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Abstract

A lot of work has been done on texture generation techniques. Deep learning

based image generation techniques have been extremely successful in generating

realistic images. Moreover, reaction-diffusion systems have also been successful

in generating a wide variety of textures. However, the reaction-diffusion systems

have never been incorporated in modern deep learning architectures. On the other

hand, although a wide variety of images have been generated using traditional

computer vision algorithms and deep learning models, very little work has been

done on generating the microstructures that are found in abundance in nature. We

have explored two established texture generation algorithms for generating steel

microstructure images: PatchMatch and DCGAN. We have also tried to combine

the reaction-diffusion systems with deep learning architectures and have explored

the possibility of its success in generating the steel microstructure images.

Keywords: reaction-diffusion, PatchMatch, DCGAN, steel microstructure im-

ages
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Chapter 1

Introduction

1.1 Objective

A repetitive, periodic or quasi-periodic pattern displayed in an image is texture.

Such repetitive patterns can be seen on any textured surface as well. Texture

can also be defined as a collection of texture elements (texels) that occur in some

regular pattern. Naturally observed textures are extremely difficult to analyse

and model due to their diversity and complexity. Natural textures often have very

irregular structural patterns which cannot be modelled by the traditional modelling

tools. Some natural textures are shown in Figure 1.1. Texture patterns, specifically

microstructure patterns are found in abundance all around us. The objective of

this work is two-fold:

• Generation of textures

• Generation of steel microstructure

Figure 1.1: Some natural textures [1]

The quality of steel can be determined by analysing the microstructure pattern

(Figure 1.2) of steel [2]. Observing a polished block of steel with a light microscope

can reveal such patterns. If these microstructures were based on a certain mathe-

matical model, then it would have been easier to obtain different varieties of steel by

1
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Figure 1.2: Steel microstructure

changing the model parameters slightly. However, there does not exist any math-

ematical or physical (metallurgical) model for generating the steel microstructure

textures. Since texture modelling and texture generation are closely related, the

generation of these microstructures can provide a means of modelling them. This

project aims at developing a computational model to create such microstructures.

1.2 Literature Survey

Texture modelling has been an active research topic in the domain of computer

vision since a very long time. The algorithm proposed in [1] generates realistic

textures and takes a sample texture pattern as input. [3] improved the algorithm

proposed in [1] and made it suitable for generating textures having irregular shapes.

For textures having complex structures, these greedy algorithms sometimes gener-

ate results which are inconsistent. The algorithm proposed in [4] generates textures

that are globally consistent by modelling the texture completion problem as a global

optimization problem. Approaches involving patch optimization have been used

in [5–7]. Computational complexity increases with the improvement in the quality
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of the generated textures using patch optimization techniques. This problem fur-

ther escalates when the dimensions of the sample texture increase. In order to solve

this problem, tree-based structures have been proposed in [1,4,5] and approximate

search methods have been proposed in [8, 9]. The algorithm proposed in [3] em-

ploys a local propagation method that exploits the interdependence between pixels

and hence limits the total number of searches required for texture generation. [10]

introduces a randomized algorithm that generates textures by approximating the

nearest neighbour matches between two given images.

Reaction-diffusion method based texture generation techniques were first pro-

posed in [11]. It was shown that stable patterns could be generated by the inter-

action of two or more chemicals. [12–14] have shown that reaction-diffusion sys-

tems can generate patterns like stripes and spots by varying the parameters of the

reaction-diffusion systems. Generation of patterns in accordance with the geometry

of a surface has been proposed in [15]. The major drawback of these algorithms

is the estimation of the reaction and diffusion constants required for generating a

stable pattern.

With the invention of Generative Adversarial Networks (GANs) in 2014 [16,17],

the image synthesis algorithms have progressed remarkably. GANs do not require

Markov chains or inference approximations during either the model’s training phase

or while generating new samples with the trained model [16]. These models are

trained with back propagation techniques and do not require explicit definition

of a probability distribution. In contrast, the models are trained for generating

samples from a desired distribution. Unlike the generative stochastic networks

(GSNs) [18] and generalized denoising auto-encoders [19], adversarial networks do

not involve Markov chains. However, GANs are difficult to train and often generate

meaningless outputs. Deep Convolutional GAN proposed in [20] addresses this

problem with the use of deep convolutional architectures for both the generator and

the discriminator. Even after training these models sufficiently, they might still be

unstable and can collapse. A few hacks have been found useful for stabilizing these

models to some extent. However, GANs are still notoriously difficult to train and

several other attempts have been made to solve this problem by modifying the loss

function [21], introducing regularization techniques [22] and redefining the model
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architectures [23,24]. [25] proposes a collaborative sampling technique between the

generator and the discriminator for refining the samples generated at a particular

layer of the generator by reducing the distance between the generator distribution

and the distribution of the training images.

1.3 Dataset

Figure 1.3: Sample images of steel microstructure

Deep learning architectures require lots of training data. At first, a sample of

steel is grounded and a mirror-finish surface is obtained by polishing it. After this

step, the polished surface is etched with Le Pera etchant, which is a mixture of

Picric acid in ethyl alcohol and sodium metabisulphite in distilled water. Inden-

tations are made on the steel sample with a microhardness testing machine. The

indentation array are at a distance of 178 µm in the horizontal direction and 133

µm in the vertical direction. The steel sample enclosed by four indentations is

imaged using a light microscope at 500x magnification [2].

