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Notations

N The set of natural numbers

C The set of complex numbers

R The set of real numbers

Mn(C) The set of n× n complex matrices

L(H) Set of bounded operators on the Hilbert space H

S1 The unit circle
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Chapter 0

Introduction

Rigid C*-tensor categories provide a unifying language for a variety of phenomena encod-

ing “quantum symmetries”. For example, they appear as the representation categories

of Woronowicz’ compact quantum groups, and as “gauge symmetries” in the algebraic

quantum field theory of Haag and Kastler. Perhaps most prominently, they arise as

categories of finite index bimodules over operator algebras, taking center stage in Jones’

theory of subfactors. The construction and classification of these categories is a very

active area of research. Much of the work in this area has been focused on unitary fusion

categories, which are rigid C*-tensor categories with finitely many isomorphism classes

of simple objects with simple tensor unit. Categories with infinitely many isomorphism

classes of simple objects are called infinite depth, and the primary examples come from

either discrete groups, representation categories of compact quantum groups, or general

categorical constructions such as the free product.

Planar algebras as an invariant for finite index subfactors was introduced by Vaughan

Jones. This invariant can be axiomatized by Ocneanu’s paragroups in the finite depth

case [Ocn88], and in general by Popa’s λ-lattices [Pop95] or Jones’ subfactor planar alge-

bras [Jon99]. The planar algebra approach to standard invariants has become important

in classification programs for subfactors [JMS14, BJ00] and has provided useful tools for

constructions of exotic fusion categories [BPMS12]. These invariants corresponding to

specific types of subfactors have been calculated by several authors in different contexts.

In [Jon01], the notion of annular modules over a planar algebra or annular representa-

tions was introduced to construct subfactors with principal graphs E6 and E8. These

representations in the case of Temperley-Lieb planar algebra (TL) were worked out in

the same paper. In [Gho06], the author showed that the category of the representations

of group planar algebra (i.e., the planar algebra associated to the fixed point subfactor
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arising from an outer action of a finite group) is equivalent to the category of representa-

tions of a non-trivial quotient of the quantum double of the corresponding group. It was

observed that the quotient can be avoided if one restricts the isotopies to the ones which

fixes boundaries of annulus at all times (called affine isotopies, introduced in [JR06]).

With this isotopy in place, the representations are called affine representations or mod-

ules. Further in [JR06], affine annular category of a planar algebra AP was introduced

and the same for Temperley-Lieb planar algebras was studied. The structure of affine an-

nular category of a planar algebra was further studied in [DGG14a] and they introduced

the braided monoidal category of Hilbert representations of the affine annular category

of a planar alegebra, denoted by Rep(AP ) and showed that in the case of finite depth

planar algebras, Rep(AP )
⊗
∼= Z(proj(P )), where Z(proj(P )) denotes the unitary Drinfeld

center of the projection category, proj(P ), of the planar algebra P .

The unitary representation theory of the annular Temperley-Lieb planar algebras has

played an important role in the construction and classification of small index subfactors

[Jon01, JMS14]. Annular categories also play a role in the realm of 2 + 1 TQFT’s [Wal06].

Ocneanu’s tube algebra was also been shown to be closely related to the Drinfeld center

of a fusion categories, with equivalence classes of irreducible representations of the tube

algebra being in 1 − 1 correspondence with simple objects in the center [Izu99, Müe03].

Analyzing the tube structure has been useful for computing the S and T matrices of Z(C)

[Izu99].

From a different direction, representation theory for rigid C*-tensor categories was in-

troduced in a remarkable paper of Popa-Vaes [PV15] in which they introduce the concept

of cp-multipliers for C which are a class of functions in l∞(Irr(C)). These cp-multipliers

give positive linear functionals on the fusion algebra C[Irr(C)] after a certain normaliza-

tion. A ∗-representation is said to be admissible if every vector state is a normalization of

some cp-multiplier. The class of admissible representations of the fusion algebra provides

a good notion for the representation theory for C, generalizing unitary representations of

a discrete group G if C is equivalent toVec(G). One can take the universal C*-completion

of the fusion algebra, denoted by C∗
u(C), with respect to these admissible representations.

In this context, they define approximation and rigidity properties, generalizing the defini-

tions from the world of discrete groups. They show that if C is equivalent to the category

ofM-M-bimodules in the standard invariant of a finite index inclusion N ⊆M of II1 fac-

tors, then the definitions of approximation and rigidity properties given via cp-multipliers

[PV15] are equivalent to the definitions given via the symmetric enveloping algebra for

the subfactor N ⊆M given by Popa [Pop94b, Pop99].
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In the process of unification of these approaches, Ghosh-Jones [GJ16] introduced an-

nular algebras AΛ with weight set Λ ⊆ [Obj(C)] for any rigid C*-tensor category C.

Choosing Λ := Irr(C) yields the tube algebra of Ocneanu, A, whereas if we choose Λ on a

planar algebra description gives the affine annular category AP of Jones. The category

of non-degenate ∗-representations of the annular algebra AΛ, Rep(AΛ), is called the an-

nular representation category of C with weight Λ. It was shown that all sufficiently large

(full) weight sets, annular algebras are isomorphic after tensoring with the ∗-algebra of

matrix units with countable index set, hence have equivalent representation categories,

unifying the two perspectives and providing a means of translating results from planar

algebras to the tube algebra in a direct way. This representation category also pro-

vides a representation-theoretic characterization of the category Z(Ind-C), introduced

by Neshveyev and Yamashita [NY16] to provide a categorical understanding of analytic

properties (see [PSV18]).

For each X ∈ Λ, there is a corner of the annular algebra, denoted by AΛX,X, which is

a unital ∗-algebra. One can also take universal C*-completions for these corner algebras

(denoted by C∗
u(AΛX,X)) with respect to the representations which extend to the whole

of annular algebra (such representations are called weight X admissible representations).

The corner algebra corresponding to the unit object 1, AΛ
1,1, turns out to be canonically

∗-isomorphic to the fusion algebra of the category. Thus weight 1 admissible representa-

tions are precisely the admissible representations in the sense of Popa-Vaes [PV15] and

C∗
u(C)

∼= C∗
u(AΛ1,1). Hence the admissible representation theory of Popa and Vaes is

the restriction of ordinary representation theory of the tube algebra. This allowed them

to define analytical properties like amenability, Haagerup property and property (T) in

terms of weight X representations.

Unlike rigid C*-tensor categories themselves, whose underlying categorical structure

is trivial due to semi-simplicity, the representation category of the tube algebra is a large

W*-category, and is complicated to describe. Thus an important problem is to find

concrete descriptions of these large representation categories in terms of representation

categories of more familiar C*-algebras such as group C*-algebras. Basic philosophy in

Mathematics is to describe new objects in terms of the objects already well-known. There

are many procedures for producing new rigid C*-tensor categories from old ones, such as

Deligne tensor product, equivariantization, G-graded extensions, etc. A natural question

is, if we understand the annular structure of our starting categories, can we describe the

annular representation category of the one we have produced?

The first part of this thesis deals with the description of annular representations of
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one such constructed category, namely, free product of two rigid C*-tensor categories, in

terms of the annular representations of the individual categories.

Into a different direction, consider a finite index subfactor N ⊆M and suppose N and

M are both hyperfinte. Then we can choose an isomorphism ϕ : N → M and consider

Hϕ := NL
2(M)ϕ(N) as an N -N bimodule, with left action given by the inclusion as usual,

but the right action uses the isomorphism ϕ and the right action by M . The bi-category

constructed from alternating powers of Hϕ and Hϕ recovers the standard invariant of the

subfactor (see [Gho11, Pop96]). However, the whole tensor category generated by Hϕ and

Hϕ contains more information than just the subfactor standard invariant This information

is captured by an oriented planar algebra P+, whose alternating part is isomorphic to

the subfactor planar algebra PN⊆M associated to the original inclusion N ⊆M . We call

such a planar algebra an oriented extension of PN⊆M . In the second part of this thesis,

we introduce a universal such extension called the free oriented extension of a subfactor

planar algebra, and try to study several of its properties.

Now we try to give an idea of the contents of each of the chapters.

The Chapter 1 discusses the concepts and results needed in the later chapters of the

thesis. For the sake of completeness, in Section 1.1.1, we begin with brief discussion of

how one can have the tower of basic construction and hence the standard invariant in

terms of relative commutants for a given finite index subfactor N ⊆M . In Section 1.1.2,

we move on to discussing bifinite bimodules over II1 factors and describe the relative ten-

sor product bifinite bimodules. We quickly give the intertwiner picture of the standard

invariant in Section 1.1.3 and define planar algebras from the scratch in the next sub-

section (Section 1.1.4). We then state, in Section 1.1.5, a landmark result of Jones giving

the relation between subfactor planar algebras and extremal subfactors thus giving the

planar algebraic version of the standard invariant. The next subsection, Section 1.1.6, is

devoted to defining the oriented planar algebras which are generalizations of shaded pla-

nar algebras. The category theoretic background required for the later parts of the thesis

is provided in detail in Section 1.2. Definitions and statements of various results are pre-

sented leading to rigid semi-simple C*-tensor categories and C*-2-categories. Examples

are given at appropriate points to make the things clear to the reader. The Section 1.3

of the chapter is intended to give a picture of interconnections between subfactor planar

algebras and singly generated C*-2-categories, and oriented planar algebras and singly

generated C*-tensor categories. Construction of free product of two rigid semi-simple

C*-tensor categories is presented in the Section 1.4. Free product has already appeared

in work of Bisch-Jones [BJ97] as free composition of subfactors and in the work of Wang
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[Wan95] in the context of compact quantum groups. To fit our requirements, we see the

free product as unitary idempotent completion of the category of non-crossing partitions

of words with letters from objects of the underlying categories. We end the chapter

with Section 1.5 which gives a review of annular representation theory for rigid semi-

simple C*-tensor categories introduced by Ghosh-Jones [GJ16]. We see that the notion

of “admissible representations” of Popa-Vaes [PV15] coincides with “weight 1 admissible

representations” of Ghosh-Jones [GJ16], thus facilitating the translation of approximation

and rigidity properties into the language of annular representations.

Chapter 2 is about annular representations of free product categories which is essen-

tially the whole of [GJR18a]. In the first section, we define a new weight set Λ which has

a distinguished subset W of words with specific properties. We see that though Λ is not

full, the annular representation category with this weight set Λ is unitarily equivalent as

a *-linear category to the representation category of the tube algebra of the free product

category, thus enabling us to work with the much smaller weight set Λ. By dividing the

section into subsections corresponding to the length of words in Λ, we analyze the cor-

responding centralizer algebras. Suppose B is an arbitrary rigid C*-tensor category, and

Γ ⊆ [Obj(B)] be an arbitrary weight set containing 1 which is “essentially full”. Then

we have J Γ0 := AΓ · AΓ
1,1 · AΓ , an ideal in AΓ generated by AΓ

1,1. Let Rep0(AΓ )

be the category of admissible representations of the fusion algebra with respect to Γ

which is equivalent to Rep(C∗
u(B)) and Rep+(AΓ ) := Rep(AΓ/J Γ0) be the representa-

tions of AΓ which contain J Γ0 in their kernel. We then make a crucial observation that

Rep(AΓ ) ∼= Rep0(AΓ )⊕Rep+(AΓ ). Whenever Γ = Irr(C), we write J C0 for J Γ0. Using

this along with some more analysis of the annular algebra we finally end this section by

proving that

Rep(A (C ∗ D)) ∼= Rep(C∗
u(C) ∗ C

∗
u(D))⊕ Rep+(AC)⊕Rep+(AD)⊕Rep(Z)

⊕W0,

where W0- set of cyclic equivalence classes of words in W.

In the next section we present an example of the category of G-graded Hilbert spaces,

Hilbf.d.(G), and show how this matches another known result. By using the results of

this chapter and [DGG14a, NY18, JR06] we then explain how one can have a description

of the representations of Fuss-Catalan categories.

Chapter 3 consists of [GJR18b] and deals with oriented extensions of subfactor planar

algebras. We begin the first section by setting up a few notations. We denote by Psh

(resp., Por) the category of all subfactor planar algebras (resp., oriented factor planar

algebras). There is a natural shading functor S : Por → Psh which is a forgetful functor

sending every oriented factor planar algebra to its shaded part which is a subfactor planar
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algebra. We then define what we mean by an oriented extension of a subfactor planar

algebra and construct a canonical extension which we call the free oriented extension.

Further we show that it enjoys a universal property, namely, for any oriented extension

there exists a canonical sub planar algebra isomorphic to the free oriented extension.

The free oriented extension can also be viewed as a functor from Psh to Por and we

show that, by virtue of the universal property, it is a left adjoint to the shading functor

S. It was suggested by V.F.R. Jones that the free oriented extension should be related

to free products of categories. We show that this is indeed true. Namely, if Q is any

oriented extension, then the free oriented extension is realized inside the free product of

the projection category of Q with the category of Z-graded finite dimensional Hilbert

spaces. In the last section, we use this result, combined with a result of Vaes, to show

that the free oriented extension of any hyperfinite II1 subfactor planar algebra is realized

in the category of bimodules of the hyperfinite II1 factor.

Of the two component articles [GJR18a, GJR18b] which are included in this thesis, the

first one, [GJR18a] has been accepted for publishing in the Journal of Non-Commutative

Geometry and the second one, [GJR18b] has been published in the International Journal

of Mathematics.
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Chapter 1

Preliminaries

This chapter essentially gives the background required for understanding the next chap-

ters. Since many of the results are directly taken from some or the other source (mentioned

accordingly), we omit proofs for most of them.

1.1 Subfactors, bimodules, planar algebras

1.1.1 Subfactors and the tower of basic construction

An infinite dimensional von Neumann algebra with trivial center and a faithful tracial

state is said to be a II1 factor. It can be proved that such a trace is unique. By a

subfactor we mean a unital inclusion of II1 factors.

Given a subfactor N ⊆M and the faithful tracial state tr on M , uniqueness enforces

the restriction of tr to N to be faithful on N . Let H := L2(M), the Hilbert space

underlying the GNS representation of M associated with tr and Ω be the distinguished

cyclic vector. Then the subspace H1 := [NΩ] of H can be identified with L2(N).

Let e1 denote the orthogonal projection of H onto H1. It is also true that e1(MΩ) ⊆

NΩ; hence e1 induces(by restriction) a map E : M → N . The map E is called the tr-

preserving conditional expectation of M onto N . It satisfies the following properties:

(i) e1xe1 = E(x)e1 ∀x ∈M . Thus E defines a Banach space projection of M onto N .

(ii) E is N −N -bilinear, i.e., E(n1mn2) = n1E(m)n2.

(iii) E is tr-preserving, i.e., tr ◦E = tr.

The map xΩ 7→ x∗Ω is a conjugate-linear isometry from MΩ ⊆ L2(M) onto itself.

We denote its extension to L2(M) by J and call it the modular conjugation operator
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for M. J is an anti-unitary involution, i.e., J = J∗ = J−1 (where J∗ is defined by the

equation 〈Jξ, η〉 = 〈ξ, J∗η〉 ). It is easy to see that Je1 = e1J .

The space H can be seen as an M-M-bimodule with actions x.[aΩ] := [xaΩ] and

[aΩ].y := [Jy∗JaΩ]. If we denote H∞ := H ⊗ ℓ2, then one of the striking results is the

following (See [JS97]):

Theorem 1.1.1. Any separable M-module K is isomorphic to a submodule of H∞. Thus

we have a projection p ∈M∞(M) such that K ∼= H∞p .

The M-module dimension of K is defined to be dimM K := Tr p, where Tr the

trace on M∞(M) = B(l2)⊗M defined by Tr := TrB(l2)⊗ tr.

The index of the subfactor N ⊆ M , [M : N ], is defined as dimN L2(M). V. Jones

proved in [Jon83] that [M : N ] ∈
{
4cos2 π

n
: n = 3, 4, · · ·

}
∪[4,∞] for any inclusion N ⊆M

of II1 factors and each of these values is realized.

Given such a unital inclusion N ⊆ M , we construct the von Neumann algebra M1 =

〈M, e1〉 = (M ∪ e1)
′′

and consequently to the tower N ⊆ M ⊆ M1. It is a fact that M1

is a II1 factor if and only if [M : N ] <∞, in which case, [M1 :M ] = [M : N ]. Repeating

the construction with M ⊆ M1 and projection e2, we get a new tower M ⊆ M1 ⊆ M2

with M2 = 〈M1, e2〉 . Continuing this process, we have a tower called tower of basic

construction:

N ⊆M ⊆M1 ⊆ · · · · · ·

with projections ei ∈ Mi, Mi = 〈M, ei〉, and [Mi+1 : Mi] = [M : N ] for i = 1, 2, . . ..

It is a consequence of properties of the index that, when [M : N ] < ∞, N ′ ∩ M is

finite-dimensional. One can then have, by taking relative commutants, a grid of finite

dimensional C*-algebras called the standard invariant of N ⊆M :

C = N ′ ∩N ⊆ N ′ ∩M ⊆ N ′ ∩M1 ⊆ N ′ ∩M2 ⊆ · · · · · ·

C =

⋃

M ′ ∩M ⊆

⋃

M ′ ∩M1 ⊆

⋃

M ′ ∩M2 ⊆ · · · · · ·

It is called an “invariant” because it turns our that it is in fact an invariant for finite

index subfactors but not a complete invariant in the most general case. It is a complete

invariant on the class of amenable subfactors (see [Pop94a]).

Note that, for a finite index subfactor N ⊆ M , N ′ ∩M is contained in both N ′ and

M . We have two traces coming from each of them (when seen inside L(L2(M))). We say

that the subfactor N ⊆M is extremal if both these traces coincide.

Next, we will see the grid in terms of intertwiner spaces of bimodules L2(Mn). Even

before that we will have an overview of tensor products of bifinite bimodules over II1

factors.
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1.1.2 Tensor product of bifinite bimodules over II1 factors

Suppose M and P are II1 factors and MH (resp. KP ) be a left M-module (resp., right

P -module) such that dim MH < ∞ (resp., dim KP < ∞ ), equivalently, M ′ := ML(H)

(resp., P ′ := LP (K)) is a II1-factor.

We say a vector ξ ∈ H (resp. η ∈ K) is left-bounded (resp., right-bounded)

if there exists a constant K > 0 such that ‖m · ξ‖2 ≤ K trM(m∗m) ∀m ∈ M (resp.,

‖η · p‖2 ≤ K trP (p
∗p) ∀p ∈ P ). The set of left-bounded vectors (resp., right-bounded

vectors) is denoted by (MH)
0 (resp., (KP )

0). The set (MH)
0 (resp., (KP )

0) form a dense

subspace of H (resp., K) and is closed under the action of M ′ (resp., P ′).

Using the Radon-Nikodym derivative with respect to the faithful trace, one can obtain

the M-valued (resp., P -valued) inner product M〈·, ·〉 : (MH)
0 × (MH)

0 → M (resp.,

〈·, ·〉P : (KP )
0 × (KP )

0 → P ) defined by the equation trM (m (M〈ξ, ξ′〉)) = 〈m · ξ, ξ′〉

(resp., trP (p (〈η, η′〉P )) = 〈η · p, η
′〉). This inner product satisfies the following properties

(see [JS97]):

(1) M〈ξ, ξ′〉 ≥ 0 (resp., 〈η, η′〉P ≥ 0)

(2) M〈ξ, ξ′〉 = (M〈ξ′, ξ〉)∗ (resp., 〈η, η′〉P = (〈η′, η〉P )∗)

(3) M〈ξ,m · ξ′〉 = m · (M〈ξ, ξ′〉) and M〈m · ξ, ξ′〉 = (M〈ξ, ξ′〉) ·m∗ (resp., 〈η, η′ · p〉P =

(〈η, η′〉P ) · p and 〈η · p, η′〉P = p∗ · (〈η, η′〉P ))

(4) M〈ξ,m′ · ξ′〉 = M〈m′∗ · ξ, ξ′〉 (resp., 〈η, p′ · η′〉P = 〈p′∗ · η, η′〉P )

for every ξ, ξ′ ∈ (MH)
0, m ∈M and m′ ∈ M ′ (resp., η, η′ ∈ (KP )

0, p ∈ P and p′ ∈ P ′).

Further, there exists a finite subset {ξi}i (resp., {ηj}j) of (MH)
0 (resp., (KP )

0) satis-

fying id(MH)0 =
∑
i
M〈ξi, ·〉ξi (resp. id(KP )0 =

∑
j

ηj〈ηj, ·〉P ). Such a set is called basis for

the module and it satisfies the following properties which are routine to verify:

Proposition 1.1.2.

(1) trM ′(m′) = [dim MH]
−1∑

i

〈ξi, m
′ · ξi〉 (resp., trP ′(p′) = [dim KP ]

−1∑
j

〈ηj, ηj · p
′〉)

for every m′ ∈ M ′ (resp., p′ ∈ P ′) which implies (MH)
0 = (M ′H)0 (resp., (KP )

0 =

(P ′K))

(2)
∑
i
M ′〈ξi, ξi〉 = (dim MH) 1M ′ (resp.,

∑
j
P ′〈ηj, ηj〉 = (dim KP ) 1P ′), where M ′〈·, ·〉

(resp., 〈ξ,m′ · ξ′〉P ′) is the M ′ (resp. P ′)-valued inner product by viewing H as

a left M ′ = ML(H)-module (resp., K as a right P ′ = LP (K)-module).
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The dual Hilbert space or the contragredient H̄ :=
{
ξ̄ : ξ ∈ H

}
(resp., K̄ := {η̄ : η ∈ K})

can be equpped with a right M-module (resp., left P -module) structure given by ξ̄ ·m :=

m∗ξ for m ∈M and ξ ∈ H (resp., p · η̄ := η · p∗ for p ∈ P and η ∈ K). Then the following

are easy to see:

(1)
(
H̄M

)0
= (MH)

0 (resp.,
(
P K̄

)0
= (KP )

0)

(2) 〈ξ̄, ξ̄′〉M = M〈ξ, ξ
′〉 for ξ, ξ′ ∈ (MH)

0 (resp., P 〈η̄, η̄′〉 = 〈η, η
′〉P for η, η′ ∈ (KP )

0)

(3) {ξ̄i}i (resp., {η̄j}j) is a basis for H̄M (resp., P K̄)

(4) dim MH = dim H̄M (resp., dim KP = dim P K̄).

Suppose that M,P are II1 factors and H is a M-P -bimodule. If dim HP < ∞, then

the index of subfactor M ⊆ P ′ turns out to be [P ′ : M ] = dim MH · dim HP . We

define index(MHP ) := dim MH · dim HP . The bimodule MHP is said to be bifinite if

index(MHP ) < ∞. If MLP(H) is one-dimensional, then MHP is an irreducible M-P -

bimodule. The bifinite bimodule MHP is called extremal if the canonical traces of the

II1-factors ML(H) and LP(H) coincide on the intertwiner space MLP (H) (which has

finite complex dimension due to the finiteness of the index). It is true that, in the case

of bifinite bimodules, a vector is left-bounded if and only if it is right-bounded. Hence

we will talk simply of bounded vectors and denote the collection of bounded vectors

in bifinite bimodule H by H0.

Remark 1.1.3. If we takeH = L2(M) for a finite index subfactor N ⊆ M , then saying that

the subfactor N ⊆M is extremal is equivalent to saying that the bimodule NL
2(M)M is

extremal.

The following result from [JS97] gives the universal property possessed by the tensor

product of bifinite bimodules over a II1 factor.

Theorem 1.1.4. Let M,P and Q be II1 factors, and suppose that H(resp., K) is a

bifiniteM-P -bimodule (resp., P -Q-bimodule). Then there exists a bifiniteM-Q-bimodule,

denoted by H⊗
P
K, which is determined by the following universal property:

There exists a surjective linear map, ι, from the algebraic tensor product H0⊗
P
K0 onto

(
H⊗

P
K

)0

, satisfying:

(a) ι(ξ · p⊗ η) = ι(ξ ⊗ p · η);

(b) ι(m · ξ ⊗ η · q) = m · ι(ξ ⊗ η) · q

12



(c) M〈ι(ξ⊗η), ι(ξ
′⊗η′)〉 = M〈ξ, ξ

′ ·P 〈η, η
′〉〉 and 〈ι(ξ⊗η), ι(ξ′⊗η′)〉Q = 〈η, 〈ξ, ξ′〉P ·η

′〉Q

for every ξ, ξ′ ∈ H0, η, η′ ∈ K0, m ∈M, p ∈ P and q ∈ Q.

Moreover, H ⊗
P
K is unique up to unique unitary isomorphism. That is, if (V, ι′) is

another pair which satisfies the properties (a)-(c) stated above, then there is a unique

unitary isomorphism, say, ψ : H⊗
P
K → V such that ψ ◦ ι = ι′.

By taking a hint from Theorem 1.1.4(c), a candidate forH⊗
P
K would be the completion

of the quotient ofH0⊗
alg
K0 by span {ξ · p⊗ η − ξ ⊗ p · η} with respect to the inner product

〈ξ⊗
P
η, ξ′⊗

P
η′〉 = 〈ξ, ξ′ ·P 〈η, η′〉〉 = 〈η, 〈ξ, ξ′〉P ·η′〉. Further, if {ξi}i and {ηj}j are the basis

for MH and PK (resp., HP and KQ), then {ξi⊗
P
ηj}i,j forms a basis for M(H⊗

P
K) (resp.,

(H ⊗
P
K)Q). Also, the left dimension, the right dimension and the index of the bifinite

bimodules are multiplicative with respect to this tensor product. The map LP (H) ∋ x 7→

x ⊗
P
idK ∈ LQ(H ⊗

B
K) (resp., PL(K) ∋ y 7→ idH ⊗

P
y ∈ ML(H ⊗

B
K)) is an inclusion of

unital ∗-algebras.

Let H be an M-P -bimodule with dim MH < ∞ (resp., dim HP < ∞) and {ξi}i

(resp., {ηj}j) be a basis for MH (resp., HP ). Then, it is easy to see that the bounded

vector
∑
j

ηj ⊗
P
ηj (resp.,

∑
i

ξi ⊗
M
ξi) is independent of the basis and M-M-central, that is,

m · (
∑
j

ηj ⊗
P
ηj) = (

∑
j

ηj ⊗
P
ηj) ·m for all m ∈M (resp., P -P -central).

1.1.3 Intertwiners and relative commutants

Given a finite index II1 subfactorN ⊆ M , with the conventionM−1 = N andM0 =M , we

have the following result from [JS97] which gives the intertwiner picture of the standard

invariant of N ⊆ M .

Proposition 1.1.5. For each n ≥ 0

(i) (MnL
2(Mn)N)⊗

N
(NL

2(M)M ) ∼= (MnL
2(Mn+1)M) as Mn-M-bimodules

(ii) there exists an isomorphism of commuting squares of finite-dimensional C∗-algebras,

as follows:




N ′ ∩M2n ⊆ N ′ ∩M2n+1⋃

M ′ ∩M2n ⊆

⋃

M ′ ∩M2n+1


 ∼=


 NLM(L2(Mn)) ⊆ NLN(L2(Mn))⋃

MLM(L2(Mn)) ⊆

⋃

MLN(L2(Mn))



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Remark 1.1.6. The minimal projections in the relative commutants (on the left) corre-

spond to isotypic components of the corresponding bimodule (on the right) under the

isomorphism of Proposition 1.1.5 (ii).

Remark 1.1.7. An important observation can be made at this juncture keeping Proposi-

tion 1.1.5 (i) in mind. Set α = NL
2(M)M . With ᾱ denoting the conjugateM-N -bimodule

we have:

N ′ ∩M2n
∼= NLM ((αᾱ)n α)

N ′ ∩M2n+1
∼= NLN

(
(αᾱ)n+1)

M ′ ∩M2n
∼= MLM ((ᾱα)n)

M ′ ∩M2n+1
∼= MLN (ᾱ (αᾱ)n)

with the symbol ⊗ omitted whenever there is no point of confusion and tensor being

taken over N or M accordingly.

If we have the data of submodules of tensor powers of α and ᾱ, then we have the data

of the whole standard invariant of N ⊆ M ! Thus the point of interest now turns to the

N -M , N -N , M-M , and M-N -bimodules which appear as submodules of tensor powers

of α = NL
2(M)M and ᾱ = ML2(M)N . More about this will be discussed in terms of

categories but before that we will now move onto planar algebras which is yet another

way of looking at the standard invariant, this time, in terms of pictures!

1.1.4 (Shaded) Planar algebras

We now briefly recall basic machinery required to understand the widely used pictorial

invariant called as planar algebras. We then see how it is related to the standard invariant

of a finite index subfactor described in Section 1.1.1. We will be more interested in

what are called the subfactor planar algebras which form a special class of shaded planar

algebras. For a more detailed exposition of planar algebras, we refer the reader to [Jon99].

The definition presented here is an amalgamation of many such from [Jon99, Gho11,

DGG14b], for instance.

For k, k1, k2, . . . kn ∈ N ∪ {0} and ε, ε1, . . . , εn ∈ {+,−}, a planar tangle diagram

of type ((ε,k), (ε,k), . . . , (εn,kn); (ε,k)) consists of:

• an external disc D0 and finitely many (possibly none) internal discs D1, D2, . . . , Dn

in the interior of D0, each of which is homorphic to the unit disc.

