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Abstract

Image processing with traditional approaches mainly use the tools of linear systems.

However, linear approaches are not well suited and may even fail to solve problems

involving geometrical aspects of the image. Thus, nonlinear geometric approaches like

morphological operations are very popular in those cases. Morphological operations are

nonlinear operations based on a set and lattice-theoretic methodology for image analysis

that are capable of describing the geometrical structure of image objects quantitatively.

It is suitable for various problems in image processing, computer vision, and pattern

recognition. While solving problems with morphology, a particular structuring element is

defined. Structuring elements have particular shape and size which are applied spatially in

the images. Finding such structuring elements for each task are very difficult and hand

engineered. In this thesis, we develop networks with trainable morphological structuring

elements for solving several problems. Our main idea is to learn appropriate structuring

element(s) given an objective. The elementary operations of morphology are dilation and

erosion. Similar to convolutional neural networks, a network is built with dilation and

erosion operators with trainable structuring elements. For example, we have considered a

gray scale rainy dataset. Since the rain streak has a particular shape and is considered as

white noise, the network is able to remove rain in grayscale images using learned structuring

elements. Dilation and Erosion in particular order constitute opening and closing operations.

Opening and closing are popular in removing bright and dark noise from images. We have

relied more on the training of structuring elements and built a network with dilation and

erosion so that it may perform opening or closing operations based on the necessity. We

have empirically proved that opening and closing is happening in the network. Further the

network is applied for image restoration tasks and evaluated on colour image de-raining and

image dehazing. Dilation and Erosion are composed with max and min operation. To make

it more generic like a neural network, we have theoretically analyzed the morphological

network and have built a dense morphological network to process 1-dimensional feature

vectors. Morphological block has been defined by a dilation-erosion layer followed by a

linear combination layer. We have shown that a morphological block represents a sum

of hinge functions. With this morphological block our network is able to perform many

classification tasks. Further, we have proved that two sequential morphological blocks

can approximate any continuous function. We have also analyzed the network with deep



multilayer configuration and shown many properties of the network. Next, We have

extended the dense morphological concept and built a 2D network so that it can be applied

in general image processing tasks. We build a network with a basic 2D morphological block

i.e dilation erosion followed by linear combination of feature map. We have repeated this

block and built a network for general image processing tasks such as classification of pixels.

We have also evaluated the performance of the network on image processing tasks like

segmentation of blood vessels from fundus images, segmentation of lungs from chest x-ray

and image dehazing.
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Chapter 1.

Introduction

1.1. Motivation

Mathematical morphology [83] is a popular non-liner technique, where the operators directly

handle with shapes. The operators are defined in terms of probe(s) called structuring

elements. This technique is successfully applied on various computer vision problems

including image restoration, image feature extraction and automated visual inspection.

Dilation and erosion are two elementary operations in morphology, which may be combined

to form other useful operators, like opening and closing.

On the other hand, from the last decade deep learning is a very popular and major area

in computer vision. Although it was developed 20 years ago, it becomes more popular in

modern times due to development of computer hardware. Convolutional neural network

(CNN) is a class of deep neural networks which is very successful in many image processing

and classification task. CNN is found to be very useful in extracting image features and

solving different image processing problems such as image denoising [105, 104], semantic

segmentation [8, 60]) and object detection [26, 28, 68]. Variations of of CNN, like R-CNN,

fast R-CNN, faster R-CNN and mask R-CNN are also used to solve different computer

vision problems. The basic building block of CNN is convolution of feature map with

kernels. Feature map at the entry layer is nothing but the input image.

It maybe noted that structuring element and convolution kernel are analogous. Both of

them operate spatially on the image features. However, convolution is a linear operation

and it captures linear features. So, with the convolution operation it is very hard to capture

nonlinear information in the image like shape and size of the objects in the image. On

the other hand, morphological operators are nonlinear and they are generally very useful

where shape, size, distance and connectivity are involved in the images. These problems

are solved by choosing structuring element(s) of appropriate shape and size intelligently by

the user.

Finding customized / tailored size and shape of the structuring elements and also the order

in which erosion and dilation operations are to be applied still remain a huge challenge [84].

2



Chapter 1. Introduction

It is even harder to design the structuring element especially when it comes to gray-scale or

color image processing. Thus there is a need to learn the structuring element automatically

from the data itself given the objective. Convolutional neural networks are able to extract

complex features hierarchically from images as they are used in multiple sequential layers. In

this thesis we have built layers with basic morphological operators like dilation and erosion

and used sequentially to extract morphological features hierarchically. The structuring

elements are learned by back propagation algorithm. A brief overview of the existing works

related to morphological network is given below.

1.2. Related Work

Mathematical morphology has a very rich mathematical foundation with set and lattice

theoretic methodology for image analysis. It can quantitatively describe the geometrical

structure of image objects. In the late 1960’s it was started to analyze[81, 80] binary

images from geological and biomedical data. Later it was formalized and extended for

binary pattern recognition[66, 76] based on cellular automata and Boolean/threshold logic.

Morphology was first applied in gray-level images[80] in late 1970’s. It was brought to the

mainstream of image/signal processing and other nonlinear filtering approaches in mid

1980’s. With the help of lattice theory it was later generalized[31, 82] with in 1980’s and

1990’s. Currently it is employed in the analysis of graphs, meshes and many other spatial

structures, although digital images remain its common application domain. Morphological

operators decompose objects or shapes into meaningful parts which helps in understanding

them in terms of the elements. Since identification of objects and their features are directly

correlated with their shapes and arrangement, morphological methods are quite suited for

visual tasks [17]. Schonfeld et al. has done theoretical analysis of morphological filters [79]

for the optimal restoration of noisy binary images. They proved that the class of alternating

sequential filters is a set of parametric, smoothing morphological filters that best preserve

the crucial structure of input images. In a separate work, mukhopadhyay et al. extended

traditional contrast enhancement task using mathematical morphology. There scale-specific

features of the image is extracted using multi scale tophat transformation and they are

modified for achieving local contrast enhancement [56]. In the book of Alan Bovik [11],

it is shown that morphology can be used for template matching. In the paper of feehs et

al., we introduce a general robust N-dimensional morphological edge detector [22]. It is

highly suitable for many shape-oriented problems [6], including character recognition [50].

Mendel et al. has shown that, extracting specific morphological attributes from the scanned

image, the dynamic OCR system is able to generalize and approximate similar images.

Angulo et al. applied mathematical morphology operators to quantify the shape of round-

objects which present irregularities from an ideal circular patterns in Microscopic cell
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images.

Now a days, there are many industrial application of mathematical morphology such

as teeth segmentation [77], texture analysis [97], curvature evaluation [101]. Said et

al. proposed mathematical morphological approach for teeth segmentation from dental

radiographic films. They also proposed a grayscale contrast stretching transformation to

improve the performance of teeth segmentation. Zana et al. presents an algorithm based on

mathematical morphology and curvature evaluation for the detection of vessel-like patterns

in a noisy environment. xia et al. proposed local morphological multifractal exponents to

characterize the local scaling properties of textures.

The basic concept of learning of structuring elements was first introduced in 1993 by

defining Morphological perceptron. Morphological perceptron was introduced by [17] and

the authors used morphological network to solve template identification problem. Later

it was generalized by [72] to tackle the problem of binary classification by restricting the

network to single layer architecture. The decision boundaries were considered as parallel

to the axes. This single-layer architecture has been extended to two-layer architecture by

Sussner [89]. This two-layer architecture can learn multiple axis-parallel hyperplanes, and

therefore is able to solve arbitrary binary classification task. But, in general the decision

boundaries may not be axis-parallel, so, large number of hyperplanes need to be learned by

the network if the decision boundaries are not parallel to the axes. To train the structuring

elements of the network, researchers [62] have tried to use gradient descent by combining

classical perceptron with morphological perceptron. In [1] they used linear function to apply

it to regression problems. They have utilized network architecture similar to morphological

perceptrons with competitive learning to forecast stock markets. With dendritic structure

of morphological neurons, Zamora et al. [100] replaced the argmax operator by softmax

function to overcome the problem of gradient computation and used gradient descent to

train the network. In [47] authors have given a framework for morphological structuring

elements using counter–harmonic mean. Similar to morphological operation [106] defined

max-plus operators and Applied for filter selection and model pruning in neural networks.

Recently morphological perceptrons has been renewed in [15] They have training algo-

rithms of morphological perceptrons and analyzed with geometry. Morph-CNN [49] used

both convolutional neural network and morphological operators for multi digits recognition.

Recently few works [2, 23, 59] has been done in this filed. Nogueira et al.[59] introduces

morphological network with multiple morphological operation for image classification task.

Islam et.al [2] used morphological hit-or-miss transform to build the network. Limonova

et.al [44] proposed bipolar morphological neural networks to do convolution without multi-

plication. In very recent work Shih et.al [85] proposed a deep learning framework to learn

desired structuring element from data.
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1.3. Computer vision problems addressed with proposed

networks

In this manuscript we have build a network using basic morphological operations. With in

help of morphological network we have tried to solve many image processing task which

are image de-raining image de-hazing, retinal image segmentation, lungs segmentation,

old document image binarization, aerial image classification. Each problem have different

characteristics which we can measure the efficacy of the network. Image de-raining is

a problem where we have to remove rain from a given color images. Rain drops have

particular shape and size. There may have different rain patterns in different image

instances. Morphological operations are very sensitive to such structural shape of rain

drops. On the other hand Image de-hazing is popular image processing task in recent days.

We may consider the haze as a white noise and try to remove them using morphological

network. Although here we have used morphological network to estimate the amount of

haze in the images. Old document image binarization a another problem where the given

image has a lot of colored noise and the objective is to classify each pixels into text or non

text. Further we have tried to do segmentation using morphological network. We have

done segmentation on retinal image and chest X-Ray images. Retinal image segmentation

the task is to segment blood vessels from the retinal images. It maybe considered as

a hard task since the blood vessels are very thin image retinal images. Unlike blood

vessels segmentation from the retinal images, lungs segmentation from chest ray images is

completely different task. The segmented blob size is large in case of lungs segmentation

from chest X-Xray images. With the help of 2D morphological network we have tried to do

image classification from aerial images. In aerial image contains a lot of structures, hence

morphological operations are very efficient in these cases.

In the next section we have highlighted our contribution in this thesis.

1.4. Contribution

In this thesis, we develop networks with trainable morphological structuring elements for

solving various problems. Our main idea is to learn appropriate structuring element(s)

given an objective. Before we get into it we have to verify whether it is able to learn the

structuring element or not.

1.4.1. Automatic learning of structuring elements

We proposes that the structuring element can be learned using back-propagation algorithm.

Similar to CNN, a network is built with dilation and erosion operators with trainable

5



Chapter 1. Introduction

Figure 1.1.: Learned structuring elements at different layers of a morphological network. The most
bright pixel is displayed by the maximum value of the structuring elements and the
darkest pixel by minimum value.

structuring elements. We have verified the claim by experimenting with gray scale rainy

dataset. Since the rain streak has particular shape and is considered as white noise, the

network is able to remove rain in grayscale images using learned structuring elements.

We observe that a single morphological network can de-rain an image with any arbitrary

shaped rain-droplets and achieves similar performance with the contemporary CNNs. It

is interesting to note that the proposed morphological network needs much less number

of trainable parameters (network size) compared to the said CNN. Figure 1.1 shows some

example structuring elements used in the network learned by back-propagation algorithm

for image de-raining problem.

1.4.2. Morphological Opening-Closing Network

Dilation and Erosion in particular order constitute opening and closing operations. We

have relied more on the training of structuring elements and built a network with dilation

and erosion so that it may perform opening or closing operation based on the necessity.

Opening operation means erosion followed by dilation with a same structuring element. In

this chapter, we have shown that dilating and eroding with different structuring element

may also produce same output as opening under some constraints. Similarly it follows for

closing operation. We have empirically proved that opening and closing is happening in

the network. The network is applied for image restoration task and evaluated on colour

image de-raining and image de-hazing.

1.4.3. Dense Morphological Network

Dilation and Erosion are composed with max and min operation. We have theoretically

analyzed the dense morphological network in detail. We build a dense morphological

network to process 1-dimensional feature vectors. We have shown that a dilation-erosion

layer followed by a linear combination layer represents a sum of hinge functions. With this

configuration it is able to perform many classification task. Here we have also analyzed
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the network with deep multilayer configuration. We have also shown many properties of

the network. To experimentally validate the efficacy of dense morphological network in

real-life applications, we have evaluated its performance on standard classification datasets

like MNIST, Fashion-MNIST, SVHN, CIFAR-10.

1.4.4. 2D morphological Network

Next, We have extended the dense morphological concept and build a 2D network for many

image processing tasks. Here we have extended the idea of dense morphological network

for general image processing task. We build a network with a basic morphological block

i.e dilation erosion followed by linear combination of feature map. We have repeated this

block and build a network for general image processing task. Specially classification of

pixel. We have evaluated the performance of the network on image processing task like

segmentation of blood vessel from fundus images, segmentation of lungs from chest x-ray

and image dehazing.

1.5. Organization of Thesis

This thesis contains six chapters out of which Chapters 2 to 5 are contributory chapters.

First we have presented process of automatic learning of structuring elements [55] in

chapter ??. There we have shown that sequence structuring of element can be learned using

back-propagation algorithm. We have shown this with an example of gray-scale image

de-raining task.

In chapter 2, we have built a network with dilation and erosion operators on successive

layers so that it can preform opening and closing operations [52]. Here we have shown that

it is possible to perform like opening or closing with dilation and erosion operations even

using different structuring elements. On the basis of this observation we build a network so

that opening or closing may happen in the network using trained structuring, which may

not be same. The network is applied for colour image draining and image de-hazing.

Next in chapter 3 we have analyzed the dense morphological network [54] in details. We

have shown that a dilation-erosion layer followed by a linear combination layer represents a

sum of hindge functions. With this configuration we are able to perform many classification

tasks. This leads to network with deep multilayer configuration.

Next we have extended the idea of dense morphological network for general image

processing tasks[52, 54] including classification tasks. This is discussed in chapter 4 with

example of segmentation of blood vessel from fundus images, segmentation of lungs from

chest x-ray and image dehazing and old document image binarization.

Finally, we have concluded this thesis in chapter 5 by discussing the issues addressed in
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the previous chapters and also outline the possible future directions where the effort needs

to be focused one further progress the state-of-the art in terms of both - methodologies

and applications.
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Chapter 2.

Image Restoration by Opening-Closing

Network

2.1. Introduction

Morphological operations are very effective in solving various challenging problems [75, 66]

involving shapes. For the task at hand, the choice and size of the Structuring Element (SE)

greatly affect the performance of the methods, apart from the choice of the morphological

operators [19]. Also, a single operator seldom suffices to obtain the desired results. Usually,

different operators need to be applied in a particular sequence. Choosing correct sequence

of correct operators along with associated SEs can be extremely hard in practice.

In the previous chapter we have shown that a sequence of dilation and erosion can be

learned using back propagation algorithm for gray-scale image de-raining. In this chapter,

we will try to analyze the sequence of dilation and erosion and the working of the network.

We propose and implement morphological network replicating the effect of opening and

closing (a combination of dilation and erosion) through automatic learning of SEs. We

have shown that the network can perform opening and closing operation using the trained

structuring element. We have also modified the network into an opening-closing network

for general image restoration task. To demonstrate the effectiveness of our approach, we

have applied our proposed network on two image restoration problems: image de-raining

and image de-hazing.

For image de-raining, Luo et al. [45] assumed sparse rain streaks having similar orienta-

tions. They proposed a discriminative approach that approximated the clean background

and removed rain streak components. Chen et al. used a low patch-rank prior to capture

rain pattern. Patch-based GMM priors was proposed by Li et al. [43] to model rain

streak and background by decomposing input image. Fu et al. [24] used CNN to learn the

mapping between rainy image and clean image directly. Fu et al. [25] decomposed input

image into background and rain in different layer, from which CNN is used to remove rain

streaks. Considering rain-drops as a white noise, with paricular shape and size we have

10



Chapter 2. Image Restoration by Opening-Closing Network

used opening-closong network to remove the rain from images.

Image de-hazing is an ill-posed problems, considering that one needs to accurately

determine the depth of (partially) obscured surface as well as restore color. He et al. [30]

proposed dark channel prior method, where the statistic of the outdoor haze-free image

was used to find the minimum value in any one of the colour channels. This information

was used to determine the haze depth and transmittance and produced the de-hazed image.

Ancuti et al. [4] used a fast method to estimate transmittance and airlight by identifying

hazy region based on the difference in the hue of image and its inverse. Fattal [21] used the

concept of color line prior. Tang et al. [90] and Cai et al. [13] learned the mapping between

the hand-crafted features and transmittance. Ren et al. [70] proposed CNN network at

multiple scales to extract features and to establish their mapping to transmittance. Li et al.

[42] used a modified haze equation where the parameters were unified to a single variable,

which was estimated by a CNN. In our method we have modified the haze equation and

tried to map transmittance and airlight from the images using opening-closing network. We

do not use any highly optimized or highly complex architecture for the tasks to demonstrate

versatility of the proposed network. Rest of the paper is organized as follows.

The proposed method is presented and explained in Section 2.2, where we have defined

opening and closing layers with the help of dilation and erosion. We have shown that

the learned structuring element can perform opening and closing operation inside the

network. After that, we have presented experimental results with discussion on de-raining

and de-hazing problems in Section 2.3.

2.2. Proposed Method

Convolution operation and elementary morphological operations such as dilation and erosion

are all neighbourhood operations defined in terms of the kernel. However, morphological

operators are non-linear operators, while convolution operator is linear. Though both

types of operators can be defined on n-dimensions, in this work we consider morphological

operations only on two-dimensional (2D) images. In this section, we build layers using

dilation and erosion operators. The networks built using the dilation and erosion layers are

subsequently applied for de-raining and de-hazing the images.

In mathematical morphology, the objects or its parts in an image are considered to be sets,

and the operators are defined in terms of set theoretic translation, union, intersection and

complementation to examine/extract various properties of these objects, such as shape and

texture, using small geometrical probe known as structuring element (SE). In binary images,

the pixels belong to either foreground or background (i.e., complement of foreground) set.

