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Abstract

The work of this dissertation has been done along the lines of TREC News Track

Background Linking task. The task is, given a news article suggest other news articles

that provide context and background to the current article. As we know, context

and background are highly subjective terms. Here they are measured by comparing

the system retrieved documents with a set of documents already marked relevant

according to a panel of experts. The entire task is done on the Washington Post data

set, A collection of 591537 news articles that appeared in Washington Post from 2012

to 2017.

In this dissertation we explore Six methods used to solve this task. These tech-

niques are based on standard Information Retrieval methods and Natural Language

Processing techniques. We compare them with each other and pit them against the

best performing methods. We use JAVA as the main programming language for data

parsing, indexing and searching. Python is also used for data exploration in some

limited cases.

Keywords: verbose queries, query expansion, word embedding.
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Chapter 1

Introduction

In this era of a nearly ubiquitous Internet, online websites serve as the main source

of news for many people. Online news encompasses a wide range of formats, from

bite-sized stories for quick consumption, to big multimedia enriched articles. Taking

advantage of the enormous flexibility provided by the Web as a platform for news

dissemination, we can explore use cases that are unavailable to traditional print media.

As an example, online news articles are typically accompanied by a list of suggested

or ‘related’ articles that may be of interest to the reader. In this dissertation, we

explore methods for identifying particular types of articles related to any given news

article, viz., articles that provide additional context and/or background for the given

article. This task is termed the Background Linking (BL) task.

Consider an article dated May 23, 2016, from the Washington Post, titled Love in

the time of climate change: Grizzlies and polar bears are now mating.1. This article

describes and analyzes a phenomenon where grizzlies and polar bears are mating to

create a new species known as pizzlies or grolars. It explains why this is happening,

and points out that it happens (or has happened) to other species as well. The

following articles might be regarded as strongly related, in the background linking

sense.

• Coywolves, coyote-wolf hybrids, are prowling Rock Creek Park and D.C. suburbs

(Washington Post, July 1, 2014)

• Humans and Neanderthals may have interbred 50,000 years earlier than previ-

ously thought (Washington Post, February 17, 2016)

In contrast, the article Why do seals keep trying to have sex with penguins? (Washing-

ton Post, November 18, 2014) has only a passing mention of interbreeding, and might

be regarded as substantially less important (possibly even irrelevant) as a background

1https://www.washingtonpost.com/news/animalia/wp/2016/05/23/

love-in-the-time-of-climate-change-grizzlies-and-polar-bears-are-now-mating/

1

https://www.washingtonpost.com/news/animalia/wp/2016/05/23/love-in-the-time-of-climate-change-grizzlies-and-polar-bears-are-now-mating/
https://www.washingtonpost.com/news/animalia/wp/2016/05/23/love-in-the-time-of-climate-change-grizzlies-and-polar-bears-are-now-mating/
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article.

1.1 Challenges

At first glance, the Background Linking task may appear to be just an instance of

the conventional Information Retrieval (IR) task. Recall that the conventional IR

task may be described as follows: given a collection of documents (such as webpages

or scholarly articles), and a query provided by a user, find documents containing

information that is relevant to the user’s query. This task may be mapped to BL as

follows.

• A given set of news articles constitutes the document collection. If the scope of

BL is extended to include linking to appropriate articles from an encyclopaedia,

then the document collection could include Wikipedia (or a similar encyclopae-

dia) as well.

• The given news article is regarded as the query.

However, some differences between BL and conventional IR make BL an interesting

and challenging problem in its own right.

• Keyword Selection. First, in traditional IR, user-queries (e.g., kolkata con-

tainment zones) are usually short and contain only a few keywords, all of which

are typically related to the information needed by the user. In contrast, a full

news article contains many keywords. A non-trivial number of these keywords

are likely to be unrelated to the core subject matter of the article. Using the set

of all keywords as a search query is thus likely to reduce effectiveness / accuracy.

Further, processing a long query (i.e., one containing many keywords) places an

unnecessary strain on computational resources.

For effective Background Linking therefore, we first need to address the problem

of selecting a relatively small number of keywords from a given news article, so

that, when this set of keywords is used as a query, the most promising articles

(from the BL perspective) are likely to be retrieved.

• High Precision Retrieval. In response to a search query, conventional Web

search engines generally provide at least a list of ten links to webpages. In recent

times, this list of “ten blue links” is sometimes supplemented by information
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nuggets, images, and/or video clips.

Comparatively much less space is allocated to displaying links to background /

context articles alongside a given news article. As both space and user attention

are limited, the requirement of being precise and accurate is more stringent for

BL systems than for conventional search engines.

1.2 Outline of Dissertation

As discussed above, the main objective of BL is (i) to process a newspaper article

to produce a keyword query, and (ii) to use the query to accurately retrieve a small

set of related articles. In this dissertation, we study several standard term-weighting

methods that assign numeric importance scores to the words in a document. The

words with the highest scores are selected for inclusion in the query. We also explore

techniques that have been proposed for effectively processing verbose queries. Finally,

we investigate the use of entities to improve search accuracy.

The rest of this report is organised as follows. In Chapter 2, we briefly review

some basic terminology and concepts used in Information Retrieval (including term-

weighting, document scoring, and evaluation metrics). Readers familiar with basic IR

may skip this chapter. Chapter 3 provides a quick overview of previous work done in

this area within the framework provided by the TREC News track [16]. We highlight

some of the interesting approaches taken by participants in the TREC News track to

solve this problem, as well as their performances. The dataset and evaluation protocol

used in our experiments are introduced in Chapter 4. In Chapter 5, we motivate and

describe the various approaches for BL that we tried in the course of this dissertation.

