
Infinite Mode Quantum Gaussian
States

Tiju Cherian John

Indian Statistical Institute
2018





Infinite Mode Quantum Gaussian
States

Thesis submitted to the Indian Statistical Institute

in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

in Mathematics

by

Tiju Cherian John

Supervisor: Prof. B. V. Rajarama Bhat

Indian Statistical Institute
2018





Dedicated
to

Amma, Daddy, Vaava, Achachan and my teachers





Acknowledgements

Past six years have been a roller coaster ride with occasional joys of learning and discovery
coupled with the despair and frustrations of ignorance and puzzlement. There was always
a bunch of people around me to share my happiness and sorrow and to help me out in
grinding situations. They are too many to mention all of them here. But I hope to show
my gratitude to some of them below.

I am indebted to Prof. B. V. Rajarama Bhat for all the mathematics I learned in
the past few years. My mathematical thinking has been greatly influenced by the clarity
of thinking he possesses. Discussions with him have enriched me in several ways from
mathematics to personal life to my attitude towards mother earth and nature. There is a
lot to say about him, but I stop here just by remarking I feel lucky to get him as my PhD
supervisor and what he has done to me cannot be repaid in any way.

Collaboration with R. Srinivasan of Chennai Mathematical Institute(CMI) was a turn-
ing point in my research. Sharp observations made by him during our discussions helped
me to move faster. Also, he went out the way to make my research visit to CMI a more
comfortable one. I thank him for the continuing support I receive from him.

Prof. K. R. Parthasarathy and Prof. K. B. Sinha (KRP and KBS as we fondly call
them) need no introduction. They along with my supervisor form an exceptional trio which
inspires me whenever I think of any of them. It reminds me of the famous quotation "Stand
on the shoulders of giants". The book An Introduction to Quantum Stochastic Calculus by
KRP has been the bible for me. My research career started with the 2015 lecture series by
KRP at ISI. I am happy that we could do some open problems suggested by him during
those lectures. Discussions with KBS and occasional lectures he delivered at ISI were real
sources of enlightenment. I express my sincere gratitude to these remarkable people.

Prof. Martin Lindsay, Prof. T. S. S. R. K. Rao and Prof. Jaydeb Sarkar are a few
other mathematicians who influenced me profoundly in the past few years. I got a lot of
opportunities to discuss both academic and non-academic things with them in the past.
Martin Lindsay was the one who suggested me to look at quasifree states on CCR Algebra,
and it turned out to be a crucial element in my research. I thank all of them for everything
they did to me.

i



ii

The non-academic staff of ISI were always helpful as they took care of all the adminis-
trative matters we need. I sincerely thank them for all the excellent work they do. Special
mention should be given to the mess workers for their co-operation during my different
tenures as mess manager.

Friends at ISI, how am I ever going to thank each one of them! They are numerous,
and I have been fortunate to be around so many amusing people. I will just mention a
few friends who got directly involved with my studies at ISI and preparation of this thesis.
I thank Sumesh, Nirupama, Vijay and Arundhathi for so many fruitful discussions I had
with them. Saranya, Arundhathi and Levy went through the manuscript of this thesis
meticulously and pointed out several mistakes and corrections. Soumen helped me a lot
with compiling the thesis in LATEX. I am grateful to all of them. I should thank my office
mate Pratyusha for providing me such a calm environment in the office.

Jis Joseph, Gayathri Varma and my brother are a few other people who have been
always there for me, whatever the situation be. While my brother is my first hero in
science, Jis Joseph is my first mentor in mathematics. Gayathri Varma is my right hand
and life support. It is not possible to describe in words how valuable their support is in
my career. I express my deep gratitude to each one of them from the bottom of my heart.

Finally, I am forever indebted to my Daddy and Amma for their loving encouragements,
care and support. The atmosphere in our family is what made me and my brother take up
science as our career.

Bangalore,
2018

Tiju Cherian John



Contents

Introduction 1

1 Preliminaries 3
1.1 Symmetric Fock space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Basic operators in quantum theory . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Factorizability and Irreducibility of the Weyl representation . . . . . . . . 6
1.4 Algebra of canonical commutation relations . . . . . . . . . . . . . . . . . 7
1.5 Quasifree States on CCR Algebra . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Representation of standard CCR algebra in Fock Space . . . . . . . . . . . 19
1.7 Symplectic automorphisms and transformations . . . . . . . . . . . . . . . 20
1.8 Shale Unitaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Real Normal Operators and Williamson’s Normal Form 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Preliminary definitions and observations . . . . . . . . . . . . . . . . . . . 28
2.3 Symmetry of a real normal operator . . . . . . . . . . . . . . . . . . . . . . 29
2.4 The spectral theorem for real normal operators . . . . . . . . . . . . . . . 31
2.5 Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Williamson’s Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Characterization of Quantum Gaussian states 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Quantum Gaussian States . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Necessary conditions on the covariance operator . . . . . . . . . . . . . . . 50
3.4 Positivity and Trace class conditions imply Gaussian state . . . . . . . . . 57

4 The Symmetry Group of Quantum Gaussian States 65
4.1 Convexity Properties of Covariance Operators . . . . . . . . . . . . . . . . 65
4.2 Structure of Quantum Gaussian States . . . . . . . . . . . . . . . . . . . . 69
4.3 Symmetry group of Gaussian states . . . . . . . . . . . . . . . . . . . . . . 71

Publications 81

iii



iv CONTENTS

Bibliography 83

Index 87



Introduction

A study of finite mode quantum Gaussian states were initiated back in the early 1970’s
[CH71,Hol75]. The subject is well studied both theoretically and experimentally [KLM02]
in the literature. Recently, it has been getting more attention in the context of its impor-
tance in continuous variable quantum information theory. In a quantum physics laboratory,
coherent states from a laser, thermal states from a black body source, vacuum state etc. are
all Gaussian [ARL14]. The experimental realisations and successes in quantum communica-
tion protocols make it exciting for a physicist [FOP05,BvL05,WGC06,WHTH07,ARL14].
A review of this subject can be seen in [WPGP+12]. Apart from its physical relevance
Gaussian states have got an elegant mathematical structure. It fits well into the fabric
of quantum probability as quantum versions of classical Gaussian distributions [Par10].
An expository article by K. R. Parthasarathy [Par10] explains the beautiful mathematical
structure of finite mode Gaussian states.

Due to the Stone-Von Neumannn theorem, any quantum state of a system of n-degrees
of freedom(finite mode) can be considered as a state on L2(Rn). Roughly speaking, finite
mode (quantum) Gaussian states are a particular class of quantum states on L2(Rn) in
which every element in the position-momentum field has a normal distribution. We call n
as the number of modes of the state in this case. L2(Rn) can be interpreted as the Bosonic
(symmetric) Fock space built over Cn and the Fock space properties of L2(Rn) are what
we exploit to study the Gaussian states. Hence it is natural to ask the question-What is a
Gaussian state on an arbitrary Bosonic Fock space? In other words we are asking-What is
an infinite mode Gaussian state? Apart from the mathematical aspects, we believe that
this entity can have a physical meaning. The primary purpose of this thesis is to define,
characterize, and study properties of infinite mode quantum Gaussian states.

In Chapter 1, we review the background materials needed for our work. This includes
minor improvements and improvisations of various known results. Also, we state several
results available in the literature without providing proofs. Further, Section 1.7 establishes
some crucial notations and conventions which we will use throughout this thesis.

The main aim of Chapter 2 is to prove an appropriate generalization of a finite dimen-
sional result called Williamson’s normal form. Theorem 2.6.1 establishes this. Here we
need to consider normal operators on separable real Hilbert spaces, and we find some in-
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Introduction

teresting results about them. For example, Theorem 2.3.1 proves that any normal operator
on a real Hilbert space is orthogonally equivalent to its transpose (adjoint). Although this
result is known in the literature [Vis78], we provide an elementary proof which shows the
symmetry we have in this situation. Corollary 2.5.1 proves a structure theorem for real
skew-symmetric operators which is exactly like the finite dimensional situation. This result
is elementary but new to best of our knowledge (in a recent paper [BP12], Böttcher et al.
prove the same result for the special case compact skew-symmetric operators). Here also
the symmetry of the situation is explicit in our proof. Further, we get some improvements
and shortcuts in the spectral theory of real normal operators in this chapter.

A systematic study of the quantum Gaussian states in the infinite mode setting is ini-
tiated in Chapter 3. We define Gaussian states using their quantum Fourier transform
(otherwise called as quantum characteristic function) and characterize them in two differ-
ent ways. Theorem 3.2.1 characterizes the Gaussian states in terms of their covariance
operators, and Theorem 3.4.4 identifies Gaussian states with a particular class of quasifree
states on CCR-Algebra. The power of an apparently simple result, the Williamson’s normal
form, can be seen in this chapter.

In Chapter 4, we prove some results about convexity, symmetry associated with Gaus-
sian states, we obtain a structure theorem also here. Results in this chapter are mostly the
infinite mode extensions of those in [Par13b]. Two important results in this chapter are:
(i) Theorem 4.2.1, which establishes the structure of a Gaussian state up to unitary equiv-
alence, and (ii) Theorem 4.3.2, which identifies all Gaussian symmetries on Bosonic Fock
space, where a unitary operator U is called a Gaussian symmetry if UρU∗ is a Gaussian
state for every Gaussian state ρ.

To summarize, our work put infinite mode Gaussian states into a rigorous mathemat-
ical framework and extend results in [Par10] and [Par13b] to this general situation. The
subsequent papers by Parthasarathy [Par13b,Par13a,Par15b,Par15a], Parthasarathy and
Sengupta [PS15a,PS15b], and Bhat, Parthasarathy and Sengupta [RBPS17] show that this
subject has good prospects from a mathematical perspective. Because of its importance in
quantum information theory and the open problems asked in the above papers, we believe
that Gaussian states open up a vast realm for doing some interesting mathematics which
are relevant to the future of quantum communication theory.
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Preliminaries

1.1 Symmetric Fock space

Let H be a complex Hilbert space with inner product 〈·, ·〉, which is anti-linear in the
first variable. All Hilbert spaces (over real or complex field) considered in this thesis
are separable. For n ∈ N, let Sn denote the group of all permutations of the the set
{1, 2, . . . , n}. Thus any σ ∈ Sn is a one-to-one map of {1, 2, . . . , n} onto itself. For each
σ ∈ Sn, let Uσ be defined on the product vectors in H⊗n by

Uσ(f1 ⊗ · · · ⊗ fn) = fσ−1(1) ⊗ · · · ⊗ fσ−1(n),

where σ−1 is the inverse of σ. Then Uσ is a scalar product preserving map of the total set
of product vectors in H⊗n onto itself. Hence Uσ extends uniquely to a unitary operator on
H⊗n , which we shall denote by Uσ itself. Clearly σ 7→ Uσ is a unitary representation of the
group Sn. The closed subspace of fixed points,

H s©n = {f ∈ H⊗n|Uσf = f, ∀σ ∈ Sn} (1.1.1)

of H⊗n is called the n-fold symmetric tensor product of H. The symmetric Fock space
(also known as Boson Fock space) over H is defined as

Γs(H) :=
∞⊕
n=0
H s©n

,

where we take H⊗0 := C. The n-th direct summand is called the n-particle subspace. Any
element in the n-particle subspace is called an n-particle vector . When n = 0 we call it as
the vacuum space. The vector Φ := 1⊕ 0⊕ 0⊕· · · is called the vacuum vector. We denote
by Γ0

s(H) the dense linear subspace generated by all n-particle vectors, n = 0, 1, 2, . . . and
we call them as finite particle spaces. For f ∈ H, define the exponential vector

e(f) = 1⊕ f ⊕ f⊗
2

√
2!
⊕ · · · ⊕ f⊗

n

√
n!
⊕ · · · , (1.1.2)
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Chapter 1. Preliminaries

then e(f) ∈ Γs(H). Notice that

〈e(f), e(g)〉 = exp 〈f, g〉 , (1.1.3)

for all f, g ∈ H. The set E := {e(f)|f ∈ H} of all exponential vectors is linearly indepen-
dent and total in Γs(H). Further if A is a dense set in H then the linear span of the set
{e(f)|f ∈ A} is dense in Γs(H).

Example 1 (Example 19.8 and Exercise 20.20 in [Par92]). Γs(C) = L2(R) by identifying
e(z) ∈ Γs(C) with the L2 function x 7→ (2π)−1/4 exp{−4−1x2 + zx− 2−1z2}.

1.2 Basic operators in quantum theory

For any fixed f ∈ H, consider the map defined on the set of exponential vectors E =
{e(g) : g ∈ H}, by e(g) 7→ {exp

(
−1

2‖f‖
2 − 〈f, g〉

)
}e(f + g). This yields an inner product

preserving map of E onto itself. As E is total, there exists a unique unitary operator
W (f) ∈ B(Γs(H)) satisfying

W (f)e(g) = {exp
(
−1

2‖f‖
2 − 〈f, g〉

)
}e(f + g). (1.2.1)

W (f) is called the Weyl operator associated with f ∈ H. The mapping f 7→ W (f) from H
into B(Γs(H)) is known as the Weyl representation. The following proposition sayes that
the Weyl representation is a strongly continuous, projective, unitary representation

Proposition 1.2.1. The Weyl representation is strongly continuous. Further,

W (−f) = W (f)∗,∀f ∈ H, (1.2.2)
W (f)W (g) = exp(−i Im 〈f, g〉)W (f + g). (1.2.3)

By Proposition 1.2.1, every f ∈ H yields a strongly continuous one parameter unitary
group {W (tf)|t ∈ R}. Let us denote by p(f), the observable obtained as the Stone
generator of this group. Then

W (tf) = e−itp(f), t ∈ R, f ∈ H. (1.2.4)

Recall the fact that the exponential domain E (which is the dense subspace spanned by
exponential vectors in Γs(H)) is a core for p(f) for all f ∈ H. The space of all finite particle
vectors, Γ0

s(H) is also a core for p(f) for all f . Let us fix a basis {ej} for H and let

pj = 2−1/2p(ej), qj = −2−1/2p(iej), (1.2.5)
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1.2. Basic operators in quantum theory

aj = 2−1/2(qj + ipj), a†j = 2−1/2(qj − ipj), (1.2.6)

for each j ∈ N. Then we have the Lie brackets

[qr, ps] = iδrsI, [ar, a†s] = δrs, ∀r, s ∈ N, (1.2.7)

on their respective common domains which are also dense. Further {ar, r ∈ N} and {a†r, r ∈
N} commute among themselves. We call pj and qj as the j-th momentum and position
operator, aj and a†j as the j-th annihilation and creation operator for all j ∈ N. We refer
to Section 20 of [Par92] for more details on these operators.

Proposition 1.2.2. Let z ∈ H be such that z =
n∑
j=1

αjej, where αj = xj+iyj, xj, yj ∈ R,∀j,

then

W (z) = e
−i
√

2
n∑
j=1

(xjpj−yjqj)
; p(z) =

√
2

n∑
j=1

(xjpj − yjqj).

If T ∈ B(Γs(H)), observe that H s©n is an invariant subspace for T⊗n for all n ∈ N .
So for n ∈ N, we can define an operator T s©n on H s©n as the restriction of T⊗n to H s©n.

Definition 1.2.1. If T is any contraction on H, define Γs(T ) on Γs(H) by

Γs(T ) = 1⊕ T ⊕ T s©2 ⊕ · · · ⊕ T s©n ⊕ · · · . (1.2.8)

Then Γs(T ) is a contraction and it satisfies

Γs(T )(e(f)) = e(Tf). (1.2.9)

These are called the second quantization maps.

Note that if U is a unitary then Γs(U) is also a unitary. Further we have

Γs(U)−1 = Γs(U−1), (1.2.10)
Γs(U)W (u)Γs(U)−1 = W (Uu). (1.2.11)

Also, it is possible to define Γs(U) via (1.2.9) even if U is a unitary mapping H to a
different Hilbert space K, where the exponential vector on the left is in Γs(H) and that on
the right is in Γs(K).

Proposition 1.2.3 (Exercise 20.22 (iv) in [Par92]). Let T be a positive operator of finite
trace with eigenvalues {λj|j = 1, 2, . . . } inclusive of multiplicity and supj |λj| < 1. Then
Γs(T ) is trace class and

Tr Γs(T ) = Πj(1− λj)−1.

5



Chapter 1. Preliminaries

1.3 Factorizability and Irreducibility of the Weyl representation

Proposition 1.3.1 (Factorizability). If H = H1 ⊕ H2, then there is a unique unitary
isomorphism between Γs(H) and Γs(H1)⊗Γs(H2) satisfying e(f⊕g) 7→ e(f)⊗e(g). Further,
under this isomorphism we have W (f ⊕ g) = W (f)⊗W (g).

Proof. Exercise 20.21, [Par92]

Recall the countable tensor product of Hilbert spaces (Exercise 15.10 in [Par92]). We
summarise some properties of infinite tensor product of Fock spaces in the proposition
below. Let Φn ∈ Γs(Hn) denote the vacuum vector in Γs(Hn) for every n. By construction
of⊗∞n=1Γs(Hn) using {Φn} as stabilising sequence , the set {⊗Nj=1e(xj)⊗e(0)⊗e(0)⊗· · · |xj ∈
Hj, N ∈ N} is a total set. If we identify the exponential vectors in the natural way,

e(⊕∞n=1xn) = ⊗∞n=1e(xn) := lim
N→∞

⊗Nj=1e(xj)⊗ e(0)⊗ e(0)⊗ · · · , (1.3.1)

then this identification becomes an isomorphism, it should be noted that the limit in the
right most term exists. We have

Proposition 1.3.2. Let H = ⊕∞n=1Hn, where Hn, n = 1, 2, 3 . . . is a sequence of Hilbert
spaces. Consider the infinite tensor product ⊗∞n=1Γs(Hn) constructed using the stabilising
sequence {Φn}, where Φn ∈ Γs(Hn) is the vacuum vector for every n. Then

Γs(H) = ⊗∞n=1Γs(Hn) (1.3.2)

under the natural isomorphism (1.3.1). In this identification, for ⊕∞n=1xn ∈ H, and con-
tractions An ∈ B(Hn), n ≥ 1,

W (⊕∞n=1xn) = ⊗∞n=1W (xn) := s-lim
N→∞

⊗Nj=1W (xj)⊗ I ⊗ I ⊗ · · · , (1.3.3)

Γs(⊕∞n=1An) = ⊗∞n=1Γs(An) := s-lim
N→∞

⊗Nj=1Γs(Aj)⊗ I ⊗ I ⊗ · · · . (1.3.4)

It may also be noted that

Γs(⊕∞n=1An) = s-lim
N→∞

⊗Nj=1Γs(Aj)⊗ |e(0)〉〈e(0)| ⊗ |e(0)〉〈e(0)| ⊗ · · · . (1.3.5)

where |e(0)〉〈e(0)| denote the rank one projection onto e(0).

Proof. All the statements are easily verified on exponential vectors.

Proposition 1.3.3. Let T be any bounded operator in Γs(H) such that TW (u) = W (u)T
for all u in H. The T is a scalar multiple of the identity.
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1.4. Algebra of canonical commutation relations

Proof. Proposition 20.9 in [Par92].

Corollary 1.3.1. [Irreducibility] There is no proper subspace of Γs(H) which is invariant
under W (u) for all u.

Proof. If a subspace is invariant under W (u) for all u then it is a reducing subspace due
to Proposition 1.2.1. Now irreducibility follows from Corollary 1.3.1.

Remarks 1. (i) First equation in (1.2.7) is the most fundamental one to quantum
mechanics. Relations in (1.2.7) are called called the canonical commutation rela-
tions(CCR). The equations (1.2.2) and (1.2.3) together is the exponentiated version
of the CCR known as the Weyl commutation relations or as the Weyl form of the
CCR.

(ii) The Weyl repesentation is a strongly continuous, factorizable, irreducible and projec-
tive unitary representation of the abelian group H.

(iii) When the dimension of H is finite the Stone-von Neumann Theorem (refer Exercise
13.8 in [Par92]) states that the Weyl representation is the only strongly continuous,
irreducible and projective unitary representation of the CCR up to unitary equiva-
lence.

1.4 Algebra of canonical commutation relations

In the previous sections, we developed a representation of the CCR starting from a Hilbert
space. This can be done more generally by starting from a real linear space and a bilinear
form σ on it called the symplectic structure. In this section, we list some basic facts about
symplectic spaces and quasifree states of CCR algebras. This is intended only to be a
quick review of what is needed for our work in this thesis. For more on these notions see
[Pet90,Hol71a,Hol71b,Hol75,vD71].

Definition 1.4.1. Let H be a real linear space. A bilinear form σ : H ×H → R is called
a symplectic form if σ(f, g) = −σ(g, f), for every f, g ∈ H. The pair (H, σ) is called a
symplectic space. A symplectic form σ on H is called nondegenerate if σ(f, g) = 0,∀g ∈ H
implies f = 0. A symplectic space (H, σ) is called a standard (symplectic) space if H
is a Hilbert space over C with respect to some inner product 〈·, ·〉 and σ(·, ·) = Im 〈·, ·〉.
It is called separable if there exists a countable family of vectors {fk} in H such that
σ(f, fk) = 0 for all k implies f = 0. Note that standard symplectic spaces are separable
when the Hilbert space under consideration is separable.
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Chapter 1. Preliminaries

Definition 1.4.2. Let (H, σ) be a symplectic space. The C∗-algebra of the canonical
commutation relation over (H, σ), written as CCR(H, σ) is by definition a C∗-algebra
generated by elements {W (f) : f ∈ H} such that

W (−f) = W (f)∗,∀f ∈ H, (1.4.1)
W (f)W (g) = exp(iσ(f, g))W (f + g). (1.4.2)

Theorem 1.4.1. [Pet90] For any nondegenerate symplectic space (H, σ), the C∗-algebra
of commutation relations, CCR(H, σ) exists and unique up to isomorphism. Further, the
linear hull of {W (f) : f ∈ H} is dense in CCR(H, σ).