These sets are viewed as sets in 2D space. Similarly, a grayscale image X defined over

domain D = {(x, y)} may be represented as a 3D set UX = {(x, y, v) | v ≤ X(x, y)}, called
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umbra of X. Structuring element W defined over S = {(x, y)} may also be represented

by a 3D set UW . Dilation of UX by UW is defined as union of all UX translated to every

pixels of UW . To get back dilated grayscale image top surface of the dilation result is

extracted. We may get eroded grayscale image in similar manner. However, a concise

and more straightforward formulation of grayscale dilation and erosion is proposed by

Sternberg [88] as follows.

2.2.1. Morphological dilation and erosion layers

Let gray-scale image X is of size M × N . The Dilation (⊕) and Erosion (⊖) operations on

X are defined, respectively, as [88]

(X ⊕ Wd)(x, y) = max
(l,m)∈S

(X(x − l, y − m) + Wd(l, m)) (2.1)

(X ⊖ We)(x, y) = min
(l,m)∈S

(X(x + l, y + m) − We(l, m)) (2.2)

where Wd(x, y) ∈ IR and We(x, y) ∈ IR are the structuring elements of dilation and erosion

operators respectively defined on domain S = { (l, m) | l ∈ {1, 2, 3, .., a}; m ∈ {1, 2, 3, .., b}}.

Note that actual shape of the geometric probe (SE) may not always cover entire rectangular

domain S, then W (x, y) =

{

≥ 0 (x, y) ∈ G

−∞ otherwise
During implementation a large number is

used in place of ∞, and that number is at least 1 (one) plus the maximum possible pixel

value in gray scale image. Both dilation and erosion are many-to-one mappings. That

means

(X ⊕ W1)(x, y) = (X ⊕ W2)(x, y) for some W1 and W2 (2.3)

may not imply W1(x, y) = W2(x, y). For example, let C denotes a curve whose length is

greater than the diameter of a disk SE D. Then it can be shown that

C ⊕ D = C ⊕ δD

where δD denotes the boundary of D. In discrete domain, connectivity of C and D should

be chosen appropriately (e.g., if C is 8-connected, then D should be 4-connected and vice

versa). Similarly,

(X ⊖ W1)(x, y) = (X ⊖ W2)(x, y) for some W1 and W2 (2.4)
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may not imply W1(x, y) = W2(x, y). For example, let A be a simple blob (i.e., a connected

component without any hole) and D is a disk, then it can be shown that

A ⊖ D = A ⊖ δD

The examples (as depicted in equations equation 2.3 and equation 2.4) can also be verified

by taking the SE as δD ∪ D′, where D′ ⊂ D. This notion is useful in learning SEs for

compound operators, like opening and closing.

Now, similar to convolution layer, morphological layers can be formed using dilation and

erosion operators. We call a layer with dilation (resp. erosion) operation as dilation-layer

(resp. erosion-layer). We also define the output of dilation-layer as dilation feature map

and that of erosion-layer as erosion feature map. Note that at each layer multiple dilation

or erosion may be applied using different SEs. Applying k dilation operation will generate

k dilation feature map in the next layer. We denote dilation applied on the input with k

number of SE of size a × b by Dk
a×b. Similarly, erosion operation by k number of structuring

element is denoted by Ek
a×b. Note that both dilation and erosion are increasing operations

and also are dual to each other.

2.2.2. Morphological opening and closing layers

Elementary morphological operations, i.e., dilation and erosion, are applied in many image

processing tasks, such as edge detection. However, opening and closing operations are far

more useful and important as these are filters. Being filters these operations satisfy essential

properties like increasing and idempotent. Moreover, opening is anti-extensive, while closing

is extensive. Like dilation and erosion, opening and closing are also dual to each other.

In fact, many operations that are increasing, idempotent and anti-extensive are termed

as ’opening’. Some examples are area opening [91] and path opening [32] which follows

the properties. Traditionally, opening and closing are defined as a compound operator by

concatenating dilation and erosion operators. Thus, these operations are defined in terms

of SEs as

Opening: (X ◦ Wo)(x, y) = ((X ⊖ Wo) ⊕ Wo)(x, y) (2.5)

Closing: (X • Wc)(x, y) = ((X ⊕ Wc) ⊖ Wc)(x, y) (2.6)

So, morphological opening or closing network can be constructed by cascading morpho-

logical dilation and erosion layers as defined in equations equation 2.5 and equation 2.6.

Equations equation 2.3 and equation 2.4 suggest that X ◦ Wo may be resulted in by dilation
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and erosion with SEs different from Wo. In other words, for a class of problems

(X ◦ Wo)(x, y) = ((X ⊖ W
′

o) ⊕ W
′′

o )(x, y) (2.7)

where Wo, W
′

o and W ”
o may not be equal to each other. Thus, we may call ((X ⊖ W1) ⊕

W2)(x, y) (for some W1 and W2) an opening operation if it is

1. Increasing: X ⊂ Y implies ((X ⊖ W1) ⊕ W2)(x, y) ⊆ ((Y ⊖ W1) ⊕ W2)(x, y)

2. Idempotent: ((((X ⊖ W1) ⊕ W2) ⊖ W1) ⊕ W2)(x, y) = ((X ⊖ W1) ⊕ W2)(x, y)

3. Anti-extensive: ((X ⊖ W1) ⊕ W2)(x, y) ⊆ X

Similar argument is true for closing operation also. Note that to develop opening (or

closing) network we could have used and trained the same SEs for dilation and erosion

layers following equation equation 2.5 (resp. equation equation 2.6). In that case we need to

specify the use of opening or closing networks and there order beforehand to solve the given

problem. In this work we have trained the SEs in a sequence of dilation and erosion layers

independently so that the opening/closing networks (consequently, alternate sequential

filters) evolve along with appropriate SEs to solve the problem in hand. Moreover, multiple

dilation/erosion operations with different SEs Wk (k = 1, 2, 3, · · · ) may be applied on an

image or on already computed feature map to produce multiple dilation or erosion feature

maps. These multiple feature maps are expected to highlight different types of features in

the image based on the profile of the SEs.

All the SEs are initialized randomly while building the network and are trained using

back-propagation based on the training samples (images). It may be noted that the

erosion and dilation operations use min and max operations, respectively. So, though not

fully differentiable, these are at least piece-wise differentiable. Hence, there occurs no

problem in back-propagating the gradient to update the SEs. Next we briefly present how

back-propagation takes place in the morphological network to train the SEs.

2.2.3. Back-propagation in Morphological Network

Back-propagation algorithm is used to update the SEs in the morphological opening-closing

network. We have already stated that our opening and closing networks are built using

dilation and erosion layers. Second, dilation and erosion are dual operations, so describing

the training of SEs for either of them is sufficient to describe the other. For simplicity, we

consider here a single dilation layer. The propagation of gradient thorough the network

is very similar to that of a neural network. To start with we recall the expression of the

gradient. Suppose an input image X having a dimension of M × N × c is passed through a

dilation layer that produces an output feature map Y . The structuring element S in the

dilation layer has size A × B × c and, with appropriate padding, the size of Y is M × N .
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The output at location (x, y) of Y can be expressed as :

Y (x, y) = max
l,m,n

{X(x + l, y + m, n) + S(l, m, n)} (2.8)

where (l, m, n) denotes the index of the SE S. The SE is trained using back-propagation

so that Y approaches desired dilation feature map Ỹ . Let L be the loss or error between

output of the dilation layer and the desired dilation feature map, i.e.,

L = L(Ỹ , Y ) (2.9)

When SE S is properly trained, Y → Ỹ which implies L → 0. It is evident from

equations equation 2.8 and equation 2.9 that Y and, consequently, L depend on SE S.

Using chain rule due to partial derivatives we have

∂L

∂S(x, y, z)
=

∑

x

∑

y

∂Y (x, y)

∂S(x, y, z)

∂L

∂Y (x, y)

=
∑

x

∑

y

∇Y (x, y)
∂L

∂Y (x, y)

where

∇Y (x, y) =







1 if Y (x, y) = X(x + δx, y + δy, δz) + S(δx, δy, δz)

0, otherwise
(2.10)

Thus the structuring element is updated as

S(x, y, z) = S(x, y, z) − α
∂L

∂S(x, y, z)
(2.11)

where α is the learning rate. If multiple SEs Sk(x, y, z) (k = 1, 2, 3, · · · ) are used, multiple

dilation feature maps Yk (k = 1, 2, 3, · · · ) are obtained, but the back-propagation strategy

would be same.

The idea is straightaway extended to multi-layer network. Suppose an intermediate

feature map denoted by Xi is passed through i-th dilation layer and produces an output

feature map Xi+1,k after dilating with SE Si,k in i-th layer. Then, keeping all other

parameters same, equation equation 2.8 can be re-written as

Xi+1,k(x, y) = max
l,m,n

{Xi(x + l, y + m, n) + Si,k(l, m, n)} (2.12)

Let L is the final loss of the network by comparing desired output and the predicted output.
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As before we can calculate the gradient
∂L

∂Sk(x, y, z)
with respect to the k-th SE by the

following equation using chain rule:

∂L

∂Si,k(x, y, z)
=

∑

x

∑

y

∂Xi+1,k(x, y)

∂Si,k(x, y, z)

∂L

∂Xi+1,k(x, y)

=
∑

x

∑

y

∇Xi+1,k(x, y)
∂L

∂Xi+1,k(x, y)

where

∇Xi+1,k(x, y) =







1, if Xi+1,k(x, y) = Xi(x + δx, y + δy, δz) + Sk(δx, δy, δz)

0, otherwise
(2.13)

The term
∂L

∂Xi+1,k(x, y)
can be obtained by computing recursively starting from the final

layer. Finally, k-th SE Si,k(x, y, z) is updated using equation equation 2.11. Similarly, the

gradient for the erosion layer can be derived. A worked-out example of gradient calculation

for the erosion layer is shown in [23].

2.2.4. Verifying the opening and closing operation

In order to establish the efficacy of our concept of learning morphological opening and

closing networks along with associated structuring elements (kernels), we have carried out

some initial experiments before applying to real-life problems. However, we first need

to show experimentally that the opening network realized by concatenating erosion and

dilation layers with not necessarily the same SEs may satisfy desired properties of opening

operation, i.e., increasing, idempotent and anti-extensive. In other words, a network made

of an erosion layer followed a dilation layer having different SEs satisfies essential properties

of opening and, thus, can work like opening network.

Verifying properties of opening operation

First, for training and testing the network to be developed, we have taken 400 natural

images from flickr [63] and converted those to grayscale images of size 416×416. Each

image is opened with a disk SE of radius 7 to generate the groundtruth of opened image.

Second, we construct an opening network by concatenating an erosion layer followed by a

dilation layer (see Figure 2.1(a)), where each layer has its own structuring element trained

by back-propagation to minimize the loss. We take SEs of size 20 × 20 and initialize with

random numbers from uniform distribution. Suppose image X is input to the network and

at the output we obtain image γ(X).
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Figure 2.1.: (a) A simple opening network trained with 400 images of flicker data to verify properties,
(b) trained structuring elements of erosion layer and dilation layer, respectively.

The experiment is carried out following a 10-fold cross-validation strategy. That means

the total image set is divided into 10 groups, and images of 9 groups are used to train the

network while the images of the remaining group are used as test images. It is repeated

10 times with each group as the test set and the result of all 400 images are accumulated

while those are considered as test images. A sample pair of SEs trained in the network is

shown in figures 2.1(b) and 2.1(c).

Verifying ‘Increasing’ property: Given an image X we generate an intermediate

image X
′

as

X
′

(x, y) = kX(x, y) + N (0, 1)

where k > 0 and N is a noise image whose pixel values range from 0 to 1. Finally, X
′

is

clipped between 0 and 1 inclusive to get the final noisy image X̂ with bright noise. Thus

X < X̂, and increasing property ensures that γ(X) ≤ γ(X̂). So the opening network fails

to satisfy this property if γ(X)(x, y) − γ(X̂)(x, y) > 0 for any (x, y). Hence, for u-th image

Xu we calculate error EI u for increasing property as

EI u =
1

|Xu|

∑

x,y

γ(Xu)(x, y) − γ(X̂u)(x, y) if γ(Xu)(x, y) − γ(X̂u)(x, y) > 0 (2.14)

where |Xu| denotes the size of image Xu. Histogram of this error {EI u|u = 1, 2, · · · 400}

is shown in Figure 2.2(a). The mean and standard deviation of EI u are 0.000 and 0.000,

respectively, which implies that the network satisfies the increasing property.

Verifying ‘Idempotent’ property: As before an Image X feed to trained opening

network produces γ(X). Now if we feed γ(X) again to the network, we get γ(γ(X)). To

hold the idempotent property, γ(X) should be equal to γ(γ(X)). In other words, the

network fails to satisfy idempotent property if |γ(X)(x, y) − γ(γ(X))(x, y)| 6= 0, for any

(x, y). Thus, for each u-th image Xu we calculate error Edu as

Edu =
1

|Xu|

∑

x,y

|γ(Xu)(x, y) − γ(γ(Xu))(x, y)| (2.15)
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Figure 2.2.: The distribution of (a) Increasing error, (b) Idempotent error, and (c) Anti-extensive.

Histogram of this error {Edu|u = 1, 2, · · · 400} is shown in Figure 2.2(b). Mean and standard

deviation of Edu are 0.019 and 0.004, respectively. Since these values are not equal to zero

(0) as before, we can at most say that the network very closely satisfies the idempotent

property and expect it to satisfy fully if the network is trained better with a larger number

of images.

Verifying ‘Anti-extensive’ property: This property may be verified in exactly similar

way for increasing property because anti-extensive property states that γ(Xu)(x, y) ≤

Xu(x, y). Hence, corresponding error Eau may be computed as

Eau =
1

|Xu|

∑

x,y

γ(Xu)(x, y) − Xu(x, y) | γ(Xu)(x, y) − Xu(x, y) > 0 (2.16)

Histogram of this error {Eau|u = 1, 2, · · · 400} is shown in Figure 2.2(c). The mean and

standard deviation of Eau are 0.000 and 0.000, respectively, which implies that the network

satisfies the anti-extensive property.

Note that we could have trained the same SE for both erosion and dilation layers to

realize opening (and similarly closing) network, but in that case, we need to define the

sequence of operations to solve a given problem. On the other hand, training the SEs

independently for each layer allows us to develop the required network to solve the problem

at hand.

Next, we show how different networks evolve from the elementary morphological layers

based on the trained SEs.

Implementing various morphological network using common framework

Here we again take the same set of grayscale images and try to simulate various morphological

networks using a sequence of dilation and erosion layers. To generate the ground truth,

first, we apply a few morphological operations in a conventional way on the set of images.

Then we build a network architecture as a sequence of dilation and erosion layers. We train

the morphological network, especially, the structuring elements using the back-propagation
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Table 2.1.: Illustrates the efficacy of proposed morphological network. Network architecture given
in 2nd column tries to simulate the operation suggested in 1st column. Corresponding
learned SEs are shown in 3rd column. (For detail see the text.)

Morphological
Operation to be
Achieved

Network Architecture
Learned Structuring ele-
ments from the first layer

Dilation X → E1
10×10 → D1

10×10 → Y

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

Erosion X → E1
10×10 → D1

10×10 → Y

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

Opening X → E1
10×10 → D1

10×10 → Y

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

Opening
X → E1

10×10 → D1
10×10 → E1

10×10 →
D1

10×10 → Y 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

Closing
X → E1

10×10 → D1
10×10 → E1

10×10 →
D1

10×10 → Y 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

algorithm and mean squared error loss between the output by conventional method and

the output produced by the network.

In Table 2.1, we have shown the SEs that are learned based on assigned task and simulated

input and output pair. The first column indicates the morphological operations used to

generate the output image (Y ) from the input image (X). The second column shows the

network architecture we have employed to achieve the operation stated in the first column.

After training the network (for both the required operation and the associated SE), it is

expected to generate the desired output Y given the input X. The learned SEs are shown

in the third column. Note that in case of redundant or unnecessary layer, corresponding SE

would be an impulse, which realizes an identity transform. For example, in the first row,

we try to simulate ’dilation’ operation, while the network architecture consists of an erosion

layer followed by a dilation layer. After convergence, the trained SE for erosion is found to

be approximately an impulse; while SE for the dilation layer is a disk of desired dimension.

Similar network is used to simulate erosion and opening as shown in the second and third

rows, respectively. The trained SEs justifies their objectives. In the fourth and fifth rows,

networks with four layers are used to simulate opening and closing. In the fifth row, it

can be seen that the SEs of the first layer (erosion) and the fourth layer (dilation) are

approximately impulses as these layers are redundant and unnecessary, and so are expected
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to implement identity transform; whereas in the second (dilation) and the third (erosion)

layers the learned SEs are similar to disks. However, in the fourth row, combination of first

and second layers or combination of third and fourth layers can simulate opening. Secondly,

opening is an idempotent operation. So we see trained SEs are more or less similar and are

of significant size in all four layers.

In this arrangement We obtain a single dilated or eroded feature map after each layer.

However, by using multiple SEs at each layer, multiple feature maps can be generated for

performing complex tasks like de-raining and de-hazing.

Though in this simulation experiment, the input and output of the network are both

graylevel images, this may be extended to colour image where both input to our network

and corresponding output are in (R,G,B) format. We do not apply any strategic treatment

to handle colour information, rather let the network to learn the three-dimensional SE of

size A × B × 3 so that it can produce desired output. Second, we have used multiple SEs in

each layer. It may help to generate and process features from the colour image and produce

desired output. Moreover, in this experiment we use a single SE at each layer, so single

feature map is obtained after each layer. By using multiple SEs at each layer, multiple

feature maps can be generated for performing complex tasks like de-raining and de-hazing

as described in the next sections.

In the next section we have shown the performance operating with same structuring

elements in opening closing operations.