We also describe the parameter tuning process for these methods. Experimental

results and performance comparisons are presented in Chapter 6. Finally, Chapter 7

summarises our conclusions, and outlines some possibilities for further investigation.



Chapter 2

Prerequisites

The work done in the course of this dissertation leverages Information Retrieval and

NLP methods. So a brief discussions of basic Ideas would be necessary to understand

the work done for this dissertation.

2.1 Information Retrieval

Human beings can be counted as the best performing species in the known universe

in terms of acquiring knowledge and gaining skills. A modern human being in his

lifetime will encounter millions of profound information about its surroundings and

master thousands of skills. Passing valuable knowledge through generations is not

a very easy task. Human beings developed language so that they can encode their

learning in a set of symbols. The set of symbols ranges from being very complex

(Hieroglyph) to very simple(binary). With the ability to encode information and

a suitable medium(paper) to store it, human beings started recording information.

Soon we had so much information in recorded form that Finding relevant information

for need became a challenge. The task became even more daunting with the advent

of digital methods of information recording and internet.

Now a days, virtually every information in the world is available to us if our

computer is connected to internet. When a person is in need of information, we must

have some method with which the user can query and retrieve accurate information

as quickly as possible. This is where Information Retrieval comes in. Information

Retrieval tries to develop systems that satisfies the information need of of an user

by returning a set of relevant documents for his query. The information need may

come in many forms, by ways of spoken words or a search string typed in google. The

retrieved document can also be any thing from a picture or video to a chapter of a

book.

So we see the meaning of information retrieval is broad. From finding the phone

4
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number of the dean of students, Indian Statistical Institute, to reading about flamin-

gos in the internet, Information Retrieval encompasses it all. But for our purpose we

define information retrieval in the following manner.

Information retrieval (IR) is finding material (usually documents) of an unstruc-

tured nature (usually text) that satisfies an information need from within large collec-

tions (usually stored on computers).[9]

Figure 2.1: Information Retrieval: A Graphical Representation

2.2 Collection, Document, and Query

When a user is having an information need, s/he express it in terms of a sequence of

words, we call the set of words a query. queries are formal statements of information

needs.

Say, we are trying to find out the year Sukumar Ray was born.To do that we go

to google and type words like: ”birth year of Sukumar Ray” or ”DOB of Sukumar

Ray” or simply ”Sukumar Ray”. All of these strings can be called a query for the

information need. As we can see, there can be many forms of queries for a single

information need. Extracting meaningful words from the query is an important part

of Information Retrieval.

For every information need, we wish to retrieve a set of objects that satisfy that

need. In Information Retrieval terminology, these objects are called documents. The
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Term-id Term Document

1 best 2

2 blue 1, 3

3 bright 1,3

4 butterfly 1

5 breeze 1

6 forget 2

7 great 2

8 hangs 1

9 need 3

10 retire 2

11 search 3

12 sky 2, 3

13 wind 2

Inverter indexStopword list
The bright blue
butterfly hangs
on the breeze.

It's best to 
forget the great 
sky and to retire 
from every wind.

Under the blue
sky, in bright 
sunlight, one 
need not search
around.

Document 1

Document 2

Document 3

Figure 2.2: The indexing process in an IR system.

document can be anything ranging from being an actual document to a multimedia

file. Corresponding to a query, we wish to get a list of documents where the most

relevant document appears at the top and the least relevant at the end. We try to

measure the relevance of a document by attaching a score with individual documents

retrieved for a query The score is the measure of usefulness of the document corre-

sponding to the query with respect to the IR system. The entire set from which we

retrieve the documents is called collection.

In the context of the current project we have to construct a query from a given

news article. The documents we retrieve are news articles. And the collection is the

entire Washington post dataset.

2.3 Indexing

Given an information need, IR systems need to deliver a set of documents to the user.

Storing the document as is would not be time or space efficient for searching. Indexing

is the set of methods used to store the collection in such way that the following key

purposes are served, They are

• Minimizing the time to perform a search.



7

• Making sure that the storage space is used efficiently.

While indexing we store the collection in adequate data structure. We generally

remove terms that are less informative, like ”the”, ”to”,”is” etc. We call such terms

stopwords. Stemming is also performed to decrease the complexity of retrieval.

Stemming is the process of reducing a set of words to their root, one token that rep-

resents the entire concept for the words. For example: ”waiting”, ”waiter”,”waited”

words like these are reduced to their root word ”wait”.

After performing these measures, we store the words in inverted list or posting

list. In an Inverted list, each term of the vocabulary is stored along with a list of

documents containing that term. The list containing all the terms of the vocabulary

is called a dictionary. For fast retrieval, the dictionary is kept in the primary memory

with pointers to each inverted list. The inverted lists themselves are stored into

secondary memory. This process is done for quick and efficient retrieval. Additionally

the dictionary stores for each term, many important statistics that are relevant for

scoring a document.

Indexing itself is a vast topic, we refer the user to information retrieval book[9]

for further info.

2.4 Scoring

Given an Information need expressed in terms of a sequence of strings that we call

query, We wish to return the user a set of ranked documents that satisfies the infor-

mation need.