• each of these discs have even number (possibly none) of marked points, say, 2ki, on

its boundaries dividing the boundary into several segments.
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• each disc has a distinguished boundary segment marked by εi, from which the

marked points are numbered clockwise.

• non-intersecting paths (referred to as strings) in D0 \

[
n⋃
i=1

int (Di)

]
, such that each

of the strings have no end points (i.e., loops) or has end points at two distinct

marked points and the strings exhaust all marked points.

D0

D1

D3

D2

+

+

−

+

Figure 1.1: Planar tangle diagram of type ((+, 3), (+, 2), (−, 2); (+, 4))

The sign εi on each disc indicates shading or orientation of the region bounded by

strings and boundary segments. The convention followed is that + (resp. −) indicates

the anti-clockwise (resp. clockwise) orientation. These orientations of the strings induce

orientations on the strings as shown in Figure 1.1. It is to be observed that, on each disc,

the orientation of string arising out of two consecutive marked points is always opposite

to each other.

Two planar tangle diagrams T1, T2 are said to be planar isotopic if there exists

a continuous map ϕ : [0, 1] × R2 → R2 such that ϕ0 = idR2 , ϕt is a homeomor-

phism for all t ∈ [0, 1] and ϕ1(T1) = T2 preserving the marked points and the ori-

entations of the regions (thus strings). The planar isotopy class of a planar tangle

diagram of type ((ε1, k1), (ε2, k2), . . . , (εn, kn); (ε, k)) is called a planar tangle of type

((ε1, k1), (ε2, k2), . . . , (εn, kn); (ε, k)).

If there are 2k marked points on a disc D (external or internal) and the distin-

guished boudary segment is denoted by sign ε, then we say that D has color εk. Let
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Col := {εk : (ε, k) ∈ {+,−} × (N ∪ {0})}. If a tangle T has internal discs Di with col-

ors εiki, i = 1, 2, . . . , n respectively and external disc with color εk, then we write it

as T : (ε1k1, ε2k2, . . . , εkkn) → εk. For example, the tangle in Figure 1.1 is given by

T : (+3,+2,−2) → +4. If the tangle T has no internal discs, then we write it as

T : ∅ → εk. The set of all tangles with εk as the color of external disc is denoted by Tεk.

The composition of two tangles T : (ε1k1, ε2k2, . . . , εnkn) → εk and S : (δ1l1, δ2l2,

. . . , δmlm)→ εiki (resp. S : ∅ → εiki), denoted by (T ◦
i
S) : (ε1k1, ε2k2, . . . , εi−1ki−1, δ1l1,

δ2l2, . . . , δmlm, εi+1ki+1, . . . , εnkn)→ εk (resp. (T ◦
i
S) : (ε1k1, ε2k2, . . . , εi−1ki−1, εi+1ki+1,

. . . , εnkn → εk), is obtained by gluing the external boundary of S with the boundary of

the ith internal disc of T preserving the marked points on either of them with the help

of isotopy, and then erasing the common boundary. There will be re-numbering of the

discs which is done as follows.

Let DT
j denote the jth internal disc of T . If S : ∅ → εiki, then T ◦

i
S has n− 1 many

internal discs with

D
T◦

i
S

j =

{
DT
j for j = 1, 2, . . . , i− 1,

DT
j+1 for j = i, i+ 1, . . . , n− 1.

Suppose S has internal discs and DS
j denote the jth internal disc of S for j =

1, 2, . . . , m. Then T ◦
i
S has n +m− 1 many internal discs with

D
T◦

i
S

j =





DT
j for j = 1, 2, . . . , i− 1,

DS
j−i+1 for j = i, i+ 1, . . . , i+m− 1,

DT
j−m+1 for j = i+m, . . . , n+m− 1.

While drawing tangles it is convenient to replace discs by rectangles with sides parallel

to the coordinate axes in R2 and all the marked points on the top where strings end

transversally. We always mark the distinct boundary segment on the left of the rectangle.

As the orientation on the strings is induced by the sign ε, we often suppress the directions

of the strings while drawing tangles. Also, whenever there is no scope of ambiguity, we

often replace n parallel strands by a single strand with the number n written adjacent to

it. For instance, the tangle given in the Figure 1.1, with these conventions, will look like:

D0

D1
D2

D3

+

+

−

+

2

16



In the isotopy class of tangle in this form, the tangle which can be sliced into horizontal

strips each of which contains exactly one local maxima or local minima or an internal

rectangle, is often called a standard form of the given tangle. A standard form of tangle

in Figure 1.1 is as follows:

D0

D1

D2

D3

+

+

−

+

Remark 1.1.8. Note that, one standard form representative of a tangle can be obtained

from another applying finitely many moves of three types, namely, sliding move, rotation

move and wiggling move (See [Jon99, Gho11]).

Remark 1.1.9. In its standard form, any tangle is a product of tangles each of which

contain exactly one local maxima or local minima or an internal rectangle.

Let ε ∈ {+,−}, n,m, n1, n2 ∈ N ∪ {0} be such that n = 2k,m + n1 = 2k1 and

m+n2 = 2k2 for some k, k1, k2 ∈ N∪{0}. Thus, we have n1+n2 = 2l with l = k1+k2−m.

With the above conventions, we give a list of some important tangles (not essentially in

the standard form) which are used to describe several structures such as multiplication,

inclusion, involution etc.

• Identity tangle: Iεk :=
 n

ε
ε
D1 : εk → εk.

• Unit tangle: 1εk := k
ε

: ∅ → εk.

• Multiplication tangle: Mεl
εk1,εk2

:=

 ε n2

m

n1

ε

ε

D2

D1

: (εk1, εk2) → εl. When n = n1 = n2
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(hence l = k1 = k = 2), we denote the multiplication tangle simply by Mεl.

• Inner product tangle: IPεk :=

 ε

n
ε

ε

D2

D1

: (εk, εk)→ ∅.

• Right inclusion tangle: RIεk :=
 k

k
ε
ε
D1 : εk → ε(k + 1).

Definition 1.1.10. A planar algebra P consists of collection of complex vector spaces

{Pεk}(ε,k)∈Col and for every tangle T : (ε1k1, ε2k2, . . . , εnkn) → εk (resp, T : ∅ → εk),

there exists a multi-linear map PT : Pε1k1×· · ·×Pεnkn → Pεk (resp, an element PT ∈ Pεk)

(which will be referred as action of T ) such that the action

• preserves composition of tangles, that is, for tangles T : (ε1k1, ε2k2, . . . , εnkn)→ εk

and S : (δ1l1, δ2l2, . . . , δmlm)→ εiki, we have

PT◦
i
S = PT ◦ (idPε1k1

× · · · × idPεi−1ki−1
× PS × idPεi+1ki+1

× · · · × idPεnkn
)

• preserves identity, that is, PIεk = idPεk
,

• intertwines the action of permutation on the numbering of internal discs in a tangle

with that of the inputs in the multi-linear map, that is, if T : (ε1k1, ε2k2, . . . , εnkn)→

εk, xj ∈ Pεjkj for 1 ≤ j ≤ n and σ ∈ Sn, we have Pσ(T )(xσ−1(1), . . . , xσ−1(n)) =

PT (x1, . . . , xn) where the tangle σ(T ) : (εσ−1(1)kσ−1(1), . . . , εσ−1(n)kσ−1(n)) → εk is

obtained by renaming the j-th internal disc Dj in T as Dσ(j) in σ(T ) for 1 ≤ j ≤ n.

Note that a planar algebra has a unital filtered algebra structure with multiplication,

unit and inclusion respectively given by the actions of the multiplication, unit and right

inclusion tangles described earlier.

Definition 1.1.11. A planar algebra P is said to be a ∗-planar algebra, if there exists

conjugate linear involutions {∗εk : Pεk → Pεk} such that [PT (x1, . . . , xn)]
∗ = PT ∗(x∗1, . . . , x

∗
n),

for each tangle T : (ε1k1, ε2k2, . . . , εnkn) → εk (resp. T : ∅ → εk) and xi ∈ Pεiki ,

1 ≤ i ≤ n, where the adjoint T ∗ of a tangle T is obtained by reflecting it about a horizon-

tal line keeping the orientations of the regions and distinguished boundary components

intact.

Definition 1.1.12. A planar algebra P is said to be

1. connected, if dim(P±0) = 1.
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2. finite dimensional, if dim(Pεk) <∞ for every .

3. positive, if P is a connected ∗-planar algebra and the sesquilinear form PIPεk
◦

(idPεk
× ∗εk) is positive definite for every (ε, k) ∈ Col.

4. spherical if P is connected and actions of any two spherically isotopic tangles are

identical.

In a connected planar algebra, we have P
 ε = δεP  ε = δεP1ε0 = δε1Pε0, for

ε ∈ {+,−}. The tuple (δ+, δ−) is called the modulus of the planar algebra. It is said to

be unimodular if δ+ = δ−. Note that sphericality automatically implies unimodularity.

A subfactor planar algebra is the one which is connected, finite dimensional, positive and

spherical. We are mainly interested in subfactor planar algebras in this thesis.

1.1.5 Subfactor planar algebras and extremal subfactors

Before we get into the connections between subfactor planar algebras and extremal sub-

factors, we make a note of the observation about “generating” tangles. We have the

following set of tangles which generate the whole operad of planar tangles under tangle

composition (see [KS04]).

Iεk =
 2k

ε
ε
D1

εk→εk

1εk = k
ε

∅→εk

Mεk =

 ε k

k

k

ε

ε

D1

D2

(εk,εk)→εk

Eε(k+1) =
 

k
ε

∅→ε(k+1)

RIεk =
 k

k
ε
ε
D1

εk→ε(k+1)

LIεk =
 k

k
ε

-ε
D1

εk→-ε(k+1)

REεk =
 k

k

ε
ε
D1

ε(k+1)→εk

LEε(k+1) =
 k

k
ε

-ε
D1

ε(k+1)→-εk

Then, we have the following landmark result which assigns a unique planar algebra to

every extremal subfactor.

Theorem 1.1.13 ([Pop95, Jon99, GJS08, JSW10, KS09]). If

(M−1 =)N ⊆M(=M0) ⊆
e1 M1 ⊆

e2⊆ · · · ⊆ek Mk ⊆
ek+1 · · ·

is the tower of the basic construction associated to an extremal subfactor with [M : N ] =

δ2 < ∞, then there exists a unique (upto isomorphism) subfactor planar algebra P =
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PN⊆M of modulus δ such that, the grid of relative commutants,

C = N ′ ∩N ⊆ N ′ ∩M ⊆ N ′ ∩M1 ⊆ N ′ ∩M2 ⊆ · · · · · ·

C =

⋃

M ′ ∩M ⊆

⋃

M ′ ∩M1 ⊆

⋃

M ′ ∩M2 ⊆ · · · · · ·

is isomorphic to

C = P+0 ⊆ P+1 ⊆ P+2 ⊆ P+3 ⊆ · · · · · ·

C =

⋃

P−0 ⊆

⋃

P−1 ⊆

⋃

P−2 ⊆ · · · · · ·

such that,

(i) the multiplication in the relative commutants correspond to the action of multipli-

cation tangle (Mεk),

(ii) the horizontal inclusions are given by the action of right inclusion tangle (RIεk),

(iii) the vertical inclusions correspond to the action of left inclusion tangle (LIεk),

(iv) the horizontal conditional expectations, EN ′∩Mk

N ′∩Mk−1
and EM ′∩Mk

M ′∩Mk−1
correspond to the

action of the right conditional expectation tangle δ.RE+k and δ.RE−(k−1) respectively,

(v) the vertical conditional expectation EN ′∩Mk

M ′∩Mk
is given by the action of δ.LE+k, and

(vi) the element PE+(k+1)
∈ P+(k+1) corresponds to δek.

Conversely, any subfactor planar algebra P with modulus δ arises from an extremal sub-

factor of index δ2 in this way.

The above theorem coupled with our earlier discussion of relation between relative

commutants and intertwiners (Section 1.1.3) gives an idea of how one can go from one to

another and thus standard invariant can also be expressed in terms of planar algebras.

1.1.6 Oriented planar algebras

Next we move onto “oriented” version of planar algebras, which are generalization of the

planar algebras discussed till now. While many of the results focus on subfactor planar

algebras, the arguments apply much more generally. See [Jon11] for a more general

perspective. For explanations closely related to the explanations we give below, see

[BHP12]. To make comparision easy, we define along the same lines as in Section 1.1.4.

Let Λ be a non-empty set. Define another disjoint copy of the set Λ via Λ :=
{
λ : λ ∈ Λ

}
. Consider the free semigroup WΛ (or simply W ) of words with letters in

Λ ⊔ Λ. There is an obvious involution Λ ⊔ Λ ∋ ι
−
7−→ ι ∈ Λ ⊔ Λ by defining λ := λ. This

gives rise to the involution W ∋ w = (ι1, . . . , ιn)
∗
7−→ w∗ := (ιn, . . . , ι1) ∈ W .
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Definition 1.1.14. A Λ-oriented planar tangle diagram consists of

• a subset D0 of R2 homeomorphic1to the closed unit disc (this is referred to as the

‘external disc’), and finitely many, mutually non-intersecting subsets, D1, . . . , Dn

, of int(D0), each of which is homeomorphic1 to the closed unit disc (referred as

‘internal discs’),

• each disc has finitely many marked points on its boundary dividing it into finitely

many segments,

• each disc has a distinguished boundary segment denoted by ⋆,

• finitely many oriented paths in D0\
⋃n
i=1 int(Di) (referred as ‘strings’) each of which

is either a closed loop or has end points at two distinct marked points,

• the strings exhaust all the marked points (as end points) and are labelled by ele-

ments of Λ (and not Λ ⊔ Λ).

⋆

⋆

⋆

⋆

D1

D3

D2

D0

ι1

ι2

ι3

ι4
ι5

ι6

ι8

ι7

ι9

Two planar tangle diagrams T1, T2 are said to be planar isotopic if there exists a

continuous map ϕ : [0, 1] × R2 → R2 such that ϕ0 = idR2 , ϕt is a homeomorphism for

all t ∈ [0, 1] and ϕ1(T1) = T2 preserving the labeling and the orientation of each string.

The planar isotopy class of a Λ-oriented planar tangle diagram is called Λ-oriented planar

tangle.

1If we use diffeomorphisms instead of homeomorphisms (which had been usually done in the litera-

ture), the techinical complications in defining the tangle, planar isotopies or even composition of tangles

outweigh the actual purpose of introducing tangles. Hence, we contend ourselves with homeomorphisms.
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Given such a tangle diagram, to each marked point on the internal disc, there is a

string labeled by λ which meets this point. To this point we will assign λ if the string

is oriented away from the internal disc and λ is the string is oriented into the internal

disc. For each marked point on the external disc, we have the opposite convention: if the

string meeting this point is labeled λ, then we assign the label λ if the string is oriented

towards the exterior of the external disc and λ is it is oriented towards the interior.

Once this is done, each disc (internal and external) has a unique word in Λ ⊔ Λ̄

attached to it by reading off the letters assigned to marked points starting from ⋆ and

moving clockwise along the boundary of the disc. We call this unique word the color of

the corresponding disc. The colors of D0, D1, D2, and D3 in the above tangle diagram

are w0 = (ι3, ῑ4, ι1, ῑ3), w1 = (ι1, ι2, ῑ2, ῑ4, ι5), w2 = (ῑ5, ι6, ι8, ῑ6) and w3 = (ῑ8, ῑ7, ι7)

respectively. Note that planar isotopy does not affect the colors of the disc. If tangle T

has internal discs with colors v1, v2, . . . vn and external disc with color v0, then we denote

this situation by T : (v1, v2, . . . vn) → v0; the set of all such tangles will be denoted by

T(v1,...,vn);v0 . For example, in the tangle shown above we have T : (w1, w2, w3) → w0. If

there is no internal disc in T , then it is denoted by T : ∅→ v0; the set of all such tangles

will be referred as T∅;v0. Further, Tv0 = T Λ
v0

will denote the set of all tangles each of

whose external disc has color v0. Composition of two Λ-oriented tangles is defined in

exactly in the same way as in Jones’ shaded planar tangles. (See [Jon99]).

In order to draw a picture of an oriented tangle, it will be convenient to represent

a collection of parallel strings in any portion of the tangle by a single oriented string

labelled by the word in W , constructed from the letters labelling the individual strings

along with their orientations. For example, if w = (ι1, ι2, ι3) where ι1, ι2, ι3 ∈ Λ, then
w

will represent
ι1 ι2 ι3

. With this convention, note that
w

=
w∗

.

Before we proceed to more definitions, we describe some useful tangles. Here we will

often replace discs by rectangles, so there is a natural “source” and “target” associated

to these diagrams.

Let w,w1, w2 ∈ W .

• Identity tangle:

Iw :=

w
⋆

⋆

D1 : w → w
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• Unit tangle:

1w := w
⋆

: ∅→ ww∗

• Multiplication tangle:

Mw
w1,w2

:=

⋆ w1

w

w2

⋆

⋆

D1

D2

: (w1w
∗ , ww∗

2)→ w1w
∗
2

• Inner product tangle:

Hw :=

⋆

w
⋆

⋆

D2

D1

: (w,w∗)→ ∅

• Rotation tangle:

ρw1,w2 :=  D1
⋆

w2⋆ w1

: (w1w2)→ (w2w1)

When w = w1 = w2, we denote the multiplication tangle simply by Mw.

Definition 1.1.15. A Λ-oriented planar algebra P consists of collection of complex vector

spaces {Pw}w∈W and for every tangle T : (w1, . . . , wn)→ w0, we have a multi-linear map

PT : Pw1 × · · · × Pwn → Pw0 satisfying the following conditions:

1. For tangles S : (w1, . . . , wn)→ w0 and T : (u1, . . . , um)→ wj we have

PS ◦
Dj

T = PS ◦ (idPw1
× · · · × idPwj−1

× PT × idPwj+1
× · · · × idPwn

)

2. PIw = idPw for all words w

3. For T : (w1, . . . , wn) → w0, any collection of xj ∈ Pwj
for 1 ≤ j ≤ n, and σ ∈ Sn,

we have

Pσ(T )(xσ−1(1), . . . , xσ−1(n)) = PT (x1, . . . , xn),

where the tangle σ(T ) : (wσ−1(1), . . . , wσ−1(n)) → w0 is obtained by renaming the

j-th internal disc Dj in T as Dσ(j) in σ(T ) for 1 ≤ j ≤ n.
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In the above definition, we adopt the convention that T : ∅ → w should give a map

PT : C → Pw. This is consistent with the convention that the tensor power of vectors

spaces over the empty set is the scalar field. Note that ∅ is a valid word, so there is a

distinction between a tangle T : (∅)→ w and T : ∅→ w. The first has an internal disc

with no strings attached to it, while the second has no internal disc at all.

As in Jones’ planar algebras, the multiplication and unit tangles equip {Pvv∗}v∈W

unital associative algebras. We often write x · y (or simply xy) for PMv
v1,v2

(x, y) whenever

x and y are in appropriate spaces to make sense of the action.

There is also a ∗-structure on the space of tangles. For T : (w1, . . . , wn) → w0 the

tangle T ∗ : (w∗
1, . . . , w

∗
n) → w∗

0 is obtained by reflecting T along any straight line where

the numbering of the internal discs (if any) and Λ-labels of the strings are induced by

the reflection from T whereas the orientation of each string is reversed after reflection.

Clearly ∗ is an involution.

Definition 1.1.16. A Λ-oriented planar algebra P is said to be an oriented ∗-planar alge-

bra if there exists conjugate linear involutions {∗w : Pw → Pw∗}w∈W such that [PT (x1, . . . , xn)]
∗ =

PT ∗(x∗1, . . . , x
∗
n).

Definition 1.1.17. A Λ-oriented planar algebra P is said to be

1. connected if dim(P∅) = 1.

2. finite dimensional if dim(Pw) <∞ for every w ∈ W .

3. positive, if P is a connected ∗-planar algebra and the sesquilinear form PHw ◦(idPw×

∗w) is positive definite (and thereby gives an inner product on Pw) for every w ∈ W .

4. spherical if P is connected and actions of any two spherically isotopic tangles are

identical.

In this article, we mainly focus on Λ-oriented planar algebra which are connected,

finite-dimensional, positive and spherical; we will refer these as Λ- oriented factor planar

algebra. Note that this is more flexible than the definition given in [BHP12], where they

assume λ = λ̄ for every λ ∈ Λ.

The reason we call ours factor planar algebras as well is as follows: a II1 factor and

a collection of bifinite bimodules Λ, one can construct a Λ-oriented planar algebra as

described in the next section. By the results of [BHP12], every Λ-oriented planar algebra

can be realized this way for some II1 factor.

We now proceed to discuss morphisms of planar algebras.
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Definition 1.1.18. Let P (resp., P ′) be a Λ- (resp., Λ′-) oriented planar algebra and

ϕ : Λ→ Λ′ be any map. If WΛ and WΛ′ denote the free semigroups of words with letters

in Λ ⊔ Λ and Λ′ ⊔ Λ′ respectively, then ϕ extends to a homomorphism ϕ : WΛ → WΛ′

by setting ϕ(λ) := ϕ(λ) for λ ∈ Λ. If T is a Λ-oriented w-tangle, then replacing labels

assigned to strings by its corresponding image under ϕ, we get a unique Λ′-oriented

tangle ϕ(T ). Thus ϕ can also be seen as a map from all Λ-oriented tangles to Λ′-oriented

tangles which preserves composition and identity. A homomorphism ϕ : P → P ′ consists

of a map ϕ : Λ → Λ′ along with a collection of linear maps ϕw : Pw → P ′
ϕ(w) for each

w ∈ WΛ such that the action of oriented tangles is preserved i.e., for every Λ-oriented

tangle T : (w1, . . . , wn) → w, we have ϕw(PT (x1, . . . , xn)) = P ′
ϕ(T )(ϕw1(x1), . . . , ϕwn(xn))

for every xi ∈ PΛ
wi
, i = 1, 2, . . . , n. It is said to be an isomorphism if all the maps

ϕ, ϕw, w ∈ W are bijections.

If P and P ′ are ∗-planar algebras, then ϕ is called a ∗-homomorphism if each ϕw

preserves the ∗-structure.

Remark 1.1.19. Any ∗-homomorphism between two oriented factor planar algebras will

be automatically injective (cf. [Jon99]).

1.2 The Category Language

Contents of this section are more or less directly taken from [Mac71, Kas95, LR97, NT13]

and [EGNO15].

1.2.1 Categories

Definition 1.2.1. A category C consists of two classes Obj(C) and Hom(C) called the

objects and morphisms of the category respectively, such that

(i) For each X and Y in Obj(C), there is a sub-class C(X, Y ) = Hom(X, Y ) =

HomC(X, Y ) of Hom(C) called the morphisms from X to Y . For f ∈ C(X, Y )

we say that f has source X and target Y . We write it as f : X → Y or X
f
→ Y .

(ii) For f ∈ C(X, Y ) and g ∈ C(Y, Z) (notice that source of g is same as target of

f) there exists a unique g ◦ f ∈ C(X,Z) called the composition of f and g with

the property that for any three morphism f, g and h, composible appropriately,

(h ◦ g) ◦ f = h ◦ (g ◦ f).
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(iii) For each X ∈ Obj(C), there exists unique 1X ∈ C(X,X) called the identity mor-

phism of X , such that for all X, Y ∈ Obj(C) and every f ∈ C(X, Y ), we have

f ◦ 1X = 1Y ◦ f = f .

We write End(X) for Hom(X,X) for any object X .

Remark 1.2.2. Most of the categories we deal with have the class of objects and morphisms

to be sets. Such categories are called small categories.

For a any category C, we have a distinct category, called opposite category of C, Cop,

whose objects are exactly the objects of C but Cop(X, Y ) := C(Y,X). It is clear that

(Cop)op = C.

Given any two categories C,D, by C ×D, we mean the category with objects as pairs

(X, Y ) with X ∈ Obj(C) and Y ∈ Obj(D) and morphisms given by

(C × D) ((X, Y ), (X ′, Y ′)) = C(X,X ′)×D(Y, Y ′).

A subcategory C of a category D consists of subclass Obj(C) of Obj(D) and a subclass

Hom(C) of Hom(D) such that

• whenever X ∈ Obj(C), 1X ∈ Mor(C),

• if f ∈ Hom(C), then the source and target of f are objects of C, and

• if f, g ∈ Hom(C) and are composible, then g ◦ f ∈ Hom(C).

Example 1.2.3. Basic examples include:

(i) Category of sets, Sets with set maps as morphisms.

(ii) Category of vector spaces, Vec, with linear transformations as morphisms. We

denote the category of finite dimensional vector spaces by Vecf . Both of these are

subcategories of Sets.

(iii) Category of modules over any fixed algebra A, A-mod with intertwiners as mor-

phisms.

(iv) Category of all representations of a fixed group G in Hilbert spaces, Rep(G) , with

intertwiners as morphisms. We denote by Rep(G) its finite dimensional version.

(v) For two groups G,A, let CG = CG(A) be the category with objects g ∈ G and

Hom(g1, g2) = ∅ if g1 6= g2 and Hom(g, g) = A.
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Example 1.2.4. G-graded vector spaces - Vec(G), Vecf (G). Let G be any group

and Vec(G) be the category with objects as G-graded vector spaces, i.e., vector spaces

V with a decomposition V =
⊕
g∈G

Vg and morphisms which are just linear transformations

between these vector spaces which preserve grading. Similarly, one has the category

Vecf (G) of finite dimensional G-graded vector spaces.

A morphism f ∈ C(X, Y ) is said to be an isomorphism if there exists g ∈ C(Y,X)

such that g ◦ f = 1X and f ◦ g = 1Y . We say X and Y to be isomophic if there is an

isomorphism from X to Y and denote it by X ∼= Y .

Definition 1.2.5. A functor F : C → C′ from the category C to the category C′ consists

of a map F : Obj(C)→ Obj(C′) and of a map F : Hom(C)→ Hom(C′) such that

(a) for any X ∈ Obj(C), we have F (1X) = 1F (V ),

(b) for any f ∈ C(X, Y ), we have F (f) ∈ C′(F (X), F (Y )),

(c) if f, g are composible morphisms in C, then F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor G : C → C′ is a functor from Cop → C′.

Definition 1.2.6. Let F,G be functors from C to C′. A natural transformation η

from F to G, written as η : F → G, is a family of morphisms η(X) : F (X) → G(X) in

C′ indexed by the X ∈ Obj(C) such that, for any f : X → Y in C, the square

F (X)
η(X)
−−−→ G(X)yF (f)

yG(f)

F (Y )
η(Y )
−−→ G(Y )

commutes.

Further, if η(X) is an isomorphism of C′ for every X ∈ Obj(C), then η is said to be a

natural isomorphism.

A functor F : C → D is said to be essentially surjective if, for any object Y of D,

there exists X ∈ Obj(C) such that F (X) ∼= Y in D. It is said to be faithful (resp. fully

faithful) if, for any pair of objects (X,X ′) of C, the map F : C(X,X ′)→ D(F (X), F (X ′))

is injective (resp. bijective).

Definition 1.2.7. A functor F : C → D is said to be equivalence of categories if there

exists a functor G : D → C and natural isomorphisms η : idD → FG and θ : GF → idC ,

where idC and idD are identity functors on C and D respectively.
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The following criterion becomes very handy in determining whether a functor is an

equivalence, proof of which can be found in [Kas95].

Proposition 1.2.8. A functor is an equivalence of categories if and only if it is essentially

surjective and fully faithful.

Definition 1.2.9. Let F : C → D and G : D → C be two functors and suppose there are

natural isomorphisms η : idC → GF and ε : FG→ idD such that both of the composites

G(Y )
ηG(Y )
−−−→ GFG(Y )

G(εY )
−−−→ G(Y ) and F (X)

F (ηX)
−−−→ FGF (X)

εF (X)
−−−→ F (X)

are identity morphisms for all objects X of C and Y of D. Then, F is said to be a left

adjoint of G or equivalently, G is said to be a right adjoint of F .

Example 1.2.10. For any set X , let C[X ] be the free algebra over C associated to X .

Then the functor X 7→ C[X ] is a left adjoint functor to the forgetful functor which assigns

to any algebra its underlying set.

In most of the cases its pretty straightforward to check whether two functors are

adjoints of each other using the above definition. An equivalent condition for checking

adjointness, due to Mac Lane, is found to be more useful in our case (in Chapter 3) which

uses the notion of universal arrows.

Definition 1.2.11. Let G : D → C be any functor and C ∈ Obj(C). A universal arrow

from C to G consists of a pair (Y, f), Y ∈ Obj(D), f ∈ C(C,G(Y )) such that, for any

other pair (Z, g) with Z ∈ Obj(D), g ∈ C(C,G(Z)), there exists unique f̃ ∈ D(Y, Z) with

G(f̃) ◦ f = g. That is,

C
f //

g

!!❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

G(Y )

G(f̃)

��
G(Z)

The proof of the following thoerem can be found in the book of Mac Lane ([Mac71,

Chap IV, Theorem 2]).

