particular

candidate and to reveal her secret parameters to prove how she voted. This is another lim-

itation of our system. Normally, this kind of coercion resistance is provided in a supervised

environment like in a polling station [74]. However, in decentralized environment where the

voting process is unsupervised, providing coercion resistance seems difficult.

Here, we mention that the above limitations also exist in the Kiayias and Yung [82],

Groth [57] and open vote network [60] protocols. Although a centralised voting protocol

that is executed in a supervised environment with trusted election authorities may prevent

this kind of issues, however, the trustworthiness of the election authorities is often called

into question. In our proposed protocol, the tally can be computed by voters themselves

(and any observer of the protocol) without involving any tallying authority.

Therefore, for a small-scale election where the above limitations are not of great concern,

the proposed decentralised Borda count protocol can prove to be useful and efficient.
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4.6 Performance analysis of the protocol

In this section, we analyze the computation and communication cost of our proposed pro-

tocol. There are only two rounds in our protocol. As discussed in [52], in any secure

multy-party computation protocol, minimum two rounds are required to compute a func-

tion securely. Since exponentioations are the most expensive operations in our protocol, we

analyze our protocol in terms of the number of exponentiations.

We assume that the number of candidates competing in the election is k. In the first

round, each voter needs to do k exponentiations to generate public keys. In addition, there

are k NIZK proofs corresponding to their k secret keys. Each of these NIZK proofs requires

one exponentiation for creation and 1.2 exponentiations for verification. (Here we do not

count the cost of validating a public key, which requires one exponentiation in the finite

field setting but is essentially free in the elliptic curve setting.) We assume that the simul-

taneous multiple exponentiation (SME) technique [97] is used to optimize computations.

Using the SME method, a term of the form gxhy requires about 1.2 exponentiations to

calculate. Hence, a voter needs to do 2k exponentiations in the first round to create her

public keys along with NIZK proofs. In order to verify these NIZK proofs, one needs to

do 1.2k exponentiations. In the second round, a voter needs to do k exponentiations to

generate the ballot. In addition, the voter needs to create k 1-out-of-k NIZK proofs. Each

of these 1-out-of-k NIZK proofs requires (2.4(k − 1) + 2) exponentiations for generation

and 2.4k exponentiations for verification of the same. Hence, all k 1-out-of-k NIZK proofs

require (2.4k2 − 0.4k) exponentiations for generation and 2.4k2 for verification. Hence, in

the second round, a voter needs to do (k + ((2.4k2 − 0.4k))) exponentiations to generate

her ballot. All together, a voter needs to do (2k + (k + ((2.4k2 − 0.4k)))) exponentiations

i.e. (2.4k2 + 2.6k) exponentiations to cast her vote in the election. The total number of

exponentiations required to verify a ballot is equal to (1.2k + 2.4k2). In the first round of

the protocol, the size of public keys of a voter is k elements of group the Gq. In addition, in

the first round, the size of k NIZK proofs is k elements of Zq plus k elements of Gq. Hence,

the size of the public keys along with NIZK proofs is 2k elements of the group Gq plus k

elements of the group Zq. In the second round of the protocol, the size of each ballot is k
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elements of the group Gq. In addition, the size of each of k 1-out-of-k NIZK proofs is 2k

elements of Zq plus 2k elements of Gq. Hence, in the second round, the size of each ballot

along with k 1-out-of-k NIZK proofs is (k+2k2) elements of the group Gq plus 2k2 elements

of the group Zq. Therefore, all together, the total space required by a voter is (3k + 2k2)

elements of the group Gq plus (2k2 + k) elements of the group Zq.

Table 4.6 and Table 4.7 highlight the computation and communication cost (space) re-

spectively for the proposed Borda count protocol when k candidates compete in the election.

Note that the OV-Net protocol requires (2.4k − 0.4) exponentiations (using the SME

technique) for generation and 2.4k exponentiations for verification of the NIZK proof in the

second round of the protocol. Therefore, the number of exponentiations required in the OV-

Net protocol is O(k) that is linear with the number of candidates contesting in the election.

However, our proposed Borda count protocol requires (2.4k2 − 0.4k) exponentiations for

generation and 2.4k2 exponentiations for verification of the NIZK proofs in the second round

of the protocol. Therefore, the number of exponentiations required in our proposed protocol

is O(k2) that is quadratic with the number of candidates competing in the election. Our

protocol requires significantly more computation than OV-net which is based on plurality

voting, because a ranked-choice voting system is inherently more complex than a non-ranking

based voting system. However, a ranked-choice voting system tends to give a fairer outcome

as the system takes in more information from voters about their preferences than a non-

ranking based system (e.g., plurality).

First round Second round

Public keys NIZKP Total Ballot NIZKP Total

k k 2k k 2.4k2 − 0.4k 2.4k2 + 0.6k

Table 4.6: The computation cost for the proposed scheme in number of exponentiations
when k candidates compete in the election.

We now compare the performance of our proposed Borda count ranked-choice voting sys-

tem with some of the well-known non-ranking based voting systems. Several cryptographic

voting protocols are proposed in the literature, however, most of them offer security and

integrity assurance by introducing a set of trustworthy tallying authorities [82, 57]. For the
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First round Second round

Public keys NIZKP Total Ballot NIZKP Total

k · a k · a+ k · b 2k · a +
k · b

k · a 2k2 · a+ 2k2 · b (k + 2k2) · a +
2k2 · b

Table 4.7: The communication cost (space) for the proposed scheme when k candidates
compete in the election. a and b represent the size of each element of the group Gq and Zq
respectively.

purpose of comparison, we consider only the self-tallying voting protocols without involving

any tallying authorities. Therefore, we compare our protocol mainly with the Kiayias-Yung

[82], Groth [57] and OV-Net [60] protocols. Table 4.8 highlights a comparison between

our proposed Borda count protocol and these three previously proposed plurality voting

solutions.

In [82], Kiayias-Yung proposed a 3-round veto protocol. In the first round, each voter

i chooses a random value xi from Zq and publishes her public key Pi = gxi . In this round,

the voter needs to compute one exponentiation and the corresponding NIZK proof for the

knowledge of the exponent. In the second round, each voter chooses n-vector private keys

(y1, y2, ..., yn) uniformly at random from Znq and publishes the corresponding public keys

(gy1 , gy2 , ..., gyn), where n is the number of voters. To perform this step, a voter needs to

compute n exponentiations. Each voter also computes (P y11 , P y22 , ..., P ynn ), which requires n

more exponentiations. In round three, each voter performs one more exponentiation. After

this step, the tally can be computed universally. Therefore, each voter needs to perform

(2n + 2) exponentiations in total. For each exponentiation, the voter needs to publish the

corresponding NIZK proof. Each voter publishes O(nk) data, where k is the number of

candidates contesting in the election, and n is the total number of voters. The final tally is

computed from O(n2k) data. Table 4.8 summarizes the performance of this protocol.

Groth [57] investigated the Kiayias-Yung’s protocol in order to reduce its system com-

plexity. Groth’s protocol has (n+1) rounds, where n is the total number of voters. In round

1, each voter i publishes her public key. After this step, each voter sends her encrypted vote

one after another depending on the result sent by the previous voter. As a result, instead of
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finishing the protocol in three rounds as in [82], the protocol requires n+1 rounds, where n is

the total number of voters. In total, the first voter needs to compute three exponentiations

and the corresponding NIZK proofs. All other voters need to compute four exponentiations

along with four corresponding NIZK proofs in total. Each voter publishes O(k) data, where

k is the number of candidates contesting in the election. The final tally is computed from

O(nk) data.

The OV-Net protocol [60] executes in two rounds, which is more efficient than the

Kiayias-Yung [82] and Groth’s [57] protocols. In the first round, every voter publishes

one public key along with a NIZK proof of the corresponding secret key. A voter needs to

compute one exponentiation and one NIZK proof for the knowledge of the exponent. In the

second round, each voter sends her encrypted vote along with one 1-out-of-k NIZK proof. In

this round, the voter needs to compute one exponentiation and one 1-out-of-k NIZK proof.

Each voter publishes O(k) data, k being the number of candidates contesting in the election.

The final tally is computed from O(nk) data, where n is the total number of voters.

All of the protocols discussed above are designed to implement a plurality voting electoral

system. We propose a Borda count voting protocol that is a ranked-choice voting system.

Our proposed protocol runs in two rounds. In the first round, each voter Vi calculates Xi1 =

gxi1 , Xi2 = gxi2 , ..., Xik = gxik and publishes (Xi1, PK{xi1}, Xi2, PK{xi2}, . . . , Xik, PK{xik}),

where PK{xij} is the NIZK proof for xij ; ∀j ∈ {1, 2, ..., k}. A voter needs to compute k ex-

ponentiations and k NIZK proofs for the exponents. In the second round, each voter Vi

publishes (Zi1, Zi2, ..., Zik) and k 1-out-of-k NIZK proofs Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈

{1, 2, ..., k}, where Zij = {gyij}xijgvij ; ∀j ∈ {1, 2, ..., k}. Our protocol adopts the same can-

celling technique as in [60] to achieve self-tallying without involving any tallying authority,

but our system is designed to support ranked-choice voting instead of plurality voting. The

construction and verification of zero-knowledge proofs are different from [60]. In our sys-

tem, each voter publishes O(k2) data, where k is the number of candidates contesting in

the election. The final tally is computed from O(nk2) data, where n is the total number of

voters.
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Protocols Election type Rounds Exp NIZKP
for expo-
nent

NIZKP
for
equality

1-out-
of-k
NIZKP

Total
traffic

Total
compu-
tation

Kiayias-Yung
[82]

Plurality (Non-
ranking based )

3 2n+
2

n+ 1 n 1 O(n2k) O(n2k)

Groth [57] Plurality (Non-
ranking based )

n+ 1 4 2 1 1 O(nk) O(nk)

OV-Net [60] Plurality (Non-
ranking based )

2 2 1 0 1 O(nk) O(nk)

Proposed pro-
tocol

Borda count
(rank-choice
based )

2 2k k 0 k O(nk2) O(nk2)

Table 4.8: Comparison with related protocols proposed in the literature. The number of
participants in the election is n, and the number candidates contesting in the election is k.