Thus, given a query we have to return a ranked list of documents sorted in terms

of usefulness. This usefulness of a document is captured by the score of the docu-

ment. Score is a function that given a query Q and a document d, returns a number

indicating the usefulness of the document. We have many scoring functions in infor-

mation retrieval. We started with very simple functions but they gradually became

less intuitive to address the shortcomings of their ancestors.

2.4.1 Bag of Words

In Information Retrieval, we view query or document as a multiset of strings, we

dont consider the order of the words. This is called the ”Bag of Words” view of the
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document.

2.4.2 Vector Space Model

Lets say there is a corpus C, Collection of c documents {d1, d2, d3, ...dc} . Let V be

the vocabulary set(set of all possible words of the corpus)

V = {v1, v2..vm}

We represent each document dj as an m dimensional vector over indexed vocabulary

space. Where wi denotes the weight of ith word in the document indicating the

importance of that term in the document. This is a Bag of Words model, implying

we don’t care about the location of individual terms in the document. Only the

number of occurrences matter. Weight for a term is 0 if the term is absent in the

document. We assign higher weights to important terms in the documents. How we

determine weights are discussed later. A query Q is also defined in the same way as

vector over vocabulary space.

~di = (w1, w2, w3...wm)

~Q = (w′
1, w

′
2, w

′
3...w

′
m)

Where wj is the weight of the j th word of the vocabulary in document. Lets take

an example. Say, we have two documents d1= ”god made men” and d2 = ”god is

good” Now according to VSM the vocabulary is

V = {god,made,men, is, good}

The documents here now would be represented as a 5 dimensional vector. Each

component corresponding to the weight of the ith word in vocabulary. Lets assume

if a word is present, the weight of the word is equal to 1. We also know if a word

is absent, the weight of it would be 0. Then the documents d1 and d2 would be
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represented as follows.

~d1 = (1, 1, 1, 0, 0)

~d2 = (1, 0, 0, 1, 1)

Having represented both the query and document as a vector in the vocabulary space,

assigning score for a query to a given document is easy. We just have to take the

cosine similarity between the document d and the query Q.

Score( ~Q, ~d) =
~Q.~d

| ~Q||~d|

Term Frequency(TF)

To assign weights to each term in the vocabulary for a document. We see how many

times a term occurs in a document. If a term occurs more in a document, that means

the document probably talks more about the term. This is an important metric for

deciding weights for terms. Term frequency tf of term t in document d is the number

of times a term t appears in a document d. It is written as tf(t, d) or simply tf .

There are many other forms of tf that are used throughout information retrieval.

Some of them are,

1 + log(tf), 1 + log(1 + log(tf)),
tf

k + tf

Inverse Document Frequency(IDF)

Term frequency is important to decide weight for a term. But there are many terms

like a, an, to, the that occur many times in a document but is of very little importance

for the document. We want ”special” words that are used less frequently and generally

convey more meaning. We suspect these words appear in less number of documents

than common words.

How to decide if a word is ”special”? We measure it with Inverse Document

Frequency or IDF.

idf(t) = log10

N

df(t)
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Where N is the total number of documents in the corpus and df(t) is the number of

documents where a term t occurs. Or another function like

log
N − df + 0.5

df + 0.5

From the formula we can see that terms, that occur in lesser number of documents

get a higher IDF score.

Weight of a term

Having learned about tf and idf , we can assign weight for a term t in document d as

weight(t, d) = tf(t, d)idf(t)

There are many other methods of assigning weights to a term. There are many other

forms of tf and idf but they derive from the same basic principles.

2.4.3 BM25 Scoring

BM25 is a traditional probabilistic retrieval model [13, 14] that performs very well

in various IR tasks. It is also the default scoring method used in lucene, the library

we use to retrieve documents. The following Equation mathematically presents the

BM25 model to score a document d for a given query Q.

Score(Q, d) =
∑
q∈Q

log
N − df(q) + 0.5

df(q) + 0.5

tf(q, d)(k1 + 1)

tf(q, d) + k1(̇1− b+ b |d|
avgdl

)
(2.1)

In the equation, N is the number of documents in the collection, df(q) is the

number of documents in the collection containing the term q, tf(q, d) corresponds

to the count of term q in document d, and avgdl is the average document length

of the collection. b is a length normalization parameter, and k1 is a positive tuning

parameter that calibrates the document term frequency scaling [14].

2.5 Word Embedding

All the words are different in some way, but some have similarity with others. We say

two words are similar when they roughly appear in the same context. We can say that

the word ”Mango” is more similar to ”Apple” than say a word like ”Dog”. How do
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we quantify the similarity between words? We have to define words in mathematical

terms to do such operations.

One such idea is to represent words as vectors. We call these vectors Word Em-

beddings. Having represented words as vectors, we could explore the nice properties

that vectors display. We could find words similar to a given word by exploring near-

est neighbours of the vector representation of the word. We could add or subtract

vectors to get interesting results. We could do something like this famous example

stated below.

~king − ~man+ ~woman ≈ ~queen

Where ~king, ~man, ~woman, ~queen represents the vector representation of the corre-

sponding words.

Although the idea of using vector representations for words has existed for a long

time [2], the interest in word embedding has expanded a lot after the introduction of

word2vec algorithm by Mikolov et al[10]. Later on ELMO[11] and BERT[4] pushed

the limit for word embeddings.

In our case we use word2vec model for generating word embeddings. There are

two methods to train the word embeddings, i) skip-gram model and ii) continuous

bag-of-words (CBOW) model. Both of these models use a neural network with a

single hidden layer. The skip-gram model predicts the context, given a word whereas

the CBOW model predicts the word, given its context.

