
Making a Neural Network learn to say

Don’t Know

Laltu Roy

M. Tech Computer Science

Supervisor: Prof. Nikhil R. Pal
ECSU

Indian Statistical Institute
Kolkata

This project is submitted as a dissertation for the requirements of the Master
of Technology programme in Computer Science at Indian Statistical Institute.

Acknowledgement

I would like to thank my dissertation supervisor, Dr. Nikhil R. Pal, Profes-

sor, Electronics and Communication Sciences Unit, Indian Statistical Institute,

Kolkata, for agreeing to guide me and helping me to undertake work in the

topic. Without his continuous guide and support, this would not have been

possible.

I am also very much thankful to Suvro Da, Suchismita Di, Manish, Arnob for

helping me though out the project with their valuable time and suggestions and

thus I was able to give this work a final form.

Laltu Roy

MTech(CS), 2nd year

Roll No.- CS1813

ISI, Kolkata

July, 2020

Abstract

Classification problem is a popular topic within machine learning community.

One of the major problem in classification task is how to handle incoming pat-

terns which are unusual and different in some measure. For such novel input the

classifier should be able to distinguish them as unknown type and don’t make

any decision. In this work we try to address that problem.

Contents

1 Introduction 2

1.1 Training of GANs . 3

2 Novelty Detection 5

3 Proposed Approach 6

3.1 Theory . 6

3.2 Algorithm . 8

4 Experiment 9

4.1 Architecture . 9

4.2 Result . 10

4.3 Result analysis . 10

5 Conclusion 11

1

1 Introduction

Autoencoders are a specific type of feed-forward neural networks. In autoen-

coder, the input is the same as the output. They compress the input into a

lower-dimensional code and then reconstruct the output from this representa-

tion [7, 8].

An autoencoder consists of 3 components: encoder, code and decoder. The

encoder compresses the input and produces the code, the decoder then recon-

structs the input from this code.

Figure 1: Schematic diagram of Autoencoder[8].

First the input passes through the encoder, which is a fully-connected Neural

Network, to produce the code. The decoder, which has the similar structure,

then produces the output only using the code. The goal is to get an output

identical with the input [8].

The output of autoencoder will not be exactly the same as the input, it will be

a close but degraded representation.

In 2014 Ian J. Goodfellow [1] introduced Generative Adversarial Networks(GANs),

which are a powerful class of neural networks.

There are mainly two network in GAN architecture, called Generator and Dis-

2

criminator. The generator(G), which aims to generate realistic data, while the

discriminator(D), tries to discriminate real data from the data generated by G.

Figure 2: Schematic diagram of GAN [11].

1.1 Training of GANs

Training of GANs is based on a two-player game between the two network.

The Generator try to make fake samples similar to real samples from a latent

space and fed to the Discriminator. The input of the Discriminator is either the

real data or output of Generator. The Discriminator try to separate these fake

samples from the real ones. Depending upon this discriminator’s output GAN

trains itself through back-propagation.

In the training process, The discriminator outputs a value D(x) indicating the

chance that x is a real image. Our objective is to be maximize the chance to

recognize real images as real and generated images as fake. i.e. the maximum

likelihood of the observed data. The objective function for Discriminator is:

max
θD

V (D) = Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))] (1)

The Generator wants to maximize the value D(G(z)). Its objective function is:

min
θG

V (G) = Ez∼pz [log(1−D(G(z)))] (2)

3

Combining equation 1 and 2, we get the objective function of GAN as:

min
θG

max
θD

V (G,D) = Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))] (3)

The two network play a min-max game [4]. The discriminator tries to maximize

the objective function V (G,D) by only controlling it’s parameter θD. On the

other hand, the generator tries to minimize the objective function V (G,D) by

only controlling it’s parameter θG.

4

2 Novelty Detection

Novelty detection is the task of classifying test data that differ in some respect

from the data that are available during training. Novel data refers to the new,

unusual observations which do not occur regularly or simply different from the

observations encountered in training time. In training time the network does

not learn anything about novel data [12].

In machine learning systems, not all possibilities can be inputted during training,

so there will always be new kinds of data and possibilities that will arise after

training period.

One of the basic requirements from a good classifier is generalization - the ability

to classify input data that is reasonably similar to the training data. Usually

there are no requirements on how the classifier should behave for new types of

input that differ substantially from the data that are available during training.

For such novel input the classifier will produce erroneous output and classify

it as one of the available classes. Ideally, we would like that the classifier, in

addition to its generalization ability, be able to detect novel inputs, or in other

words, we would like the classifier to say, “Don’t Know” [10].

