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Abstract: This work attempts to come up with an optimal strategy that a market-maker
could adopt in times of a fire sale at the high frequency level. We use a modern version
of the self financing equation applied to a high frequency order book to model the market
dynamics. Using the model, we setup an optimal stochastic control problem, the solution
to which is the optimal strategy proposed.

1 Introduction:
1.1 Fire sale:
A fire sale [see 6] is essentially a forced sale of an asset at a dislocated price. The asset
sale is forced in the sense that the seller cannot pay creditors without selling assets. The
price is dislocated because the highest potential bidders are typically involved in a similar
activity as the seller, and are therefore themselves indebted and cannot borrow more to
buy the asset. Indeed, rather than bidding for the asset, they might be selling similar
assets themselves. Assets are then bought by nonspecialists who, knowing that they have
less expertise with the assets in question, are only willing to buy at valuations that are
much lower. See figure 1 for visualization.

1.2 Market maker:
Traditionally market-makers used to be large banks or financial institutions. The role
of market-maker is to ensure that there’s enough liquidity in the market. They make
sure that any buyer or seller don’t have much hassle in finding a giver and taker of the
corresponding asset. They continually quote the ’bid’ and ’ask’ prices at which they want
to buy and sell. Anyone wishing to sell or buy can match their prices and participate in
a transaction.
Market-maker profit from the b̈id-ask spreadẅhich is the difference between the ask and
the bid price they quote, i.e. the difference in the price at which they buy and sell the asset.
The first issue faced by an market-maker when providing liquidity is that by accepting
one side of a trade (say buying from someone who wants to sell), the market-maker will
hold an asset for an uncertain period of time, the time it takes for another person to
come to the market with a matching demand for liquidity ( wanting to buy the asset
the market-maker bought in the previous trade). During that time, the market-maker is
exposed to the risk that the price moves against her (in our example, as she bought the
asset, she is exposed to a price decline and hence having to sell the asset at a loss in the
next trade). The market-maker has no intrinsic need or desire to hold any inventory, so
she will only buy (sell) in anticipation of a subsequent sale (purchase)[see 2].

1.3 Market making in the high frequency domain:
In recent years, with the growth of electronic exchanges such as NASDAQ’s Inet, anyone
willing to submit limit orders in the system can effectively play the role of a market-
maker. Indeed, the availability of high frequency data on the limit order book ensures a
fair playing field where various agents can post limit orders at the prices they choose.
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Figure 1: Cascading effect of a Fire Sale on market price

In this work, we plan to study the optimal submission strategies of bid and ask orders
in a limit order book. Apart from the above mentioned inventory risk arising from the
uncertainty in asset price another risk that a market-maker is exposed to is the asym-
metric information risk arising from informed traders. Many trades originate not because
someone needs cash and sells an asset, or has extra cash and wants to invest, but because
one party has ( or believes she has) better information about what the price is going to
do than is reflected in current prices. A ”fire-sale” is one such instance where a certain
mass of informed traders are informed about the price-slash that’s looming in the near
future and enter the market to leverage their additional information.
From the point of view of a market-maker who continually participates in the market, she
needs to be wary of such a situation and continue quoting the bid and ask prices. This
work hopes to address the above problem from the point of view of a single market-maker.

1.4 Self financing equation and its evolution:
1.4.1 Standard self financing equation:

The self financing equation is a very old development. It has been used in the classical
Black-Scholes option pricing and Merton portfolio theories[see 8]. Following is the most
primitive version corresponding to the friction-less case:

𝑑𝑋𝑡 = 𝐿𝑡𝑑𝑝𝑡 (1)

1.4.2 Almgren and Chris:

The works of Almgren and Chriss [see 1] builds up on it. These authors proposed a
macroscopic model for the price impact and the change of wealth after a liquidity taker’s
decision. The model leads to a very tractable frame-work which was, and still is, used in
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many optimal execution studies. This framework can be summarised by the system:

𝑑𝑝𝑡 = 𝑓(𝑙𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊 𝑡
𝑑𝐿𝑡 = 𝑙𝑡𝑑𝑡
𝑑𝑋𝑡 = 𝐿𝑡𝑑𝑝𝑡 − 𝑐(𝑙𝑡)𝑑𝑡