Theorem 1.2.12 (Mac Lane). Let F,G be functors as above. Then F is a left adjoint

to G if and only if there exists a natural transformation η : idC → GF such that the pair

(F (C), ηC) is a universal arrow from C to G for every C ∈ Obj(C).
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1.2.2 Tensor Categories

Let C be a category and ⊗ be a functor from C × C to C. Thus,

• for each pair of objects (X, Y ) we have an object X ⊗ Y ,

• for each pair of morphisms (f, g) we have a morphism f ⊗ g,

• for any two objects X, Y , 1X⊗Y = 1X ⊗ 1Y , and,

• if f ∈ C(X, Y ), g ∈ C(A,B), f ′ ∈ C(Y, Z) and g′ ∈ C(B,C), then

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) (1.2.1)

Example 1.2.13. Consider the category of vector spaces Vec. Then, the tensor product

of vector spaces defines a functor from C × C to C.

Any functor ⊗ : C × C → C is called a tensor product. An associativity constraint for

⊗ is a natural isomorphism a : ⊗(⊗× id)→ ⊗(id×⊗). That is, for each triple (X, Y, Z)

of objects there exists an isomorphism aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) such that

the square

(X ⊗ Y )⊗ Z
aX,Y,Z

−−−−→ X ⊗ (Y ⊗ Z)y(f ⊗ g)⊗ h
yf ⊗ (g ⊗ h)

(X ′ ⊗ Y ′)⊗ Z ′
aX′,Y ′,Z′

−−−−−→ X ′ ⊗ (Y ′ ⊗ Z ′)

commutes whenever f, g, h are morphisms in the category.

The associativity constraint a is said to satisfy the Pentagon Axiom if the following

pentagonal diagram commutes for all objects X, Y, Z,W of C:

(X ⊗ (Y ⊗ Z))⊗W

aX,Y ⊗Z,W

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

X ⊗ ((Y ⊗ Z)⊗W )

1X⊗aY,Z,W

��

((X ⊗ Y )⊗ Z)⊗W

aX,Y,Z⊗1W

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

aX⊗Y,Z,W

��
X ⊗ (Y ⊗ (Z ⊗W )) (X ⊗ Y )⊗ (Z ⊗W )

aX,Y,Z⊗Woo

For a fixed object I, a left unit constraint (resp. a right unit constraint) with respect to

I is a natural isomorphism l : ⊗(I× id)→ id (resp. r : ⊗(id×I)→ id). This means that

for any object X , there exists an isomorphism lX : I ⊗X → X (resp. rX : X ⊗ I → X)

such that:
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I ⊗X
lX−→ X

1I ⊗ f
y

yf

I ⊗X ′ l′X−→ X ′

(resp.

X ⊗ I
rX−→ X

f ⊗ 1I

y
yf

X ′ ⊗ I
r′X−→ X ′

)

commutes for any morphism f .

Given an associativity constraint a and left and right unit constraints l, r with respect

to an object I, they are said to satisfy the Triangle axiom if the triangle,

(X ⊗ I)⊗ Y
aX,I,Y //

rX⊗1Y

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

X ⊗ (I ⊗ Y )

1X⊗lY
xxqqq

qq
qq
qq
qq
qq
qq

X ⊗ Y

commutes for all pairs (X, Y ) of objects.

Definition 1.2.14. A tensor category (C,⊗,1, a, l, r) is a category C which is equipped

with a tensor product ⊗ : C × C → C, with an object 1, called the unit of the tensor

category, with an associativity constraint a, a left unit constraint l, and a right unit

constraint r with respect to I such that the Pentagon Axiom and the Triangle axiom are

satisfied.

The tensor category C is said to be strict if the associativity and unit constraints

a, l, r are all identities of the category.

If (C,⊗,1, a, l, r) is a tensor category, recall that Cop is the category with objects same

as that of C but morphisms are reversed. Then Cop is also a tensor category in a natural

way.

Remark 1.2.15. For a tensor category (C,⊗,1, a, l, r), there is also the monoidal opposite

category, which we denote by C∨. As a category C∨ = C, its tensor product is given by

X
∨
⊗ Y := Y ⊗X and the associativity constraint of C∨ is a∨X,Y,Z := a−1

Z,Y,X.

Example 1.2.16. The category C = Vec is equipped with a tensor structure for which

⊗ is the usual tensor product of the vector spaces, the unit object I is the ground field

(C, most of the times) and the associativity and unit constraints are given by

a((U ⊗ V )⊗W ) = U ⊗ (V ⊗W ) and l(I ⊗ V ) = V = r(V ⊗ I).

It is easy to see that the pentagon and triangle axioms are satisfied.

Example 1.2.17. Now consider the category Rep(G) for a group G. Being a subcate-

gory of Vec, it has a tensor product structure with the G-action on the tensor product

U ⊗ V given by g · (u ⊗ v) = g · u ⊗ g · v for g ∈ G, u ∈ U, v ∈ V . The tensor unit is C

with the trivial action of G.
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Example 1.2.18. Let G be a group and A be an abelian group with an action π : G→

Aut(A). Let CG(A, π) be defined in the same way as CG (Example 1.2.3(v)) with tensor

product of objects given by g ⊗ h = gh whereas tensor product of morphisms is defined

as follows: if a : g → g and b : h → h, then a ⊗ b := aπ(g)b. It is routine to check that

CG(A, π) is a tensor category.

IfG is non-abelian, this category also serves an example forX⊗Y not being isomorphic

to Y ⊗X .

Example 1.2.19. In Vec(G), one can define the tensor product as

(U ⊗ V )g =
⊕

x,y∈G, xy=g

Ux ⊗ Vy

and unit object 1 by 1e = K (the base field) and 1g = 0 for g 6= e. Then defining a, l

and r in the obvious way, ~(G) can be seen as a tensor category.

Let δg, g ∈ G be the objects of Vecf(G) defined by (δg)x = K, if x = e and (δg)x = 0

otherwise. We then have δg ⊗ δh ∼= δgh. Thus the category CG(K∗) is a subcategory of

Vecf (G) and this subcategory can be viewed as a “basis” of Vecf (G) as any object of

Vecf (G) is isomorphic to a direct sum (Definition 1.2.38) of objects δg with non-negative

integer multiplicities.

Example 1.2.20. Here is a generalization of the above examples in which the associa-

tivity constraint is not trivial.

Let G be a group and A be an abelian group with an action π : G→ Aut(A). ω be a

3-cocycle for this action of G on A. That is, ω : G× G× G → A is map which satisfies

the equation

ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)π(g1) (ω(g2, g3, g4))

for all gi ∈ G, i = 1, 2, 3, 4.

We define a new tensor category CωG = CωG(A) which, as a category is same as CG.

The functor ⊗ and l, r,1 are also the same as those in CG. The only difference is in the

associativity constraint aω, which is not identity as in CG but is defined by the formula

aωδg ,δh,δk = ω(g, h, k)1δghk : (δg ⊗ δh)⊗ δk → δg ⊗ (δh ⊗ δk),

where g, h, k ∈ G.

Properties of ω will help in establishing the pentagon axiom and hence CωG is a tensor

category.
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Example 1.2.21. Similarly, for a 3-cocycle ω with values inK∗ on can define the category

Vec(G, ω) which differs from Vec(G) just by the associativity constraint. This is done

by extending the associativity constraint of CωG by additivity to arbitrary direct sums

(Definition 1.2.38) of objects δg. This category contains a subcategory Vec(G, ω) of finite

dimensional G-graded vector spaces with associativity defined by ω.

Example 1.2.22. The category End(C), of endofunctors of a category is a strict tensor

category with ⊗ given by composition of functors. The unit object is the identity functor.

1.2.3 Tensor Functors and The Theorem of Mac Lane

Definition 1.2.23. Let (C,⊗,1, a, l, r) and (C′,⊗′,1′, a′, l′, r′) be tensor categories. A

tensor functor from C to C′ is a pair (F, J) where F : C → C′ is a functor, and

JX,Y : F (X)⊗′ F (Y )→ F (X ⊗ Y ) is a family of natural isomorphisms indexed by pairs

(X, Y ) of objects of C such that the diagram

((F (X)⊗′ F (Y ))⊗′ F (Z)
a′
F (X),F (Y ),F (Z) //

JX,Y ⊗′1F (Z)

��

F (X)⊗′ (F (Y )⊗′ F (Z))

1F (X)⊗
′JY,Z

��
F (X ⊗ Y )⊗′ F (Z)

JX⊗Y,Z

��

F (X)⊗′ F (Y ⊗ Z)

JX,Y⊗Z

��
F ((X ⊗ Y )⊗ Z)

F (aX,Y,Z) // F (X ⊗ (Y ⊗ Z))

commute for all objects (X, Y, Z) in C (“the tensor structure axiom”).

A tensor functor (F, J) is said to be strict if the isomorphism J is an identity of C′.

Definition 1.2.24. (a) A natural tensor transformation η : (F, J) → (F ′, J ′) be-

tween tensor functors from C to C′ is a natural transformation η : F → F ′ such that

the following diagram commutes for each pair (X, Y ) of objects of C:

F (X)⊗′ F (Y )
JX,Y //

η(X)⊗η(Y )

��

F (X ⊗ Y )

F ′(X)⊗′ F ′(Y )
J ′
X,Y // F ′(X ⊗ Y )

η(X⊗Y )

OO

A natural tensor isomorphism is a natural tensor transformation which is also a

natural isomorphism.
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(b) A tensor equivalence between tensor categories is a tensor functor F : C → D

such that there exists a tensor functor G : D → C and natural tensor isomorphisms

η : idD
∼=
−→ FG and θ : GF

∼=
−→ idC .

In such a case, we say that C and D are tensor equivalent.

Remark 1.2.25. If (F, J) is a tensor functor, then there is a canonical isomorphism ϕ :

1

′ → F (1) defined by the commutative diagram,

1

′ ⊗′ F (1)
l′
F (1) //

ϕ⊗′1F (1)

��

F (1)

F (1)⊗′ F (1)
J
1,1 // F (1⊗ 1)

F (l
1

)

OO

Proposition 1.2.26. For any tensor functor (F, J) : C → C′, the diagrams

1

′ ⊗′ F (X)
l′
F (X) //

ϕ⊗1F (X)

��

F (X)

F (1)⊗′ F (X)
J
1,X // F (1⊗X)

F (lX)

OO

and

F (X)⊗′
1

′
r′
F (X) //

1F (X)⊗ϕ

��

F (X)

F (X)⊗′ F (1)
JX,1 // F (X ⊗ 1)

F (rX)

OO

commute for every object X of C.

By Proposition 1.2.26, a tensor functor can be equivalently defined by saying that it

is a triple (F, ϕ, J) which satisfy the tensor structure axiom and Proposition 1.2.26. This

is indeed the traditional definition of a tensor functor.

Example 1.2.27. An important class of examples of tensor functors arise from “for-

getful” functors which are functors that forget some or the other structure. A forgetful

functor from the category of topological spaces/ vector spaces/ groups to the category of

sets is the one which takes each of the space to its underlying set and morphisms to the

basic set maps. A more important example in the context of this thesis is the forgetful

functor Rep(G) → Vec from the representation category of a group to the category of

vector spaces. More generally, if H ⊂ G is a subgroup, then we have the restriction

functor Rep(G) → Rep(H). Further, if φ : H → G is a group homomorphism, then we

have the pullback functor φ∗ : Rep(G)→ Rep(H). All these functors are tensor functors.
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Example 1.2.28. Suppose φ : H → G is a group homomorphism, then any H-graded

vector space is naturally a G-graded vector spaces. Thus we have a natural tensor functor

φ∗ : Vec(H)→ Vec(G).

Example 1.2.29. Let G1, G2 be groups, A be an abelian group, and ωi ∈ Z3(Gi, A),

i = 1, 2 be 3-cocycles (with actions of Gi on A taken to be trivial). Let Ci = C
ωi

Gi
, i = 1, 2

be the tensor categories of graded vector spaces described in Example 1.2.20.

Any tensor functor F : C1 → C2 defines a group homomorphism f : G1 → G2. By the

tensor structure axiom, it is easy to see that a tensor structure on F is given by

Jg,h = µ(g, h)1δf(gh) : F (δg)⊗ F (δh)
∼
→ F (δgh), g, h ∈ G1, (1.2.2)

where µ : G1 ×G1 → A is a function satisfying

ω1(g, h, l)µ(gh, l)µ(g, h) = µ(g, hl)µ(h, l)ω2(f(g), f(h), f(l)), (1.2.3)

for all g, h, l ∈ G1. Thus, ω1 = f ∗ω2 ·d3(µ). In otherwords, ω1 and F
∗ω2 are cohomologous

in Z3(G1, A).

Conversely, given a group homomorphism F : G1 → G2 and any function µ : G1 ×

G2 → A satisfying (1.2.3) gives rise to a tensor functor F : C1 → C2 defined by F (δg) =

δf(g) with the tensor structure given by (1.2.2). This functor is an equivalence if and only

if f is an isomorphism.

In particular if G = G1 = G2, then Vec(G,ω)
⊗
∼= Vec(G,ω)(tensor equivalent) if

and only if ω1 and ω2 are cohomologous.

The following theorem of Mac Lane implies that in practice we may always assume

that a tensor category to be strict.

Theorem 1.2.30. Any tensor category is tensor equivalent to a strict tensor category.

Caution must be exercised in interpreting the Mac Lane thoerem. It says that every

tensor category is tensor equivalent to a strict one not isomorphic! If ω is cohomologi-

cally non-trivial, then CωG(A) is clearly not isomorphic to CG(A). However, by the above

theorem, it is equivalent to some strict category C.

1.2.4 Rigid Semisimple C*-tensor categories

A category is said to be C-linear if every morphism space is a complex vector space.

A C-linear category is said to be a ∗-category if it is equipped with an anti-linear map

∗ : C(X, Y ) → C(Y,X) for all objeccts X, Y . It must satisfy the axioms (f ∗)∗ = f and
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(f ◦ g)∗ = g∗ ◦ f ∗ for composable morphisms f and g. This also implies that 1∗X = 1X for

all objects X of C. Further, a morphism f : X → Y in a ∗-category is said to be unitary

if ff ∗ = 1Y and f ∗f = 1X .

Definition 1.2.31. A ∗-category C is said to be a C*-category if

(i) C(X, Y ) is a Banach Space for every X, Y ∈ Obj(C), the map

C(Y, Z)× C(X, Y )→ C(X,Z), (f, g) 7→ f ◦ g

is bilinear and ‖fg‖ ≤ ‖f‖ ‖g‖;

(iii) the ∗ satisfies the following properties:

(a) ‖f ∗f‖ = ‖f‖2 for every morphism f in C. In particular, End(X) is a unital

C*-algebra for every object X ;

(b) for any f ∈ C(X, Y ), the element f ∗f is positive in the C*-algebra End(X).

If C is a tensor category as well as C*-category, then it called a C*-tensor category

if the associativity and unit constraints are unitary and (f ⊗ g)∗ = f ∗ ⊗ g∗ for every

f, g ∈ Hom(C).

Definition 1.2.32. A tensor functor (F, J) : C → C′, where C, C′ are C*-tensor categories,

is said to be unitary if it satisfies F (f ∗) = F (f)∗ for every f ∈ C(X, Y ) and JX,Y is

unitary for all objects X, Y in C.

Remark 1.2.33. A W*-category is a C*-category such that each morphism space has a

predual ([GLR85]). Although the norms on the spaces appear as additional structure,

being a C* (or W*)-category is actually a property of a ∗-category. Indeed, one can take

the semi-norms given by the spectral radius, and ask if they satisfy the conditions listed

above. In particular it makes sense to say a ∗-category is a C* (or W*)-category without

specifying extra structure.

Example 1.2.34. The most basic example of a C*-tensor category is the category Hilbf

of finite dimensional Hilbert spaces. The ∗ of a morphism is the usual adjoint as a linear

operator between Hilbert spaces.

Example 1.2.35. The category Rep(G) is a C* -tensor category as it is a subcategory

of Hilbf
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Now, let C be a C*-tensor category.

Definition 1.2.36. An object X̄ is said to be conjugate or dual to an object X if there

exist morphisms RX ∈ Hom(1, X̄ ⊗X) and R̄X ∈ Hom(1, X ⊗ X̄) such that

(1X̄ ⊗ R̄
∗
X)(RX ⊗ 1X̄) = 1X̄ and (1X ⊗R

∗
X)(R̄X ⊗ 1X) = 1X (1.2.4)

The above identities are called conjugate equations and the pair (RX , R̄X) is called

a solution of the conjugate quations for X .

If every object of C has a conjugate object, then C is said to be a rigid C*-tensor

category.

Rigidity gets its origin from group representations. It is known that for every rep-

resentation ρV of a group of a group G on a vector space V , there is a contragredient

representation on the dual space V ∗ defined by ρ∗V ∗(g) := (ρV (g
−1))

∗
. The category

Rep(G) is rigid with this dual structure and a solution of the conjugate equation given

by RV (1) =
∑

i e
∗
i ⊗ ei and R̄V (1) =

∑
i ei ⊗ e

∗
i , where {ei}i is a basis of V and {e∗i }i its

corresponding dual basis.

One defines the statistical dimension of an object X by

d(X) := inf(RX ,R̄X) ‖RX‖
∥∥R̄X

∥∥

where the infimum is taken over all solutions to the conjugate equations for X . The

function d(.) : Obj(C) → R+ depends on objects only up to unitary isomorphism. It is

multiplicative and satisfies d(X) = d(X̄) for any dual of X . We call solutions to the

conjugate equations standard if ‖RX‖ =
∥∥R̄X

∥∥ = d(X)
1
2 . It turns out that such solutions

exist and are essentially unique. From now on, by solutions of the conjugate equations

we always mean the standard ones. It turns out that, for any object X , its conjugate, if

exists, is unique upto a unique unitary isomorphism (see [Yam04, Pen18]). The following

is a standard result, proof of which can be found in any standard category theory book,

say, [NT13], for instance.

Proposition 1.2.37 (Frobenius reciprocity). For any three objects X, Y and Z,

Hom(X ⊗ Y, Z) ∼= Hom(Y, X̄ ⊗ Z) and Hom(X ⊗ Y, Z) ∼= Hom(X,Z ⊗ Ȳ )

For a more detailed study of duality we refer the reader to [LR97] and [Yam04].

We say that an object X in a rigid C∗-tensor category is simple or irreducible if

End(X) ∼= C. By the reciprocity, it is easy to see that if X is simple, then so is X̄ and

the spaces Hom(1, X̄⊗X),Hom(1, X⊗ X̄) are one dimensional. We always assume that
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1 is simple i.e., End(1) ∼= C. Often, we denote by Irr(C), a set of representatives of

isomorphism classes of simple objects in C. What follows is the notion of semi-simplicity

in rigid C*-tensor categories.

Definition 1.2.38. A ∗- category is said to semi-simple if

(i) for any two objects X1 and X2, there exist an object Z (called direct sum of

X1 and X2) and morphisms i1 ∈ Mor(X1, Z), i2 ∈ Mor(X2, Z) such that i∗1i1 =

1X1, i
∗
2i2 = 1X2 and i1i

∗
1 + i2i

∗
2 = 1Z , and

(ii) every object in the category is a direct sum of finitely many simple objects.

(iii) the category has subobjects, i.e, for every projection p in End(X), there exists an

object Y and an ismometry v ∈ Hom(Y,X) such that vv∗ = p. We say that Y is a

subobject of X .

In (ii) of Definition 1.2.38, the object Z is unique upto a unique unitary isomorphism

and is denoted by X1⊕X2. Since the zero projection belongs to End(X) for every object

X , the object defined by it is denoted by 0 and is called the zero object. Note that

Hom(0, X) = Hom(X, 0) = 0 for every object X .

Remark 1.2.39. In a semi-simple category though every object is a direct sum of finitely

many simple objects, the number of isomorphism classes of simple objects may not be

finite. Rigid categories in which the number of isomorphism classes of simple objects is

finite are called fusion categories.

Remark 1.2.40. In a semi-simple category, all morphism spaces are finite dimensional,

and so a semi-simple ∗-category is C* if and only if it is W*.

For a semi-simple tensor category C, the fusion algebra is the complex linear span

of isomorphism classes of simple objects, with product given by the linear extension of

[X ] · [Y ] :=
∑

Z∈Irr(C)N
Z
XY [Z], where N

Z
XY = dim (C(X ⊗ Y, Z)). This is an associative,

unital algebra. When C, in addition, is rigid, there is a ∗-structure on this algebra, given

by the conjugate linear extension of [X ]∗ := [X̄ ]. This associative ∗-algebra is denoted

by Fus(C).

In the presence of direct sums, the functions d(.) turns out to be additive as well. We

have a well defined trace TrX on endomorphism spaces End(X) given by

TrX(f) := R∗
X(1X̄ ⊗ f)RX = R̄∗

X(f ⊗ 1X̄)R̄X ∈ Hom(1,1) ∼= C

This trace does not depend on the choice of dual for X or on the choice of standard

solutions. Moreover, we have TrX(1X) = d(X).
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Example 1.2.41. Suppose G is a compact quantum group and F̃ : Rep(G) → Hilbf

be the obvious functor which sends every unitary representation of G to the underlying

finite dimensional Hilbert space. Then F is a faithful “exact” functor. In fact, any

functor from a rigid semisimple C*-tensor categories to Hilbf is automatically so. What

is more interesting is that, given any rigid semisimple C*-tensor category C and a functor

F : C → Hilbf (such functors are called fiber functors), there exists a compact quantum

group G and a unitary tensor equivalence E : C → Rep(G) such that F is naturally tensor

isomorphic to F̃ ◦E. Moreover, for such a G, the “Hopf *-algebra” (C[G], ∆) is uniquely

determined upto isomorphism. This is known famously as Woronowicz’s Tannaka-Krein

duality.

1.2.5 Some basic facts of C*-categories

Let C be a C*-category. For X, Y,Xi ∈ Obj(C), 1 ≤ i ≤ n, recall that :

(i) Y is a subobject of X if the morphism space C(Y,X) contains an isometry,

(ii) a projection p ∈ C(X,X) factors through Y if there exists an isometry u ∈ C(Y,X)

such that p = uu∗,

(iii)X is a direct sum of {Xi}
n
i=1 if for all 1 ≤ i ≤ n, there exists an isometry ui ∈ C(Xi, X)

such that 1X =

n∑

i=1

uiu
∗
i .

In general, C may neither be closed under direct sums nor have every projection

factoring through a subobject. However, we have a C*-category K(C) which we refer as

the unitary Karoubi envelope of C, such that the following holds:

(1) there exists a fully faithful ∗-functor ι : C → K(C) which is isometry on morphisms,

(2) every projection in K(C) factors through a subobject,

(3) K(C) is closed under direct sums, and

(4) every Z ∈ Obj(K(C)) appears as a subobject of direct sum of objects of the form

ι(X), X ∈ Obj(C).

Moreover, the pair (K(C), ι) satisfies the universal property:

for every pair (D, σ) where D is a C*-category closed under direct sums and having every

projection factoring through a subobject, and σ : C → D is a C*-functor, there exists a

C*-functor σ̃ : K(C)→ D such that σ is equivalent to σ̃ ◦ ι via a unique natural unitary.

It is rather easy to achieve conditions (1) and (2) by considering the unitary idempo-

tent completion of C, denoted by proj(C), whose objects are pairs (X, p) with X ∈ Obj(C)

and projection p ∈ C(X,X). The morphism space from (X, p) to (Y, q) consists of those

f ∈ C(X, Y ) satisfying q ◦ f ◦ p = f . The *-structure on proj(C) is simply induced
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from C. However, proj(C) might still be far from being closed under direct sums. We

denote the canonical functor X 7→ (X, 1X) for X ∈ Obj(C) by αC : C → proj(C).

Any C*-functor F : C → D between C*-categories, induces a canonical C*-functor be-

tween the unitary idempotent completions by simply applying F ; we denote this by

proj(F ) :proj(C)→proj(D). Further, if F is monoidal, then proj(F ) is also.

Fact 1.2.42. 1. If C is a strict C*-tensor category, then proj(C) also inherits this

structure by extending the tensor product appropriately. Note that αC(X ⊗ Y ) =

αC(X)⊗ αC(Y ), and indeed αC is trivially monoidal.

2. If C is a semi-simple C*-category, then so is proj(C), and αC : C → proj(C) is an

equivalence.

3. If F : C → D is a C*-functor, then proj(F ) ◦ αC = αD ◦ F .

Throughout this thesis, we use monoidal C*-functors between C*-tensor categories

where the tensor preserving properties of the functors are implemented by natural uni-

taries; we refer such functors as unitary tensor functors.

Now, we briefly go over a constructive description of the Karoubi envelope; for details,

see [JP17, GLR85]. Let C be a C*-category which is not necessarily semisimple. By the

unitary direct sum completion of C, we mean a category C⊕ with objects as formal unitary

(finite) direct sums of objects of C. Morphisms between formal direct sums are matrices

whose entries are morphisms between the corresponding objects. The axioms of a C*-

category guarantee this category is again C*. If C is a C*-tensor category, then C⊕ also

inherits this structure by extending the tensor product additively, and thereafter, if C is

rigid, then so is C⊕. Furthermore, any unitary tensor functor C to D canonically extends

to unitary tensor functor from C⊕ to D.

Remark 1.2.43. proj(C⊕) turns out to be a unitary Karoubi envelope of the C*-category

C.

1.2.6 Graphical Calculus

We present a way of representing morphisms of a rigid strict tensor category by planar

diagrams. Let C be a strict tensor category. We denote the identity morphism, 1X by

X and a morphism f ∈ C(X, Y ) by f

X

Y
. The convention is to read the picture from

bottom to top. The tensor unit 1 is denoted by an empty strand as in h
X
.
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The tensor product and composition of morphisms are represented by horizontal and

vertical stacking of diagrams:

f ⊗ g !
 

f ⊗ g

X ⊗ A

Y ⊗ B

=
  

f

X

Y

g

A

B

h ◦ r !
 

r ◦ h

X

Z

=
r

h
X

Z

Y ,

where f, h ∈ C(X, Y ), g ∈ C(A,B) and r ∈ C(Y, Z).

Given a morphism f ∈ C(X, Y ), one can get the picture associated to f ∗ by (i)

reflecting the picture of f , (ii) relabelling the box by f ∗ and (iii) reversing the directions

of the strings. That is,




X

Y
f




∗

=

Y

X
f ∗ .

Using these techniques one can translate any expression involving morphisms in a

strict tensor category into planar diagrams involving boxes labelled by morphisms and

strings with directions labelled by objects.

Given any planar diagram representing a morphism g which itself is an expression

involving several morphisms, then g∗ is obtained simply by reflecting the diagram, re-

labeling all the boxes with the corresponding dual morphisms and finally, reversing the

directions of the strings.

To illustrate this we will now consider the property of tensor product as a functor

stated in Equation (1.2.1). If we take f = h ∈ C(X, Y ), g = 1B, f
′ = 1X and g′ = r ∈

C(A,B), then the identity becomes

h⊗ r = (h⊗ 1B) ◦ (1X ⊗ r) (1.2.5)

Pictorially,
 

h⊗ r

X ⊗A

Y ⊗B

=

 

 

h

X

Y

r
A

B

and similarly,
 

h⊗ r

X ⊗ A

Y ⊗ B

=
 

 

h
X

Y
r

A

B

.

Thus we have,

  

h

X

Y

r

A

B

=

 

 

h

X

Y

r
A

B

=
 

 

h
X

Y
r

A

B

.

What this says is that, vertical sliding of boxes is legal while presenting morphisms

in terms of pictures.

Now, we will look at the conjugate equations (Equation (1.2.4))for an object X with

dual X̄ and solutions to conjugate equations (RX , R̄X). It is customary to represent
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RX and R̄X by

X

and

X

instead of
 

XX̄

RX and
 

X̄X

R̄X respectively. With this

convention the conjugate equations will become

 

X X
= and

X X
= . Thus conjugate

equations essentially allow us to straighten a wiggle or vice versa as and when required.

The trace defined earlier on endomorphism spaces when seen pictorially will be

TrX(f) =
 X
f =

 X
f for any f ∈ End(X).

1.2.7 2-categories

Definition 1.2.44. A 2-category C consists of :

• a class C0 called the objects or 0-cells of C

• for each α, β ∈ C0, a category C(α, β) whose objects are called 1-cells and morphisms

are called 2-cells

• for each α, β, γ ∈ C0, a functor ⊗ : C(β, γ)× C(α, β)→ C(α, γ)

• a 1-cell 1α : α→ α called the identity on α for each 0-cell α

• associativity constraint: for each triple α
X
→ β, β

Y
→ γ, γ

Z
→ δ of 1-cells, an

isomorphism (Z ⊗ Y )⊗X
αZ,Y,X

−→ Z ⊗ (Y ⊗X) in Hom(C(α, δ))

• unit constraints: for each α
X
→ β, isomorphisms 1β ⊗X

λX−→ X and X ⊗ 1α
ρX−→ X

in Hom(C(α, β))

such that αZ,Y,X, λX and ρX are natural in Z, Y,X and satisfy the pentagon and triangle

axioms (which are exactly similar to the ones in the definition of a tensor category).

A strict 2-category is the one in which the associativity and the unit constraints are

identities.

Example 1.2.45. A 2-category with only one 0-cell is simply a tensor category.