There were initially 20 images of steel microstructure textures. The dimension
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of each image was 1920 x 2560 x 3. These images were RGB images, hence each

image had three channels. Figure 1.3 shows some of the microstructure images. The

actual dataset that has been used for this work has been generated by randomly

cropping the microstructure images. Each cropped image is of size 512 x 512 x 3.

Figure 1.4: Sample images from the steel microstructure image dataset

Figure 1.4 shows some of the cropped images obtained from the steel microstruc-

ture images. We have obtained 300 cropped images with which we have performed

the experiments.

1.4 Contributions

In this work, we have explored two established texture generation methods. The

first one is a traditional method, known as the PatchMatch algorithm [10]. The

second one is Deep Convolutional Generative Adversarial Network (DCGAN) [20].

We have generated the steel microstructure images with these two methods. The
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original DCGAN paper generates images having dimensions 64 x 64 x 3. However,

the modified network can generate images of much larger dimensions (512 x 512 x

3) very efficiently. Thus, the original DCGAN architecture has been modified to

suit our requirements. We have also discussed the reaction-diffusion systems and

have identified the implementation issues that are often faced while working with

the traditional simulations. We have proposed a deep neural architecture which can

generate the reaction-diffusion patterns without any knowledge of the parameters

of the actual reaction-diffusion system.

1.5 Organization of thesis

Chapter 2 discusses the PatchMatch algorithm and DCGAN, their training proce-

dures and the corresponding results. In Chapters 3 and 4 we have discussed the

proposed method and the experimental results respectively. Chapter 6 concludes

the thesis.



Chapter 2

Related Works

2.1 PatchMatch

PatchMatch [10] is a randomized algorithm that can efficiently generate different

types of textures. Given a reference texture (IIN), it can generate another texture

(IGEN) which is similar to the given reference texture. The textures IIN and IGEN

can be RGB images or grayscale images. Considering two images X and Y, for

every texture patch in X, the objective is to find the closest patch in Y under a

chosen distance metric. This mapping is known as the Nearest-Neighbour Field

(NNF). Assuming a small patch of texture with n pixels, the brute force method of

searching for its closest patch in an image of size N pixels is extremely expensive,

O(n*N*N).

The following observations make PatchMatch extremely efficient:

• The patch space is sparsely populated (O(N) patches) and operating in the

two-dimensional patch space reduces the total time complexity and increases

memory efficiency.

• In every image, adjacent pixels are not independent and almost all images

have a natural structure. Searching for a better candidate in the adjacent

pixels interdependently improves the efficiency of the algorithm.

• A fairly large number of random patch assignments can lead to a good patch

selection even though any one random choice of patch might not be a good

candidate.

IGEN is initially empty and PatchMatch starts by randomly selecting pixels

from IIN and assigning them to IGEN . After the initialization step, the algorithm

iteratively updates the NNF by two separate processes, propagation and random

7
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Figure 2.1: Block Diagram of PatchMatch [10]

search. The pixels and the corresponding neighbourhoods are scanned from the

top left corner and every pixel undergoes propagation and random search, one

following the other. Figure 2.1 shows the PatchMatch algorithm.

• Propagation uses coherence for dissemination of good texture patch choices

to the adjacent pixels. Let us consider a pixel pG in IGEN . Let us assume

that the candidate pixel for pG is at index (i,j) of IIN . Here 0 ≤ i < H

and 0 ≤ j < W , where the H and W are the height and width of IIN

respectively. The pixels at index positions (i-1, j) and (i, j-1) of IIN are also

considered and their neighbourhoods are examined for a closer match. This

is because the neighbouring pixels in an image are interdependent and hence

their neighbourhoods are also similar.

Figure 2.2: Propagation

Figure 2.2 shows that the pixel at index (i,j) of the input reference image

is initially the chosen candidate pixel for the pixel shown in the left image.

Let us assume that the PatchMatch method is executed for ITR number of

iterations. ∀ iter ∈ ITR, if iter is odd, then it is an odd iteration, else it is
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even. On odd iterations, the pixels at indices (i, j-1) and (i-1, j) are examined

to see whether any of these are a better match for the selected pixel in the

generated image whereas on even iterations, the pixels at indices (i, j+1) and

(i+1, j) are examined for the same.

• Random search tries to improve the candidate pixel p selected for a par-

ticular index position (i, j) by examining the neighbourhoods of a list of

candidates selected randomly within a prespecified exponentially decreasing

radius around p.

piter = p+Rmaxβ
iterUiter. (2.1)

In equation 2.1, Uiter is a random number in [-1, 1] x [-1, 1], Rmax is the

maximum radius available for searching and β is a constant ratio. The search

starts with iter = 0 and is continued for higher values of iter until the radius

of search Rmaxβ
iter becomes less than unity.

2.1.1 Experiments and Results

Images of size 200 x 200 x 3 were used as reference textures for obtaining similar

textures having the same dimensions. The single resolution method was used with

a neighbourhood of size 51 x 51. For better results, the overall procedure was

repeated twice.

• For generating texture images of size 200 x 200 x 3, in the initializing step,

a matrix (IGEN) of size 200 x 200 is created. Each index of IGEN is assigned

a randomly selected pixel (all the three, i.e, R, G and B channels) from the

reference image.