(2)

where 𝑓() and 𝑐() are positive functions.
The main advantage of this model is that price impact appears in a tractable fashion.
Indeed, it comes through the drift 𝑓(𝑙𝑡) of the price process, which creates a positive cor-
relation between traded volume and price. However, it constrains 𝐿𝑡 to be a differentiable
function of time, and as a result, the model parameters cannot be calibrated to market
data directly, making the model difficult to test empirically. As per the empirical studies
reported in the appendices, there is ample evidence supporting non-differentiable inven-
tories. Moreover, certain trading strategies such as delta-hedging, latency arbitrage and
statistical arbitrage naturally lead to inventory models with infinite variation. Finally,
note that the use of limit orders is not covered by Almgren and Chriss.

1.4.3 Carmona and Webster:

The works of Carmona and Webster [see 4, 5] presents a mathematical framework for
trading on a limit order book, including its associated transaction costs, and also proposes
a continuous-time equations which generalises the self-financing relationships of friction-
less markets. These equations naturally differentiate between trading via limit and via
market orders, as they include a price impact or adverse selection constraint. Moreover
they do not constraint the inventory process to be differentiable. Their works can be
mathematically summarised by the following set of equations:

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡
𝑑𝐿𝑡 = 𝑏𝑡𝑑𝑡 + 𝑙𝑡𝑑𝑊 ′

𝑡

𝑑𝑋𝑡 = 𝐿𝑡𝑑𝑝𝑡 ± ∫
IR

𝑐(𝑦)𝜙𝜂𝑡(𝑦)𝑑𝑦𝑑𝑡 + 𝑑[𝐿, 𝑝]𝑡
(3)

where 𝜙𝜎 is the density function of the Gaussian distribution with mean 0 and variance
𝜎2.
The above self-financing equations are bare-bones descriptions of the market as they
merely provide an accountant perspective. Given a trader’s inventory and the limit order
book he or she trades on, these equations state that the accountant can track his or
her wealth perfectly. [4] further models three phenomenons vividly observed in the high
frequency realm, price-impact, price-recovery and adverse selection. Adverse selection
here is the liquidity takers (participants who trade via market-orders) being more more
knowledgeable than the liquidity providers. Because of which the price always moves
against the liquidity providers.

𝑑[𝐿, 𝑝] < 0 (4)
where 𝐿 is the liquidity provider’s inventory process and 𝑝 is the price process. The above
equation can also be perceived as an illustration of price impact, Δ𝐿′ = −Δ𝐿 where the
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process 𝐿′ is the liquidity taker’s inventory process. For price recovery, the following
constraints are put

|Δ𝑝| ≤ 𝑠 (5)
where 𝑠𝑡 is the process denoting the spread (difference between best ask and best bid
prices) at time t. [5] further goes on to suggest an application of their proposed wealth
equation in market-making. To make sure that price impact constraints are satisfied, they
propose, at the microscopic level, a modified version of the Almgren and Chriss [1, see]
model to relate the change in mid-price to the change in the aggregate inventory of the
liquidity providers as

Δ𝑛𝐿 = −𝜆𝑛+1Δ𝑛𝑝 (6)
for a ℱ𝑛+1 measurable, positive random variable 𝜆𝑛+1. The choice of 𝜆𝑛+1 is made inspired
by the framework proposed by the works of Avallaneda and Stoikov [3, 9, see].

1.4.4 Our work:

We plan to model and solve the optimal control problem of maximising a single market-
maker’s earning in a market with falling prices. Traditionally, this problem has been
studied in a way which requires numerous assumption regarding different market micro
structures all working in tandem [9, 3, see]. The novelty of our work is the fewer as-
sumptions regarding the arrival of the different kinds of orders and their interaction with
the order book which allows for greater versatility in our model and hence more accurate
depiction of the real world. We work with a non-parametric system with respect to the
distribution of the arrival and execution of a trade order.

1.5 Our work flow:
The above mentioned work has been carried out in the following steps:

• A price dynamics has been proposed corresponding to the fire sale environment
and has been empirically searched for validation. We used historical top NIFTY
performer’s data corresponding to days with historical price decline.