In the skip gram model, We make the training process unsupervised by feeding

the algorithm a sequence of words from the corpus and fixing a window size. Words

within the window are assumed to be related. We slide the window over the entire

corpus. We fix a target word inside the window. All other words within the window

are called context words. Given a tuple (t, c) = target, context we train the network

to predict the probability that c is actually the context word. for each context word

in the window we add some other random words from the corpus. They serve as

negative samples. Positive and negative samples both are used in training for a target

word. This method is called negative sampling. After training is done, we can extract

the word embeddings from the weights of the hidden layer.
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Figure 2.3: Graphical representation of skip-gram and continuous bag-of-words mod-
els of word2vec

  

Input Projection Output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t) w(t)

w(t-1)

w(t-2)

w(t+1)

w(t+2)

OutputProjectionInput

(a) CBOW (b) Skip-gram

2.6 Evaluation Metric

The system we are trying to build is, given a news article suggest others that provide

context and background to the report. We call such documents useful. Our use case

is to provide some suggestions to an user who is reading the article form an app or

webpage. The space is limited so we have to provide a limited set of suggestions. In

this problem the number of suggestions is limited to 5. Also the suggestions should

be sorted. The best suggestion should always appear at the top of the list, followed

by the second best and so on.

We have to evaluate Information Retrieval systems that given a news article,

suggest 5 articles. . We also have for every document, a relevance judgement, a

number marking its degree of relevance. The relevance judgement is provided by a

panel of experts. Scores range from 0 to 5 .Score divisions are as follows.

• 0 : The linked document provides little or no useful background information.

• 1 : The linked document provides some useful background or contextual infor-

mation that would help the user understand the broader story context of the

query article.

• 2 : The document provides significantly useful background
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• 3 : The document provides essential useful background

• 4 :The document MUST appear in the sidebar otherwise critical context is

missing.

So while judging every list of documents we have to count the following factors

• Highly relevant documents are more valuable than marginally relevant docu-

ments.

• Documents ranked low are less valuable.

Keeping all these factors in mind the ranked lists are judged with their NDCG@5

score.

2.6.1 NDCG@K Score

NDCG stands for Normalized Discounted Cumulative Gain let us try to explain the

concept by breaking it into smaller parts. By learning Cumulative Gain(CG) then

Discounted Cumulative Gain(CG) and then NDCG.

Cumulative Gain(CG):

Lets say we have a set of gain values(relevance judgements). These are the set of

permitted score a document can get. For each document, we have a gain score

denoting its usefulness. Lets say we also have a ranked list of documents D.

D = {d1, d2..dK}

We construct another list G from D replacing each document with its gain score.

Let G[i] denote the Gain Score of the ith document in the list. Then CG@i is

defined as

CG[i] =
i∑

j=1

G[i]

For a list of documents CG@K basically denotes the sum of the scores of first K

documents.



14

Discounted Cumulative Gain(DCG)

Discounted cumulative gain basically penalizes a document for appearing further

away in the list. Discounting some part of its score from the contribution. DCG@i is

defined as.

DCG[i] = CG[i] if, i < b (2.2)

DCG[i] = DCG[i− 1] +
G[i]

logb i
if, i >= b (2.3)

Here b is a threshold after which we penalize the score of our doument. b is usually

set to 2.

NDCG@K

For a list G, its gain values can come in any order. The numbers in G might not be

sorted in a descending order. Indicating this is not a perfect list. A perfect list would

have the most useful document at the beginning followed by the 2nd most useful and

so on. We define NDCG@i as follows.

NDCG[i] =
DCG[i]

IdealDCG[i]
(2.4)

An Ideal list where every document is sorted by its relevance score, would have an

NDCG score of 1. A list where no document is relevant would get an NDCG score of

0. So NDCG score always ranges from 0 to 1.



Chapter 3

Previous Work

We can find the details of previous submissions in News Track overview papers of

2018[16] and 2019. We briefly discuss some of them here.

The best performing method of TREC 2018 is a method called htwsaar4 [1]. It

achieves a mean NDCG@5 score of 0.4609. This method simply constructs a verbose

query by concatenating the title and content of the the article and issues a query for

the index.

Ding et. al. [5] use an approach of combining BM25[14] and rocchio [15] relevance

feedback method. They run an initial retrieval with BM25 method and then judge

top K document as positive feedback and bottom K documents as negative feedback.

They turn the document into vector with tf-Idf feature vectors. Now, according to

Rocchio method, they modify the query document vector in such a way that the

vector moves towards the centroid of the positive feedback documents and moves

away from the negative feedback documents. This method achieves a NDCG@5 score

of 0.4438 in the 2019 track.

Qu et. al. [12] Used the 2018 data for a supervised learning approach. We know

every document is given a score of 0 to 4. They transform the ranking problem to

a 5 class classification problem. They treat relevance grades as class labels without

order. Given a query and a document, the trained classifier for each class, predicts

the probability of belonging to that class. The score for each query, document pair

(q,d) is calculated as:

score(q, d) =
∑

r∈{0,1,2,3,4}

wr.pθ(y = r|q, d)

where y is the predicted relevance grade using a multiclass classifier. wr is a for a

relevance level and get higher score for higher levels. The values of wr is assigned

like wr = r. To train the classifier, 2018 queries and relevance judgement is used.

Classifier for each class is trained using one vs all method.