Proof. First we shall prove the existence of the C∗- algebra CCR(H, σ). Later we show
that such C∗- algebras CCR(H, σ) are unique upto ismorphism. Consider H as a discrete
abelian group (with vector space addition).

l2(H) =
{
F : H → C : Supp(F ) is countable,

∑
x∈H
|F (x)|2 <∞

}

is a Hilbert space with the innerproduct 〈F,G〉 = ∑
x∈H

F (x)G(x). For each x ∈ H define
R(x) by

(R(x)F )(y) = exp(iσ(y, x))F (x+ y) ∀x, y ∈ H (1.4.3)

Then the following computation shows that it is inner product preserving and thus R(x)
is a unitary for each x ∈ H.

〈R(x)F,R(x)G〉 =
∑
y∈H

(R(x)F )(y)(R(x)G)(y)

=
∑
y∈H

exp(iσ(y, x))F (x+ y) exp(iσ(y, x))G(x+ y)

=
∑
y∈H

F (x+ y)G(x+ y)

= 〈F,G〉

Further for any F ∈ l2(H),

R(x1)R(x2)F (y) = R(x1)
(
R(x2)F

)
(y)

= exp(iσ(y, x1))R(x2)F (x1 + y)
= exp(iσ(y, x1)) exp(iσ(x1 + y, x2))F (x1 + x2 + y)
= exp(iσ(x1, x2)) exp(iσ(y, x1 + x2))F (x1 + x2 + y)

8



1.4. Algebra of canonical commutation relations

= exp(iσ(x1, x2))R(x1 + x2)F (y).

Thus we have

R(x1)R(x2) = exp(iσ(x1, x2))R(x1 + x2). (1.4.4)

The fact that R(x) is a unitary for each x ∈ H along with (1.4.4) and shows that

R(x)∗ = R(−x). (1.4.5)

Let A be the norm closure of the set
n∑
j=1

λjR(xj) : λj ∈ C, 1 ≤ j ≤ n, n ∈ N, xj ∈ H

 . (1.4.6)

in B(l2(H)). Then A is a C∗-algebra satisfying the conditions (i) and (ii) in the Definition
1.4.2. Thus the existence of CCR(H, σ) is proved.

Now we discuss about the uniqueness of C∗- algebra CCR(H, σ). Assume that B ⊂
B(H) (for some Hilbert space H) is another C∗- algebra generated by elements W (x), x ∈
H satisfying (i) and (ii), i.e., B is the norm closure of the set

n∑
j=1

λjW (xj) : λj ∈ C, 1 ≤ j ≤ n, n ∈ N, xj ∈ H


in B(H). We show that A and B are isomorphic by using the following steps:

Step 1. Let us consider the Hilbert space

`2(H,H) :=
{
A : H → H : Supp(A) is countable,

∑
x∈H
‖A(x)‖2 < +∞

}
.

Note that for every x ∈ H, the map δx(y) defined as 1 at x = y and 0 elsewhere, is in
`2(H). Let x ∈ H, f ∈ H, and define δx ⊗ f : H → H by

(δx ⊗ f)(y) =

 f if x = y;
0 if x 6= y.

This identification shows that `2(H,H) is isomorphic to `2(H) ⊗ H. The application
y 7→ π(y), where

π(y)(δx ⊗ f) = δx−y ⊗W (y)f, for all δx ⊗ f ∈ `2(H,H)

9



Chapter 1. Preliminaries

is a representation of the CCR on the Hilbert space `2(H,H). In order to show that R is
equivalent to π, we define a operator U : `2(H,H)→ `2(H,H) by

U(δx ⊗ f) = δx ⊗W (x)f, forall δx ⊗ f ∈ `2(H,H).

We claim that U is unitary operator, and Uπ(y) = (R(y)⊗ id)U , for all y ∈ H.

Let δx ⊗ f ∈ `2(H,H) and consider

Uπ(y)(δx ⊗ f) = U(δx−y ⊗W (y)f) = δx−y ⊗W (x− y)W (y)f
= δx−y ⊗ exp(iσ(x− y, y))W (x)f
= exp(iσ(x− y, y))δx−y ⊗W (x)f
= R(y)δx ⊗W (x)f
= (R(y)⊗ id)(δx ⊗W (x)f)
= (R(y)⊗ id)U(δx ⊗ f).

Since R and π are equivalent, it is enough to isomorphism between B and the C∗- algebra
Π generated by {π(y) : y ∈ H} ⊂ B(`2(H,H)).

Step 2. Now we show that for any finite linear combination∥∥∥∥∥∑
i

λiW (yi)
∥∥∥∥∥ =

∥∥∥∥∥∑
i

λiπ(yi)
∥∥∥∥∥ (1.4.7)

holds true.

Let Ĥ be the dual group of the discrete group H. Note that Ĥ is a compact topological
group by the endowed topology of point wise convergence. We consider the normalized
Haar measure say µ on Ĥ. Let us consider the Hilbert space

L2(Ĥ,H) :=

Â : Ĥ → H : Supp(Â) is countable,
∑
χ∈Ĥ

‖Â(χ)‖2 < +∞

 .
For every y ∈ H, we define π̂(y) : L2(Ĥ,H)→ L2(Ĥ,H) by

π̂(y)(Â)(χ) = χ(y)W (y)Â(χ), for all Â ∈ L2(Ĥ,H).

Here π̂(y) is a multiplication operator on L2(Ĥ,H) by χ(y)W (y), for each y ∈ H. So the
norm of the finite linear combination is given by∥∥∥∥∑λiπ̂(yi)

∥∥∥∥ = sup
{∥∥∥∥∑λi χ(yi)W (yi)

∥∥∥∥ : χ ∈ Ĥ
}
. (1.4.8)
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1.4. Algebra of canonical commutation relations

The spaces `2(H) and L2(Ĥ) are isomorphic by the Fourier transformation, which estab-
lishes unitary equivalence between π and π̂. This implies the following:∥∥∥∥∑λiπ(yi)

∥∥∥∥ =
∥∥∥∥∑λiπ̂(yi)

∥∥∥∥ (1.4.9)

By Equations (1.4.8) and (1.4.9), we have that∥∥∥∥∑λiπ(yi)
∥∥∥∥ = sup

{∥∥∥∥∑λi χ(yi)W (yi)
∥∥∥∥ : χ ∈ Ĥ

}
. (1.4.10)

Step 3. Let G :=
{

exp(2iσ(x, ·)) : x ∈ H
}
. Then G ⊂ Ĥ is a subgroup. We show

that G is dense subset of Ĥ by using the following result of harmonic analysis:

If K ⊂ Ĥ is a proper closed subgroup, then there exist 0 6= h ∈ H such that k(h) = 1
for every k ∈ K.

Suppose G is proper subgroup of Ĥ (i.e., the closure of G, G 6= Ĥ). By above result,
there exist 0 6= y ∈ H such that exp(2iσ(x, y)) = 1, for every x ∈ H. Then for every t ∈ R
there exist an integer l such that tσ(x, y) = l 2πi. This is possible on when σ(x, y) = 0,
for every x ∈ H. Since σ is non degenerate symplectic form, we have y = 0. This is a
contradiction. Thus G = Ĥ.

Suppose χ ∈ G i.e.,
χ(·) := exp(2iσ(x, ·)),

then we have the following:∥∥∥∥∑λiχ(yi)W (yi)
∥∥∥∥ =

∥∥∥∥∑λi exp(2iσ(x, yi))W (yi)
∥∥∥∥

=
∥∥∥∥∑λiW (x)W (yi)W (−x)

∥∥∥∥
=
∥∥∥∥W (x)

∑
λiW (x)W (yi)W (x)∗

∥∥∥∥
=
∥∥∥∥∑λiW (yi)

∥∥∥∥.
This shows that

sup
{∥∥∥∥∑λiχ(yi)W (yi)

∥∥∥∥ : χ ∈ G
}

=
∥∥∥∥∑λiW (yi)

∥∥∥∥.
Since G is a dense in Ĥ and∑λiχ(yi)W (yi) is bounded, we conclude from equation (1.4.10)
that ∥∥∥∥∑λiπ(yi)

∥∥∥∥ =
∥∥∥∥∑λiW (yi)

∥∥∥∥.
11
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Define Ψ: Π→ B by
Ψ
(∑

λiπ(yi)
)

=
∑

λiW (yi).

Then Ψ is an isometric isomorphism. Hence C∗ algebra CCR(H, σ) is unique up to iso-
morphism.

Corollary 1.4.1. CCR(H, σ) has a representation in B(l2(H)).

Corollary 1.4.2. The set {W (f) : f ∈ H} is a linearly independent set in CCR(H, σ).

Proof. Consider the representation of CCR(H, σ) in B(l2(H)) given in the proof of Theo-
rem 1.4.1. By the uniqueness of CCR(H, σ) it is sufficient to show that {R(x) : x ∈ H} ⊆
B(l2(H)) is linearly independent. Let λ1, λ2, · · · , λn be complex numbers and x1, x2, · · · , xn
be distinct elements in H such that

n∑
j=1

λjR(xj) = 0. For y ∈ H, consider δy ∈ l2(H), where

δy(x) = 1 for x = y and 0 everywhere else. Then
n∑
j=1

λjR(xj)δy(x) = 0, for all x, y ∈ H.
Then we get ∑

j

λj exp(iσ(xj, x))δy(xj + x) = 0 ∀x, y ∈ H (1.4.11)

Let 1 ≤ k ≤ n, taking x = 0 and y = xk in (1.4.11) gives λk = 0.

Proposition 1.4.1. If f, g ∈ H are different then

‖W (f)−W (g)‖ ≥
√

2.

Proof. For h1 6= h2, τ(W (h1)W (−h2)) = e−iσ(h1,h2)W (h1 − h2) = 0. Hence

‖W (f)−W (g)‖2 ≥ τ((W (f)−W (g))∗(W (f)−W (g))) = 2.

Remarks 2. (i) Strong continuity of the general representation of the CCR considered
in this section is meaningless.

(ii) Norm continuity cannot be demanded because of Proposition 1.4.1.
(iii) Stone-von Neumann Uniqueness theorem does not hold in this general set up.

1.5 Quasifree States on CCR Algebra

We need a few preliminaries from operator algebras to proceed further. We discuss that
first.
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Preliminaries from Operator Algebras

Preliminaries from Operator Algebras

Definition 1.5.1. A linear functional φ on a unital C∗-algebra A is a called state if
φ(x∗x) ≥ 0, for every x ∈ A, and φ(I) = 1, where I is the identity in A.

Definition 1.5.2. Let A be a C∗-algebra. If S ⊆ A then we set S∗ = {a : a∗ ∈ S} and
we call S self-adjoint when S = S∗. If A has a unit 1 and S is a self-adjoint subspace of
A containing 1, then we call S an operator system.

Definition 1.5.3. If S is an operator system, B is a C∗-algebra, and φ : S → B is a linear
map, then φ is called a positive map if it maps positive elements of S to positive elements
of B.

Let S be an operator system and φ : S → C be a positive map. If a ∈ S is self-adjoint
then a = 1

2(‖a‖ · 1 + a) − 1
2(‖a‖ · 1 − a) is a difference of two positive elements in S.

Hence φ(a) is a real number for every self-adjoint element in S. If x ∈ S is arbitrary,
then x = a + ib, where a = x+x∗

2 and b = x−x∗
2i are self adjoint elements in S. We write

a = Re x and b = Im x. Hence if x = a + ib is the cartesian decomposition of x then
φ(x∗) = φ(a− ib) = φ(a)− iφ(b) = φ(x). With these observations we have

Lemma 1.5.1. Let S be an operator system and φ : S → C be a positive map then

(i) φ is bounded.
(ii) φ can be extended to a unique positive map (denoted by φ̃) on the norm closure of S

(denoted by S̄).

Proof. (i) Let x ∈ S. Let λ ∈ C be such that |φ(x)| = λφ(x). Then |φ(x)| = φ(λx) =
φ(λx) = φ ((λx)∗). Then

|φ(x)| = 1
2[φ(λx) + φ ((λx)∗)]

= φ

(
λx+ (λx)∗

2

)
= φ (Re(λx))
≤ φ(‖Re(λx)‖ · 1)
≤ φ(‖λx‖ · 1)
= ‖x‖φ(1)

Thus φ is bounded.

13
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(ii) Since φ is bounded, it is uniformly continuous. Therefore, there exists a unique
continuous extension φ̃, of φ on S̄. We will prove that φ̃ is positive. Let p ∈ S̄ and p ≥ 0.
There exists a sequence {xn} in S such that xn → p, ie. ‖xn − p‖ → 0. Since p ≥ 0,
‖x∗n − p‖ → 0. This further implies ‖xn+x∗n

2 − p‖ → 0. Let hn = xn+x∗n
2 . Then hn is self

adjoint and hn → p.
Claim. Given ε > 0, there exists N ∈ N such that hn + ε · 1 ≥ 0, for all n ≥ N.
Proof (of claim). Let hn ∈ B(H) for some Hilbert space H. Choose N ∈ N such that
‖hn − p‖ ≤ ε

2 , whenever n ≥ N . Let n ≥ N and x ∈ H then,

〈(hn + ε · 1)x, x〉 = 〈(p+ ε · 1)x, x〉+ 〈(hn + ε · 1)− (p+ ε · 1)x, x〉
= 〈(p+ ε · 1)x, x〉+ 〈(hn − p)x, x〉
≥ | 〈(p+ ε · 1)x, x〉 | − | 〈(hn − p)x, x〉 |
≥ ε‖x‖2 − | 〈(hn − p)x, x〉 |, (since p ≥ 0)

≥ ε‖x‖2 − ε

2‖x‖
2, (Cauchy-Schwartz)

≥ ε

2‖x‖
2

Thus the claim is proved.

Now we have

φ̃(p+ ε · 1) = lim
n→∞

φ(hn + ε · 1) ≥ 0

Thus we have proved that, given ε > 0, φ̃(p) + ε · φ̃(1) ≥ 0. Hence φ̃(p) ≥ 0.

Definition 1.5.4. (i) A representation of a unital C∗ -algebraA is a ∗-homomorphism
π : A → B(H) (where H is some Hilbert space), which will always be assumed to be
a "unital homomorphism", meaning that π(1) = 1 - where the symbol 1 on the left
(respectively, right) denotes the identity of the C∗-algebra A (respectively, B(H)).

(ii) Two representations πi : A → B(Hi), i = 1, 2, are said to be equivalent if there exists
a unitary operator U : H1 → H2 with the property that π2(a) = Uπ1(a)U∗,∀a ∈ A.

(iii) A representation π : A → B(H) is said to be cyclic if there exists a vector Ω ∈ H
such that {π(a)Ω : a ∈ A} is dense in H. (In this case, the vector Ω is said to be a
cyclic vector for the representation π).

Theorem 1.5.1 (GNS Construction). Let A be a C∗-algebra and φ be a state on it,
then there exists a triple consisting of (Hφ,Πφ,Ωφ), where Hφ is a Hilbert space, Πφ is

14
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the representation of A in B(Hφ) and Ωφ ∈ Hφ is the cyclic vector associated with the
representation such that

φ(a) = 〈Ωφ,Πφ(a)Ωφ〉 ,∀a ∈ A.

The cyclic representation above is unique in the sense that if (H,Π,Ω) is another cyclic
representation for φ such that φ(a) = 〈Ω,Π(a)Ω〉 ,∀a ∈ A then there exists a unique unitary
U : H → Hφ such that U(Ω) = Ωφ and U(Π(a))U∗ = Πφ(a),∀a ∈ A.

Definition 1.5.5. A state φ on A is called primary if the von Neumann algebra (Πφ(A))′′

corresponding to the GNS-representation is a factor. It is called type I if (Πφ(A))′′ is a
type 1 factor.

Definition 1.5.6. Two states φ and ψ on A are called quasiequivalent if (Πφ(A))′′ and
(Πψ(A))′′ are isomorphic von Neumann algebras.

Quasifree states

Definition 1.5.7. A representation Π of CCR(H, σ) in B(H) is called regular if the map-
ping

t 7→ 〈Π(W (tf))ζ, η〉

is continuous for all ζ, η ∈ H, and for every f ∈ H.

All the representations of CCR(H, σ) considered in this thesis will be regular.

Proposition 1.5.1. Let (H, σ) be a symplectic space and G : H → C a function. There
exists a state φ on CCR(H, σ) such that

φ(W (f)) = G(f), ∀f ∈ H

if and only if G(0) = 1 and the kernel

(f, g) 7→ G(f − g) exp(−iσ(f, g)) (1.5.1)

is positive definite.

Proof. For a state φ on CCR(H, σ), φ(I) = φ(W (0)) = 1. Hence it is necessary to have
G(0) = 1. For x = ∑

cjW (fj), we have xx∗ = ∑
cjckW (fj)W (−fk) = ∑

cjckW (fj −
fk) exp(−iσ(f, g)). Since for a state φ, φ(xx∗) ≥ 0, we see that the positivity condition
also is necessary. On the other hand, the positivity condition along withG(0) = 1, allows us
to define a positive functional on the linear hull of the Weyl operators (Note that Corollary
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1.4.2 guaranties the well definedness of this map). Because of Theorem 1.4.1, and Lemma
1.5.1 we can extend it continuously to CCR(H, σ). This supplies a state with required
properties. Hence the conditions are sufficient.

Lemma 1.5.2. Let (H, σ) be a (nondegenerate) symplectic space. If α(·, ·) is a positive
symmetric bilinear form on H, then the following conditions are equivalent.

(i) The kernel (f, g) 7→ α(f, g)− iσ(f, g) is positive definite.
(ii) σ(f, g)2 ≤ α(f, f)α(g, g) for every f, g ∈ H.

Proof. Note that α is almost an inner product except for strict positivity.

Step 1: α can be taken as an innerproduct

It is clear that If α(f, f) = 0 for some f 6= 0, then the condition (ii) implies σ is
degenerate
Claim. If α(f, f) = 0 for some non zero f then (i)⇒ σ is degenerate.
Proof (of the Claim). Let the condition (i) hold and α(f1, f1) = 0 for some 0 6= f1 ∈
H. Then by Cauchy-Schwartz α(f1, f2) = 0 for every f2 ∈ H, since det ((α(fk, fl) −
iσ(fk, fl))) ≥ 0 for the 2 × 2 matrix ((α(fk, fl) − iσ(fk, fl))), k, l = 1, 2, we get that
σ(f1, f2) = 0, ∀f2 ∈ H. Thus for proving the lemma we can assume that α is strictly
positive and thus a real inner product on H.

Step 2: Reduction to finite dimensions, but we will lose non degeneracy.

Both the conditions (i) and (ii) hold on H if and only if they hold on all finite di-
mensional subspaces. H is a m-dimensional real inner product space, m finite. Therefore,
using the bilinearity of σ there exists an operator Q such that

σ(f, g) = α(Qf, g), ∀f, g ∈ H. (1.5.2)

Since σ(f, g) = −σ(g, f), we get Q∗ = −Q. According to the spectral decomposition
of skew-symmetric matrix, there exists a basis for H in which Q has a diagonal form
Diag(0, 0, . . . , 0, A1, A2, . . . , An), where

Aj =
 0 aj
−aj 0

 , 1 ≤ j ≤ n.

Step 3: Proof in finite dimensions.
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We will show that both the condition (i) and (ii) are equivalent to having |aj| ≤
1, 1 ≤ j ≤ n. Consider 3-dimensions and let {e0, e1, e2} be an orthonormal basis in which
Q =

[ 0 0 0
0 0 a
0 −a 0

]
.

Step 3.1: (ii)⇒ |a| ≤ 1.

Since Qe1 = −ae2, by taking f = e1 and g = e2 in (ii), it becomes α(−ae2, e2)2 ≤
α(e1, e1)α(e2, e2), which trivially reduces to |a|2 ≤ 1 .

Step 3.2: (i)⇒ |a| ≤ 1.

If we assume (i) then the 3 × 3 matrix ((α(ej, ek) − iσ(ej, ek))) =
[ 1 0 0

0 1 ia
0 −ia 1

]
must be

positive. This implies |a| ≤ 1.

Step 3.3:|a| ≤ 1⇒ (ii)

If |a| ≤ 1, then ‖Q‖ ≤ 1 and since α is an innerproduct, (ii) is obtained by applying
Cauchy-Schwartz inequality to α(Qf, g)2.

Step 3.3:|a| ≤ 1⇒ (i)

Let fj = fj0e0 + fj1e1 + fj2e2, cj ∈ C, 1 ≤ j ≤ m and put xl =
m∑
j=1

cjfjl, l = 0, 1, 2 then

m∑
j,k=1

cjck(α(fj, fk)− iσ(fj, fk)) =
m∑

j,k=1
cjck[(fj0fk0 + fj1fk1 + fj2fk2)

− ia(fj2fk1 − fj1fk2)]
= (x0x0 + x1x1 + x2x2)− ia(x2x1 − x1x2)

=
[
x0 x1 x2

] 
1 0 0
0 1 ia

0 −ia 1



x0

x1

x2


≥ 0

whenever |a| ≤ 1.

Corollary 1.5.1. Let ((aij))n×n be a positive definite then (( exp{aij})) is also positive,
i.e entry wise exponentiation preserves positivity.

Proof. The fact that entry wise product and sum of positive matrices are positive proves
this. It may also be noted that the n×n matrix with all the entries equal to 1 is a positive
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matrix (because it is of the form b∗b, where b = [1, 1, . . . , 1]1×n).