• With the assumption of a single market-maker in the market, we model the inter-
action of a quoted buy and ask price of the market-maker with the entire market.

• Using the above two elements we design a stochastic optimal control problem where
the control parameter is the bid-ask spread every second and the state variables
are price, market-maker’s wealth (which includes her inventory and cash process).
Our objective function would be to maximise market-maker’s terminal wealth. We
have used Pontryagin’s maximum principle [7, 10, see] to solve the optimal control
problem.

• Once the optimal control is arrived at, using our price model we create synthetic
price paths (possible realizations of the price process) and see the distribution of
the expected market-maker’s wealth.
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Figure 2: Price evolution for YESBANK on 10th Jan, 2020

2 Model Setup:
2.1 Price dynamics:
2.1.1 Formulation:

We model the price dynamics as:

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 (7)

The 𝑑𝑝𝑡 and 𝑑𝑝𝑡 are forward differentials and 𝑑𝑊𝑡 is a wiener’s process. Our period of
observation starts from time 𝑡0 and ends at time 𝑡𝑓 . The price at time t is given by
𝑝𝑡. We differentiate between the informed and the uninformed trader community in our
model. The market-maker at any point of time need to be wary of the former community
because they are a greater adversarial risk to her. We model the informed community
with comparatively more precise knowledge of the future price movements. As a result
of which the stochastic shocks in the price movements from the informed community
will have a smaller magnitude. We go on to model stochastic component of the price
movement in the following manner:

𝜎𝑡 = √𝑓 𝜎
𝑘
(𝑐𝑡)2 + 𝑓𝜎(1 − 𝑐𝑡)2 (8)

The function f represents the uncertainty brought in by a community. We expect the
total uncertainty of the two communities to be dependent on their proportion. And alpha
characterizes their preciseness.

𝑓𝛼(𝑐𝑡) = 𝛼√𝑐𝑡 (9)
Here 𝑐𝑡 is the proportion of the informed trader at time t. Therefore 1−𝑐𝑡 is the proportion
of the uninformed trader. We go on to assume the two proportions remain constant
through out our observation window.
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Figure 3: Lag vs. F-values on INFY logs for 8th Jan, 2020

We know that price during a fire trade is very volatile, and often depends majorly on
sentiments. It is mostly the panic (specially among the uninformed traders) which decide
the subsequent price path. To incorporate that idea into our model we model the drift
as:

𝜇𝑡 = 𝜅(𝑝𝑡 − 𝜙(𝑡))
𝜙(𝑡) = min 𝑝𝑠 𝑤ℎ𝑒𝑟𝑒𝑠 ∈ [𝑡 − 𝛿, 𝑡] (10)

𝜅 here is a constant which is to be determined by past data. And 𝛿 > 0 is a lag window
to be fine tuned as per the data.

2.1.2 Empirical evidence:

We regressed the Δ𝑝𝑡 (the dependent variable) with 𝑝𝑡 − 𝜙(𝑡) (the independent variable)
without any intercept for several lags (𝛿) and chose a lag which had proper sign for 𝜅 (neg-
ative) and good significance. Data used is INFY 8th january, 2020 (see figure 2).Following
is a plot of F-values vs. different lags (Figure 3). And the resulting quantile-quantile plot
for the residues (5) plotted against standard normal distribution. The regression summary
is in figure 4.

2.2 Order book shape:
Later when we try to model the interaction of the limit orders posted by the market-
maker, we’ll be required to have a rough idea how the order-book looks like at any point
of time.More precisely, to model 𝜆. 𝑞𝑏(𝑝) is the number of buy bids at price p. In this
section we’ll show the justification for an exponential shape of the order book on the buy
and sell side.
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Figure 4: Price model estimation regression summary. Data: INFY 8th jan, 2020

Figure 5: Quantile-quantile plot for the price model estimation regression residuals. The
theoretical distribution is the standard normal distribution. Data INFY, 8th jan, 2020
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Figure 6: Regression summary for the buy side of the order book. Data INFY 8th Jan,
2020

2.2.1 Formulation:

• Buy side:
𝑞𝑏(𝑝, 𝑡) = 𝐴𝑏 exp 𝐵𝑏(𝑝 − 𝑝𝑡) 𝐴𝑏 ≥ 𝑎𝑛𝑑 𝐵𝑏 ≥ 0 (11)

𝑞𝑏(𝑝, 𝑡) is the number of buy bids at price p at time t.