• for iter in TotalNumberofIterations:

– for all pixels in IGEN :

∗ Propagation

∗ Random Search

• A new empty matrix having size 200 x 200 x 3 is created. In the new ma-

trix, the pixel values of the candidate pixels are put and the final texture is

obtained.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: PatchMatch results. Details are given in Section 2.1.1

The image obtained at the end of each iteration has been shown. Since we have

repeated the entire PatchMatch method twice, for a particular input reference im-

age, we have got two generated images. The results are shown in Figure 2.3. The

results corresponding to two different steel microstructure images have been shown.

Figures 2.3(a) and 2.3(d) are the two reference images that have been used for this

experiment. Figures 2.3(b) and 2.3(c) are the images generated at the end of the

first and second iterations with Figure 2.3(a) as the input image. Similarly, with

Figure 2.3(d), the images generated at the end of the first and second iterations are

shown in Figures 2.3(e) and 2.3(f) respectively.

2.2 Deep Convolutional GAN (DCGAN)

Generative Adversarial Networks (GANs) were introduced in [16]. The term gen-

erative denotes that this model aims at generating new data points similar to the

ones in the training set. The term adversarial indicates that it is a two player

game and the loss function is a minimax function. The term networks is used as
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this is a deep neural network architecture. A discriminative model aims at learning

the inherent features of a training set and thereafter classify them into various cate-

gories. In contrast, a generative model aims at learning the underlying distribution

of the training set for sampling new data points. Mathematically, for a set of data

points A and a set of labels B, the generative models try to learn the joint prob-

ability P (A,B) whereas the discriminative models aim at learning the conditional

probability P (B| A).

GANs have two independent networks, the generator and the discriminator.

The generator aims at generating data points similar to the ones in the training set

whereas the discriminator tries to distinguish between real and fake data points.

During the training process, for a batch of input images, the discriminator estimates

the probability that the batch belongs to the actual training dataset. For real

images, this probability should be very close to 1 and for fake images, it should

be close to 0. In adversarial networks, the generator and the discriminator work

as adversaries and this competition forces both of these networks to improve their

performance.

Figure 2.4 shows the DCGAN architecture. A batch of 1-dimensional Gaussian

noise vectors (Z) is the input to the generator G. The output of G is a batch of

fake images G(Z). A batch of real images and G(Z) are alternatively fed to the

discriminator D. The training procedures of G and D are interleaved, yet inde-

pendent. In DCGAN [20], both G and D are two separate and independent deep

convolutional neural networks and binary cross entropy loss (BCE loss) is used for

both the networks.

V (D) = EX∼Probreal(X)[log(D(X))] + EZ∼Probfake(Z)[log(1−D(G(Z))]. (2.2)

V (G) = EZ∼Probfake(Z)[log(1−D(G(Z))]. (2.3)

Equations 2.2 and 2.3 are the objective functions of the discriminator network

and the generator network respectively. The discriminator network aims at max-

imizing its objective function. Hence, the output of the discriminator network

(D(X)) for a batch of real images (X) should be as close to 1 as possible and the

output (D(G(Z))) corresponding to a batch of fake images (G(Z)) should be as

close to 0 as possible. On the contrary, the generator network tries to minimize
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Figure 2.4: DCGAN architecture

its objective function. Therefore, the generator tries to generate images which are

very similar to the images belonging to the actual training dataset so that the value

of D(G(Z)) is close to 1. Equation 2.4 is the overall objective function [16,20].

min
G
max
D
V (D,G) = EX∼Probreal(X)[log(D(X))] + EZ∼Probfake(Z)[log(1−D(G(Z))].

(2.4)

The discriminator and generator networks designed for the steel microstruc-

ture dataset are shown in Figures 2.5 and 2.6 respectively. The pooling layers are

replaced with fractionally strided convolutions and strided convolutions in the gen-

erator and discriminator so that the network can learn the spatial upsampling and

downsampling respectively. The input to the generator is a 1D uniform noise vec-

tor Z and it is reshaped as a 4-dimensional tensor. Batch Normalization layers are

used in all the layers of the discriminator network except the input layer. In case

of the generator network, Batch Normalization is applied to all layers except the
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Figure 2.5: Discriminator

Figure 2.6: Generator

output layer. Both the generator and the discriminator networks use Leaky ReLU

activation function at all layers except the output layer. The output layer of the
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generator network uses the Tanh activation function whereas the output layer of

the discriminator network uses the Sigmoid activation function. Equations 2.5 and

2.6 represent the ReLU and Leaky ReLU activation functions respectively where a

is the input value and β is a small, non-zero constant.

f(a) =

0 a ≤ 0

a a > 0
(2.5)

f(β, a) =

βa a ≤ 0

a a > 0
(2.6)

Each epoch of the training process is as follows:

• A batch of real images is sent to the discriminator network and the output

is obtained. The loss corresponding to the real batch is calculated using the

first term of equation 2.2 and it is back propagated and the parameters of D

are updated.

• The generator network generates a batch of fake images G(z) from a batch

of 1D noise vectors. The discriminator’s output corresponding to G(z) is

obtained.

• Depending on the discriminator’s output, the loss corresponding to the fake

batch is calculated using the second term in equation 2.2 and the network

parameters are updated again.

• The generator losses are also calculated according to equation 2.3 are the

parameters of the generator network are updated.