Theorem 1.5.2. [Pet90] Let (H, σ) be a symplectic space and α : H × H → R be a real
inner product on H. Then there exists a state φ on CCR(H, σ) such that

φ(W (f)) = exp
(
−1

2α(f, f)
)

∀f ∈ H. (1.5.3)

if and only if

σ(f, g)2 ≤ α(f, f)α(g, g), ∀f, g ∈ H. (1.5.4)

Proof. We will apply Proposition 1.5.1. Take G(f) = exp
(
−1

2α(f, f)
)
and we want to

prove the positivity of the kernel given in (1.5.1). Let cj ∈ C, bj = cj exp
(
−1

2α(fj, fj)
)
,

1 ≤ j ≤ m.

m∑
j,k=1

cjck exp
(
−1

2α(fj − fk, fj − fk)− iσ(fj, fk)
)

=
m∑

j,k=1

(
cj exp

(
−1

2α(fj, fj)
))(

ck exp
(
−1

2α(fk, fk)
))

× exp(α(fj, fk)− iσ(fj, fk))

=
m∑

j,k=1
bjbk exp(α(fj, fk)− iσ(fj, fk))

≥ 0

because of (1.5.4), Lemma 1.5.2 and Corollary 1.5.1.

Definition 1.5.8. A state φ on CCR(H, σ) determined in the form of (1.5.3) is called a
quasifree state. A CCR-algebra corresponding to a standard symplectic space (H, σ) will
be called a standard C∗-algebra of the CCR or standard CCR(H, σ).

Example 2. Let (H, σ) be a standard symplectic space. Take α(·, ·) = Re 〈·, ·〉, then
(1.5.4) is satisfied and thus there exist a quasifree state φ on the CCR(H, σ) such that

φ(W (f)) = exp
(
−1

2 〈f, f〉
)
.

Notation. If A is a real linear operator on a real Hilbert space H we use the notation AT

to denote the transpose of the operator defined by the equation 〈x,Ay〉 = 〈ATx, y〉 for all
x, y ∈ H.
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1.6. Representation of standard CCR algebra in Fock Space

Proposition 1.5.2 (Proposition 1 and 2 from [Hol71a]). A quasifree state of a standard
CCR(H, σ), ( Take σ(·, ·) = − Im 〈·, ·〉 here) is primary (c.f Definition 1.5.5) if and only
if α in equation (1.5.3) satisfies one of the following equivalent conditions.

(i) The space H is complete with respect to the norm coming from α. In other words,
(H,α(·, ·)) is a real Hilbert space.

(ii) There exists a bounded, invertible real linear operator A on (H,α) such that

α(f, g) = σ(Af, g), ∀f, g ∈ H. (1.5.5)

Further in this case,

AT = −A; − A2 − I ≥ 0 (1.5.6)

on (H,α(·, ·)).

Since (H, σ) is standard (1.5.5) can also be written as

α(f, g) = − Im 〈Af, g〉 , ∀f, g ∈ H.

Sometimes we write φA to denote the primary quasifree state obtained by (1.5.5) on a
standard CCR(H, σ), also we write HA to denote the real Hilbert space (H,α(·, ·)) in this
case.

Theorem 1.5.3. [Hol71a] Two primary quasifree states φA and φB on a standard CCR
algebra, CCR(H, σ), are quasiequivalent if and only if A−B and

√
−A2 − I −

√
−B2 − I

are Hilbert-Schmidt operators on HA.

1.6 Representation of standard CCR algebra in Fock Space

Let H be a complex Hilbert space with inner product 〈·, ·〉. Let H̄ denote (H, 〈·, ·〉). Take
σ(·, ·) = − Im 〈·, ·〉, Since H̄ is a Hilbert space, (H, σ) is the standard symplectic space
associated with H̄. Consider the symmetric Fock space Γs(H) associated with H, then
Proposition 1.2.1 provides a regular representation of CCR(H, σ) in Γs(H). It should
be noted that this representation is also the GNS representation corresponding to the
quasifree state φ−i (also known as fock-vacuum state), where −i denotes the operator of
scalar multiplication by the complex number −i considered as a real linear operator on H.
We may call φ−i as vacuum state. The name vacuum state will have a precise meaning
when we consider the "quantum characteristic function" (see Definition 3.2.1) of the vacuum
state |e(0)〉〈e(0)| on Γs(H).
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1.7 Symplectic automorphisms and transformations

Our basic set up is as in Section 1.6. Let H be a complex Hilbert space with inner product
〈·, ·〉. Often we consider H as real Hilbert space with 〈·, ·〉R = Re 〈·, ·〉. Let H ⊂ H be a
real subspace such that H = {x+ iy|x, y ∈ H} = H+ iH( i.e., H is the complexification of
the real Hilbert Space (H, 〈·, ·〉R), where 〈·, ·〉R := Re 〈·, ·〉). Now consider H as real Hilbert
space with the inner product Re 〈·, ·〉. Then

Re 〈x+ iy, u+ iv〉 =
〈x

y

 ,
u
v

〉
R

, (1.7.1)

where 〈·, ·〉R on right is the canonical inner product on H ⊕H inherited from H. Thus the
real Hilbert space H is isomorphic to H ⊕H via the map U which takes x+ iy 7→ ( xy ).

For any real linear operator S on H, define operators Sij on H such that

S(x+ iy) = S11x+ iS21x+ S12y + iS22y. (1.7.2)

Define the operator S0 on H ⊕H by

S0

x
y

 =
S11 S12

S21 S22

x
y

 . (1.7.3)

Then (1.7.1) and (1.7.2) implies

Re 〈S(x+ iy), S(u+ iv)〉
= Re 〈S11x+ S12y + i(S21x+ S22y), S11u+ S12v + i(S21u+ S22v)〉

=
〈S11x+ S12y

S21x+ S22y

 ,
S11u+ S12v

S21u+ S22v

〉
R

=
〈
S0

x
y

 , S0

u
v

〉
R

. (1.7.4)

Thus

S = UTS0U. (1.7.5)

Therefore, we identify S with S0 as a real linear operartor and often switch between them
freely. We also note here that if S is a complex linear operator then S11 = S22(= S1, say)
and S12 = −S21(= S2, say), then we can write S0 =

[
S1 S2
−S2 S1

]
.
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If K is another Hilbert space and S : H → K is real linear, then also the same analysis
hold. When we talk about a real linear operator S on H, we reserve the notation S0 to
mean the operator we constructed as above.

Let J be the operator of multiplication by −i on H considered as a real linear map,
then

J0 =
 0 I

−I 0

 .
We have JT0 = J−1

0 = −J0, (same is true for J also) and thus J0 (and J) are orthogonal
transformations.

A real linear bijective map L : H → H is said to be a symplectic automorphism if
it satisfies (i) L and L−1 are continuous (bounded) (ii) Im 〈Lz, Lw〉 = Im 〈z, w〉 for all
z, w ∈ H. If L from H to K satisfies the same conditions then we say L is a symplectic
transformation. Correspondingly L0 will also be called as symplectic automorphism (or
transformation).

Proposition 1.7.1 (Section 22 in [Par92]). L : H → K is symplectic if and only if

LT0 J0L0 = J0,

where J0 on left side is the involution operator on K ⊕K and that on the right side is the
involution operator on H ⊕H.

Example 3. Let A ∈ B(H) be any symmetric invertible operator on H, then the operator
T defined on H by T (u + iv) = Au + iA−1v is a symplectic automorphism of H. Further
note that

T0 =
A 0

0 A−1

 .

A complex Hilbert space can be considered as a real Hilbert space if we define the real
inner product as Re〈·, ·〉. We will have occasions to deal with the complexification of real
Hilbert spaces occurring in this manner. We saw above thatH has a canonical isomorphism
to H ⊕ H as a real Hilbert space. Let Ĥ denote the complexification (H,Re〈·, ·〉). If A
is a real linear operator on H, then let Â denote the complexification of A defined by
Â(z + iw) = Az + iAw. The following holds.
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Proposition 1.7.2. Ĥ is canonically isomorphic to H ⊕ H as a complex Hilbert space.

Further, if a real linear operator S on H corresponds to S0 =
S11 S12

S21 S22

 on H ⊕H, then

under this isomorphism Ŝ =
Ŝ11 Ŝ12

Ŝ21 Ŝ22

 on H⊕H.

Proof. As an element of the real Hilbert space H, the vector x+ iy is identified with ( xy ).
Consider the mapping ( xy ) + i( uv ) 7→

(
x+iu
y+iv

)
from Ĥ to H ⊕ H. Let us denote the inner

product in Ĥ by 〈·, ·〉C and that in H⊕H by 〈·, ·〉. Then
〈x1 + iu1

y1 + iv1

 ,
x2 + iu2

y2 + iv2

〉 =
〈x1

y1

+
iu1

iv1

 ,
x2

y2

+
iu2

iv2

〉

=
〈x1

y1

+ i

u1

v1

 ,
x2

y2

+ i

u2

v2

〉
C

.

Therefore, the isomorphism is proved. Now we proceed to prove the second statement. We
know that S and S0 are identified.

Ŝ0

x
y

+ i

u
v

 = S0

x
y

+ iS0

u
v


=
S11x+ S12y

S21x+ S22y

+ i

S11u+ S12v

S21u+ S22v


=
S11x+ iS11u+ S12y + +iS12v

S21x+ iS21u+ S22y + +iS22v


=
Ŝ11 Ŝ12

Ŝ21 Ŝ22

x+ iu

y + iv

 .

Corollary 1.7.1. Ĵ =
 0 I

−I 0

 on H⊕H.

Proposition 1.7.3. [Generalization of Proposition 22.1 in [Par92]] Let H,K be complex
Hilbert spaces and let S : H → K be symplectic. Then it admits a decomposition:

S = UTV (1.7.6)
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1.8. Shale Unitaries

where U : H → K and V : H → H are unitaries and T : H → H has the form

T (u+ iv) = Au+ iA−1v,

where A ∈ B(H) is a positive and invertible operator.

Proof. Apply polar decomposition to S so that S = U ′P where U ′ : H → K and P is a
positive operator on K. Now we can do the do the same analysis as in Proposition 22.1 in
[Par92] to the operator P to write it as V TTV .

1.8 Shale Unitaries

Shale’s theorem was proved in [Sha62]. It was further generalized in [BS05] for the case of
operators of the form T above (but between two different Hilbert spaces) in Proposition
1.7.3. In the work done later, we need a generalization of this (Theorem 2.1 in [BS05]) to
the case of general symplectic operators. Let H,K be two Hilbert spaces, define S(H,K)
by

S(H,K) = {L ∈ BR(H,K) : L is symplectic and LTL− I is Hilbert-Schmidt.}

We denote S(H) := S(H,H). Elements of S(H,K) are called Shale operators.

Theorem 1.8.1. (i) Let L ∈ BR(H,K) be a symplectic operator. Then there exists a
unitary operator Γs(L) : Γs(H)→ Γs(K) such that

Γs(L)W (u)Γs(L)∗ = W (Lu),∀u ∈ H, (1.8.1)

if and only if L ∈ S(H,K). In such a case, Γs(L) is determined uniquely up to a
scalar of modulus unity.

(ii) A unitary Γs(L) satisfying (1.8.1) can be chosen such that it satisfies

〈Γs(L)ΦH,ΦK〉 ∈ R+, (1.8.2)

where ΦH and ΦK are vacuum vectors in Γs(H) and Γs(K) respectively, this choice
makes Γs(L) unique. In this case,

Γs(L−1) = Γs(L)∗ (1.8.3)

(iii) Let H1,H2,H3 be three Hilbert spaces and L1 ∈ S(H1,H2), L2 ∈ S(H2,H3). Then

Γs(L2L1) = σ(L2, L1)Γs(L2)Γs(L1), (1.8.4)

where σ(L2, L1) ∈ C, |σ(L2, L1)| = 1.
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Proof. (i). Assume that L ∈ S(H,K). We will prove the existence of Γs(L) based on the
construction in [BS05]. By Proposition 1.7.3 there exist unitaries U : H → K, V : H → H
such that L = UTV where T is a symplectic automorphism of H such that

T (u+ iv) = Au+ iA−1v

where A ∈ B(H) is positive and invertible. It can be seen from the proof of Proposition
1.7.3 that

L0 = U0

A 0
0 A−1

V0

for some orthogonal transformations U0 ∈ B(H,K) and V0 ∈ B(H). Now it can be seen
that

LT0L0 = V −1
0

A2 0
0 A−2

V0.

Therefore LT0L0−I = V −1
0

A2 0
0 A−2

−
I 0

0 I

V0. Hence we get that A2−I is Hilbert-

Schmidt and since A is positive, Theorem 2.1 of [BS05] applies. Thus there exists Γs(T )
such that

Γs(T )W (u)Γs(T )∗ = W (Tu),∀u ∈ H, (1.8.5)
〈Γs(T )ΦH,ΦK〉 ∈ R+. (1.8.6)

Define

Γs(L) := Γs(U)Γs(T )Γs(V ), (1.8.7)

where Γs(U) and Γs(V ) are the second quantization associated with the unitary U and
V . A direct computation shows that Γs(L) satisfies the (1.8.1)(because of properties of
Γs(U),Γs(V ) and equation 1.8.6) and (1.8.2) (because second quantizations Γs(Uj) acts as
identity on vacuum vector). We refer to Theorem 22.11 in [Par92] for the necessity part.

(ii). Equation (1.8.2) is automatically satisfied in our construction in (1) above because
of (1.8.6). To see the uniqueness, let Γ1

s(L) and Γ2
s(L) satisfy (1.8.1) and (1.8.2). Therefore

we get Γ2
s(L)∗Γ1

s(L)W (u) = W (u)Γ2
s(L)∗Γ1

s(L),∀u ∈ H. Therefore by irreducibility of Weyl
operators (Proposition 20.9 in [Par92]), Γ2

s(L)∗Γ1
s(L) = cI for some complex scalar of unit

modulus. But now by (1.8.2) we get Γ2
s(L) = Γ1

s(L).

To prove (1.8.3), note that 〈Γs(L)∗ΦK,ΦH〉 = 〈Γs(L)ΦH,ΦK〉 ∈ R+ therefore if we
show that Γs(L)∗W (u)Γs(L) = W (L−1u) then by the uniqueness of Γs(L−1) we get (1.8.3).
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1.8. Shale Unitaries

Recall from Theorem 2.1 of [BS05] that Γs(T−1) = Γs(T )∗ and for second quantization
(1.2.9) unitary we have, Γs(U∗j ) = Γs(Uj)∗. Further by (1.8.7), and (1.2.11) we have

Γs(L)∗W (u)Γs(L) = Γs(U2)∗Γs(T )∗Γs(U1)∗W (u)Γs(U1)Γs(T )Γs(U2)
= W (U∗2T−1U∗1u)
= W (L−1u).

This completes the proof of (ii).

(iii). Follows immediately from (i).

Remarks 3. (i) When H is finite dimensional, it is known that there exists a choice of
Γs(L) such that the multiplier σ(L1, L2) = ±1,∀L1, L2 ∈ Sp2n(R), where Sp2n(R) ⊆
M2n(R) is the subgroup of all 2n× 2n symplectic matrices. This is called the meta-
plectic representation of the symplectic group. An elementary and self-contained
presentation can be found in Chapter 4 of [Fol89], Theorem 4.37 there is of particu-
lar interest in this regard. In the infinite dimensional case, [MS04] and [Tve04] are
of interest.

(ii) The map W (u) 7→ W (Lu) is known as the Bogoliubov transformation of the CCR
algebra, induced by L. Whenever we write Γs(L), we mean the unique unitary
operator satisfying (1.8.2). It is called the Shale unitary corresponding to an L ∈
S(H,K). It is to be noted that if L is a non-unitary contraction then Γ(L) defined
by (1.2.9) is not a unitary and hence in such a case Γs(L) 6= Γ(L).
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Real Normal Operators and Williamson’s Normal

Form

2.1 Introduction

Symplectic formalism is an important tool in mathematical physics and in particular in
the study of Quantum mechanics [dG11]. Williamson’s normal form is a useful theorem in
this subject. It states that for a natural number n, suppose A is a strictly positive (hence
invertible) real matrix of order 2n× 2n. Then there exists a symplectic matrix L of order
2n× 2n and a strictly positive diagonal matrix P of order n× n, such that

A = LT

P 0
0 P

L.
Moreover the matrix P is uniquely determined up to permutation and the diagonal entries
are known as symplectic eigenvalues of A.

This theorem was first proved by J. Williamson in [Wil36]. It has been extensively
used to understand the symplectic geometry and has applications in Harmonic Analysis
and Physics (See [dG11]). In recent years there is somewhat renewed interest in the field
[BJ15, ISGW17] in view of its relevance in quantum information theory and its usefulness
to understand symmetries of finite mode quantum Gaussian states [Par13b]. Since this
theorem is very useful in the finite mode case of the Gaussian states, it is natural only to
expect that an appropriate generalisation of it will be useful in the infinite mode situation.
We prove this result in infinite dimensions and Williamson’s theorem becomes a crucial
ingredient in our study of the quantum Gaussian states. In the process we find shortcuts
and simplifications of some known results on real normal operators.

In this subject it is necessary to deal with real linear operators on real Hilbert spaces
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and their complexifications. We know that non-real eigenvalues of real matrices appear in
conjugate pairs. We need appropriate generalization of this result in infinite dimensions. In
Theorem 2.3.1 we show that every normal operator on a real Hilbert space is orthogonally
equivalent to its adjoint. This result is known [Vis78], however we have an elementary
direct proof of this fact. This is crucial for our understanding of spectral theorem of
real normal operators, for which we refer to Wong [Won69], Goodrich [Goo72], Viswanath
[Vis78], Agrawal and Kulkarni [AK94]. This acts as the main tool for obtaining infinite
dimensional version of Williamson’s theorem.

2.2 Preliminary definitions and observations

In this Section, we shall recall the basic definitions and observations relevant to our work
on real Hilbert spaces. To be consistent with the existing literature, we keep them similar
to what is seen in [Won69] and [Goo72].

Definition 2.2.1. Let A be a bounded operator on a real Hilbert space (H, 〈·, ·〉). Its
transpose AT , is defined by 〈Ax, y〉 =

〈
x,ATy

〉
,∀x, y ∈ H. Such an AT exists uniquely as

a bounded operator on H. A is said to be normal if AAT = ATA.

Often we use the term ‘real normal (self-adjoint, positive, invertible) operator ’ for a
normal (self-adjoint, positive, invertible) operator defined on a real Hilbert space. Following
standard notation, for complex linear operators on complex Hilbert spaces ∗ would denote
the adjoint.

Definition 2.2.2. Let H be a real Hilbert space, by the complexification of H we mean
the complex Hilbert space H := H + iH := {x + i · y : x ∈ H, y ∈ H} with addition,
complex-scalar product and inner product defined in the obvious way.

For example, if 〈·, ·〉 is the inner product on H then the inner product on H is given
by 〈x1 + i · y1, x2 + i · y2〉C := 〈x1, x2〉+ 〈y1, y2〉+ i (〈x1, y2〉 − 〈y1, x2〉). Also note that the
mapping x 7→ x+ i · 0 provides an embedding of H into H as a real Hilbert space.

Definition 2.2.3. Let A be a bounded operator on the real Hilbert space H. Define an
operator Â on the complexification H of H by Â(x + iy) = Ax + iAy. Then Â is well
defined, complex linear and bounded, with (Â)∗(x + iy) = ATx + i · ATy = (̂AT )(x + iy)
and ‖Â‖ = ‖A‖. If A is normal, then Â is also normal. Â is called the complexification of
A. Define the spectrum of A, denoted by σ(A), to be the spectrum of Â.
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Note that the definition above of spectrum matches with the usual notion of eigenvalues
of a finite dimensional real matrix.

The mapping J : H → H, defined by J (x + i · y) = x − i · y is such that J (a1z1 +
a2z2) = ā1J (z1) + ā2J (z2), for z1, z2 ∈ H, a1, a2 ∈ C. In other words J is anti-linear.
Moreover, J 2 = I, the identity operator on H and 〈J z1,J z2〉 = 〈z2, z1〉. We observe that
H = {z ∈ H : J z = z} and an operator B on H is the complexification of some operator
on H if and only if BJ = JB.

Definition 2.2.4. Let A be a bounded normal operator on a real Hilbert space H. Then
a vector x ∈ H is is said to be transpose cyclic for A, if the set {An(AT )mx : m,n ≥ 0} is
total in H. It is said to be cyclic for A, if {Anx : n ≥ 0} is total in H.

For the next two sections, H denotes a real Hilbert space, H its complexification, A
denotes a bounded normal operator on H and Â its complexification on H, as described
above.

2.3 Symmetry of a real normal operator

Here we prove that any normal operator on a real Hilbert space is orthogonally equivalent
to its transpose (or adjoint). Our proof just exploits the geometry of real Hilbert space.
This result is crucial to understand the spectral theory of real normal operators.

Theorem 2.3.1. Let H be a real Hilbert space and let A ∈ B(H) be a normal operator.
Then there exists an orthogonal transformation U ∈ B(H), such that

UAUT = AT . (2.3.1)

Further, U can be chosen such that UT = U .