15



16

Five features are generated to train the classifier. They are similarity of title,

similarity of content, similarity of first 100 words, similarity of mentions, similarity

of category. The first 3 similarities are measured by cosine distance of the tf-idf

vectors generated by words. similarity of mentions is measured by Jaccard similarity

of the two extracted entity sets. Each of these similarity values are within 0-1 range.

The submitted run sils news run2 for News track 2019 fetches an NDCG@5 score of

0.5502.

The top performing method of 2019 UDInfolab all [8] uses a simple method, it

extracts all the entities from the article using DBpedia Spotlight [3]. All entities are

resolved to their canonical names. It issues the query containing all the words and all

the extracted entities. This achiveas a mean NDCG@5 score of 0.606 on 2019 track.



Chapter 4

TREC News Track Dataset

The dataset provided by the TREC News Track consists of a single, 6.7 GB text file

that contains a collection of 595,037 news articles from the Washington Post, covering

the period from 2012 to 20171 Each article corresponds to a single JSON object2 that

is stored in one line of a text file.

• The JSON objects contain name/value pairs corresponding to the article’s title,

author, date, url, source etc.

• Every article has a unique ID.

• There were some duplicates in the dataset. Duplicate articles have the same

title, content and author, although they have different IDs.

• The textual content of each article is given as an array of paragraphs from the

original news.

• In many articles, the text is interspersed with other media such as images and

videos, referenced by URIs. These URIs point back to the original online version

of the article available from the Washington Post website.

• Each article is assigned to a category. Common categories include style (12,133

articles), politics (12,581 articles), and sports (13,478 articles). The largest

category was local, with 39885 articles.

• The collection contains 5,557,541 distinct index terms, or keywords (please see

Section 5.1 for details).

A list of 50 ‘query’ articles was provided in 2018. For each query article, as mentioned

in Chapter 1, systems are required to return a ranked list of five other articles as

1This is officially termed the TREC Washington Post collection, Verion 2. For 2020, Version 3 of
the dataset was used. Version 3 (V3) contains 671947 articles, and includes additional articles cov-
ering the period 2017–2019. We used V3 for our official submissions to TREC 2020 as participants.
The ground-truth and performance figures for this dataset are expected to be announced later this
year.

2https://www.json.org/json-en.html
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possible background / context articles. For 2019, a different list of 60 query articles

was provided. We use the 2018 queries and ground-truth as ‘training data’ to tune

various parameters of the proposed methods presented in the next chapter. These

methods are then evaluated and compared using the 2019 queries and ground-truth

as test data.



Chapter 5

Proposed Background Linking Approaches

5.1 Data Processing and Indexing

We used Java as the main programming language for this project. The Apache Lucene

library1 was used to index and query the collection.

Since the news articles correspond to their online versions, the text contains many

HTML tags. We stripped the HTML tags with the help of the Jsoup library2. We

indexed every article as a document with the following fields:

• id: a unique id for the article,

• url: link to its version,

• date: date of publication of the article,

• articleType: which category the article was published under,

• author

• title: the title of the news story,

• content: its textual content,

• title-ner: named entities (names of persons, places, organizations) contained

in the title, and

• content-ner: named entities contained in the boody.

Not all articles contained all the fields. We did not index articles that had an empty

id or title or content. We used Lucene’s EnglishAnalyzer to lowercase all words

during indexing. Stopwords were removed and words were stemmed using Porter’s

stemmer. We used the Stanford CoreNLP3 library to identify named entities of type

person, place or organization.

1https://lucene.apache.org/
2https://jsoup.org/
3https://stanfordnlp.github.io/CoreNLP/

19

https://lucene.apache.org/
https://jsoup.org/
https://stanfordnlp.github.io/CoreNLP/


20

5.2 Lucene Queries and Scoring

Before describing the approaches that we tried, we briefly review Lucene’s querying

and scoring mechanism. As discussed in Section 2.2, a query is simply a set of terms.

By default, for a given query, Lucene computes the score for a document using the

BM25 formula (Section 2.4.3). Additionally, each query term can be assigned a

numerical boost value. The BM25 score for each matching query term is multiplied

by the boost value; these scores are added up to get the total similarity score for the

document, as shown in the equation below.

Score(Q, d) =
∑
q∈Q

boostvalue(q) log
N − df(q) + 0.5

df(q) + 0.5

tf (q, d)(k1 + 1)

tf (q, d) + k1(1− b+ b |d|
avgdl

)

(5.1)

A ranked list of the top scoring documents is retrieved by the system. For each query

article, we return the top-scoring 5 articles that were published on the same date as

the query article or earlier. This filtering on the basis of time reportedly results in a

significant gain in performance [8].

5.3 Our Experiments

In the rest of this chapter, we discuss the different approaches we tried in order to

solve the BL task. For each approach, we discuss its motivation, the method, and the

results obtained for the 2018 queries. As mentioned in Chapter 4, the query set and

ground-truth for 2018 is treated as training data that is used for parameter tuning.

These parameter values are used when reporting results on the 2019 dataset.

5.3.1 Approach 1: Boosted Query

Motivation

We first try to establish a baseline result. We create a query from a given article, and

issue it against the index. Initially, our main focus was on choosing a subset of the

article’s keywords as the query. We also consider the following questions.

• Is the title more important, or the content?

• Should the date of publishing be considered when creating the result list?