For one class problem, if new data points are unusual or far from the training

data we can call them novel data. But for a multi-class problem, if the new

data points are unusual or far from training points or not so close to any class

we don’t put them to any class. we assign them to a new class called “Don’t

Know” class. To do that we will add one extra class label to the classifier.

5

3 Proposed Approach

The proposed framework is similar to Generative Adversarial Networks and

closely related to Sabokrou’s work [6] on one-class novelty detection method.

The framework is consist of two components: (1) Network E and (2) Network

D. Network E works as a generator/re-constructor of data points, and Network

D works as a Discriminator. In this framework, instead of a generator used in

GAN [1] models, an Autoencoder is considered as network E.

3.1 Theory

Suppose we are given data {xi}ni=1, where xi ∈ X from real data distribution Pt.

To learn the data distribution properly it is not necessary to estimate density

of Pt. Instead, the network D trains an autoencoder E to help it to learn the

distribution better. E generate/construct samples from x̃i = (xi ∼ Pt) + (ν ∼

N(0, σ)), into E(x̃i) = x′i ∼ Pθ, such that Pθ ≈ Pt. ν is noise sampled from

normal distribution N(0, σ) with standard deviation σ. Noise is added to make

network E robust to noise.

X

X̃ = X + η

encoder decoder

E

Softmax
Output

FC layers

CNN

D

Figure 3: Overview of the structure [6].

6

D measure the similarity between Pθ and Pt via samples {xi}ni=1 and {x′i}ni=1

during the training to understand Pt better. The autoencoder aims to generate

samples close to Pt.

A Bad generator(week and unbalanced) [3] is considered for learning a good

Discriminator. Similar to GANs training network E and D play a min-max

game to optimize the following objective function,

min
E

max
D

= (Ex∼pt [log(D(x))] + Ex̃∼pt+N(0,σ)[log(1−D(E(x̃)))]) (4)

To Reduce the linear separability between generated samples and real samples,

we used Feature Matching [5] which is equivalent to linear maximum mean

discrepancy [9] employing linear first moment matching in the space of discrim-

inator features. Feature matching loss is calculated as follows,

FM = ||EX∼pt [f(X)]− EX̃∼pt+N(0,σ)[f(E(X̃))]|| (5)

where function f is the representation of input data in an intermediate layer of

network D. We considered the second last layer representation for calculating

feature matching loss.

To train the network we calculate the loss LE+D as the loss function of joint

network E+D. Now the whole network is trained with loss function,

LE+D + λFM (6)

where λ(> 0) is trade-of hyper-parameter between two loss functions for relative

importance.

7

3.2 Algorithm

We can see from the theory that feature Matching is the distance/dissimilarity

between real data and generated data representation in feature space of dis-

criminator. We try to generate/construct samples with similar representation

of generated data to train discriminator learn the data distribution more ac-

curately. We try to do that by adding feature matching as regularizer to the

generator in while training. So, our algorithm looks like below,

Algorithm:

for number of iteration do

• Sample minibatch of m samples {x1, x2, · · ·xm} from real dataset

• Sample minibatch of m samples {x̃1, x̃2, · · · x̃m} from noisy dataset

• Get output {x′1, x′2, · · ·x′m} of {x̃1, x̃2, · · · x̃m} from E

• Update D by ascending it’s stochastic gradient :

∇ 1

m

m∑
i=1

[logD(xi) + log(1−D(E(x′i)))]

• Get intermediate representation of X = {x1, x2, · · ·xm} and

X̃ ′ = {x′1, x′2, · · ·x′m} from Discriminator D

• Calculate feature matching loss FM(X, X̃ ′)

• Update E by descending it’s stochastic gradient with added regularizer

term:

∇ 1

m

m∑
i=1

[log(1−D(E(x′i)))] + µFM(X, X̃ ′)

end for

8

4 Experiment

4.1 Architecture

Network E: An Autoencoder is used as Network E. We used Convolutional

Neural Network(CNN) in both encoder and decoder of the Autoencoder.

Figure given below shows the architecture of network E.

X̃

3
×

3
×

32

3
×

3
×

64

c
o
d
e

3
×

3
×

32

3
×

3
×

16

3
×

3
×

1

X

Figure 4: Network E architecture. the tuple inside a box indicate kernel size(row
× column) × output channels.

Network D: The architecture of network D consist of several convolution lay-

ers followed by fully connected layers.

X

5
×

5
×

16

5
×

5
×

32

5
×

5
×

64

3
×

3
×

12
8

F
C

10
0

F
C

10

S
of

tm
ax

O
u

tp
u

t

Figure 5: Network D architecture.