2.2.5. Opening closing network with same structuring kernels in dilation

and erosion

We know that opening and closing operations are originally defined by using same struc-

turing elements for dilation and erosion operations. However, in this work We have built

morphological network to achieve the effect of opening or closing operations using dilation

and erosion layers but with separately trained structuring kernels. This allows us more

variability in the order of opening and closing operations to create suitable alternating

sequential filters for application. We have already shown that the proposed opening and

closing networks with separately trained structuring kernels produce results that closely

satisfy expected properties of opening and closing. However, it is of interest to see how the

opening or closing networks perform with same structuring kernels knowing fully that in

that case order of operation has to be decided apriori for a specific application.

Here we study morphological opening and closing networks with the same structuring

kernels in corresponding dilation and erosion layers. We also compare the performance

of this network with that of the networks using separately trained structuring kernels in

dilation and erosion layers. To train the network, we have chosen a classical problem,
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namely image de-noising considering different configuration of salt and peeper noise,

where order of opening and closing is known. As stated we have corrupted the image

with different types of noise such as salt noise, pepper noise, and salt-and-pepper noise.

Experimental comparison is done between the following two networks: (ED)5×5 → (DE)5×5

and (E5×5D5×5) → (D5×5E5×5). The former network denotes opening operation followed

by closing-operation with same structuring elements, whereas the latter one is generalized

opening-closing network proposed by us. In figure 2.2 we have shown the comparison. It can

be seen that opening followed by closing network performs better in white noise than black

noise removal. In the 3rd row in table 2.2, it can be seen that learned structuring elements

opening operation is almost like a spike (unity transform), which allows the input to be

propagated to the next layer almost unaffected. The next closing operation is activated

because the objective is to remove black noise. In the last two row it can be seen that all

the structuring elements for opening closing operations are equally activated due to the

presence of both white and black noise in the input.

It can be seen that, though the performance of both the networks are comparable in terms

of SSIM, the opening or closing operation with same structuring element performs slightly

better in terms of PSNR than the generalized opening closing network for image de-noising.

However, in the former case the order of opening and closing should be predefined. It would

be non-trivial in case of complex objective. In fig 2.3, we have shown few output of both

the opening closing networks for visual comparison. It can be seen that the network is able

to retain the detailed texture in the image also removed different kind of noise with both

the networks.

Next, we try to build up generalized opening closing network for image de-raining and

image-dehazing.

2.2.6. Image De-raining

The degradation of rainy images depends on several factors such as raindrop size, track of

raindrops, rain density and lighting condition. There may be other types of noises present

simultaneously in the input image. Morphological filters such as opening and closing are

capable of removing noise from an image while preserving the edges. Removing raindrops

from an image can be considered as removing mostly bright noise of particular shape and

size from the image. This suggests that alternate sequence of dilation and erosion layers,

forming opening/closing operations, in the morphological network should be able to realize

the de-raining operations by learning the appropriate SEs. However, it is challenging to

know the size and shape of the raindrops and other factors beforehand.

Hence, for the purpose, we propose, a morphological network architecture consisting of a

sequence of multiple pairs of dilation and erosion layers, which may result in alternating
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Table 2.2.: Network architecture given in 1st column. Corresponding learned SEs are shown in 2nd
column. ◦(ED)5×5 → •(DE)5×5 denotes opening and closing operation respectively
with structuring element of size 5 × 5.

Network Architecture
Learned Structuring elements from the
first layer

PSNR SSIM

◦(ED)5×5 → •(DE)5×5

(White Noise)
25.44 0.92

E5×5 → D5×5 → D5×5

→ E5×5 (White Noise)
24.86 0.92

◦(ED)5×5 → •(DE)5×5

(Black Noise)
26.9 0.94

E5×5 → D5×5 → D5×5

→ E5×5 (Black Noise)
23.12 0.93

◦(ED)5×5 → •(DE)5×5

(White and Black Noise)
24.3 0.89

E5×5 → D5×5 → D5×5

→ E5×5 (White and Black Noise)
23.66 0.86

sequential filters (ASF) in parallel paths. Schematic diagram of the network is shown in

Fig. 2.4. The output feature maps from the two paths are then linearly combined to get the

output maps. This step is essential for recovering undesired removal of some features by

opening or closing filters. Finally, sigmoid activation function is applied to it to produce the

final output (image). In Table 2.3 we have shown three architectures, which we have used

for our experiments. In [53], the authors have shown that opening network, as expected, is

more effective in removing bright noise. Usually closing network removes dark noise, which

does not have much to do in this application. However, to make our network more general,

we take a linear combination of the output of opening path and closing path and make a

single generic architecture. Since the output of the de-rained image should be of the same

size as the input image, appropriate zero padding is used in each layer. For the color image

processing, a number of feature maps after each dilation layer and erosion layer using as

many SEs. Multiple feature maps help in propagating the color information to the output.
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(a) Input (b) Generalized open-close
net

(c) Same SE open-close net

Figure 2.3.: Comparison of output with same structuring element opening-closing network and the
generalized opening-closing net. First row, middle row and last row contains only salt,
pepper and salt-and-pepper noise respectively.

During training, we initialize all the SEs and the weights of the linear combination layers

with random numbers. To train the network, we define a loss using the structural similarity

index measure (SSIM) between predicted output P and the ground truth T of the data

defined as

SSIM(P, T ) =
(2µP µT + c1)(2σP T + c2)

(µ2
P + µ2

T + c1)(σ2
P + σ2

T + c2)
(2.17)

Here µP and µT are the mean for image P and T , respectively; while σP and σT are their

standard deviations. The term σP T is the co-variance between the images, and c1 and c2

are constants, whose values are set to 0.0001 and 0.0009, respectively to avoid divide by

zero. We use the structural dissimilarity (DSSIM) as the loss function considering all small
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Figure 2.4.: The network for image de-raining. It consists of 2 parallel paths containing a comple-
mentary sequence of Erosion and Dilation layers. The structuring element for each
operation is 8 × 8. The outputs from each of the paths are taken together for linear
combination to produce three feature maps, which pass through sigmoid activation to
get the final output.

Table 2.3.: The architectures of paths shown in Fig. 2.4. D8

8×8
denotes a layer with 8 dilation

operators with separately trainable SEs of size 8 × 8. E8

8×8
is defined similarly. In the

last opening layer of closing network and last closing layer of opening network, we have
taken c number of structuring elements where c is 1 for grayscale image and 3 for color
image processing task.

Description of the MorphoN

Closing Network X → D8
8×8 → E8

8×8 → D8
8×8 → E8

8×8 → D8
8×8 → Ec

8×8 → Y
Opening Network X → E8

8×8 → D8
8×8 → E8
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8×8 → E8

8×8 → Dc
8×8 → Y
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Sigmoid

patches of the output and those of corresponding ground truth for training the network.

So the loss function is defined as

Losstotal = DSSIM(Iout, Igt) =
1

M

∑

i

1 − SSIM(P i
out, P i

gt)

2
(2.18)

where Iout and Igt are the output image and the ground truth image, and P i
out and P i

gt are

the ith patches, respectively. There are a total of M patches. In our experiment, we have

taken the patch size as 10×10. We minimize the loss function Losstotal by back-propagation

algorithm and learn the parameters of the network.
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Figure 2.5.: The network for image de-hazing. It consists of 2 parallel paths containing a complemen-
tary sequence of Erosion and Dilation layers. The structuring element for each operation
is 4 × 4. The output from each of the paths is concatenated and passed through three
1 × 1 convolution layers. The airlight and transmittance map is generated by sending
the output to 2 parallel sub-networks. The output from each of the sub-network is
linearly combined to get the final output.

2.2.7. Image De-Hazing

When light rays travel through a turbid medium, it undergoes a phenomenon known as

scattering, wherein the light is scattered in different directions due to its interactions with

particles, such as dust and aerosols floating in it. Haze occurs when the concentration of

these particulate matters exceed a certain threshold. Any image taken in hazy conditions

suffers from visibility degradation such as reduced contrast, saturation attenuation and

color shifting. Besides, scattered environmental light appears like a veil over the scene.

These days, image de-hazing has become one of the trending problems. Here we intend to

restore such hazy images using the opening-closing network. The observed hazy image can

be physically modelled using the following equation [38]

I(x) = t(x)J(x) + (1 − t(x))A, (2.19)

where I(x) is the observed or recorded intensity of the hazy image at location x and J(x)

is the intensity of corresponding non-hazy (ideal) image at location x. A is the airlight,

which characterizes the constant environmental illumination. t(x) is the transmittance

coefficient that determines the amount of light reaching the observer (camera) from the

objects after travelling through the medium. Transmittance t(x) intuitively measures the

amount of haze present in a particular location x and, in general, depends upon the depth
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of the scene. We modify equation 2.19 as

I(x) = t(x)J(x) + K(x), (2.20)

where the bias like term K(x) is the space-variant airlight representing (1 − t(x))A(x).

Also note that, since 0 ≤ t(x) ≤ 1, contrast of J(x) is reduced to J(x)t(x). It is known

that morphological opening can estimate local bias if flat SE of appropriate size is used.

Second, Opening (resp. Closing) operator can detect local bright (resp. dark) features

whose scaling affects the contrast. The morphological network is employed to estimate

the airlight map as well as the transmittance map in order to recover the haze-free image.

As shown in Fig. 2.5, we have taken two separate paths: one for opening and the other

closing. The outputs of the paths undergo linear combination. The network produces the

transmittance map t(x) and the airlight map K(x) as output. Since 0 ≤ t(x) ≤ 1 and

0 ≤ K(x) ≤ 1, in the last layer of transmittance path and also of airlight path we have

employed sigmoid activation function to limit the estimated values of t(x) and K(x) within

the said range. Once t(x) and K(x) are estimated, we can determine de-hazed image as

Jout(x) = min

(

I(x) − K(x)

t(x)
, 1

)

(2.21)

During training of the network, with given t(x) and K(x), hazy image is generated as

I(x) = J(x)t(x) + K(x); (2.22)

Now, given a pair of hazy and haze-free clear images, the network learns the SEs and also

the weights of the linear combination layer. Network gives t̂(x) and K̂(x) at every iteration

of the training process. We reconstruct the hazy image Îout and estimated de-hazed image

Ĵout based on these t̂(x) and K̂(x) using the equations 2.21 and 2.22. We define the loss

function L, which is very similar to bi-directional consistency loss [55] given by

L = L1 + L2, (2.23)

where,

L1(x) = DSSIM(I, Îout), (2.24)

L2(x) = DSSIM(J, Ĵout); (2.25)

DSSIM is calculated using equation 2.18. We minimize the loss L and learn the network

parameters. In the next section, we present experimental results to justify our claim.
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2.3. Experimental results

In this section, we evaluate performance of the proposed network both quantitatively and

qualitatively on de-raining and de-hazing tasks.

2.3.1. Experimental Setup and Data Set

We have implemented the network in Python using Keras with TensorFlow library at

the backend. We carried out our experiments on Intel machine with a GPU of memory

12GB. For all the experiments, we have initialized the structuring elements randomly using

standard glorot uniform initializer [27]. To minimize the loss, we have used RMSProp

optimizer for all the networks.

Training of image de-raining network is done with benchmark rain dataset [24]. This rain

dataset has 1, 000 clean images. For each clean image, there are 14 different synthesized

rainy images with different streak orientations and sizes. So, a total of 14000 sample images

are available. We have considered 80% of the data for the training and 10% of the data for

validation, and the rest 10% is used as test data. Images in the dataset are of different

sizes. However, as the network takes fixed-size input, all the images are resized to 416 × 416

through bi-linear interpolation.

For de-hazing, we have used O-HAZE [3] dataset for training. This dataset was first

proposed in O-HAZE [4] challenge. The dataset has 35 images for the training and five

images for validation and five images for testing. In this set, images are of different sizes,

and the sizes are of the order of 5500 × 3500 pixels. So we have resized each image to

1024 × 1024. However, while testing, we have taken the full resolution of the images. Since

the O-HAZE dataset is very small, we have also used NYU dataset of D-Hazy dataset [5]

for the training. For quantitative evaluation of our Opening/Closing network, we have used

validation dataset of the O-HAZE as test set because their ground truths are available. We

also test our network in Fattal and Middlebury dataset of D-Hazy [5].

We have trained both the de-rain and de-haze network until the loss is converged. Note

that, the loss function involving max/min (due to dilation/erosion) operation is only

piece-wise differentiable. In practice, we can find the sub-gradient of each morphological

operation and back-propagate through the network. In the next two subsections, we have

evaluated our Morphological network developed for De-hazing and De-raining network.

2.3.2. Results of Image De-Raining

Here we present the quantitative and qualitative evaluation of morphological network for

image de-raining.
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Table 2.4.: Test results of de-rain network, quantified by SSIM and PSNR, on both grayscale
and color images of Rain dataset. Closing Net and Opening Net show the results
of the two parallel paths when trained individually. The result of de-rain network
(opening-closing net) is compared with CNN

Metric Base Line Closing Net Opening Net Opening-Closing Net CNN MorphoN[53]

Gray
SSIM 0.85 0.90 0.90 0.91 0.93 0.92
PSNR 24.41 26.00 25.99 27.29 29.24 28.03

Color
SSIM 0.84 0.88 0.87 0.89 0.91 -
PSNR 24.06 24.81 24.28 25.01 27.33 -

Quantitative Evaluation

In order to evaluate quantitatively the opening-closing network applied on rainy images, we

have used two objective measures such as SSIM [95] and Peak signal-to-noise ratio (PSNR).

In [53], image de-raining is done only on grayscale images. We have extended that work for

de-raining of color images. The extension is not straightforward and a minor modification

of network is needed to preserve hue in the image. We trained the network on the rainy

image dataset until the convergence of training loss is achieved. Opening Net, Closing Net,

and the opening-closing net are trained separately to study their relative performances.

The architectures of these networks are illustrated in Table 2.3. The estimated de-rained

image from each network is quantitatively evaluated against the rain-free image available as

ground truth in the dataset. The average values of SSIM and PSNR for grayscale and color

test images, are reported in Table 2.4. In [53], we have shown that opening path (network)

performs better than the closing path (network) as the opening filter removes bright noise.

However, as shown in Table 2.4 closing network performs similarly well as opening network.

We believe this is because we have taken multiple dilation/erosion layers and problem

dependent learning of SEs has created effectively an opening path emphasizing bright noise

removal. We have also compared our results with a standard convolutional neural network

(CNN) of U-net architecture [74]. This Table also reveals that the opening-closing network

gives results comparable to that of CNN with U-net architecture. However, we observe

that CNN has more generalization capability than the opening-closing network, but needs

to train a huge number of parameters, which incurs a very high cost. It can also be seen

that in the PSNR metric, we do not get much improvement for both grayscale and color

images. It may be because of training the network with SSIM loss only. Incorporating

mean squared error in the loss may result in better PSNR.

Qualitative Evaluation

For qualitative evaluation, we have shown the results of different networks applied on a

large number of images to nine evaluators (research fellows in our lab) and asked them to
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(a) Input Frame (b) Closing Net (c) Opening Net (d) Opening-
Closing
Net

(e) CNN (f) Ground
Truth

Figure 2.6.: Result of the De-rain network over grayscale images from Rain dataset. The output
from Closing Net, Opening Net, De-rain network and CNN, along with input image
and ground truth are shown for qualitative comparison.

(a) Input Frame (b) Closing Net (c) Opening Net (d) Opening-
Closing
Net

(e) CNN (f) Ground
Truth

Figure 2.7.: Result of De-rain network over color images from Rain dataset. The output from
Closing Net, Opening Net, De-rain network and CNN, along with input image and
ground truth are shown for qualitative comparison.
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(a) Input Frame (b) Closing Net (c) Opening Net (d) Opening-
Closing Net

(e) CNN

Figure 2.8.: Results from Closing Net, Opening Net, De-rain network and CNN on real rainy images

assign ranks to the output. Order of average rank is similar to quantitative evaluation.

That is CNN comes out to be the best closely followed by opening-closing network. Results

of opening network and closing network are comparable. Here we display results for only 3

grayscale images in Fig. 2.4 and 3 color images in Fig. 2.7. In both figures, we compare the

output of each network with ground truth.

In grayscale images (Fig. 2.4) it may be noted that though the opening-closing network

did remove raindrops successfully, blobs of uniform intensity are present. This effect is a

bit more severe in case of opening network and closing network (especially in the top row

images). In the case of color images, as seen in Fig. 2.7, the opening-closing network can

effectively de-rain and also reproduces the vivid colors with desired contrast. The output

of the closing network has less contrast than the output of the opening network, whereas

the opening-closing Net is able to address the issue. Secondly, the blob effect, as seen in

grayscale images, are not visible here.

The results shown above are on images from benchmark rain dataset [24], where rain

images are synthesized from clean images; hence groundtruth for images are available. We

also show few results on real rain images in Fig. 2.8 for which the groundtruth are not

available. The opening-closing network is able to clear the rain perfectly, whereas the

output of CNN(U-Net) has surprisingly few small rain streaks in some images (see bottom
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row of the figure). This may be due to presence of large number of parameters in CNN

(U-net) leading to over-fitting.

Table 2.5.: Quantitative evaluation on validation dataset of O-HAZE images in terms of PSNR and
SSIM metrics.

Method 36.png 37.png 38.png 39.png 40.png Average
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DCP[30] 18.18/0.45 16.09/0.49 14.12/0.08 12.88/0.36 14.21/0.39 15.10/0.35
CAP[107] 17.47/0.50 16.17/0.45 15.14/0.18 14.80/0.41 16.37/0.57 15.99/0.42
MS-CNN[70] 16.59/0.49 15.76/0.43 13.25/0.19 12.79/0.40 16.53/0.56 14.99/0.41
DehazeNet[13] 16.92/0.43 14.98/0.48 15.54/0.34 17.65/0.48 17.04/0.54 16.43/0.45
AOD-Net[42] 17.10/0.45 16.47/0.39 16.12/0.12 15.04/0.34 15.95/0.50 16.13/0.36
DCPDN[102] 17.14/0.44 15.29/0.42 14.66/0.11 15.24/0.36 17.78/0.52 16.02/0.36
Zhang et al.[103] 24.67/0.73 22.41/0.66 23.75/0.72 21.91/0.63 22.29/0.68 23.00/0.68
Ours 20.22/0.75 21.11/0.75 19.45/0.75 19.63/0.76 14.57/0.64 19.00/0.73

Table 2.6.: Quantitative evaluation of opening-closing network with state of art algorithms on 12
images of Fattal dataset in terms of SSIM and PSNR metrics.