We start with a very basic model, and explore various tweaks to get better results.
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Method

Since the title of a news story summarizes its content and captures the essence of the

story in a few words, we initially construct a query containing only words from the

title of the query article. The next issue to consider is: while matching the query with

documents, do we consider only their titles, only their contents, or both the titles and

the contents? Based on preliminary experiments, we found that it is generally safest

to consider both the title and the content of articles during retrieval. In subsequent

experiments, therefore, queries are always matched against both the title and content

of other articles, unless otherwise stated. Apart from using the title to construct the

query, we also construct the query using terms from the body. We found out that

the queries constructed with terms from the body offers significant performance gain.

So, in this approach, we use terms from the body only for the query.

For the experiments above, every word in the query was given a boostvalue of 1.

We next assigned to each query term a boostvalue equal to its tf-idf score. For a

term t in a document field d, this score is given by tf (t, d)×idf (t), where tf (t, d) is

the number of occurrences of t in d, and idf (t) is given by 1 + log((1 +N)/(1 + df )).

We select the top K terms on the basis of their tf-idf weights, and use this set

as the query. As mentioned above, these weights are also used as the boostvalues

in Lucene’s scoring formula (Equation 5.1). The figure below shows how NDCG@5

scores vary as the value of K is changed. It is clear from above, that increasing K

Figure 5.1: Query length (K) vs. NDCG@5 score
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beyond 50 offers little improvement in performance.

Results and Discussion

Table 5.3.1 presents a summary of the results obtained for the experiments described

above. As discussed earlier, results for the 2019 dataset are reported using the settings

for which best results are obtained for the 2018 dataset.

Year Boostvalues used K NDCG@5

2018

no 10 0.3354
yes 10 0.3367
no 100 0.3479
yes 100 0.3940
yes 80 0.3964
yes 70 0.3940
yes 60 0.3956
yes 50 0.3958
yes 40 0.3872

2019 yes 80 0.5263

Table 5.1: Results for Approach 1

5.3.2 Approach 2: Using BM25 Scores as boostvalues

Motivation and Method

Since the well-known BM25 [14] term-weighting method yields much better results

than the plain tf-idf scheme for the conventional IR task, we next try using BM25

scores in place of tf-idf weights as boostvalues within the setup described above. No

other change is made. As above, K terms are selected from the content field.

Result and Discussion

We expected to see better performance when using BM25 weights as boostvalues

instead of tf-idf weights. We were surprised to see that this method did not outperform

the very simple tf-idf based weighing scheme.
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year Params K NDCG@5

2018
k1=1.2, b=0.5 50 0.3191
k1=1.2, b=0.5 80 0.3256
k1=1.2, b=0.5 100 0.3237

2019 k1=1.2, b=0.5 80 0.4860

Table 5.2: Different parameters tried for Approach 2

5.3.3 Approach 3: Document Vectorization

Motivation

We try to look at different methods for solving this problem. Like we had word

embeddings, we wish to find a way to represent the news articles as vectors, not

just any vectors. We want to turn documents into vectors in such a way, that two

documents having similar themes are closer in the N-Dimensional vector space than

two documents that talk about two different things. We call such vectors document

vectors henceforth. Having represented documents as such vectors, we try to solve

our background linking task in the following way:

given an article we report a ranked list of most similar document vectors to the

query as our answer. We measure similarity by cosine similarity. The score for a

document is the cosine similarity between vector representations of the document

and query article.

Method

How do we turn documents into such vectors? We know about word embedding [10].

Say, from each article we choose top K words that captures the essence of the story.

We suspect that if we take the sum of the word embeddings , in the sum, we would

capture the essence of the story. We use the previous method to choose the top words

from a document. We choose the top K words and their weights using the previous

method(Approach 1).

To generate the word embedding we train a Word2Vec model on the data. Google’s

implementation of Word2Vec[10] has been used4. The CBOW model has been used

for training the model and the generated vectors are chosen to have 500 dimensions.

4https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/
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The window size for training was fixed as 10.

After training we get the word embeddings for every word in the vocabulary.

From here we take two different approaches to generate a vector representation of the

document. They are as follows

1. We sum the top K vectors to get the vector representation of a document.

2. We also tried the weighted sum of the top K vectors to generate the document

vector. Weight for a word vector is the tf-idf weight calculated in the previous

method. By experimenting on the TREC 2018 queries we find out that weighted

sum of the vectors perform significantly better than their non-weighted coun-

terpart. We tweak the no of words parameter K, We found out this method

performs well for K=25 or we choose top 25 words to sum up

Results and Discussion

The results are recorded in the following table

year weighted K NDCG@5

2018
no 20 0.2614
no 25 0.2736
yes 20 0.3178
yes 25 0.3270
yes 30 0.3183
yes 35 0.3175

2019 yes 25 0.4446

Table 5.3: Different parameters tried for Approach 3

5.3.4 Approach 4 : Named Entity Recognition

Motivation

All of our approaches have been around extracting important key terms from docu-

ment. Named entities, like person, place or organization tend to be more important

than other words in the document. If we can identify named entities from the pas-

sages, we would be able to use the information to increase performance by incorpo-

rating them in the query.
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Method

We use Stamford Stanford Named Entity Recognizer (NER)5 to extract entities (per-

son, place or organization) belonging to the title and content of the document. We

index the entities in a two separate fields, One for entities extracted from title field

and another for entities from the content field during indexing. We form a query

consisting only of named entities We fixed the maximum number of entities as 20.

The query consisting of named entity only could not perform very well. So we try to

mix it with other methods in the following manner.