4.7 A smart contract implementation

The proposed decentralized Borda Count protocol is suitable for implementation over a

Blockchain. In this paper, we propose a smart contract implementation of our protocol on

Ethereum in order to enforce the execution of the voting protocol. We are using Ethereum

since it can store and execute programs that are written as smart contracts. Ethereum’s

consensus mechanism enforces the correct execution of these smart contracts. Its peer-to-

peer network serves as an authenticated public channel. We use the blockchain as a public

bulletin board as well as to enforce the execution of the election process in a timely manner.

4.7.1 Ethereum

An Ethereum transaction is a digitally signed instruction constructed by a user of the

Ethereum blockchain. There are two types of transactions: those that create smart con-

tracts and those that are responsible for message calls. An Ethereum transaction consists

of several fields, which specify the sender’s and the receiver’s addresses, and the transaction

data [96].

There are two types of accounts available in Ethereum blockchain. They are called

Contract Account and Externally Owned Account.

A user creates a smart contract using her externally owned account. The Ethereum
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currency ‘Ether’ can be stored in both of these types of accounts. A user needs to purchase

‘gas’ using ‘Ether’ currency in order to execute a smart contract. The gas price is set

according to the conversion rate of ether to gas. For each assembly ‘opcode’ (instruction),

there is a fixed gas cost to execute the instruction depending on its execution time. The

cost of gas to execute a transaction is regarded as the transaction fee. This transaction fee

is an incentive for the miners to add the transaction into their block.

The integrity of the Ethereum blockchain depends on its ‘proof-of-work’ mechanism. The

‘proof-of-work’ is a computationally difficult puzzle that must be solved by a miner in order

to get a block added to the blockchain. Ethereum’s blockchain is a simplified version of the

GHOST protocol introduced by Sompolinsky and Zohar [128]. In Ethereum’s blockchain,

blocks are created in every 12 seconds interval. As a result, there is a possibility that two or

more blocks would be created at the same time by different miners, and hence some blocks

would be discarded. These discarded blocks are added to the blockchain as ‘uncle blocks’,

and the corresponding miners still get some rewards in ‘Ether’ currency. Furthermore, if the

same smart contract is called by multiple transactions, the final state of the smart contract

is determined by the order of execution of the transactions.

We now discuss our implementation of the voting protocol on Ethereum in the following

sections.

4.7.2 Structure of Implementation

We follow the similar design architecture as proposed by McCorry et al. in [96]. However,

in [96], McCorry et al. implemented the OV-Net protocol only for a two-candidate election

(‘yes’/‘no’ voting). We implement the proposed Borda count protocol for multiple candidates

who are contesting in the election. Note that OV-Net protocol is designed for plurality voting

which is a non-ranking based voting system. However, our proposed protocol is designed

for Borda count voting which is a ‘ranking-based’ voting system. The two election processes

are different. In addition, the structure of ballots and the NIZK proofs are also different.

While implementing our protocol over Ethereum, some of the tasks exceeded the max-

imum gas limit (approximately 8 million gas as in June, 2019) of a block. In [96], a single

transaction is sufficient to perform a task, however, due to the complexity of the Borda
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count system, we had to send multiple transactions in parallel to complete some tasks. We

split the tasks into several smaller tasks (within the gas limit) in order to execute them in

parallel. We have developed two smart contracts in Solidity language:

(1) VoteContract: The voting protocol is implemented in this contract. This contract

also controls the voting process and checks the validity of all zero-knowledge proofs.

(2) CryptoContract: This contract consists of the code for creating zero-knowledge

proofs. All voters call this smart contract to create zero-knowledge proofs so that the same

code can be used by all voters. This contract can be executed locally without interacting

with Ethereum blockchain.

The election administrator is the owner of these two smart contracts. We have also

developed the following three HTML5/Javascript pages to provide browser interfaces for

the users:

(1) administrator.html: This page is constructed for the administrator to manage the

entire election process. The election administrator sets a list of eligible voters and a list of

timers using this page. The timers are used to set the deadlines for various stages of the

election process so the voting process progresses in a timely manner. This page also contains

the code to notify the Ethereum blockchain to begin the registration process, to close the

registration process and begin to cast the vote, to close the voting and compute the tally

based on these timers.

(2) voter.html: This page is implemented to facilitate the voter to register and cast

her vote.

(3) live.html: This page is dedicated for any observer of the election process to watch the

progress of the election including the beginning and ending of each stage, voter registration

process and vote casting process. This page shows the addresses of current registered voters,

addresses of the voters who have committed their vote and addresses of the voters who have

already cast their vote. However, it is not possible to compute the running tally.

In addition, we have implemented a Java program to locally generate the random private

keys (xi1, xi2, ..., xik) and the corresponding public keys (gxi1 , gxi2 , ..., gxik) for a voter. The

private keys are kept secret by the voter. These keys are required by the voter’s web browser

voter.html to register and cast her vote.
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We use the Web3 framework provided by the Ethereum foundation for communica-

tion between the user’s web browser and the Ethereum client. In our implementation, the

user does not need to directly interact with the Ethereum client, and it is sufficient if the

Ethereum client runs in the background. The election administrator and all voters need

to have their own Ethereum account. The election administration sets the list of eligible

voters using their Ethereum account address. Users (including voters and the election ad-

ministrator) need to unlock their account using their password to send transactions to the

blockchain from their web browser. The password is used to decrypt their private key that

is necessary to generate the digital signature of the transaction.

4.7.3 Election Stages

Figure 4.1: Election stages in our protocol implementation.

The election runs in five stages in our implementation. Figure 4.1 depicts these stages.

The election administrator arranges the election process by providing a list of timers and
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eligible voters to the smart contract. The contract only permits eligible voters to register

and cast their vote before the deadline as specified by the list of timers. In addition, as

mentioned before, an eligible voter may need to deposit ether in the contract to register for

the election. This deposit is automatically refunded to the voter after her vote is successfully

accepted by Ethereum blockchain. We now describe these election stages in detail.

Setup: At this stage, the election administrator sets a list of eligible voters using their

Ethereum account address, a list of timers and the registration deposit d on the Ethereum

blockchain. The election administrator also sets whether the optional commit stage should

be enabled or not. The timers are used to set the closing time (deadline) for each stage of

the election to enforce that the election process progresses in a predefined timely manner.

The list of timers includes the following timers.

−Tendreg: Voters must register for the election before this time limit. To register for the

election, a voter needs to send her voting keys along with the NIZK proofs (gxi1 , PK{xi1}, gxi2 ,

PK{xi2}, ..., gxik , PK{xik}), where PK{xij} is the NIZK proof of xij ;∀j ∈ {1, 2, ..., k} and k

is the number of candidates competing in the election, to the blockchain before this time.

−Tstartvote: This represents the time before which the blockchain must be notified by

the election administrator to start the election (i.e. the second round of our protocol). If

the election administrator fails to notify the blockchain by this time, the voting process will

be aborted, and all registered voters will get their deposit back.

−Tendcommit: If the Commit (optional) stage is enabled by the election administra-

tor in this Setup stage, voters must send the hash of their vote to the blockchain as

a commitment before this time. All voters send H((Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik :

Xi, Zi];∀j ∈ {1, 2, ..., k}), where Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈ {1, 2, ..., k} are k non-

interactive zero-knowledge proofs corresponding to the vote in the second round of our

protocol and Zij = {gyij}xijgvij ; ∀j ∈ {1, 2, ..., k}, k is the number of candidates competing

in the election. This time is effective only if the Commit stage (optional) is enabled. If some

registered voters fail to commit their vote by this time, the election process will be aborted.

In that case, all other registered voters who have successfully committed their vote by this

time can get their deposit back.

−Tendvote: This represents the time before which all voters must cast their vote in
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the election. All voters send their vote ((Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈

{1, 2, ..., k}) as defined in the second round of the protocol. If some registered voters fail

to cast their vote by this time, the election process will be aborted. The deposit of those

voters will be confiscated. However, all other registered voters who have successfully cast

their vote by this time will automatically get their deposit back.

−Tmin: This represents the minimum length of time in which the commitment stage and

voting stage must remain active. In a decentralized voting protocol, voters should be given

sufficient time to commit and cast their votes. Therefore, the commitment and voting stage

should remain active for a sufficient amount of time.

At the end of this stage, the election administrator notifies the Ethereum blockchain to

change the state (of the contract) from the Setup to the Registration stage.

Registration: At this stage, all eligible voters first review the parameters of the election

set by the election administrator such as timers (closing time for each stage of the election)

and the registration deposit d. Then eligible voters may choose to register for the election.

Let there be k candidates competing in the election. To register for the election, a voter

needs to compute her voting keys along with the non-interactive zero-knowledge proofs.