Image [29] [20] [69] [10] [41] Opening-Closing Net
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

church 11.16/0.78 21.43/0.96 14.17/0.87 15.68/0.89 9.44/0.62 12.32/0.82
couch 18.4/0.86 20.8/ 0.9 17.99/0.88 17.24/0.87 16.77/0.83 16.04/0.81
dolls 19.73/ 0.85 21.29/0.77 16.93/0.86 15.69/0.83 17.21/0.85 17.76/0.81
flower1 14.1/0.88 30.01/0.98 9.08/0.43 12.15/0.72 12.22/0.79 14.71/0.88
flower2 14.37/0.86 31.94/0.99 10.81/0.6 11.86/0.68 13.13/0.79 15.16/0.85
lawn1 13.84/0.8 24.49/0.97 14.37/0.83 14.78/0.86 11.32/0.69 11.63/0.77
lawn2 11.2/0.74 24.94/0.97 13.29/0.77 15.32/0.87 10.98/0.68 11.55/0.77
mansion 17.45/0.87 26.96/0.97 17.69/0.89 17.33/0.87 14.24/0.7 15.73/0.86
moebius 12.66/0.78 19.01/ 0.9 16.36/ 0.9 14.58/0.85 13.22/0.77 13.82/0.86
raindeer 18.12/0.83 26.22/0.94 16.82/0.81 16.59/0.82 16.53/0.8 16.41/0.85
road1 12.95/0.8 25.74/0.96 14.11/0.84 16.3/0.88 11.75/0.66 12.05/0.78
road2 15.84/0.84 23.6/0.96 16.45/0.88 18.22/0.9 11.96/0.62 12.44/0.78

Average 14.98/0.82 24.7/0.94 14.84/0.8 15.48/0.84 13.23/0.73 14.13/0.82

2.3.3. Results of Image De-Hazing

In this subsection, we evaluate the performance of the opening-closing network quantitatively

and qualitatively with respect to the de-hazing problem. De-hazing problem is relatively

more wi attempted. So there exist quite a few benchmark datasets and many good

algorithms. We have compared our method with multiple classical methods like Dark channel

Prior(DCP) [30],color attenuation prior(CAP) [107] and multiple deep learning methods

like Multiscale CNN(MS-CNN) [70], DehazeNet [13] AOD-Net [42] and DCPDN [102].

DCP method is based on the observation that in hazy images intensity of color channels

is uniformly contributed by the air-light. In CAP method, they have approximated the

haze by the difference of brightness and saturation. Recent deep learning based methods

like MS-CNN and DehazeNet predict transmittance map using the network. AOD-Net
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Table 2.7.: Quantitative results of opening-closing network on Middlebury portion of D-Hazy dataset
with PSNR and SSIM metrics. The opening-closing network has the second highest
average PSNR and SSIM values over the other methods

Image [29] [69] [10] [41] Opening-Closing Net
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Adirondack 16.02/0.82 14.39/0.89 16.74/0.88 14.18/0.89 16.54/0.87
Backpack 14.4/0.85 16.21/0.87 12.24/0.82 16.1/0.91 14.22/0.85
Bicycle1 12.39/0.81 20.66/0.93 12.61/0.82 23.21/0.96 14.2/0.86
Cable 12.95/0.7 7.65/0.64 9.93/0.63 6.95/0.64 12.54/0.68
Classroom1 20.17/0.87 10.91/0.74 20.95/0.89 10.02/0.72 12.34/0.76
Couch 18.68/0.81 10.13/0.61 13.76/0.7 10.56/0.63 12.01/0.64
Flowers 17.73/0.89 10.47/0.78 17.45/0.9 9.25/0.76 14.85/0.83
Jadeplant 13.48/0.69 7.78/0.6 7.06/0.65 7.65/0.59 13.1/0.64
Mask 15.88/0.89 14.15/0.85 14.18/0.84 14.3/0.91 15.88/0.85
Motorcycle 13.81/0.79 13.2/0.81 11.6/0.62 12.25/0.82 14.49/0.79
Piano 18.66/0.86 12.4/0.71 15.08/0.78 13.89/0.75 16.8/0.79
Pipes 15.52/0.79 10.9/0.68 13.81/0.74 10.34/0.69 15.42/0.78
Playroom 17.7/0.85 13.42/0.77 17.64/ 0.83 13.24/0.78 15.47/0.79
Playtable 18.58/0.9 15.09/0.86 16.63/0.88 14.73/0.86 15.99/0.86
Recycle 12.5/0.82 18.3/0.95 13.43/0.88 16.62/0.9 13.03/0.87
Shelves 15.47/0.83 20.43/0.94 16.9/0.88 16.52 ?/0.92 16.88/0.87
Shopvac 13.87/0.8 7.62/0.66 11.58/ 0.78 6.89/0.64 11.15/0.73
Sticks 16.96/0.9 20.5/0.96 20.41/0.93 19.13/0.96 19.28/0.93
Storage 17.38/0.88 11.23/0.82 16.36/0.88 10.24/0.79 17.71/0.87
Sword1 15.06/0.87 15.48/0.91 12.57/0.83 14.29/0.91 14.37/0.86
Sword2 15.66/0.89 12.89/0.88 14.89/0.88 12.8/ 0.9 15.91/0.89
Umbrella 10.4/0.8 14.92/0.9 9.63/0.72 14.58/0.91 12.11/0.84
Vintage 14.63/0.86 19.27/0.96 14.09/0.83 16.82/0.94 13.76/0.85

Average 15.56/0.83 13.82/0.81 14.33/0.81 13.35/0.82 14.70/0.82

reformulates the haze equation using a single parameter and estimates it using CNN based

network. DCPDN algorithm incorporates the concept of image pyramid inside the network.

Quantitative Evaluation

In De-hazing, we quantitatively compare the performance of our opening-closing network

with other state-of-the-art methods. We have trained the opening-closing network using

the O-HAZE training dataset and tested the network on O-HAZE validation dataset. The

result is reported in Table 2.5. The PSNR and SSIM values of the results of different

algorithms for each of the 5 images of validation dataset are shown in the table. It is seen

that the output of the opening-closing network gives the best results in terms of SSIM in

most of the images. However, in terms of PSNR, it ranked 2nd best in the table next to

that of [20].

We have also trained the network using NYU portion of D-Hazy dataset and tested

it on fattal [20] and Middlebury portion of D-Hazy dataset. We report these results in

Table 2.6 and Table 2.7, respectively. From Table 2.6 it is revealed that the performance of

32



Chapter 2. Image Restoration by Opening-Closing Network

(a) Input Image (b) Transmittance (c) Airlight (d) Our Output (e) Ground Truth

Figure 2.9.: Results of opening-closing de-haze network over O-HAZE dataset. The transmittance
and airlight map along with ground truth is shown for qualitative evaluation.

(a) Input Image (b) Transmittance (c) Airlight (d) Our Output

Figure 2.10.: Results of opening-closing De-haze network on real outdoor images. Transmittance
and airlight map along with ground truth is shown for qualitative evaluation.

the opening-closing network on Fattal dataset is not as good as that on O-HAZE dataset

(Table 2.5). Probably it happens because NYU portion of D-Hazy dataset has only white
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airlight, while in Fattal dataset the airlight may not be white. However, in Table 2.7, We see

that the performance of our morphological network is comparable to that of state-of-the-art

algorithms on Middlebury portion of D-Hazy dataset.

Qualitative Evaluation

For qualitative evaluation of the de-hazed image, we have used the same strategy as has

been used for de-rained images. However, comparing the quality of de-hazed images is

so difficult that grading is often inconsistent. We show the output of the opening-closing

network on only three challenging images from O-HAZE dataset along with groundtruth.

The result of our network (fourth column) along with input image (first column) and the

groundtruth (fifth column) are shown in Fig. 2.9. The second and third columns show

(a) Input Image (b) Transmittance (c) Airlight (d) Our Output

Figure 2.11.: In this figure we have shown few failure cases of opening-closing de-haze network. The
predicted transmittance (b) and airlight (c) maps are shown along with output (d).
The network is able to remove haze considerably but fails to preserve the color in the
image(2nd row). Whereas in 1st and 3rd it removes the white haze but at the same
time it makes the image darker.
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estimated transmittance map and airlight, respectively. The average subjective quality

over results of our method on this dataset given by the evaluators is ’reasonably good’ and

tends to be of ‘low brightness’. It should be noted that most of the state-of-the-art methods

assume one of the two parameters (i.e., transmittance and airlight) is either known or can

be determined heuristically, and the other (commonly transmittance) is estimated. On the

other hand, the opening-closing network estimates both the parameters simultaneously

from the input image and de-haze the same by applying the appropriate transformations.

Apart from the known benchmark datasets, we have also applied our morphological

network on some real-world hazy images popularly used by the research community. Results

on three images are shown in Fig. 2.10. We observe that our network is able to effectively

de-haze the images and manages to reproduce the colors faithfully. However, in some

instances, it was unable to reproduce lighter shades of some color. This can be attributed

to the fact that we haven’t used a highly optimized network for de-hazing images. In the

real scene, the amount of haze is increased when depth is increased. The depth effect can be

clearly seen in the transmittance map (second column (b)). Although the opening-closing

network is able to de-haze the image, sometimes it fails and cannot obtain the haze-free

image correctly. In Fig. 2.11 we have reported a few failure cases of opening-closing network.

In the first row and last row in Fig. 2.11, it can be seen that the output image is darker.

This may be because of the overestimation of the transmittance map. In the 2nd row, the

estimated haze-free image has its table color green from white. From the estimated airlight

and transmittance map, we can see that it considers the white table as haze.

2.4. Summary

In this Chapter, we have renewed the concept of learning morphological structuring elements

(SEs) with opening and closing operations. We have built a network that creates the effect

of opening and closing with dilation and erosion layers placed sequentially in two different

parallel paths and then by taking a linear combination of their outputs. To establish the

efficacy of the proposed network, we have exploited it on two classes of image restoration

problems, namely de-raining and de-hazing. Like CNN taining methods, the proposed

network learns SEs and various weights as parameters that lead to desired morphological

network in terms of both operations and SEs. Once learnt, the network then can estimate

degrading parameters from the test input image and, subsequently, restore it. Although we

get comparable results with state-of-the-art methods, we believe improving loss function

may give better results. Second, to minimize the loss function, the structuring elements

are trained by back-propagation algorithm. Derivative in back-propoagation is computed

by exploiting subgradient method as dilation/erosion operators are defined in terms of

piece-wise differentiable max/min operators. Although we have used opening and closing
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operations for image restoration task, what should be the optimal network to perform all

classification tasks using dilation and erosion operations is still unknown. So, in the next

chapter, we will build dense network using dilation and erosion operation and do rigorous

theoretical analysis using min or max operation for feature classification.
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Dense Morphological Network
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Chapter 3.

Dense Morphological Network

3.1. Introduction

In the previous chapter, Image restoration is done using opening-closing network. The

network is basically a combination of dilation and erosion operations over the image or

image features, where dilation and erosion operations are defined in terms of min and max

operation, respectively. Most real-world problems are complex in nature and potentially

require a combination of elementary transformations. So, a sequence of operations are often

employed with appropriate structuring elements. But the choice of the operations and the

associated structuring elements require expert knowledge along with some trial-and-error.

In this chapter, we work with min and max operations and make a rigorous theoretical

analysis of it in one dimensional network form. We call this novel morphological network

as Morph-Net where 1D dilation and 1D erosion operators are used as neurons.

Unlike neural network, i.e, instead of sum of product, Morph-Net compute max (or, min)

over the sum (resp. difference). More complex morphological operators are constructed by

the composition of these two basic operators. However, to achieve acceptable performance,

this proposed morphological network should be generic enough. We have shown here that

the network with 1-D dilation and erosion operators, when built in a certain way, is also

generic and can realize piece-wise linear function.

We start with the most basic version of a 1D morphological network, where the mor-

phological operators work over the whole input, not locally, to make theoretical analysis

tractable. This single layer version of the proposed morphological network contains a layer

of both dilation and erosion operations, followed by a layer computing linear combination of

the output of these operators. We show that this simple network can represent a piece-wise

linear function. Moreover, this network can be trained by usual gradient descent approach.

Then we move on to deeper architectures and proved the universal approximation of the

network. We have also experimented with the ‘soft’ version of the max and min operator

to alleviate the potential problems of non-differentiality. To experimentally validate the

efficacy of this network in real-life applications, we have evaluated its performance on
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standard classification datasets like MNIST, Fashion-MNIST, SVHN and CIFAR-10.

Araújo [1] utilized network architecture similar to morphological perceptrons with com-

petitive learning to forecast stock markets. The argmax operator was replaced with a

linear activation function so that the network could regress forecasts and allowed the

use of gradient descent for training. Recently few works [2, 23, 59] have been done in

this direction. Nogueira et al. [59] have introduced morphological network with multiple

morphological operators for image classification task. Islam et al. [2] used morphological

hit-or-miss transform to build a network for similar purpose. For morphological neurons

with dendritic structure Zamora and Sossa [100] replaced the argmax operator with a

softmax function. This overcomes the problem of gradient computation and, therefore,

gradient descent optimizer could be employed.

Rest of this chapter is organized as follows. In section 3.2, we have described the most

basic form of our proposed morphological network along with the analysis of its capabilities.

Then a more complex architecture, namely Deep Morph-net, is presented in Section 3.2.8.

Section 3.3 provides the experimental validation of the capabilities of the proposed networks.

3.2. Morphological Network

In this section we introduce the Morphological network or ‘Morph-Net’, in short. It is a

simple feed forward network that consists of dilation and erosion neurons. We begin with

defining dilation and erosion neurons, and then describe the simplest version of the network

and its capabilities.

3.2.1. Dilation and Erosion neurons

Dilation and Erosion neurons are the building blocks of our proposed network. Given an

input x ∈ R
d and a structuring element s ∈ R

d, the operation of dilation (⊕) and erosion

(⊖) neurons are defined, respectively, as

x ⊕ s = max
k

{xk + sk} (3.1)

x ⊖ s = min
k

{xk − sk} (3.2)

where xk denotes kth element of input vector x. After computing dilation and erosion

we may set a limiter or bias, say, sd+1 to compute final output from dilation and erosion

neurons by max{x ⊕ s, sd+1} and min{x ⊖ s, −sd+1} respectively. Note that this ensures

sd+1 to be lower bound of the output of dilation neuron, whereas it is upper bound for

the erosion; hence, the term ’limiter’. Alternatively we can write it as follows. Let 0 is
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appended to the input x, i.e, x′ = [x, 0]T and sd+1 is appended to s, then

max{x ⊕ s, sd+1} = max{max
k

{xk + sk}, sd+1} (3.3)

= max
k=1,...,d+1

{x′
k + s′

k} (3.4)

= x′ ⊕ s′ (3.5)

Where s′
k is a element of structuring element s′. Similarly we can get x′ ⊖ s′. It may be

argued that d + 1th component is selected if the input has no effect on the output or the

function. Note that, the erosion operation may also be written as x′ ⊖s′ = − maxk{s′
k −x′

k}.

In these neurons the structuring element (s′) is learned in the training phase.

The max and min operators used in the dilation and erosion neurons are only piece-wise

differentiable. As a result, only a single element of structuring element is updated at each

iteration of backpropagation algorithm making the learning very slow. To overcome this

problem we propose to use the soft version of max and min [16] to define soft dilation and

erosion operation as follows.

x′⊕̂s′ =
1

β
log





∑

k+1

e(x′

k
+s′

k
)β



, (3.6)

x′⊖̂s′ = −
1

β
log





∑

k+1

e(s′

k
−x′

k
)β



, (3.7)

where ⊕̂ and ⊖̂ denote the soft dilation and soft erosion, respectively, and β is the "hardness"

of the soft operations. The soft version can be made close to their “hard” counterpart by

making β large enough [16]. Henceforth, for notational convenience we use x and s to

denote input and structuring element respectively for dilation (or erosion) with limiter. In

other words, dilation-erosion layer includes the limiter.

3.2.2. The morphological block

The simplest form of Morph-Net is the morphological block. It consists of a layer with

dilation and erosion neurons (including limiter) followed by a linear combination (Figure 3.1)

of their outputs. We call the layer of dilation and erosion neurons as the dilation-erosion

layer and the following layer as the linear combination layer. Let us consider a network

with n dilation neurons and m erosion neurons in the dilation-erosion layer followed by c

neurons in the linear combination layer. Let x be the input to the network and z+
i and z−

j
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Dilation

Neurons

⊖
Erosion

Neurons
Dilation-Erosion Layer

x1

x2
M2(x)

M1(x)

Mc(x)
xd

xd+1

z1
+⊕

⊕zn+
z1
-

⊖zm
-

Figure 3.1.: Architecture of single morphological block. It contains an input layer, a dilation-erosion
layer with n dilation and m erosion neuron and a linear combination layer with c
neurons producing the output.

be the output of the ith dilation neuron and the jth erosion neuron respectively:

z+
i = x ⊕ s+

i , (3.8)

z−
j = x ⊖ s−

j , (3.9)

where s+
i and s−

j are the structuring elements of the respective neurons. Note that

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. The final output of a node in the linear combination

layer is computed as

M(x) =
n
∑

i=1

z+
i ω+

i +
m
∑

j=1

z−
j ω−

j , (3.10)

where ω+
i and ω−

j are the weights of the combination layer. When the network is trained,

it learns s+
i , s−

j , ω+
i and ω−

j .

3.2.3. Morphological block as sum of hinge functions

Hinging hyperplanes [12] have many applications in regression and classification tasks. In

this subsection, we show that the simple morphological block can be represented as a sum

of hinge functions. We first define hinging hyper planes and then relate morphological

block to hinging hyper planes.