We generate two queries, one generated by method 1 with best performing param-

eters. Let us call this query q1. We generate another query by weighing the named

entities by their tf-idf score as in method 1. We call this query q2.We merge two

queries in the following way. let q[i].weight is the weight of the ith term of query q.

we change weight of the terms as

q1[i].weight = λ ∗ q1[i].weight

q2[i].weight = (1− λ) ∗ q2[i].weight

where(0 ≤ λ ≤ 1)

We join the two queries to form the new query. We tweak the value of lambda to get

best performance in 2018 data. We extracted named Entities from title and content

field to compare their performances.

Results and Discussion

We see entity extracted from content doesn’t contribute to better scores. We suspect

this is due to including irrelevant terms. Whereas Entities extracted from title does

increase score from method 1.

5https://nlp.stanford.edu/software/CRF-NER.html

https://nlp.stanford.edu/software/CRF-NER.html
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year Entity Ex-
tracted From

λ NDCG@5

2018

content 0.2 0.3002
content 0.8 0.3873
content 0.9 0.3898
content 1 0.3958
title 0.5 0.3941
title 0.6 0.3969
title 0.8 0.3961

2019 title 0.6 0.5254

Table 5.4: Different parameters tried for Approach 4

5.3.5 Approach 5: Relevance Model

Motivation

Relevance model[6, 7] is one of the best performing models for query expansion. We

attempted to put it to use in this track.

A lot of the times direct query term matching is difficult, many relevant documents

may be there for not containing some exact term in the query, it might not appear in

the final result set. RM3 tries to address this problem by first issuing a normal query.

Then it extends the query by adding terms from the set of retrieved documents to

the original query and assigning weights to the terms.

Method

In Relevance Model we have to query the documents two times, the 1st time we do it

to get a set of pseudo relevant documents, 2nd time we generate a modified query by

adding terms from the retrieved pseudo relevant documents. We issue the modified

query to the index to produce final results.

We run into the same problem as method 1. Which field to extract query from

and which field to issue query against? We use initial results on the 2018 dataset to

decide that.
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year initial query

words extracted

from

initial query is-

sued against

Expansion terms

added from

NDCG@5

2018

title title title 0.1300

title title content 0.1335

title content content 0.1419*

Judging by the results, we choose to construct query from the title, issue the query on

content of the indexed articles, and add expansion terms from content of the pseudo

relevant results. For all the cases we choose top 20 documents as pseudo relevant.

We try to add expansion terms such that a total of 70 query terms are present in

each case. We briefly try to tune λ parameter that controls the weight of the query

terms compared to terms added as part of pseudo relevant feedback. The result is

discussed in the section below.

Results and Discussion

year λ NDCG@5

2018

0.6 0.1442

0.8 0.1608

0.9 0.1641

2019 0.6 0.2975

We see relatively poor performance of relevance model in comparison with other

methods. We could not understand the reason for this behaviour. We suspect that

when a query is short and can be expanded with pseudo relevance judgements, rele-

vance method works well. In this case we already have a huge pool of candidate from

title and content. The title and content of the query article is a better source to add

expansion words from than pseudo relevant judgements.

5.3.6 Approach 6: Merging two Ranked lists

Motivation

We tried turning documents to vectors and using cosine similarity to pick top docu-

ments for BL task. Although the document vector approach did not get best results,
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we suspect that it has included some documents that could not be ranked by query

based ranking methods otherwise. Here we try to get better results by merging two

ranked lists. We pick Method 1 and Method 3 to merge the ranked lists of them to

get final rank list.

Methods

We retrieve 100 documents with the best performing parameters of both methods.

Let the list of documents retrieved with method 1 called t1 and by method 3 called

t2. We sum normalize the scores of both the tables. let the ith entry in a table t

called t[i] and the score for it is denoted as t[i].score , Next we do the following.

t1[i].score = λ× t1[i].score

t2[i].score = (1− λ)× t2[i].score

where(0 ≤ λ ≤ 1)

After that we merge two tables by doing a union of them. If a document appears

in both the tables, the score for the document is the sum of the score from each

individual table. We vary the value of λ to get the best performance on 2018 dataset.

We apply the best learned value of λ in the 2019 dataset.

Results and Discussion

We can see for parameter λ = 0.6, we get the best NDCG@5 score among all our

methods for query set in 2018. We see a gain in score compared to both the methods

by merging two tables.

year λ NDCG@5

2018
0.4 0.4022
0.6 0.4041
0.8 0.4007

2019 0.6 0.5131

Table 5.5: Different parameters tried for Approach 6
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Experimental Results

In this chapter, we compare the results of the methods explored by us. We also

compare these results with the best results of all official submissions for BL task.

Here, the main metric of comparison is NDCG@5. However, Systems can retrieve

up to 100 results for other levels of comparisons. NDCG metric is used because it is

sensitive to the ordering of the results. News Track Authorities choose to calculate

the NDCG of only the top 5 documents because, as the use case suggest, we want

to provide these articles as a suggestion to the news reader. A normal reader would

hardly pay attention to more than 5 suggestions.

To prepare the judgement set, corresponding to each query, a set of possible

results are retrieved and they are graded by experts on a scale of 0 to 4. 0 meaning

the document is not relevant at all and 4 meaning this document must appear as a

recommendation. One limitation of this relevance judgement is for a query only a

small subset of answers are relevance judged. There can be a case where the system

retrieved document is relevant but there is no relevance judgement for it. Ideally,

for every query, each document in the corpus should be graded. This is ideal but

impossible to achieve, because for each query, we have to provide manual relevance

judgment to almost 600000 documents. We accept such limitation because this is as

close as we can get to an ideal judgement; However, While evaluating any system by

its score, we have to keep this limitation in mind.