The voter sends the voting keys along with NIZK (non-interactive zero-knowledge) proofs

to the blockchain along with a deposit of d ether. Ethereum verifies the NIZK proofs by

executing the smart contract code and adds the transaction to the blockchain upon successful

verification of the NIZK proofs. Ethereum rejects all registration request transactions that

are received after Tendreg. At the end of this stage, the election administrator notifies the

blockchain to change the state from Registration to either the optional Commit stage or

the Vote stage depending on whether the optional Commit stage is enabled or not. During

this transition, Ethereum computes all voter’s reconstructed keys (gyi1 , gyi2 , ..., gyik), where

gyij =
∏i−1
l=1g

xlj/
∏n
l=i+1g

xlj ;∀j ∈ {1, 2, ..., k}.

Commit (optional): If the optional commit stage is enabled, all registered voters

publish the hash of their vote and NIZK proofs H((Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik :

Xi, Zi];∀j ∈ {1, 2, ..., k}) to the blockchain. Ethereum rejects all commitment transactions

that are received after Tendcommit. After receiving commitments from all registered voters,

the contract automatically changes its state to the Vote stage.
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Vote: All voters cast their vote at this stage. All voters publish their ballot - (Zi1, Zi2, ...,

Zik),Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈ {1, 2, ..., k} to the blockchain. Ethereum accepts the

transaction if the verification of all the NIZK proofs succeeds. The smart contract refunds

the deposit d to the voter after successfully accepting her ballot (encrypted vote). Ethereum

rejects all ballots that are received after Tendvote. The administrator notifies Ethereum to

change the state of the contract to the Tally stage after all voters cast their ballots.

Tally: At this stage, Ethereum computes the tally for each candidate once it receives

the corresponding notification from the election administrator. To compute the tally for

the j-th candidate, Ethereum evaluates
∏n
i=1{gyij}xijgvij = gΣni=1vij , where j ∈ {1, 2, ..., k}.

Ethereum then computes the total score Σn
i=1vij obtained by the j-th candidate using brute

force search, for each j ∈ {1, 2, ..., k}. Note that this brute force search is feasible since the

tally is a small number.

4.7.4 Design choices

We now focus on the design choices for implementing our protocol on Ethereum.

Score associated with each rank and the tally computation. In a Borda count

protocol, a score is associated with each rank. Let there be k candidates contesting in the

election. In our proposed scheme, a voter’s vote will be of the form (v1, v2, ..., vk), where

(v1, v2, ..., vk) is a permutation of (a1, a2, ..., ak). The score aj is associated with the j-th

rank and aj−1 > aj , ∀j ∈ {1, 2, .., k} i.e a higher score implies higher rank of the candidate.

In our implementation, we set the following scores associated to each rank: a1 = k, a2 =

k − 1, ..., ak = 1. Therefore, at the tallying phase, the total score obtained by a candidate

(final tally) can be at most nk, where n is the number of participants in the election.

Furthermore, the minimum total score that can be obtained by a candidate is n. In our

proposed protocol, at the tallying stage, anyone can compute
∏n
i=1{gyij}xijgvij = gΣni=1vij ,

where j ∈ {1, 2, ..., k}. The total score obtained by the j-th candidate is Σn
i=1vij . Therefore,

n ≤ Σn
i=1vij ≤ nk, which is normally a small number. Thus, the exhaustive search (brute-

force) requires at most (n(k−1)+1) operations to compute the discrete logarithm of gΣni=1vij

for all j ∈ {1, 2, .., k}, where n is the number of participants in the election.

The election administrator. In our implementation, the election administrator sets
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the parameters of the election, list of eligible voters. The election administrator notifies the

smart contract to begin the Registration stage. Note that a smart contract cannot start

executing code without user interaction. Therefore, there must be a user who can take the

responsibility of notifying the smart contract to begin the election process and compute the

tally. We assume that the election administrator notifies the blockchain. A registered voter

can also notify the blockchain.

Preventing re-entrancy attack. This attack is possible if a smart contract sends

‘ether’ to a user before deducing their balance. An attacker can exploit this vulnerability

by calling the smart contract recursively in such a way that sending of ether is repeated,

however, the deduction of balance is done only once. Using re-entrancy vulnerability in

DAO, an attacker stole 3.6 million ether. Luu et al. [93] analyze that there are 186 distinct

smart contracts stored on the blockhain vulnerable to this attack. To thwart this attack,

Reitwiessner [115] suggests to first deduce the balance before sending the ether. We follow

the same in our implementation.

Preventing replay attack. In the first round of our protocol, all voters send publicly

their public keys with NIZK proofs (gxi1 , PK{xi1}, gxi2 , PK{xi2}, ..., gxik , PK{xik}). Another

eligible voter might replay the same keys and NIZK proofs but without actually knowing

the corresponding private keys. This will invalidate the purpose of the NIZK proof which is

supposed to enforce the user to prove the knowledge of the private key. To prevent this replay

attack, we follow the technique suggested in [60], by including the sender’s unique identity

(msg.sender) as an input argument to the hash function in the NIZK proofs. Therefore, no

other voter can use the same NIZK proof as every sender’s identity over the blockchain is

different.

Downloading full blockchain. Currently, it is necessary to download the full Ethereum

blockchain to verify the correct execution of the voting protocol. Note that a voter can par-

ticipate in the election without downloading the full Ethereum blockchain, however in that

case, the voter needs to trust Ethereum blockchain for correctly executing the protocol. The

voter only needs to broadcast her transactions in the Ethereum blockchain network. They

can use live.html page for confirmation of their registration and to view that their vote has

been included in the blockchain. This enables voters with limited resources to cast their
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vote.

Refund of the deposit. In our implementation, all registered voters must send their

ballots before the deadline so as to ensure that their ballots are included in the blockchain.

The deposit d acts as a financial incentive that is refunded to the voters who adhere to

the protocol and submit their ballots in time. However, those voters who fail to do so in

time will face forfeiture of their deposit. The confiscated deposit can be used to compensate

compliant votes or to support a charitable cause. The deposit is automatically refunded to a

voter if either the voting process is successfully completed or if the voting process is aborted

due to some other voter’s failure in adhering to the protocol.

4.7.5 Experiment on Ethereum

We deployed our implementation on Ethereum’s private network that mimics the production

network. We have tested our implementation for different numbers of voters and for different

candidates competing in the election. We present the results of our experiments with eighty

voters and a varying number of candidates. In Table 4.9, we have outlined each transaction’s

computational and financial cost for eighty voters and five candidates contesting the election.

The total number of transactions in an election depends on the number of voters and the

number of candidates competing in the election. The number of transactions that we sent

to simulate the election process is shown in Table 4.9. The election administrator is denoted

by the prefix ‘AD:’ and each voter is denoted by the prefix ‘VT:’ (see Table 4.9). Each

transaction is a broadcast transaction. We have calculated the cost in US Dollar (denoted

by ‘$’ in the table) and rounded it to two decimal places.

Currently, the maximum gas limit of a single Ethereum block is approximately 8 million.

The amount of gas required to store our code as a smart contract exceeds the gas limit

of a single Ethereum block. Therefore, we had to create two smart contracts, namely,

VoteContract and CryptoContract . The main protocol logic is implemented in the contract

‘VoteContract’, whereas, the code for the creation of the NIZK proofs is implemented in

the contract ‘CryptoContract’. The verification of the NIZK proofs is implemented in the

contract ‘VoteContract’.

As shown in Table 4.9, the voter registration costs approximately 48% of the block
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Entity: Transaction A B C D
AD: VoteContract 1 5, 498, 780 5, 498, 780 1.70
AD: CryptoCon-
tract

1 3, 698, 878 3, 698, 878 1.14

AD: Eligible 1 4, 349, 336 4, 349, 336 1.34
AD: Begin setup 1 257, 209 257, 209 0.08
VT: Register 1 3, 850, 910 3, 850, 910 1.19
AD: Begin election 5 7, 149, 237 35, 746, 186 11.05
VT: Commit 1 183, 457 183, 457 0.06
VT: Vote 5 7, 213, 571 36, 067, 855 11.14
AD: Tally 5 5, 629, 272 28, 146, 362 8.70

Administrator Total 14 77, 696, 751 24.01
Voter total 7 40, 102, 222 12.39

Table 4.9: A breakdown of the cost for eighty participants using our protocol with five
candidates competing in the election. The costs are approximated in USD (‘$’) using the
conversion rate of 1 Ether=$309 and the gas price of 0.000000001 ether that are real world
costs in June, 2019. We have approximated the cost for the election administrator ‘AD’
and the voter ‘VT’. Columns are represented as - A: Number of transactions, B: Cost per
transaction in Gas, C: Cumulative cost in Gas, D: Cumulative cost in ‘$’.

capacity when five candidates are competing in an election. Note that, as mentioned before,

the maximum block capacity in Ethereum blockchain is about 8 million gas as in June,

2019. Thus, the current block supports at most two voter registrations per block. The vote

casting costs more than the capacity of a block. Therefore, we made five transactions to

cast a vote. The reason is that the number of exponentiations increases with the number

of candidates completing in the election, and hence the cost of verifying NIZK proofs also

increases. As shown in Table 4.9, we have made five transactions to cast a vote when the

number of candidates competing in the election is five. Each transaction of vote casting

costs approximately 90% of the block capacity. This suggests that five blocks are needed to

cast a vote. Note that, in Ethereum, currently blocks are generated at a rate of one block

in every 12 seconds.

Overall, the cost for the election administrator to run the election with 80 voters and 5

candidates is approximately $24.01. The average cost for each voter to run an election with

80 participants and 5 candidates is approximately $12.39.