Definition 1 (k-order Hinge Function [94]). A k-order hinge function h(k)(x) consists of
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(k + 1) hyperplanes continuously joined together. It may be defined as

h(k)(x) = ± max{wT
1 x + b1, wT

2 x + b2, . . . , wT
k+1x + bk+1} (3.11)

Definition 2 (d-order hinging hyperplanes (d-HH) [94]). A d-order hinging hyperplanes

(d-HH) is defined as the sum of multi-order hinge functions having the following form.

∑

i

αih
(ki)(x), (3.12)

with αi ∈ {−1, 1} and ki ≤ d.

The following may be stated about hinging hyperplanes [94].

Theorem 1. The function computed by a single morphological block (denoted by M(x))

with n dilation and m erosion neurons followed by their linear combination, is a sum of

multi-order hinge functions.

Proof. To prove this, it is enough to show that M(x) can be written as the sum of l hinge

functions, i.e.,

M(x) =
l
∑

i=1

αih
(d)
i (x) (3.13)

where l = m + n, αi ∈ {1, −1} and h
(d)
i (x) is i-th d-order hinge function. The detailed

proof is given in appendix section.

3.2.4. Single Morphological block as sum of piecewise linear function

Here we show that M(x) can represent a sum of piece wise linear function. To prove this

we have taken the help of following proposition.

Proposition 1 (From [93]). Any continuous piece-wise linear function (PWL) can be

expressed as difference between two convex PWL functions.

Then we show the following.

Lemma 1. M(x) is a continuous piece-wise linear function.

Proof. Here is show that M(x) can be written is the following form

M(x) =
t1
∑

i=1

φ
′

i(x) −
t2
∑

i=1

φ
′′

i (x), (3.14)

Where φ
′

i(x) and φ
′′

i (x) are a the PWL function.

The complete proof is given in appendix section.
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3.2.5. Number of hinged hyperplanes

A single morphological block learns the function M(x) as defined in Section 3.2.3. The

learned function may also be expressed in the following form.

M(x) =
l
∑

i=1

αi max
k

{θkxk + ρik}, (3.15)

where αi, θk, ρik ∈ R. The derivation can be found in the supplementary material A.4.

We see that M(x) is sum of l functions, each of which computes max over the linearly

transformed elements of x. Since the max is computed over the (transformed) elements of

x, each max operation selects only one element of x. So, the computed M(x) may not

contain all the elements of x and the index (k) of selected element varies depending on the

input and the structuring element. However, if l > d, M(x) may contain all the elements

of x. So equation 3.15 can be rewritten as

M(x) = α1(θ1xk1
+ ρ1k1

) + α2(θ2xk2
+ ρ2k2

) + · · · + αl(θlxkl
+ ρlkl

). (3.16)

where xki
represents any one of the d + 1 elements of x selected by i-th neuron by max

operation depending on structuring element si. So each xki
is chosen from d + 1 elements.

Therefore, depending on which element of x gets selected by each neuron, M(x) forms one

of the (d + 1)l − 1 hyperplanes. The −1 occurs in number of hyperpalnes because in one

occasion all neurons select the augmented 0. Note that some of these hyperplanes must be

parallel to some axes. For M(x) to form a hyperplane that is not parallel to any of the axes,

all elements of x must get selected by some max functions or other. This occurs in d! ×
( l

d

)

ways. The remaining l − d number of elements xki
’s are repeat selection by some functions.

So, there can be almost d! ×
( l

d

)

× (d + 1)l−d hinging hyperplanes that are not parallel to

any of the axes. Therefore, number of hinging hyperplanes increases exponentially with

the number of neurons in the dilation-erosion layer. These hyperplanes can act as decision

boundaries if the network is employed as a classifier. This is demonstrated experimentally

using a toy dataset representing two-class problem.

The toy dataset contains samples that are distributed along two concentric circles, one

circle for each class. Suppose, the circles are centered at the origin. We compare the

results(Table 3.1) of various networks with two neurons in the hidden layer. It is observed

that baseline neural network fails to classify this data as with two hidden neurons it

learns only two hyperplanes, one for each neuron. The boundaries learned by the network

with ReLU activation function (NN-ReLU) is shown in figure 3.2a. The result of maxout

network is better, because, in this case, the network learns 2k = 4 hyperplanes as shown

in figure 3.2b. Note that with two morphological neurons in dilation-erosion layer, our
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Figure 3.2.: Decision boundaries learned by different networks with two hidden neurons. (a) Baseline
neural network is able to learn only two planes (b) Maxout networks is able to learn
two more planes with the help of additional parameters. (c) Morph-Net is able to learn
more planes with same number of parameters as NN-ReLU. (d) Using soft version
of Morph-Net, smooths the learned decision boundary. This further enhances the
discrimination capability of the network while retaining the same number of parameters.

Table 3.1.: Training accuracy achieved on the circle dataset by different networks

Methods Hidden nodes Parameters Training accuracy

NN-ReLU 2 12 68.87
NN-tanh 2 12 69.10

Maxout Network (h=2) 2 18 87.17
DenMo-Net 2 12 91.6

morphological block has learned 6 hyperplanes to form the decision boundary (figure 3.2c).

equation 3.15 suggests that we should get at most 8 distinct lines. However, out of these

only two decision boundaries are placed in any arbitrary orientation in the 2D space, while

others are parallel to either of the axes.

3.2.6. A single morphological block and universal approximation

A single morphological block represents a sum of hinge functions. However, it is not clear if

all hinge functions can be represented by a single morphological block. In a numerical study,

we have tried to approximate the hinge function max(x + y, 0) using a single morphological

block by varying the number of dilation/erosion neurons. We have generated values of the

function in the square [−5, 5] × [−5, 5], and trained the network with mean squared error

(MSE) loss. In Figure 3.3, we have plotted the MSE loss (after convergence) against the

number of morphological neurons used. It is seen that a single morphological block is unable

to reduce the error unless we use additional bias or limiter term in the morphological neurons.

However, we do not know theoretically if having additional bias terms in morphological

operations help in universal approximation.

Unlike using a single morphological block, in the next section we have tried to use two
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Figure 3.3.: Graph of approximation loss with varying morphological neurons in a single morpholog-
ical block.

morphological block and proved that it can approximate any continuous function.

3.2.7. Universal Approximation

Here we have tried to show that two-layer Morphological block can approximate any

continuous functions. First we have shown that any hyperplane can be represented by a

single morphological block. After that we have shown the universal approximation using

two morphological block.

Lemma 2. Let K be a compact subset of Rd. Then, over K, any hyperplane w⊤x + b can

be represented as an affine combination of d dilation neurons which only depend on K.

Proof. Since we are in a compact set, there exists C > 0 such that |xℓ| ≤ C for any

1 ≤ ℓ ≤ d. Where xℓ is an each element of x. Take

sℓ = −3C1d + 3Ceℓ,d, 1 ≤ ℓ ≤ d,

where 1d is the vector of all ones and eℓ,d is the ℓ-th unit vector in R
d. Then all but the

ℓ-th coordinate of sℓ are −3C, while the ℓ-th coordinate is 0. Then note that, for any
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x ∈ K, and 1 ≤ ℓ ≤ d,

xℓ + sℓ,ℓ = xℓ ≥ −C > −2C = C − 3C

≥ xj − 3C = xj + sℓ,j ,

for any j 6= ℓ. It follows that for any x ∈ K, and 1 ≤ ℓ ≤ d,

x ⊕ sℓ = xℓ.

Now given any hyperplane w⊤x + b, we can express it exactly as a linear combination of

dilation neurons over K:

w⊤x + b =
d
∑

ℓ=1

wℓxℓ + b =
d
∑

ℓ=1

wℓ(x ⊕ sℓ) + b.

This completes the proof.

Lemma 3. Any linear combination of hinge functions
∑m

i=1 αih
(ki)(x) can be represented

over any compact set K as a two sequential morphological block consisting of dilation

neurons only.

Proof. Let B = max1≤i≤m supx∈K |h(ki)(x)|. We now give the architecture of the desired

Morph-Net.

1. The first dilation-erosion layer has exactly d dilation neurons given by x⊕sℓ, 1 ≤ ℓ ≤ d.

2. The first linear combination layer has k =
∑m

i=1(ki + 1) neurons, with the i-th block

of (ki + 1) neurons outputting the constituent hyperplanes of h(ki)(x). This can be

done by Lemma 2.

3. The second dilation-erosion layer just has m dilation neurons, each outputting a

hinge function. The ℓ-th neuron is constructed as follows: Write any y ∈ R
k as

(y⊤
1 , . . . , y⊤

m)⊤ where yj = (yj,1, . . . , yj,kj+1)
⊤. We want the output of the ℓ-th neuron

to be max1≤v≤kℓ+1 yℓ,v. So we take tℓ = (t⊤
ℓ,1, . . . , t⊤

ℓ,m)⊤, where tℓ,j = −3B1kj+1 for

j 6= ℓ, and tℓ,ℓ = 0kℓ+1. Then, for any j 6= ℓ, 1 ≤ u ≤ kj + 1, and 1 ≤ v ≤ kℓ + 1, we

have

yj,u + tℓ,j,u = yj,u − 3B ≤ B − 3B

= −2B

< −B

≤ yℓ,v = yℓ,v + tℓ,ℓ,v.

It follows that y ⊕ tℓ = max1≤v≤kℓ+1 yℓ,v. With this construction, the outputs of the
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second dilation-erosion layer are the m numbers h(ki)(x).

4. The second linear combination layer just has a single neuron that combines the

outputs of the previous layer in the desired way:

z 7→
m
∑

i=1

αizi.

This completes the proof.

Theorem 2 (Universal approximation). Two sequential morphological blocks can approxi-

mate continuous functions over arbitrary compact sets.

Proof. Continuous functions can be approximated over compact sets by sums of hinge

functions (see Theorem 3.1 of [12]). Therefore, by Lemma 1, it follows that any continuous

function can be approximated over arbitrary compact sets by two sequential morphological

blocks.

3.2.8. Deep Morphological network and its properties

The network we have discussed so far consists of a single dilation-erosion layer followed by

a linear combination layer or sequential use of morphological block. Though theoretically

two sequential morphological block can represent represent any continuous function, it

is worth to know the properties of using such dilation and erosion layers. It has been

shown that neural networks with deeper architecture has quite a few advantages [9]. In

fact, some functions require deeper architecture for implementation as the deeper layers

help in combining features from the previous layers. This potentially allow the data to be

modelled using fewer parameters. The same is true for deeper version of Morph-Net, which

may be obtained by stacking the layers in one of the following ways.

Type-I Multiple dilation-erosion layers with a single linear combination layer at the end.

Type-II A unit is formed by a Dilation-Erosion layer followed by a linear combination layer,

which is then repeated multiple times.

Due to different arrangement of the layers, these networks behave differently. Moreover,

for Type-I networks, not all configuration of layers are effective. To analyze theoretically,

let us use Dm1
En1

→ Dm2
En2

→ · · · → Dmℓ
Enℓ

→ L to denote a Type-I network with ℓ

dilation-erosion layers. Here ‘Dmi
Eni

’ denotes the i-th layer with mi dilation neurons and

ni erosion neurons, and ‘L’ denotes the linear combination layer.
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Lemma 4. Suppose f and g are real-valued functions on R
d. Then f = g if and only if,

for all r ∈ R, one has equality of the sub-level sets:

f−1(−∞, r] = g−1(−∞, r].

Proof. Proof is given in the appendix section.

We use this lemma to proof the equivalence of architectures for different morphological

networks.

Theorem 3 (Equivalence of architectures). Given two networks of Type-I, the following

can be said about their equivalence.

(i) The architecture Dm1
E0 → Dm2

E0 → · · · → Dmℓ
E0 consisting only of dilation

layers is equivalent to the architecture Dml
E0 with a single dilation layer. A similar

statement is true if one considers architectures with purely erosion layers.

(ii) The architecture D1E1 → D1 is not equivalent to D1E0. Similarly, it is not equivalent

to D0E1, and consequently, the architectures D1E1 → D1E1 and D1E1 are not

equivalent.

(iii) The architecture D1E1 → D1 → L is not equivalent to D1E0 → L.

(iv) The architecture D2E0 → D0E2 → D1 is not equivalent to D2E0 → D1.

Proof. Proof is given in the appendix section.

For Type-II networks, the similar analysis is difficult due to existence of linear combination

layer in between the dilation-erosion layers. However, in the previous section we have shown

the approximation properties for Type-II networks.

As stated earlier, use of deep Morph-net may prove beneficial. However, the use of

multiple layers amplifies the problem of gradient propagation further. But, as we will

see in the next section, this problem is almost alleviated in 2D Morph-Net as the size of

structuring element is usually much less than the input or the output. The same problem

of gradient propagation occurs if the structuring element is large. This may happen in

classifier networks where the size of the feature map is reduced in each stage before the

final classification.

3.3. Experimental results

In this section we present some applications of our proposed Morph-Net and empirically

evaluate the performance of the same and its variants. It is already shown that a single
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Table 3.2.: Accuracy on MNIST and Fashion-MNIST Datasets using a single hidden layer with 400
morphological neurons.

Dataset
Test Accuracy

Morph-Net
Soft Morph-Net
(β = 8)

State-of-the-art

MNIST 98.39 98.90 99.79 [92]
Fashion-MNIST 89.87 89.84 89.70 [98]

layer Morph-Net represents a sum of hinge hyper planes. So we may apply this proposed

network to realize decision boundaries of classifier. To evaluate the performance of our

Morph-Net, we apply it on various benchmark datasets like MNIST [40], Fashion-MNIST

[98], SVHN [57] and CIFAR-10 [39]. We have compared the results with that of similar

structured (i.e., fully connected) neural network using various activation functions, such as

tanh (NN-tanh) and ReLU (NN-ReLU). We have also chosen the maxout network for

comparison, particularly because it uses the max function as a replacement of the activation

function.

In all the experiments, whenever necessary, the data is flattened in row major order and

normalized to the range [0, 1], before feeding to the network. So, the methods can not

exploit the spatial structures present in the image data. In all the networks, softmax is

used as activation function in the last layer. Trainable parameters are initialized using the

method of Glorot and Bengio [27], except for the bias which is initialized to zero. In the

Morph-Nets, same number of dilation and erosion neurons are used unless stated otherwise.

All the networks have been trained using categorical cross entropy loss and Adam optimizer

(learning rate=0.001, β1=0.9, β2=0.999) [37]. Note that the value of β for computing soft

maximum is chosen empirically. The results are presented in the following subsections.

3.3.1. MNIST Dataset

MNIST dataset [40] contains gray scale images of hand written numbers (0-9) of size 28×28.

It has 60,000 training images and 10,000 test images. Since our network does not support

two dimensional input, we have converted each image into a column vector (in row major

order) before giving it as input. The network we use follows the structure we have defined

previously: input layer, dilation-erosion layer and linear combination layer computing the

output. As in this dataset we had to distinguish between 10 classes of images, 10 neurons

are taken in the output layer.

In table 3.2 we have shown the accuracy on test data after training the network for 150

epochs with different number of nodes (l) in the dilation-erosion layer. The change of test

accuracy over the epochs is shown in figure 3.4a. It is seen that increasing number of nodes
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Figure 3.4.: Test accuracy achieved over epochs in the MNIST dataset

in the dilation-erosion layer helps to increase non-linearity, and thus it results in better

accuracy on test data. We get test average accuracy of 98.43% after training 3 times with

the DenMo-Net of 200 dilation and 200 erosion neurons (Table 3.2) up to 400 epochs. We

have also experimented when only dilation neuron, only erosion neuron and both type

of neurons were used in the dilation-erosion layer (Figure 3.4b). We see that using both

erosion only and both dilation and erosion neurons giving better accuracy. Note that the

performance of our proposed Morph-Net is comparable with state-of-the-art performance.

3.3.2. Fashion-MNIST Dataset

The Fashion-MNIST dataset [98] has been proposed with the aim of replacing the popular

MNIST dataset. Similar to the MNIST dataset this also contains 28 × 28 images of 10

classes and 60,000 training and 10,000 testing samples. While MNIST is still a popular

choice for benchmarking classifiers, the authors’ claim that MNIST is too easy and does not

represent the modern computer vision tasks. This dataset aims to provide the accessibility

of the MNIST dataset while posing a more challenging classification task.

For the experiment, we have converted the images to a column vector similar to what

we have done for the MNIST dataset. We have taken 400 dilation and 400 erosion nodes

in the dilation-erosion layer for this experiment. We have trained the network separately

3 times up to 300 epochs. The reported test accuracy (Table 3.2) is the average of the 3

runs. We see that our method gives results comparable to that of state-of-the-art method.
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Figure 3.5.: Test accuracy attained over the epochs by different methods.
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Figure 3.6.: Test accuracy over epochs on CIFAR-10 dataset by morphological block

Table 3.3.: Test accuracy achieved on CIFAR-10 and SVHN dataset by different networks when the
number of neurons (l) in the hidden layer is varied. The value of β is taken 12 and 20
for CIFAR10 and SVHN respectively.

Architecture
l=200 l=400 l=600

CIFAR10 SVHN CIFAR10 SVHN CIFAR10 SVHN

NN-tanh 46.6 ± 0.06 73.9 ± 0.12 46.9 ± 0.04 73.9 ± 0.23 48.0 ± 0.05 75.6 ± 0.14
NN-ReLU 47.2 ± 0.11 64.2 ± 0.88 48.0 ± 0.05 76.2 ± 0.32 48.1 ± 0.02 79.5 ± 0.11
Maxout-Network (k = 2) 46.9 ± 0.05 69.4 ± 0.10 48.0 ± 0.10 74.1 ± 0.22 46.4 ± 0.33 37.8 ± 3.15
Morph-Net 52.0 ± 0.02 73.4 ± 0.03 53.6 ± 0.01 76.9 ± 0.03 54.0 ± 0.02 78.2 ± 0.03
Soft Morph-Net (β = 12, 20) 53.5 ± 0.04 74.1 ± 0.06 55.8 ± 0.05 77.0 ± 0.05 56.9 ± 0.04 78.5 ± 0.05
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Figure 3.7.: Mean and standard deviation of accuracy achieved by different methods on the test set
over 5 runs.