2.2.1 Experiments and Results

The discriminator and generator networks shown in Figures 2.5 and 2.6 were trained

with the steel microstructure dataset. Images of size 512 x 512 x 3 were used without

any pre-processing. The model was trained for 2000 epochs with Adam optimizer

with a learning rate of 0.0002. The size of each mini-batch was 4. The weights of the

networks were initialized with a normal distribution having mean 0 and standard
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deviation 0.02. Leaky ReLU having slopes 0.0002 and 0.00002 were used in the

discriminator and generator respectively. For improving the training procedure,

noisy labels were used for the discriminator network. In each epoch, the real and

fake labels were randomly selected between [0.8, 1] and [0, 0.2] respectively. A batch

of training images is shown in Figure 2.7. The modified DCGAN architecture is

trained twice and at the end of each training session, a batch of fake images is

obtained. Figure 2.8 shows the two batches of fake images generated by DCGAN.

Figure 2.7: A batch of real images. Details about the training process are given in
Section 2.2.1

2.2.2 Discussion about the modified architecture

In this approach, we have expanded the discriminator and the generator archi-

tectures for generating large sized images efficiently. In the proposed DCGAN

architecture [20], the dimensions of both the training images and the generated im-

ages are 64 x 64 x 3. Hence kernels of size 4 x 4 are used in [20]. However, since we

are using the modified architecture for generating images of size 512 x 512 x 3, the

kernel sizes have been increased to 6 x 6 in the first two layers of the discriminator

network and the last two layers of the generator network as shown in Figures 2.5

and 2.6 respectively. This is because larger sized kernels can capture the required

information needed for extracting suitable features.

2.3 Summary

In this chapter, we have explored two different approaches for generating the steel

microstructure images. The first method is a traditional one, whereas the second

method is a more recent architecture. The results generated by the PatchMatch
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(a)

(b)

Figure 2.8: DCGAN results. Details about the generation process are given in
Section 2.2.1
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algorithm are not very satisfactory. Moreover, the system doesn’t learn anything.

DCGAN, on the other hand, has been quite successful in generating a wide variety

of images. In the original DCGAN paper [20], the size of each image that was

used for training was 64 x 64 x 3. The generated images were also of the same

dimension. The images in our steel dataset have intricate structures. When they

were resized to 64 x 64 x 3, the details were lost. Hence, we have modified the

DCGAN architecture and made it suitable for generating images of size 512 x

512 x 3. The results shown in Figure 2.8 are generated by two separate training

methods. From Figure 2.8, it is evident that all the images that are generated

after a single training session are almost identical, i.e, the architecture suffers from

mode collapse. Aiming to solve the shortcomings of the methods discussed in this

chapter, we explore another method of texture generation: the reaction-diffusion

method.



Chapter 3

Proposed Method

3.1 Reaction-Diffusion

The reaction-diffusion system of pattern synthesis was first proposed in [11] where

the author has described how two or more chemicals can form stable patterns after

diffusing across a surface. The system is defined by a set of partial differential

equations, where each equation comprises a diffusion term and one or more reac-

tion terms. The diffusion method simulates the movement of a chemical substance

from an area of higher concentration to the neighbouring areas having lower con-

centration. The diffusion process has the effect of adaptively smoothing the image,

whereas, the reaction method generates distinct textures in it. The reaction term

in the equation accounts for the non-linearity that is usually observed in nature.

The most elementary form of the reaction-diffusion system can be described

with the help of two different chemicals having different rates of diffusion. The

initial variation in the concentration levels of these chemicals tend to make the

system unstable initially and ultimately help in the formation of patterns by varying

their concentration across the surface. A reaction-diffusion system comprising two

chemicals can be described by the following partial differential equations:

∂p

∂t
= Dp∇2p+Rp(p, q). (3.1)

∂q

∂t
= Dq∇2q +Rq(p, q). (3.2)

These equations indicate that the change in the concentration levels of any

one of the chemicals at any given instant depends on the sum of the reaction and

diffusion components for that chemical. The terms Dp and Dq are constants, rep-

resenting the diffusion rates for the chemicals p and q respectively. The chemicals

p and q are defined in a two-dimensional space (i,j) and ∇2 = ∂2

∂2p
+ ∂2

∂2q
. The

terms ∇2p and ∇2q indicate the concentration level of a particular chemical with

18
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respect to the neighbouring areas. If the neighbouring areas have higher concentra-

tion of a particular chemical, the Laplacian will be positive and the chemical will

diffuse towards that region and vice-versa. A reaction-diffusion system iteratively

computes the local concentrations Rp(p, q) and Rq(p, q) until a stable pattern is

generated [15,26].

In this method, at any given time instant, only one of the chemicals can be

present at a particular point on the surface across which the reaction and diffusion

occur, i.e, the chemicals are locally exclusive. Various patterns have been generated

by different models in the past. The generated patterns can be broadly classified

into two categories, spots and stripes. These patterns depend largely on the non-

linear terms present in the reaction function [27]. Figure 3.1 shows two images

generated by the traditional reaction-diffusion systems.

(a) (b)

Figure 3.1: Images generated by traditional reaction-diffusion systems

The simulation process of any reaction-diffusion system is iterative. A fixed

number of substrates react with each other to produce a specific pattern. For a

reaction-diffusion system involving two substrates A and B, let us consider the

simulation process shown in Figure 3.2. A and B are actually two matrices repre-

senting the two substrates which will react with each other to form a stable pattern.