6.1 Comparison of Results

In this section we take the results from all our methods and compare them with each

other.We also compare our results with the best submissions of TREC News Track

2018 and 2019.

The best submission of TREC News 2018 track was by A. Bimantara et al. code-

named htwsaar4 [1]. We can also find the best submission for 2019 track in the run

29
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codenamed UDInfolab all [8] from University of Delaware.

In table 6.1 we can see that for any given method, score for 2019 track is generally

higher than score for 2018 track. We attribute this to queries being less complex. In

trials, our best NDCG@5 score for 2018 track was 0.4041 and best score for 2019

track was 0.5263. Overall best runs outperformed our runs, with NDCG@5 score of

0.4619 for 2018 and 0.606 in 2019.

Submission Name Description 2018 Score 2019 Score
Method 1 boosted query 0.3964 0.5263*
Method 2 BM25 boosted query 0.3256 0.4860
Method 3 Weighted sum of document

vector
0.3270 0.4446

Method 4 entity extracted from title
added in the boosted query

0.3969 0.5254

Method 5 RM3 0.1641 0.2975
Method 6 Merged Ranked list of

method 1 and 3
0.4041* 0.5131

htwsaar4 verbose query comprising of
title and content

0.4619** -

UDInfolab all All words and Entities used
as query

0.438 0.606**

Table 6.1: Comparison between all methods
* Best performance among our methods
** Best performance among all TREC submissions
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Conclusion and Future Work

7.1 Conclusion

The TREC News Track is where we explore a very modern task of suggesting news-

paper articles. The way we measure the goodness of this task is by comparing the

list of documents retrieved by our system with a set of documents relevance graded

by experts.

In attempting this task we tried to explore a varied set of methods. We had to bal-

ance between exploring new methods and tuning parameters to extract performance

gains. We found out that our simple weighted query (Approach 1 ) was working better

than some more intricate methods submitted as part of the track. In Approach 2, we

tried to add weight to the terms with BM252.1, a more advanced weighing formula

than Method 1. To our surprise, it did not work as well as expected with drop in

performance.

We shift from query based approaches in Approach 3, here we try to represent a

document as a sum of the word embeddings of its most meaningful words. Although

Approach 3 did not achieve the best results, it was used later as a part of another

method, producing good results. In Approach 4, We use the power of named entity

recognition at our case. We also try to incorporate pseudo relevance feedback in BL

task. In Approach 5, we use RM3[6] for pseudo relevance feedback. In our case,

Approach 5 did not produce good results. At the very end we try to mix of two

different kind of approaches to get the best of both worlds, in Approach 6 , we merge

two ranked lists from Approach 1 and Approach 3. The first one is a query based

approach and the second one involves turning document into vectors and calculating

their cosine similarity to get results.

In TREC News Track we discover the recurring theme of simple methods working

better than their complex counterparts. Top performing submissions for this task,

31
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namely, htwsaar4 [1] UDInfolab all [8] employ very simple method of query construc-

tion. In our case also, we noticed, the simple method of tf-idf weighted query achieves

very good performance as compared with its BM25 counterpart.

None of our method could not beat the top performing methods in terms of score

but some of them are simpler and a lot more effiecient than the top performing

methods. For exmple, the best performing method, UDInfolab all, generates a query

using all the words and all the extracted entities. Such queries are computationally

expensive and may not be possible in a real world scenario.

There are many possible ways to extend the work and improve performance. We

leave The source code of the project available for reproducing the results and for

further experimentation1.

7.2 Future Work

Any scientific pursuit is never complete, for every method we explored, we left many

other that could have been tried. Here we list such cases where further investigation

can be done

• While indexing, the articles had many stray HTML tags. We could extract

some information from the tags and use that intelligently to identify entities or

important words. For example any text that is inside bold tag or something

that is hyperlinked is bound to be an important term for the query.

• The content part of every article was given in separate paragraphs. While

indexing, we concatenated all paragraphs into a monolithic chunk of text. We

could keep the division of contents and intelligently explore some properties of

them for increasing query quality.

• Parameter tuning has been one of the main issues we faced. Whenever any

experiment was performed, there was always many parameters that remained

unexplored. By optimally tuning all the parameters we could improve the per-

formance of all of our methods.

• While exploring all the methods we found out that RM3 could not perform up

to the mark. We can investigate the reason behind such case.

1https://github.com/arrgee23/WapoDataMining

https://github.com/arrgee23/WapoDataMining
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• As no modern day problem can do without, We can employ sate of the art

Neural networks based language Modelling approaches to this task.

• We have only explored single term queries. This leaves a void that can be filled

by methods like Phrase query, term dependencies etc.

• We have relevance judgement results for 2018 and 2019, we can use this result

for Learning to Rank approaches.

• Every news article consists of multiple fields. like title, content, article type,

date, author, etc. We can explore the properties of the fields to get a better

solution.

• We saw huge performance improvement when we recommended a news article

dated on or before the query article. The performance improvement is so drastic

that, All of our methods, along with submissions from other research institutes

use this. We still don’t know the reason for such improvement. Further research

is needed.

This marks the end of my dissertation. Thank you for your precious time.
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