3.3.3. CIFAR-10 and SVHN

CIFAR-10 [39] is a natural image dataset with 10 classes. It has 50,000 training and 10,000

test images. SVHN dataset contains images of numerals written in English, collected from

house numbers in Google Street View images. The dataset has 73257 training samples and

26032 test samples. Both datasets contain color images of size 32 × 32.

For evaluating the performance of the networks considered here, all of them are made

to have same number of neurons in the hidden layer. For maxout network, we have taken

k = 2 that means output of each hidden neurons is calculated without any activation

function, but by taking maximum over output from two neurons. Table 3.3 shows the

mean and standard deviation of test accuracy obtained over 5 runs of 300 epochs each and

by varying the number of neurons in the hidden layer. The change of average test errors

over the epochs are shown in figure 3.5a and figure 3.5b for the respective datasets when

number of hidden neurons is 400. We have also shown the change of accuracy with 600

hidden neurons is 600 in figure 3.6a. For CIFAR-10 dataset, using only a single type of

neurons in our network, we see a different result(Figure 3.6b). The network takes time to

learn with only erosion neurons. The situation improves a little when only dilation neurons

are used. When using both dilation and erosion neurons, the proposed network perform

best by leveraging the power of both the operations. It is seen from Table 3.3 and the

figures that our Morph-Net achieves better accuracy for CIFAR-10 dataset in all cases.

However, for SVHN dataset, its results are comparable with that of other networks. Note

that we have used β = 12 for CIFAR-10 and β = 20 for SVHN. Lower value of β results in

lower accuracy.
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Table 3.4.: Test accuracy achieved on Higgs dataset

Architecture
(l=200)

Morph-Net
Soft Morph-Net
(β = 20)

NN-tanh NN-Relu NN-Maxout

Accuracy 73.23 72.84 71.20 74.34 74.88

3.3.4. Higgs Dataset

Higgs Dataset [7] is built to benchmark the performance of neural networks in distinguishing

signal process producing Higgs boson from the background process that does not. This

is a synthetically generated dataset with 28 features commonly used by the physicists to

distinguishing between the two. The dataset has 11 million data instances. Out of which

we have taken random 80% as the training data and rest as the test data. The features

have been normalized between -1 and 1 before they are sent to training. In Table 3.4, we

have reported the performance of the network. We see that Morph-Net performs better

than Soft Morph-Net. However, the performance of the proposed network and that of other

networks are very similar.

3.4. Summary

In this Chapter, we have proposed a novel trainable morphological network (Morph-Net)

using dilation and erosion operators as neurons. It is shown that these operators, in

conjunction with linear combinations, represent a sum of hinge functions. As for multi-layer

morphological networks, we have proved that taking two sequential morphological blocks

can approximate any continuous function. Note that max (resp. min) function associated

with dilation (resp. erosion) operation, being only piece-wise differentiable, allows updating

only a single component of the structuring element. This slows down the training of the

network. To overcome this problem, we have introduced soft-max (and soft-min) in dilation

(resp. erosion) neurons. We have also explored the properties of morphological network for

multiple layers. We have explored the theoretical aspects of the proposed morphological

network in 1D. It can be readily extended to 2D morphological network forming a CNN

like network. In the next chapter we have explored 2D morphological network with all

the characteristics of 1D. Efficacy of 2D Morph-Net is evaluated by applying on various

computer vision problems.
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2D Morphological Network
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2D Morphological Network

4.1. Introduction

In the previous chapter we have analyzed the network to process data with 1D structuring

elements. In this Chapter we have extended the idea of 1D morphological network to 2D

morphological network. It is noted that, in the recent years, deep convolutional neural

network (DCNN) has significantly outperformed the traditional methods of image analysis.

This also be noted that the most basic morphological operation dilation and its dual,

erosion, have quite a bit of similarity with convolution operation. Similar to convolution,

these morphological operators work by operating a structuring element (kernel in case of

convolution) locally over the whole input. However, instead of sum of products, dilation

(or erosion) compute max (resp. min) over the sum (resp. difference). More complex

morphological operators are constructed by the composition of these two basic operators.

If we draw an analogy with convolutional neural networks (CNN), there also a sequence of

convolution operators are employed to extract hierarchy of features. The network starts

from simple ones, like edges and corners, and progressively composes them to extract

complex features. Learning the hierarchy of features automatically from data is one of

the reasons of the success of DCNNs. Similar things may be achieved if we arrange the

dilation and erosion operations in a network form and try to learn the structuring elements

automatically from data. In the previous chapter we have shown that a dilation-erosion

layer followed by a linear combination layer represents a sum of hinge hyper planes. We

extend this novel idea to the 2D cases using 2D morphological blocks, where the dilation

and erosion are performed locally. We have employed 2D morphological blocks repeatedly

in the network to perform different tasks.

2D morphological networks are made to process gray or color images in efficient way.

We have evaluated the performance of the network on various image processing tasks

like classification of aerial images, segmentation of blood vessel from fundus images,

segmentation of lungs from chest x-ray, document image binarization and image dehazing.

The results show that using simple architectures, 2D Morphological network is able to
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achieve comparable performance with CNN if not better. Note that number of parameters

we need to train is significantly less than the competitive methods. We have also tried to

do image classification using 2D Morphological Network. We have chosen aerial images for

the classification task using Morphological Network.

There are many different approaches for retinal vessel segmentation.One of the major

problem to segment retinal blood vessels is that these are too small to identify. [86] used

two-dimensional Gabor wavelet transform responses taken at multiple scales to classify

each image pixel as vessel or non-vessel. Marín et.al. [46] performs supervised classification

with the help of neural network. In a separate work [71] the basic line detector for pixel

classification. In [87] feature vectors are computed from patches and the line elements

from retinal color images and classified using a kNN-classifier. On the other hand lungs

segmentation is another segmentation problem where we try to segment large blob in

an image. Candemir et.al. [14] tried to detect lung boundaries by nonrigid registration-

driven method for lung segmentation There are few Deeplearning based methods for lungs

segmentation. Rashid et.al. [67] applied fully convolutional neural network to segment out

lungs from chest x-ray images. In a separate work [36] the Encoder-Decoder architecture is

used.

Document image binarization and elimination of noise is an important task in document

iamge processing. However, this is more challenging in case of historical documents, because

of varying degradation types. There are various classical binarization methods available

which compute local and global thresholds for binarization [61], [78]. Dubois and Pathak

[18] have proposed a model which is capable of reducing the bleed through noise found

in graylevel document images due to back impression while scanning. Moghaddam and

Cheriet [51] have proposed a restoration method for single-sided low-quality document

images (RSLDI). Rivest-Hénault et. al. [73] have proposed a local linear level set method

for binarization and restoration of degraded document images. Jia et. al. [35] have proposed

a model of restoration and binarization of historical documents by analyzing the structural

symmetry of the strokes. Although there are multiple symbols involved in document image,

Other than classification and segmentation we have also shown that morphological network

can also perform image dehazing. The objective is to determine accurately determine the

amount of haze the images as well as restore the color. Related work regarding image

de-hazing is discussed in chapter 2.

Rest of the chapter is organized as follows. In section 4.2, we have described the most

basic form of our 2D morphological network and also how it is arrived from 1D morphological

network. In the next section, i.e., in section 4.3 we have shown how this network is applied

to solve various problems with different architectures of Morphological network. Finally,

concluding remarks are presented in Section 4.4.
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Figure 4.1.: Erosion operation performed with a structuring element of size 3 × 3. This generates a
erosion feature map.

4.2. 2D Morphological Network

In this section we recall the basic dilation and erosion operation as we have already defined

in the second chapter. Next we define a 2D morphological block using dilation and erosion

operation. Subsequently, we build a network using this morphological block and apply on

different problems.

4.2.1. 2D Dilation and Erosion

In the previous chapter we have defined that the dilation and erosion neurons work with

structuring elements of same size as the input. However, we may also consider the said

input vector is obtained by flattening a part of an image or, more specifically, a small

block of the image around a particular pixel. This suggests that all the properties of 1D

morphological network holds for 2D network as well. So, in general, these morphological

operations can be applied spatially on local neighborhood (called receptive field) around

each pixel by utilizing structuring elements of appropriate size. In this case, the dilation

(⊕) and erosion (⊖) operations on an image I may be defined as follows.
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(I ⊕ S+)(x, y) = max
(i,j)∈D

{I(x − i, y − j) + S+(i, j)} (4.1)

(I ⊖ S−)(x, y) = min
(i,j)∈D

{I(x + i, y + j) − S−(i, j)} (4.2)

where S+, S− ∈ R
a×b are the structuring elements of dilation and erosion operator respec-

tively. D = D1 × D2 is the domain of structuring elements, where D1 = {1, 2, . . . , a} and

D2 = {1, 2, . . . , b}. These operations are applied on the whole image by spatially sliding the

structuring element, similar to what is done in case of convolution operation (Figure 4.1).

Use of the sliding neighborhood operation, in general, helps in extracting spatial features

from the image. This is true here also.

Let us call the output generated by dilation operation as dilation feature map and that

by erosion operation as erosion feature map. These feature maps are linearly combined

to form a single layer 2D Morph-Net. It may be noted that, each position (obtained by

sliding) of structuring element produces an output and corresponding gradient values affect

the same structuring element.

4.2.2. 2D Morphological Block

Let I denotes input feature map of size (m × n × c). Let Wd ∈ Ra×b×c and We ∈ Ra×b×c

are dilation and erosion kernels or SEs respectively of size a × b × c that are applied I. It

may be noted that a ≤ m and b ≤ n. Dilation (⊕) and erosion (⊖) operations on image I

are defined as the following

(I ⊕ Wd)(x, y) = max
i∈S1j∈S2k∈S3

(I(x + i, y + j, k) + Wd(i, j, k)) (4.3)

(I ⊖ We)(x, y) = min
i∈S1j∈S2k∈S3

(I(x + i, y + j, k) − We(i, j, k)) (4.4)

where S1 = {1, 2, .., a}, S2 = {1, 2, .., b} and S3 = {1, 2, .., c}. In Figure 4.1 we have

graphically shown the working of erosion operation. If c1 number of dilation and c2 erosion

kernels are used then the output feature map I1 has size (m × n × c3), where c3 = c1 + c2.

Note that in our task we have always used zero padding.

In the next layer, the feature maps of I1 are combined linearly as

I2(x, y) = b + Σc3

k=1wkI1(x, y, k) (4.5)

where wk are the weights of the linear combination and b is bias. If λ be the number of

such linear combinations, output size would be (m × n × λ). We call dilation-erosion layer
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Figure 4.2.: A single 2D morphological network block consisting of a Dilation-Erosion layer and
concatenation of its output followed by multiple linear combinations.

followed by linear combination layer together a 2D Morphological block. Figure 4.2 shows

such a block with a = b = 3, c1 = c2 = 6 and λ = 4. It consist of a dilation-erosion layer

with 6 dilation and 6 erosion feature map, followed by linear combination layer with 4

feature map. This entire block is denoted by DE3×3
6 − L4. We have shown in previous

chapter that a dilation-erosion layer followed by a liner combination layer represents a sum

of hinge hyperplanes. The motivation to build 2D morphological block by taking this two

layers (dilation-erosion and linear combination) consecutively, because it exactly matches

basic principle of dense morphological network. On the other hand, applying dilation and

erosion on image reduces dark and bright noise respectively. Their linear combination

results in removal of both kinds of noise. In the next section we show how series of 2D

morphological blocks can be useful to build a network.

4.2.3. 2D Morphological Network Construction

In the previous section we have defined 2D morphological block. Now, we can build a

2D morphological network for image processing task with the help of 2D morphological

block. Let us assume input image size is M × N . Since a << M and b << N at each

location (i, j) of image X we consider a box of pixels of size a × b which is operated on

by an structuring element to produce the output at (i, j) independent of output at any

other location. The receptive field size is a × b for taking only a single morphological block.

To increase the receptive field we have to take multiple morphological block. It helps to

make the decisions by compounding blocks’ output from the whole image. In the following
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section we have applied the proposed 2D morphological network to different applications in

image processing.

4.3. Applications

In this section we present some applications of our proposed Morph-Net and empirically

evaluate the performance of the same and its variants. The network is evaluated on the

tasks that require image to be taken as input. More specifically, we address the problems

of (i) classification of Aerial image, (ii) segmentation of blood vessel in fundus image,

(iii) segmentation of lung from X-ray images (iv) binarization of old document imagesg

and (v) image dehazin. Although the results are reported on a handful problems only,

Morph-Net can be applied to a variety of other image processing problems.

4.3.1. Aerial image Classification

Aerial image classification is a challenging problem. Each image has adequate structural

features. Morphological structuring elements are well known for finding structures in the

images. We have done aerial image Classification by using proposed 2D morphological

network. To do that we have chosen Alex-net [40] type architecture, where each convolution

layer is replaced with a 2D morphological block.

(a) Agricultural (b) Airplane (c) Buildings (d) Denseresiden-
tial

(e) Intersection

Figure 4.3.: Samples from UC Merced dataset.

Experiments

We have applied 2D morphological network for image classification task on two publicly

available datasets named UCMerced and WHU-RS19. UCMerced Land-use Dataset [99]

has 2,100 aerial scene images of size 256 × 256. Few samples of the dataset are shown in

Figure 4.3. There are 21 classes in the dataset namely agricultural, airplane, base- ball

diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor,

intersection, medium density residential, mobile home park, overpass, parking lot, river,

runway, sparse residential, storage tanks, and tennis courts. It may be noted that the
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(a) Airport (b) Bridge (c) Commercial (d) FootballField (e) Parking

Figure 4.4.: Samples from WHU-RS19 dataset.

Table 4.1.: Accuracy achieved on UC Merced and WHU-RS19 Dataset

Method
Parameters
(Millions)

Accuracy

UCMerced WHU-RS19

AlexNet-based 4.42 53.29 ± 0.86 48.26 ± 2.83
Depth-LeNet 5.04 54.81 ± 1.25 47.19 ± 2.43
DeepMorphLeNet 6.04 56.52 ± 1.74 52.91 ± 2.60
AlexNet-based 6.5 72.62 ± 1.05 64.38 ± 2.93
Depth-AlexNet-based 7.47 73.14 ± 1.43 63.27 ± 2.14
DeepMorphAlexNet[59] 10.5 76.86 ± 1.97 68.20 ± 2.75
Morph-Net(ours) 2.23 74.75 ± 1.16 71.23 ± 2.91

dataset has highly overlapping classes such as the dense, medium, and sparse residential

classes which mainly differ in the density of structures.

WHU-RS19 Dataset [96] has 1,005 high-resolution images of 600 × 600. The dataset

contains 19 classes that are airport, beach, bridge, river, forest, meadow, pond, parking,

port, viaduct, residential area, industrial area, commercial area, desert, farmland, football

field, mountain, park and railway station. The dataset is collected from different regions

all around the world. It creates challenges due to variation in scale, orientation, and the

illumination of the images. Few samples of the images are shown in Figure 4.4.

For training and testing with 2D morphological network, we have utilized the configuration

mentioned in [59]. We have employed Alex-net like architecture for this dataset. The

network trained in each fold for upto 300 epochs for each dataset. All the images are resized

to 256 × 256 before it is feed into the network. From the results reported in the Table 4.1,

it can be seen that our network works as good as the method of [59].
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Figure 4.5.: Architecture of the Morph-Net utilized for blood vessel segmentation in retinal images.
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(a) input (b) Morph-Net (c) Ground Truth

Figure 4.6.: Results obtained by 2D Morph-Net on two samples of DRIVE dataset

Table 4.2.: Accuracy and AUC achieved on the test set by different networks on Drive and STARE
dataset.

Method
DRIVE STARE

Accuracy AUC Accuracy AUC

Marin et al. [46] 94.50 0.958 95.20 0.976
Staal et al. [87] 94.40 0.952 - -
Niemeijer et al. [58] 94.10 0.929 - -
Soares et al. [86] 94.60 0.961 94.80 0.967
Ricci et al. [71] 95.90 0.963 96.40 0.968
2D Morph-Net 96.50 0.977 93.40 0.937
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4.3.2. Blood Vessel Segmentation in Retinal Images

Retinal blood vessel segmentation is an important task as it plays an important role in

automatic retinal disease screening systems. It is noted that these blood vessels are very

sharp and doesn’t follow any regular geometrical shapes. To segment these Blood vessels

we have used proposed Morphological network as shown in Figure 4.5. We have used 7

sequential block of 2D morpholoigcal block. Each block comprises 8 dilation and 8 erosion

feature maps followed by 8 linear combination modules. In the Last layer we have generated

output by taking a single linear combination. It maybe noted that we do not employ any

other activation function except the last layer to produce output between 0 and 1.

(a) input (b) Morph-Net (c) Ground Truth

Figure 4.7.: Results obtained by 2D Morph-Net on two samples of STARE dataset.

Experiments

To study the performance on this task, we have used two publicly available retinal image

dataset: DRIVE1 and STARE2 [33]. In each image of the datasets, vascular structure has

been precisely marked by experts. The DRIVE dataset has 40 eye-fundus color images

captured with Canon CR5 non-mydriatic 3CCD camera with a 45◦ field-of-view (FOV).

Each image is of size 768 × 584. The dataset is divided into two groups: 20 training and

20 test images. The STARE dataset consists of 20 eye-fundus color images captured with

1https://drive.grand-challenge.org/
2http://cecas.clemson.edu/ ahoover/stare/
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a TopCon TRV-50 fundus camera at 35◦ FOV. Each of them has a size of 700 × 605.The

network is designed to take an input of size 512 × 512 × 3 and produces a output of size

512 × 512. So, database images are resized to 512 × 512 using bilinear interpolation, before

they are fed to the network. The network is trained using the binary cross-entropy loss

and Adam optimizer [37] with batch size 6. The images obtained from the network is

thresholded at 0.5 to get the final result. Since, unlike DRIVE dataset, STARE dataset is

not divided in training and testing sets. So we train the network using the training set

of the DRIVE dataset till convergence, and test the network using test set of the DRIVE

data as well as all the images of STARE dataset. Table 4.2 presents the results in terms of

accuracy and area under the curve (AUC). We measure the accuracy as

Accuracy =
TP + TN

TP + FN + TN + FP
(4.6)

where TP, TN, FP, FN are true positive, true negative, false positive, false negative

respectively. The Table 4.2 shows that the network performs well also on the STARE

dataset even being trained on DRIVE dataset. For both the datasets Morph-Net performs

comparably, if not better. For qualitative comparison, we have presented two samples from

each dataset in figures4.6 and 4.7. Note that extracted blood vessels are little thicker in a

few places in the images of DRIVE (figure 4.6). This occurs due to use of fixed threshold

0.5 in the final step.