The code in the contract ‘CryptoContract’ is executed locally on the voter’s device,

not on the Ethereum network. This contract provides the same NIZK proofs for all voters

108



throughout the execution of the protocol.

We have performed experiments with 3, 10, 20, 45, 60, 80 voters and with 2, 3, 4, 5

candidates and plotted the results to show how the costs for the election administrator

and voter vary with different numbers of candidates. Figure 4.2 depicts the average cost

for the election administrator based on the number of voters and the number of candidates

competing in the election. From this figure, we see that the cost for the election administrator

increases linearly with the number of voters. Figure 4.3 depicts the cost for each voter based

on the number of voters participating in the election and the number of candidates competing

in the election. From this figure, we see that the cost for each voter remains nearly constant

with the number of voters participating in the election.
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Figure 4.2: The election administrator’s cost based on the number of voters participating
in the election and the number of candidates competing in the election.

Figure 4.4 shows a breakdown of the election administrator’s gas cost based on the

number of voters when 5 candidates are competing in the election. The figure shows that

the gas consumption for different tasks increases linearly with the number of voters except

for beginning the registration. The maximum gas limit that an Ethereum block can consume

was set at 8 million as in June, 2019. In our implementation, the number of transactions to

compute reconstructed keys is equal to the number of candidates. Still, each transaction for
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Figure 4.3: Each voter’s cost based on the number of voters participating in the election
and number of candidates competing in the election.

computing reconstructed keys reaches computation and storage limit for around 87 voters

due to the block’s gas limit. Due to this block gas limit, we had to make as many transactions

as the number of candidates to compute the tally.

Timing measurements analysis. We have performed all the tests on a Chieftec

desktop machine running Windows 10 Enterprise version 1809 equipped with 4 cores, 3.10

GHz Intel Core i5-2400 and 32 GB RAM. The timing analysis measurements of different

tasks of our protocol are highlighted in Table 4.10. We have rounded all time measurements

up to the nearest millisecond. The time measurement of each task is performed using the

.call() function on the local daemon.

The voting contract ‘VoteContract’ contains the main logic of the protocol including the

code for enforcing the election process in a timely manner. The task ‘Register voting key’ in

Table 4.10 involves the verification of the Schnorr’s zero-knowledge proofs created in the first

round of the protocol. The time required to complete this action depends on the number of

candidates competing in the election. Table 4.10 shows the time required to complete this

action for different numbers of candidates. Beginning the election involves computing the

reconstructed keys for every voter corresponding to each candidate. The time required for

this action depends on both the number of voters and the number of candidates competing

in the election. Casting a vote involves the verification of the 1-out-of-k zero-knowledge

proofs created in the second round of the protocol. It depends on the number of candidates
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Figure 4.4: The gas costs for different tasks of the election administrator (EA) based on the
number of voters participating in the election when the number of candidates competing in
the election is 5.

competing in the election. The task ‘Tally’ in Table 4.10 includes calculating the sum of

all the cast votes and then getting the tally for each candidate by brute-force (exhaustive

searching). The time required for these tasks is shown in Table 4.10 for different numbers

of candidates contesting in the election.

The cryptography contract ‘CryptoContract’ is used to create all zero-knowledge proofs

using the .call() function. There is no need to send the transactions to this smart contract.

The time required to create the schnorr’s ZKP in the first round of the protocol depends on

the number of candidates competing in the elections, as shown in Table 4.10.

4.8 Discussion on applications

Ranking based voting systems are popular among voting experts as they tend to gather more

information from the voters with regard to their preferences as opposed to simple plurality

voting where a voter is able to make only a single choice among a set of candidates. It is

well known that a plurality voting system can produce election results that do not reflect

the true sentiments of the voters [102]. An example of the fact is the 1988 election for
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Action A B C D
Create ZKP(X) 34 48 75 91
Register voting
keys

57 84 104 138

Begin election 204 305 401 493
Create k 1-out-
of-k ZKP

213 515 908 1465

Cast vote 207 483 824 1261
Tally 162 385 457 694

Table 4.10: A timing measurement for different functions that run on Ethereum daemon.
Here X is a k-tuple (x1, x2, ..., xk), where k is the number of candidates competing in the
election. The k in the Create-1-out-of-k ZKP represents the number of candidates competing
in the election. The number of participants is eighty. Columns are represented as the average
time in milliseconds for A: 2 candidates, B: 3 candidates, C: 4 candidates, D: 5 candidates.

electing the prime minister in Canada [102]. The key issue in this election was free trade

with the USA. Approximately 60% of the population was opposed to free trade in this three-

candidate election. However, the pro free trade candidate won the election since the anti free

trade votes got split between two anti free trade candidates. Such pitfalls of the plurality

voting system are caused due to the electoral system taking only limited information from

voters: only a favorite candidate is indicated. These pitfalls can be avoided by taking more

information from voters, e.g., using a ranking-based voting system [102].

Borda count is a typical ranking based voting system that elects a winner taking into

account a voter’s degree of proclivity toward one or more candidates. Thus, Borda count

is sometimes described as a consensus-based voting system [92]. One of the good features

of Borda Count is that it is “monotone”, as increasing the score for a candidate only helps

them win [41]. Hence, this voting system more faithfully reflects the sentiment of the electors

than common plurality voting systems. However, these schemes are not heavily deployed

in practice due to the complexity involved with them. The complexity around ranking

based voting systems have so far led people into shying away from using them in real life.

Our paper proposes an easily implementable Borda count e-voting system, and it brings

ranking based voting systems closer to practice. Our scheme is publicly verifiable and it

guarantees the privacy of every voter to the maximum such that only a full-collusion can

break it. Moreover, the scheme does not rely on any trusted third parties. This scheme could
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motivate researchers to explore new applications in the field of ranking-based e-voting, this

previously uncharted territory. Below we provide a list of areas where the Borda Count

voting method has been applied.

The Borda count voting has been used to aggregate preferences in many contexts [17].

In addition to democratic elections ([51, 114]), the Borda count voting scheme has been used

in elections by several academic institutions and professional bodies [51, 61]. For instance,

Borda count is used by X.Org Foundation to elect its board of directors [20]. The Borda

count is also used for granting awards in several sports competitions (such as Most Valuable

Player Award, Heisman Trophy etc. [104]) and singing competitions (such as Eurovision

Song Contest [104]), soccer competitions (such as the RoboCup autonomous robot soccer

competition [41]). Borda count is also used by the OpenGL Architecture Review Board as

one of the feature-selection methods. It is used as a rank aggregation method for the Web

(where voters are the search engines, and candidates are the pages). A summary of these

applications of Borda count voting can be found in [148, 44]. In [83], Kijazi and Kant used

Borda count method to establish group preferences for alternatives for forest use on Mount

Kilimanjaro. Laukkanen et al. [88] and Hiltunen et al. [66] applied several voting methods

including Borda count to assess group preferences for forest management plans in Finland.

In [21], Burgman et al. discuss potential utility of various voting systems including Borda

count for environmental decision making. Borda count is used for Waste Management in

several countries [135]. It is used in TOPSIS (technique for order performance by similarity

to ideal solution) ranking [124, 126] and an extension of TOPSIS for group decision making

[125]. In another context, the Borda count method is widely used for rank aggregation in

the information retrieval area [43]. Chatzichristofis et al. [28] propose an image retrieval

technique using Borda count.

The public verifiability and freeness from any tallying authorities make our proposed

Borda count system suitable for deployment over an Ethereum-like blockchain as we have

demonstrated in Section 4.7. An e-voting system based on blockchain can be effective for

corporate governance and shareholder activism [87, 140]. In February 2016, Nasdaq, in coop-

eration with the Estonian Government, announced a blockchain based e-voting that allows

shareholders to vote remotely in Annual General Meetings (AGMs) [19, 87]. Besides Nas-
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daq, the Abu Dhabi Stock Exchange used blockchain based e-voting to organise shareholder

voting in annual general meetings [65, 87]. Compared with these blockchain-based e-voting

systems, ours does not require any tallying authorities, so the tallying and the verification

of the tallying integrity can be done publicly by the consensus algorithm that underpins the

blockchain.

4.9 Concluding remarks

In this paper, we have proposed a two-round self-tallying Borda count e-voting scheme.

This scheme does not require any trusted party to compute the tally. Instead, the scheme

ensures that anyone can compute the tally from the public information made available on the

bulletin board. Our scheme ensures the maximum voter privacy, and upon the successful

completion of the protocol, the voters are strictly limited to learn only the tally of the

election and their own inputs. We have presented security proofs to prove the security of

the protocol. Further, the scheme offers public verifiability. Every voter generates NIZK

proofs to prove that they have been faithfully following the protocol specification without

revealing their secret input. We have implemented the scheme on the Ethereum blockchain.

Both the theoretic and the experimental analysis results show that this scheme is feasible to

be used in practice. In future work, we plan to investigate extending this work to support

more complex ranked choice voting systems such as STV and Condorcet in a decentralized

setting.

4.10 Open source code

The source code for the proof-of-concept implementation of the proposed Borda count voting

system over the Ethereum blockchain can be found at https://github.com/smartcontract68/

Borda_count_smart_contract.
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Chapter 5

Deniable Secret Handshake Protocol -
Revisited

5.1 Introduction

This chapter is based on paper [107]. The concept of deniability is defined following the

simulation based paradigm. An adversary tries to convince a third party (judge) by produc-

ing a proof of a conversation held between two authorized users of the same organization.