• Sell side:
𝑞𝑠(𝑝, 𝑡) = 𝐴𝑠 exp 𝐵𝑠(𝑝 − 𝑝𝑡) 𝐴𝑠 ≥ 0 𝑎𝑛𝑑 𝐵𝑠 ≤ 0 (12)

𝑞𝑠(𝑝, 𝑡) is the number of assets on sale at price p at time t.

.
The mid price is 𝑝𝑡 at time t. Since in the order book logs we just had last traded price
and the best ask and bid price. We had to run a log linear regression with dependent
variable inventory amount and independent variable price depth on both sides of the mid
price to estimate the different parameters.

2.2.2 Empirical evidence:

The above regression had very significant value (p value and F statistics less than .1%)
with signs of the parameters as expected. Following are the value for INFOSYS data on
8th Jan, 2020 (see figure 6 for the buy side and figure 7 for the sell side).

2.3 Inventory process:
We denote the market maker’s inventory process as 𝐿𝑡 at time t. Using 6 to be able to
write the inventory process, we had to design the 𝜆 process first. To capture the insight
of [9] we put the following requirements on 𝜆𝑛+1:

𝔼[𝜆𝑛+1|ℱ𝑛] = 𝜌𝑛(𝑠𝑛)𝑓𝑛(𝑠𝑛)
𝔼[𝜆2

𝑛+1|ℱ𝑛] = (𝑓𝑛(𝑠𝑛))2 (13)
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Figure 7: Regression summary for the sell side of the order book. Data INFY 8th Jan,
2020

Here 𝜌𝑛 and 𝑓𝑛 are positive continuous processes, with 𝜌𝑛 ∈ [0, 1]. This is an unpredictable
form of linear price impact, in the sense that, ex-post, the price increment is a linear
function of the traded volume. With the above constraints, calculating the predictable
quadratic variation of 𝐿𝑡:

𝑛−1

∑
𝑘=1

𝑓 2
𝑘 (𝑠𝑘)𝔼[Δ𝑘𝑝2|ℱ𝑘] (14)

and predictable quadratic co-variation of 𝐿𝑡 and 𝑝𝑡 is:

−
𝑛−1

∑
𝑘=1

𝜌𝑘(𝑠𝑘)𝑓𝑘(𝑠𝑘)𝔼[Δ𝑘𝑝2|ℱ𝑘] (15)

Note that the price process (𝑝𝑡) is adapted to the filtration 𝔽𝑡. As a result of the above
observations, we model 𝐿𝑡 as:

𝑑𝐿𝑡 = −𝜌𝑡(𝑠𝑡)𝑓𝑡(𝑠𝑡)𝑑𝜇𝑡 + 𝑓𝑡(𝑠𝑡)𝜎𝑡𝑑𝑊 ′
𝑡

𝑑𝐿𝑡 = −𝜌𝑡(𝑠𝑡)𝑓𝑡(𝑠𝑡)𝑑𝑝𝑡 + 𝑓𝑡(𝑠𝑡)𝜎𝑡√1 − 𝜌2
𝑡 (𝑠𝑡)𝑑𝑊 ⟂

𝑡
(16)

Both the above models are the same. One version is in terms of the price process. The
noise process 𝑊 ⟂

𝑡 is independent of 𝑊𝑡.

2.4 Function f (𝑓𝑡):
2.4.1 Formulation:

To design the function f, we can think of it as the negative of the change in inventory per
unit change in price. From the point of view of an order book, price (mid-price) changes
because trades occur at some different price level than the last. Since we only have one
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Figure 8: Estimating 𝑓𝑡. The blue line is the estimated function.