During diffusion, A and B are convolved with a diffusion filter. For generating any

specific pattern, this filter should be known. In the reaction process, A and B

react with each other according to a set of equations. In Figure 3.2, C is a matrix

representing scalar values. The dimensions of matrices A, B and C are same. IRA

and IRB
are the reaction images obtained from A and B while IDA

and IDB
are
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the diffusion images obtained from them. The terms rA and rB are the reaction

coefficients for the substrates A and B while dA and dB represent their diffusion

coefficients. Apart from the diffusion filter, the exact values of rA, rB, dA and

dB also need to be known for generating any desired pattern. Finally the update

equations show how A and B are updated.

Figure 3.2: Reaction-Diffusion Simulation

The four steps mentioned in Figure 3.2 are repeated for a number of itera-

tions. In each iteration, the reaction process develops intricate structures while

the diffusion method blurs them. The fine balance between these two methods can

ultimately generate a wide variety of textures.

3.2 Simulation with Neural Networks

For a pattern for which the diffusion filter, reaction terms and the coefficients of

reaction and diffusion are unknown, the simulation of a reaction-diffusion system

can be extremely difficult. This is because these systems are very unstable and

the slightest of deviation of these parameters from the actual values can make the

system completely collapse. Generation of the steel microstructure images with

reaction-diffusion systems would require the knowledge of these parameters. For

obtaining these parameters, we have explored three different ways in this work:

1. Fully Connected Neural Network (FCNN)

2. Convolutional Neural Network (CNN)
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3. Generative Adversarial Network (GAN)

Using each of the above methods, the objective is to mimic the reaction and

diffusion process shown in Figure 3.2 without any knowledge about the reaction

terms, the diffusion filter and the coefficient terms. Starting with a noise matrix,

the objective is to obtain a desired pattern with the reaction-diffusion process.

Figure 3.3: RDNet

As shown in Figure 3.3, like the original reaction diffusion system, our method

is also iterative. The only difference is that we are trying to estimate the reaction

terms, the diffusion filter and the coefficients for a desired pattern with a chosen

neural network architecture. In Figure 3.3, the process Reaction represents a

model that would generate reaction terms. The input to RDNet, as shown in

Figure 3.4, is a noise matrix and the output is the desired pattern.

Figure 3.4: Block Diagram representing RDNet

RDNet starts by initializing the diffusion mask as the Laplacian filter. The

diffusion mask has different components, one for each substrate. All the components

of the diffusion mask are stacked together and hence the dimension of the mask is 3
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x 3 x n groups, where n groups is the number of substrates. During the ith iteration

of the reaction-diffusion mechanism, the image (Ii−1) obtained from the (i − 1)th

iteration is fed to RDNet. Ii−1 passes through the different layers along with the

intermediate activation functions and the image that is obtained at the output of

this entire network, IRi
is the image obtained from the ith reaction process. For

diffusion, Ii−1 is convolved with the diffusion mask to generate the image IDi
that

is obtained due to the diffusion process at the ith iteration. The resultant image

obtained by adding IRi
and IDi

is Ii, i.e, the image that is finally obtained at the

end of the ith iteration.

The overall simulation process for the FCNN and CNN RDNet architectures

is shown in Figure 3.5. Since neural networks can generalize a wide class of func-

tions, we have designed these architectures. For these architectures, the networks

are tuned for generating any desired pattern from a random noise matrix. The

process is repeated for a fixed number of epochs (total epoch). In each epoch, the

MSE loss between the desired pattern and the generated pattern is computed and

back propagated to update the network parameters. This is shown in Figure 3.5.

Equation 3.3 shows the MSE loss between two images of size N × N . The terms

I(i) and I ′(i) denote the ith pixel values in the images I and I ′ respectively and N2

denotes the total number of pixels in each of the two images.

MSELoss =
1

N2

N2−1∑
i=0

|I(i)− I ′(i)|2. (3.3)

In the remaining part of this chapter, we describe the architecture and the

methodology for each of the three methods.

3.2.1 Fully Connected Neural Networks

In this method, a four-layer fully connected neural network is the RDNet. The block

diagram of this method is shown in Figure 3.6. The ReLU activation function is

used between any two consecutive layers. Inside the RDNet, the image obtained at

the end of the (i− 1)th iteration is the input to the ith iteration. Since the output

obtained from layer 4 at (i−1)th iteration is the input to layer 1 for the ith iteration,

the dimensions of both of these images must be identical. Hence, the number of

input neurons in layer 1 and the number output neurons in layer 4 must be equal.
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Figure 3.5: Simulation process for FCNN RDNet and CNN RDNet

The number of input neurons in layer 1 and the number output neurons in layer 4

are equal to the number of substrates required for generating any selected texture.

At the beginning of every iteration, each channel of the image is flattened. For

an image of size N×N×n groups, the size of the flattened image is N2×n groups.
The flattened image passes through layer 1 and its shape becomes N2×n neurons.
This is again passed through the layers 2 and 3. In layers 2 and 3, the number of

input and output neurons have been taken to be the same (n neurons). Hence the

shape of the output from layer 3 remains N2 × n neurons. This passes through

layer 4 and the shape of the output obtained is N2×n groups. It is finally reshaped

back to the shape of the input image, i.e, N ×N ×n groups. The term n neurons

is a parameter of this network and can be changed. We have taken n neurons to

be 100. Considering RDNet as a black box, the input and output method is shown

in Figure 3.4.