An secret handshake (SH) protocol is said to be deniable if a simulator can generate the

same view of the protocol transcript which is indistinguishable from the real view. Mainly,

two types of deniability exist in the literature - full deniability and strong deniability. In a

fully deniable SH protocol, an adversary’s view should be indistinguishable from the view

of a simulator when two honest parties faithfully perform a SH protocol. We note that the

simulator is able to produce the view without the honest users’ certificates and CA’s master

secret key. However, the notion of strong deniability takes care of the scenario when one

of the users is malicious and “acts" as the aforementioned adversary to trap an honest user

with whom he is communicating. The definition of strong deniability requires that the sim-

ulator must be fed with the same inputs as the malicious party/ adversary which includes

secret certificates and randomness of the adversary. Now if the simulator can produce an

indistinguishable view from the real view then the protocol is said to be strongly deniable.

For more details, we refer to the paper of [132].

In this chapter, we consider the situation when a user behaves semi-honestly and partic-

ipates in an SH protocol with an honest user. A semi-honest user is not completely honest

115



but follows the protocol as an honest user. However, he may store the randomness that he

uses in the protocol and may try to gather more information from the run of the protocol

than an honest user would. We first show that in presence of a semi-honest user, the pro-

tocol of Tian et al. [132] is not fully deniable. More specifically, if the responder of a SH

protocol is semi-honest and maintains receipt(s) then a simulator is unable to generate a

transcript which is indistinguishable from the transcript generated during the real execution

of the protocol- resulting in the loss of full deniability for the initiator. We then propose a

possible countermeasure to fix the issue. We furthermore present two attacks- viz. “man-in-

the-middle" (MITM) attack and “cutting-last-message-attack" to the protocol. We conclude

the paper with solutions to resist these two types of attacks.

5.2 Preliminaries

Online and Offline Judge: When we discuss deniability, we must do so with respect to

a type judge (or distinguisher). Two primary types of judges have been discussed in the

secure messaging literature such as offline judges, and online judges.

An offline judge examines the transcripts of a protocol execution that occurred in the past

and decides whether or not the parties mentioned in the transcript were actually involved

in the conversation. An online judge interacts with a protocol participant, referred to as the

informant, while the protocol conversation is occurring.

5.2.1 Security model

In this section, we introduce the security model due to [132]. The linkable affiliation-hiding

(LAH) and untraceability properties of their model follow directly from [69, 94] respectively.

States: Let us define a user set U of n users. The i-th session established by a user U

is denoted by Πi
U . An oracle Πi

U may be considered as used or unused. An oracle Πi
U is

considered as unused if it has never been initialized. When an oracle Πi
U is initialized, it

becomes part of a group. After initialization, the oracle is marked as used. The internal

states stateiU are stored by the oracle. The oracle Πi
U accepts and terminates the protocol

as soon as the session key Ki
U is computed. The oracle stops sending or receiving messages
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after terminating the protocol. If the protocol execution fails, the oracle terminates without

having accepted.

Partnering: We denote the pseudonym of all users recognized by the i-th session Πi
U

as pidiU and the corresponding session identifier as sidiU . Two instance oracles Πi
U and Πj

U ′

are partners if and only if pidiU=pid
j
U ′ and sid

i
U=sid

j
U ′ .

5.2.2 System model

A deniable secret handshake scheme is a collection of the following algorithms.

Setup: On input of a security parameter κ, the algorithm outputs public parameters

params.

KeyGen: This algorithm is executed by the central authority (CA). The algorithm,

on input params, outputs the group public key mpk, corresponding secret key msk and an

empty pseudonym revocation list L.

Add: This algorithm is an interactive algorithm between the CA and a user. The

algorithm, on input msk and a user U ∈ U , generates a public pseudonym pk and the cor-

responding secret certificate cert for the user U . The CA updates the group pseudonym list

by adding public pseudonym pk. The user will be registered after executing this algorithm.

Revoke: This algorithm is executed by CA. On input pk from a user, the algorithm

updates the group pseudonym revocation list L by adding the public pseudonym pk of the

user.

Handshake: This is an interactive algorithm executed by some set of participants

∆ = {U1, U2, ..., Un} ⊆ U . Each user Ui runs the session Πτ
i of the protocol on some inputs:

(pkτi , cert
τ
i ), mpkτi and L, where (pkτi , cert

τ
i ) is the public pseudonym/secret certificate pair

of user Ui,mpkτi is the group public key in Ui’s view and L is the group pseudonym revocation

list. The algorithm outputs a session key SK if and only if her counter part users are

registered and non-revoked users, otherwise the the algorithm rejects.

5.2.3 Session key security

Now we describe the adversarial behavior. An adversary is allowed to fully control the

communication network. The adversary can inject, modify, or delete messages at will. He
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can also launch man-in-the-middle attack. He can corrupt some users and obtain their secret

keys, internal states and session keys. A session Πt
U is secure if an adversary can not obtain

the established session keys unless it is compromised trivially through party corruption. We

consider the same session key security model and security definition as described in Tian

et al. [132]. The session key security model is defined via a game between a probabilistic

polynomial time adversary A and a challenger (i.e. simulator) S.

-Setup: The simulator S generates the group public and secret key pair (mpkj ,mskj)

for m groups (CA), ∀j ∈ {1, 2, ...,m}. S creates n users and their corresponding public and

secret key pairs (pki, cert
j
i ) in group Gj , ∀i ∈ {1, 2, ..., n}, ∀j ∈ {1, 2, ...,m}, by executing

the corresponding Add algorithm. Then S sends all the public keys (mpkj , pki) to the

adversary A. S then generates a random coin b that will be used later in the game. The set

all registered and nonusers in the group Gj is denoted by U .

-Training: A can make following queries to the simulator S in arbitrary order.

• Establish: A can register a user U∗ with public pseudonym pk∗ ∈ Gג. If the user U∗

is registered by A , then it will be dishonest and the user U∗ with public pseudonym

pk∗ will added to the system.

• Send: If A makes a send query of the form (Ui,Gj , t,m
′) to simulate a message m′

in the t-th session in group Gj , then the simulator S will simulate the reaction of the

oracle Πt
Ui

and returns the message that the oracle Πt
Ui

would generate. If A makes

a send query of the form (Ui,Gג, t, ‘start
′), then S creates a new instance oracle Πt

Ui
.

Then S returns the first protocol message to A.

• Long-term secret key reveal: If A makes a long-term secret key reveal query to user

Ui, then S returns (certji ) to A.

• Ephemeral secret key reveal: If A makes an ephemeral secret key reveal query to

Πt
Ui

(possibly in an unaccepted session), then S returns all the ephemeral secret keys

contained in the oracle Πt
Ui

to A.

• Group secret key reveal: If A makes an group secret key reveal query with respect to

the group Gj , then S returns mskj to A.
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• Session key reveal: If Amakes a session key reveal query to Πt
Ui

for an accepted session,

then S returns the session key to A if the session is accepted; otherwise, it returns a

special symbol ‘⊥’ to A.

• Test: This query can only be issued to a user U in group Gj for an accepted and fresh

session t. The simulator S performs the following action:

1. If b = 1, then the simulator S returns the real session key to A.

2. Otherwise, S returns a random key from the session key space to A.

The test session must remain fresh throughout the entire game. Note that A can issue

other queries after the test query.

At the end, A outputs b′ as her guess for b. If b = b′, then the simulator outputs 1; else

the simulator S outputs 0.

Freshness: An accepted instance Πt
Ui

will be fresh if the adversary A does not make

any of the following queries during the entire game.

- A makes an establish query for a new user U∗ ∈ pidtU .

- A makes both the long-term secret key reveal query to user U∗ ∈ pidtU and the

ephemeral secret key reveal query for some partner instance Πt∗
U∗ of the instance Πt

Ui
.

- Before the acceptance of the instance Πt
Ui
, A makes a long-term secret key reveal query

to a user U∗ , where U∗ ∈ pidiU , and there does not exist any instance Πt∗
U∗ partnered with

Πt
Ui
.

- A makes a session key reveal query to an instance Πt
Ui

or an instance Πt∗
U∗ that is

partnered with Πt
Ui
.

It can be realized that the group secret key reveal query to CA is equivalent to making

long-term secret key queries to all users in group Gj . The advantage of the adversary A in

this game is defined as

AdvA(κ) = |Pr[S → 1]− 1/2| (5.2.1)

Definition 5.2.1. A deniable secret handshake protocol is said to be session key secure if,

for any probabilistic polynomial time adversary A, the advantage of the adversary AdvA(κ)
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is a negligible function of κ (where κ is the security parameter).

Generic Concurrent Knowledge Extraction Assumption (GCKEA): We follow the same

assumption used in Tian et al. This is a generalized version of Concurrent KEA [145] and

Knowledge of Pairing Pre-Image Assumption (KPA) [121].

Definition 5.2.2. (GCKEA) Let us define a domain {Dκ}κ∈N, where N is the set of all

natural numbers. Let D be a set randomly chosen from Dκ and p(κ), p(κ) are two poly-

nomials in the security parameter κ. Let OC be a predicate algorithm with respect to the

random challenge set C = {C1, C2, ..., Cp(κ)}. On a query of the form (X,Y, Z), where

(X,Y ) is randomly chosen from the domain D, it outputs success (or 1) if Y is chosen

(randomly) from C and Z = PKDF (X,Y ), where PKDF is a public key derivation func-

tion. We define an algorithm AOC with predicate oracle OC , which, on input C, outputs

{(X1, Y1, Z1), (X2, Y2, Z2), ..., (Xq(κ), Yq(κ), Zq(κ))}. An algorithm AOC is called a GCKEA

extractor if, with overwhelming probability, AOC (C) outputs {(X1, Y1, Z1), (X2, Y2, Z2), ...,

(Xq(κ), Yq(κ), Zq(κ))} such that Yi ∈ C and Zi = PKDF (Xi, Yi),∀i ∈ {1, 2, ..., q(κ)}.