market-maker participating in the market, only she can make limit-orders execute. The
way she does that is by the spread (𝑠𝑡) she quotes, executing all the limit-orders that
falls under her quotes. Since we have already assumed the order book to look the same
through out time (i.e. the order book shape is constant), once we fix the spread quoted
by our lone market-maker, we can determine the price level at which limit orders were
executed. Because the only way limit-orders are executed is through our market-maker.
About the market-orders we can have two school of thoughts to fit our theory. One can
be to see market-orders as limit-orders at the best available price, or the second could
be to assume market-orders on the both sides (buy and sell) roughly cancel each other’s
effect on the change in price level trades get executed and whats left is the noise. We any
ways are going to need to account for noise. The function 𝜌𝑡 takes care of the noise and
it is discussed in the next section.
The function 𝑓𝑡 is the ratio of Δ𝐿𝑡 and Δ𝑝𝑡 for a quoted 𝑠𝑡. Now trouble is, there will
be a bunch of values corresponding to different Δ𝑝𝑡 that function 𝑓𝑡 should take for every
𝑠𝑡. Since that is impossible, we do what is the next best thing, we take the best fit line.
Following is the form we believe 𝑓𝑡 should take:

𝑓𝑡(𝑥) = 𝑎|𝑥|𝑒−𝑏|𝑥| (17)

2.4.2 Empirical evidence:

Following is a plot illustrating the estimation of the function f(figure 8). The regression
summary is figure 9.

2.5 Rho (𝜌𝑡):
2.5.1 Formulation:

There is a source of noise to Δ𝐿𝑡 in addition to the one already mentioned in the previous
section given that we are given Δ𝑝𝑡. One is from the fact that the order-book might not
always look like our proposed shape, or the least there might be some deviation from the
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Figure 9: Regression summary for estimating 𝑓𝑡.

shape. As a result of which the ratio of −Δ𝐿𝑡
Δ𝑝𝑡

that we use to relate the actual Δ𝐿𝑡 might
not come out to be precise. So we use the function 𝜌𝑡 as a scaling to adjust the theoretical
value to the actual. In theory the function 𝜌𝑡 should be:

𝑑[𝑊 , 𝑊 ′]𝑡 = ∫
𝑢=𝑡

𝑢=0
𝜌𝑢(𝑠𝑢)𝑑𝑢 (18)

For actual calculation we used the correlation of the two processes (W and W’) to estimate
𝜌. For every time t, we took a window say 𝑠 ∈ [𝑡 − 𝛿, 𝑡 + 𝛿] and calculated the correlation
of the two processes W and W’ in the window to estimate 𝜌(𝑠𝑡). Once we had done so
for all the points 𝑠 ∈ [𝑡0, 𝑡𝑓 ], we used linear regression to estimate 𝜌. That is we used the
following form for 𝜌():

𝜌𝑡(𝑥) = 𝑐𝜌 + 𝑚𝜌𝑥 (19)

2.5.2 Empirical evidence:

See figure 10 for the final run for the estimation of 𝜌𝑡 on the INFY 8th jan, 2020 data.
The function comes out to be a constant function.

3 The stochastic optimal control problem:
3.1 Problem formulation:
The market maker’s wealth process (𝑋𝑡) can be seen as comprising the cash she is carrying
and the cash she would generate by liquidating her entire inventory (𝐿𝑡) at price 𝑝𝑡. Our
objective could be to maximise our expected terminal wealth, i.e. 𝔼[𝑋𝑡]. Let’s describe
the evolution of the wealth process in the discrete setting. We can then take appropriate
limiting case to convert it into the continuous setting.

Δ𝑋𝑡 = Δ(𝐿𝑡𝑝𝑡) + Δ𝐾𝑡

Δ𝐾𝑡 = −𝑝𝑡Δ𝐿𝑡 + 𝑠𝑡
2 |Δ𝐿𝑡|

(20)
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Figure 10: Regression summary for estimating 𝜌𝑡.

The spread quoted at time t is 𝑠𝑡. In the continuous setting, the above equation simplifies
to [5, see] the following:

𝑑𝑋𝑡 = 𝑑(𝐿𝑡𝑝𝑡) − 𝑝𝑡𝑑𝐿𝑡 + 1
√2𝜋

𝜎𝑡𝑠𝑡𝑓𝑡(𝑠𝑡)𝑑𝑡 (21)

The above is the state dynamics. With three state variables:
• Wealth (𝑋𝑡)

• Inventory (𝐿𝑡)

• Price (𝑝𝑡)
Our control variable is st. The state dynamics are 21, 7 and 16.
Our objective function becomes:

max 𝔼[𝑋𝑡𝑓 ] (22)
The initial conditions would be the following:

• 𝑝0 to be some given constant.