Example 1.2.46. A 2-category can be obtained by taking rings as 0-cells, for any two

0-cells A,B, 1-cells A → B as (B,A)-bimodules and 2-cells as bimodule maps. The

tensor functor is given by the obvious tensor product over a ring.

Unlike usual categories, a 2-category C has three different “opposites”:

• The 1-cell dual Cop in which 1-cells are reversed but not 2-cells.
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• The 2-cell dual Cco in which 2-cells are reversed but not 1-cells.

• The bidual Ccoop in which both 1-cells and 2-cells are reversed.

That is, Cop0 = C0 = Cco and Cop(α, β) = C(β, α) = (Cco(α, β))op as categories.

Remark 1.2.47. Notion of multi-categories do exist in the literature (see [Gho11], for

instance).

Remark 1.2.48. C(α, α) is a tensor category and C(α, β) is a (C(β, β), C(α, α))-bimodule

category for 0-cells α, β (see [Ost03, EGNO15] for definition of module category).

Definition 1.2.49. Let C, C′ be 2-categories. A weak functor F = (F, ϕ) : C → C′

consists of:

• a function F : C → C′,

• for all α, β ∈ C0, there exists a functor F α,β : C(α, β)→ C′(F (α), F (β)),

• for all α, β, γ ∈ C0, there exists a natural isomorphism ϕ : ⊗′ ◦ (F β,γ × F α,β) →

F α,γ ◦ ⊗ written simply as ϕ (where ⊗ and ⊗′ are the tensor functors of C and C′

respectively),

• for all α ∈ C0, there exists an invertible (with respect to composition) 2-cell ϕα :

1F (α) → F (1α),

satisfying commutativity of certain diagrams (consisting of 2-cells) which are analogous

to the diagrams appearing in the definition of a tensor functor.

Analogous to natural transformation two functors in the context of categories, we

have weak transformation two weak functors defined as below.

Definition 1.2.50. Let F = (F, ϕ), G = (G,ψ) : C → C′ be weak functors. A weak

transformation σ : F → G consists of:

• for all α ∈ C0, there exists a 1-cell σα ∈ Obj(C′(F (α), G(α))),

• for all α, β ∈ C0, there exists a natural transformation σα,β : (σβ ⊗′ F α,β) →

(Gα,β⊗′ σα) written simply as σ (where (σβ⊗′ F α,β), (Gα,β⊗′ σα) are defined in the

obvious way), satisfying the following:
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For all X ∈ Obj(C(β, γ)), Y ∈ Obj(C(α, β)) where α, β, γ ∈ C0, the following two

diagrams commute:

G(X)⊗′ σβ ⊗′ F (Y )

idG(X)⊗
′σY

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

σγ ⊗′ F (X)⊗′ F (Y )

σX⊗′idF (Y )

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

idσγ⊗
′ϕX,Y

��

G(X)⊗′ G(Y )⊗′ σα

ψX,Y ⊗′idσα

��
σγ ⊗′ F (X ⊗ Y ) σX⊗Y

// G(X ⊗ Y )⊗′ σα

σα

σα ⊗′ idF (α)

ρ′σα

::tttttttttttttt

idσα⊗′ϕα

��

idG(α) ⊗′ σα

λ′σα

dd❏❏❏❏❏❏❏❏❏❏❏❏❏❏

ψα⊗′idσα

��
σα ⊗′ F (1α) σ1α

// G(1α)⊗′ σα

where λ′ and ρ′ are the left and right unit constraints of C′ respectively.

When such a weak transformation exists, we say that F and G are weakly isomorphic.

Analogous to Theorem 1.2.30, we have the following coherence theorem for 2-categories

proof of which can be found in [Lei08].

Theorem 1.2.51. Every 2-category C is equivalent to some strict 2-category C′, i.e.,

there exist weak functors F : C → C′ and G : C′ → C such that idC (resp., idC′) is weakly

isomorphic to G ◦ F (resp., F ◦G).

In view of this result, we mostly deal with strict 2-categories and hence will not talk

about associativity and unit constraints.

C*-2-categories. We say that a 2-category C is C-linear if C(α, β) is a C-linear category

for all 0-cells α, β. A ∗-structure on C is a weak functor ∗ : C → C such that:

(1) it is identity on 0-cells and 1-cells,

(2) the functor ∗α,β : C(α, β) → C(α, β) is a contravariant functor for every α and β

in C0.

(3) it is an involution, i.e., ∗ ◦ ∗ = idC.
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(4) ∗ is compatible with the tensor structure, i.e., for 0-cells α, β, γ and 2-cells f ∈

Hom(C(α, β)), g ∈ Hom(C(β, γ)), (g ⊗ f)∗ = f ∗ ⊗ g∗ in Hom(C(α, γ)).

For a 2-cell X
f
→ Y , we denote ∗(f) simply by f ∗.

Definition 1.2.52. A ∗-2-category C is said to be a C*-2-category if

(i) HomC(α,β)(X, Y ) is a Banach Space for all 1-cells α
X
→ β, α

Y
→ β and 0-cells α, β;

(ii) the map

HomC(α,β)(Y, Z)× HomC(α,β)(X, Y )→ HomC(α,β)(X,Z), (f, g) 7→ f ◦ g

is bilinear and ‖fg‖ ≤ ‖f‖ ‖g‖ for all 0-cells α, β and 1-cells α
X
→ β, α

Y
→ β, α

Z
→ β;

(ii) the ∗ satisfies the following properties:

(a) ‖f ∗f‖ = ‖f‖2 for every 2-cell X
f
→ Y where α

X
→ β, α

Y
→ β are 1-cells. In

particular, EndC(α,β)(X) is a unital C*-algebra for every 1-cell α
X
→ β;

(b) for any 2-cell f ∈ HomC(α,β)(X, Y ), the element f ∗f is positive in the C*-

algebra EndC(α,β)(X);

(iii) the unit and associativity constraints are unitary.

Example 1.2.53. Any C*-tensor category is a C*-2-category C with single 0-cell.

Remark 1.2.54. In a C*-2-category C, for any fixed 0-cell α, the category C(α, α) is a

C*-tensor category.

Definition 1.2.55. A C*-2-category C is said to be semi-simple if C(α, β) is a semi-

simple category for all α, β ∈ C0 and ⊗ : C(β, γ)× C(α, β)→ C(α, γ) is distributive over

the direct sums of C(β, γ) and C(α, β) for all 0-cells α, β, γ.

Rigidity in 2-categories. Let α
X
→ β be a 1-cell in a 2-category C. By a right dual

(resp., left dual) of X we mean a 1-cell β
X#

→ α (resp., β
#X
→ α) such that there exists

2-cells X# ⊗ X
eX→ 1α and 1β

cX→ X ⊗ X# (resp., X ⊗ X# Xe→ 1α and 1β
Xc→ #X ⊗ X)

which satisfy the following equations (similar to the conjugate equations mentioned in

Equation (1.2.4)):

(1X ⊗ eX) ◦ (cX ⊗ 1X) = 1X and (eX ⊗ 1X#) ◦ (1X# ⊗ cX) = 1X#

(resp., (1X ⊗ Xe) ◦ (Xc⊗ 1#X) = 1#X and (Xe⊗ 1#X) ◦ 1X ⊗ Xc = 1X)

Where e stands for evaluation and c stands for coevaluation.
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One can show that two right (resp., left) duals are isomorphic via an isomorphism

which is compatible with the evaluation and coevaluation maps. A 2-category is said to

be right (resp., left) rigid if right (resp., left) dual exists for every 1-cell.

Further, in a rigid 2-category C, one can consider dual as an invertible weak functor

# = (#, s) : C → Ccoop in the following way:

• for each 1-cell X , we fix a triplet (X#, eX , cX) so that when X = 1α for a 0-cell α,

then X# = 1α, eX = λ1α (= ρ1α) and cX = λ−1
1α = ρ−1

1α (see [Kas95] for proof of such

a possibility);

• # induces identity map on C0;

• for each pair of 0-cells α and β, define the contravariant functor # : C(α, β) →

C(β, α) as follows:

for each X, Y ∈ Obj(C(α, β)) and 2-cell X
f
→ Y , set #(X) = X# and #(f),

denoted by f#, be given by the following composition

Y #

f#

��

ρ−1

Y # // Y # ⊗ 1α
id

Y #⊗cX// Y # ⊗X ⊗X#

id
Y #⊗f⊗id

X#

��
X# 1β ⊗X#

λ
X#

oo Y # ⊗ Y ⊗X#
eY ⊗id

X#

oo

• α, β, γ ∈ C0, the natural isomorphism s : ⊗ ◦ (flip) ◦
(
#β,γ ×#α,β

)
→ (#α,γ ◦ ⊗) is

defined by:

for X ∈ Obj(C(α, β)), Y ∈ Obj(C(β, γ)), the invertible 2-cell sX,Y is given by the

composition

X# ⊗ Y #

sX,Y

��

id
(X#⊗Y #)

⊗c(Y⊗X)
// X# ⊗ Y # ⊗ (Y ⊗X)⊗ (Y ⊗X)#

id
X#⊗eY ⊗idX⊗id

(Y ⊗X)#

��
(Y ⊗X)# (X# ⊗X)⊗ (Y ⊗X)#

eX⊗id
(Y ⊗X)#

oo

• for all α ∈ C0 the invertible 2-cell sα : 1α → 1α is given by identity morphism on

1α.

Note that the above prescription of the dual functor (#, s) carries forward almost

verbatim to another weak functor (#̃, s̃) : Ccoop → (Ccoop)coop = C. This allows us to

consider the composition (#̃, s̃) ◦ (#, s) : C → C. This is again a weak functor and we

abuse notation to denote it by (##, t) and call it the bi-dual functor.
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Definition 1.2.56. A 2-category C is said to be pivotal if C is (right) rigid and there

exists a weak transformation a : idC → ## such that aα = 1α for all α ∈ C0.

Remark 1.2.57. Suppose C is a rigid semi-simple C*-2-tensor category. Then for any

0-cell α and every 1-cell α
X
→ α, left dual of X exists and will coincide with the right

dual. Thus C(α, α) is a rigid semi-simple C*-tensor category.

Example 1.2.58. 2-category associated to an extremal subfactor. Given a ex-

tremal subfactor N ⊆ M , L2(M) is obtained by the GNS construction with respect to the

canonical tr and it can be seen as an N -M bimodule as described earlier in Section 1.1.1.

Consider the 2-category C = CN⊆M with 0-cells {N,M} and CNN := C(N,N) (resp.,

CMM := C(M,M)) be the tensor category of N -N (resp.,M-M) -bimodules appearing

as submodules of tensor powers of XX̄ (resp., X̄X). Also, let CNM := C(N,M) (resp.,

CMN := C(M,N)) be the category of N -M (resp., M-N) -bimodules appearing as sub-

modules of X(X̄X)⊗
k

(resp., (X̄X)⊗
k

X̄) for k ∈ N ∪ {0}. The tensor functor is given

by the usual relative tensor of bimodules and the tensor units in CNN (resp., CMM ) is

the canonical N -N -bimodule L2(N) (resp., M-M-bimodule L2(M)). There is a natural

associativity constraint for relative tensor product of bimodules. For the following let

A,B ∈ {N,M}. For an A-B bimodule H, the unit constraints are given by the canonical

isomorphisms L2(A)⊗
A
H

A−B
∼= H and H⊗

B
L2(B)

A−B
∼= H. Thus, C has a natural 2-category

structure.

For the (right) rigid structure on C, for each A-B-bimodule H, we set (AHB)
# =

BH̄A and define the evaluation and coevaluation maps eH ∈ BLB(H̄ ⊗
A
H, L2(B)) and

cH ∈ ALA(L2(A),H⊗
B
H̄) respectively, (on bounded vectors,) by eH(ξ̄⊗

A
η) := 〈ξ, η〉B and

cH(â) :=
∑
i

a · (ηj ⊗
B
η̄j) for all ξ, η ∈ H0, a ∈ A, b ∈ B, where {ηj}j is a basis for the right

B-module HB. Thus C inherits a canonical rigid structure.

Finally, the canonical isomorphism AHB

A−B
∼= A

¯̄HB for any such A-B-bimodule AHB,

equips C with a pivotal structure. Note that, for T ∈ ALB(H,K), it can be shown that

T#(ξ̄) = T ∗(ξ) and hence T##( ¯̄ξ) = T (ξ) for all ξ ∈ H0, where T ∗ is the usual adjoint

of the intertwiner T . Further, this usual adjoint gives a canonical C*-structure on CN⊆M

making it a rigid semi-simple C*-2-category.
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1.3 The Interconnections

1.3.1 Subfactor planar algebras and rigid 2-categories

We narrow down our focus on the particular type of 2-categories arising out of extremal

subfactors mentioned in Example 1.2.58. Abstractly, what we have is the following:

• a rigid semi-simple C*-2-category C with only two 0-cells, say {+,−},

• simple tensor units in C++ := C(+,+) and C−− := C(+,+), and

• a given generating object ρ ∈ C+− := C(+,−), i.e., C++ (resp., C−−, C+−, C−+) is

same as the full subcategory generated by subobjects of (ρρ̄)k (resp., (ρ̄ρ)k, ρ(ρ̄ρ)k,

(ρ̄ρ)kρ̄) for k ∈ N ∪ {0}.

We have seen in Section 1.1.5 that from a subfactor planar algebra one can get an

extremal subfactor of finite index and hence a 2-category (Example 1.2.58) with the

above properties. The obvious question now is whether the converse holds. We here give

a construction of a subfactor planar algebra from such a 2-category.

We just give an outline of the contruction by mentioning the underlying vector spaces

and the action of tangles. For the action of tangles, graphical calculus for 2-cells in a 2-

category will be extensively used which is very similar to the one discussed in Section 1.2.6.

For a more detailed description we refer the reader to [Gho11, Bur15].

To start with, we have a rigid semi-simple C*-2-category with two 0-cells and a 1-cell

ρ which generates whole 2-category as described above. We define a planar algebra P ρ

whose underlying vector spaces are as follows:

P ρ
ǫk :=

{
C++

(
1, (ρρ̄)k

)
, if ǫ = +

C−−

(
1, (ρ̄ρ)k

)
, if ǫ = −

In order to specify the action of any tangle T : (ε1k1, ε2k2, . . . , εnkn) → εk, we choose

a standard form T̃ of T . So T̃ is divided into horizontal stripes each of which contain

exactly one local maxima or local minima or an internal rectangle. We label each string

in the tangle by ρ.

To define P ρ
T : P ρ

ε1k1
×· · ·×P ρ

εnkn
→ P ρ

εk, we fix 2-cells xj ∈ P
ρ
εkj

for 1 ≤ j ≤ n. We label

the internal rectangle in T̃ associated to the jth internal disc in T , by xj ∈ Pεkj . Now, each

horizontal stripe makes sense as a 2-cell according to the graphical calculus already set

up. We define PT (x1, x2, . . . , xn) to be the composition of these 2-cells read from bottom

to top. This completes the definition of the planar algebra. The connectedness of P ρ
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follows from the fact that tensor units of C++ and C−− are simple. Finite dimesionality,

positivity and sphericality of P ρ are trivial to see. Thus P ρ is a subfactor planar algebra.

Before proceeding further, we exhibit the connection between semi-simple, rigid C*-

tensor categories and oriented factor planar algebras. We will just highlight the main

points of this correspondence which is a kind of a folklore in the C*-tensor category,

quantum group and subfactor communities. We setup the following definition which will

be useful throughout this thesis.

Definition 1.3.1. Let C be a rigid semi-simple C*-tensor category and X = {Xα}α be

a family of objects in C. The full subcategory of C obtained from all possible direct sums

of simple objects which appear as a sub-object of a finite tensor-fold of elements from

the family and their duals, will be referred as the full subcategory tensor-generated by

X and denoted by 〈X 〉. When this subcategory is the whole of C, we simply say X

tensor-generates C.

1.3.2 C*-tensor category associated to an oriented planar alge-

bra

Let P be a Λ-oriented factor planar algebra. We define a C*-tensor category CP as

follows:

• Objects are words w ∈ W .

• For two objects v, w, the morphism space CP (v, w) := Pwv∗ .

• For objects u, v, w and morphisms f ∈ CP (v, w), g ∈ CP (u, v), composition is given

by the action of multiplication tangle. That is, f ◦ g := PMv
w,u

(f, g).

• ∗-structure on the category is given by the ∗-structure of the planar algebra P .

• Tensor product of objects is just the concatenation of the words and for two mor-

phism f ∈ CP (u, v), f ′ ∈ CP (u′, v′), the tensor product f ⊗ g is given by the action

of the tangle

 ⋆ v

u u′

⋆ ⋆f

v′

g
.

• The unit object is given by the empty word.
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• For each word w ∈ W , a dual object is given by w∗, with evaluation and coevaluation

given by the action of tangles
 ⋆ w

and
 ⋆ w

.

While this is a C*-tensor category with duals, it does not have direct sums and

subobjects. The unitary Karaubi envelope will allow us to remedy this problem and give

us a semisimple C*-tensor category (see Section 1.2.5).

Definition 1.3.2. For a Λ-oriented factor planar algebra P , its projection category is the

rigid C*-tensor category K(CP ).

Thus starting from a Λ-oriented factor planar algebra P , we get a rigid semisimple

C*-tensor category K(CP ) as described above. Note that K(CP ) is tensor-generated by

{1λλ}λ∈Λ.

1.3.3 Oriented planar algebra associated to a C*-tensor cate-

gory

Conversely, starting from a strict, rigid, semi-simple C*-tensor category C with the

trivial object 1 being simple, and a family of objects X = {Xλ}λ∈Λ tensor-generating C,

one can define a Λ-oriented planar algebra PX (or simply P ) whose associated projection

category is equivalent to C. For this, we first fix normalized standard solutions (Rλ, Rλ)

to conjugate equations for each Xλ in the family. For λ ∈ Λ, set Xλ := Xλ, and for a

word w := (α1, . . . , αn) ∈ W = WΛ, let Xw denote the object Xα1 ⊗ · · · ⊗ Xαn . Define

Pw := C(1, Xw) for all w ∈ W . Now, for a Λ-oriented tangle T : (w1, . . . , wn) → w0, one

needs to define its action, that is, a multi-linear map PT : Pw1 × · · · × Pwn → Pw0. Let

xj ∈ Pwj
for 1 ≤ j ≤ n. In the isotopy class of T , choose a tangle diagram T̃ in standard

form, namely, (i) all discs (internal and external) are rectangles with sides parallel to

the coordinate axes in R2, (ii) all strings are smooth with finitely many local maximas or

minimas, (iii) all marked points are on the top side of every rectangle (internal or external)

where the strings end transversally, and (iv) it is possible to slice T̃ into horizontal strips

which contains exactly one local maxima or local minima or an internal rectangle. For

1 ≤ j ≤ n, we label the internal rectangle in T̃ associated to the jth internal disc in T , by

xj ∈ Pwj
= C(1, Xwj

). To each horizonatal strip of T̃ , we assign a morphism prescribed

by
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λ
u v 7−→ 1Xu ⊗Rλ ⊗ 1Xv λ

u v 7−→ 1Xu ⊗ Rλ ⊗ 1Xv

λu v
7−→ 1Xu ⊗R

∗
λ ⊗ 1Xv

λu v
7−→ 1Xu ⊗ R

∗

λ ⊗ 1Xv

u v
wj

xj 7−→ 1Xu ⊗ xj ⊗ 1Xv

Define PT (x1, . . . , xn) as the composition of the morphisms associated to each horizontal

strip. The action is indeed well defined and the planar algebra is a factor planar algebra.

Observe that we use the strictness of the tensor structure in C at every step of this

construction, starting from the definition ofXw till the action of tangles and its invariance

under isotopy. One can possibly extend this construction in the non-strict case as well

by introducing appropriate associators.

Remark 1.3.3. We summarize the above discussion. Any rigid semi-simple C*-tensor

category tensor-generated by X is equivalent to the K(CP
X

). Conversely, the projection

category of any Λ-oriented factor planar algebra P , is tensor-generated by X := {1λλ}λ∈Λ;

further, P is isomorphic to the Λ-oriented factor planar algebra PX .

Remark 1.3.4. Given any Λ-oriented factor planar algebra P , there exists a II1-factor

N and a family {Xλ}λ∈Λ of extremal, bifinite N -N -bimodules such that the Λ-oriented

planar algebra associated to this family is isomorphic to P . To see this, one considers the

projection category K(CP ) associated to P . Now by [BHP12], any rigid, semi-simple C*-

tensor category, in particular CP , is equivalent to a full subcategory of extremal, bifinite

bimodules over a II1-factor. Applying the converse above, one gets the required result.

1.4 Free Product of Categories

We will give the definition of free product of two semi-simple C*-tensor categories with

simple tensor units. This notion, due to Bisch and Jones, arises from the free composition

of finite index subfactors (see [BJ97]). It also appears in the study of free products of

compact quantum groups [Wan95]. Our approach to free products closely follows the

construction of Bisch and Jones as elaborated by [IMS16], except we do not require du-

als in our categories. To proceed with this construction, we will first define a certain

C*-category involving the two given categories, and controlled by non-crossing parti-

tions. The free product will be the resulting unitary idempotent completion described in

Section 1.2.5.
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Let C+ and C− be two semi-simple C*-categories with simple tensor units 1+ and

1− respectively. In our construction, we pick a strict model of C±. Let Σ be the set of

words with letters in Obj(C+) ∪ Obj(C−). For σ ∈ Σ, the length of σ will be denoted

by |σ|. To a word σ ∈ Σ, we associate the subword (whose letters are not necessarily

adjacent) σ+ ∈ Obj(C+) (resp., σ− ∈ Obj(C−)) consisting of all the letters in σ coming

from Obj(C+) (resp., Obj(C−)). The object obtained by tensoring the letters in σ± will be

denoted by t(σ±) with the convention t(∅) = 1± where appropriate. For instance, if σ =

a+1 a
−
2 a

+
3 a

−
4 a

−
5 , then σ+ = a+1 a

+
3 , t(σ+) = a+1 ⊗a

+
3 , σ− = a−2 a

−
4 a

−
5 and t(σ−) = a−2 ⊗a

−
4 ⊗a

−
5 .

Definition 1.4.1. Let σ, τ ∈ Σ. A ‘(σ, τ)-NCP ’ consists of:

• a non-crossing partitioning of the letters in σ and τ arranged at the bottom and on

the top edges of a rectangle respectively moving from left to right, such that each

partition block consists only of objects from C+ or only of objects C− ,

• every block gives a pair of (possible empty) subwords of σ and τ , say, (σ0, τ0), where

σ0 (resp. τ0) consists of letters in the partition coming from σ (resp. τ). For each

such block, seen as a rectangle with the bottom labeled by σ0 and the top labeled

by τ0, we choose a morphism from t(σ0) to t(τ0) in the appropriate category.

We give an example of a (σ, τ)-NCP in Figure 1.2 where σ = a+1 a
+
2 a

+
3 a

−
4 a

+
5 a

+
6 a

−
7 a

+
8

and τ = b+1 b
−
2 b

−
3 b

+
4 b

+
5 with aεi , b

ε
j ∈ Cε, ε ∈ {+,−}.

a+1 a+2 a+3 a−4 a+5 a+6 a−7 a+8

f1

f2 f3

f4

f5

b+1 b−2 b−3 b+4 b+5

Figure 1.2: (σ, τ)-NCP

Here, the pair of subwords corresponding to the partition blocks are ρ1 = (a+1 a
+
2 , b

+
1 b

+
4 ),

ρ2 = (∅, b−2 b
−
3 ), ρ3 = (a+3 a

+
8 , b

+
5 ), ρ4 = (a−4 a

−
7 , ∅), and ρ5 = (a+5 a

+
6 , ∅). Note that each letter

of ρi either belongs Obj(C+) alone or Obj(C−) alone, for every i and each of ρi is assigned

a morphism from the corresponding category. For instance, all the letters of ρ3 are objects

of C+ and is assigned the morphism f3 ∈ C+(a
+
3 ⊗ a

+
8 , b

+
5 ).
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We denote the set of such (σ, τ)-NCPs by NCP (σ, τ). Now, to every T ∈ NCP (σ, τ),

we can associate unique T± ∈ NCP (σ±, τ±) by deleting all blocks whose letters are

labeled by the opposite sign.

Since all letters in σ± and τ± come from either C+ or C− only, the non-crossing par-

titions T± give rise to unique morphisms ZT± ∈ C± (t(σ±), t(τ±)) using the standard

graphical calculus for monoidal categories.

So, for any σ, τ ∈ Σ and T ∈ NCP (σ, τ), we have morphisms ZT± ∈ C± (t(σ±), t(τ±)).

We write ZT := ZT+ ⊗ ZT− ∈ C+ (t(σ+), t(τ+)) ⊗ C− (t(σ−), t(τ−)). For example, for the

NCP T in Figure 1.2,

ZT+ = (f1 ⊗ f3) ◦ (1a+1 ⊗a+2 ⊗a+3
⊗ f5 ⊗ 1a+8 ) and ZT+ = f2 ◦ f4

We define the category NCP as follows:

• Objects in NCP are given by Σ.

• For σ, τ ∈ Σ, the morphism space is defined by

NCP(σ, τ) := span {ZT : T ∈ NCP (σ, τ)} ⊂ C+ (t(σ+), t(τ+))⊗ C− (t(σ−), t(τ−)) .

Composition of morphisms is given by composing the tensor components, which is

obviously bilinear, and associative. However, one needs to verify whether the mor-

phism spaces of NCP are closed under such composition. Let S ∈ NCP (σ, τ) and

T ∈ NCP (τ, κ). Consider the ‘composed’ rectangle obtained by gluing T on the top

of S matching along the letters of τ . The non-crossing partitions of S and T in-

duce a non-crossing partition on the composed rectangle with σ at the bottom and τ

on the top; each partition is then labeled by composing the corresponding morphisms

in S and T . We call this T ◦ S ∈ NCP (σ, κ). In this process of composing two

NCPs, we have ignored certain partitions of S (staying only on its top) and T (stay-

ing only at its bottom) which cancel each other and do not contribute towards the

non-crossing partitioning of the composed rectangle. Since the tensor units 1± are

assumed to be simple, composing the morphisms associated to these partitions sim-

ply yield a scalar. Suppose λ(T, S) denote the product of all such scalars. Then,
(
ZT+ ◦ ZS+

)
⊗
(
ZT− ◦ ZS−

)
= λ(T, S) Z(T◦S)+ ⊗ Z(T◦S)− ∈ NCP(σ, κ).

Clearly, NCP is a C-linear category. There is also a ∗-structure given by applying ∗

on each of the tensor components. To see whether the morphism spaces of NCP is closed

under ∗, we define an involution
(
NCP (σ, τ) ∋ T

∗
7−→ T ∗ ∈ NCP (τ, σ)

)
σ,τ∈Σ

where we
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reflect T about any horizontal line to obtain T ∗ with a non-crossing partitioning and their

corresponding morphisms being induced by the reflection of the initial partitioning and

∗ of the assigned morphisms in T respectively.

Indeed, Z∗
T = ZT ∗ ∈ NCP(τ, σ) for all T ∈ NCP (σ, τ). Thus, NCP is a ∗-category.

Note that by construction, NCP is equipped with a canonical faithful ∗-functor to the

Deligne tensor product C+ ⊠ C−, which sends σ to σ+ ⊠ σ− ∈ C+ ⊠ C−. Since C± are both

semi-simple, the Deligne tensor product is again a C*-category with finite dimensional

morphism spaces. But any (not necesarily full) *-subcategory of a C*-category with finite

dimensional morphism spaces is easily seen to be C* itself. Since our canonical functor

is faithful, this implies NCP is a C*-category.

For the tensor structure, define σ⊗τ as the concatenated word στ . If f =
∑
i

ai⊗bi ∈

NCP(σ, τ) ⊂ C+(σ+, τ+) ⊗ C−(σ−, τ−) and g =
∑
j

cj ⊗ dj ∈ NCP(κ, ν) ⊂ C+(κ+, ν+) ⊗

C−(κ−, ν−), then f⊗g :=
∑
i,j

(ai⊗+ cj)⊗ (bi⊗− dj) where ⊗± denote for the tensor functor

of C±. It is easy to check f ⊗ g ∈ NCP(σ⊗κ, τ ⊗ ν) and (f ⊗ g)∗ = f ∗⊗ g∗. This implies

NCP is a C*-tensor category. Note that C± sit inside NCP as full ∗-subcategories.

Definition 1.4.2. A (σ, τ)-NCP T will be called elementary if σ = (σ1, . . . , σn), τ =

(τ1, . . . , τn) for some n, and the only block partitions of T are (σi, τi) for 1 ≤ i ≤ n where

at most one of σ1, . . . , σn, τ1, . . . , τn is empty.

Remark 1.4.3. Any morphism in NCP can be expressed as a linear combination of com-

position of ZT ’s for T being elementary NCP.

Definition 1.4.4. The free product of the categories C+ and C− (as above) is defined as

the unitary idempotent completion proj(NCP) which we denote by C+ ∗ C−.

From Fact 1.2.42, it is clear that C+ ∗ C− is a C*-tensor category with simple tensor

unit containing C± as full tensor subcategories via the fully faithful unitary tensor functors

ι± : C±
γ±
−→ NCP

αNCP

−→ C+ ∗ C− .