We say that GCKEA holds if for every probabilistic polynomial time algorithm A, there

exists another probabilistic algorithm A∗ that on the same inputs as A, random coins, random

oracles, outputs xi such that Xi = f(xi),∀i ∈ {1, 2, ..., q(κ)}, where f is a computationally

efficient function that, on input xi, outputs Xi.

5.3 Revisiting DSH Protocol of Tian et al. [132]

5.3.1 The Protocol

Tian et.al. have introduced the notion of deniable secret handshake framework DSH [132].

For the sake of completeness, we describe the protocol almost verbatim. Their proposed

generic framework consists of the following building blocks.

1. A forward-secure secret handshake protocol SH=(Setup, KeyGen, Add, Revoke, Hand-

shake),

2. A blind digital signature scheme BS=(KeyGen, Signer and User, Verify),
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3. A public key based key derivation function PKDF,

4. A proof of knowledge PoK and

5. A collision-resistant hash function H.

The DSH protocol given in [132] is as follows.

Setup: Given a security parameter λ as input, the Setup algorithm outputs public param-

eters: params ← SH.Setup.

KeyGen: The CA runs the SH.KeyGen algorithm to obtain the group public/secret key

pair (mpk,msk) and an empty pseudonym revocation list L.

Add: The CA and user Â run the BS.Signer and User(msk) interactive algorithm to obtain

a pseudonym/certificate pair (pka, certa) of user Â. User Â takes pka as public pseudonym.

Revoke: The group CA runs the SH.Revoke(pka) algorithm to update the group pseudonym

revocation list L. Note that public pseudonym pka is added to revocation list L.

Handshake:

• User Â runs the SH.Handshake.Ephemeral algorithm to obtain ephemeral secret/public

key pair (eska, epka) and sends (epka, pka) to user B̂;

• After receiving (epka, pka) from user Â, user B̂ performs the following steps:

1. Run the SH.Handshake.Ephemeral algorithm to obtain ephemeral secret and public

key pair (eskb, epkb);

2. Compute the proof of knowledge PoK{(eskb) : H(PKDF (epkb, epka))};

3. Send (epkb, pkb, PoK(eskb)) to user Â.

• Upon receiving (epkb, pkb, PoK(eskb)) from user B̂, user Â computes the proof of

knowledge (i.e., non-malleable zero-knowledge)

PoK{(eska, certa) : H(PKDF (epka, epkb)||PKDF (pka, epkb))} and sends it to user

B̂. Meanwhile, Â computes the final session key SKa = H(Ka||sid), where Ka =

SH.Handshake.KDF (eska, epkb, certa,mpk, L, init) and the session identifier is sid =

(epka||epkb).

• Upon receiving PoK(eska, certa) from user Â, user B̂ computes the proof of knowledge

PoK{(eskb, certb) : H(PKDF (epkb, epka)||PKDF (pkb, epka))} and sends it to user
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Â. Meanwhile, B̂ computes the final session key SKb = H(Kb||sid), where Kb =

SH.Handshake.KDF (eskb, epka, certb,mpk, L, resp). We notice that Ka = Kb holds

due to the correctness of SH.Handshake algorithm.

5.3.2 Analysis of the Protocol

According to the protocol, at the beginning of the handshake session, the user Â sends her

public pseudonym pka to the user B̂. In the next step, upon receiving pka from the Â, a

semi-honest user B̂ can generate her ephemeral secret and public key pair (eskb, epkb) and

can keep a receipt of its randomness and keys. User B̂ can show this receipt to a judge

to prove their conversation. As a result of this attack, a simulator can not generate the

transcript that is indistinguishable from the transcript during real protocol execution. The

next subsection describes an example of such flaw. We note that such a flaw shares a similar

idea as given in [55].

Receipt Flaw: Suppose the user Â is an honest user and B̂ is a semi-honest user. They

execute the deniable secret handshake protocol and communicate with each other following

the protocol specification. Meanwhile, user B̂ keeps the receipt of its randomness whenever

he receives a request from the initiator user Â with public key pka. Later if only the receipt

is obtained by the police then the full deniability will be lost for both the users. This is a

flaw in the system in the sense that it is easy for user B̂ to keep a receipt depending on the

public key in the first message.

To accomplish this task, upon receiving (epka, pka) from user Â, user B̂ chooses a value

uniformly at random from Z∗q for generating ephemeral public key/secret key pair and keeps

a receipt of the randomness to prove how she generated the public key/secret key pair. Since

user B̂ keeps a receipt, the exact ephemeral public key/secret key of user B̂ can be generated

later from that receipt. However, whenever B̂ receives a pseudonym different from pka, she

chooses a value uniformly at random from Z∗q for generating her ephemeral public key/secret

key pair and may not keep a receipt. In future, police approaches to judge with B̂’s receipt

to prove the conversation with user Â whose pseudonym is pka.

In the above scenario: (1) a simulator S can not simulate the transcript of the ephemeral
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public/secret keys generated by user B̂ since user B̂ maintains a receipt of randomness and

the exact ephemeral public/secret key pair of B̂ can be generated from that receipt. This im-

plies that the simulator will no be able to simulate the second message of the handshake pro-

tocol (epkb, pkb, PoK(eskb)). (2) A simulator S can not generate the proof of knowledge (i.e.,

non-malleable zero-knowledge) PoK{(eska, certa) : H(PKDF (epka, epkb)||PKDF (pka,

epkb))} in the third message without having the secret certificate, certa, of user Â and the

secret key of the semi-honest user B̂. As user B̂ keeps the receipt of randomness, the exact

real transcript of this third message can be generated from that receipt. Thus, user Â can

not deny of having handshake session with user B̂ i.e. breaking full deniability property of

the protocol.

Man-in-the-middle (MITM) attack: In this attack, we consider two honest users Â and

B̂ trying to execute the deniable secret handshake protocol [132]. However, upon observing

the public pseudonym pka, a man-in-the-middle adversary (MITM) M̂ tries to interfere in

their communication. We now present this attack on DSH, which is depicted in Fig. 5.1.

Since the PKDF is assumed to be a public key bases key derivation function, let us, for

example, assume PKDF{(epka, epkb)} = gxy if epka = gx and epkb = gy.

Figure 5.1: Full deniability loss of user Â under man-in-the-middle (MITM) adversary at-
tack.

Here, user Â and user B̂ are honest users. In this scenario, the MITM adversary M

keeps a receipt of its random variable r and presents it to an offline or online judge. The

MITM adversary M communicates with the honest user Â in the name of user B̂ as shown

on the left session of the Fig 5.1. The right session of the Fig. 5.1 depicts the communication

between the MITM initiator M with the honest responder B̂ in the name of user Â.
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Upon receiving the first round message (epka, pka) (for example, (gx, ga)) from Â, the

adversaryM chooses a number uniformly at random from Z∗q and sends ((epka)
r, pka) (for ex-

ample, (grx, ga)) to user B̂ in the name of Â. The adversary keeps a receipt of its randomness

r. Upon receiving the second round message (epkb, pkb, PoK{eskb : H(PKDF (epkb, (epka)
r))})

(for example, (gy, gb, H(grxy))) from honest user B̂, the adversary modifies the message

to ((epkb)
r, pkb, PoK{eskb : H(PKDF (epkb, epka))}) (for example, (gry, gb, H(grxy))) and

sends it to user Â in the name of user B̂. In the third round, the adversary receives

the message PoK{(eska, pka) : H(PKDF (epka, epkb)||PKDF (pka, epkb))} (for example,

H(grxy||gray)) from honest user Â and aborts the conversation with both user Â and user

B̂. Note that in these conversations, the adversary M does not need to do any oracle query.

After these conversations, the adversary M̂ approaches to judge with her receipt to prove

that the user Â whose pseudonym is pka is involved in the conversation.

In the above scenario, in case of honest user Â and B̂, a simulator S can not generate the

proof of knowledge (i.e., non-malleable zero-knowledge) PoK{(eska, certa) : H(PKDF (epka,

epkb)||PKDF (pka, epkb))} in the third message without having the secret certificate, certa,

of user Â and the random number r generated by the adversary M . Since the adversary

does not make any oracle query, the simulator can not extract the exponent r chosen by the

adversary M . Therefore, The user Â losses deniability in this case.

Cutting-last-message attack: Since the PKDF is assumed to be a public key based key

derivation function, we assume PKDF{(epka, epkb)} = gxy if epka = gx and epkb = gy.

This attack works as follows. A man-in-the-middle adversary M interacts with the

uncorrupted user Â in the name of user M 6= B̂ in a session (referred to as first session),

while concurrently communicating with the uncorrupted user B̂ in the name of user Â

in another session (referred to as second session). The adversary M relays the messages

between user Â and user B̂ in these two sessions, but aborts the first session after receiving

last message from the user B̂ in the second session.

Such an attack results in authentication failure as follows: the user B̂ is perfectly fooled

to believe that the user B̂ has taken a part in conversation with user Â in the second session

and shared a session key with that user. However, user Â thinks that it only took part in
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an aborted session with user M in the first session. The Fig. 5.2 depicts this attack.