Dilation Erosion

Layer Followed 

by linear

 combination 

layer

     Batch

Normalization

MaxPool /Upsampling

 Layer 

Sigmoid

Figure 4.8.: U-Net like architecture of the 2D Morph-Net utilized for lungs segmentation.
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Table 4.3.: Attained Dice coefficient on Shenzhen dataset by different networks.

Method
Candemir et
al.[14]

ED-CNN[36] FCN[67] 2D Morph-Net

Dice Coefficient 94.1 97.4 97.7 95.9

(a) input (b) Morph-Net(before
thresolding)

(c) Morph-Net(after
thresolding)

(d) Ground Truth

Figure 4.9.: Results obtained by 2D Morph-Net on Shenzhen dataset[34] before the thresholding.

4.3.3. Lung image segmentation

Unlike blood vessel segmentation here we have tried to segment a large blob rather

than thin structures. Lung segmentation is an important biomedical image segmentation

problem because it serves as the first step towards the diagnosis of various disease including

tuberculosis detection. In this experiment. Since the output of the network has large

blob, the network should have large receptive field. Hence for lungs segmentation, we have

to concentrate upon large spatial information, we have employed a U-Net type network

architecture. In Figure 4.8 U-Net architecture using Morphological block (dilation-erosion
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followed by linear combination of feature maps) is shown. Note that, here max-pool is

used to down sample the image features and 2D up sampling to get back to same size as

input. 2D Up Sampling scales up the image by using nearest neighbour. After each 2D

morphological block batch normalization is used as regularizer. We observe that batch

normalization helps the morphological network in fast optimization and also increases the

stability of the network. In the last layer sigmoid activation function is taken to produce

the output between [0, 1]. Note that we have not taken any other activation function in

between.
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Figure 4.10.: Results on shenzhen dataset with failure cases
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Experiments

For evaluating the performance of proposed 2D morphological Network, we have used

publicly available Shenzhen chest X-Ray imageset [34]. This dataset is collected by

Shenzhen No.3 Hospital in Shenzhen, Guangdong Province, China. The dataset contains

326 normal and 336 X-Ray images showing various manifestations of tuberculosis. Each

image is of size approximately 3000 × 3000. We have randomly selected 90% of the data

for training and remaining 10% as test set. All the images are resized to 512 × 512 before

feeding to the network. This problem requires both global and local information, so that a

large blob with intricate detail of boundary region (region of interest) can be extracted.

This suggests us to employ a U-net [74] type network architecture. The network is trained

using binary cross entropy loss and Adam optimizer. The results have been generated

with a network trained for 400 epochs with a batch size 2. The output of the network is

binarized with a threshold of 0.5 to get the final output. For quantitative evaluation, we

have reported the DICE coefficient scores obtained on the test set in Table 4.3. DICE

coefficient computes the overlap between the ground-truth and the predicted segmentation

mask. So, higher the value, better is the result. In Figure 4.9, we have shown a few results

before thresholding. It is seen that the morphological network is able to segment properly

as good as the ground truth. Although there are some failure cases as shown in 4.10. In

the border places of lungs, the network is producing fuzzy output.
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Figure 4.11.: Network Architecture for Document Binarization

4.3.4. Old Document Image Binarization

Binarization and elimination of noise in the historical documents is a challenging task,

because of their varying degradation types. Different types of degradation add different types

of noise in the binarized image. The task becomes even more difficult when the intensity

of the ink colour becomes closer to the intensity of the background colour. Researchers

have started working on document image binarzation decades ago, and there are various

classical binarization methods available which compute local and global threshold for

binarization [61], [78]. Mathematical morphological methods are very useful to filter out

different structures or noise in an image. Morphological methods can produce excellent
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(a) Input Image (b) Morph-Net(Ours) (c) Ground Truth

Figure 4.12.: Sample outputs of our proposed binarization approach using ISI-Letters dataset.

results in image processing in which the type filter(s) as well as the shape and size of

structuring elements (SEs) or kernels are designed properly. So, we have applied 2D

morphological network to address this problem. A simple architecture of 2D morphological

network is taken for document image binarization. The network architecture is shown

in Figure 4.11. The network has a sequence of 2D morphological block. Each block of

this morphological network does some kind of spatial image processing and generates new

feature map. Concatenation of multiple such morphological modules with proper training

may generate desired feature map in spatial domain. As shown in Figure 4.11, we have
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(a) Input Image

(b) Morph-Net(Ours)

(c) Winners Output

Figure 4.13.: Comparison of the outputs of our proposed approach with that of the winner of the
ICDAR2017 competition on document image binarization using DIBCO2017 dataset.

(a) Input Image (b) Morph-Net(Ours) (c) Winner’s Output

Figure 4.14.: Comparison of the outputs of our proposed method with the winner of the ICFHR2018
competition on document image binarization using H-DIBCO2018 dataset.

taken four such blocks in series, where input image patch is of size (256 × 256 × 3) and

output is of size (256 × 256 × 1). Each pixel of output denotes the probability that the

pixel belong to text. Note that in the last layer we have used sigmoid activation function

to bound the output in [0,1].
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Figure 4.15.: Visualization of different feature maps extracted after each linear combination of
dilation and erosion layers on a sample of H-DIBCO 2018 dataset.

Experiments

The proposed 2D morphological network is implemented3 in python by using library Keras

with TensorFlow backend. The experiment is carried out on a machine with Intel Xeon

3https://github.com/ranjanZ/ICDAR_Binarization
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16 core processor and 128GB RAM. We have evaluated our proposed 2D morphological

Network for document image binarization on publicly available dataset, namely DIBCO 2017

[64], H-DIBCO 2018 [65] and also on ISI-letters dataset [48]. DIBCO 2017 and H-DIBCO

2018 dataset contain 20 and 10 historical document images respectively. ISI-letter dataset

contains 26 letters from the time of second world war that are of different sizes varying

from 1499 × 2343 to 2255 × 2821. Among the 26 images we have adopted 10 images for our

experiment. For the training of the 2D Morphological Network we have used the samples

from DIBCO 2009 and H-DIBCO 2016 dataset and also 50% samples of ISI-letters dataset.

For data preparation, high resolution document images are split into over lapping patches

of size 256 × 256 with stride 50. The patches are then individually fed into the network for

prediction of binarized images. The output image is reconstructed by mosaicing the patches

properly. The overlapped areas are averaged to implement superposition. The network

optimization settings and evaluation matrices are described. We have provided some sample

outputs along with their ground truth images in Figure 4.13 and Figure 4.14 for DIBCO

2017 and H-DIBCO 2018 datasets. From the figures it is clear that our approach is able

to binarize the handwritten as well as machine printed documents even if various types

of degradation including back impression and page folding marks are present. Moreover,

the approach is able to extract the pen strokes properly even if the difference between

the foreground and background colour intensity is very low (see Figure 4.13, Figure 4.14).

Figure 4.15 shows the step by step intermediate outputs after each convolution layer of the

proposed binarization approach using a sample from H-DIBCO 2018 dataset. We have also

provided the outputs of our approach on handwritten letters from ISI archive in Figure

4.12.

Note that in association with ICDAR, competitions on old document image binarization

were organized in 2017 and 2018 on the DIBCO 2017 and H-DIBCO 2018 datasets. We

have compared the output images visually with the output of the winning methods for

DIBCO 2017 and H-DIBCO 2018 datasets (Figure 4.13, Figure 4.14). For the outputs of

DIBCO 2017 handwritten and machine printed documents (Figure 4.13), the output of

our proposed approach is almost equally clear as the output of the winner approach. For

H-DIBCO 2018 the Figure 4.14 clearly depicts that the output of our approach is equally

good with the winner approach and visually is more noise free than the output of the

approach in the second position.

4.3.5. Image Dehazing

Image De-hazing is one of the trending problems of image to image transformation. Haze

occurs due to scattering of the light by the particles present in the atmosphere. As a result,

only a part of the light that is reflected from the objects, reaches the camera. In addition,
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a veil like layer of uniform light is superposed on the image. So, we get a reduced contrast

and color shifted image. The hazy image formation process is modeled as [38]

I(x) = t(x)J(x) + (1 − t(x))A, (4.7)

where J(x) and I(x) are the haze-free and the observed hazy image, respectively. t(x) ∈

[0, 1] is the scene transmittance that controls the haze in a pixel x, and A denotes the

uniform environmental illumination. We modify the model by introducing space-variant

environmental illumination A(x) as

I(x) = t(x)J(x) + (1 − t(x))A(x), (4.8)

to accommodate more general situations. Note that A(x) varies much slowly than t(x).
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Figure 4.16.: Architecture of the 2D Morph-Net utilized for image dehazing. The network outputs
both transmittance and airlight maps which are later utilized to obtain the dehazed
image.

Image dehazing methods try to estimate the J(x) having only the I(x) and this usually

requires the estimation of t(x) and A(x). This makes dehazing an ill-posed problem. Before

presenting our method let us re-write equation 4.8 as

I(x) = t(x)J(x) + K(x). (4.9)

Here (1 − t(x))A(x), called airlight map, is expressed as K(x). To dehaze an image, we

propose a 2D Morph-Net (figure 4.16) that takes hazy image (I(x)) as input and produces

estimated the airlight map K̃(x) and the transmittance map t̃(x) as output. As shown

in figure 4.16, the 2D morphological network comprises a sequence of 2D morphological

blocks. The estimated transmittance map t̃(x) and the airlight map K̃(x) is computed by

two separate paths of the network. This is done so as to capture their dependence while

extracting the features specific to both of them. Since, 0 ≤ t(x) ≤ 1 and 0 ≤ K(x) ≤ 1, we
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have used sigmoid activation function in the last layer. From the estimated t̃(x) and K̃(x)

the haze-free image may be obtained as follows.

J̃(x) = max

{

min

{

I(x) − K̃(x)

t̃(x)
, 1

}

, 0

}

. (4.10)

To train the network, given the hazy image I(x) and corresponding haze-free ground-truth

image J(x), we minimize a loss function inspired from the bi-directional consistency loss

[55] based on Structural Similarity Index (SSIM) between two images [95]. Specifically, the

loss function is given by

L = L1 + L2. (4.11)

L1 and L2 are obtained from I(x), Ĩ(x), J(x) and J̃(x) as

L1 = DSSIM(I, Ĩ), (4.12)

L2 = DSSIM(J, J̃), (4.13)

where

Ĩ(x) = J(x)t̃(x) + K̃(x) (4.14)

and

DSSIM(X, X̃) =
1

M

M
∑

i=1

1 − SSIM(Pi, P̃i)

2
. (4.15)

Pi and P̃i are the ith patches of the X and X̃, respectively. M is the total number of

patches.

Table 4.4.: Quantitative evaluation on validation dataset of O-HAZE images in terms of SSIM and
PSNR metrics.

Method 36.png 37.png 38.png 39.png 40.png Average

CVPR09[30] 18.18/0.45 16.09/0.49 14.12/0.08 12.88/0.36 14.21/0.39 15.10/0.35
TIP15[107] 17.47/0.50 16.17/0.45 15.14/0.18 14.80/0.41 16.37/0.57 15.99/0.42
TIP16[70] 16.59/0.49 15.76/0.43 13.25/0.19 12.79/0.40 16.53/0.56 14.99/0.41
CVPR16[13] 16.92/0.43 14.98/0.48 15.54/0.34 17.65/0.48 17.04/0.54 16.43/0.45
ICCV17[42] 17.10/0.45 16.47/0.39 16.12/0.12 15.04/0.34 15.95/0.50 16.13/0.36
CVPR18[102] 17.14/0.44 15.29/0.42 14.66/0.11 15.24/0.36 17.78/0.52 16.02/0.36
CVPRW18[103] 24.67/0.73 22.41/0.66 23.75/0.72 21.91/0.63 22.29/0.68 23.00/0.68
Ours 20.22/0.75 21.11/0.75 19.45/0.75 19.63/0.76 14.57/0.64 19.00/0.73
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(a) Input Image (b) Transmittance (c) Airlight (d) Our Output (e) Ground Truth

Figure 4.17.: Results of our 2D Morph-Net on three validation image of O-HAZE dataset. Trans-
mittance and airlight map is shown along with ground truth for comparison.

(a) Input Image (b) Transmittance (c) Airlight (d) Our Output (e) Ground Truth

Figure 4.18.: Results of our 2D Morph-Net on Middlebury part of D-Hazy dataset. Transmittance
and airlight map is shown along with ground truth for comparison. The network is
trained with NYU part of D-Hazy dataset
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Table 4.5.: Quantitative results obtained on Middlebury portion of D-Hazy dataset.

Image He et al. [29] Ren et al. [69] Berman [10] AOD-Net [41] Morph-Net
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Adirondack 16.02/0.82 14.39/0.89 16.74/0.88 14.18/0.89 16.61/0.87
Backpack 14.4/0.85 16.21/0.87 12.24/0.82 16.1/0.91 14.81/0.85
Bicycle1 12.39/0.81 20.66/0.93 12.61/0.82 23.21/0.96 16.06/0.89
Cable 12.95/0.7 7.65/0.64 9.93/0.63 6.95/0.64 11.46/0.66
Classroom1 20.17/0.87 10.91/0.74 20.95/0.89 10.02/0.72 12.62/0.77
Couch 18.68/0.81 10.13/0.61 13.76/0.7 10.56/0.63 12.13/0.65
Flowers 17.73/0.89 10.47/0.78 17.45/0.9 9.25/0.76 14.19/0.83
Jadeplant 13.48/0.69 7.78/0.6 7.06/0.65 7.65/0.59 12.15/0.63
Mask 15.88/0.89 14.15/0.85 14.18/0.84 14.3/0.91 15.74/0.86
Motorcycle 13.81/0.79 13.2/0.81 11.6/0.62 12.25/0.82 14.38/0.81
Piano 18.66/0.86 12.4/0.71 15.08/0.78 13.89/0.75 17.06/0.80
Pipes 15.52/0.79 10.9/0.68 13.81/0.74 10.34/0.69 14.92/0.77
Playroom 17.7/0.85 13.42/0.77 17.64/ 0.83 13.24/0.78 15.71/0.80
Playtable 18.58/0.9 15.09/0.86 16.63/0.88 14.73/0.86 15.67/0.86
Recycle 12.5/0.82 18.3/0.95 13.43/0.88 16.62/0.9 13.25/0.88
Shelves 15.47/0.83 20.43/0.94 16.9/0.88 16.52 0.92 17.03/0.89
Shopvac 13.87/0.8 7.62/0.66 11.58/ 0.78 6.89/0.64 10.47/0.72
Sticks 16.96/0.9 20.5/0.96 20.41/0.93 19.13/0.96 22.10/0.96
Storage 17.38/0.88 11.23/0.82 16.36/0.88 10.24/0.79 17.33/0.87
Sword1 15.06/0.87 15.48/0.91 12.57/0.83 14.29/0.91 14.74/0.87
Sword2 15.66/0.89 12.89/0.88 14.89/0.88 12.8/ 0.9 16.06/0.89
Umbrella 10.4/0.8 14.92/0.9 9.63/0.72 14.58/0.91 11.61/0.84
Vintage 14.63/0.86 19.27/0.96 14.09/0.83 16.82/0.94 15.01/0.88

Average 15.56/0.83 13.82/0.81 14.33/0.81 13.35/0.82 14.83/0.82

Experiments

The network is trained on the training images of O-HAZE dataset [3] until convergence

of the training error. We have also trained the 2D Morphological network for dehazing

using NYU dataset of D-Hazy dataset and test them with Middlebury portion of D-Hazy

dataset. In Table 4.4 and Table 4.5, we have reported the PSNR and SSIM of the results

obtained on the validation images of the dataset O-HAZE and Middlebury portion of

D-Hazy dataset respectively. We have reported the results with comparison in the Table 4.5.

Some qualitative results are shown in figure 4.17 and figure 4.18 for qualitative evaluation

and comparison. It is seen that with morphological network is able to remove noise as other

methods. We have also shown on real dehazed images in Figure 4.19 which is produced by

morph-Net trained on NYU portion of D-Hazy dataset.
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(a) Input Image (b) Transmittance (c) Airlight (d) Our Output

Figure 4.19.: Results of Morphological Network on real outdoor images. Transmittance and airlight
is shown along with it.
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4.4. Summary

In this chapter we have extended the 1D morphological block to 2D morphological block

with all the characteristics of 1D block. We have built 2D morphological network using

these 2D morphological blocks. Then we have formed several CNN like networks having

appropriate architecture. Efficacy of 2D morphological network is evaluated by applying

on various computer vision problems like classification of Aerial image, segmentation of

blood vessel in fundus image, segmentation of lung from X-ray images, binarization of

old document images and image dehazing. The network performs satisfactorily in those

problems, which suggests enough potential to be applied to many more problems.
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Chapter 5.

Conclusion and Future Scope of Work

Morphological operators are well known for their ability to directly process the shape.

However, major hurdles in devising morphological algorithms are deciding the sequence of

operations along with designing the appropeiate structuring elements. In this thesis we

have proposed a novel network with morphological operations similar to neural network

and its variant like convolution neural network. By this way we have tried to solve the

problems of designing morphological algorithms. In other words, the proposed network

successfully learns the structuring elements, i.e., 2D dilation and 2D erosion as well as

sequence of morphological operators to be applied. We have defined morphological blocks

in real space and put them in a layer form in the proposed Network.