24

Figure 3.6: Block Diagram representing the FCNN RDNet

3.2.2 Convolutional Neural Network

Now, the fully connected layers have been replaced by convolutional layers inside

the RDNet. Convolutional neural networks consist of several layers. Higher level

features are extracted by the top layers of the network whereas the lower layers

contain information about the lower level features. The entire network is trained

simultaneously in order to optimize a given cost function. Figure 3.7 shows how

the input image progresses through the network. The training procedure of a con-

volutional neural network comprises two major steps, the forward propagation and

back propagation. During forward propagation, the input image passes through the

successive layers and an output is obtained. Back propagation tries to minimise the

deviation of the obtained output and the desired output. The forward propagation

process at any intermediate lth layer convolves the feature maps obtained from the
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(l − 1)th layer with a convolutional kernel.

M l
Coutj

= f(biaslCoutj
+

Cin−1∑
k=0

(kernellCoutj k
∗M l−1

k )). (3.4)

Equations 3.4 depicts the operations involved in the forward propagation pro-

cess. Cin and Coutj denote the total number of input channels and the jth output

channel respectively. M l
j denotes the jth channel of the feature map correspond-

ing to the lth layer of the network and f is the activation function. The term

kernellab refers to the convolutional kernel of the lth layer corresponding to the ath

input channel and bth output channel and biasla of the lth layer is the bias term

corresponding to channel a.

Figure 3.7: CNN RDNet

Figure 3.7 shows the CNN RDNet. The dimensions of the feature maps are

shown at every step along with the convolutional details. Every feature map un-

dergoes goes convolution with a kernel of a given size. Depending on the stride and

the padding, the shape of the map changes. The architecture has 4 convolutional

layers as depicted in Figure 3.7 and ReLU activation function is applied at the end

of each layer except the last layer which uses the Tanh activation function (equa-

tion 3.5 where a is the input value). Batch Normalization is applied to the feature

maps obtained from the second and third convolutional layers. The use of the Tanh

activation function at the end of the network makes the optimization during the

training robust [28].

f(a) =
1− exp(−2a)

1 + exp(−2a)
. (3.5)
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3.3 Reaction-Diffusion GAN

The generator of this architecture is the CNN RDNet. The discriminator is very

similar to the discriminator used in DCGAN. The discriminator designed for the

reaction-diffusion GAN (RDGAN) has six layers including the input and the output

layers and Leaky ReLU activation function has been used. Batch Normalisation

has been used in all layers except the first and the last layers and the end of the

discriminator network has the Sigmoid activation function. The discriminator of

this GAN model is shown in Figure 3.8.

Figure 3.8: Discriminator of Reaction-Diffusion GAN

Three different losses are used for the RDGAN architecture:

1. Adversarial Loss: The discriminator network shown in Figure 3.8 is trained

simultaneously with the generator network. We have used binary cross en-

tropy (BCE) loss as our adversarial loss. The minimization of the adversarial

loss indirectly trains the generator to synthesize realistic images.

2. Map Loss: Inner layers of a deep convolutional network contain semantic

information about the training images. In [29], inner layers of a pre-trained

VGG-19 network have been used for tuning the architecture. In a similar

way, we have fine tuned a pre-trained VGG-19 with our dataset. With the

tuned network, we have obtained the maps corresponding to the real and

fake batches from an inner layer (ReLU 4 2). The mean squared difference

between these maps is termed as the map loss.

3. Quality Loss: In [30], a novel loss is proposed that can consistently de-

termine the perceptual quality of an image. This loss has been motivated
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by the gradient magnitude similarity deviation (GMSD) which is obtained

in three steps. The gradient magnitudes of the the real (gradR) and fake

images (gradF ) are obtained. The gradient magnitude similarity (GMS ) is

obtained with equation 3.6, where the term c is a positive constant that

is introduced for maintaining the numerical stability. The terms GMS (i),

gradR(i) and gradF (i) are the corresponding values at the ith index of the

GMS, the gradient of the real image batch and the gradient of the fake image

batch respectively.

GMS(i) =
2 · gradR(i) · gradF (i) + c

grad2R(i) + grad2F (i) + c
. (3.6)

The gradient magnitude similarity mean (GMSM ) is obtained according to

equation 3.7 [30], where N is the total number of pixels in the real and fake

images.

GMSM =
1

N

N∑
i=1

GMS(i). (3.7)

Finally, the gradient magnitude similarity deviation [30] is calculated as:

GMSD =
√

(
1

N

N∑
i=1

(GMS(i)−GMSM)2). (3.8)

The quality loss between the real and fake images is defined as the GMSD

between real and fake image batches.

Let LADV , LMAP and LQ represent the adversarial loss, the map loss and the

quality loss respectively. During the training process, the objective is to minimize

these losses. If wADV , wMAP and wQ represent the coefficients of LADV , LMAP and

LQ respectively, the objective function becomes:

L = wADVLADV + wMAPLMAP + wQLQ. (3.9)

3.4 Summary

In this chapter, we have described three different architectures. The objective

is to generate images by reaction-diffusion method without actually knowing the

parameters of the system. The models have been described in such a way that each

model is more complex than the preceding one. With the proposed architectures,

we have conducted the experiments which are described in the next chapter.
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Experiments

4.1 Fully Connected Neural Networks

We started our experiment with a pattern which looks somewhat similar to the steel

microstructure pattern and can also be generated by a known reaction-diffusion

system. Figure 4.1(a) shows a famous Turing pattern known as the stripe pattern.