Figure 5.2: “cutting-last-message” attack.

Such an attack can be ruled out by adding pkb in the proof-of-knowledge in the sec-

ond message, such as PoK{(epkb) : H(pkb||PKDF (epkb, epka))} or by including pkb in

the PKDF function. Specifically, after receiving the second message (epkb, pkb, PoK{eskb :

H(pkb||PKDF (epkb, epka))}) from user B̂, the adversary can not send correctly

(epkm, pkm, PoK{eskb : H(pkm||PKDF (epkb, epka))}), where epkm is the ephemeral public

key of adversary M , pkm is the public pseudonym of adversary M 6= B̂.

5.3.3 Possible countermeasures

Solution: Using public random oracle model (pRO)

(Public) Random Oracle: Random oracle [8] H : {0, 1}∗ → {0, 1}k is a random function

such that it has following two properties: (i) it is a function such that the same input gives

the same output, and (ii) it is completely random in the sense that for any input x, H(x)

is uniformly distributed over {0, 1}k. A random oracle (RO) can be described as follows.

Let us consider a set L ⊂ {0, 1}∗ × {0, 1}k. Initially, L = φ. For an input x, the value

of H(x) is computed as follows. First, check whether there exists y ∈ {0, 1}k such that

(x, y) ∈ L. If there is no such y, choose a random y ← {0, 1}k and add the tuple (x, y) into

the set L. In any case, return y as the computed value H(x).

Our protocol in this section is proven to be deniably secure in the public random oracle

(pRO) model. In this model, the random oracle is a public random function that is accessible

by the adversary and the simulator by submitting input and receiving output. The simulator

can see the input and output pairs of all random oracle queries. This type of oracle is

125



introduced in [111] for proving deniable zero knowledge. Note that deniability means the

simulator’s code can also be executed by the adversary himself and thus, he can simulate the

transcript in adversary’s view without actually interacting with honest parties. In this case,

the adversary is the only entity interacting with the public random oracle (The adversary

can forward the simulator’s query to the public random oracle) and he can feed to the

simulator with the oracle input/output. Thus, the simulation under the public random

oracle model can be replayed by the adversary. However, in the traditional random oracle

model [8], the simulator maintains the random oracle evaluation. Now if the simulator’s

code is executed by the adversary, then the random oracle evaluation is maintained by the

adversary since the simulator is his subroutine. However, in the real protocol, the adversary

can only submit input to the random oracle and receive the output. Therefore, in the

traditional random oracle model, the simulator’s code can not be played by an adversary

and thus, the simulation is not guaranteed to be deniable.

The protocol: Let H : {0, 1}∗ → {0, 1}k be a hash function. We have described the mod-

ified procedure below under the pRO model described above. The protocol uses following

components: (1) a forward secure secret handshake protocol, (2) a blind signature algorithm

BS=(KeyGen, Signer and User, Verify); (3) a public key derivation function PKDF, a proof

of knowledge PoK and a collision- resistant hash function H. For simplicity, in this section,

we have described the protocol in the two-party setting using user Â and user B̂. It can be

extended to multi-party setting using BD protocol [22].

– Setup: On input of a security parameter κ, this algorithm outputs public parameters

params ← SH.Setup.

– KeyGen: This algorithm is executed by the group CA. The algorithm, on input params,

outputs the group public key mpk, corresponding secret key msk and an empty pseudonym

revocation list L.

– Add: This algorithm is an interactive algorithm between the CA and a user. The al-

gorithm, on input msk and a user Â, executes the BS.Signer and User(msk) interactive

algorithm ([75]) to generate a public pseudonym pka and the corresponding secret certifi-

cate certa for the user Â. User Â takes pka as public pseudonym.

– Revoke: This algorithm is executed by CA. On input pka from a user Â, the algorithm
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executes the SH.Revoke(pka) algorithm to update the group pseudonym revocation list L

by adding the public pseudonym pka of the user Â.

– Handshake:

• User Â executes the SH.Handshake.Ephemeral algorithm that outputs the ephemeral

secret/public key pair (eska, epka) for user Â. User Â sends epka to user B̂.

• Upon receiving epka from user Â, user B̂ performs the following steps.

1. It executes the SH.Handshake.Ephemeral algorithm to get ephemeral secret and

public key pair (eskb, epkb);

2. It computes the proof of knowledge PoK{(eskb) : H(pkb||PKDF (epkb, epka))};

3. User B̂ sends (epkb, pkb, PoK(eskb)) to user Â.

• Upon receiving (epkb, pkb, PoK(eskb)) from user B̂, user Â evaluates the proof of

knowledge (i.e., non-malleable zero-knowledge)

PoK{(eska, certa) : H(PKDF (epka, epkb)||PKDF (pka, epkb))} and sends it along

with public pseudonym pka to user B̂. Â calculates the final session key SKa =

H(Ka||sid), where Ka = SH.Handshake.KDF (eska, epkb, certa,mpk, L, init) and

the session identifier sid = (epka||epkb).

• Upon receiving PoK(eska, certa) and pka from user Â, user B̂ computes the proof of

knowledge PoK{(eskb, certb) : H(PKDF (epkb, epka)||PKDF (pkb, epka))} and sends

it to user Â. Meanwhile, B̂ calculates the final session key SKb = H(Kb||sid), where

Kb = SH.Handshake.KDF (eskb, epka, certb,mpk, L, resp) and and the session iden-

tifier sid = (epka||epkb). The correctness of the protocol i.e. the equation Ka = Kb

holds due to the correctness of the underlying SH.Handshake algorithm.

Theorem 5.3.1. The proposed generic framework achieves session key security in the public

random oracle model provided the underlying secret handshake protocol SH is session key

secure.

Proof. To prove this theorem, let us define five games Gi,∀i ∈ {0, 1, 2, 3, 4}, and analyze

the advantage of an adversary in those games. We denote the advantage of the adversary
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in game Gi by AdvGFi , i ∈ {0, 1, 2, 3, 4}. Let the adversary A generates at most m sessions

in each game.

• Game G0: This first game is the original game for session key security.

• Game G1: This game is same as G0 except the following difference: S will output a

random bit if the initiator i and the responder j accept, however pidi 6= pidj , sidi 6=

sidj . This game captures the replay attack i.e. no probabilistic polynomial time

adversary can find the hash collision of the hash function H. Let κ be the security

parameter and n be the number of users in the game. Then we have:

|AdvGF0 −AdvGF1 | ≤ n.m2/2κ (5.3.1)

• Game G2: This game is same as G1 except that S chooses a session t from {1, 2, ..,m}

randomly as a guess for the test session. However, if A’s test query does not in the

t-th session, S will output a random bit. In this game, we have

AdvGF1 = m.AdvGF2 (5.3.2)

• Game G3: This game is same as G2 except the following difference: the real SH session

key is replaced by a random value from the session key space in the t-th session. S

does this replacement in the t-th session. We prove that, if the underlying SH protocol

is session key secure, then the difference between the advantages of the adversary in

game G2 and G3 is negligible.

Let us consider an attacker S against the underlying SH protocol, who wishes to

distinguish between a real session key and a random value taken from session key

space. S is given the corresponding oracles. The game for A is simulated by S as

described below.

- Setup: S generates the group public and secret key pair (mpk,msk) for group CA.

S creates n users and their corresponding public and secret key pairs (pki, certi),∀i ∈
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{1, 2, ..., n}, from her oracle queries (i.e. long-term secret key query). Then S sends

all the public keys to A.

- A can make queries to S. S answers the queries as described below.

1. If A makes a send query of the form (epkj) to user i, then S simulates the answer

as follows. S forwards (epkj) to her challenger and get (epki, pki) from her send oracle

and PoK(eskj) from her public random oracle. It returns (epki, pki, PoK(eskj)) as

answer to A.

If A makes a send query of the form (pkj , PoK(eskj , certj)) to user i, then S sim-

ulates PoK{(eski, certi) : H(PKDF (epki, epkj)||PKDF (pki, epkj))} by randomly

choosing a hash value and returns it to A as answer. Then S obtains the a ses-

sion key Ki for SH protocol from her session key reveal oracle or test oracle, where

Ki = SH.Handshake.KDF (eski, epkj , certi,mpk, L, resp). S computes the final ses-

sion key SKi = H(Ki||sid), where sid = ((epkj ||epki)). Note that A cannot make

both the ephemeral secret key reveal query and the long-term secret key reveal query

in the test session.

If A makes a send query of the form (U ′,G, t, ‘start′), then S creates a new instance

oracle Πt
U ′ . Then S chooses (epk′) and returns it to A.

2. If A makes a long-term secret key reveal query to S, then S returns (certi) to A.

3. If A makes an ephemeral secret key reveal query to S, then S makes an ephemeral

secret key reveal query to its own oracle to get the ephemeral secret key (eski) and

sends it to A.

4. If A makes an group secret key reveal query to S, then S returns msk to A.

5. If A makes a session key reveal query or test query, then S returns SKi that it has

computed in the protocol simulation process above.

6. If A makes an establish query in the form (U∗, pk∗) for a user U∗ with public

pseudonym pk∗ ∈ G, then the user U∗ with public pseudonym pk∗ will be added to

the system.

It can be observed that S will receive either the real session key or a random session
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key from its own oracle. If S gets the real session key, then this simulation is consistent

with G2; Otherwise, if S gets the random key, then this simulation is consistent with

G3. Hence, we prove that if the difference the advantages of the adversary in game

G2 and game G3, S can beak the session key security of the underlying SH protocol.