Definition 1.4.5. Let Irr(C±) denote a choice of object from each isomorphism class of

simple objects, such that the tensor units are chosen to represent their isomorphism class.

Σ0 := {∅}∪{a
ε1
1 . . . aεkk : k ∈ N, εi ∈ {±}, a

εi
i ∈ Irr(Cεi) \ {1εi}, εi = −εi+1 for 1 ≤ i ≤ k}

With the above notations, we have the following proposition
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Proposition 1.4.6. The free product C+ ∗ C− is a strict, semi-simple C*-tensor category

with C± as full tensor subcategories (via ι±) which tensor-generate C+ ∗ C−. Moreover,

the fully faithful unitary tensor functor αNCP : NCP → C+ ∗ C− gives rise to a bijection

between Σ0 and isomorphism classes of simple objects in C+ ∗C−. Further, if C± are rigid,

then so is C+ ∗ C−.

Proof. First we show that the objects σ ∈ Σ0 form a distinct set of irreducible objects in

NCP.

Let σ ∈ Σ0 be a nonempty word, and T a (σ, σ)-NCP. If T has a block which connects

only letters on the top or only letters on bottom, then T necessarily also has a singleton

block and its associated morphism turns out to be zero (since σ ∈ Σ0 is non-empty and

the tensor units 1± are simple) which implies ZT = 0. Thus every partition in T consists

of letters in the top as well as bottom. Since the letters in σ come alternatively from C+

and C−, and the partitions are non-crossing, the partition blocks should be of the form

(abottom1 , atop1 ), (abottom2 , atop2 ), . . ., where σ = a1a2 . . . . The assigned morphisms of these

blocks are then scalars since ai’s are simple. This says that ZT has to be a scalar multiple

of 1σ. Hence, NCP(σ, σ) is one-dimensional implying σ is simple for all σ ∈ Σ0. Similar

arguments will tell us that NCP(σ, τ) is zero for two distinct σ, τ ∈ Σ0.

We now show Σ0 is complete, in the sense that any object σ ∈ NCP is isomorphic to a

direct sum of objects from Σ0. Observe that if σ1, . . . , σn ∈ Σ such that the letters in each

σi come from C+ alone or C− alone, then σ1 . . . σn is isomorphic to the word t(σ1) . . . t(σn).

Moreover, a quick sketch of non-crossing partitions shows that σ1±τ ∼= στ . It is also easy

to see that if a ∼= b1⊕ b2 in C± via decomposition isometries vi ∈ C±(bi, a) , then the word

σaτ ∼= σb1τ
⊕

σb2τ via decomposition isometries given by the (σb1τ, σaτ)-non-crossing

partitions Ti defined as follows: The underlying non-crossing partition has pairings which

connect elements vertically, and for each block ending in σ or τ , we have the identity

morphism, while the block connecting bi with a is assigned the isometry vi. Taken

together, these observations imply that any object can be decomposed as a finite direct

sum of words in Σ0.

C+ ∗ C− inherits all the above properties from NCP. In particular, since every object

σ ∈ NCP is isomorphic to a direct sum of simple objects in Σ0, this will be true for any

subobject. Hence in the projection category, every object (τ, p) is isomorphic to a direct

sum of objects of the form (σ, 1σ) for σ ∈ Σ0.

Thus to show that C+ ∗C− has direct sums, it suffices to show that for σ, τ ∈ Σ0, there

exists an object (σ, 1σ)⊕ (τ, 1τ) ∈ C+ ∗ C− satisfying direct condition.

Let αi and εj be the signs given by ai ∈ Cαi
and bj ∈ Cεj . Consider âi := ai ⊕
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1αi
implemented by the isometries ui ∈ Cαi

(ai, âi) and ei ∈ Cαi
(1αi

, âi). Similarly, pick

b̂j := bj ⊕ 1εj and implementing isometries vj ∈ Cεj(bj , b̂j) and fj ∈ Cεj (1εj , b̂j). Set





σ̂ := â1 . . . âm and σ′ := a1 . . . am1ε1 . . .1εn,

τ̂ := b̂1 . . . b̂n and τ ′ := 1α1 . . .1αmb1 . . . bn ,

γ := σ̂τ̂ .

We have already seen that σ′ ∼= σ and τ ′ ∼= τ in NCP. Consider the isometries

u := u1⊗· · ·⊗um⊗1ε1⊗· · ·⊗1εn ∈ NCP(σ
′, γ) and v := 1α1⊗· · ·⊗1αm⊗v1⊗· · ·⊗vn ∈

NCP(τ ′, γ). Note that projections uu∗ and vv∗ are mutually orthogonal in NCP (γ, γ)

(since (uiu
∗
i , eie

∗
i ) and (vjv

∗
j , fjf

∗
j ) are pairs of mutually orthogonal projections). So, we

have a projection in NCP(γ, γ), namely (uu∗+ vv∗) ∼= 1σ′ ⊕ 1τ ′ ∼= 1σ⊕ 1τ in C+ ∗ C−.

Often times, when our work is confined only to objects of the form (σ, 1σ), we will

simply do the calculations in NCP via the identification of σ ∈ Obj(NCP) and (σ, 1σ) ∈

Obj(C+ ∗ C−).

The construction of the free product given above is explicit, but was tailored to

graphical calculus considerations. There are many other possible candidates for a free

product construction. To justify calling it the free product, we need to verify that it

satisfies a universal property.

Theorem 1.4.7. Let C, C+ and C− be a strict, rigid, semi-simple C*-tensor categories

and F± : C± → C be unitary tensor functors. Then, there exists a triplet
(
F̃ , κ+ , κ−

)

where F̃ : C+ ∗ C− → C is a unitary tensor functor and κ± : F± → F̃ ◦ ι± are unitary

monoidal natural isomorphisms. Moreover,
(
F̃ , κ+ , κ−

)
is unique up to a unique

unitary monoidal natural isomorphism compatible with κ±.

Proof. We will first construct a unitary tensor functor G : NCP → C such that F± =

G ◦ γ±. Suppose such a G exists. Since C is a semi-simple, strict C*-tensor category,

by Fact 1.2.42(1) and (2), αC : C → proj(C) is a monoidal C*-equivalence. Choose

β : proj(C)→ C such that αC◦β and β◦αC are monoidally equivalent to the corresponding

identity functors via natural unitaries. In particular, let λ : idC → β ◦ αC be natural

monoidal unitary. Then, κ± := λF±
: F± → β ◦αC ◦Fε is also a natural monoidal unitary.

Define F̃ := β◦proj(G) : C+∗C− → C which is a unitary tensor functor by Fact 1.2.42(3).

For ε = ±, the restriction of F̃ to Cε is given by

F̃ ◦ ιε = β ◦ proj(G) ◦ αNCP ◦ γε = β ◦ αC ◦G ◦ γε = β ◦ αC ◦ Fε
κε←− Fε

where the second last equality comes from Fact 1.2.42(3).
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We will now construct G. While applying the functor F± on an object or a morphism,

we will often drop the sign in the suffix and simply write F ; the sign can be read off from

the category C± in which the object or the morphism belongs. For σ = X1 . . . Xm ∈

Obj(NCP), define

Gσ := FX1 ⊗ · · · ⊗ FXm ∈ Obj(C), and

Fσ := the word F (X1) . . . F (Xm) .

To define G at the level of morphisms, consider σ, τ ∈ Obj(NCP) and a (σ, τ)-NCP

T . For ε = ±, suppose Jε : ⊗ ◦ (Fε × Fε) → Fε ◦ ⊗ (resp., ηε : Fε1ε → 1) is a natural

unitary (resp., unitary) which implements the tensor- (resp., unit-) preserving property

of Fε. Again, applying F on the morphisms assigned to the partition blocks of T and

composing with appropriate Jε’s and ηε’s, we get a (Fσ, Fτ)-NCP which we denote by

FT . Note that the letters of Fσ and Fτ , and the morphisms assigned to the partition

blocks of FT all belong to the strict tensor category C. Using graphical calculus of

morphisms in C, the NCP FT yield a unique morphism ZC
FT ∈ C(Gσ,Gτ). The obvious

choice of G would be

NCP(σ, τ) ∈ ZT = ZT+ ⊗ ZT−
G
7−→ ZC

FT ∈ C(Gσ,Gτ)

and extending it linearly.

We need to show that G is well-defined at the level of morphisms. Consider two

objects σ = X1 . . . Xm and τ in NCP and two (σ, τ)-NCPs S and T . For 1 ≤ i ≤ m,

choose a dual Xi of Xi, and a normalized standard solution (Ri, Ri) to the conjugate

equation for the duality of (Xi, X i). Generate the positive, faithful ‘left’ trace trt(σ±) on

the endomorphism space C± (t(σ±), t(σ±)) using the Ri’s. We then have the following

inner product on the space NCP(σ, τ):

〈ZS, ZT 〉 := trt(σ+) ⊗ trt(σ−) (ZT ∗◦S) = trt(σ+)

(
Z(T ∗◦S)+

)
trt(σ−)

(
Z(T ∗◦S)−

)
.

Suppose Xi lies in Cεi for 1 ≤ i ≤ m. Define R′
i :=

(
Jεi
Xi,Xi

)∗

◦ F (Ri) ◦ η∗εi and R
′

i :=(
Jεi
Xi,Xi

)∗

◦F (Ri)◦η∗εi. One can easily check (using the equations satisfied by Jε and ηε in

making Fε a monoidal functor) that (R′
i, R

′

i) is a solution to the conjugate equation (possi-

bly not standard) for the duality of (FXi, FXi). Using these solutions in an obvious way,

we generate the solution (R′, R
′
) to the conjugate equation for

(
Gσ, FXm ⊗ · · · ⊗ FX1

)
;

for instance, R′ :=
(
1
FXm⊗···⊗FX2

⊗ R′
1 ⊗ 1FX2⊗···⊗FXm

)
· · ·

(
1FXm

⊗ R′
m−1 ⊗ 1FXm

)
R′
m.

Consider the positive, faithful (possibly not tracial) functional

ϕGσ := R′∗
(
1FXm⊗···⊗FX1

⊗ •
)
R′
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on the endomorphism space C(Gσ,Gσ). A careful observation and some straight-forward

calculations will tell us

〈ZS, ZT 〉 = ϕGσ
(
ZC
FT ∗◦FS

)
= ϕGσ

((
ZC
FT

)∗
◦ ZC

FS

)
= ϕGσ ((G(ZT ))

∗ ◦G(ZS))

where the first equality can be derived by crucially using the fact that any NCP T ′ can

be expressed as a non-crossing overlay of T ′
+ and T ′

−. Thus, G : NCP(σ, τ)→ C(Gσ,Gτ)

is well-defined and injective as well.

The remaining properties for G being a unitary tensor functor is routine to verify, and

so is the condition F± = G ◦ γ±.

We are now left to establish the uniqueness part. Let
(
H i, κi+, κ

i
−

)
for i = 1, 2 be

two triplets satisfying the conditions in the statement of this theorem. We need to find

a unitary natural monoidal isomorphism µ : H1 → H2 such that µιε ◦ κ
1
ε = κ2ε for ε = ±,

and show that such a µ is unique.

The compatibility condition forces us to set

µιε(X) := κ2ε,X
(
κ1ε,X

)∗
∈ C

(
H1(ιε(X)) , H2(ιε(X))

)
for X ∈ Obj(Cε).

Next, we intend to define µ one level higher, namely, for objects in NCP. Consider

σ = (X1, . . . , Xm) ∈ Obj(NCP) for Xj ∈ Obj(Cεj). For this we set up the following

convention which will come handy in the rest of the proof.

Notation: Let A : D → E be a tensor functor between strict tensor categories where

J : ⊗◦(A×A)→ A◦⊗ is the natural transformation implementing the tensor preserving

property of A. For a nonempty word σ = X1 . . . Xm with letters in Obj(D), using the

J•,•’s iteratively, we may obtain a morphism in E

Jσ : A(X1)⊗ · · · ⊗ A(Xm) −→ A(X1 ⊗ · · · ⊗Xm)

which is independent of any iterative algorithm by the commuting hexagonal diagram (in

fact, a square due to strictness of D and E) satisfied by J•,•. If σ has length one, then

set Jσ := 1A(X1). Note that Jσ is natural in the letters of σ. For σ = σ1 . . . σn (where

σj ’s are nonempty subwords of σ), we have the formula:

Jσ = Jt(σ1) ... t(σn) (Jσ1 ⊗ · · · ⊗ Jσn) (1.4.1)

where t(·) continues to denote tensoring the letters from left to right.

For ε = ±, i = 1, 2, let Jε•,• and J i•,• denote the natural unitaries implementing

the tensor preserving property of Fε and H i respectively. As objects in NCP , we have
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σ = γε1(X1)⊗· · ·⊗γεm(Xm). On both sides, applying αNCP : NCP → C+ ∗C− (which we

denote simply by α for notational convenience), we get α(σ) = ιε1(X1) ⊗ · · · ⊗ ιεm(Xm)

since α is trivially monoidal. Since we are looking for a monoidal µ : H1 → H2, the only

potential candidate must be defined as:

µα(σ) := J2
ιε1 (X1) ... ιεm (Xm)

(
µιε1 (X1) ⊗ · · · ⊗ µιεm (Xm)

) (
J1
ιε1(X1) ... ιεm (Xm)

)∗

∈ C
(
H1(α(σ)), H2(α(σ))

)

for σ ∈ Obj(NCP). Clearly, if length of σ is 1, µα(σ) matches with the one defined before,

that is, µαγε(•) = µιε(•).

It is clear (using Equation (1.4.1)) from the definition that µα : H1 ◦ α→ H2 ◦ α is a

monoidal unitary but we still need to check naturality of µα, that is, for T ∈ NCP (σ, τ),

we need to prove µα(τ) ◦H
1(α(ZT )) = H2(α(ZT )) ◦ µα(σ). By Remark 1.4.3, it is enough

to obtain µα(τ) ◦H
1(α(ZT )) = H2(α(ZT )) ◦ µα(σ) for elementary T ∈ NCP (σ, τ).

Let T be as in Definition 1.4.2 where the block partition (σj , τj) is labelled by fj ∈

Cεj (t(σj), t(τj)) for 1 ≤ j ≤ n. Let Tj denote the (σj , τj)-NCP with a single block partition

labeled with fj . Then, ZT = ZT1 ⊗ · · · ⊗ ZTn implying α(ZT ) = α(ZT1) ⊗ · · · ⊗ α(ZTn).

Suppose σj = (Xj
1 , . . . , X

j
kj
) and τj = (Y j

1 , . . . , Y
j
lj
) for 1 ≤ j ≤ n; here we are assuming

that all σj ’s and τj’s are nonempty. Thus,

H1(α(ZT )) = J1
α(τ1) ... α(τn)

[
H1(α(ZT1))⊗ · · · ⊗H

1(α(ZTn))
] (
J1
α(σ1) ... α(σn)

)∗
.

Using Equation (1.4.1), µα(τ) ◦H
1α(ZT ) can be expressed as

J2
ιε1 (Y

1
1 ) ... ιεn (Y

n
ln

)




n⊗

j=1

(
µ
ιεj (Y

j
1 ) ⊗ · · · ⊗ µιεj (Y

j
lj
)

)(
J1
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗

H1(α(ZTj))




(
J1
α(σ1) ... α(σn)

)∗
.

(1.4.2)

Now, ZTj =

(
J
γεj

Y
j
1 ... Y

j
lj

)∗

γεj(fj) J
γεj

X
j
1 ... X

j
kj

. Thus, the j-th tensor component (under-

lined) in the middle of the expression 1.4.2 becomes
(
κ2
εj ,Y

j
1
⊗ · · · ⊗ κ2

εj ,Y
j
lj

)(
κ1
εj ,Y

j
1
⊗ · · · ⊗ κ1

εj ,Y
j
lj

)∗ (
J1
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗ [
H1α

(
J
γεj

Y
j
1 ... Y

j
lj

)]∗

H1
(
ιεj(fj)

)
H1α

(
J
γεj

X
j
1 ... X

j
kj

)

(1.4.3)

From the monoidal property of κiε : Fε → H i ◦ ιε, we get another formula

H iα
(
JγεZ1 ... Zn

)
J iιε(Z1) ... ιε(Zn)

(
κiε,Z1

⊗ · · · ⊗ κiε,Zn

)
= κiε,Z1⊗···⊗Zn

JεZ1 ... Zn
. (1.4.4)
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Applying Formula 1.4.4 twice (namely, for i = 1, 2) on the expression 1.4.3, we get
(
J2
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗ [
H2α

(
J
γεj

Y
j
1 ... Y

j
lj

)]∗ (
κ2εj ,t(τj)

)(
κ1εj ,t(τj)

)∗

H1
(
ιεj (fj)

)

H1α

(
J
γεj

X
j
1 ... X

j
kj

)

=

(
J2
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗ [
H2α

(
J
γεj

Y
j
1 ... Y

j
lj

)]∗
H2

(
ιεj (fj)

) (
κ2εj ,t(σj)

)(
κ1εj ,t(σj )

)∗

H1α

(
J
γεj

X
j
1 ... X

j
kj

)

where the last equality follows from naturality of κiεj . Again applying Formula 1.4.4 twice

and the equation µιε(Z) = κ2ε,Z
(
κ1ε,Z

)∗
, the last expression becomes

(
J2
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗ [
H2α

(
J
γεj

Y
j
1 ... Y

j
lj

)]∗
H2

(
ιεj (fj)

)
H2α

(
J
γεj

X
j
1 ... X

j
kj

)
J2
ιεj (X

j
1) ... ιεj (X

j
kj

)

(
µ
ιεj (X

j
1)
⊗ · · · ⊗ µ

ιεj (X
j
kj

)

)(
J1
ιεj (X

j
1) ... ιεj (X

j
kj

)

)∗

which turns out to be
(
J2
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗

H2α
(
ZTj

)
µα(σj) . (1.4.5)

Replacing the underlined part in expression 1.4.2 by 1.4.5, we get

J2
ιε1 (Y

1
1 ) ... ιεn (Y

n
ln

)

[
n⊗

j=1

(
J2
ιεj (Y

j
1 ) ... ιεj (Y

j
lj
)

)∗

H2α
(
ZTj

)
µα(σj )

]
(
J1
α(σ1) ... α(σn)

)∗

= J2
α(τ1) ... α(τn)

[
n⊗

j=1

H2α
(
ZTj

)
µα(σj )

]
(
J1
α(σ1) ... α(σn)

)∗
(using Formula 1.4.1)

= J2
α(τ1) ... α(τn)

[
n⊗

j=1

H2α
(
ZTj

)
] [

n⊗

j=1

µα(σj )

]
(
J1
α(σ1) ... α(σn)

)∗

= J2
α(τ1) ... α(τn)

[
n⊗

j=1

H2α
(
ZTj

)
]

(
J2
α(σ1) ... α(σn)

)∗
µα(σ) (since µα is monoidal)

= H2α (ZT1 ⊗ · · · ⊗ ZTn) µα(σ) = H2α (ZT ) µα(σ) .

Finally, we have obtained a unitary natural monoidal isomorphism µα : H1α→ H2α

such that µαγε κ
1
ε = κ2ε. For defining µ in the general form, consider (σ, p) ∈ Obj(NCP)

for σ ∈ Obj(NCP) and projection p ∈ NCP(σ, σ). Here also, there is only one choice

(by naturality), namely

µ(σ,p) := H2(p) µσ H
1(p) ∈ C

(
H1(σ, p)), H2(σ, p)

)
.
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Since α is trivially monoidal, it almost comes for free that µ is a unitary natural monoidal

isomorphism compatible with κiε for i = 1, 2, ε = ±. Note that in our construction of µ,

there is a unique choice at each stage. Hence, µ has to be unique.

1.5 Annular Representations

Let C be a rigid C*-tensor category C and Irr(C) denote a set of representatives of isomor-

phism classes of simple objects in C. We assume that 1 ∈ Irr(C) is chosen to represent its

isomorphism class. For each object, choose a dual object along with a standard solution

to the conjugate equations in such a way that ¯̄a = a for every object a. Such a choice is

always possible by a result of Yamagami ([Yam04]).

Definition 1.5.1. Let Λ be any subset of the set representatives of isomorphism classes

of all objects in C. Then the annular algebra with weight set Λ is defined as a vector

space

AΛ :=
⊕

b,c∈Λ,a∈Irr(C)

C(a⊗ b, c⊗ a)

.

An element f ∈ AΛ is given by a sequence fab,c ∈ C(a⊗b, c⊗a) with only finitely many

terms non-zero. For a simple object a ∈ C and an arbitrary object b ∈ C, we naturally

have an inner product on C(a, b) given by g∗f = 〈f, g〉1a. This inner product differs by

the tracial inner product by a factor of d(a).

For f ∈ C(a1 ⊗ b1, b2 ⊗ a1) and g ∈ C(a2 ⊗ b3, b4 ⊗ a2), multiplication in AΛ is given

by

f · g := δb1=b4
∑

c∈Λ

∑

u∈onb(C(c,a1⊗a2))

(1b2 ⊗ u
∗)(f ⊗ 1b2)(1a1 ⊗ g)(u⊗ 1b3)

where onb denotes an orthonormal basis with respect to the inner product defined above

and we may have onb(c, a1⊗a2) = ∅, if c is not equivalent to any sub-object of a1⊗a2. This

multiplication is associative and is independent of choice of representatives of isomorphism

classes of simple objects and choice of onb in consideration.

AΛ has a ∗-structure, which we denote by #, defined by

f# := (R∗
a ⊗ 1b1 ⊗ 1ā)(1ā ⊗ f

∗ ⊗ 1ā)(1ā ⊗ 1b2 ⊗ R̄a) ∈ C(ā⊗ b2, b1 ⊗ ā)

for f ∈ C(a⊗ b1, b2⊗ a), where Ra and R̄a are solutions to the conjugate equations for a.

The associative ∗-algebra AΛ is unital if and only if Irr(C) < ∞. This algebra has a

canonical trace defined by Ω(f) := δb=c δa=1 tr(f) for all f ∈ C(a ⊗ b, c ⊗ a), where tr
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is the unnormalized categorical trace on C(b, b), tr(f) := R∗
b(1b ⊗ f)Rb = R

∗

b(f ⊗ 1b)R̄b.

Further, we have a normalized trace ω(f) := 1
d(b)

Ω(f) for any such f .

We denote the subspaces

AΛab,c := C(a⊗ b, c⊗ a) ⊂ AΛ and AΛb,c :=
⊕

a∈Irr(C)

AΛab,c ⊆ AΛ

The associative ∗-algebra AΛb,b is called the weight b centralizer algebra. We call

AΛ
1,1 the weight 0 centralizer algebra, primarily for historical reasons in connection

with planar algebras. It turns out that the fusion algebra of C, Fus(C), is ∗-isomorphic

to AΛ
1,1 (See [GJ16, Proposition 3.1]). For each b ∈ Λ, if we denote the projection

pb := 1b ∈ C(1⊗ b, b⊗ 1), then AΛb1,b2 = pb2AΛpb1.

The annular category with weight set Λ is the category with objects space as Λ

and the morphism space from b to c as AΛb,c. Composition is given by the multiplication

defined above. Both the algebra as well as category are often denoted by AΛ. Since both

of these essentially contain the same information, they are used interchangeably.

The tube algebra, AC is (by a slight abuse of notation) the annular algebra with

weight set Irr(C). This algebra was first introduced by Ocneanu ([Ocn94]). A weight set

Λ ⊆ is said to be full if every simple object is equivalent to subobject of some b ∈ Λ. We

have the following from [GJ16], which says that any annular algebra with full weight set

is strongly Morita equivalent to the tube algebra.

Proposition 1.5.2. If Λ is full, then F (I)⊗AC ∼= F (I)⊗AΛ as ∗-algebras, where F (I)

denotes the ∗-algebra spanned by the system of matrix units {Eij ∈ L(l2(I)) : i, j ∈ I}

for any countable set I.

Before we proceed further, we shall see how the graphical calculus for tensor categories

extends to the context of annular algebras. For f ∈ AΛab,c, we denote it by

a

c

b

a

f . Thus,

f# ∈ AΛāc,b will look like
 

ā

c

b

ā

f ∗ . For f ∈ C(a1⊗b1, b2⊗a1), g ∈ C(a2⊗b2, b3⊗a2), a ∈

Irr(C), the ath component of the product, (f · g)a, is given pictorially by:
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a1

b2

b1

a1

a

a2

a

a2

b4

f

g

uα

u∗α

where uα ∈ onb (C(a, (a2 ⊗ a1))).

Definition 1.5.3. A non-degenerate representation of annular algebra AΛ is a ∗-

homomorphism π : AΛ → L(H) for some Hilbert space H with the property that

π(AΛ)ξ = 0 for ξ ∈ H implies ξ = 0. We denote the category of non-degenerate

repre-sentations with bounded intertwiners Rep(AΛ).

Note that Rep(AΛ) is a W*-category. By Proposition 1.5.2, it turns out that whenever

Λ is full, we have Rep(AΛ) ∼= Rep(A) as W*-categories ([GJ16, Theorem 4.2]), and thus

it makes sense to talk about the category of annular representations, which can be realized

as the representation category of any annular algebra with full weight set. We shall see

in Section 2.1 that the weight set can further be reduced in some cases without affecting

the resulting category of annular representations.

Definition 1.5.4. For b ∈ Λ, a linear functional ϕ : AΛb,b → C is called a weight b

annular state if

(i) ϕ(pb) = 1,

(ii) ϕ(f# · f) ≥ 0 for every f ∈ AΛb,c and c ∈ Λ.

The collection of all weight b annular states is denoted by ΦΛb (or simply by Φb if we are

dealing with the tube algebra).

The only difficulty in this context to have a generalization of the GNS construction

is that AΛ does not have a natural norm. Thus the boundedness of the action cannot be

asserted by positivity as in the realm of C*-algebras. Nevertheless, we have the following

lemma from [GJ16].
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Lemma 1.5.5. Let g ∈ AΛac,d for a ∈ Irr(C). Then ϕ(f#·g#·g·f) ≤ d(a)2ω(g·g#)ϕ(f#·f)

for all ϕ ∈ ΦΛb and f ∈ AΛb,c.

If ϕ ∈ ΦΛb, we define a sesquilinear form on Ĥϕ :=
⊕
c∈Λ

AΛb,c by 〈f, g〉ϕ := ϕ(g# · f).

This is a positive definite form and the vector space has a natural left action of AΛ given

by multiplication. Quotienting with the kernel of the form, we get a Hilbert space which

we denote by Hϕ and the action is denoted by πϕ. By virtue of Lemma 1.5.5, πϕ acts in a

bounded fashion and hence extending linearly we get πϕ : AΛ→ L(H), a non-degenerate

∗-representation of AΛ. Thus we have the following.

Corollary 1.5.6. A linear functional ϕ : AΛb,b → C is in ΦΛb if and only if there exists

a non-degenerate ∗-representation (π,H) of AΛ and a unit vector ξ in π(pb)H, such that

ϕ(f) = 〈π(f)ξ, ξ〉. Furthermore, the sub-representation Hξ := [π(AΛ)ξ] ⊆ H is unitarily

equivalent to the representation Hϕ described above.

Since an arbitrary element in the tube algebra will have its norm bounded by the

constant in Lemma 1.5.5 in any representation, we can take arbitrary direct sums of

representations. This allows us to define a universal representation, and a corresponding

universal C*-algebra.

Definition 1.5.7. (1) The universal representation of the annular algebra AΛ is

given by (πu,Hu) :=
⊕

b∈Λ,ϕ∈ΦΛb

(πϕ,Hϕ).

(2) The universal norm on AΛ is given by ‖x‖u := ‖πu(x)‖.

(3) The universal C*-algebra is the completion C∗u(AΛ) := πu(AΛ)
‖‖u .

Remark 1.5.8. Non-degenerate ∗-representations of AΛ are in 1-1 correspondence with

non-degenerate, bounded ∗-representations of C∗
u(AΛ) and finiteness of the universal

norm follows from Lemma 1.5.5. Moreover, we have Rep(AΛ) ∼= Rep(C∗
u(AΛ))

Thus one way to access the category Rep(AΛ) is to understand the representation

theory of C∗
u(AΛ). In this direction, we have the following corollary ([GJ16, Corollary

4.8]) proof of which is an application of GNS type construction described earlier.

Corollary 1.5.9. For b ∈ Λ and (πb,Hb) a non-degenerate ∗-representation of AΛb,b, the

following are equivalent:

(i) Every vector state in (πb,Hb) is a weight b annular state.

(ii) ‖πb(f)‖ ≤ ‖f‖u for all f ∈ AΛb,b.
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(iii) (πb,Hb) extends to a representation of the unital C*-algebra pbC
∗
u(AΛ)pb.

(iv) There exists a representation (π,H) of AΛ whose restriction (π,H)|AΛb,b
to AΛb,b

is unitarily equivalent to (πb,Hb).

Definition 1.5.10. A representation satisfying the equivalent conditions of the previous

corollary is called a weight b admissible representation.