Proof. Let us assume first that A has a transpose cyclic vector i.e. there exists x ∈ H such
that E := {An(AT )mx : n,m ≥ 0} is total in H. Define U on E by

U(An(AT )mx) = (AT )nAmx, for n,m ≥ 0. (2.3.2)

Then for n,m, k, l ≥ 0,

〈An(AT )mx,Ak(AT )lx〉 = 〈(AT )kAlAn(AT )mx, x〉
= 〈An(AT )m(AT )kAlx, x〉
= 〈(AT )kAlx, (AT )nAmx〉
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= 〈(AT )nAmx, (AT )kAlx〉 (2.3.3)
= 〈U(An(AT )mx), U(Ak(AT )lx)〉,

where the second equality follows from normality of A and fourth equality because real
inner product is symmetric. Since U preserves the inner product on a total set U can be
extended as a bounded linear operator on span E = H. Note that the extended operator
also preserves the inner product. We use the same symbol U for the extended operator
also. Thus U is a real orthogonal transformation on H. Further by using (2.3.3) note that

〈U(Am(AT )nx), Ak(AT )lx〉 = 〈(AT )nAmx, (AT )kAlx〉 = 〈Am(AT )nx, U(Ak(AT )lx)〉.
(2.3.4)

Therefore,

UT = U. (2.3.5)

Also,

UAUT (An(AT )mx) = UAU(An(AT )mx)
= UA((AT )nAmx)
= U(Am+1(AT )nx)
= (AT )m+1Anx

= AT (An(AT )mx).

Thus (2.3.1) is satisfied on a total set which in turn proves the required relation on H,
in the special case when U has a transpose cyclic vector. The general case follows by a
familiar application of Zorn’s lemma.

Corollary 2.3.1. Â is unitarily equivalent to (Â)∗ = (̂AT ).

Proof. Let U be as in Theorem 2.3.1, then Û is a unitary which does the job.

Corollary 2.3.2. For any real normal operator A, σ(A) = σ(AT ) = σ(A) and thus the
spectrum is symmetric about the real axis.

Proof. Immediate from Definition 2.2.3 and Corollary 2.3.1.

Note that Corollary 2.3.2 is analogous to the fact that complex eigenvalues of a real
matrix occur in pairs.
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2.4 The spectral theorem for real normal operators

In this section, we provide an expository note on the spectral theory of real normal oper-
ators which is more operator theoretic in nature and is parallel to the spectral theory of
complex normal operators in its methods.

Let A be a bounded normal operator on a real Hilbert space H. Consider its complexi-
fication Â. By the spectral theorem in the complex case, there exists a spectral measure Ê,
such that Â =

∫
σ(Â)
λ dÊ(λ). Notice that there is no reason why Ê(e) is a complexification of

a real operator. It is just a notation for the spectral measure of Â. However the following
is true.

Lemma 2.4.1 (Wong’s lemma, [Won69]). J Ê(e) = Ê(ē)J , for every Borel subset e ⊆ C,
where ē denotes the set of all complex conjugates of elements of e.

Proof. Here is a sketch of the proof presented as Lemma 3.1 in [Won69]. For λ ∈ C, ε > 0,
let F(λ, ε) denote the subspace {x ∈ H : ‖(A − λ)nx‖ ≤ εn‖x‖,∀n ∈ N}. For a Borel set
M ⊆ C, let F(M, ε) = ∨

λ∈M
F(λ, ε) and F(M) = ∩

ε>0
F(M, ε). We know that F(e) = Ran Ê(e)

for any compact subset e of C (Section 42 [Hal98]).

Notice that 〈J z, w〉 = 〈z,−Jw〉. Therefore J Ê(e)J is a projection for any Borel
subset e of C. Therefore, to prove the lemma it is enough to show that J Ê(e)J and Ê(ē)
have the same range for every Borel set e. To this end first notice that for λ ∈ C and ε > 0,
if x ∈ F(λ, ε) then J x ∈ F(λ̄, ε) . From this it follows that x ∈ F(e) implies J x ∈ F(ē) for
any Borel set. Hence we get J F(e) ⊆ F(ē). Therefore for a compact Borel set e we have
J Ê(e)H ⊆ Ê(ē)H. Now by regularity of the spectral measure, if e is a Borel set we have
J Ê(e)H ⊆ Ê(ē)H. Therefore we also have J Ê(ē)H ⊆ Ê(e)H. Applying J on both side
we have Ê(ē)H ⊆ J Ê(e)H. Thus we see that J Ê(e)H = Ê(ē)H. Since H = JH, we get
J Ê(e)JH = Ê(ē)H.

We use the notation B(D) to denote the Borel σ-algebra on the set D. Let e ⊆
σ(Â)(which is same as σ(A)) be any Borel set, define Ê1(e) := Ê(e)+Ê(ē)

2 and Ê2(e) :=
Ê(e)−Ê(ē)

2i . Then

Ê(e) = Ê1(e) + iÊ2(e). (2.4.1)

By Lemma 2.4.1, Ê1(e) and Ê2(e) both commute with J . Therefore, Ê1(e) and Ê2(e) are
complexifications of some operators E1(e) and E2(e), respectively onH. E1(e) is symmetric
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and E2(e) is skew symmetric for every Borel set e, because their complexifications are so.

E1(ē) = E1(e)
E2(ē) = −E2(e)

(2.4.2)

for every e ∈ B(C). Also note that by Corollary 2.3.2 and (2.4.2) we have E1(σ(A)) = I

and E2(σ(A)) = 0.

Proposition 2.4.1. For any fixed x, y ∈ H, define µ(x,y)
j (e) := 〈x,Ej(e)y〉 , j = 1, 2 for

every Borel subset e ⊆ σ(A). Then µ(x,y)
j is a regular Borel (finite valued) signed measure

on σ(A), for j = 1, 2. In particular, since E2(e) is skew symmetric we have µ(x,x)
2 (e) =

〈E2(e)x, x〉 = 0,∀x.

Proof. Clearly µ
(x,y)
1 and µ

(x,y)
2 are real valued functions defined on the Borel subsets of

σ(A). Let e = ∪iei be an atmost countable disjoint union of Borel sets. By using the
identification of H inside H, (2.4.1) and properties of the spectral measure Ê, we have

〈x,E1(e)y〉+ i〈x,E2(e)y〉 = 〈x, Ê(e)y〉C (2.4.3)
= Σi〈x, Ê(ei)y〉C
= Σi〈x, (Ê1(ei) + iÊ2(ei))y〉C
= Σi〈x,E1(ei)y〉+ iΣi〈x,E2(ei)〉.

This proves the countable additivity of µ(x,y)
j , j = 1, 2. Regularity also follows by going to

real and imaginary parts.

Corollary 2.4.1. µ(x,x)
1 is a positive measure.

Remark 1. E1 is a positive operator valued measure(POVM).

For a bounded Borel function f on σ(A), define a bilinear functional φ̂ by

φ̂(z1, z2) :=
∫
f(λ) d〈z1, Ê(λ)z2〉,∀z1, z2 ∈ H.

Then φ̂ is a bounded bilinear functional which provides the usual functional calculus for
Â (proof is easy and can be found in the Theorem 1, Section 37 of [Hal98]).

Theorem 2.4.1. Let f be a complex valued bounded Borel measurable function defined on
σ(A), then for the values j = 1, 2 there exists a unique bounded operator Aj on H such
that

〈x,Ajy〉 =
∫
f(λ) d〈x,Ej(λ)y〉 (2.4.4)

for every pair of vectors x and y, and we write Aj =
∫
f dEj =

∫
f(λ) dEj(λ).
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Proof. Proposition 2.4.1 and the boundedness of f implies that the integral

φj(x, y) =
∫
f(λ) d〈x,Ej(λ)y〉

may be formed for every pair of vectors x and y. An easy computation shows that φj is a
bilinear functional. Also, because of 2.4.3 we have |φj(x, y)| ≤ |φ̂(x, y)|,∀x, y ∈ H, j = 1, 2.
Therefore, φj is a bounded bilinear functional and so there exists a unique operator Aj
(see Section 22, [Hal98]), satisfying (2.4.4).

Corollary 2.4.2.
∫
Im(λ) dE1(λ) = 0 and

∫
Re(λ) dE2(λ) = 0, where Im denotes the

function λ = λ1 + iλ2 7→ λ2 and Re denotes the function λ1 + iλ2 7→ λ1 defined on σ(A).

Proof. Note that Im(λ̄) = −Im(λ) and Re(λ̄) = Re(λ). Now the result follows from
(2.4.2).

Let λ = λ1 + iλ2, be an arbitrary element in σ(A). By going to the definitions and
using the Theorem 2.4.1, for x ∈ H we have,

A(x) = Â(x) =
∫
λ dÊ(λ)(x)

=
∫
λ dE1(λ)(x) + i

∫
λ dE2(λ)(x)

=
∫
λ1 dE1(λ)(x)−

∫
λ2 dE2(λ)(x), (2.4.5)

where (2.4.5) is obtained by using Corollary 2.4.2 and the fact that there is no "imaginary"
part for elements of H. By considering λ1 as the function r cos θ and λ2 as r sin θ, we have

A =
∫
r cos θ dE1 −

∫
r sin θ dE2. (2.4.6)

Similar to (2.4.6), for s, t ∈ N, we obtain for future reference

As(AT )t(x) =
∫
rs+t cos(s− t)θ dE1(x)−

∫
rs+t sin(s− t)θ dE2(x). (2.4.7)

In particular, we have〈
As(AT )tx, x

〉
=

∫
σ(A)

rs+t cos(s− t)θ dµ(x,x)
1 −

∫
σ(A)

rs+t sin(s− t)θ dµ(x,x)
2

=
∫

σ(A)

rs+t cos(s− t)θ dµ(x,x)
1 , (2.4.8)

where (2.4.8) is obtained by using the fact that µ(x,x)
2 (e) = 〈E2(e)x, x〉 = 0,∀e ∈ B(C).
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Definition 2.4.1. Let D be a compact subset of C, which is symmetric about the real
axis. A pair of operator valued functions (E1, E2) defined on the Borel σ-algebra of D is
called a spectral pair if the following holds for every e ∈ B(D),

i) E1(e) is a bounded symmetric operator and E2(e) is a bounded skew symmetric
operator.

ii) They satisfy (2.4.2).
iii) If Ê1(e) and Ê2(e) denote the complexification of the corresponding operator, then

the operator valued function defined by Ê(e) := Ê1(e)+ iÊ2(e), is a spectral measure
on H.

Now we obtain the spectral theorem for a real normal operator.

Theorem 2.4.2. If A is a bounded normal operator on a real Hilbert space H, then there
exists a unique spectral pair (E1, E2) such that (2.4.6) holds.

Proof. We already proved everything except the uniqueness of the spectral pair. Suppose
(F1, F2) is another spectral pair satisfying

A =
∫
r cos θ dF1 −

∫
r sin θ dF2. (2.4.9)

Let F̂ (e) = F̂1(e) + iF̂2(e), where F̂1(e) and F̂2(e) denotes the complexification of the
corresponding operator. Then a direct computation of Â(x + i · y) = Ax + i · Ay using
(2.4.9) and Corollary 2.4.2 proves that Â =

∫
λ dF̂ (λ). By uniqueness of spectral measure

in the complex case we have F̂ = Ê this implies F1 = E1 and F2 = E2.

Observe that if A was originally a self adjoint operator then E2 = 0 in (2.4.1) and we
obtain the spectral theorem for a real bounded self adjoint operator exactly the same as
that in complex case. The self adjoint case was already done in [RSN90].

Remark 2. For a definition of the spectral pair which is independent of complexification,
we refer to [Goo72]. But we find going to the complexification easier. Further it should
be noticed that our Corollory 2.3.2 which is a consequence of the fact that a real normal
operator orthogonally equivalent to its adjoint enables us to confine the definition of spec-
tral pair to subsets symmetric to the real axis. Also the definition of the spectral pair
(and proof of Spectral Theorem) has been relatively simplified and made more operator
theoretic in our approach.

Corollary 2.4.3. If A is a bounded self adjoint operator on a real Hilbert space H, then
there exists a unique spectral measure E on the real line such that A =

∫
σ(A) λ dE(λ).
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For future reference, let us note that it makes sense to talk about the positive operators
and their square roots in the real field case also.

Definition 2.4.2. A bounded self adjoint operator A on a real Hilbert space H, is called a
positive operator if σ(A) ⊆ [0,∞); it is called strictly positive if it is positive and 0 /∈ σ(A).

Corollary 2.4.4. If A is a positive operator on a real Hilbert space then there exists a
unique positive square root operator for A, i.e. there exists a unique operator B such that
B2 = A. We denote the positive square root of A as A1/2(or

√
A).

Proof. Take B =
∫
σ(A) λ

1/2 dE(λ), where E is the spectral measure associated with A and
A =

∫
λ dE(λ). The proof is same as that of complex case.

Even though the polar decomposition exists for general bounded linear operators be-
tween real Hilbert spaces, we give the following special case which will be sufficient for our
purpose.

Theorem 2.4.3. Let H and K be two real Hilbert spaces and A : H → K be an invertible
bounded linear operator, then there exists a unique orthogonal transformation U : H → K

such that A = U(ATA)1/2.

Proof. Similar to the complex situation. For example one can imitate the proof of Theorem
VI.10 in [RS80].

2.5 Spectral Representation

In the finite dimensional situation we have, any real normal operator is orthogonally equiv-
alent to an operator of the form

a1

a2 0
. . .

ak
B1

B2

0 . . .
Bm


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Chapter 2. Real Normal Operators and Williamson’s Normal Form

where a1, a2, · · · , ak are the real eigenvalues (counting multiplicity) of the operator and Bj

is a 2× 2 matrix of the form Bj =
[
αj βj
−βj αj

]
, αj, βj ∈ R, j = 1, 2, . . . ,m. Bj corresponds to

the complex eigenvalues αj ± iβj. Our next aim in this section is to obtain an analogous
decomposition in the infinite dimensional situation. Note that in the finite dimensional
situation a complex eigenvalue is prescribed by a 2-dimensional real subspace. A similar
scenario happens in the infinite dimensional case also. We present it here for reader’s
convenience as we couldn’t find it in the literature.

Let µ be a regular Borel measure on the Borel σ-algebra of a compact subset E ⊆ C,
which is symmetric about the real axis. Partition E into a union of three disjoint sets,
E = I∪K∪K̄ where I = E∩R, K = E∩H+, where H+ = {λ ∈ C : Im(λ) > 0}. Let L2(E)
denote the collection of all real valued, square integrable functions on E, with respect to
the measure µ. Then L2(E) is a real Hilbert space and L2(E) = L2(I)⊕ L2(K)⊕ L2(K̄).
Further, if µ is symmetric about the real axis i.e. µ(e) = µ(ē), for every Borel set e, then
there exists an orthogonal transformation between L2(K̄) and L2(K), which maps f 7→ f̄ ,
where f̄(z) = f(z̄) for all f ∈ L2(K̄). Therefore, L2(E) is orthogonally equivalent to
L2(I)⊕ L2(K)⊕ L2(K). Considering this orthogonal equivalence, we will not distinguish
between L2(E) and this direct sum decomposition in the case where µ is symmetric about
the real axis. Define an operator S on L2(I)⊕ L2(K)⊕ L2(K) by

S =


Mλ 0 0
0 MRe(λ) MIm(λ)

0 −MIm(λ) MRe(λ)

 , (2.5.1)

where Mf for a bounded Borel measurable function f denotes the multiplication operator
g 7→ fg, Re(λ), Im(λ) are as in Corollary 2.4.2, defined on K and λ denotes the function
λ(t) = t,∀t, on I ⊂ R. S is a normal operator and we will prove that every normal
operator is orthogonally equivalent to a direct sum of operators of this form. We will need
the following elementary lemma,

Lemma 2.5.1. Let µ be a finite and positive regular Borel measure on a compact set
E ⊆ C. Consider the real Hilbert space L2(E). By abuse of notation, for n,m ∈ N ∪ {0},
let rn+m cos(n−m)θ denote the polar coordinate function (r, θ) 7→ rn+m cos(n−m)θ and
rn+m sin(n−m)θ denote a function defined similarly, such that at (0, 0) both functions take
value 0. Then the set of functions

{rn+m cos(n−m)θ : n,m ∈ N ∪ {0}} ∪ {rn+m sin(n−m)θ : n,m ∈ N ∪ {0}}

is a total set in L2(E).
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2.5. Spectral Representation

Proof. Assume f ∈ L2(E) is such that 〈f, rn+m cos(n−m)θ〉 = 〈f, rn+m sin(n−m)θ〉 =
0, for n,m ∈ N ∪ {0}. By considering f as an element of the complex Hilbert space
(L2(µ), 〈·, ·〉C) and by going to polar coordinates, we have 〈f, zn〉C = 〈f, z̄m〉C = 0, for all
n,m ∈ N ∪ {0}. Similarly by expanding trignometric identities we have 〈f, znz̄m〉C = 0.
Therefore, 〈f, P (z, z̄)〉C, for every polynomial P in z and z̄. Now by Stone-Weierstrass
theorem we have 〈f, g〉C = 0, for every continuous function g on E. This in turn implies
that f = 0, the zero element in L2(E).

Recall from Corollary 2.3.2 that the spectrum of a bounded real normal operator is
symmetric about the real axis.

Lemma 2.5.2. Let H be a real Hilbert space and A be a bounded normal operator on H

with σ(A) = E. Assume that A has a cyclic vector. Then there exists a positive measure
µ defined on B(E), with the following properties

i) µ is symmetric about the real axis.
ii) There exists an orthogonal transformation U : H → L2(E, µ) such that UAUT = S,

where S on L2(E, µ) is given by (2.5.1), via the identification described there.

Proof. Define µ = µ
(x,x)
1 as in Proposition 2.4.1. We look at the polar coordinates for

making the computations simpler. Let E := {An(AT )mx : n,m ∈ N ∪ {0}}. Define an
operator U : span E → L2(I)⊕ L2(K)⊕ L2(K) by

U(
∑

anmA
n((AT )mx) =

∑
anmr

n+m ⊕
∑

anmr
n+m(cos(n−m)θ + sin(n−m)θ)

⊕
∑

anmr
n+m(cos(n−m)θ − sin(n−m)θ).

(2.5.2)

We set out to prove that U is inner product preserving and can be extended as an
onto map from H. Strictly as an element of L2(σ(A)), U(An(AT )mx) is the element
rn+m(cos(n−m)θ + sin(n−m)θ). Therefore, we have

〈U(Ak(AT )lx), U(An(AT )mx)〉
= 〈rk+l(cos(k − l)θ + sin(k − l)θ), rn+m(cos(n−m)θ + sin(n−m)θ)〉

=
∫

σ(A)

rk+l(cos(k − l)θ + sin(k − l)θ)rn+m(cos(n−m)θ + sin(n−m)θ) dµ. (2.5.3)

Note that since sin(−θ) = − sin θ and µ is symmetric about the real axis we have∫
σ(A)

sin qθ dµ = 0, ∀q ∈ Z.
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Therefore, by expanding (2.5.3) using trignometric identities, we have

〈U(Ak(AT )lx), U(An(AT )mx)〉 =
∫

σ(A)

rk+l+n+m cos(k − l)− (n−m)θ dµ. (2.5.4)

So for proving that U is inner product preserving, we just need to prove

〈Ak(AT )lx,An(AT )mx〉 =
∫

σ(A)

rk+l+n+m cos(k − l)− (n−m)θ dµ. (2.5.5)

Write k +m = s and l + n = t. Then by using elementary properties of normal operators
and (2.4.8) we have left hand side of (2.5.5) is same as〈

Asx,Atx
〉

=
〈
As(AT )tx, x

〉
=

∫
σ(A)

rs+t cos(s− t)θ dµ(x,x)
1 ,

which is now same as the right hand side of 2.5.4 and thus U is inner product pre-
serving. Now we will show that U extends as an orthogonal transformation of H onto
L2(I) ⊕ L2(K) ⊕ L2(K). To this end we show that the range of U is dense. We have
U(1

2(An(AT )m + (AT )nAm)) = rn+m ⊕ rn+m cos(n−m)θ⊕ rn+m cos(n−m)θ, which is the
element corresponding to rn+m cos(n−m)θ ∈ L2(σ(A)) and U(1

2(An(AT )m−(AT )nAm)) =
rn+m ⊕ rn+m sin(n−m)θ ⊕ −rn+m sin(n−m)θ, which is the element corresponding to
rn+m(sin(n−m)θ ∈ L2(σ(A)). We already know from Lemma 2.5.1 that this collection is
total. Thus we have proved that U can be extended uniquely as an orthogonal transfor-
mation on H, we use the notation U for denoting this extended operator also. Further,
a direct computation using trigonometric identities shows that UAUT = S on vectors of
the form rn+m ⊕ rn+m cos(n−m)θ ⊕ rn+m cos(n−m)θ and rn+m ⊕ rn+m sin(n−m)θ ⊕
−rn+m sin(n−m)θ. This proves the lemma.

Theorem 2.5.1. Let A be a bounded normal operator on a real Hilbert space H. Then A
is orthogonally equivalent to a countable direct sum of operators of the form (2.5.1). ( i.e.,
there exists a countable family of compact sets Ei ⊆ C, positive measures µi symmetric to
the real axis, on B(Ei) and a real orthogonal transformation U : H → ⊕iL2(Ei, µi) such
that UAUT = ⊕iSi, where Si on L2(Ei, µi) is as in (2.5.1) ).

Proof. Use the previous lemma and apply Zorn’s lemma.

Corollary 2.5.1. If A is a skew symmetric operator on a real Hilbert space H, then there
exists a countable family of compact subsets Fj ⊂ [0,∞) and positive measures µj on B(Fj)
and a real orthogonal transformation V : H →

(
⊕j L2(µj)

)
⊕
(
⊕j L2(µj)

)
such that
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2.5. Spectral Representation

A = V T

 0 ⊕j −M j
λ

⊕jM j
λ 0

V (2.5.6)

where M j
λ : L2(µj)→ L2(µj) is such that f 7→ λf with (λf)(x) = xf(x),∀x ∈ Fj.