Therefore, we get

|AdvGF2 −AdvGF3 | ≤ AdvSHS (κ) (5.3.3)

• Game G4: This game is same as G3 except the following: in the test session, the

public random oracle H(Ki||sid) is replaced by a random function. We prove that the

difference of the advantages between the game G3 and G4 is negligible if H is in the

pseudo random function (RO) family.

Let us consider an attacker S against the RO that wishes to distinguish between

H(Ki||sid) and a random value from the key space. S is given the an oracle either H

or a random function. The game for A is simulated by S in the same way as the game

G3 except that S sends the sid to its challenger and assigns the returned value as its

session key SKi. S sets its output whatever A outputs. As per this simulation, if the

oracle is H then this simulation is same as the game G3. On the other hand, if the

selected oracle is the random function, then this simulation is same as the game G4.

Hence, if A can distinguish between the game G3 and G4, then S can break the RO.

Therefore, we have

|AdvGF3 −AdvGF4 | ≤ AdvROS (κ) (5.3.4)

It can be realized that there is no advantage for A in game G4 i.e.

AdvGF4 = 0 (5.3.5)

From equations 5.3.1, 5.3.2, 5.3.3, 5.3.4 and 5.3.5, we have

AdvGFA (κ) = n.m2/2κ + m.(AdvSHS (κ) + AdvROS (κ)), where RO is a pseudo random
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function.

Hence, the proposed generic framework is session key secure in the public random oracle

model if the underlying SH protocol is session key secure.

Discussions on deniability: We outline the main idea of the proof of deniability. To

prove the deniability, a simulator needs to simulate the answer of send, session key reveal,

test and ephemeral secret key reveal, long-term secret key reveal and group secret key reveal

queries such that the adversary’s view in the simulated transcript is indistinguishable from

the real transcript, while the simulator should not use any uncorrupted secret keys. The

difficult part is to answer the send query. Consider a send query of the form (Ui, Gj , s,m)

to simulate a message m. Let us assume m = H(gs||K); where K is publicly known, s is

a secret, g is an publicly known element of the considered group and ‘||’ is the concatenate

operation. Therefore, (gs||K) must have been queried to the oracle H to be consistent with

the input (gs||K) and output m, that can be verified by the simulator since he sees all

the input/output for all H oracle queries. Otherwise, the message m is inconsistent with

probability 1− negligible(κ) if (gs||K) is not queried to the oracle, where negligible(κ) is a

negligible function in security parameter κ (i.e. for any positive polynomial p(n), there exists

integer n0 > 0 such that negligible(n) > (1/p(n))), ∀n > n0.). Thus, if (gs|K) is queried

to the oracle, the simulator can extract s by the generic concurrent knowledge extraction

assumption (GCKEA). This assumption is also used in [132](a similar assumption is used

in [145]). Thus, the simulator can answer adversary’s send queries. Similarly, the simulator

can answer other send queries.

Theorem 5.3.2. Let H be a public random oracle. Then the secret handshake protocol

described above is deniable.

Proof. Here we describe an overview of the simulation procedure for deniability analysis

focusing on the tricks of using GCKEA assumption. The detailed proof is similar to the

proof given in [145].

High-level description: We first consider a left session between an honest initiator

(̂A) and a malicious responder B̂. The malicious responder may be an Man-In-The-Middle
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adversary A. In this case, the simulator simulates the transcripts of the protocol con-

versations as follows. The simulator chooses an ephemeral secret key eska and computes

epka = gesk
a by itself. The simulator sends epka as the first-round message of the pro-

tocol. Then the initiator (̂A) receives (epkb, pkb, PoK(eskb)) from the adversary A as the

second-round message of the protocol, where PoK{(eskb) : H(pkb||PKDF (epkb, epka))}. To

compute PoK{(eskb) : H(pkb||PKDF (epkb, epka))}, with overwhelming probability, the ad-

versary A has queried the random oracle H with (pkb, epkb, epka, PKDF (epkb, epka)). Now,

the value eskb can be extracted by the GCKEA assumption. Then using the value eskb, the

third-round message PoK{(eska, certa) : H(PKDF (epka, epkb)||PKDF (pka, epkb))} (along

with pka) can be generated using public random oracle H without knowing the long-term

secret key certa of the honest initiator (̂A). If the adversary A finishes the session suc-

cessfully, she sends PoK{(eskb, certb) : H(PKDF (epkb, epka)||PKDF (pkb, epka))} as the

fourth-round message. In this case, with overwhelming probability, the adversary A has

queried the random oracle H with (epkb, epka, PKDF (epkb, epka), pkb, PKDF (pkb, epka)) ,

from which the long-term secret key certb can be extracted by GCKEA assumption. Now, if

the session finishes successfully, the session key can be computed using the secret keys eskb

and certb. Therefore, in this case, the simulator can simulate the protocol transcripts with-

out using the honest initiator (̂A)’s long-term secret key certa. Hence, the honest initiator

(̂A) can deny her participation in the protocol execution and her messages.

Now, we consider a right session between a malicious initiator (̂A) and an honest respon-

der B̂. The malicious initiator may be an Man-In-The-Middle adversary A. In this case, the

simulator simulates the transcripts of the protocol conversations as following. A sends epka

as the first-round message. Upon receiving epka from A, the simulator chooses the ephemeral

secret key eskb and computes epkb = geskb and PoK{(eskb) : H(pkb||PKDF (epkb, epka))}.

Then the simulator sends (epkb, pkb, PoK(eskb)) as the second-round message. If A finishes

the protocol successfully, she sends PoK{(eska, certa) : H(PKDF (epka, epkb)||PKDF (pka,

epkb))} along with pka as the third round message. To compute PoK{(eska, certa) :

H(PKDF (epka, epkb)||PKDF (pka, epkb))}, with overwhelming probability, the adversary

A has queried the oracle H with (epka, epkb, PKDF (epka, epkb), pka, PKDF (pka, epkb)),

from which both the long-term secret key certa and ephemeral secret key eska can be ex-
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tracted by GCKEA assumption. Using these extracted keys certa and eska, the simulator

can generate fourth-round message PoK{(eskb, certb) : H(PKDF (epkb, epka)||PKDF (pkb, epka))}

without knowing the honest responder (̂B)’s long-term secret key certb. Now, if the session

finishes successfully, the session key can be computed using the secret keys eska and certa.

Therefore, in this case, the simulator can simulate the protocol transcripts without using

the honest responder (̂B)’s long-term secret key certb. Hence, the honest responder (̂B) can

deny her participation in the protocol execution and her messages.

Similarly, we can prove the deniability of both the initiator (̂A) and responder (̂B) when

both the protocol participants are honest.

Note 1 (Unlinkability): This solution does not satisfy the unlinkability property since

the public pseudonym is being sent by each user in every session. Thus, these sessions are

linkable.

5.4 Concluding remarks

We have discussed some possible attacks to the fully deniable secret handshake protocol

of Tian et al. [132]. We mention that there may be a subjective issue about the model of

deniability. However, this paper opens up possibilities to scrutinize definitions for deniability

in the context of secret handshake. Due to the fully deniable property, this deniable secret

handshake protocol could also be used as a coercion resistant internet-based voting system.

We think that this could be a potential future work.
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Chapter 6

Conclusion

Democracy relies on voters having well-founded trust in the election process. Unfortunately,

several case studies on real-world e-voting systems [61] provide abundant grounds for skep-

ticism. E-voting systems need to be designed in such a way that it can produce sufficient

evidence preserving the privacy of each voter to convince rationally skeptical observers that

the election outcome is correct. Advances in end-to-end verifiable e-voting have the po-

tential to restore trust in election and thereby improve the democracy. In this thesis, we

have proposed some secure E2E verifiable (both precinct-based and internet-based) e-voting

systems. We have traced the development of privacy, verifiability and security properties in

the literature and discussed the current state-of-the-art E2E verifiable e-voting systems.

6.1 Future directions of research

In chapter 3, we propose a secure E2E verifiable e-voting system using blockchain and cloud

server. We also propose a novel voter registration and authentication method. The proposed

system prevents ballot stuffing attack. We provide the security proofs of our systems. We

show one weakness of the DRE-ip system and propose a solution. Thereafter, we prove

the the efficient NIZK proof algorithm proposed by Lin et al. [91] is not correct. We then

improve the efficiency of NIZK proofs and provide security proofs of the proposed NIZK

proof algorithm. The performance analysis of our protocol implementation shows potential

for real-world deployment of our proposed system. Designing DRE-based e-voting system

without tallying authorities for more complex voting system such as single transferable vote

(STV) is a potential future work.

134



In chapter 4, we propose the first verifiable self-tallying decentralized Borda Count e-

voting protocol. The security proofs of our proposed are also provided. The protocol is

implemented as a smart contract in Ethereum. Our implementation of the protocol demon-

strates the feasibility of using Ethereum for secure and publicly verifiable Borda count voting.

Designing an efficient self-tallying E2E verifiable protocol for nation-wide Borda Count vot-

ing is part of our future work. In future, we also plan to design self-tallying protocols for

more complex rank-choice based voting system such as STV and Condorcet in decentralized

setting and investigate the feasibility of storing the ballots in Ethereum state channel to

avoid the gas cost of running the protocol on-chain.

In chapter 5, we propose a deniable secret handshake protocol. We show some possible

attacks to the fully deniable secret handshake protocol of Tian et al. [132] and propose

solutions to prevent them. Due to the fully deniable property, our protocol can be useful in

developing coercion resistant e-voting system over the Internet, which is a potential future

work.
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