• 𝐿0 = 0

• 𝑋0 = 0

3.2 Solution:
Seeing the above structure of the optimal control problem, it can be solved by using the
Pontryagin’s maximum principal [7, 5, see]. The resulting hamiltonian is the following:

ℍ𝑡(𝑠, 𝐿, 𝑌 , 𝑍, 𝑍⟂) = −𝜌𝑡(𝑠𝑡)𝑓𝑡(𝑠𝑡)[(𝑌𝑡 − 𝑝𝑡)𝜇𝑡 + 𝜎𝑡𝑍] +
𝜎2

𝑡

√2𝜋
𝑠𝑡𝑓𝑡(𝑠𝑡) + 𝜎𝑡𝑓(𝑠𝑡)√1 − 𝜌2(𝑠𝑡)𝑍⟂

(23)
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Figure 11: Market-maker’s inventory process corresponding to YESBANK on 10th Jan,
2020

and the above expression is maximised by setting

• 𝑍⟂
𝑡 = 0

• 𝑌𝑡 = 𝔼[𝑝𝑡𝑓 |ℱ𝑡]

• The optimal control is:

𝑠𝑡 = arg max
𝑥∈[0,∞)

𝑥
√2𝜋

𝑓(𝑥) − 𝛼𝑡𝜌(𝑥)𝑓(𝑥)

𝛼𝑡 = 𝔼[𝑝𝑡𝑓 − 𝑝𝑡|ℱ𝑡]
𝜇𝑡
𝜎2

𝑡
+ 𝑍𝑡

𝜎𝑡

(24)

And the expected earning at the end of the trading window is:

𝕄 = 𝔼
[∫

𝑡𝑓

0
( max
𝑥∈[0,∞)

𝑥
√2𝜋

𝑓(𝑥) − 𝛼𝑡𝜌(𝑥)𝑓(𝑥))𝜎2
𝑡 𝑑𝑡

]
(25)

4 Inferring the solution:
Since we observe very less variance in 𝜌 across time as it is mostly close to 1 all the time,
equation 24 can be seen to vary only in 𝛼𝑡 across time. So 𝛼𝑡 is the variable which decides
the spread quoted. In our case, the optimum solution always happen to be the corner
points. Either the market-maker quotes the maximum spread (𝑠𝑚𝑎𝑥 = 5 for us) or the
minimum (𝑠𝑚𝑖𝑛 ∈ [0, 0.3] for us).
We notice that whenever 𝛼𝑡 > 0 there’s a tendency to quote the maximum spread. And
whenever 𝛼𝑡 < 0 there’s a tendency to quote the minimum spread. There are two parts
to 𝛼𝑡 :
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Figure 12: Final calculation of 𝛼𝑡 and 𝑠𝑡 for YESBANK, 19-09-2019 data.

• Product of expected net price movement and present price movement (𝔼[𝑝𝑡𝑓 −
𝑝𝑡|ℱ𝑡]

𝜇𝑡
𝜎2

𝑡
)

• the volatility of the net price movement (𝑍𝑡
𝜎𝑡

)

A small spread is quoted when the first quantity is negative enough to counter the second
quantity (second quantity is always positive). The first quantity is negative when the
current direction of price movement is opposite to the expected net price movement, i.e.
market maker expects a price reversal in the near future. A large spread can be quoted
when the volatility in the net price movement is high. See also figure 12 below. A
consequence of equation 25 is that the market maker is on average short 𝛼𝑡 and, for 𝛼𝑡
being fixed, long volatility (𝜎𝑡).

5 Defining the algorithm:
• Step 1 Estimate the order book shape.

• Step 2 Using the order book shape come up with function (𝑓𝑡)

• Step 3 Estimate the parameters for the price model.

• Step 4 Using the price model, simulate N (=1000 for us) paths.

• Step 5 Using the synthetic N paths come up with 𝔼[𝑝𝑡𝑓 − 𝑝𝑡] and 𝑍𝑡 for all t. Take
all the N values for each point t and get average or standard deviation corresponding
to each t.