Admissible representations can be seen simply as representations of the centralizer

algebras which are restrictions of representations of the whole tube algebra. Alterna-

tively, they are representations of the corner algebras which induce representations of the

whole tube algebra. Further, by virtue of Corollary 1.5.6, they are in 1-1 correspondence

with annular states. Understanding admissible representations for all weights allows us

to understand representations of the whole tube algebra. Since the norm in weight b

admissible representations is bounded by the universal norm for AΛb,b one can construct

a universal C*-algebra completion C∗
u(AΛb,b). From the above corollary, it is clear that

C∗
u(AΛb,b)

∼= pbC
∗
u(AΛ)pb.

At this point its useful to make note of two canonical examples of a non-degenerate

∗-representation of AΛ that always exists for all categories.

Definition 1.5.11.

(i) The left regular representation of AΛ has Hilbert space L2(AΛ, ω) and action

of πω is given by the left multiplication. Boundedness of the action follows from

the fact that (i) ω|AΛb,b
is an annular weight b state, hence every vector state in

πω(pb) (L
2(AΛ, ω)) is in ΦΛb, and (ii) Lemma 1.5.5.

(ii) The one dimensional representation of AΛ
1,1 defined by the character 1C(a) = d(a)

for all a ∈ Irr(C), is a weight 1 annular state (see [GJ16, Theorem 6.6]). If (π1C ,H1C)

is the representation of AΛ given by this state, then π1C(a) = 0 whenever a 6= 1

and hence all “higher weight” spaces are 0, so that 1C is a character on AΛ. The

trivial representation of AΛ is the one dimensional representation 1C of AΛ.

The trivial representation will play a similar role in our representation theory to the

trivial representation in the theory of groups. It can be used to define approximation and

rigity properties for rigid C*-tensor categories, which we will a bit later.

Remark 1.5.12. We already know that AΛ
1,1
∼= Fus(C) = C [Irr(C)] for any weight set Λ.

Moreover, it is true that if ϕ : Irr(C) → C, then for any full Λ, ϕ ∈ ΦΛ
1

if and only if

ϕ ∈ Φ
1

. See [GJ16, Lemma 6.1] for a proof.
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We have notion of multipliers on rigid C*-tensor categories defined by [PV15] as

below.

Definition 1.5.13. A multiplier on a rigid C*-tensor category C is a family of linear

maps Θα,β : End(α⊗ β)→ End(α⊗ β) for all α, β ∈ Obj(C) such that

(i) Each Θα,β is End(α)⊗ End(β)-bimodular, and

(ii) Θα1⊗α2,β1⊗β2(1⊗ f ⊗ 1) = 1⊗ Θα2,β1(f)⊗ 1 for all αi, βi ∈ C, f ∈ End(α2 ⊗ β1).

A multiplier is a cp-multiplier if each Θα,β is completely positive.

In [PV15, Proposition 3.6] it was shown that multipliers are in one-one correspondence

with functions ϕ : Irr(C)→ C. Moreover, any such ϕ gives a multiplier Θϕ
α,β as follows:

For f ∈ End(α⊗ β),

Θϕ
α,β =

∑

a∈Irr(C)

ϕ(a)

 

paαᾱ f

α

α

α β

βα

=
∑

a∈Irr(C)

ϕ(a)

 

f pa
β̄β

β

β

α β

βα

where paαᾱ :=
∑

u∈onb(C(αᾱ,a))

u∗u, a central projection in End(α⊗ ᾱ).

Popa and Vaes show that every multiplier is of this form and that if ϕ : Irr(C) → C

is a cp-multiplier, then d(·)ϕ(·) : C [Irr(C)] → C is a state on the fusion algebra. By

a slight abuse of notation, in [GJ16], they call a function ϕ is a cp-multiplier if Θϕ is

a cp-multiplier. With this setup, Popa-Vaes’ ([PV15]) definition of admissibility is as

below.

Definition 1.5.14.

(1) A function ϕ : Irr(C) → C is called an admissible state if ϕ(·)d(·) is a cp-

multiplier.

(2) A (non-degenerate) ∗-representation π of AΛ
1,1 = C [Irr(C)] is called admissible

if every vector state in the representation is admissible.

(3) Define ‖·‖u := sup
admissible π

‖·‖πu.

Remark 1.5.15. C∗
u(C) is defined as the completion of AΛ

1,1 = C [Irr(C)] with respect to

this universal norm. It is shown in [PV15] that this is finite and a C*-norm.

Then we have the following result from [GJ16] which links both the notions of admis-

sibility.
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Theorem 1.5.16. (i) ϕ is a weight 1 annular state if and only if ϕ is admissible in

the sense of Definition 1.5.14.

(ii) (π,H) be a ∗-representation of the fusion algebra C [Irr(C)]. Then the following are

equivalent:

(a) (π,H) is admissible in the sense of Definition 1.5.4, namely, there exists a non-

degenerate ∗-representation of A which restricted to A
1,1 is unitarily equivalent

to (π,H).

(b) (π,H) is admissible in the sense of Popa and Vaes, Definition 1.5.14.

(iii) C∗
u(C)

∼= C∗
u(A1,1) ∼= C∗

u(AΛ1,1) for any full Λ.

This allows import of Popa-Vaes’ ([PV15]) definitions of approximation and rigidity

properties into the world of annular representations.

Definition 1.5.17 ([PV15]). A rigid C*-tensor category (with Irr(C) countable) is said

(i) to be amenable if there exists a sequence of finitely supported weight 1 annular

states ϕn that converges to 1C pointwise on Irr(C).

(ii) to have property (T) if for every sequence of annular states ϕn which converges

pointwise to 1C, the sequence of functions ϕ(·)d(·) converges uniformly to 1 on

Irr(C).

(iii) to have the Haagerup property if there exists a sequence of annular states ϕn

each of which vanish at ∞ (for every ε, there exists a finite subset K ⊆ Irr(C) such

that
∣∣∣ϕ(a)d(a)

∣∣∣ < ε for all a ∈ Kc), which converge to 1C pointwise.

It is shown in [PV15] that these definitions are equivalent to the usual ones given

in terms of symmetric enveloping algebras in the case where C is the even part of some

subfactor standard invariant. Popa and Vaes also give several very interesting examples

of categories with each of these approximation properties.
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Chapter 2

Annular Representations of Free

Product Categories

2.1 Annular Algebra of Free Product of Categories

We will characterize the annular algebra of C ∗ D where C and D are rigid, semi-simple

C*-tensor categories with simple unit objects. We note that while providing definitions of

the free product C± was more convenient to distinguish the two categories, while in this

section, using C and D seems better. By [GJ16], the annular representation category can

be obtained from representations of any annular algebra with respect to any full weight

set in Obj(C ∗ D) (in particular, a set of representatives of the isomorphism classes of

simple objects).

However, in our case, we can actually work with a smaller, non-full weight set, and

still capture the entire category. To describe this weight set, let IC (respectively ID) be

a set of representatives of the isomorphism classes of simple objects in C (respectively

D) excluding the isomorphism class of the unit object. Recall that the set of words

(including the empty one) with letters coming alternatively from IC and ID is in bijective

correspondence with the set of isomorphism classes of simple objects Irr(C ∗ D), where

the empty word corresponds to the tensor unit in C ∗D. We define W to be the subset of

these words with strictly positive and even length, such that the first letter comes from

IC. We will say a positive length word is a C-D word if it starts with a letter of C and

ends with a letter of D, and extend this terminology in the obvious way. We define the

weight set Λ := {∅} ∪ IC ∪ ID ∪W, which we note is not full. Indeed, the alternating

words of odd length and the alternating words of even length starting with a letter from

ID do not appear in Λ. Nevertheless, we have the following result:
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Lemma 2.1.1. Rep(AΛ) and the representation category of the tube algebra A of C ∗D,

are unitarily equivalent as linear ∗-categories.

Proof. Clearly, the restriction functor Res : Rep(A) −→ Rep(AΛ) is a linear ∗-functor.

We begin by showing that Res is essentially surjective.

Given a representation (π, V ) of AΛ and w ∈ Irr(C ∗D), we consider the vector space
⊕
v∈Λ

{Av,w
⊗

Vv}. We define a sesquilinear form 〈·, ·〉 on this vector space by 〈y1⊗ ξ1, y2⊗

ξ2〉w := 〈π(y#2 · y1)ξ1, ξ2〉v2 , where yi ∈ Avi,w and ξi ∈ Vvi .

We first want to show that 〈x, x〉w ≥ 0 for any vector x =
n∑
i=1

yi ⊗ ξi. But we have

〈x, x〉w = 〈Tξ, ξ〉, where T =
(
π(y#i · yj)

)
i,j

:
n⊕
i=1

Vvi →
n⊕
i=1

Vvi , and ξ = (ξi)i ∈
n⊕
i=1

Vvi .

If w ∈ Λ, then T is clearly a positive operator and hence we have non-negativity

of 〈x, x〉w. Suppose now that w has even length and its first letter is in ID, say w =

d1c1d2c2 . . . dkck. Consider the word w′ = c1d2c2 . . . dkckd1 ∈ Λ. Let ρ ∈ Aw′,w be the

canonical rotation unitary. Then, for any y ∈ Av,w, there is a unique y′ ∈ Av,w′ such that

y = ρ · y′. Thus we have

T =
(
π(y#i · yj)

)
i,j

=
(
π
(
(ρ · y′i)

# · (ρ · y′j)
))
i,j

=
(
π(y′#i · y

′
j)
)
i,j
,

hence positivity follows from the previous case. Defining Λ to be the union of Λ and

the set of words of even length (regardless of starting character), we have just shown

positivity for weights in Λ.

Now suppose w has odd length; say w = a−k . . . a−1a0a1 . . . ak. Note that the a2l’s

are either all in IC or all in ID, and similarly for the odd letters. Now define the word

w′ = a0a1 . . . aka−k . . . a−1. This word no longer represents an isomorphism class of simple

object, however the object it represents is isomorphic to a direct sum of simple objects,

all of which have even length, i.e., w′ ∼= ⊕sus, where us ∈ Λ. Let ps ∈ (C ∗ D) (us, w′) be

isometries such that
∑
s

psp
∗
s = 1w′ (which automatically implies p∗spt = δs,t 1us).

Let AObj denote the annular algebra whose weight set consists of all isomorphism

classes of objects in C ∗ D, and pick any rotation ρ ∈ AObjw′,w (which is automatically

unitary). Then any element yi ∈ Avi,w can be written yi =
∑
s

ρ · ps · y′s,i, where y
′
s,i :=

p∗s · ρ
# · yi ∈ Avi,us. Observe that

T =
(
π(y#i · yj)

)
i,j

=


π



[
∑

s

ρ · ps · y
′
s,i

]#

·

[
∑

t

ρ · pt · y
′
t,j

]



i,j

=
∑

t

(
π
(
[y′t,i]

# · y′t,j
))
i,j

68



which is positive as all ut’s are in Λ and hence our argument is complete.

Now that we have shown 〈x, x〉w ≥ 0, we can define Ind(V )w as the Hilbert space

obtained by the completion of the quotient of our vector space over the null space of

the inner product. Before quotienting and completing, our vector space has the obvious

action of A. Our above argument shows that 〈π(·)x, x〉w is a positive annular functional.

Thus by [GJ16, Lemma 4.4], we have a well-defined, bounded, ∗-action of the tube algebra

A on Ind(V ). It is now easy to verify that Res ◦ Ind(V ) ∼= V via the interwiner defined

by sending
∑

i yi ⊗ ξi to π(yi)ξi.

Now to prove that Res is fully faithful, we first claim that any representation (θ,H) ∈

Rep(A) is generated by
⋃
w∈Λ

Hw. We need to check

H0
w := span {θ(x)ξ : x ∈ Av,w, ξ ∈ Hv, v ∈ Λ}

is dense in Hw for all w ∈ Irr(C ∗ D) \ Λ; we will, in fact, show H0
w = Hw. Now,

w ∈ Irr(C ∗D) \Λ implies |w| ≥ 2. Suppose w is of D-C type, so that w = du for some u

of C-C type. We have the unitary rotation

ρ := 1d ⊗ 1u ⊗ 1d ∈ (C ∗ D) (dw′, wd) = Adw′,w ⊂ Aw′,w,

where w′ = ud ∈ Λ, whose θ-action implements a unitary from Hw′ to Hw; so, H0
w = Hw.

The remaining elements of Irr(C ∗ D) \ Λ are words of types C-C or D-D type, which

neccessarily have odd length ≥ 3. Consider such a w, say w = a−k . . . a−1a0a1 . . . ak. As

above, the even ai’s are either all in IC or all in ID. Let w
′ := a0a1 . . . ak ⊗ a−k . . . a−1 or

a1 . . . ak⊗a−k . . . a−1a0 depending on whether a0 ∈ IC or ID, and ρ
′ be the rotation unitary

from w to w′. Note that w′ may no longer be simple; however, it decomposes into a direct

sum of simple objects all of which either have even length or lie in Λ (using the fusion

rule). Suppose w′ ∼= ⊕
i
ui is the simple object decomposition. Let pi ∈ (C ∗ D) (ui, w

′) be

isometries such that
∑

s pip
∗
i = 1w′. Set xi := (ρ′)#·pi ∈ Aui,w. Clearly,

∑
i xi·x

#
i = 1w (in

Aw,w). Since the ui’s belong to Λ, any ξ ∈ Hw can be expressed as
∑

i θ(xi)[θ(x
#
i )ξ] ∈ H

0
w.

Thus our claim that any representation is generated by the Λ weight spaces is proven.

This immediately implies that the restriction functor is faithful. It also shows that Res

is full. Indeed, consider a morphism f : Res(π,H) → Res(γ,K) in Rep(AΛ). For w ∈

Irr(C∗D)\Λ, if an A-linear extension of f exists we see that f(
∑
π(yi)ξi) =

∑
γ(yi)f(ξi),

for yi ∈ Av,w, v ∈ Λ, and ξ ∈ Hv. Indeed, this will serve as a definition of the extension,

but we must show it is well defined. Suppose
∑
i

π(yi)ξi = 0. Then for any fixed j,
∑
i

π(y#j · yi)ξi = 0. Since y#j · yi ∈ AΛ, we have
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∑

i,j

〈γ(yi)f(ξi), γ(yj)f(ξj)〉K = 〈γ(y#j · yi)f(ξi), f(ξj)〉K

=
∑

j

∑

i

〈π(y#j · yi)ξi, f
∗f(ξj)〉H = 0

It is easy to see that the extension of f remains bounded. This concludes the proof.

We proceed to the study of the ∗-algebra AΛ. We divide this into subsections corre-

sponding to the length (denoted by |·|) of the words in Λ. Since the empty word (that is,

zero length word) stands for the tensor unit of C ∗D, the centralizer algebra AΛ∅,∅ is iso-

morphic to the fusion algebra, and we will be able to describe admissible representations

of these in terms of representations of free product C*-algebras. Thus in this section, we

will focus on the structure of AΛv,w for words v, w ∈ Λ of positive length. By AC (resp.,

AD) we mean the tube algebra/category of C (resp. D).

2.1.1 Words of length at least 2

Define a relation on W by w1 ∼ w2 if and only if w1 = uv and w2 = vu for some

subwords u, v. Clearly, ∼ defines an equivalence relation on W. Obviously if w1 ∼ w2,

then |w1| = |w2|.

Lemma 2.1.2. For w1, w2 ∈W, AΛw1.w2 6= {0} if and only if w1 ∼ w2.

Proof. Suppose w1 ∼ w2 so that w1 = uv and w2 = vu. Consider the rotation ρ :=

(1v⊗R̄u)(R
∗
u⊗1v) ∈ (C ∗ D) (ūw1, w2ū) ⊆ Aw1,w2 for any standard solution (Ru, Ru) to the

conjugate equation for (u, u). It is non-zero (since it is unitary) and hence AΛw1.w2 6= {0}.

Now suppose AΛw1.w2 6= {0} and without loss of generality, let w1 6= w2. Then there

exists v ∈ Irr(C ∗D) (of length, say, m > 0) such that AΛvw1.w2
6= {0}. Suppose m is odd.

Then v is either of C-C type or D-D type. If v is of C-C type (resp. D-D type), then w2v

(resp. vw1) is simple and is of odd length, whereas vw1 (resp. w2v) is not simple and any

simple subobject will be of length strictly smaller than that of vw1. Hence AΛvw1.w2
= {0}

which is a contradiction. So m cannot be odd.

Thus m must be even, so v can be of C-D or D-C type. It is enough to consider the

case where v is of C-D type, since the other case will follow by taking #. As w1, w2 ∈W,

vw1 and w2v are simple. Therefore, AΛvw1.w2
6= {0} implies the equality

vw1 = w2v (2.1.1)

In particular, we see that w1 and w2 have the same length, say n.
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If m = n, then Equation 2.1.1 implies w1 = v = w2 which is not possible by assump-

tion. Suppose m < n. By Equation 2.1.1, there exists a word u such that w2 = vu. So,

vw1 = vuv implying w1 = uv, and thus w1 ∼ w2.

We are left with the case when m > n. Equation 2.1.1 tells us that v starts with the

subword w2; say v = w2v
′. Plugging this into Equation 2.1.1, we get v′w1 = w2v

′. Note

that |v′| = n−m. If length of v′ is not less than or equal to n, then we repeat the above

argument with v′. Since |v′| < |v|, we will eventually find some tail-end subword of v,

say v0, such that v0w1 = w2v0 with |v0| ≤ n. Then we apply the previous cases.

Using similar techniques, we also have the following lemma:

Lemma 2.1.3. Let w ∈W. For any v ∈ Λ \W, Av,w = {0}.

Proof. First we consider the case v = ∅. In general, A∅,w 6= {0} implies that w is an

object in the adjoint sub-category of C ∗ D, or in other words, w is isomorphic to a sub-

object of uū for some simple object u ∈ C ∗ D. If u is length 0, then obviously |w| = 0, a

contradiction. If u has length greater than or equal to 1, as every word that appears as

a sub-object of vv̄ is of C-C or D-D type, w cannot be a sub-object of uū, which implies

that A∅,w = {0}.

Now we consider the case that v has length 1. First assume v ∈ C. If Av,w 6=

{0}, then there is some word u so that (C ∗ D) (uv, wu) 6= {0}, which is equivalent to

(C ∗ D) (vū, ūw) 6= {0}. First suppose |u| is odd. If it is of C-C type, then wu is simple,

and uv is isomorphic to a direct sum of simple objects each of which have length strictly

smaller than the length of wu, so the morphism space must be 0. Similarly if u is of D-D

type, then so is ū, and our hypothesis implies (C ∗ D) (vū, ūw) 6= {0}. In this case, both

words are simple, but |vū| < |ūw|, and thus the morphism space must be {0}.

Thus we are left to consider the case when |u| is even. If u is C-D type, then wu is

simple, and the length is strictly greater than the length of any subobject of uv (since

|v| = 1) a contradiction. If u is D-C type, then ūw is simple with length strictly greater

than the length of any simple sub-object of vū.

The case with v ∈ D is entirely analogous.

Lemma 2.1.4. For w ∈ W, the centralizer algebra AΛw,w is isomorphic to the group

algebra C[Z] as ∗-algebras.

Proof. Let v be a subword of w such that w = vk = vv . . . v︸ ︷︷ ︸
k-times

, for largest possible positive

integer k. We will say that w is maximally periodic with respect to v. Note that v must

be of C-D type. Consider the (unitary) rotation
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ρvw,w := 1vk+1 ∈ (C ∗ D) (vw, wv) = AΛvw,w

whose inverse is given by

(
ρvw,w

)#
= (1vk−1 ⊗Rv)(R

∗
v ⊗ 1vk−1) ∈ (C ∗ D) (vw, wv) = AΛvw,w

for any standard solution (Rv, Rv) of the conjugate equation for (v, v).

Note that for any n ∈ Z,
(
ρvw,w

)n
∈ AΛv

n

w,w with the convention v−1 = v̄ and v0 := 1.

Since vm 6= 1 for any non-zero m, we have Ω
((
ρvw,w

)m)
= 0 for any such m. Thus,

{(
ρvw,w

)n
: n ∈ Z

}
is an orthogonal sequence in AΛw,w with respect to the canonical trace.

Hence, we have an injective homomorphism from C[Z] to AΛ sending the generator of Z,

which we denote g, to ρvw,w. It remains to show that the homomorphism is surjective.

We now claim that if u ∈ Irr(C ∗ D), then AΛuw,w = (C ∗ D) (uw,wu) 6= {0} if and

only if u = vn for some n ∈ Z.

By the same argument as in proof of “if” part of Lemma 2.1.2, it is easy to deduce

that u must be any one of C-D or D-C types if AΛuw,w = (C ∗ D) (uw,wu) 6= {0}. It

suffices to consider the case of C-D type u, since the other case will follow from this by

applying #.

Since both u and w are of C-D type, both uw and wu are simple, (C ∗ D) (uw,wu) 6=

{0} implies uw = wu. Now, consider the bi-infinite word . . . uwuwuw . . .. If m = |u| and

n = |w|, then by the commutation of u and w, we may conclude that the infinite word

is both m- and n-periodic, and thereby, l := gcd(m,n)-periodic. So, there exists a word

v′ of length l such that both u and w are integral powers of v′. Since w is maximally

periodic with respect to v, |v| ≤ |v′|, which will then imply that v′ is an integral power

of v. Hence, u is an integral power of v.

We will be done if we can show AΛv
n

w,w = Cρv
n

w,w for n ∈ Z. Again, it is enough

to show for n ≥ 0 since the other cases follow by taking #. Now for n ≥ 0, we have

AΛv
n

w,w = (C ∗ D) (vk+n, vk+n). Since w = vv . . . v, v must be an even length word with

first letter from IC. This implies that, any power of v is simple. In particular, vk+n is

simple and hence AΛv
n

w,w = (C ∗ D) (vk+n, vk+n) is one-dimensional.

Via the inclusion W ⊂ Λ, we may consider AW as a ∗-subalgebra of AΛ. In fact,

by Lemma 2.1.3, we see that AW is actually a summand of AΛ. The above lemma now

allows us to identify AW. Let W0 = W/ ∼, the set of equivalence classes of words in W

modulo the cyclic relation ∼ defined in the beginning of this section. Recall that Mn(C)

denotes the algebra of n× n matrices.
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Corollary 2.1.5. AW is a direct summand of the algebra AΛ. Moreover, as ∗-algebras

AW ∼=
⊕

[w]∈W0

M|w|(C)⊗ C[Z].

Proof. As explained above, the first statement follows from Lemma 2.1.3.

For the second one, we pick a representative w ∈ [w] ∈ W0. Then for any other

v ∈ [w], it is clear from Lemma 2.1.4 that AWw,v
∼= C[Z] as a vector space, where Z is

identified with powers of unitary rotation operators σv ∈ AΛw,v for all v ∈ [w]. Note that

AWw,v = {0} for v /∈ [w] by Lemma 2.1.2.

The required isomorphism is given by the map defined for w1, w2 ∈ [w] and x ∈

ASw1,w2 by

x 7−→ Ew1,w2 ⊗ σw2 x σ
#
w1
∈M|w|(C)⊗AΛw,w ∼= M|w|(C)⊗ C[Z].

2.1.2 Words of length 1

For a rigid C*-tensor category C, we let S(C) := {[a] ∈ Irr(C) : Na
bb
6= 0 for some [b] ∈

Irr(C)}. Observe that S(C) tensor generates the adjoint subcategory of C, which is the

trivial graded component with respect to the universal grading group, but in general S(C)

gives a proper subset of the simple objects in the adjoint subcategory.

Lemma 2.1.6. Let w ∈ IC. Then AΛ∅,w 6= {0} if and only if w belongs to S(C). The

same holds replacing C with D.

Proof. Suppose w ∈ S(C). Then there is a simple v such that {0} 6= (C ∗ D) (v, wv) =

AΛv∅,w implying, AΛ∅,w 6= {0}.

Now suppose AΛ∅,w 6= {0}. Choose v ∈ Irr(C ∗ D) \ {1} such that AΛv∅,w =

(C ∗ D) (v, wv) 6= {0}. By arguments as in the proof of Lemma 2.1.2, one can see that

v must be of C-C or C-D type for the morphism space to be non-zero. Let v = cv′ with

c ∈ IC. If v′ = 1, then we are done. Suppose |v′| ≥ 1; so, v′ starts in ID. Consider

the simple objects {ui : i = 0, 1, . . . n} ⊂ Irr(C ∗ D) that appear as subobjects in the

decomposition of v′v̄′, with u0 = 1. Note that, for i ≥ 1, ui is non-trivial and is of D-D

type (since v′ is simple). Thus, for all i ≥ 1, cuic̄ is simple and is of length greater than

1, implying (C ∗ D) (w, cuic̄) = {0}. Since {0} 6= (C ∗ D) (v, wv) ∼= (C ∗ D) (c v′ v̄′ c̄, w),

we must have C(cc̄, w) = (C ∗ D) (cc̄, w) 6= {0}. So w ∈ S(C).
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For the statement of the next lemma, for c ∈ IC, note that since C is a full subcategory

of C ∗ D, we can view ACc,1 ⊆ AΛc,∅. Similar observation can be made for d ∈ ID.

Lemma 2.1.7. If c ∈ IC ⊆ Λ and d ∈ ID ⊆ Λ, then AΛc,d 6= 0 if and only if c ∈ S(C)

and d ∈ S(D). Furthermore AΛc,d = ADd,1 · AΛ∅,∅ · ACc,1.

Proof. If c ∈ IC and d ∈ ID, choose a ∈ IC and b ∈ ID such that c and d are subobjects

of āa and bb̄ in C and D respectively. Let 0 6= y1 ∈ C(ac, a), 0 6= y2 ∈ D(b, db). Note that

(y2 ⊗ 1v1)(1v2 ⊗ y1) ∈ (C ∗ D) (bac, dba) = AΛbac,d ⊂ AΛc,d is nonzero.

Conversely, let AΛc,d 6= {0}. Then there exists a non-unit simple object v ∈ Irr(C ∗

D) such that (C ∗ D) (vc, dv) = AΛvc,d 6= {0}. If v is of C-C (resp. D-D) type, then

(C ∗ D) (vc, dv) = {0} as dv (resp. vc) is simple of D-C type, and any simple subobject

of vc (resp. dv) in C ∗D has length smaller than that of dv (resp. vc). Now suppose v is

of C-D type; then, both vc and dv are simple with the same length but are of different

types, hence (C ∗ D) (vc, dv) = {0}. Thus v can only be of D-C type. Also since v 6= 1,

length of v is at least 2.

Let v = d′v′c′, where d′ ∈ ID, c
′ ∈ IC and v′ ∈ Irr(C ∗ D) is either trivial or C-

D type. Consider v̄d′v = c̄′ v̄′ d̄′ d d′ v′ c′. If d̄′dd′ does not contain 1 as a subobject,

then the length of every simple subobject of v̄dv is strictly greater than 1, and thereby

(C ∗ D) (vw1, w2v) ∼= (C ∗ D) (w1, v̄w2v) = {0} which is a contradiction. Thus, 1 appears

as a subobject of d̄′dd′ and hence d ∈ S(D). Similarly, by considering vcv̄, one may

deduce that c ∈ S(C).

For the last part, let v = d′v′c′ be as above. Then vc = d′v′c′c and dv = dd′v′c′. Since

v′ is a word of C-D type of length at least 2 whose letters are all simple, by the definition

of the free product category, any morphism x ∈ (C ∗ D) (vc, dv) factorizes as x1⊗1v′⊗x2,

where x1 ∈ D(d
′, dd′) and x2 ∈ C(c

′, cc′). The result then follows.

Lemma 2.1.8. Suppose c1, c2 ∈ IC. If v ∈ Irr(C ∗ D) and |v| ≥ 1, then the space

AΛvc1,c2 6= {0} implies v is of C-C type. Furthermore, we have

(i) If |v| = 1, then v ∈ IC and AΛvc1,c2 = AC
v
c1,c2

.

(ii) If |v| ≥ 2 then AΛvc1,c2 6= 0 implies both c1 and c2 lie in S(C). Furthermore,

AΛvc1,c2 = AC1,c2 · AΛ∅,∅ · ACc1,1.

The same statement holds, replacing C with D.

Proof. Let c1, c2 ∈ IC. And suppose AΛvc1,c2 6= {0}, for |v| ≥ 1.

If v is of C-D type or D-C type, then vc1 (respectively, c2v) is simple, and any simple

subobject of c2v (respectively vc1) will have length strictly smaller than that of vc1
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(respectively c2v). Hence AΛvc1,c2 = (C ∗ D) (vc1, c2v) = {0}. Again, we can rule out v

being D-D type by comparison of the two simple objects vc1 and c2v, which cannot be

equal since one starts with D while the other starts with C.

For (i), note that for |v| = 1 and AΛvc1,c2 6= {0}, we must have v ∈ IC and in this case

we see that AΛvc1,c2 = (C ∗ D) (vc1, c2v) = C(vc1, c2v) = ACvc1,c2.

For (ii), suppose we have AΛvc1,c2 6= {0}, with |v| ≥ 2. By the first part of the lemma,

v is of C-C type, and hence we have v = c′1v
′c′2, where v

′ is a simple word of D-D type of

length ≥ 1. Thus we see that for any x ∈ (C ∗ D) (vc1, c2v) = (C ∗ D) (c′1v
′c′2c1, c2c

′
1v

′c′2),

from the definition of the free product category we must have x1 ∈ C(c′1, c2c
′
1) and x2 ∈

C(c′2c1, c
′
2) so that x factorizes as x = x1 ⊗ 1v′ ⊗ x2. This gives us (ii).