This pattern can be modelled with the Turing reaction-diffusion model with four

different substrates. This pattern has been generated with the traditional reaction-

diffusion algorithm in 10000 iterations. The reaction terms and the diffusion terms

corresponding to the traditional iterative approach are provided in [31].

In order to obtain the stripe pattern with FCNN RDNet, we have generated a

noise matrix of size 200 x 200 x 4 as our input. The number of iterations required

inside FCNN RDNet is 25, which is much lesser than the iterative approach. The

learning process was completed in 5000 epochs. Adam optimizer with a learning

rate of 0.001 was used. Figure 4.1(b) shows the stripe pattern that is generated

with FCNN RDNet. Since Figure 4.1(b) is very similar to Figure 4.1(a), we can

safely assume that our network is working as desired for a Turing pattern with

known reaction-diffusion terms. Figure 4.1(c) shows the pattern that is generated

when a new noise matrix is fed as input to the trained FCNN RDNet.

Now we try to tune our parameters for generating the steel microstructure pat-

tern shown in Figure 4.2(a). The number of substrates that would be required

for generating this microstructure is completely unknown. Hence, we start with 2

substrates and depending on the visual quality of the generated image, we increase

or decrease the number of substrates used. Figures 4.2(b), 4.2(c), 4.2(d), 4.2(e) and

4.2(f) show the images generated using two, three, four, five and six substrates re-

spectively. From these figures, we can see that the images generated corresponding

to four substrates is better than the others. Hence we can see that even without

knowing anything related to the reaction-diffusion parameters corresponding to the

28
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steel microstructure images, textures very similar to the steel microstructures can

be generated with FCNN RDNet.

(a) (b) (c)

Figure 4.1: Turing pattern generated with FCNN RDNet (a): Original stripe pat-
tern (b): Stripe pattern generated using FCNN RDNet (c): Image generated by
the trained FCNN RDNet with a new noise matrix

4.2 Convolutional Neural Network

The size of the initial noise matrix is 200 x 200 x 4. For all the layers of the

convolutional network, kernels are sized 3 x 3 and replication padding has been

used. The total number of iterations required inside the CNN RDNet is 25. The

training procedure required 1500 epochs. Adam optimizer is used and the learning

rate is 0.001.

We have generated the images corresponding to two different images (Figure

4.3(a) and 4.3(d)) with four substrates. Each row of Figure 4.3 shows the results

corresponding to a particular image. Figures 4.3(b) and 4.3(e) are the images

generated from Figures 4.3(a) and 4.3(d) by training the CNN RDNet. However,

when new noise matrices are fed to CNN RDNet trained with Figures 4.3(a) and

4.3(d), Figures 4.3(c) and 4.3(f) are generated. Figures 4.3(c) and 4.3(f) indicate

that the network cannot generalize well.

4.3 Reaction-Diffusion GAN

The training images are not subjected to any sort of pre-processing. The model is

trained in mini-batches and the batch size is 5. A batch of training images is shown
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Steel microstructure images generated with FCNN RDNet (a): Original
steel microstructure image (b): Image generated using 2 substrates (c): Image
generated using 3 substrates (d): Image generated using 4 substrates (e): Image
generated using 5 substrates (f): Image generated using 6 substrates

in Figure 4.4.

In both the generator and the discriminator networks, Leaky ReLU activation

function is used having slopes of 0.002 and 0.0002 respectively. Adam optimizer has

been used with a learning rate of 0.001. The model is trained in 200 epochs. The

weights wADV , wMAP and wQ are set as 1, .05 and 25 respectively. The VGG-19

network is fine tuned by training the last two layers of the network for 10 epochs.

The results obtained are shown in Figure 4.5. The constant c in equation 3.6 is

taken as 1. Any two batches of real image is seen to have LQ value close between

0.10 and 0.12. Hence, the objective is to be able to generate images for which LMAP

is close to zero and LQ is between 0.10 and 0.12.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Steel microstructure images generated with CNN RDNet (a) A steel
microstructure image from the training dataset (b): Image generated by training
CNN RDNet using image (a) (c): Image generated when a new noise matrix is
fed as input to CNN RDNet trained with image (a) (d) A steel microstructure
image from the training dataset (e): Image generated by training CNN RDNet
using image (d) (f): Image generated when a new noise matrix is fed as input to
CNN RDNet trained with image (d)

Figure 4.4: A batch of images used for training Reaction-Diffusion GAN
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(a) (b)

(c) (d)

Figure 4.5: Steel microstructure images generated with RDGAN
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4.4 Discussion

Method Calculated Error

FCNN RDNet 0.0311
CNN RDNet 0.0237

RDGAN 0.0539
DCGAN 0.0241

PatchMatch 0.0302

Table 4.1: Comparison between the different methods. Details of error calculation
are given in Section 4.4

Table 4.1 shows the errors that are obtained with the different methods. For FCNN

RDNet, CNN RDNet and RDGAN, the images that have been generated with four

substrates have been used for calculating the errors. The error is calculated for

each method separately. The training set contains 300 images. Considering each

method, let Generated Images be the set of all images generated by that method.