9

After each convolution layer we used Batch Normalization, and LeakyRelu

is used as activation function. We didn’t used MaxPooling after convolution

layers.�

We trained our model on MNIST dataset which contains 28*28, single channel,

60,000 training images. The model is implemented using Tensorflow Framework

1.x and Python 3.x and run on Google Colab.

Hyper-parameter: Gaussian Noise is added to input of network E with stan-

dard deviation 0.07. We used Adam optimizer with learning rate=0.002. And

epsilon of BatchNormalization is set to 0.001. The size of minibatch is set to

128 and number of epochs is set to 10.

4.2 Result

MNIST dataset consist of 60,000 handwritten digits from ‘0’ to ‘9’. Each of

the ten categories of digits is taken as novel data. During training no novel data

is taken, only the other nine digits are considered.

We test the MNIST test dataset two ways, one is considering the index of the

maximum value of the output vector as the class of input data. Another is using

threshold on max value of the output vector. The threshold value is set to 0.5.

The table given below shows some results of the Experiment, the digits in the

first row, is considered as the novel data for that experiment.

0 2 7 5 8 9

without thresold 86±3.0 83±2.5 87±2.5 85±3.0 86±2.5 82±2.0

with thresold 87±2.5 83.5±3.0 87±2.5 85±3.0 88±2.0 81±2.5

4.3 Result analysis

From the above result we can see that the results varies between this two ap-

proach by small percentage, but in second approach it detects more test data

correctly than the first one.

10

5 Conclusion

In this dissertation, we have proposed a general framework for multi-class clas-

sification and novelty detection in images. Our architecture consists of two

modules, generator/reconstructor and discriminator. The former helps latter

to learn the concept of real target classes images. After training the model, D

learns to classify real images to their respective classes and also detect unknown

data which are different from real ones in some measure.

Although our model is not performing as the level of state-of-the-art methods,

it is performing quite good with such simple algorithm.

11

References

[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative

Adversarial Networks https://arxiv.org/pdf/1406.2661.pdf

[2] Nikhil R. Pal, Bikram Karmakar How to make a neural network say

“Don’t know” https://www.sciencedirect.com/science/article/pii/

S0020025517311234

[3] Zihang Dai, Zhiling Yang, Fan Yang, William W. Cohen, Ruslan Salakhut-

dinov Good Semi-supervised Learning That Requires a Bad GAN https:

//arxiv.org/abs/1705.09783

[4] Ian J. Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks

https://arxiv.org/pdf/1701.00160.pdf

[5] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, Xi Chen Improved Techniques for Training GANs https://arxiv.

org/abs/1606.03498

[6] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, Ehsan Adeli

Adversarially Learned One-Class Classifier for Novelty Detection https:

//arxiv.org/pdf/1802.09088.pdf

[7] Jake Krajewski Autoencoder neural networks: what and how? Article

[8] Arden Dertat Applied Deep Learning - Part 3: Autoencoders Article

[9] Arthur Gretton, Karsten M. Borgwardt†, Malte J. Rasch, Bernhard

Scholkopf, Alexander Smola A Kernel Two-Sample Test https://pdfs.

semanticscholar.org/9748/432d69e7da4b935338b303d3c7468997db12.

pdf

[10] Mark Kliger, Shachar Fleishman Novelty Detection with GAN https://

arxiv.org/pdf/1802.10560.pdf

12

https://arxiv.org/pdf/1406.2661.pdf
https://www.sciencedirect.com/science/article/pii/S0020025517311234
https://www.sciencedirect.com/science/article/pii/S0020025517311234
https://arxiv.org/abs/1705.09783
https://arxiv.org/abs/1705.09783
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/pdf/1802.09088.pdf
https://arxiv.org/pdf/1802.09088.pdf
https://towardsdatascience.com/autoencoder-neural-networks-what-and-how-354cba12bf86
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://pdfs.semanticscholar.org/9748/432d69e7da4b935338b303d3c7468997db12.pdf
https://pdfs.semanticscholar.org/9748/432d69e7da4b935338b303d3c7468997db12.pdf
https://pdfs.semanticscholar.org/9748/432d69e7da4b935338b303d3c7468997db12.pdf
https://arxiv.org/pdf/1802.10560.pdf
https://arxiv.org/pdf/1802.10560.pdf

[11] Chris Nicholson A Beginner’s Guide to Generative Adversarial Networks

(GANs) Article

[12] Novelty Detection Article

13

https://pathmind.com/wiki/generative-adversarial-network-gan
https://www.techopedia.com/definition/30345/novelty-detection

	Introduction
	Training of GANs

	Novelty Detection
	Proposed Approach
	Theory
	Algorithm

	Experiment
	Architecture
	Result
	Result analysis

	Conclusion