Proof. Since A is skew-symmetric σ(A) is contained in the imaginary axis. Use Theorem
2.5.1 to get L2(Ej), where Ej subset of the positive imaginary axis. Take Fj = −iEj. Use
the obvious transformation to transfer measure to Fj.

The following theorem is new to best of our knowledge in a recent paper [BP12],
Böttcher et al. prove the same result for the special case compact skew-symmetric op-
erators. Here also the symmetry of the situation is explicit in our proof.

Corollary 2.5.2. If A is a skew-symmetric invertible operator on a real Hilbert space H,
then there exists a real Hilbert space K, a positive invertible operator P on K and a real
orthogonal transformation V : H → K ⊕K such that

A = V T

0 −P
P 0

V. (2.5.7)

We give two proofs for this result. The second proof is very elementary and does not
use the spectral measure.

Proof. (1) If A is invertible then each M j
λ in Corollary 2.5.1 is invertible.

Proof. (2) Assume first that A has a cyclic vector x. Note that if A is skew-symmetric,
A2k+1 is skew-symmetric and A2k is symmetric for k ∈ N. Therefore

〈A2nx,A2m+1x〉 = 0, ∀n,m ≥ 0, (2.5.8)

because the skew-symmetry of A2k+1 implies 〈x,A2k+1x〉 = 0 for all k ≥ 0 . Set

K = span{x,A2x,A4x, . . . }, N = span{Ax,A3x,A5x, . . . }.

Then K ⊥ N by (2.5.8) and since x is cyclic N = K⊥. Therefore, there exists an operator
R : K → N such that
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A =
0 −RT

R 0

 (2.5.9)

in the direct sum decomposition H = K ⊕ N . Since A(A2nx) = A2n+1x, R := A|K
maps K onto N , since A is invertible, R is an invertible operator. Now we apply polar
decomposition to R. If R = UP then U : K → N and P : K → K are such that U is
orthogonal (because R is invertible) and P (=

√
RTR) is positive definite and invertible.

Now we have

A =
IK 0

0 U

0 −P
P 0

 IK 0
0 UT

 , (2.5.10)

where IK is the identity operator on K and
[
IK 0
0 U

]
: K ⊕K → K ⊕N is orthogonal.

If A doesn’t have a cyclic vector then a usual argument using Zorn’s lemma along with
a permutation proves the result.

2.6 Williamson’s Normal Form

All the work we have done till now was to obtain the right machinery for a proof of
Williamson’s normal form in the infinite dimensional set up. We refer to [Par13b] for
an easy proof of the theorem in the finite dimensional setup. Let us recall the following
definitions from Section 1.7, in view of Proposition 1.7.1.

Definition 2.6.1. Let H be a real Hilbert space and I be the identity operator on H.

Define the involution operator J on H ⊕H by J =
0 −I
I 0

.
Definition 2.6.2. Let H and K be two real Hilbert spaces. A bounded invertible linear
operator Q : H ⊕H → K ⊕K is called a symplectic transformation if QTJQ = J , where
J on left side is the involution operator on K ⊕ K and that on the right side it is the
involution operator on H ⊕H.

Remark 3. If Q is symplectic then Q−1 and QT are symplectic.

Proof. We have QQ−1 = I therefore, (QQ−1)TJQQ−1 = J . Since Q is symplectic, this
is equivalent to (Q−1)TJQ−1 = J . This proves that Q−1 is symplectic. It is easy to see
that the product of symplectic operators is symplectic, therefore QT = JQ−1J−1 is also
symplectic.
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2.6. Williamson’s Normal Form

Theorem 2.6.1 (Williamson’s normal form in infinite dimensions). Let H be a real Hilbert
space and A be a strictly positive invertible operator on H ⊕H, then there exists a Hilbert
space K, a positive invertible operator P on K and a symplectic transformation L : H ⊕
H → K ⊕K such that

A = LT

P 0
0 P

L. (2.6.1)

The decomposition is unique in the sense that ifM is any strictly positive invertible operator
on a Hilbert space H̃ and L̃ : H ⊕H → H̃ ⊕ H̃ is a symplectic transformation such that

A = L̃T

M 0
0 M

 L̃, (2.6.2)

then P and M are orthogonally equivalent.

Proof. Define B = A1/2JA1/2, where A1/2 is as described in Corollary 2.4.4 and J is given
by Definition 2.6.1. Then B is a skew symmetric invertible operator on H ⊕H. Hence by
Corollary 2.5.2 there exists a real Hilbert space K, an invertible positive operator P and
a real orthogonal transformation Γ: K ⊕K → H such that

ΓTBΓ =
0 −P
P 0

 . (2.6.3)

Define L : H ⊕H → K ⊕K, by

L =
P−1/2 0

0 P−1/2

ΓTA 1
2 . (2.6.4)

Then clearly (2.6.1) is satisfied. A direct computation using (2.6.3) shows that L is
symplectic, that is LJLT = J , where J on the left side is the involution operator on H⊕H
and on the right side is the corresponding involution operator on K ⊕K.

To prove the uniqueness, let

A = LT

P 0
0 P

L = L̃T

M 0
0 M

 L̃,
where P , M are two positive operators and L, L̃ are symplectic. Putting N = LL̃−1 we
get a symplectic N such that

NT

P 0
0 P

N =
M 0

0 M

 .
41



Chapter 2. Real Normal Operators and Williamson’s Normal Form

Substituting NT = JN−1J−1 with appropriate J ’s we get

N−1

 0 P

−P 0

N =
 0 M

−M 0

 . (2.6.5)

Now we recall the fact that two similar normal operators are unitarily equivalent (this
can be proved using Fuglede-Putnam theorem, see Theorem 12.36 in [Rud91] and real
case follows by complexification). However, we continue with our proof without using this
result. To this end, taking transpose on both sides of (2.6.5) we get

NT

 0 P

−P 0

 (NT )−1 =
 0 M

−M 0

 .
Hence again by using (2.6.5), we get

NT

 0 P

−P 0

 (NT )−1 = N−1

 0 P

−P 0

N,
or  0 P

−P 0

 (N−1)TN−1 = (N−1)TN−1

 0 P

−P 0

 .
This implies  0 P

−P 0

 ((N−1)TN−1
)1/2

=
(
(N−1)TN−1

)1/2
 0 P

−P 0

 , (2.6.6)

where the reasoning for (2.6.6) is same as that in the complex case. Let

N−1 = U
(
(N−1)TN−1

)1/2

be the polar decomposition of N−1. From (2.6.5) we get

U
(
(N−1)TN−1

)1/2
 0 P

−P 0

 ((N−1)TN−1
)−1/2

UT =
 0 M

−M 0

 .
Hence by (2.6.6), we have

U

 0 P

−P 0

UT =
 0 M

−M 0

 . (2.6.7)
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Now we will prove that (2.6.7) implies that P and M are orthogonally equivalent. Note
that by taking squares, and getting rid of the negative sign,

U

P 2 0
0 P 2

UT =
M2 0

0 M2

 .
It is true that if A and B are self adjoint operators such that A ⊕ A and B ⊕ B are
orthogonally equivalent then A and B are orthogonally equivalent. We will give a proof of
this as a Lemma below. But if we assume this fact our proof is complete because we see
that for the positive operators P and M , P 2 and M2 are orthogonally equivalent. Hence
P and M are orthogonally equivalent.

Now we proceed to provide the proof of the lemma we promised. We depend on Hall
[Hal13] for notations and results used below. We write the following in the framework of
complex Hilbert spaces, but as it was observed after Theorem 2.4.2, the spectral theory
of a self-adjoint operator is identical on both real and complex Hilbert spaces and hence
what we write below works on separable real Hilbert spaces also.

By the direct integral version of spectral theorem, any bounded self-adjoint operator A
on a separable Hilbert space is unitarily equivalent to the multiplication operator s 7→ xs

where xs(λ) := λs(λ), λ ∈ σ(A) on
∫⊕
σ(A)Hλd µ(λ) for some σ-finite measure µ with a

measurable family of Hilbert spaces {Hλ}, satisfying dim(Hλ) > 0 almost everywhere
µ. It is understood that we work with the Borel subsets of the spectrum σ(A). The
function λ 7→ dim(Hλ) is called the multiplicity function associated with the direct integral
representation of A. By Proposition 7.24 from [Hal13], two bounded self-adjoint operators
expressed as direct integrals on their spectrum are unitarily equivalent if and only if (i)
the spectrum are same; (ii) the associated measures are equivalent in the sense that they
are mutually absolutely continuous and (iii) the multiplicity functions coincide almost
everywhere.

Lemma 2.6.1. Let A,B be self-adjoint operators on a separable Hilbert space such that
A⊕ A and B ⊕B are unitarily equivalent. Then A and B are unitarily equivalent.

Proof. Let A be unitarily equivalent to the multiplication operator for each section s, with
respect to a measure µ on σ(A) in the direct integral Hilbert space

∫ ⊕
σ(A)
Hλd µ(λ).
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Then it can be seen that A ⊕ A is unitarily equivalent to the multiplication operator on
the direct integral ∫ ⊕

σ(A)
Kλd µ(λ),

where Kλ = Hλ ⊕ Hλ. Since A ⊕ A and B ⊕ B are unitarily equivalent, by the unique-
ness of integral representation mentioned above, by comparing spectrum, measures and
multiplicity functions it is easy to see that A and B are unitarily equivalent.

Remark 4. We observe that Lemma 2.6.1 can be proved using standard versions of the
Hahn-Hellinger theorem also, for example Theorem 7.6 in [Par92] can also be used. We
also note that if we take infinitely many copies of self-adjoint operators A,B and ⊕∞i=1A is
unitarily equivalent to ⊕∞i=1B, it does not mean that A and B are unitarily equivalent. So
it is only natural that the multiplicity theory is required in the proof of the last Lemma.

Remark 5. Under the situation of Theorem 2.6.1, in view of the uniqueness part of the
theorem, the spectrum of P , can be defined as the symplectic spectrum of the positive
invertible operator A.

In the following corollary we rewrite Theorem 2.6.1 using the formalism developed in
Section 1.7. It will be useful in the future chapters.

Corollary 2.6.1. Let S be a real linear positive, invertible operator on a complex Hilbert
space H. Then there exists a complex Hilbert space K, a complex linear positive invertible
operator P and a symplectic transformation L : H → K such that

S = LτPL. (2.6.8)

Further, P has the property that P0 = [ P 0
0 P ].
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Characterization of Quantum Gaussian states

3.1 Introduction

In this chapter, we begin our study of infinite mode quantum Gaussian states. Initially,
we see some fundamental properties of the quantum Fourier transform and define Gaus-
sian states on an arbitrary Fock space by using the quantum Fourier transform. Later we
characterize the covariance matrices associated with them and identify the characteristic
function of Gaussian states with a particular class of quasifree states on the CCR alge-
bra. The formalism developed in Section 1.7 and the Williamson’s theorem proved in the
previous chapter play a major role here.

3.2 Quantum Gaussian States

By a state (or density matrix) ρ on a Hilbert space K we mean a positive operator of unit
trace i.e. ρ ≥ 0 and Tr ρ = 1. Note that a density matrix ρ on K gives rise to a unique state
on the C∗- algebra B(K) (in the sense of Definition 1.5.1 ) as the functional Y 7→ Tr ρY ,
Y ∈ B(K). This is why we use the word ’state’ for both these and the meaning will be
clear from the context. We take K = Γs(H) for some Hilbert space H in the following
definition.

Definition 3.2.1. Let ρ ∈ B(Γs(H)) be a density matrix. Then a complex valued function
ρ̂ on H defined by

ρ̂(z) = Tr ρW (z), z ∈ H (3.2.1)

is called the quantum characteristic function(or quantum Fourier transform) of ρ.
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We want to observe at this point that the mapping ρ→ ρ̂ is a one-one mapping; proof
of this fact is essentially the same as that of Proposition 2.4 in [Par10]. We prove it below
for the convenience of the reader. Further, it may be noted that W (z) 7→ ρ̂(z) defines
a state on the CCR-algebra generated by the Weyl operators; it is the restriction of the
state Y 7→ Tr ρY , Y ∈ B(Γs(H)) to the Weyl algebra. Therefore, sometimes we notate
this state on B(Γs(H)) as ρ̂.

Lemma 3.2.1. The von-Neumann algebra generated by the Weyl operators is B(Γs(H)).

Proof. Because of the Weyl form of the CCR (1.2.3), the linear span of {W (z)|z ∈ H}
is a ∗-closed unital sub-algebra of B(Γs(H)). Therefore by the irreducibility of the Weyl
representation (Proposition 1.3.3) and von-Neumann density theorem we see that the von
Neumann algebra {W (z)|z ∈ H}′′ = B(Γs(H)).

Proposition 3.2.1. The correspondence ρ 7→ ρ̂ is bijective.

Proof. If there is another state ρ′ such that the quantum characteristic functions of ρ and
ρ
′ are same then Tr(ρ − ρ′)W (z) = 0 for all z. Therefore by continuity property of trace

and Lemma 3.2.1, we see that Tr(ρ− ρ′)X = 0 for every X ∈ B(H). Hence ρ = ρ
′ .

Let us recall that if H = H1 ⊕H2, then Γs(H) is canonically isomorphic to Γs(H1) ⊗
Γs(H2), so we write Γs(H) = Γs(H1) ⊗ Γs(H2) and identify the operators and vectors of
these two spaces. Upon agreeing this, we have

Proposition 3.2.2. If ρ1 and ρ2 are states on Γs(H1) and Γs(H2) respectively, then the
quantum characteristic function of the state ρ1 ⊗ ρ2 is given by

(ρ1 ⊗ ρ2)∧(f ⊕ g) = ρ̂1(f)ρ̂2(g). (3.2.2)

Further, if ρ is any state on Γs(H1)⊗ Γs(H2) then the marginal state ρ1 obtained by

ρ1 = Tr2 ρ, (3.2.3)

where Tr2 denotes the relative trace (partial trace) over the second factor Γs(H2),

ρ̂1(f) = ρ̂(f ⊕ 0). (3.2.4)

Proof. We have W (f ⊕ g) = W (f) ⊗ W (g) under the identification Γs(H) = Γs(H1) ⊗
Γs(H2). Now

(ρ1 ⊗ ρ2)∧(f ⊕ g) = Tr ρ1 ⊗ ρ2W (f ⊕ g)
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= Tr ρ1W (f)⊗ ρ2W (g)
= Tr ρ1W (f) Tr ρ2W (g)
= ρ̂1(f)ρ̂2(g).

To prove (3.2.4) note that by the fundamental property of partial trace

ρ̂1(f) = Tr(Tr2 ρW (f)) = Tr(ρW (f)⊗ I) = Tr ρW (f ⊕ 0) = ρ̂(f ⊕ 0).

If ρ is a density matrix so is any unitary conjugation of it. It is important to understand
how the quantum characteristic function changes when ρ conjugated with the fundamental
unitaries, Weyl operators and second quantizations. We will explore this now. Recall
Definition 1.2.1, by using Theorem 1.8.1, proof of the following proposition follows in the
same way as that of Proposition 2.5 in [Par10].

Proposition 3.2.3. Let H and K be Hilbert spaces. If ρ is a state on Γs(K) and L ∈
S(H,K) then

{Γs(L)∗ρΓs(L)}∧(f) = ρ̂(Lf)

and,
{W (f)ρW (f)∗}∧(g) = ρ̂(g)e2i Im〈f,g〉

for every f, g ∈ H.

Proof. By (1.8.1), Γs(L)W (f)Γs(L)∗ = W (Lf), ∀f ∈ H. Therefore,

{Γs(L)∗ρΓs(L)}∧(f) = Tr Γs(L)∗ρΓs(L)W (f)
= Tr ρΓs(L)W (f)Γs(L)∗

= Tr ρW (Lf)
= ρ̂(Lf).

To prove the second inequality recall that W (g)W (f) = e−i Im〈g,f〉W (g + f) and W (f)∗ =
W (−f). Now

{W (f)ρW (f)∗}∧(g) = TrW (f)ρW (f)∗W (g)
= Tr ρW (f)∗W (g)W (f)
= e2i Im〈f,g〉Tr ρW (g).
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Now we are ready to define our main object of study. Recall that BR(H) denotes the
collection of all bounded real linear operators on H.

Definition 3.2.2. Let ρ ∈ B(Γs(H)) be a density matrix, ρ is said to be a quantum
Gaussian state (or simply, a Gaussian state) if there exists w ∈ H and a symmetric,
invertible S ∈ BR(H) such that

ρ̂(z) = exp
{
−iRe 〈w, z〉 − 1

2 Re 〈z, Sz〉
}
,∀z ∈ H. (3.2.5)

In such a case we write ρ = ρg(w, S).

Note that this definition determines a real linear functional z 7→ Re 〈w, z〉 and a
bounded quadratic form z 7→ Re 〈z, Sz〉 on the real Hilbert space H. Hence w and S

are uniquely determined by the definition.

We call w the mean vector and S the covariance operator associated with ρ. Suppose
H = H + iH, where H is a real subspace and let w =

√
2(l− im), then we call l and m as

mean momentum vector and mean position vector respectively. Further S0 corresponding
to S (Section 1.7) will be called as the momentum-position covariance operator. When H
is infinite dimensional we call ρ as an infinite mode quantum Gaussian state.

Notation. Let G(H) denote the set of all Gaussian states on Γs(H) and C(H) denote the
set of all Gaussian covariance operators on H.

We will characterize the elements of C(H) in Theorem 3.2.1.

Examples. (i) For f ∈ H consider the normalized exponential vector

ψ(f) := e−
1
2‖f‖

2
e(f).

Let the pure state |ψ(f)〉〈ψ(f)| be called the coherent state.
We prove below that the coherent state is a pure Gaussian state on Γs(H) with the
identity operator as the covariance matrix and −2if as the mean vector. Consider
the quantum characteristic function,

|ψ(f)〉〈ψ(f)|)∧(z) = Tr |ψ(f)〉〈ψ(f)|W (z)
= 〈ψ(f),W (z)ψ(f)〉
= e−‖f‖

2 〈e(f),W (z)e(f)〉

= e−‖f‖
2
e{−

1
2‖z‖

2−〈z,f〉} 〈e(f), e(f + z)〉

= exp
{
−‖f‖2 − 1

2‖z‖
2 − 〈z, f〉+ 〈f, f + z〉

}
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= exp
{
−1

2‖z‖
2 − 〈z, f〉+ 〈z, f〉

}
= exp

{
−2i Im 〈z, f〉 − 1

2‖z‖
2
}
.

But −2i Im 〈z, f〉 = iRe 〈2if, z〉. Thus we have proved

(|ψ(f)〉〈ψ(f)|)∧(z) = exp
{
−iRe 〈−2if, z〉 − 1

2‖z‖
2
}
. (3.2.6)

In particular,

|e(0)〉〈e(0)| = ρg(0, I). (3.2.7)

Notice at this point that the quantum characteristic function of the density ma-
trix |e(0)〉〈e(0)| corresponds to the vacuum state defined in Section 1.6 because
Im 〈−iz, z〉 = Re 〈z, z〉.

(ii) Let L be a symplectic automorphism on H such that LTL − I is Hilbert-Schmidt.
Define ψL = Γs(L)∗ |e(0)〉. Then

(|ψL〉〈ψL|)∧(z) = Tr |ψL〉〈ψL|W (z)
= Tr |ψL〉〈W (z)∗ψL|
= 〈ψL,W (z)ψL〉
= 〈e(0),Γs(L)W (z)Γs(L)∗e(0)〉
= 〈e(0),W (Lz)e(0)〉

= e−
1
2〈z,LTLz〉.

Therefore, |ψL〉 〈ψL| = ρg(0, LTL).
(iii) Consider Γs(C) = L2(R), by Example 1 in Chapter 1. If we write e(z) =

∞∑
n=0

zn√
n!ψn,

then observe that ψn is an orthonormal basis for L2(R). Then for the number oper-
ator, a†aψn = nψn,∀n ∈ N. Therefore,

Tr e−sa†a = (1− e−s)−1, s > 0.

Therefore the states

ρs = (1− e−s)e−sa†a, s > 0 (3.2.8)

are well defined. In this case, by Proposition 2.12 in [Par10] we have

ρ̂s(z) = exp
{
−1

2(coth s2)|z|2
}
. (3.2.9)

Therefore ρs is a Gaussian state. Since the spectrum of a†a is {0, 1, 2, . . . }, it is not
a pure state.
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Proposition 3.2.4. Let f ∈ H. Then

W (f)ρg(w, S)W (f)−1 = ρg(w − 2if, S).

In particular,

W (−i2 w)ρg(w, S)W (−i2 w)−1 = ρg(0, S).

Proof. This is a direct consequence of the definition of ρg(·, ·) and Proposition 3.2.3.

Proposition 3.2.5. Let ρ1 = ρg(w1, S1) and ρ2 = ρg(w2, S2) be Gaussian states on Γs(H1)
and Γs(H2) respectively. Then ρ1 ⊗ ρ2 = ρg(w1 ⊕ w2, S1 ⊕ S2).

Proof. This follows directly from Proposition 3.2.2.

Proposition 3.2.6. If ρ = ρg(w, S) on Γs(K) and L ∈ S(H,K) then

Γs(L)∗ρΓs(L) = ρg(LTw,LTSL).

Proof. This follows from Proposition 3.2.3.

Our main theorem in this chapter is the following:

Theorem 3.2.1. Let S be a real linear, bounded, symmetric and invertible operator on H.
Then S is the covariance operator of a quantum Gaussian state (i.e., S ∈ C(H)) if and
only if the following hold:

(i) Ŝ − iĴ ≥ 0 on Ĥ.
(ii) S − I is Hilbert-Schmidt on (H,Re 〈·, ·〉).
(iii) (

√
SJ
√
S)T (
√
SJ
√
S)− I is trace class on (H,Re 〈·, ·〉).