• Step 6 Using the above expectation and 𝑍𝑡 find the optimal spread quotes every
second (𝑠𝑡)
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• Step 7 Assume some default values for the function 𝜌𝑡.

• Step 8 Using defined 𝜌𝑡 and 𝑓𝑡 calculate the optimal spreads to be quoted by the
market-maker.

• Step 9 Corresponding to the quoted spread and Δ𝑝𝑡 observed (we have used Δ =
1 trade period), calculate the resulting inventory changes. Using the Δ𝐿𝑡, calculate
the Δ𝑊 ′

𝑡 .

• Step 10 For every time point t, define 𝜌′
𝑡 as the correlation of the series Δ𝑊 and

Δ𝑊 ′ in the time period [𝑡 − 𝛿, 𝑡 + 𝛿]. Take the values of 𝛿 to be around the range
of 100 to 1000 (we took 1000) as per the computational feasibility.

• Step 11 Using 𝜌′
𝑡 estimate 𝜌′ using linear regression. In our case we assumed 𝜌 to

be linear in nature.

• Step 12 Go back to Step 6 if there is sufficient difference between 𝜌𝑡 and 𝜌′
𝑡 . Else

continue.

• Step 13 Calculate the expected profit. And call it 𝕄(𝜔1).

• Step 14 Simulate n(=50 for us) possible realizations of the price process using
the parameters estimated in Step-3 (𝜔1, 𝜔2..., 𝜔𝑛), repeat Step-6 to Step-12 for
each of the 𝜔. Calculate 𝕄(𝜔1), 𝕄(𝜔2), ...𝕄(𝜔𝑛) and estimate the distribution of the
expected payoff (𝕄).

6 Conclusion:
We proposed a price dynamics (see equation 7) during a fire sale. Our motivation was the
idea that during a price crash the movement is majorly sentimental and is driven by panic.
The model technically represents the following idea, the greater a price dip public sees,
the further it drives down the price. We empirically tested the price model on NSE data
for top 5 NIFTY performers corresponding to days when they fell substantially (greater
than 2%). For the study we used a total of 10 events (company - day combination).
In our model, since we have just one market-maker, we could model our market-maker’s
change in inventory as a linear function of the price change. It follows from the idea that
any limit-order from any market participant has to be executed by the market-maker
only. And any price change is a result of the execution of market-orders or best placed
limit-orders (which again can be seen as market-orders), because otherwise the orders
would remain un-executed and have no affect on the ”last traded price”.
Once we had a model for evolution of all the concerned state variable, we went on to
define our objective function which is to maximise our expected terminal wealth. This
part of our work followed mechanically as per the framework proposed by [5]. Once the
control problem was modeled and solved, we went on to test it on the aforementioned (in
Table below) events.
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Table: Events analysed - Company-Day combinations
Company date maximum-fall

YES BANK 19/09/2019 -17.19%
YES BANK 10/01/2020 -8.30%

WIPRO 26/11/2019 -3.28%
WIPRO 01/08/2019 -2.96%

TECH MAHINDRA 09/01/2020 -1.91%
TECH MAHINDRA 06/11/2019 -2.17%

INFY 06/01/2020 -2.66%
INFY 08/01/2020 -2.07%

AXIS BANK 08/01/2020 -5.05%
AXIS BANK 07/11/2019 -3.17%

Since the problem at hand is stochastic in nature, the price process we see is just one out of
infinite realisations (𝜔𝑖). Once we had estimated the model, we simulated more synthetic
𝜔. And applied our algorithm on all the synthetic paths the price process could have
taken. The resulting distribution of the terminal wealth is inferred as the distribution for
expected payoff upon application of our algorithm. The spread of the distribution gives
an idea of the risk involved with the algorithm. Empirically, the distribution appears
normal with mean and variance specific to the events. See figure 13.
Future work can be in terms of improving the price model. A more insightful model would
allow the optimization model a more accurate decision making capability. The proposed
framework can be applied to other markets and environment as well. Challenges include
modeling the interaction of different components correctly. Most fundamental component
is the order book shape, which once determined correctly gives direction to the modeling
of the different components.
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