2.2 Annular Representations of Free Product of Cat-

egories

Let C be an arbitrary rigid C∗-tensor category, and Γ ⊆ [Obj C] be an arbitrary weight

set containing 1, which is sufficiently full to generate a universal C*-algebra. Consider

the ideal J Γ0 := AΓ · AΓ
1,1 · AΓ in AΓ generated by AΓ

1,1. In the particular case of

Γ = Irr(C), we write J C0 for J Γ0.

Given any bounded ∗-representation of J Γ0 one can get a bounded ∗-representation of

AΓ by a construction very similar to the one done in the proof of Lemma 2.1.1. By going

along the similar lines, one can also show that the induction functor Ind0 : Rep(J Γ0)→

Rep(AΓ ) is fully faithful. Let Rep0(AΓ ) be the image of Rep(J Γ0) under Ind. Thus,

Rep0(AΓ ) is the full subcategory of representations generated by their weight 1 space.

As every representation of AΓ which belongs to this subcategory is generated by its

weight 1 space, it is easy to see that Rep0(AΓ ) is precisely the category of admissible

representations of the fusion algebra with respect to Γ .

Consider the W*-category Rep+(AΓ ) := Rep(AΓ/J Γ0) of representations of AΓ

which contain J Γ0 in their kernel. Rep+(AΓ ) is referred to as the category of higher

weight representations. It consists of precisely the representations of AΓ such that the

projection p
1

∈ AΓ
1,1 acts by 0.

Then, for any non-degenerate ∗-representation of (π,H) ∈ Rep(AΓ ), we can decom-

pose H as direct sum of subrepresentations H0 ⊕H⊥
0 , where H0 := [π(J Γ0)H] and H⊥

0

is its orthogonal complement. We can view H0 ∈ Rep0(AΓ ) and H⊥
0 ∈ Rep+(AΓ ). Any

representation of J Γ0 and any representation of AΓ+ are disjoint as representations of

AΓ . This discussion gives us the following proposition:
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Proposition 2.2.1. For any sufficiently full weight set, Rep(AΓ ) ∼= Rep0(AΓ )⊕Rep+(AΓ ).

Thus, the problem of understanding Rep(AΛ) decomposes into the problem of un-

derstanding the admissible representations of the fusion algebra, and the higher weight

structure. In the particular case of free products, what we will see is that the weight 0

part is controlled by a free product C*-algebra, while the higher weight parts can be read

off in terms of the higher weight parts of C and D. There are also some additional copies

of the category Rep(Z) that appear at higher weights.

We first turn our attention to the weight 0 case. Let Fus(C) be the fusion algebra of C

with the distinguished basis Irr(C). Recall there exists a universal C*-algebra completion

of the fusion algebra, denoted by C∗
u(C), first introduced by Popa and Vaes [PV15], which

is universal with respect to admissible representations. In [GJ16], it was shown that

AC
1,1
∼= Fus(C) and admissible representations are precisely those that induce bounded

∗-representations of the tube algebra, and thus C∗
u(C) can be viewed as the weight 0

corner (or centralizer algebra) of the universal C*-algebra of the tube algebra.

Via the inclusions of C andD into C∗D, Fus (C ∗ D) contains the fusion algebras Fus(C)

and Fus(D) as unital ∗-subalgebras. Indeed, we have a canonical ∗-algebra isomorphism

between Fus(C ∗ D) and the (algebraic) free product Fus(C) ∗ Fus(D).

We briefly recall the definition of (universal) free product of C*-algebras:

Definition 2.2.2. If A1 and A2 are unital C*-algebras, a free product is a unital C*-

algebra A1 ∗ A2, together with unital ∗-homomorphisms ιi : Ai → A1 ∗ A2 satisfying the

following universal property: for any unital C*-algebra C and unital ∗-homomorphisms

γi : Ai → C there exists a unique ∗-homomorphism γ1 ∗ γ2 : A1 ∗ A2 → C such that

(γ1 ∗ γ2) ◦ ιi = γi.

Any two free products of two C*-algebras are ∗-isomorphic if they exists by the uni-

versal property. Furthermore, free products do exist, so it makes sense to talk about the

free product C*-algebra, which we will denote by A1 ∗A2.

The main result of this section is the following:

Proposition 2.2.3. C∗
u(C ∗ D)

∼= C∗
u(C) ∗ C

∗
u(D).

To prove this, we already know that AC
1,1, AD1,1 and AΛ∅,∅ are isomorphic to the

fusion algebras Fus(C), Fus(D) and Fus(C∗D) ∼= Fus(C)∗Fus(D) respectively. Using these

isomorphisms, any representation of the weight zero centralizer algebra AΛ∅,∅ can also

be viewed as representations of AC
1,1 and AD

1,1 by restricting π to the corresponding

subalgebras. We have the following lemma:
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Lemma 2.2.4. A representation (π,H) of Fus(C ∗ D) is admissible if and only if its

restrictions (πc,H) and (πd,H) to Fus(C) and Fus(D) are admissible respectively.

Proof. If (π,H) be admissible then, (πc,H) and (πd,H) are clearly admissible.

Suppose (πc,H) and (πd,H) are admissible. Set Ĥw := AΛ∅,w ⊗ H for w ∈ Λ. By

Lemma 2.1.3 and Lemma 2.1.6, Ĥw is nonzero only when w = ∅ or w has length 1 and is

in S(C) ∪ S(D). As usual, we define a sesquilinear form on Ĥw by

〈y1 ⊗ ξ1, y2 ⊗ ξ2〉w := 〈π(y#2 · y1)ξ1, ξ2〉

for y1, y2 ∈ AΛ∅,w and ξ1, ξ2 ∈ H.

By the definition of admissibility and [GJ16], it suffices to show that this form is

positive semi-definite. Further, it is enough to show

n∑

i,j=1

〈π(x#j · xi)ξi, ξj〉 ≥ 0

for xi ∈ AΛ
vi
∅,w, vi ∈ Irr(C∗D), ξi ∈ H. When w = ∅, the sum becomes

n∑
i=1

‖π(xi)ξi‖
2
H ≥ 0.

It remains to consider the case w ∈ S(C) ∪ S(D). Suppose w ∈ S(C). In order to have

AΛvi∅,w = (C ∗ D) (vi, wvi) nonzero, vi must be one of C-C or C-D type. Let vi = ciui where

ci ∈ IC and ui is either ∅ or of D-C or D-D type. Note that wvi = wciui. As w ∈ C, any

morphism xi ∈ (C ∗ D) (ciui, wciui) is of the form xi = zi ⊗ 1ui , where zi ∈ C(ci, wci).

One may express this in another useful way: xi = zi · 1ui where we view zi ∈ AC
ci
1,w ⊂

AΛ∅,w, and 1ui ∈ AΛ
ui
∅,∅. Setting ζi := π(1ui)ξi, 1 ≤ i ≤ n, we have

n∑

i,j=1

〈π(x#j · xi)ξi, ξj〉 =
n∑

i,j=1

〈πc(z#j · zi)ζi, ζj〉 ≥ 0

where the last inequality follows from admissibility of (πc,H). An entirely analogous

argument holds for the case w ∈ S(D).

Proof of Proposition 2.2.3. Let iC (resp., iD) be the canonical ∗-inclusion of Fus(C) (resp.,

Fus(D)) into Fus(C ∗ D).

If (π,H) is any admissible representation of Fus(C ∗ D), then (π ◦ iC,H) and (π ◦

iD,H) are admissible representations of Fus(C) and Fus(D) respectively by Lemma 2.2.4.

Therefore, for any x ∈ Fus(C),

||iC(x)||π = ||x||π◦iC ≤ ||x||C∗
u(C) .
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By the definition of the universal norm,

||iC(x)||C∗
u(C∗D) = sup

π′

||iC(x)||π′

where the supremum is taken over all admissible representations of Fus(C ∗D). Thus the

map iC extend to ∗-homomorphisms ιC : C∗
u(C)→ C∗

u(C ∗D). The same argument applies

to D, yielding an extension ιD : C∗
u(D)→ C∗

u(C ∗ D).

Let A be any C*-algebra with *-homomorphisms γC : C∗
u(C)→ A and γD : C∗

u(D)→

A. By the universal property of free product of ordinary ∗-algebras, there is a unique

∗-homomorphism h : Fus(C ∗ D)→ A such that h ◦ iC = γC|Fus(C) and h ◦ iD = γD|Fus(D).

By density of the fusion algebras in their universal C*-algebras, to conclude the proof it

suffices to show that h extends to a ∗-homomorphism γC ∗ γD : C∗
u(C ∗ D)→ A, which is

equivalent to showing ||h(x)||A ≤ ||x||C∗
u(C∗D).

Without loss of generality, assume A ⊂ B(K) for some Hilbert space K. Since

||γC(y)||A ≤ ||y||C∗
u(C) for every y ∈ Fus(C), (γC|Fus(C),K) is admissible and similarly,

(γD|Fus(D),K) is also admissible. Thus, by Lemma 2.2.4, (h,K) is an admissible represen-

tation of Fus (C ∗ D). Therefore, ||x||h = ||h(x)||A ≤ ||x||C∗
u(C∗D).

This immediately implies the following corollary:

Corollary 2.2.5. The category of Rep0(AΛ) is equivalent as a W*-category to Rep(C∗
u(C)∗

C∗
u(D)).

On one hand, it is well known that representation categories of free product algebras

are wild and uncontrollable, and thus this answer for describing Rep0(AΛ) is some-

what unsatisfactory, compared to descriptions of other representation categories such as

Rep(ATLJ) ([GJ16]). On the other hand, there are a plethora of ways to produce exam-

ples of representations of free products, so these categories are quite flexible. For example,

given two states ψ, φ on C*-algebras A and B, one can construct the free convolution

state ψ ∗ φ on the C*-algebra A ∗ B ([Avi82]). Alternatively one simply has to take a

representation of A and one of B, and identify their underlying Hilbert space.

We now move on to describing the higher weight categories, which, depending on C and

D, can be more manageable. As described in the beginning of the section Rep+(AΛ) =

Rep(AΛ/JΛ0). We have the following lemma:

Lemma 2.2.6. As ∗-algebras, AΛ/JΛ0
∼= AC/JC0 ⊕AD/JD0 ⊕AW.

Proof. Recall that AΛ ∼= A[Λ \W] ⊕ AW. From Lemma 2.1.3, we see that JΛ0 ⊆

A[Λ \W], and thus
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AΛ/JΛ0
∼= A[Λ \W]/JΛ0 ⊕AW

Thus we consider the spaces AΛvw1,w2
with w1, w2 ∈ S(C) ∪ S(D), and v ∈ Irr(C ∗ D).

By Lemma 2.1.7 and Lemma 2.1.8, the image of these spaces under the quotient is 0

unless w1 and w2 are either both in S(C) and v ∈ Irr(C) or both w1 and w2 are in S(D)

and v ∈ Irr(D). Since J C0,JD0 ⊆ JΛ0, it is now clear that the quotient map assembles

into an isomorphism A[Λ \W]/JΛ0
∼= AC/J C0 ⊕AD/JD0, concluding the proof.

Finally, we recall that W0 is the set of cyclic equivalence classes of words in W, and

note that Rep(AW) ∼= Rep(Z)⊕W0 . The above results imply the following, which is the

main result of this chapter.

Theorem 2.2.7. Let C and D be rigid C*-tensor categories. Then as W*-categories,

Rep(A (C ∗ D)) ∼= Rep(C∗
u(C) ∗ C

∗
u(D))⊕Rep+(AC)⊕Rep+(AD)⊕Rep(Z)

⊕W0

2.3 Examples

In this section, we apply the main result to several examples. First, we show how this

matches another known result.

Example 2.3.1. Free products of group categories. In particular, for any countable

group G, we consider the rigid C*-tensor category Hilbf.d.(G) of finite dimensional G-

graded Hilbert spaces. Let Λ denote the set of conjugacy classes of G. For each λ ∈ Λ

we can define Cλ(G) to be the centralizer subgroup of some element g ∈ λ. We note that

different choices of g ∈ Λ yield conjugate subgroups, and so Cλ(G) is well defined up to

isomorphism. Then, from [GJ16], the category of annular representations

Rep(A) ∼=
⊕

λ∈Λ

Rep(Cλ(G))

Now, for any two countable groups G and H , its easy to see that Hilbf.d.(G) ∗

Hilbf.d.(H) is equivalent as a C*-tensor category toHilbf.d.(G∗H). Thus we can compare

our result for Hilbf.d.(G) ∗Hilbf.d.(H) to the above result for Hilbf.d.(G ∗H).

Since C∗
u(Hilbf.d.(G)) is isomorphic to the universal group C*-algebra C∗

u(G), and

C∗
u(G ∗H) ∼= C∗

u(G) ∗ C
∗
u(H), we can identify the first component in the main theorem

(Theorem 2.2.7) with Rep(G ∗H).
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Note that there is always distinguished conjugacy class [1] ∈ Λ, the conjugacy class

of the unit 1. We have C[1](G) = G. It is easy to see that

Rep+(AHilbf.d.(G)) ∼=
⊕

λ∈Λ\[1]

Cλ(G)

This helps us identify the second two components, while the last component needs no

identification.

Now, consider the groupG∗H . This group has 4 types of conjugacy classes: {[1]}, {[g] :

g ∈ G}, {[h] : h ∈ H} and {[g1h1 · · · gkhk] : gi ∈ G, hi ∈ H, k ≥ 1}. It is

also easy to see that C[1](G ∗ H) = G ∗ H , C[g](G ∗ H) = G, C[h](G ∗ H) = H and

C[g1h1···gkhk] = {(g1h1 · · · gkhk)
n : n ∈ Z} ∼= Z. It is now easy to see the equivalence of

the two descriptions.

Example 2.3.2. Fuss-Catalan representations. Bisch and Jones introduced the Fuss-

Catalan subfactor planar algebras FC(α, β), where α, β ∈ {2 cos(π
n
) : n ≥ 3} ∪ [2,∞)

[BJ97]. These planar algebras are universal for intermediate subfactors. For a subfac-

tor planar algebra, the category of affine annular representations in the sense of Jones-

Reznikoff [JR06] is equivalent to the category of annular representations of the even part

of the subfactor (see, for example, [DGG14a, Remark 3.6] or [NY18, Corollary 4.4]). The

even part of the Fuss-Catalan can be realized as a full subcategory of the free product

category T LJ (α) ∗ T LJ (β). In particular, if a ∈ T LJ (α) is the standard tensor gener-

ating object with dimension α and b ∈ T LJ (β) is the standard tensor generating object

with dimension β, then the full subcategory generated by abba ∈ T LJ (α) ∗ T LJ (β)

is equivalent to the even part of FC(α, β). Thus to determine the annular representa-

tion category of FC(α, β), it suffices to determine the annular representations of the full

subcategory T LJ (α) ∗ T LJ (β) generated by abba. Let T LJ 0(α) denote the adjoint

subcategory, generated by aa. This can also be realized as the even part of the usual

Temperley-Lieb-Jones subfactor planar algebras.

We recall briefly that two rigid C*-tensor categories C and D are weakly Morita equiv-

alent if there is a rigid C*-2 category with two objects 0 and 1, such that the tensor

category End(0) ∼= C and the tensor category End(1) ∼= D (see [NY18] for further de-

tails). The two even parts of a subfactor planar algebra are weakly Morita equivalent,

but weak Morita equivalence is more general. If we have two full subcategories of a tensor

category, to show they are weakly Morita equivalent, it suffices to find an object x ∈ C

so that xx tensor generates one and xx tensor generates the other, since one can, using

the usual subfactor approach, construct a rigid C*-2 category whose two even parts are

as desired. We apply this in the free product case to obtain the following proposition:
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Proposition 2.3.3. The tensor category generated by abba is weakly Morita equivalent

to T LJ 0(α) ∗ T LJ 0(β).

Proof. It suffices to find an object x ∈ T LJ (α) ∗ T LJ (β) such that 〈xx〉 = 〈abba〉 and

〈xx〉 = T LJ (α) ∗ T LJ (β). Choose x := abb. Then since both aa and bb contain the

tensor unit as a subobject, we see 〈abbbba〉 = 〈abba〉. On the other hand, bbaabb contains

aa and bb as subobjects, and so clearly 〈bbaabb〉 = 〈aa, bb〉.

Again, by [DGG14a, Remark 3.6] or [NY18, Corollary 4.4], the above proposition

implies the following:

Corollary 2.3.4. The category of affine annular representations of the subfactor planar

algebra FC(α, β) is equivalent as a W*-category to the annular representation category

of T LJ 0(α) ∗ T LJ 0(β).

This category T LJ 0(α) is fully described in [JR06], and thus combining those results

with ours leads to a description of the representations of Fuss-Catalan categories.
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Chapter 3

Free oriented extensions of subfactor

planar algebras

3.1 The free oriented extension of subfactor planar

algebras

We will call a Λ-oriented planar algebra simply an oriented planar algebra if Λ is singleton.

This not only simplifies the terminology, but also agrees with the definition presented in

[Jon11, Definition 1.2.7]. In this section we will study oriented factor planar algebras and

their relation to subfactor planar algebras. Throughout this section, whenever we talk

about oriented planar algebra, we assume Λ := {+} and Λ := {−}. So, W = WΛ will be

the set of words with letters from {±} (note this ± has nothing to do with ± discussed

in the preliminaries concerning free products). Since Λ is a singleton, we do not label

any of the (oriented) strings of any Λ-oriented tangle; rather, we assume that each string

is labeled with +. With this convention, a marked point on the external disc is assigned

+ or − according as the string attached to it has orientation towards or away from the

point; for marked points on the internal discs, the convention is just the opposite.

In this context, it is important to talk about Jones’ subfactor planar algebras ([Jon99]).

We briefly recall the definitions. LetWalt denote the set of words having even length with

+ and − appearing alternately. Then, one can consider oriented tangles where the colors

of internal and external discs must belong toWalt such that it is possible to put a checker-

board shading; such tangles are called shaded tangles. If the color of the external or an

internal disc in a shaded tangle is ∅, then the region attached to boundary of the disc

could be unshaded or shaded; we specify this by renaming the color of the disc as +∅ or

−∅ respectively. Let Walt contain the elements ±∅ as well. A subfactor planar algebra
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consists of a family of vector spaces {Pw}w∈Walt
on which the shaded tangles act satisfying

properties analogous to that in Definitions 1.1.15 and 1.1.17. In the original definition,

Jones indexed the vector spaces by {εk : ε ∈ {±}, k ∈ N} instead of Walt (where εk

corresponds to the word of length 2k with alternate letters ±, beginning with ε).

Given a oriented factor planar algebra Q, since shaded tangles can be thought of as

oriented tangles by simply forgetting the shading, we can canonically construct a subfactor

planar algebra called its shaded part of Q, denoted S(Q). For w ∈ Walt, S(Q)w := Qw.

The action of shaded tangles is simply the action of the associated oriented tangle.

Let Por denote the category whose objects are oriented factor planar algebras and

whose morphisms are ∗-planar algebra morphisms. Similarly, let Psh denote the category

whose objects are subfactor planar algebras, and whose morphisms are ∗-planar algebra

morphisms. Obviously the assignment Q 7→ S(Q) induces a functor S :Por → Psh.

Definition 3.1.1. The functor S : Por → Psh, Q 7→ S(Q) is called the shading functor.

To understand this functor on the level of von Neumann algebras, an oriented fac-

tor planar algebra Q corresponds to the rigid C*-tensor category generated by a single

bimodule H of a II1 factor N . Taking alternating tensor powers of H and H gives the

standard invariant for the subfactor N ⊆M , where M is the II1 factor associated to the

Q-system H ⊗N H ∈ Bim(N). The standard invariant S(Q) is precisely the standard

invariant of this subfactor. Note that we cannot recover tensor powers of H from this

information. In other words, the sufactor standard invariant forgets information. We are

led naturally to the following definition.

Definition 3.1.2. Let P be a subfactor planar algebra. An oriented extension of P is a

oriented factor planar algebra Q such that S(Q) is ∗-isomorphic to P .

The set of (isomorphism classes of) oriented extensions of a subfactor planar algebra

is precisely its pre-image under the functor S.

Remark 3.1.3. Note that subfactor planar algebras correspond to rigid, semisimple C*-

2-categories B with two 0-cells {+,−} such that (i) tensor units in B++ and B−− are

simple and (ii) there is a 1-cell ρ ∈ B+− which tensor-generates the whole of 2-category

B. If we call such 2-categories as singly generated, with this correspondence one can

also define oriented extension of the singly generated 2-category B as a singly generated

C*-tensor category C, generated by σ, such that the underlying 2-category generated by

σ is equivalent to B.
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3.1.1 The free oriented extension

The first obvious question is whether an oriented extension always exists. We answer this

affirmatively, by constructing a canonical one, called the free oriented extension.

To proceed with this construction, let P be a subfactor planar algebra. For every word

w ∈ W letDw be the set of oriented tangles in which the color of the external disc is w and

all the internal discs (if any) have their colors inWalt along with a labelling of each internal

disc with an element in the corresponding P -space. Note that the tangles are arbitrary

oriented tangles such that the boundary conditions along any disc are alternating, but

these tangles do not need to admit a checker-board shading. A typical element of Dw will

be denoted by T (x1, . . . , xn) where T is the unlabelled tangle with internal discs (if any)

D1, . . . , Dn having colors w1, . . . , wn, labelled with x1 ∈ Pw1, . . . , xn ∈ Pwn respectively.

An example of such an element with colors of internal discs w1 = + − +−, w2 = + −

+−, w3 = − + −+, w4 = −+ and xi ∈ Pwi
, i = 1, 2, 3, 4 is given in the following figure.

Note that, in this example, the external disc has 6 marked points on it and its color is

w0 = −+−−++.

⋆

⋆

⋆

⋆

x1

x3

x2

x4
⋆

D0

Set Dw := C-span(Dw). Note that we have an involutive map Dw ∋ T (x1, . . . , xn)
∗
7−→

T ∗(x∗1, . . . , x
∗
n) ∈ Dw∗ ; we extend this conjugate linearly to get an involution ∗ : Dw →

Dw∗. Observe that D := {Dw}w∈W is an oriented ∗-planar algebra where the action

of tangles on labelled tangles comes simply from composition. However, D is far from

being a oriented factor planar algebra, since at this point, the spaces Dw are all infinite

dimensional

In order to define a sesquilinear form on each of Dw, we first define an evaluation map

associated to an oriented tangle with external disc having color ∅ and all internal discs
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having colors in Walt labelled by elements of P ; such labeled tangles will be referred as

‘networks’ (see [Jon99]). Topologically, a network N is a disjoint union of its connected

components, and each component necessarily consists of closed, shaded, P-labelled tan-

gles. These can be nested in the disc in complicated ways. However, for each connected

component, one can forget the rest of the network and think of the tangle as being a

closed shaded tangle with elements from P . Now, P±∅ are one dimensional algebras, and

thus we can associate a scalar to each closed network. For a network N , define Z(N) to

be the product of the scalars arising from each connected component shaded tangle. We

call this the partition function. Note that by construction, since P is a spherical subfactor

planar algebra this partition function is also spherical.

We define a sesquilinear form on Dw by

[X, Y ]w := Z (Hw ◦ (S, T
∗)(x1, . . . , xm, y

∗
1, . . . , y

∗
n))

for X = S(x1, . . . , xm), Y = T (y1, . . . , yn) ∈ Dw ⊆ Dw, where Hw is the inner product

tangle defined in Section 1.1.6. The following lemma is a crucial step in our construction.

Lemma 3.1.4. For all w ∈ W , [X,X ]w ≥ 0 for all X ∈ Dw.

Proof. Without loss of generality, we may assume that in the decomposition X =
k∑
i=1

ciXi

with respect to the canonical basis Dw, none of the Xi’s contain any non-empty network,

that is, the union of the strings and the boundary of the discs (internal and external)

is connected in each Xi. This automatically settles the case of w = ∅. Moreover, if

∅ 6= w ∈ Walt, then all Xi are shaded and thereby the positivity of the P -action implies

[·, ·]w is positive semi-definite.

From now on, we will assume w ∈ W \Walt. Recall that Dw is the set of oriented

tangles in which the color of external disc is w and all the internal discs (if any) have their

colors inWalt. Since all the internal discs (a) have even number of marked points, and (b)

have colors with equal number of + signs and − signs (as they belong to Walt), in order

to have Dw 6= {0} (that is, Dw 6= ∅,) the word w must be of even length with the same

number of + signs and − signs. Again, since w has same number of + signs and − signs

and w ∈ W \Walt, w must have a sub-word (in the non-consecutive sense) of the form

(+,+) or (−,−), so it will be enough to consider the case when w starts and end with

same sign. This is because the sesquilinear form is invariant under the action of rotation

tangle. More precisely, if w = (w1, w2) and ρw1,w2 : (w1w2)→ (w2w1) denotes the rotation

tangle as described in the preliminaries, then [X, Y ]w = [ρw1,w2(X), ρw1,w2(Y )](w2,w1) for

all X, Y ∈ Dw. Let

W ′ := {w ∈ W \Walt : w starts and ends with the same sign and Dw 6= ∅}.
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Every w ∈ W ′ can be expressed as a unique concatenation w1w2 . . . wk of consecutive

sub-words, where each wi is a word with ± appearing alternately such that the last sign

of the sub-word wi matches with the first one of wj; we will refer these special sub-words

as ‘MAS’ (which stands for maximally alternately signed).

Observe that (i) each MAS sub-word of even length has equal number of + signs and

− signs and (ii) each MAS sub-word of odd length starting and ending in + (resp. −) has

a + (resp. −) more in number than that of − (resp. +). Since w has the same number

of + signs and − signs, it follows that

1. the number of MAS sub-words of w with odd length starting and ending with +

must be the same as that with −; in particular, the number of odd length MAS

sub-words must be even.

2. there must be at least one MAS sub-word of even length.

We will now prove that the total number of MAS sub-words of any w ∈ W ′ must

be even. This is clearly true if all the MAS sub-words of w have even length since w

starts and end with the same sign. So, let us assume w ∈ W ′ has both odd and even

length MAS sub-words. It will be useful to take a disc and arrange the signs in w as

marked points on the boundary moving clockwise. Note that if the last sign of any odd

length MAS sub-word (a) differs from or (b) matches with the first sign of the very next

odd length MAS sub-word moving clockwise, then the number of even length MAS sub-

words in between must be (a) odd or (b) even respectively. By (1) above, the number of

instances of the case (a) is even. Thus, in the end, the total number of even length MAS

sub-words is even and so is the number of MAS sub-words.

Now, fix a w ∈ W ′. Let w = w1, . . . , w2k be the MAS sub-word decomposition. Set

wodd := w1w3 . . . w2k−1 and weven := w2w4 . . . w2k. We have the following assertion.

Assertion. Every X = T (x1, . . . , xn) ∈ Dw which does not contain any non-empty

network, can be expressed uniquely as an overlay of labelled tangles Xodd ∈ Dwodd
and

Xeven ∈ Dweven .

Proof of the assertion. First we consider the case in which there is no internal disc inside

X = T ∈ Dw. Then T is a Temperley-Lieb (TL) diagram with color of the external disc

being w ∈ W ′. Note that any such TL diagram induces a non-crossing pairing of opposite

signs in w exhausting all the signs; this puts a further restriction that two opposite signs

coming from two MAS sub-words which are adjacent around the disc, can never be paired.
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What we need to show is that two opposite signs can be paired only if either both

belong to two even-indexed MAS sub-words or two odd-indexed ones. We use induction

on the length of w. The minimum length of elements in W ′ is 4 and there are exactly

two words, namely, +−−+ and −++−. In both instances, there are exactly two MAS

sub-words. Thus each MAS sub-word should be paired within itself.

For the inductive step, suppose w has length 2n. Let w = w1 . . . w2k be the MAS sub-

word decomposition. In w there must exist two consecutive signs (namely, +− or −+)

which are paired by the TL diagram T ; let us denote this sub-word by v. Clearly, this

v must appear in a MAS sub-word, say wj . Let w
′ (resp., w′

j) denote the word obtained

by removing v from w (resp. wj), and T
′ be the corresponding w′-TL diagram obtained

from T . If v is strictly smaller that wj, then we have the MAS sub-word decomposition

w′ = w1 . . . wj−1w
′
jwj+1 . . . w2k. Since |w′| < |w|, using the inductive hypothesis, we can

express T ′ as an overlay; we simply attach the pairing of v at the appropriate place

to get the overlay of T . If v = wj , then the MAS sub-word decomposition becomes

w′ = w1 . . . wj−2w
′′
j−1wj+2 . . . w2k) where w′′

j−1 = wj−1wj+1. By inductive hypothesis on

T ′, we see that no pairing can occur between an even-indexed MAS sub-word of w′ and

an odd-indexed one; so the same holds for T as well. For the case when v is w1 or w2k,

we simply apply a rotation to make v interior and use the same argument.