We prove this theorem in several steps in the next two sections.

3.3 Necessary conditions on the covariance operator

Lemma 3.3.1. If ρ is any density matrix, then the kernel Kρ on H defined by Kρ(z, w) =
ei Im 〈z,w〉ρ̂(w − z) is positive definite.
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Proof.

n∑
j,k=1

cjckKρ(zj, zk) =
n∑

j,k=1
cjcke

i Im 〈zj ,zk〉ρ̂(zk − zj)

=
n∑

j,k=1
cjcke

i Im 〈zj ,zk〉Tr ρW (zk − zj)

=
n∑

j,k=1
cjck Tr ρW (−zj)W (zk)

= Tr ρX∗X
≥ 0

where X =
n∑
j=1

cjW (zj).

Recall from Section 1.6 that CCR(H, σ) ↪→ B(Γs(H)) as a standard space, if we take
σ(·, ·) = − Im 〈·, ·〉. Also we will use the work done in Section 1.7 in what follows.

Lemma 3.3.2. Let S be a real linear, invertible operator on H and Ŝ − iĴ ≥ 0 on Ĥ.
Then

(i) S ≥ 0.
(ii) If S = LTPL is the Williamson’s normal form associated with S (as in Corollary

2.6.1), then P− I ≥ 0 on K.
(iii) There exists a primary quasifree state φ on CCR(H, σ) such that

φ(W (z)) = e−
1
2 Re〈z,Sz〉. (3.3.1)

Further, φ = φA, where A = −JS (the notation φA is as in Section 1.5).

Proof. (i). Note that Ŝ−iĴ ≥ 0 implies Ŝ is symmetric, hence we have S is also symmetric.
Let us denote the complex inner product in both H and Ĥ by 〈·, ·〉. Let z, w ∈ H, then
z + iw ∈ Ĥ and

0 ≤
〈
z + iw, (Ŝ − iĴ)z + iw

〉
= Re 〈z, Sz〉+ iRe 〈z, Sw〉 − iRe 〈w, Sz〉+ Re 〈w, Sw〉
− iRe 〈z, Jz〉+ Re 〈z, Jw〉 − Re 〈w, Jz〉 − iRe 〈w, Jw〉

= Re 〈z, Sz〉+ Re 〈w, Sw〉+ 2 Re 〈z, Jw〉 (3.3.2)
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where we used the facts that S is symmetric, real inner product is symmetric and Re 〈z, Jz〉 =
0 for all z to obtain (3.3.2). If we take z = w in the above computation then we get S ≥ 0,
since it is already symmetric. Note that the invertibility of S is not used to prove this.

(ii). Let P0 = [ P 0
0 P ]. Then P̂ =

[
P̂ 0
0 P̂

]
and Ĵ =

[
0 I
−I 0

]
on Ĥ = H ⊕H by Proposition

1.7.2. Further, Ŝ − iĴ ≥ 0 implies L̂T
[
P̂ 0
0 P̂

]
L̂ − iĴ ≥ 0. By a conjugation with L̂−1 and

using the fact that L−1 is symplectic we get
[
P̂ 0
0 P̂

]
− i

[
0 I
−I 0

]
≥ 0 on K̂ = K ⊕ K. Hence

(by Proposition 1.7.2) we get
[
P −iI
iI P

]
≥ 0 on K ⊕ K. But this means P ≥ I on K and

correspondingly P ≥ I on K.

(iii). Since the CCR(H, σ) is standard we will use (i) of Proposition 1.5.2. Since S is
positive and invertible, α(z, w) := Re 〈z, Sw〉 defines a complete real inner product on H.
Therefore by Proposition 1.5.2, φ as in (3.3.1) exists if σ(z, w)2 ≤ α(z, z)α(w,w), for all
f, g ∈ H. This is same as

Im 〈z, w〉2 ≤ Re 〈z, Sz〉Re 〈w, Sw〉 . (3.3.3)

Thus it is enough to prove (3.3.3) to show the existence of φ. To keep track of the inner
product in H and K we put a subscript, thus we write 〈·, ·〉H to denote the inner product
in H and similarly for K. Now

Im 〈z, w〉2H = Im 〈Lz, Lw〉2K
≤ |〈Lz, Lw〉K|

2

≤ 〈Lz, Lz〉K 〈Lw,Lw〉K
≤ 〈Lz,PLz〉K 〈Lw,PLw〉K (3.3.4)
= Re 〈Lz,PLz〉KRe 〈Lw,PLw〉K
=
〈
z, LTPLz

〉
H

〈
w,LTPLw

〉
H
,

where (3.3.4) follows from (ii). Thus we proved (3.3.3). Hence first part of (iii) is proved.
Further, φ = φA because Re 〈·, S(·)〉H = − Im 〈A(·), ·〉.

Lemma 3.3.3. Let H be a real Hilbert space and H = H + iH be its complexification. Let
A ∈ B(H) be self adjoint. Define a hermitian kernal, K on H by

K(x, y) := 〈x,Ay〉 for all x, y ∈ H.

Then K is positive definite if and only if A ≥ 0 in the sense of positive definiteness of
operators in B(H).
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Proof. Assume A ≥ 0. Let a1, a2, . . . , an ∈ C and x1, x2, . . . , xn ∈ H.
n∑

j,k=1
ajakK(xj, xk) =

n∑
j,k=1

ajak 〈xj, Axk〉

=
〈

n∑
n=1

ajxj, A(
n∑
k=1

akxk)
〉

= 〈z, Az〉
≥ 0

where z =
n∑
n=1

ajxj ∈ H ⊂ H. Conversely, if K is positive definite then 〈x,Ax〉 ≥ 0 for all
x ∈ H. Now if z = x+ iy ∈ H, then

〈z, Az〉 = 〈x+ iy, A(x+ iy)〉
= 〈x,Ax〉+ i 〈x,Ay〉 − i 〈y, Ax〉+ 〈y, Ay〉
= 〈x,Ax〉+ i 〈x,Ay〉 − i 〈x,Ay〉+ 〈y, Ay〉 (3.3.5)
≥ 0,

where (3.3.5) follows because the real innerproduct is symmetric and A is self-adjoint.
Thus A ≥ 0.

The following theorem proves the necessary conditions we have on the covariance op-
erators in Theorem 3.2.1.

Theorem 3.3.1. Let S be a real linear symmetric and invertible operator on H, and let the
function f : H → R defined by f(z) = e−

1
2 Re〈z,Sz〉 be the quantum characteristic function

of a density matrix ρ i.e., S ∈ C(H) then

(i) On Ĥ we have,

Ŝ − iĴ ≥ 0. (3.3.6)

(ii) S − I is Hilbert-Schmidt on (H,Re 〈·, ·〉).
(iii) (

√
SJ
√
S)T (
√
SJ
√
S)− I is trace class on (H,Re 〈·, ·〉).

Proof. (i). Proof of (3.3.6) will follow in similar lines to the proof of the corresponding
theorem in [Par10] for the finite mode case, we will give a proof here because there are
slight changes to be noticed in the infinite mode case. Define the kernel

Kρ(α, β) = ei Im〈α,β〉f(β − α), α, β ∈ H. (3.3.7)
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By Lemma 3.3.1, Kρ is a positive definite kernel on H. If α = x + iy, β = u + iv where
x, y, u, v ∈ H, then Im 〈α, β〉 = 〈( xy ), J0( uv )〉 on H ⊕H (Section 1.7). We can rewrite the
definition of Kρ as

Kρ(α, β) = exp
{
i 〈( xy ), J0( uv )〉 −

〈(
u−x
v−y

)
,
1
2S0

(
u−x
v−y

)〉}
. (3.3.8)

Now positive definiteness of Kρ in H reduces to that of L in H ⊕H where

L ((x, y), (u, v)) = exp
{
i 〈( xy ), J0( uv )〉 −

〈(
u−x
v−y

)
,
1
2S0

(
u−x
v−y

)〉}
. (3.3.9)

This is equivalent to the positive definiteness of

Lt ((x, y), (u, v)) = L
(√

t(x, y),
√
t(u, v)

)
for all t ≥ 0. But {Lt} is a one parameter multiplicative semigroup of kernels on H ⊕H.
By elementary properties of positive definite kernels as described in Section 1 of [PS72],
positive definiteness of Lt, t ≥ 0 is equivalent to the conditional positive definiteness of

N ((x, y), (u, v)) = i 〈( xy ), J0( uv )〉 −
〈(

u−x
v−y

)
,
1
2S0

(
u−x
v−y

)〉
or equivalently (by the same Proposition), the positive definiteness of

N ((x, y), (u, v))−N ((x, y), (0, 0))−N ((0, 0), (u, v))−N ((0, 0), (0, 0))

= i 〈( xy ), J0( uv )〉 −
〈(

u−x
v−y

)
,
1
2S0

(
u−x
v−y

)〉
+
〈

( xy ), 1
2S0( xy )

〉
+
〈

( uv ), 1
2S0( uv )

〉
= i 〈( xy ), J0( uv )〉+

〈
( xy ), 1

2S0( uv )
〉

+
〈

( uv ), 1
2S0( xy )

〉
= i 〈( xy ), J0( uv )〉+

〈
( xy ), 1

2S0( uv )
〉

+
〈

( xy ), 1
2S0( uv )

〉
(3.3.10)

= i 〈( xy ), J0( uv )〉+ 〈( xy ), S0( uv )〉 (3.3.11)
= i 〈( uv ),−J0( xy )〉+ 〈( uv ), S0( xy )〉 (3.3.12)

where (3.3.10) follows because the real inner-product is symmetric and (3.3.11) because S0

is symmetric, and (3.3.12) for the same reasons. But H ⊕H ⊂ Ĥ = (H ⊕H) + i(H ⊕H),
the positive definiteness of (3.3.12) lifts to the positive definiteness of

M(w, z) :=
〈
w,
{
Ŝ − iĴ

}
z
〉

=
〈
( uv ),−iĴ0( xy )

〉
+
〈
( uv ), Ŝ0( xy )

〉
(3.3.13)

where M is a kernel defined (as above) in H ⊂ Ĥ. Now by Lemma 3.3.3, positive definite-
ness of M in (3.3.13) is equivalent to (3.3.6).
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(ii). Now we set out to prove that S − I is Hilbert-Schmidt on the real Hilbert space
H. We are given that there exists a density matrix ρ such that ρ̂(z) = e−

1
2 Re〈z,Sz〉. Since

Ŝ − iĴ ≥ 0, by Lemma 3.3.2 there exists a primary quasifree state φ on CCR(H, σ) such
that

φ(W (z)) = e−
1
2 Re〈z,Sz〉.

Claim : φA and φ(−J) are quasi equivalent, where A = −JS.
Proof (of Claim). Consider the state ψ on B(Γs(H)) given by X 7→ Tr ρX. The quasifree
state φA is the restriction of ψ to A := CCR(H, σ) ↪→ B(Γs(H)).

Let (Hψ,Πψ,Ωψ) be the GNS triple for B(H) with respect to ψ. Then (Hψ,Πψ|A,Ωψ)
is the GNS triple for A with respect to φA. To see this, only thing to be noticed is Ωψ is
cyclic for Πψ(A), which is clear since A is strongly dense in B(Γs(H)). We further note
that the inclusion A ⊆ B(Γs(H)) is the GNS representation with respect to the vacuum
state which is the quasi-free state given by φ−J . It can be seen that the association

W (x) 7→ Πψ(W (x))

can be extended as an isomorphism between B(Γs(H)) = A′′ and Πψ(B(Γs(H))). Thus
the claim is proved.

Since φ(−J) and φA are quasi equivalent, by Theorem 1.5.3 we get A + J is Hilbert-
Schmidt on H−J which is the same as H with the real inner product Re 〈·, ·〉H.

(iii). This follows due to the same reason as that of (ii) because of Theorem 1.5.3 itself.
We get

√
−A2 − I is Hilbert-Schmidt on (H,Re 〈·, ·〉). This is same as −A2 − I is trace

class on the same Hilbert space. Hence we have −JSJS − I is trace class. By multiplying
with

√
S on the left and (

√
S)−1 on the right we see that −

√
SJSJ

√
S − I is trace class.

The result follows because JT = −J .

Note. It may be noted at this point that the operator
√
SJ
√
S in (iii) of the above

theorem is the skew symmetric operator B appearing in the proof of Williamson’s normal
form in Theorem 2.6.1. Proof of Williamson’s normal form was obtained there by applying
Corollary 2.5.2 to B,

ΓTBΓ =
0 −P
P 0


where Γ is an orthogonal transformation. L was obtained by taking

L =
P−1/2 0

0 P−1/2

ΓTS1/2.
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This choice of L provides S = LTPL, where P0 = [ P 0
0 P ].

Corollary 3.3.1. (
√
SJ
√
S)T (
√
SJ
√
S) − I is trace class if and only if −JSJS − I is

trace class.

Proof. This is the content of the proof of (iii) in Theorem 3.3.1.

Corollary 3.3.2. Assuming the hypothesis of Theorem 3.3.1 we have

(i) If S − I ≥ 0 then S − I is trace class on (H,Re 〈·, ·〉)
(ii) If S is complex linear then S − I ≥ 0 and S − I is trace class on (H,Re 〈·, ·〉).

Proof. (i). We have −
√
SJSJ

√
S − I is trace class on (H,Re 〈·, ·〉). Hence by multiplying

with (
√
S)−1 on both sides, (−J)SJ −S−1 is trace class. Since S− I ≥ 0, (−J)SJ − I ≥ 0

and S−1 ≤ I therefore we have

0 ≤ (−J)SJ − I ≤ (−J)SJ − S−1

and we conclude that (−J)SJ−I is trace class on (H,Re 〈·, ·〉). Thus the proof is complete
by taking a conjugation with J .

(ii). By (iii) in Lemma 3.3.2 and (ii) of Proposition 1.5.2 we have

−A2 − I ≥ 0 (3.3.14)

with respect to the real inner product Re 〈·, S(·)〉. We have A2 = JSJS but since S is
complex linear it commutes with J , thus A2 = −S2 and we see that S2−I ≥ 0, consequently
S ≥ I on (H,Re 〈·, S(·)〉H). But this implies S ≥ I on (H,Re 〈·, ·〉) since S is positive.
Since S commutes with J , by (iii)) of Theorem 3.3.1 we see that S2− I is Hilbert-Schmidt
on (H,Re 〈·, ·〉). Now the result follows because 0 ≤ S − I ≤ S2 − I.

We observe the following Corollary which follows from the fact that φA and φ−J are
quasiequivalent.

Corollary 3.3.3. φA is a Type 1 quasifree state.

Note. By (ii) of Examples in Section 3.2 we have seen that for a symplectic automorphism
L, LTL is a covariance operator whenever LTL− I is Hilbert-Schmidt. Now by Theorem
3.3.1 we get that LTL satisfies the conditions (i), (ii), and (iii) there. This is true also for
any such symplectic transformation. But since

√
LTL is symplectic whenever L is so, the

condition (iii) is just void. Also it can be proved independently that for any symplectic
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3.4. Positivity and Trace class conditions imply Gaussian state

transformation the positivity condition (i) on LTL is true. Therefore, LTL− I is Hilbert-
Schmidt is the only non-trivial condition here.

What is the meaning of the condition Ŝ − iĴ ≥ 0?
We will answer this question now.

Lemma 3.3.4. Let S be a real linear operator on H. Then Ŝ− iĴ ≥ 0 if and only if there
exists a state φ on CCR(H, σ) such that φ(W (z)) = e−

1
2 Re〈z,Sz〉.

Proof. We saw in the proof of Theorem 3.3.1 that the condition Ŝ − iĴ ≥ 0 is equivalent
to the positive definiteness of the kernel Kρ in (3.3.7), where f(z) = e−

1
2 Re〈z,Sz〉. Since

f(0) = 1, by Proposition 1.5.1, we have Kρ is positive definite if and only if there exists a
state φ on CCR(H, σ) such that φ(W (z)) = f(z).

By Lemma 3.3.2, if S is real linear, invertible and Ŝ−iĴ ≥ 0 then there exists a primary
quasifree state φ such that (3.3.1) holds. On the other hand if there is a primary quasifree
state φ such that (3.3.1) holds, by Lemma 3.3.4, we have Ŝ − iĴ ≥ 0. Thus, we have

Theorem 3.3.2. Let S be a real linear, invertible operator on H. Then Ŝ − iĴ ≥ 0 on Ĥ
if and only if there exists a primary quasifree state φ on CCR(H, σ) such that

φ(W (z)) = e−
1
2 Re〈z,Sz〉. (3.3.15)

Corollary 3.3.4. Let S be a real linear, invertible operator on H. Then Ŝ − iĴ ≥ 0 on Ĥ
if and only if Im 〈z, w〉2 ≤ Re 〈z, Sz〉Re 〈w, Sw〉.

3.4 Positivity and Trace class conditions imply Gaussian state

Now we proceed to prove the converse of Theorem 3.3.1.

Lemma 3.4.1. If sj > 0 then
∞∑
j=1

(
e−sj

1−e−sj
)
<∞ if and only if

∞∑
j=1

e−sj is convergent.

Proof. Assume
∞∑
j=1

(
e−sj

1−e−sj
)
<∞. Since e−sj

1−e−sj > 0 and 1
1−e−sj > 0, we have 0 <

∞∑
j=1

e−sj <

∞∑
j=1

(
e−sj

1−e−sj
)
< ∞. Now assume that

∞∑
j=1

e−sj < ∞. Then sj → ∞ and hence 1
1−e−sj → 1.

This means we have 0 < 1
1−e−sj < M,∀j, for someM > 1. Therefore,

∞∑
j=1

(
e−sj

1−e−sj
)
<∞.
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Let H = H + iH and {e1, e2, e3 · · · } be an orthonormal basis for H. Note that {ej} is
also a basis for H as a complex Hilbert space. Let D = Diag(dj) be a bounded diagonal
operator on H, with dj > 1, j = 1, 2, 3, . . . in the given basis. Since dj > 1 there exists
sj > 0 such that dj = coth

(
sj
2

)
for all j, where coth denotes the hyperbolic cotangent. If

we consider D as a real linear operator on H, then D0 = [D 0
0 D ] on H ⊕H.

Lemma 3.4.2. Let D = Diag(dj) be a bounded diagonal operator on H, with dj > 1,
j = 1, 2, 3, . . . with respect to a basis. Write dj = coth

(
sj
2

)
for all j. Then D − I is trace

class if and only if
∞∑
j=1

e−sj is convergent.

Proof. Observe,

D − I is in trace class⇔
∞∑
j=1

(dj − 1) <∞

⇔
∞∑
j=1

(coth
(
sj
2

)
− 1) <∞

⇔
∞∑
j=1

(
1 + e−sj

1− e−sj − 1
)

⇔
∞∑
j=1

(
e−sj

1− e−sj

)
<∞

⇔
∞∑
j=1

e−sj <∞ (3.4.1)

where (3.4.1) follows from Lemma 3.4.1.

Proposition 3.4.1. Let D = Diag(dj) be a bounded diagonal operator on H, with dj > 1,
j = 1, 2, 3, . . . with respect to a basis. Write dj = coth

(
sj
2

)
for all j. Then there exists a

state ρD on Γs(H) such that ρ̂D(x) = e−
1
2 〈x,Dx〉.

Proof. Consider the diagonal operator T = Diag(e−sj) with respect to the same basis in
which D is diagonal then the second quantization Γs(T ) is a trace class operator on the
symmetric Fock space, Γs(H). This is because of the following reasoning. T is positive
and by Lemma 3.4.2 it is a trace class operator. Thus we have sj > 0 and sj →∞, which
implies e−sj < 1, for all j. Since e−sj is maximal when sj is minimal we get supj(e−sj) < 1.
Now by Proposition 1.2.3, Γs(T ) exists and is trace class with

Tr Γs(T ) = Π∞j=1(1− e−sj)−1. (3.4.2)
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3.4. Positivity and Trace class conditions imply Gaussian state

Define ρD = Π∞j=1(1−e−sj)Γs(T ), then ρ is a density matrix on Γs(H). We haveH = ⊕jCej.
Since Γs(e−sj) = e−sja

†
jaj on Γs(Cej), under the isomorphisms described in Proposition

1.3.2, ρD = Π∞j=1(1− e−sj)Γs(⊕je−sj) = ⊗∞j ρj, where ρj = (1− e−sj)e−sja
†
jaj and ⊗∞j=1ρj is

defined as the strong limit of the states ρN ∈ B(⊗jΓs(Cej)) defined for each N ∈ N as

ρN := ρ1 ⊗ ρ2 ⊗ · · · ρN ⊗ |e(0)〉〈e(0)| ⊗ |e(0)〉〈e(0)| ⊗ · · · . (3.4.3)

Let x = ⊕jxjej, then define for each N ∈ N,

WN(x) = W (x1)⊗W (x2)⊗W (xN)⊗ I ⊗ I ⊗ · · · . (3.4.4)

Now we can can compute the quantum Fourier transform of ρD.

ρ̂D(x) = Tr ρW (x)

= Tr
(
Π∞j=1(1− e−sj)Γs(⊕je−sj)W (⊕jxj)

)
= Tr

(
⊗j(1− e−sj)Γs(e−sj)W (xj)

)
= Tr

(
⊗j(1− e−sj)e−sja

†
jajW (xj)

)
= Tr

(
s-lim
N

ρNWN(x)
)

= lim
N

Tr ρNWN(x)

= lim
N

ΠN
j=1 Tr

(
(1− e−sj)e−sja

†
jajW (xj)

)
= Π∞j=1e

−〈xj , 12 coth( sj2 )xj〉 (3.4.5)

= e−
1
2 〈x,Dx〉

where (3.4.5) follows from (iii) of Examples in Section 3.2.