For a particular method, for every imageG in the Generated Images set for that

method, the MSE loss is calculated with all the images in the training dataset. So,

for any method, if nG be the total number of images generated by it, then nG×300

number of losses are calculated for that method. The minimum loss among all the

calculated losses is reported for each method. Table 4.1 shows that CNN RDNet

has the lowest error followed by DCGAN.

The results shown in Figure 4.1 suggests that FCNN RDNet can generate the

stripe pattern quite well. Figure 4.2 indicates that the images generated by FCNN

RDNet are close to the steel microstructure images though it is not capable of gen-

erating the detailed structures that are present in the microstructures. However,

Figure 4.1(c) suggests that FCNN RDNet cannot generalize well, i.e, given a new

noise matrix, the trained network cannot generate a similar stripe pattern. Fig-

ures 4.3(b) and 4.3(e) indicates that CNN RDNet can generate images which are

very close to the desired steel microstructure images. Unlike FCNN RDNet, CNN

RDNet is capable of reproducing the intricate structures present in the steel mi-

crostructure images. But Figures 4.3(c) and 4.3(f) suggest that even this network

cannot generalize.
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Hence we modify CNN RDNet and build the RDGAN architecture. The gen-

erator of RDGAN is the CNN RDNet. Since Figures 4.3(b) and 4.3(e) are very

similar to Figures 4.3(a) and 4.3(d) respectively, it was hoped that RDGAN would

be able to generate images very similar to the steel microstructure images. How-

ever, the images in Figure 4.5 indicate something different. Even after tuning the

hyper parameters of RDGAN extensively, the generated images are quite different

from the desired steel microstructure images. This might be due to the objective

functions that we have considered for the generator and the discriminator networks.

The inaccurate results might also be due to the selection of the incorrect optimizer

or incorrect loss functions.

Method Total Epochs GPU Time Taken

PatchMatch 2

4 GB RAM
Intel Core

i3-4005U CPU
1.7 GHz, 3MB L3 cache 145 minutes

FCNN RDNet 5000 Google Colab 10 minutes
CNN RDNet 1500 Google Colab 25 minutes

Table 4.2: Time taken by PatchMatch, FCNN RDNet and CNN RDNet for gener-
ating steel microstructure images

Type of GAN Total Epochs GPU Time Taken

DCGAN 2000

64 GB RAM
Intel Core

i7-7700K CPU @ 4.2 GHz x 8
TITAN XP GPU 1540 minutes

RDGAN 200

94 GB RAM
Intel Core

i9-9820X CPU @ 3.3 GHz x 20
TITAN XP GPU 490 minutes

Table 4.3: Time comparison between DCGAN and proposed RDGAN
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Table 4.2 shows the time taken by PatchMatch, FCNN RDNet and CNN RDNet.

Table 4.3 compares the time taken for generation of steel microstructure images by

DCGAN and the proposed RDGAN. PatchMatch is a traditional algorithm. Since

we have repeated the entire PatchMatch method twice, the total number of epochs

taken as 2. The time taken by PatchMatch is much more than FCNN RDNet

and CNN RDNet though all three of them generate a single texture with a single

reference image. For FCNN RDNet and CNN RDNet, the training process involves

only one image. Hence they converge pretty fast. On the other hand, in case of

RDGAN and DCGAN, the training involves the entire dataset having 300 images.

The time required for training RDGAN is much less than the time required for

training DCGAN. Also, the total number of epochs required for training DCGAN

is much more than what is required for training RDGAN.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, we have explored different methods for generating the steel microstruc-

ture images. The steel microstructure images generated by PatchMatch depends

largely on the neighbourhood selection. Moreover, the time required by Patch-

Match is much more than the other methods. Compared to FCNN RDNet and

CNN RDNet, PatchMatch takes much more time to generate the desired images

even though all the three methods generate a texture image using a single input

reference image. The images generated by DCGAN are very good, but it suffers

from mode collapse and needs to be trained for a large number of epochs. FCNN

RDNet can generate the stripe pattern very well without any knowledge about the

reaction-diffusion parameters of the pattern. It can also generate images similar

to the steel microstructure images. However, FCNN RDNet cannot generate the

intricate details that are present in the steel microstructure images. CNN RDNet,

on the other hand, can generate images that are very close to the steel microstruc-

ture images. However, it cannot generalize. RDGAN architecture is more complex

than it seems to be apparently and the coefficients of the losses involved have to

be tuned very minutely for generating the desired images.

5.2 Future Work

In future, we would like to analyse the RDGAN architecture and try to understand

why it cannot generate the desired images. The reason might be the choice of

irrelevant loss functions, incorrect optimizer or inaccurate learning rates. Each of

these aspects needs to be checked minutely before arriving at a conclusion. Since

CNN RDNet can generate quite satisfactory results, RDGAN should also be able to

do it. This is because the generator of RDNet is CNN RDNet. But since GANs are

36
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extremely unstable, the hyper parameter tuning process is a very important step.

Due to the incorrect choice of hyper parameters, everything might collapse. We

hope to analyse all these aspects in future and modify the RDGAN architecture to

suit our requirements. We would also like to experiment with other microstructure

textures and different kinds of natural textures and propose an architecture that

would be able to generate them.
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