For the general case, we assume X = T (x1, . . . , xn) has internal disc(s). We say two

internal discs Di and Dj of T are related if there is a sequence of internal discs starting

with Di and ending with Dj such that any two consecutive internal discs in the sequence

are connected by a string. Since there is no non-empty network in X , this clearly becomes

an equivalence relation. Fixing an equivalence class, we could use isotopy to bring all the

internal discs in the class along with the strings connecting them inside a new disc whose

boundary is intersected by the strings connecting these internal discs with the external

one. The interior of this new disc is a labelled shaded tangle. Without loss of generality,

we may assume that all strings emanating from every internal disc in T go to the external

one which has color w. By composing T with TL diagrams in all its internal disc, we

get a TL diagram. Since the assertion holds for TL diagrams, we may conclude that if

a string from an internal disc connects to a sign in an odd (resp., even) indexed MAS

sub-word of w, then all other strings from the same disc should go to only odd (resp.,

even) indexed MAS sub-word. That is all one needs to obtain the overlay mentioned in

the statement of the assertion.

The uniqueness of the overlay holds because there is no network inside X . In par-

ticular, one obtains Xeven (resp., Xodd) simply by erasing all the marked points on the
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external disc corresponding to the odd (resp., even) indexed MAS sub-words along with

the strings and internal discs connected to these marked points.

We return to the proof of the lemma. For every w ∈ W and X ∈ Dw, let λX denote

the product of the scalars corresponding to the P -action of every connected networks in

X , and X ′ ∈ Dw be the element obtained by removing all networks in X .

In order to establish positivity of [·, ·]w for w ∈ W ′, consider the linear map defined

by

Dw ⊃ Dw ∋ X
Φw7−→ λX (X ′

odd ⊗X
′
even) ∈ Dwodd

⊗Dweven .

Observe that if [·, ·]w,⊗ denotes the sesquilinear form on Dwodd
⊗Dweven obtained from the

product of [·, ·]wodd
and [·, ·]weven , then [X, Y ]w = [Φw(X), Φw(Y )]w,⊗ for all X, Y ∈ Dw.

Since the lengths of both wodd and weven are strictly smaller than that of w, a simple

induction on the length of w yields the required result as the tensor product of positive

sesquilinear forms is again positive.

For w1, w2 ∈ W , a P -labelled annular tangle from w1 to w2 is an oriented tangle in

which the color of the external disc is w2, there is an unlabelled distinguished internal

disc with color w1 and all other internal discs have colors in Walt and labels from the

corresponding P -spaces. Any such annular tangle A : w1 → w2 induces a linear map from

Dw1 to Dw2 via composition; moreover, one can define an annular tangle A# : w2 → w1

which is obtained by (i) reflecting A around the external disc so that the external (resp.

distinguished internal) disc becomes the distinguished internal (resp. external) disc after

reflection, (ii) reversing the orientation of every string after reflection, and (iii) replacing

the label of each internal disc by its ∗. It is easy to see that # is an involution and

[A(X), Y ]w2 = [X,A#(Y )]w1 for all X ∈ Dw1 , Y ∈ Dw2 (here we use sphericality of the

partition function Z.)

Following [Jon99], we define Jw ⊆ Dw by Jw := {x ∈ Dw : Z(A(x)) = 0 for all A :

w → ∅}. By [Jon99, Proposition 1.24], this is a planar ideal of D, and clearly in our

context this is a *-ideal. We claim that X ∈ Jw if and only if X is in the kernel of [·, ·]w.

Certainly if Jw is in the kernel of our form. Suppose [X,X ]w = 0. Let A : w → ∅ be a

P-labelled annular tangle. Then by Cauchy-Schwartz, we have

|Z(A(X))| := |[A(X),∅]∅| = |[X,A
#(∅)]w| ≤ [X,X ]

1
2
w[A

#(∅), A#(∅)]
1
2
w = 0.

proving the claim. Therefore we can define the planar algebra F(P )w := Dw/Jw. This

is non-zero, since for w ∈ Walt, Dw/Jw ∼= Pw 6= {0}.
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We need to show that F(P )w is finite dimensional for every w ∈ W . We already

have F(P )w ∼= Pw for every w ∈ Walt and hence F(P )w is finite dimensional whenever

w ∈ Walt. For w ∈ W \ Walt, by the proof of Lemma 3.1.4, we have dim(F(P )w) ≤

dim (F(P )wodd
) · dim (F(P )weven). By similar induction argument used towards the end

of proof of Lemma 3.1.4, the required finite dimensionality of F(P )w follows. Further,

by [Jon99, Proposition 1.33], this is a C*-planar algebra.

Definition 3.1.5. The oriented factor planar algebra F(P ) is called free oriented ex-

tension of the subfactor planar algebra P . We denote the (subfactor planar algebra)

isomorphism between ι : P −→ S(F(P )) by (ιw : Pw −→ F(P )w)w∈Walt
.

Note that the free oriented extension F is actually a functor. Namely, if ϕ : P → P ′

is a planar *-homomorphism, then the obvious definition F(ϕ) : F(P ) → F(P ′) works.

Simply define ϕ̃ : DPw → D
P ′

w , and check that it preserves the partition function. One of

the motivations for studying this functor is that it is a left adjoint to the shading functor

S. We express this via the following universal property.

Theorem 3.1.6. Let P be a subfactor planar algebra and Q an oriented factor planar

algebra. For any ∗-homomorphism ψ : P → S(Q), there exists a unique ∗-homomorphism

ψ̃ : F(P )→ Q such that ψ̃ ◦ ι = ψ.

Proof. Let ψ = (ψw : Pw → Qw)w∈Walt
. We will use the notations set up in the construc-

tion of the free oriented extension. Define

Dw ⊃ Dw ∋ T (x1, . . . , xn)
ψ̂w
7−→ QT (ψw1x1, . . . , ψwnxn) ∈ Qw

where T : (w1, . . . , wn) → w and xi ∈ Pwi
, i = 1, . . . , n and extend ψ̃w linearly to Dw.

From the very definition of the positive semi-definite form [·, ·]w on Dw, the map ψ̂w takes

it to the inner product in Qw induced by the Q-action of the inner product tangle Hw

(since the shaded part of Q is P via ψ). So, ψ̂w factors through the quotient F(P )w

producing the map ψ̃w : F(P )w → Qw. Moreover, ψ̃ preserving the action is almost

immediate.

To check the equation ψ̃w ◦ ιw = ψw for all w ∈ Walt, take the element T (x1, . . . , xn) in

the previous paragraph with the extra assumption w ∈ Walt. We may assume T has no

non-empty network (which anyway gives scalar), and thereby T becomes a shaded tangle.

Consider the equivalence class [T (x1, . . . , xn)] ∈ F(P )w; note that ιPT (x1, . . . , xn) =

[T (x1, . . . , xn)]. On the other hand,

ψ̃w[T (x1, . . . , xn)] = QT (ψw1x1, . . . , ψwnxn) = ψwPT (x1, . . . , xn).
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Since elements of the form PT (x1, . . . , xn) span Pw, we have the desired equation.

For uniqueness, consider a ∗-homomorphism ϕ : F(P )→ Q satisfying ϕv ◦ ιv = ψv for

all v ∈ Walt. Again, consider T (x1, . . . , xn) as above with w possibly not inWalt. Observe

that

ϕw[T (x1, . . . , xn)] = ϕwF(P )T (ιw1x1, . . . , ιwnxn)] = QT (ψw1x1, . . . , ψwnxn) = ψ̃w[T (x1, . . . , xn)]

where the first equality follows from the definition of F(P ), second follows from ϕ :

F(P ) −→ Q being a ∗-homomorphism and the equation satisfied by ϕ and ψ, and the

final equality comes from the definition of ψ̃.

The above universal property makes the functor F : Psh → Por into a left adjoint of

this functor S (see [Mac71, Chap IV, Theorem 2]).

3.1.2 Concrete realization

Above, we constructed the free oriented extension from scratch whereas Thoerem 3.1.6

gives us a universal property for an oriented extension being isomorphic to the free one.

In the next theorem, we will provide another useful construction of the free oriented ex-

tension. Given some oriented extension, we will show that one can find the free oriented

extension inside a certain free product category; we use techniques similar to those ap-

peared in [MPS17]. We will make use of this in the next section when we study hyperfinite

realizability.

First, we describe a general construction for producing new oriented extensions from

a given one. Let C be a strict rigid semisimple C*-tensor category with simple tensor unit

and tensor-generated by X+; suppose Q := PX+ and P := S(Q). Let g+ be an element

in a group G and B := Hilbf.d.(G) be the rigid C*-tensor category of G-graded finite

dimensional Hilbert spaces. We look at the following objects in the free product B ∗ C

X− := X+, g− := g−1
+ , Y+ := g+ X+ g+, Y− := g− X− g− = Y +.

Appealing to Proposition 1.4.6, although we will continue using the notation B∗C, all our

objects and morphisms in the rest of this subsection will come from the corresponding

full subcategory NCP. For w = (ε1, . . . , εn) ∈ W , suppose Xw (resp., Yw) denotes the

object Xε1 ⊗ · · · ⊗ Xεn (resp., Yε1 ⊗ · · · ⊗ Yεn). Choose unitaries R− : 1 → g− ⊗ g+,

R+ : 1 → g+ ⊗ g− solving the conjugate equations for (g+, g−). Note that, since g±

are invertible (and hence simple), these solutions are automatically standard, and they

being unitaries, are normalized. If an alternately signed word u (possibly of odd length)
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starts with ε and ends with ν, then we say that u is of (ε, ν)-type; moreover, for such u,

we have the unitary αu ∈ (B ∗ C) (Yu , gε Xu gν) applying the unitaries R∗
− (resp., R∗

+)

on each g− ⊗ g+ (resp., g+ ⊗ g−) appearing between X− and X+ (resp., X+ and X−)

which appear in the tensor expansion of Yu. For w ∈ Walt of (ε,−ε)-type, define the map

γw : Pw → P Y+
w by

Pw = C(1, Xw) ∋ f
γw
7−→ α∗

w (1gε ⊗ f ⊗ 1g−ε
) Rε ∈ P

Y +

w .

For instance, if u = +−+, then, graphically,

αu =
 

g+ X+ g+ g−X− g− g+ X+ g+

and, if w = +−+−, then for f ∈ Pw = C(1, Xw), γw(f) looks like

 

g+ X+ g+ g−X− g− g+X+ g+ g− X− g−

f

In order to build the planar algebra Q = PX+ (and hence P too), we need to fix a

normalized standard solution (RX+ , RX+) to the conjugate equations for (X+, X−) (see

Section 1.3.3). Choosing such solutions for (Y+, Y−) involving (RX+ , RX+) and (R+, R−)

in the most obvious way, one can easily derive that
(
γw : Pw −→ P Y+

w

)
w∈Walt

is indeed a

subfactor planar algebra isomorphism. As we will see in the next lemma, for any oriented

extension Q, this oriented extension is isomorphic to the free oriented extension in the

case g+ has infinite order.

Theorem 3.1.7. Let Q be any oriented extension of a subfactor planar algebra P .

Then the projection category of F(P ) (that is, K(CF(P ))) is equivalent to a full tensor-

subcategory of the free product Hilbf.d.(Z) ∗ K(CQ).

Proof. Without loss of generality (via the converse part of Remark 1.3.3), we may assume

Q := PX+ and P := S(Q) for some strict, semisimple, rigid C*-tensor category C with

simple tensor unit and tensor-generated by X+. We borrow the notations described right

before the statement of this theorem by setting G = Z and g+ = 1 ∈ Z. It is enough to

show that P Y+ is isomorphic to F(P ).
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Applying Theorem 3.1.6, we get a unique ∗-homomorphism γ̃ : F(P ) −→ P Y+ such

that γ̃w ◦ ιw = γw for all w ∈ Walt. It is enough to show γ̃w is surjective for all w ∈ W

(which implies F(P ) and P Y+ are isomorphic since ∗-homomorphisms between oriented

factor planar algebras are automatically injective). We are already done with the cases

when w ∈ Walt (since γw is surjective) or P Y+
w is zero.

For w,w′ ∈ W , we say w is a rotation of w′ if there exists w1, w2 ∈ W such that

w = w1w2 and w
′ = w2w1. For any such w,w′ ∈ W , if γ̃w is surjective, then so is γ̃w′. To

see this, pick any rotation implementing oriented tangle ρ : w −→ w′; note that

P
Y+
w′ = P Y+

ρ (P Y+
w ) = P Y+

ρ γ̃w(F(P )w) = γ̃w′ F(P )ρ(F(P )w) = γ̃w′(F(P )w′).

Clearly, the rotation class of every word in W \Walt whose P
Y+-space is non-zero, must

have at least one word belonging to the set

W0 :=
{
w ∈ W \Walt : w starts and ends with the same sign, and P Y+

w 6= {0}
}
.

Our goal boils down to establishing surjectivity of γ̃w for all w ∈ W0. For this, we use

induction on the number of MAS sub-words.

Let h+ := g+ ⊗ g+ and h− := g− ⊗ g− = h+. Suppose w ∈ W0. If w = w1w2 . . . wk is

the MAS sub-word decomposition and wi has (εi, εi+1)-type for 1 ≤ i ≤ n (and thereby

ε1 = εn+1), then we have an isomorphism

(B ∗ C) (1 , hε1Xw1hε2Xw2 · · ·hεnXwn) ∋ a
σ
7−→

(R∗
−ε1 ⊗ α

∗
w1
⊗ · · · ⊗ α∗

wn
)(1g−ε1

⊗ a⊗ 1gε1 )R−ε1 ∈ (B ∗ C) (1 , Yw1 ⊗ · · · ⊗ Ywn) = P Y+
w .

Graphically, σ(a) is given by

 

Yw1 Yw2 Ywn

α∗
w1

α∗
w2

α∗
wn

gε1 gε1 Xw1
gε2 gε2 Xw2

a
gε3 gεn−1Xwn

We now use the description of morphism spaces of B ∗ C (in fact, NCP) in ??; the

morphism space (B ∗ C) (1 , hε1Xw1hε2Xw2 · · ·hεnXwn) by definition is a subspace of

B(1B, hε1 ⊗ · · · ⊗ hεn) ⊗ C(1C, Xw1 ⊗ · · · ⊗Xwn) = B(1B, hε1 ⊗ · · · ⊗ hεn) ⊗ C(1C, Xw).
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Let f be a (∅ , hε1Xw1hε2Xw2 . . . hεnXwn)-NCP such that Zf is non-zero. Observe

that f can viewed as an non-crossing overlay of a pair of oriented tangles S and T (x1, . . . , xm)

such that

1. S connects to the points on the boundary of the rectangle marked by hεi’s, and has

internal discs labelled by non-zero elements of P
h+
• ,

2. T connects to the points marked by Xwj
’s with internal discs labeled by xk’s coming

from P
X+
• .

Since (h+, h−) is a dual pair of invertible objects and none of their non-zero finite tensor

powers is equivalent to 1, we may replace S (up to a non-zero scalar) by a Temperley-Lieb

diagram where h+ can be joined by a string only to h−. In other words, the partitions in

f consisting of hεi’s can be assumed to be pair-partitions of h+ and h−.

Now recall the definition of Dw from the free oriented extension construction in the

previous section. We claim that T (x1, . . . , xm) ∈ Dw . To see this, we use induction on

the number of MAS-sub-words. First of all, note that n has to be even since S is given

by pair-partitions, each consisting of h+ and h−, implying

{i ∈ {1, . . . n} : hεi = +} = {i ∈ {1, . . . n} : hεi = −} .

So, the smallest n is 2 in which case (hε1 , hε2) is either (+,−) or (−,+). This implies

both w1 and w2 has to be even and thereby lie in Walt. Now, the non-crossing nature of

the partitioning forces Xw1 and Xw2 to be separate singleton partitions because (hε1 , hε2)

forms a partition. Thus T has exactly 2 internal discs with colors w1, w2 ∈ Walt. Hence,

T (x1, x2) ∈ Dw.

Suppose our T (x1, . . . , xm) ∈ Dw holds for all T , xi, and w ∈ W0 with number of MAS

sub-words at most 2n. Pick w ∈ W0 with 2n+2 MAS sub-words. In the Temperley-Lieb

diagram S, we can find consecutive elements hεi and hεi+1
which are pair partitioned,

implying εi+1 = −εi. Further, we may assume i > 1 since 2n + 2 > 4. As a result, wi

must have even length and thereby belong to Walt. The non-crossing partitioning forces

Xwi
to become a singleton partition. So, T has an internal disc with the color wi ∈ Walt,

connected to the MAS sub-word wi of w on the boundary of the external disc, and labelled

with x̃ ∈ PX+
wi

= C(1, Xwi
). Set w′ := wi−1wi+1 and w′′ := w1, . . . wi−2, w

′, wi+2, . . . w2n+2.

Clearly, the word w′ is alternately signed and the defining equation of w′′ gives its MAS

sub-word decomposition. In the non-crossing partitioning of f , we erase the partitions

(Xwi
) and (hεi, hεi+1

) and their associated morphisms, to get a new one, say f ′. Note that

94



Zf ′ ∈ (B ∗ C) (1, hε1Xw1 · · ·Xwi−2
hεi−1

Xw′hεi+2
Xwi+2

· · ·Xw2n+2). We have the formula

Zf =
(
1hε1Xw1 ···Xwi−2

hεi−1
Xwi−1

⊗ x̃⊗ 1Xwi+1
hεi+2

Xwi+2
···Xw2n+2

)
◦ Zf ′.

Therefore Zf ′ 6= 0 (Zf is assumed to be nonzero). Let S ′ and T ′(x′1, . . . , x
′
m′) be the

corresponding tangles coming from f ′. As w′′ has 2n MAS sub-words, by induction

hypothesis, we have T ′(x′1, . . . , x
′
m′) ∈ Dw′′. Now, T (x1, . . . , xm) can be obtained from

T ′(x′1, . . . , x
′
m′) first by splitting w′ on the boundary of the external disc into wi−1 and

wi+1 and inserting the word wi ∈ Walt in between, and then attaching an internal disc of

color wi labelled with x̃ to this inserted word wi with strings. Hence, T (x1, . . . , xm) ∈ Dw

proving the claim.

To complete the proof, it will suffice to show σ sends the non-zero Zf to

P
Y+
T (γv1x1, . . . , γvmxm) = γ̃[T (x1, . . . , xm)] ∈ P

Y+
w = (B ∗ C) (1, Yw) ⊂ B(1B, hw)⊗C(1C, Xw).

Note that B(1B, hw) is one-dimensional. Just as Zf = P h+⊗PT (x1, . . . , xm), a its straight-

forward to see that σZf can also be expressed as P
g+
S′ ⊗ P

X+

T (x1, . . . , xm) where S ′ is a

pair-partitioning of the g± appearing in Yw.

Next, we look at the non-crossing partitioning P
Y+
T (γv1x1, . . . , γvmxm). The way

T (x1, . . . , xm) is read off from the non-crossing partition view of f , we can say that

the colors v1, . . . , vm (lying in Walt) correspond to the partitions consisting of Xwi
’s. At

this point, it is useful to work with a standard form representative of T (as described in

Section 1.3.3); here, we do have a standard form, where the vj’s are connected straight

up to the top of the external rectangle by strings without any local maxima or minima.

Let us look at the j-th internal rectangle; suppose vj ∈ Walt is of (ε,−ε)-type. By the

action of tangles of the oriented planar algebra P Y+ defined in Section 1.3.3, the unitary

α∗
vj

appearing in the label γvjxj = α∗
vj

(1gε⊗xj⊗1g−ε
) Rε, slides straight up to the top of

the external rectangle of T . Moreover, the gε and g−ε at the two extremes of Yvj (which

are also part of the external rectangle), are pair-partitioned by the Rε appearing in γvjxj .

This lets us to express P
Y+
T (γv1x1, . . . , γvmxm) as P

g+
S′′ ⊗ P

X+

T (x1, . . . , xm) where S ′′ is a

pair-partitioning of the g± appearing in Yw and thus the proof is complete.

3.1.3 Free oriented extension of the Temperley-Lieb Planar al-

gebra

The foremost example of oriented extensions comes from the Temperley-Lieb planar al-

gebra. For δ ≥ 2, TLδ will denote the subfactor planar algebra with modulus δ.
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We consider the free oriented Temperley-Lieb planar algebra, F(TLδ). For a word w

with letters in {+,−}, the vector space F(TLδ)w is the complex span of w-tangles without

any internal discs and loops, that is, oriented Temperley-Lieb diagrams. The oriented

planar tangles act on F(TLδ) exactly same way as in the ordinary TLδ. As in TLδ, we

have a double sequence of Jones-Wenzl idempotents f+
n ∈ TLδ+n = F(TLδ)(+−)2n and

f−
n ∈ TL

δ
−n = F(TLδ)(−+)2n for n ≥ 1. When n = 0, f+

0 and f−
0 get identified in F(TLδ)

which we denote by f0. The projection category of F(TLδ), K(CF(TLδ)), is generated

by the projection f+
1 and has f0 as the tensor unit. It will be interesting to look at

the irreducible objects of Cδfree. For this, we use the MAS sub-word decomposition of

words with letters in {+,−} (possibly starting and ending with the same sign). Let v =

v1v2 · · · vn be the MAS sub-word decomposition of v where each vi starts in εi ∈ {+,−}.

If we set fvv∗ to be the projection,

 f ε1|v1| f ε2|v2| f εn|vn|
v1

v1

v2

v2

vn

vn
⋆⋆⋆

⋆

,

then, with little effort, one can prove that fvv∗ is a minimal projection of F(TLδ)vv∗ and

thereby a simple object K(CF(TLδ)). We now need to see whether for all w, every simple

object in K(CF(TLδ)) (same as a minimal projection in F(TLδ)w) is equivalent to f0 or

one of these fvv∗ ’s. For projections to exist, we should necessarily have w = uũ. Using

the standard trick of ‘through strings’ and ‘middle pattern analysis’ (see [BJ97]), one can

show that this is indeed the case.

From [Ban97] and [BRV06], one can see that the (co-)representation category of free

unitary quantum group Au(F ) for F ≥ 0 and F(TLδ) are equivalent.

One more TLδ are the so called unshaded Temperley-Lieb denoted by USTLδ. Define

USTLδw as the span of set of all non-crossing pairings of letters in w (irrespective of the

signs, that is, pairing of like signs is allowed). This automatically puts the restriction

USTLδw is zero if length of w is odd. Given any oriented tangle, removing all the directions

and labels of the strings gives an unshaded TL tangle and hence can act on USTLδ (action

of tangles with any of the discs having color of odd length is taken to be zero). Note

that, irrespective of the sequence of letters in words, if the length of two words are same,

then the corresponding vector spaces are identical. Clearly, USTLδ is a {+}-oriented

factor planar algebra for δ ≥ 2 and F(TLδ) sits inside it in a canonical way (as proved

in Theorem 3.1.6). Under this inclusion, the projection fvv∗ is no longer minimal if there

is at least two MAS sub-words in v. In fact, the irreducibles in the projection category

K(CUSTL
δ

) of USTLδ, come from those fvv∗ ’s for which all the letters in v are alternately
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signed. Now, note that USTLδ++ and USTLδ−− are one dimensional; this shows f+− and

f−+ are isomorphic and thereby, f(+−)k and f(−+)k become isomorphic. Hence simple

objects of K(CUSTL
δ

) can be identified with N ∪ {0}.

This category can be realized as the representation category of the free orthogonal

quantum groups Ao(F ), where F is a matrix with Tr(F ∗F ) = δ and FF = 1. There

is another case, namely when FF = −1, which corresponding to Rep(SUq(2)) with

q + q−1 = δ. These planar algebras cannot actually be “unshaded” since the generating

object is not symmetrically self-dual, but nevertheless provide oriented extensions TLδ

(see [Ban96]).

We propose the following natural problem.

Problem 3.1.8. Classify all oriented extension of the TLδ for δ ≥ 2.

We expect the corresponding problem for δ < 2 to actually be more difficult, and

relate closely to the extension theory of fusion categories [ENO10]. The free product of

the “even parts” of this subfactor planar algebra are very likely to have a large number

of quotients, and each of these will likely have a large number of invertible bimodules,

making classifications of extensions difficult. However, in the case δ ≥ 2, we expect

the number quotients of the even part to be manageable, and the number of invertible

bimodules to be small, making this problem feasible.

3.2 Hyperfinite constructions

In this section, we make use of a result of Vaes about existence and uniqueness of sub-

factor standard invariants in the hyperfinite II1 factor to provide some more examples.

In Section 3.1, we have seen that every subfactor planar algebra has a canonical ori-

ented extension, namely the free one. However, as described in this introduction, if we

know that there exists a hyperfinite subfactor whose standard is given by the subfactor

planar algebra (which we refer as hyperfinite realizable), we can produce many oriented

extensions. We describe the procedure below.

Suppose N ⊂ M is an extremal, finite index subfactor such that there is an iso-

morphism ϕ : N → M . Consider the extremal bifinite N -N bimodule Hϕ given by:

Hϕ := L2(M) and n1 · x̂ ·n2 := ̂[n1yϕ(n2)] for all x ∈M and n1, n2 ∈ N . As discussed in

Section 1.3.3, we can associate a singly generated oriented planar algebra, say OP ϕ, to

the rigid C∗-tensor category generated by Hϕ. The shaded part of OP ϕ indeed turns out

to be isomorphic to the subfactor planar algebra PN⊂M associated to N ⊂ M ; thereby,
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OP ϕ becomes an oriented extension of PN⊂M . To see this, one has to use the isomor-

phism between the grid of relative commutants and intertwiner spaces (as in [JS97]) and

the decomposition NH
ϕ
N
∼= NL

2(M)M ⊗
M

MH
ϕ
N (where MH

ϕ
N is an invertible bimodule);

a more explicit isomorphism can be found in [Bur15] or [DGG14a, Theorem 5.2]. In

other words, starting from a subfactor planar algebra P such that it is known that the P

comes from a subfactor N ⊂M where N and M are isomorphic, then every isomorphism

between N and M gives rise to an oriented extension of P . In particular, if the subfactor

planar algebra corresponds to a hyperfinite one, then one can easily obtain many of its

oriented extensions by picking different isomorphisms from N to M .

We next deal with the question whether the free oriented extension of a hyperfinite

realizable subfactor planar algebra is hyperfinite realizable. For this, recall the following

definitions from [Vae08] regarding freeness of two fusion subalgebras of bifinite bimodules

over a II1 factor.

Definition 3.2.1 (Vaes). Let M be a II1-factor and F1,F2 be two fusion subalgebras of

the fusion algebra of bifinite bimodules over M with basis χ1 and χ2 respectively. Then,

F1 and F2 are said to be free if:

(i) every tensor product of non-trivial irreducible bimodules, with factors alternatingly

from χ1 and χ2, is irreducible,

(ii) two tensor products of non-trivial irreducible bimodules, with factors alternatingly

from χ1 and χ2, are equivalent if and only if they are factor by factor equivalent.

Proposition 3.2.2. The free oriented extension of a hyperfinite realizable subfactor pla-

nar algebra is isomorphic to a oriented factor planar algebra singly generated by an ex-

tremal bifinite bimodule over the hyperfinite II1-factor R.

Proof. Suppose Bimext(R) denotes the category of extremal bifinite bimodules over R.

Since subfactor planar algebras are assumed to be spherical, without loss of generality, we

may start with a subfactor planar algebra P associated to RHR ∈ Obj(Bimext(R)). Let Q

be the singly generated oriented factor planar algebra associated to RHR, and C be the full

subcategory of Bimext(R), tensor-generated by RHR. From Remark 1.3.3, C is monoidally

equivalent to the projection category K(CQ) (associated to Q) as C*-categories.

Consider an outer action κ of Z on R. For n ∈ Z, let RKnR be the invertible bimodule

L2(κn), that is, Kn := L2(R) on which the left (resp., right) action of R is the usual

one (resp., twisted by κn). Suppose D denotes the subcategory of Bimext(R), whose

irreducible sub-modules are isomorphic to Kn’s. Clearly, D is equivalent to Hilbf.d.(Z).
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Let GC and GD be the fusion sub-algebras of the fusion algebra of Bimext(R) corre-

sponding to C and D respectively. Now, [Vae08, Theorem 5.1] tells us that there exists

θ ∈ Aut(R) such that the fusion sub-algebras corresponding to C and L2(θ)⊗
R
D ⊗

R
L2(θ)

are free. So, replacing the outer action κ by Adθ ◦ κ, we may assume that GC and GD are

free. We claim that the full subcategory E of Bimext(R) tensor-generated by C and D is

monoidally equivalent to C ∗ D.

Applying Theorem 1.4.7, we get a monoidal C*-functor A : C ∗ D → E such that

the restriction of A to C (resp., D) is equivalent to the containment of C (resp., D) in E

as a full subcategory. Since C ∗ D and E are semi-simple, rigid C*-tensor categories, A

being a monoidal C*-functor, must be faithful. Definition 3.2.1 (i) and Proposition 1.4.6

implies that A must send simple objects to simple ones; Definition 3.2.1 (ii) implies that

A must induce a bijection on isomorphism classes of simple objects. Any monoidal C*-

functor between semi-simple rigid C*-tensor categories which induces a bijection between

isomorphism classes of simple objects is an equivalence.

Thus we have a copy of C ∗Hilbf.d.(Z) as a full subcategory of Bimext(R), so the result

follows by Theorem 3.1.7.

Given a subfactor planar algebra, it would be interesting to find out all possible

oriented extensions (up to isomorphism).
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