Recall from (i) of Examples in Section 3.2 that the vacuum state |e(0)〉〈e(0)| on Γs(H)
is a Gaussian state with covariance operator I.

Theorem 3.4.1. If P is any complex linear operator on H such that P − I is positive
and trace class, then there exists a state ρ on Γs(H) such that the quantum characteristic
function ρ̂ associated with ρ is given by

ρ̂(x) = e−
1
2 〈x,Px〉

for every x ∈ H.
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Proof. Let U be a unitary operator such that P = U∗DU . Such a U exists by applying
spectral theorem to the compact positive operator P − I. Since P ≥ I assume without
loss of generality that H = H1 ⊕H2 is such that D =

[
D1 0
0 I

]
, where we seperated all the

diagonal entries of D which are equal to one and not equal to one. Then D1 satisfies the
assumptions in Proposition 3.4.1 and ρD1 exists as a Gaussian state on Γs(H1). Let ρ0

denote the vacuum state |e(0)〉〈e(0)| on Γs(H2), which is Gaussian by Example (i). Then
by Proposition 3.2.5, ρD1 ⊗ ρ0 = ρg(0, D). Define ρ = Γs(U∗)ρD1 ⊗ ρ0Γs(U) and the result
follows from Proposition 3.2.3.

Lemma 3.4.3. Let C − I be Hilbert-Schmidt (trace class), then

(i) If C ≥ 0 then
√
C − I is Hilbert-Schmidt (trace class).

(ii) If C is invertible then C−1 − I is Hilbert-Schmidt (trace class).

Lemma 3.4.4. Let S be a real linear, positive and invertible operator on H. Then L and
P as in Corollary 2.6.1 can be chosen such that

(i) If S − I is Hilbert-Schmidt then LTL− I is Hilbert Schmidt, i.e L ∈ S(H,K).
(ii) If (

√
SJ
√
S)T (
√
SJ
√
S)− I is trace class then P− I is a trace class operator on K.

Proof. (i). It can be seen from the proof of Williamson’s normal form in Theorem 2.6.1
that L can be chosen as L = P−1/2ΓTS1/2, where Γ0 : K ⊕K → H ⊕H is an orthogonal
transformation such that the skew symmetric operator

B0 := S
1/2
0 J0S

1/2
0 = Γ0

[
0 −P
P 0

]
ΓT0 (3.4.6)

and P0 = [ P 0
0 P ]. Then

LTL = S1/2ΓP−1ΓTS1/2. (3.4.7)

But [
0 P
−P 0

][
0 −P
P 0

]
=
[
P 2 0
0 P 2

]
, (3.4.8)

therefore if we write P0 =
[

0 −P
P 0

]
, we see that

P−1 = (
√

PTP)−1. (3.4.9)

Since Γ is orthogonal, by (3.4.6) and (3.4.9) we get (
√
BTB)−1 = ΓP−1ΓT . Now by (3.4.7),

we get

LTL = S1/2(
√
BTB)−1S1/2. (3.4.10)
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We have S − I is Hilbert-Schmidt. Therefore, so is JTSJ − I. Hence S1/2JTSJS1/2 − S
is Hilbert-Schmidt. By adding and subtracting I and using the fact the S − I is Hilbert-
Schmidt we get S1/2JTSJS1/2 − I is also so. In other words, we just got BTB − I is
Hilbert-Schmidt. Now by Lemma 3.4.3 we get (

√
BTB)−1 − I is Hilbert-Schmidt. This

along with (3.4.10) finally allows us to conclude that LTL− I is Hilbert-Schmidt.

(ii). By keeping the notations above and using Lemma 3.4.3, we have (
√
BTB)−1 − I

is trace class and thus S1/2(
√
BTB)−1S1/2 − S = LTL− S is trace class. Since S = LTPL

we get LT (P− I)L is trace class. Since L is invertible we see that P− I is trace class.

The next theorem shows that the necessary conditions we have on the covariance op-
erator in Theorem 3.3.1 are sufficient for the existence of a Gaussian state with the given
operator as the covariance operator.

Theorem 3.4.2. Let S be a real linear invertible operator on H such that

(i) Ŝ − iĴ ≥ 0 on Ĥ.
(ii) S − I is Hilbert-Schmidt on (H,Re 〈·, ·〉).
(iii) (

√
SJ
√
S)T (
√
SJ
√
S)− I is trace class on (H,Re 〈·, ·〉).

Then there exists a density matrix ρ on Γs(H) such that the quantum characteristic function
ρ̂(z) = e−

1
2 Re〈z,Sz〉 i.e., S ∈ C(H).

Proof. Since Ŝ − iĴ ≥ 0, S ≥ 0. Since S is invertible, we apply Williamson’s normal
form to it. Thus there exists a Hilbert space K and a symplectic transformation L : H →
K such that S = LTPL (Corollary 2.6.1). By Lemma 3.4.4 P − I is trace class and
LTL−I is Hilbert-Schmidt. Now by Theorem 1.8.1, there exists a unique unitary operator
Γs(L) : Γs(H)→ Γs(K) such that

Γs(L)W (u)Γs(L)∗ = W (Lu). (3.4.11)

It is understood that W (·) on either side of the above equality are considered in the
corresponding Fock spaces.

Since P− I is trace class and positive, by Theorem 3.4.1 there exists a density matrix
ρP such that ρ̂P(y) = e−

1
2 〈y,Py〉 for every y ∈ K. Define

ρ = Γs(L)∗ρPΓs(L). (3.4.12)

Claim. ρ̂(z) = e−
1
2 Re〈z,Sz〉 for every z ∈ H.
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Proof (of Claim). By Proposition 3.2.3, we have

ρ̂(z) = ρ̂P(Lz)

= e−
1
2 〈Lz,PLz〉

= e−
1
2 Re〈Lz,PLz〉

= e−
1
2 Re〈z,LTPLz〉

= e−
1
2 Re〈z,Sz〉.

Thus by combining Theorem 3.3.1 and Theorem 3.4.2, we have Theorem 3.2.1.

Corollary 3.4.1. Let S be a complex linear positive and invertible operator on H, then
S ∈ C(H) if and only if Ŝ − iĴ ≥ 0 and S − I is trace class.

Note that by Theorem 3.3.2, the condition Ŝ − iĴ ≥ 0 is equivalent to the existence
of a primary quasifree state φ on CCR(H, σ) such that φ(W (z)) = e−

1
2 Re〈z,Sz〉. Further,

by Theorem 1.5.3, along with (ii) and (iii) we infer that this φ is quasiequivalent to the
vacuum state. So a restatement of Theorem 3.4.2 is as follows.

Theorem 3.4.3. A primary quasifree state which is quasi equivalent to the vacuum state
extends uniquely to a normal state in the GNS representation corresponding to the vacuum
state (Section 1.6) and the this extended state can be constructed explicitly on B(Γs(H)).

Corollary 3.4.2. Let S be a complex linear, self-adjoint and invertible operator on H.
Then S is the covariance operator of a quantum Gaussian state on Γs(H) if and only if
Ŝ − iĴ ≥ 0 and S − I is trace class.

Corollary 3.4.3. Let S ≥ I be real linear then S is the covariance operator of a quantum
Gaussian state on Γs(H) if and only if S − I is trace class.

The following theorem is another characterization of Gaussian states in terms of the
quantum Fourier transform.

Theorem 3.4.4. There exists a quantum Gaussian state ρ with covariance matrix S if
and only if ρ̂|CCR(H,σ) is a primary quasifree state φA quasiequivalent to the vacuum state
φ−J on CCR(H, σ), where A = −JS.
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Proof. If S is a covariance operator, by Theorem 3.3.2 and proofs of (ii) and (iii) in Theorem
3.3.1, we see the existence of the required quasifree state. It can be seen from Theorem 1.5.3,
the same proofs mentioned above and Theorem 3.2.1, that the existence of a quasifree state
as in the statement gives rise to the existence of the required quantum Gaussian state.

Note. By Theorem 3.4.4, it is established that quantum Gaussian states are characterized
by a subclass of quasifree states on CCR(H, σ). More clearly, quantum Gaussian states are
precisely those density matrices whose quantum characteristic function define a quasifree
states on CCR(H, σ) which are quasi equivalent to the vacuum state φ−J .
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The Symmetry Group of Quantum Gaussian States

The previous chapter described and characterized infinite mode Gaussian states. In this
chapter, we extend some beautiful convexity and symmetry properties of Gaussian states
proved by Parthasarathy [Par13b] in the finite mode case, to this setting. We also present
a structure theorem for Gaussian states. The methods similar to those of Parthasarathy
also work in this situation because we have the right machinery at our disposal from the
previous chapters. Recall that H,K are separable complex Hilbert spaces, C(H) denotes
the collection of covariance operators for Gaussian states on Γs(H) and S(H,K) are Shale
operators from H to K.

4.1 Convexity Properties of Covariance Operators

The following proposition helps us to prove that C(H) is a convex set.

Proposition 4.1.1. Consider two mean zero Gaussian states

ρi = ρg(0, Si), i = 1, 2

on Γs(H). For θ ∈ R, let Uθ be the unitary operator
[

cos θ − sin θ
sin θ cos θ

]
on H⊕H. Then

Tr2
(
Γs(Uθ)(ρ1 ⊗ ρ2)Γs(Uθ)∗

)
= ρg(0, (cos2 θ)S1 + (sin2 θ)S2)

where Tr2 denotes the relative trace over the second factor of Γs(H)⊗Γs(H) and Γs(Uθ) is
considered under the identification between Γs(H⊕H) and Γs(H)⊗ Γs(H).

Proof. The proof is an easy consequence of Proposition 3.2.2 and Proposition 3.2.6 and the
definition of Gaussian states. We note that (cos2 θ)S1+(sin2 θ)S2 is a convex combination of
two positive and invertible operators and hence it is positive and invertible. This last result
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can be seen by using the numerical range. If S is positive and invertible, the numerical
range W (S) is defined as W (S) := {〈x, Sx〉 : ‖x‖ = 1}. It is easy to prove that elements
of W (S) are strictly positive and away from zero in this case. Further, it can be proved
that the spectrum σ(S) ⊆ W (S). It is also direct to see that the numerical range of convex
combination of positive invertible operators lie bounded away from zero in the positive half
of the real line.

As a consequence, we have the following result.

Corollary 4.1.1. C(H) is a convex set.

Now we proceed to describe the extreme points of C(H).

Lemma 4.1.1. Let P ≥ I be a positive operator, then there exists invertible positive
operators P1 and P2 such that

P = 1
2(P1 + P2) = 1

2(P−1
1 + P−1

2 ). (4.1.1)

Proof. Take P1 = P +
√
P 2 − I and P2 = P −

√
P 2 − I. Then P1P2 = P2P1 = I and

(4.1.1) is satisfied.

Recall the definition S(H) of Shale operators in Section 1.8 and the notations developed
in Section 1.7, we have

Lemma 4.1.2. Let H = H + iH and P ∈ B(H) be such that P − I is positive and trace
class, further let P0 = [ P 0

0 P ] on H ⊕ H(Section 1.7). Then P = 1
2(P1 + P2), for some

Pj ≥ 0, and P
1
2
j ∈ S(H), j = 1, 2.

Proof. Take P1 = P +
√
P 2 − I and P2 = P −

√
P 2 − I, then by (4.1.1),

P0 = 1
2


P1 0

0 P−1
1

+
P2 0

0 P−1
2

 .
Define Pj such that Pj(x + iy) = Pjx + P−1

j y,∀x, y ∈ H, j = 1, 2. Then Pj is symplectic
and positive. To prove P

1
2
j ∈ S(H), it is enough to show that Pj − I is Hilbert-Schmidt,

j = 1, 2. Since P − I is trace class (and hence Hilbert-Schmidt) it is enough to show√
P 2 − I is Hilbert-Schmidt or equivalently P 2 − I is is trace class. This is true because
P 2 − I = (P − I)2 + 2(P − I).
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Theorem 4.1.1. S ∈ C(H) if and only if

S = 1
2(NTN +MTM) (4.1.2)

for some N,M ∈ S(H,K), for some Hilbert space K. Further, S is an extreme point of
C(H) if and only if S = NTN for some N ∈ S(H,K).

Proof. Note that if N ∈ S(H,K) for some K then NTN is a covariance operator by taking
S = I and L = N in Proposition 3.2.6. Therefore by convexity of C(H), if S is of the form
(4.1.2) then S ∈ C(H).

Now let S ∈ C(H), let S = LTPL be the Williamson’s normal form as in Corollary
2.6.1. Then by Lemma 3.4.4 and Lemma 3.3.2 we have L ∈ S(H,K) and P−I is trace class
and positive. By Corollary 2.6.1 we have P0 = [ P 0

0 P ]. By Lemma 4.1.2, P = 1
2(P1 + P2)

with Pj ≥ 0, j = 1, 2. Therefore we have

S = 1
2L

T (P1 + P2)L.

By taking N = P
1/2
1 L and M = P

1/2
2 L we get (4.1.2). An easy computation shows N,M ∈

S(H,K).

The proof of second part of the Theorem goes in similar lines to the proof of the similar
statement in the finite mode case, Theorem 3 in [Par13b]. We give it here for completeness.
The first part also shows that for an element S of C(H) to be extremal it is necessary that
S = LTL for some Shale operator L. To prove sufficiency, suppose there exist a Shale
operator L and S1, S2 ∈ C(H) such that

LTL = 1
2(S1 + S2).

By the first part of the theorem there exist Shale operators Lj such that

LTL = 1
4

4∑
j=1

LTj Lj (4.1.3)

where S1 = 1
2(LT1L1 + LT2L2), S2 = 1

2(LT3L3 + LT3L3). Left multiplication by (LT )−1 and
right multiplication by L−1 on both sides of (4.1.3) gives

I = 1
4

4∑
j=1

Mj (4.1.4)
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where
Mj = (LT )−1LTj LjL

−1.

Each Mj is a positive Shale operator. Multiplying by J on both sides of (4.1.4). We get

J = 1
4

4∑
j=1

MjJ

= 1
4

4∑
j=1

MjJMjM
−1
j

= 1
4J

4∑
j=1

M−1
j .

Thus
I = 1

4

4∑
j=1

Mj = 1
4

4∑
j=1

M−1
j = 1

4

4∑
j=1

1
2(Mj +M−1

j ),

which implies
4∑
j=1

(M1/2
j −M−1/2

j )2 = 0,

or
Mj = I, ∀1 ≤ j ≤ 4.

Thus
LTj Lj = LTL, ∀j

and S1 = S2.

Remark 6. The relation (4.1.2) is called the circle property because every point in the
convex set C(H) is the midpoint of a line joining two extreme points.

Corollary 4.1.2. Let S1, S2 be extreme points of C(H). If S1 ≥ S2 then S1 = S2.

Proof. By Theorem 4.1.1, let S1 = LT1L1 and S2 = LT2L2 for some L1 ∈ S(H,K1) and
L2 ∈ S(H,K2). Without loss of generality we assume that K1 = K2. This can be done
by going through the proof of previous theorem and identifying K1 and K2 in such a way
that the Willliamson’s normal form of both S1 and S2 are obtained in the same Hilbert
space K (by a possibly different real and complex decomposition of K). LT1L1 ≥ LT2L2

implies that the symplectic transformation M := L2L
−1
1 (well defined because K1 = K2)

has the property MTM ≤ I. But since MTM is a positive symplectic automorphism
MTM = V TV ∗ for some unitary V , where H = H + iH and T (x+ iy) = Ax+ iA−1y for
some positive invertible operator A on H. But for such a T , T ≤ I if and only if A = I.
This proves MTM = I. But this implies LT2L2 = LT1L1 from the definition of M .
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4.2 Structure of Quantum Gaussian States

In this section, we prove a structure theorem for Gaussian states, we will see that any
Gaussian state is a Weyl, Shale conjugation of the fundamental examples of Gaussian
states we provided in Section 3.2.

Let S be a Gaussian covariance operator. It satisfies the properties listed in Theorem
3.2.1. Then by combining Lemma 3.3.2 and Lemma 3.4.4 we get a Williamson’s normal
form (Corollary 2.6.1), S = LTPL such that P− I is positive and trace class. By applying
spectral theorem to P−I we see that there exists a unitary U such that P = U∗DU , whereD
is diagonal and positive. Recall that a unitary is already symplectic. Therefore, whenever
S is a covariance operator we can assume without loss of generality that the P ∈ B(K)
occurring in the Williamson’s normal form is of the form P = [D 0

0 I ] on a decomposition
K = K1 ⊕ K2, with D = Diag(d1, d2, . . . ), d1 ≥ d2 ≥ · · · > 1. Fix a basis of K in this
way. Now consider the identification of Γs(C) with L2(R), where e(z) ∈ Γs(C) is identified
with the L2-function x 7→ (2π)−1/4 exp{−4−1x2 + zx− 2−1z2} (Example 1 in Chapter 1).
Therefore, we can assume without loss of generality that Γs(K) = ⊗jL2(R), with respect
to the stabilizing vector e(0). It may be noted that making these identifications does not
alter Γs(L).

Theorem 4.2.1. Let ρg(w, S) be a Gaussian state on Γs(H). Let S = LTPL be a
Williamson’s normal form of S, where L : H → K, with LTL− I is Hilbert-Schmidt (i.e.,
L ∈ S(H,K)) and P = [D 0

0 I ], on a decomposition K = K1⊕K2, with D = Diag(d1, d2, . . . ),
d1 ≥ d2 ≥ · · · > 1, dj = coth

(
sj
2

)
, ∀j . Then

ρg(w, S) = W (−i2 w)∗Γs(L)∗[⊗j(1− e−sj)e−sja
†
jaj ⊗ ρ0]Γs(L)W (−i2 w). (4.2.1)

where ρ0 = |e(0)〉〈e(0)| is the the vacuum state on Γs(K2).

Proof. By Proposition 3.2.4, ρg(w, S) = W (−i2 w)−1ρg(0, S)W (−i2 w). Since S = LTPL, by
Proposition 3.2.6, ρg(0, S) = Γs(L)∗ρg(0,P)Γs(L). Since P = D ⊕ I, by Proposition 3.2.5,
ρg(0,P) = ρg(0, D) ⊗ ρg(0, I). But ρg(0, D) = ⊗j(1 − e−sj)e−sja

†
jaj since both on left and

right hand sides have same quantum characteristic function by proof of Proposition 3.4.1
and it is obvious that ρg(0, I) = ρ0.

Corollary 4.2.1. If {ej} is a basis of H, consider Γs(H) = ⊗jL2(R), then the wave
function of a general pure quantum Gaussian state is of the form

|ψ〉 = W (α)−1Γs(U)(⊗j
∣∣∣eλj〉) (4.2.2)
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where eλ ∈ L2(R) and

eλ(x) = (2π)−1/4λ−1/2 exp
{
−4−1λ−2x2

}
, x ∈ R, λ > 0,

α ∈ H, U is a unitary operator on H, Γs(U) is the second quantization unitary operator
associated with U and λj, j ∈ N are positive scalars.

Proof. This proof follows along similar lines to the proof of Corollary 2 in [Par13b]. We
know that the spectrum of the number operator a†a is the set {0, 1, 2, . . . }. Therefore it
follows that, in Theorem 4.2.1 the part involving the number operator is not there. Thus
any pure state is just a Shale and Weyl conjugation of a vacuum state. Therefore

|ψ〉 = W (α)−1Γs(L) |e(0)〉 (4.2.3)

for some L ∈ S(H,K). The covariance operator of this pure state is LTL. By Proposition
1.7.3, L0 (recall the notation introduced in Section 1.7) can be decomposed as

L0 = U0

A 0
0 A−1

V0,

where U0 and V0 are orthogonal transformations. But now

LT0L0 = V0

A2 0
0 A−2

V0

= NT
0 N0,

where

N0 =
A 0

0 A−1

V0.

Since LTL−I is Hilbert-Schmidt we can choose A to be diagonal without loss of generality.
Since the covariance matrix of |ψ〉〈ψ| can also be written as NTN , ψ in (4.2.3) can also be
written as

|ψ〉 = W (α)−1Γs(V )Γs(T ) |e(0)〉 , (4.2.4)

where T is such that T0 =
[
A 0
0 A−1

]
. T is unitarily equivalent to ⊕T j where T j0 =

[
λj 0
0 λ−1

j

]
.

Finally Γs(T ) = ⊗Γs(T j) upto a conjugation with a second quantization unitary. Equation
(4.2.2) follows by taking

∣∣∣eλj〉 = Γs(Tj) |e(0)〉 via the identification of Γs(C) with L2(R).

Now we show that all Gaussian states can be purified to get pure Gaussian states.
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Theorem 4.2.2 (Purification). Let ρ be a mixed Gaussian state in Γs(H). Then there
exists a pure Gaussian state |ψ〉 in Γs(H)⊗ Γs(H) such that

ρ = Tr2 U |ψ〉〈ψ|U∗

where U is a unitary and Tr2 is the relative trace over the second factor.

Proof. Proof is similar to that of Theorem 5 in [Par13b]. Let ρ = ρg(w, S). By Theorem
4.1.1, S = 1

2(LT1L1 +LT2L2), Lj ∈ S(H,K), j = 1, 2. Now consider the pure Gaussian states
Γs(Lj)∗ |e(0)〉 , j = 1, 2 in Γs(H). Let Γ0 be the second quantization unitary satisfying

Γ0e(u⊕ v) = e

(
u+ v√

2
⊕ u− v√

2

)
,∀u, v ∈ H

in Γs(H ⊕ H) identified with Γs(H) ⊗ Γs(H), so that e(u ⊕ v) = e(u) ⊗ e(v). Then by
Proposition 4.1.1, we have

Tr2 Γ0(|ψL1〉〈ψL1| ⊗ |ψL2〉〈ψL2|) = ρg(0, S).

Further by Proposition 3.2.4, there exists α ∈ H such that

W (α)ρg(0, S)W (α)−1 = ρg(w, S).

Putting U = (W (α)⊗ I)Γ0(Γs(L1)−1 ⊗ Γs(L2)−1), we get

ρg(w, S) = Tr2 U |e(0)⊗ e(0)〉〈e(0)⊗ e(0)|U∗,

where e(0) is the exponential vector in Γs(H).

4.3 Symmetry group of Gaussian states

Let H be a complex separable infinite dimensional Hilbert space and let G(H) denote the
set of all Gaussian states on Γs(H).

Definition 4.3.1. A unitary operator U on Γs(H) is called aGaussian symmetry if UρU∗ ∈
G(H) for every ρ ∈ G(H).

We will give a complete characterization of Gaussian symmetries. This will be achieved
in Theorem 4.3.2. We need some preliminary results for proving this. Towards this end,
let Z+ denote the set {0, 1, 2, 3, . . . } and take

Z∞+ := {(k1, k2, . . . , kn, 0, 0, . . . )T |kj ∈ Z+, j, n ∈ N}.
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Chapter 4. The Symmetry Group of Quantum Gaussian States

Let {ej}j∈N denote the standard orthonormal basis for `2(N), where ej is the column vector
with 1 at the jth position and zero elsewhere. An infinite order matrix A is said to be a
permutation matrix if A is the matrix with respect to the standard orthonormal basis,
corresponding to a unitary operator which maps {ej} to itself.

Lemma 4.3.1. Let {sj}j∈N and {tj}j∈N be two sets consisting of positive numbers such
that 

n∑
j=1

sjkj|kj ∈ Z+∀j, n ∈ N

 =


n∑
j=1

tjkj|kj ∈ Z+∀j, n ∈ N

 . (4.3.1)

If {sj} and {tj} are linearly independent over the field Q, then {sj} = {tj}.

Proof. Consider s = (s1, s2, s3, . . . )T and t = (t1, t2, t3, . . . )T . These vectors need not be in
`2, we consider them as formal vectors only. Now it is enough to prove that there exists
an infinite permutation matrix A such that As = t. Fix i ∈ N. From (4.3.1) there exists
ni,mi ∈ N and aij, bij ∈ Z+ with bik = 0 = ail for all k > ni, l > mi such that

si =
∞∑
j=1

tjbij and ti =
∞∑
j=1

sjaij.

Set A = ((aij)) and B = ((bij)). Note that, by construction, each row of A,B,AB and BA
has only finitely many non zero entries. Clearly As = t, Bt = s and hence BAs = s. Since
each row of BA has only finitely many non zero entries, by the rational linear independence
of {sj}, we get BA = I. Similarly since ABt = t, we get AB = I. Now BA = I implies
that

∞∑
j=1

b1jaj1 = 1 and
∞∑
j=1

bijaj1 = 0 for all i 6= 1. Now since aij, bij ∈ Z+, there exists
k1 ∈ N such that b1k1 = ak11 = 1. Since bik1ak11 = 0 we have bik1 = 0 for all i 6= 1. Thus
k1-th column of B is e1. Similarly, if k 6= 1, since

∞∑
j=1

b1jajk = 0 we get ajk = 0,∀j 6= 1 or
row k1 of A is e1.

Suppose k1, k2, . . . kn−1 ∈ N are obtained such that ki 6= kj for i 6= j, column ki of B
(and row ki of A ) is ei, 1 ≤ i ≤ n− 1. We prove that there exist kn ∈ N such that kn 6= ki

for i < n and column kn of B (and row kn of A) is en. Since
∞∑
j=1

bnjajn = 1 there exists
kn ∈ N such that bnkn = aknn = 1. If kn = ki for some i < n then column ki of B cannot
be ei thus kn 6= ki for i < n. Now a similar argument as above concludes that column
kn of B (and row kn of A) is en. Thus every en occurs at least once in the columns of B
and rows of A. Similarly, by considering AB = I we see that every en occurs at least once
in the columns of A and rows of B. Now to see that A and B are permutation matrices,
first note that because AB = BA = I, none of the rows (or columns) of B or A can be
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zero. Further if there exists a row of B where there are two non zero entries, say at the
positions l and m then because of the presence of el and em in the columns of A we see
that the product BA cannot be I. Continuing similar arguments it is seen that A and B
are permutation matrices.

Let us fix some notations and conventions before we proceed further. Recall from
Exercise 20.18(b) in [Par92] that on Γs(C), the spectrum of the number operator, σ(a†a) =
Z+, where each k ∈ Z+ is an eigenvalue with multiplicity one. Let us denote by |k〉 the
eigenvector corresponding to the eigenvalue k. It is also true that |0〉 = e(0), the vacuum
vector. Further, {|k〉 |k ∈ Z+} forms an orthonormal basis for Γs(C). Now consider
Γs(H) = ⊗∞j=1Γs(Cej), where {ej} is an orthonormal basis for H (recall Proposition 1.3.2).
If E denote the orthogonal projection of Γfr(H) (the free Fock space which we didn’t define
but a standard object in the literature) onto Γs(H), we define

|k〉 = E(|k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kN〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ) =: |k1〉 |k2〉 · · · |kN〉 (4.3.2)

corresponding to an element k = (k1, k2, k3, . . . )T ∈ Z∞+ where kj = 0,∀j > N . It can be
seen that {|k〉 |k ∈ Z∞+ } forms an orthonormal basis for Γs(H). We have

(I ⊗ I ⊗ · · · ⊗ I ⊗ a†jaj ⊗ I ⊗ I ⊗ · · · )(|k〉) =

kj |k〉 , if j ≤ N

0, otherwise
, (4.3.3)

where a†jaj is the number operator on Γs(Cej), j ∈ N.

Consider H = ⊕∞j=1Hj where Hj’s are all one dimensional. For a sequence of positive
numbers {sj}j∈N such that dj = coth

(
sj
2

)
> 1 and ∑

j
(dj − 1) is finite, we know from

Theorem 4.2.1 that, there exists a Gaussian state

ρs = Π∞j=1(1− e−sj)⊗∞j=1 e
−sja†jaj ∈ B(Γs(H)). (4.3.4)

Then we have

Lemma 4.3.2. The spectrum of the Gaussian state ρs is the closure of the set,

σp(ρs) =

pe
−

N∑
j=1

sjkj ∣∣∣kj ∈ Z+, N ∈ N

 , (4.3.5)

where p := Π∞j=1(1−e−sj). Further, if {sj}j∈N is a sequence of (distinct) irrational numbers

which are linearly independent over the field Q then each number pe
−

N∑
j=1

sjkj

is an eigenvalue
with multiplicity one.
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Proof. Without loss of generality we assume H = `2(N) and Hj = Cej, where {ej} is the
standard orthonormal basis of `2(N). We have ⊗∞j=1e

−sja†jaj := s-limN→∞⊗Nj=1e
−sja†jaj ⊗

I ⊗ I ⊗ · · · . Therefore,

⊗∞j=1e
−sja†jaj(e(u)⊗ e(0)⊗ e(0)⊗ · · · ) =

(
⊗Nj=1e

−sja†jaje(u)
)
⊗ e(0)⊗ e(0)⊗ · · · ,∀u ∈ CN .

Thus Γs(CN) is a reducing subspace for ρs and ρs|Γs(CN )
= ⊗Nj=1e

−sja†jaj , ∀N . Therefore,

ρs(|k〉) = (p⊗∞j=1 e
−sja†jaj) |k〉 = pe

−
∞∑
j=1

sjkj

|k〉 ,∀k ∈ Z∞+ . (4.3.6)

Since {|k〉 |k ∈ Z∞+ } forms a complete orthonormal basis for Γs(H), {pe
−

N∑
j=1

sjkj ∣∣∣kj ∈
Z+, N ∈ N} is the complete set of eigen values for ρs. If {sj} is linearly independent
over Q, then we see that the eigenvalues corresponding to |k1〉 6= |k2〉 are not same. Thus
the multiplicity of each of these eigenvalues is one.

The following theorem characterizes all unitaries which transform the particular Gaus-
sian state described in (4.3.4) to a Gaussian state. This will help us to prove our general
theorem on Gaussian symmetries.

Theorem 4.3.1. Let ρs be as in (4.3.4) where {sj}j∈N is a sequence of (distinct) irrational
numbers which are linearly independent over the field Q. Then a unitary operator U in
Γs(H) is such that UρsU∗ is a Gaussian state if and only if for some α ∈ H, L ∈ S(H)
and a complex valued function β of modulus one on Z∞+

U = W (α)Γs(L)β(a†1a1, a
†
2a2, . . . ),

where β(a†1a1, a
†
2a2, . . . ) is the unique unitary which satisfies

β(a†1a1, a
†
2a2, . . . ) |k〉 = β(k) |k〉 ,∀k ∈ Z∞+ .

Proof. Since β(a†1a1, a
†
2a2, . . . ) commutes with ρs the sufficiency is immediate from Propo-

sition 3.2.6 and Proposition 3.2.4. To prove the necessity let

UρsU
∗ = ρg(w,P′). (4.3.7)

The eigenvalues and multiplicities of ρs and UρsU∗ are same. Therefore by Theorem 4.2.1
there exists z ∈ H, a Hilbert space K,M ∈ S(H,K) and ρt := Π∞j=1(1−e−tj)⊗∞j=1 e

−tja†jaj ∈
B(Γs(K)) such that

UρsU
∗ = W (z)∗Γs(M)∗ρtΓs(M)W (z). (4.3.8)
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By Lemma 4.3.2, ρs has a complete orthonormal eigenbasis with corresponding eigenvalues
distinct. By (4.3.8), ρs and ρt are unitarily equivalent and therefore their eigenvalues and
multiplicities are same. In particular, the maximum eigenvalue of ρs and that of ρt are
the same. Therefore by applying Lemma 4.3.2 to ρt, we get Π∞j=1(1 − e−tj) = p and ρt

has a set of distinct eigenvalues pe
−

N∑
j=1

tjkj

corresponding to the eigenvectors |k〉, where
k = (k1, k2, . . . , kN , 0, 0, . . . )T ∈ Z∞+ , N ∈ N.
Claim. The sequence {tj}j∈N consists of (distinct) numbers which are linearly independent
over the field Q.
Proof (of Claim). If ti = tk for some i 6= k then it is possible to choose distinct k,k′ ∈ Z∞+,0
such that the eigenvalues of ρt corresponding to |k〉 and |k′〉 are same. This will imply
that the corresponding eigenspace is at least two dimensional which is not possible. To see
the rational independence note that for any two finite subsets I, J ⊂ N, ∑

j∈I
tjkj 6=

∑
j∈J

tjk
′
j

where kj, k
′
j ∈ Z+,∀j. Now if

N∑
j=1

tjqj = 0 (4.3.9)

for a finite collection of rational numbers qj’s, since tj > 0,∀j then there must be negative
rational numbers in the set {q1, q2, . . . , qN} (unless qj = 0,∀j). Then 4.3.9 can be written
in the form ∑

j∈I
tjkj = ∑

j∈J
tjk

′
j for two finite sets I, J , which is not possible. Thus the claim

is proved.

We have {pe
−

N∑
j=1

sjkj ∣∣∣kj ∈ Z+, N ∈ N} = {pe
−

N∑
j=1

tjkj ∣∣∣kj ∈ Z+, N ∈ N}. Therefore

{
n∑
j=1

sjkj|kj ∈ Z+∀j, n ∈ N} = {
n∑
j=1

tjkj|kj ∈ Z+∀j, n ∈ N}. Now by the proof of Lemma
4.3.1, there is a bijection σ : N→ N such that sj = tσ(j) for all j ∈ N.

By (4.3.8) there exists a unitary V such that

V ρsV
∗ = ρt. (4.3.10)

where V = Γs(M)W (z)U . Let k = (k1, k2, . . . , kN , 0, 0, . . . )τ ∈ Z∞+,0 be arbitrary. By
(4.3.10) if |k〉 is an eigenvector for ρs then V |k〉 is an eigenvector for ρt with the same eigen-

value. Therefore, V |k〉 is an eigenvector for ρt with eigenvalue pe
−

N∑
j=1

sjkj

= pe−
∑

j∈N tσjkj .

But defining the unitary operator A on H, Aσ(ej) = eσ(j), its second quantization, Γ(A)k
is an eigenvector for ρt with same eigenvalue. Since the multiplicity for each eigenvalue is
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one, there exists a complex number β(k) of unit modulus such that,

V |k〉 = β(k) |Ak〉
= Γs(A)β(k) |k〉
= Γs(A)β(a†1a1, a

†
2a2, . . . ) |k〉

Then by (4.3.10) U = W (z)∗Γs(M)∗Γs(A)β(a†1a1, a
†
2a2, . . . ). Now the proof is complete

due to Theorem 1.8.1. It should be noted that we may need to redefine β if the multiplier
σ(M−1, A) 6= 1 (refer Theorem 1.8.1).

Now we are ready to prove the main theorem on Gaussian symmetries.

Theorem 4.3.2. A unitary operator U ∈ B(Γs(H)) is a Gaussian symmetry if and only
if

U = λW (α)Γs(L),

for some λ ∈ C with |λ| = 1, α ∈ H, and L is a Shale operator (L ∈ S(H)).

Proof. The sufficiency is immediate from Proposition 3.2.6 and Proposition 3.2.4. To prove
the necessity, let us consider H = ⊕jCej with respect to some orthonormal basis {ej}, if U
is a Gaussian symmetry then in particular UρsU∗ is a Gaussian state for ρs as in Theorem
4.3.1. Therefore we can assume without loss of generality that U = β(a†1a1, a

†
2a2, . . . ). We

will show that U = Γs(D) for some unitary operator D and this will prove the theorem
because of (iii) of Theorem 1.8.1.

Let ψ ∈ Γs(H) be such that |ψ〉〈ψ| is a pure Gaussian state. Then by assumption
|Uψ〉〈Uψ| is also a Gaussian state. It is pure state because it is obtained from the wave
function |Uψ〉. We choose the coherent state ( (i) of Examples in Section 3.2)

ψ = e−
1
2‖u‖

2 |e(u)〉 = W (u) |e(0)〉 ,

where u = (u1, u2, . . . )T ∈ ⊕jCej. Now

|Uψ〉 = e−
1
2‖u‖

2
β(a†1a1, a

†
2a2, . . . ) |e(u)〉 . (4.3.11)

By Corollary 4.2.1, there exists a unitary A and an α ∈ H such that

|Uψ〉 = W (α)Γs(A)⊗j
∣∣∣eλj〉 , (4.3.12)

where eλ(x) = (2π)−1/4λ−1/2 exp{−4−1λ−2x2}, x ∈ R, λ > 0 on L2(R).
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We have by Proposition 1.3.2, e(u) = limM→∞⊗Mj=1e(uj)⊗e(0)⊗e(0)⊗· · · . Let k ∈ Z∞+ ,
with k = (k1, k2, . . . , kn, 0, 0 . . . )T . Since 〈e(uj)|e(0)〉 = 1,

〈e(u)|k〉 = lim
M→∞

〈
⊗Mj=1e(uj)⊗ e(0)⊗ e(0)⊗ · · ·

∣∣∣k〉
= Πn

j=1 〈e(uj)|kj〉

= Πn
j=1

〈 ∞∑
m=0

umj√
m!
|m〉

∣∣∣∣∣∣kj
〉

= Πn
j=1

u
kj
j√
kj!

:= uk
√

k!
,

where the last line defines the multi index notation and here we assume 00 = 1. Therefore
we write,

e(u) =
∑

k∈Z∞+

uk
√

k!
|k〉 . (4.3.13)

Now for each finite vector z = (z1, z2, . . . , zN , 0, 0, . . . )T ∈ ⊕jCej, N ∈ N,

e(z) =
∑

m∈ZN+

zk
√

k!
|m〉 , (4.3.14)

where m ∈ ZN+ is considered as the vector (m1,m2, . . . ,mN , 0, 0, . . . )t ∈ Z∞+ and |m〉 =
|m1〉 |m2〉 · · · |mn〉 ∈ Γs(H) as in the notation of (4.3.2).

We will evaluate the function f(z) = 〈Uψ, e(z)〉 using (4.3.11) and (4.3.12). From
(4.3.11), (4.3.13), (4.3.14) and continuity of β(a†1a1, a

†
2a2, . . . ), we have

f(z) = e−
1
2‖u‖

2 〈
β(a†1a1, a

†
2a2, . . . )e(u), e(z)

〉
= e−

1
2‖u‖

2
〈
β(a†1a1, a

†
2a2, . . . )

∑
k∈Z∞+

uk
√

k!
|k〉 ,

∑
m∈ZN+

zk
√

k!
|m〉

〉

= e−
1
2‖u‖

2
〈 ∑

k∈Z∞+

uk
√

k!
β(k) |k〉 ,

∑
m∈ZN+

zk
√

k!
|m〉

〉
(4.3.15)

= e−
1
2‖u‖

2 ∑
k∈ZN+

(ūz)k

k!

where ū := (ū1, ū2, . . . )T , ūz := (ū1z1)(ū2z2) · · · (ūNzN) and the last line follows because
the second term in the innerproduct of (4.3.15) has summation over m ∈ ZN+ . Thus

f(z) = e−
1
2‖u‖

2 ∑
k∈ZN+

(ū1z1)k1(ū2z2)k2 · · · (ūNzN)kN
k1!k2! · · · kN ! β(k). (4.3.16)
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Since |β(k)| = 1, from (4.3.16) we see that

|f(z)| ≤ exp

−1
2‖u‖

2 +
N∑
j=1
|uj||zj|

. (4.3.17)

From the definition of e(w) and eλ in L2(R) we have

〈eλ, e(w)〉 =
√

2λ
1 + λ2 exp 1

2

(
λ2 − 1
λ2 + 1

)
w2, λ > 0, w ∈ C. (4.3.18)

Using (4.3.12),

f(z) =
〈
W (α)Γs(A)⊗j eλj , e(z)

〉
=
〈
⊗jeλj ,Γs(A∗)W (−α)e(z)

〉
= e〈α,z〉−

1
2‖α‖

2 〈⊗jeλj , e(A∗(z − α)
)〉
. (4.3.19)

Since z is a finite vector and α is fixed, each coordinate of A∗(z − α) is a first degree
polynomial in the zj’s. Therefore e

(
A∗(z − α)

)
= ⊗je(wj) where each wj is a first degree

polynomial in the zj’s. Therefore from (4.3.18) and the property of infinite tensor products

f(z) = e〈α,z〉−
1
2‖α‖

2 lim
n→∞

Πn
j=1

√√√√ 2λj
1 + λ2

j

exp
n∑
j=1

1
2

(
λ2
j − 1
λ2
j + 1

)
w2
j .

Since each w2
j is a second degree polynomial in z1, z2, . . . , zN on its own. This contradicts

(4.3.17) unless λj = 1 for all j. Now (4.3.12) implies

|Uψ〉 = W (α)Γs(A) |e(0)〉

= e−
1
2‖α‖

2 |e(α)〉 .

Now from (4.3.11) we get

e−
1
2‖u‖

2
β(a†1a1, a

†
2a2, . . . ) |e(u)〉 = e−

1
2‖α‖

2 |e(α)〉 . (4.3.20)

Thus β(a†1a1, a
†
2a2, . . . ) is a unitary with the following properties:

(i) β(a†1a1, a
†
2a2, . . . ) |k〉 = β(k) |k〉 for every k ∈ Z∞+ .

(ii) It maps coherent vectors to coherent vectors.

We will prove that β(a†1a1, a
†
2a2, . . . ) = Γs(D) for a diagonal unitary D. To this end we

fix a u = (u1, u2, . . . )T ∈ ⊕jCej with uj 6= 0,∀j. We have β(a†1a1, a
†
2a2, . . . ) |e(u)〉 =

e
1
2 (‖u‖2−‖α‖2) |e(α)〉. Therefore if α = (α1, α2, . . . )T from (4.3.20) and (4.3.13) we get,

∑
k∈Z∞+

uk
√

k!
β(k) |k〉 = e

1
2 (‖u‖2−‖α‖2) ∑

k∈Z∞+

αk
√

k!
|k〉 .
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Therefore,
ukβ(k) = e

1
2 (‖u‖2−‖α‖2)αk,∀k ∈ Z∞+ .

Since uj 6= 0 for all j, we see that if k = (k1, k2, . . . , km, 0, 0, . . . ) ∈ Z∞+ ,

β(k) = e
1
2 (‖u‖2−‖α‖2)

(
α1

u1

)k1 (α2

u2

)k2

· · ·
(
αm
um

)km
, ∀k ∈ Z∞+ .

Since |β(k)| = 1, we get
∣∣∣αj
uj

∣∣∣ = 1 for all j. If we write αj
uj

= eiθj , then from (4.3.20) we get

β(a†1a1, a
†
2a2, . . . ) |e(u)〉 = |e(Du)〉 , (4.3.21)

where D is the unitary Diag(eiθ1 , eiθ2 , . . . ), for every u = (u1, u2, . . . )T ∈ ⊕jCej with
uj 6= 0,∀j. Now it is easy to see that (4.3.21) holds for all u ∈ H. We conclude that
β(a†1a1, a

†
2a2, . . . ) = Γs(D).
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