5.1. Conclusion

First we try to see whether structuring elements can be learns using backpropagation

algorithm. We propose a morphological network that emulates classical morphological

filtering consisting of a series of erosion and dilation operators with trainable structuring

elements. The network is successfully applied to filter out (de-emphasize or remove) different

structures from an image. For the verification we have considered image de-raining problem.

We observe that a single morphological network containing dilation and erosion layers

is able to de-rain an image with rain-droplets of arbitrary shape and size. It achieves

similar performance with the contemporary CNNs for this task with a fraction of trainable

parameters (network size).

Although we are able to learn the structuring elements for gray scale image de-raining

task, most of the image restoration tasks are based on removing noise in the color images.

We know that morphological opening and closing operations are generally used to remove

the noise in the images. Morphological opening and closing are implemented as a sequential

combination of dilation and erosion. Although here we use a sequence of dilation and

erosion operations, it is difficult to determine in which order opening and closing be used to

solve the problem. However, it is observed that when the proposed network is successfully
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trained, it may set appropriate order of morphological operations to solve the given problem.

So, we have built a network that creates the effect of opening and closing with dilation and

erosion layers placed sequentially in two different parallel paths and then by taking a linear

combination of their outputs. With the help of the properties of morphological opening

and closing operations, we have shown that opening-closing may happen inside the network

in an appropriate. To establish the efficacy of the proposed network, we have applied it on

two classes of image restoration problems, namely de-raining and de-hazing. Experiment

shows that networks with opening and closing layer can handle image restoration tasks.

It raises a question- "whether would it be possible to perform classification tasks using

dilation and erosion operations like neural network?".

In search of the answer we built dense network using dilation and erosion operators and

do rigorous theoretical analysis using min or max operations for feature classification. We

have proposed a novel trainable morphological network using dilation and erosion operators

as neurons. It is shown that these operators, in conjunction with linear combinations,

represent a sum of hinge functions. We call this structure as 1D morphological block. We

have proved that by taking two sequential morphological blocks any continuous function can

be approximated. However, we are not able to show analytically that a single morphological

block can approximate any continuous function. However, we have shown experimentally

that a single morphological block is able to perform classification task on different datasets

like MNIST, Fashion MNIST, CIFAR-10, SVHN. The performance of the proposed dense

morphological block is similar and sometimes better than fully connected neural network.

Further we have also explored the different properties of morphological network for multiple

layers. After exploring the theoretical aspects of the dense morphological network, It can

be readily extended to 2D morphological network forming a CNN like network. More

specifically, We have extended 1D morphological network to 2D morphological network

using 2D morphological block(s). Efficacy of 2D Morph-Net is evaluated by applying it

on various computer vision problems like classification of Aerial image, segmentation of

blood vessel in fundus image, segmentation of lung from X-ray images, binarization of old

document images and image dehazing.

5.2. Future scope of work

In this work we have tried to generalize the use of morphological dilation and erosion

operation in the form of neurons in a network. This opens new direction of research using

morphological neurons. Dilation and erosion operation are defined in terms of max and

min operations, respectively. As they are piece-wise differentiable, a single component of

the structuring element is updated while backpropagation is performed in the network. This

single component updating at a time makes training of the structuring element (in turn
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the network) very slow. We have used a soft version of dilation and erosion to overcome

this problem. A soft dilation used in our work is defined as

x⊕̂s =
1

β
log

(

∑

k

e(xk+sk)β

)

, (5.1)

We can also use other soft versions as stated below and should check if there is any additional

advantage.

x⊕̂s = (
∑

k

(xk + sk)β)
1

β (5.2)

x⊕̂s =
∑

j

(xj + sj)
e(xj+sj)β

∑

k e(xk+sk)β
(5.3)

x⊕̂s =
∑

j

(xj + sj)
(xj + sj)

β

∑

k (xk + sk)β
(5.4)

From the chapter 3, we know that a single morphological block represents a sum of hinge

hyperplanes. If we take multiple such morphological blocks, optimization of such network

becomes slow. Convex-concave procedure is popular in optimizing function which are

in the form of sum of hinge functions. So, Convex-concave procedure maybe used to

optimize each morphological block. Although we have proved that two morphological

blocks can approximate any continuous function provided there is no bound in number

dilation or erosion neurons. So, it is beneficial to check if there is any bound on number of

morphological neurons in each morphological layers, if there is no restriction in number of

layers. In this manuscript we have applied morphological networks in some computer vision

problems and the network performs satisfactorily on these problems. It exhibits enough

potential to be applied to many more problems in image processing domain and one may

explore other applications too.
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Appendix A.

Proofs of Theorems

A.1. Proof of Soft maximum

The soft dilation operation converges to the dilation operation as β → ∞. This is true for

the soft erosion operation also.

The proof if standard. We include it here for completeness. Let ak = x′
k + sk. We have

x ⊕ s = lim
β→∞

log(
∑

k

eakβ)/β

= lim
β→∞

∑

k akeakβ

∑

k eakβ
(by L’Hospital’s rule)

= lim
β→∞

∑

j

ajeajβ

∑

k eakβ

= lim
β→∞

∑

j

aj

1 +
∑

k 6=j e(ak−aj)β

=
∑

j

lim
β→∞

aj

1 +
∑

k 6=j e(ak−aj)β

= max
j

aj .

This completes the proof.

A.2. Single morphological block as a sum of hinge functions

Proposition 2. The function computed by a single layer Morph-Net with n dilation and

m erosion neurons followed by a linear combination layer computes M(x), which is a sum

of multi-order hinge functions.

Proof. As defined in the main paper the computed M(x) has the following form.

M(x) =
n
∑

i=1

ω+
i z+

i +
m
∑

j=1

ω−
j z−

j , (A.1)

83



Appendix A. Proofs of Theorems

where z+
i and z−

j are the output of ith dilation neuron and jth erosion neuron, respectively

and ω+
i and ω−

j are the weights of the the linear combination layer. Replacing the z+
i and

z−
j with their expression, the equation becomes the following.

M(x) =
n
∑

i=1

ω+
i max

k
{x′

k + s+
ik} +

m
∑

i=1

−ω−
i max

k
{s−

ik − x′
k}, (A.2)

where s+
ik and s−

ik denote the kth component of the ith structuring element of dilation and

erosion neurons, respectively. The above equation can be further expressed in the following

form:

M(x) =
n
∑

i=1

α+
i max

k
{θi+x′

k + ρ+
ik}

+
m
∑

i=1

α−
i max

k
{θ−

i x′
k + ρ−

ik}, (A.3)

where θ+
i , θ−

i , ρ+
ik and ρ−

ik are defined in the following way:

θ+
i =







ω+
i if ω+

i ≥ 0,

−ω+
i if ω+

i < 0,
θ−

i =







−ω−
i if ω−

i ≥ 0,

ω−
i if ω−

i < 0,

ρ+
ik =







s+
ikω+

i if ω+
i ≥ 0,

−s+
ikω+

i if ω+
i < 0,

ρ−
ik =







s−
ikω−

i if ω−
i ≥ 0,

−s−
ikω−

i if ω−
i < 0,

α+
i =







1 if ω+
i ≥ 0,

−1 if ω+
i < 0,

α−
i =







−1 if ω−
i ≥ 0,

1 if ω−
i < 0.

Now, without any loss of generality, we can write equation A.3 as follows:

M(x) =
m+n
∑

i=1

αi max
k

(θix
′
k + ρik), (A.4)
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where

θi =







θi+ if i ≤ n ,

θ−
i−n if n < i ≤ m + n ,

ρik =







ρ+
ik if i ≤ n ,

ρ−
(i−n)k if n < i ≤ m + n ,

αi =







α+
i if i ≤ n ,

α−
(i−n) if n < i ≤ m + n .

Clearly, Equation A.4 can be rewritten as

M(x) =
l
∑

i=1

αiφi(x), (A.5)

where l = m + n, αi ∈ {1, −1} and

φi(x) = max
k

(vT
ikx′ + ρik), (A.6)

with

vikt =







βi if t = k,

0 if t 6= k.
(A.7)

In equation A.6, vT
ikx′ + ρik is affine and αiφi(x) is a d-order hinge function. Hence

∑l
i=1 αiφi(x), i.e. M(x), represents a sum of multi-order hinge functions.

A.3. Single Morphological block as sum of piecewise linear

function

Lemma 5. M(x) is a continuous piece-wise linear function.

Proof. From equation A.5, without any loss of generality we can assume that there are t1

and t2 number of terms where α = 1 and α = −1 respectively, then

M(x) =
t1
∑

i=1

φ
′

i(x) −
t2
∑

i=1

φ
′′

i (x), (A.8)

where t1 + t2 = l and φ
′

i(x), φ
′′

i (x) are of same form as equation A.6. As sum of PWL

functions is also a PWL function, hence each
∑t1

i=1 φ
′

i(x) and
∑t2

i=1 φ
′′

i (x) are a PWL
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function. Now, if t1 > 0, from Proposition 1 we can conclude that M(x) is PWL function

since difference of two continuous PWL function is a PWL function . If t1 = 0 then M(x)

becomes PWL concave function. Hence, we can say that M(x) is a PWL function.

It may be noted that if l < d then PWL hyperplane will be in parallel to at least one of

the axis. Taking l ≥ d results in PWL hyperplane which may span d-dimensional space.

A.4. Two morphological blocks and universal approximation

Here we have proved universal approximation of morphological network, considering bias

in the dilation and erosion neurons.

Lemma 6. Let K be a compact subset of Rd. Then, over K, any hyperplane w⊤x + b can

be represented as a linear combination of (d + 1) dilation neurons which only depend on K.

Proof. Since we are in a compact set, there exists C > 0 such that |xℓ| ≤ C for any

1 ≤ ℓ ≤ d. Take

sℓ = −3C1d+1 + 3Ceℓ,d+1, 1 ≤ ℓ ≤ d,

where 1d+1 is the vector of all ones and eℓ,d+1 is the ℓ-th unit vector in R
d+1. Then all but

the ℓ-th coordinate of sℓ are −3C, while the ℓ-th coordinate is 0. Then note that, for any

x ∈ K, and 1 ≤ ℓ ≤ d,

xℓ + sℓ,ℓ = xℓ ≥ −C > −2C = C − 3C ≥ xj − 3C = xj + sℓ,j ,

for any j 6= ℓ. It follows that for any x ∈ K, and 1 ≤ ℓ ≤ d,

x ⊕ sℓ = xℓ.

Note also that the constant 1 can be represented as a dilation neuron by taking sd+1 =

−3C1d+1 + (3C + 1)ed+1,d+1. Indeed,

1 = sd+1,d+1 > −2C = C − 3C ≥ xj − 3C = xj + sd+1,j ,

for all 1 ≤ j ≤ d, and, consequently, for all x ∈ K,

1 = x ⊕ sd+1.

Now given any hyperplane w⊤x + b, we can express it exactly as a linear combination of
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dilation neurons over K:

w⊤x + b =
d
∑

ℓ=1

wℓxℓ + b =
d
∑

ℓ=1

wℓ(x ⊕ sℓ) + b(x ⊕ sd+1).

This completes the proof.

Lemma 7. Any linear combination of hinge functions
∑m

i=1 αih
(ki)(x) can be represented

over any compact set K as a two-layer Morph-Net consisting of dilation neurons only.

Proof. Let B = max1≤i≤m supx∈K |h(ki)(x)|. We now give the architecture of the desired

Morph-Net.

1. The first dilation-erosion layer has exactly (d+1) dilation neurons given by x⊕sℓ, 1 ≤

ℓ ≤ d + 1.

2. The first linear combination layer has k =
∑m

i=1(ki + 1) neurons, with the i-th block

of (ki + 1) neurons outputting the constituent hyperplanes of h(ki)(x). This can be

done by Lemma 6.

3. The second dilation-erosion layer just has m dilation neurons, each outputting a

hinge function. The ℓ-th neuron is constructed as follows: Write any y ∈ R
k as

(y⊤
1 , . . . , y⊤

m)⊤ where yj = (yj,1, . . . , yj,kj+1)
⊤. We want the output of the ℓ-th neuron

to be max1≤v≤kℓ+1 yℓ,v. So we take tℓ = (t⊤
ℓ,1, . . . , t⊤

ℓ,m, −3B)⊤, where tℓ,j = −3B1kj+1

for j 6= ℓ, and tℓ,ℓ = 0kℓ+1. Then, for any j 6= ℓ, 1 ≤ u ≤ kj + 1, and 1 ≤ v ≤ kℓ + 1,

we have

yj,u + tℓ,j,u = yj,u − 3B ≤ B − 3B = −2B < −B ≤ yℓ,v = yℓ,v + tℓ,ℓ,v,

and

−3B < −B ≤ yℓ,v = yℓ,v + tℓ,ℓ,v.

It follows that y ⊕ tℓ = max1≤v≤kℓ+1 yℓ,v. With this construction, the outputs of the

second dilation-erosion layer are the m numbers h(ki)(x).

4. The second linear combination layer just has a single neuron that combines the

outputs of the previous layer in the desired way:

z 7→
m
∑

i=1

αizi.

This completes the proof.
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A.5. Properties of multilayer morphological networks

In this section, we record a few properties of multilayer morphological networks.

Lemma 8. Suppose f and g are real-valued functions on R
d. Then f = g if and only if,

for all r ∈ R, one has equality of the sub-level sets:

f−1(−∞, r] = g−1(−∞, r].

Proof. The “only if” part is trivial. As for the “if” part, note that we have

f−1{r} =
⋂

n≥1

f−1(r − 1/n, r]

=
⋂

n≥1

(f−1(−∞, r] \ f−1(−∞, r − 1/n]).

Same goes for g, and so, by our hypothesis,

f−1{r} = g−1{r} for all r ∈ R.

Therefore, for any x ∈ R
d, we have x ∈ g−1{g(x)} = f−1{g(x)}, or, in other words,

f(x) = g(x).

Theorem 4. The following are true for morphological network architectures.

(i) The architecture Dm1
E0 → Dm2

E0 → · · · → Dmℓ
E0 consisting only of dilation

layers is equivalent to the architecture Dmℓ
E0 with a single dilation layer. A similar

statement is true if one considers architectures with only purely erosion layers.

Which indicates taking multiple sequential dilation or erosion layer is equivalent of

taking a single dilation or erosion layer.

(ii) The architecture D1E1 → D1 is not equivalent to D1E0. Similarly, it is not equiv-

alent to D0E1, and, consequently, the architectures D1E1 → D1E1 and D1E1 are

inequivalent.

(iii) The architecture D1E1 → D1 → L is not equivalent to D1E0 → L.

(iv) The architecture D2E0 → D0E2 → D1 is not equivalent to D2E0 → D1.

Proof. (i) Let x ∈ Rd be the input to the network . Let there be two networks N1 and N2.

Let there be m1 and m2 dilated neurons in, respectively, the first and the second layers

of Network N1. Let the parameters of the network N1 in the first layer and 2nd layer are

w1 ∈ Rd×m1 and w2 ∈ Rl1×l2 respectively. Whereas let there are only single layer with m1
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number of dilated neurons in network N2 and the parameters are denoted as u ∈ Rd×m2 .

Let f(x) ∈ Rm2 and g(x) ∈ Rm2 are the output from the last layer of network N1 and N2

respectively.

For Network N1

yj = max
i

(xi + w1
i,j) ∀j ∈ {1, 2, ..m1} (A.9)

fk(x) = max
j

(yj + w2
j,k) ∀j, k (A.10)

For network N2

gk(x) = max
j

(xj + u2
j,k) ∀k, j (A.11)

Let

Sk
f = {x | fk(x) ≤ ek; ek ∈ R} (A.12)

Sk
g = {x | fk(x) ≤ ek; ek ∈ R} (A.13)

For Network N1

fk(x) ≤ ek; ∀k (A.14)

yi + w2
i,j ≤ ek ∀k, j (A.15)

yi ≤ ek − w2
i,j ∀k, j (A.16)

From Equation A.9 and Equation A.16 we get

max
i

(xi + w1
i,j) ≤ ek − w2

i,j ∀k, j (A.17)

xi + w1
i,j ≤ ek − w2

i,j ∀k, j, i (A.18)

xi ≤ ek − w2
i,j − w1

i,j ∀k, j, i (A.19)

Which means

xi ≤ min
j

(ek − w2
i,j − w1

i,j) ∀k, i (A.20)

xi ≤ ek − max
j

(w2
i,j + w1

i,j) ∀k, i (A.21)

89



Appendix A. Proofs of Theorems

x

y

(x, y) = max (x + a, y + b)f
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Figure A.1.: A network of architecture D1E1 → D1

For network N2

gk(x) = max
j

(xj + u2
j,k) (A.22)

xi ≤ (ek − ui,k)∀k, i (A.23)

To hold the set Sk
g is equal to Sk

f to ∀k

ui,k = max
j

(w2
i,j + w1

i,j)∀i, k (A.24)

Hence, from Lemma 8, given a parameter w1 and w2 of and 2 layer network N1, there exist

a equivalent single layer network N2 with dilated neurons u which can represent the same

function. From the Equation A.24 we can see the parameters of the single layer network

can be constructed considering the longest path from input to output. Recursively we can

say it holds for multiple layers. Similar argument can be given in case of erosion layers.

(ii)

For simplicity, we will assume 2-dimensional input. Suppose that the outputs from the

first layer are f1(x, y) and g1(x, y) where f1 is the output of a dilation neurones and g1 is
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the output of an erosion neurones (see Figure A.1). We write

f1(x, y) = max{x + a, y + b}, g1(x, y) = min{x + c, y + d}.

After the second layer consisting of a single dilation neurone, we get the output

f2(x, y) = max{f1 + a1, g1 + b1}.

Note that

f2(x, y) ≤ e ⇐⇒ f1 + a1 ≤ e and g1 + b1 ≤ e

⇐⇒ f1 ≤ e − a1 and g1 ≤ e − b1

⇐⇒ (x + a ≤ e − a1 and y + b ≤ e − a1)

and (x + c ≤ e − b1 or y + d ≤ e − b1)

⇐⇒ (x, y) ∈ (−∞, γ1] × (−∞, γ2]

∩ ((−∞, γ3] × R ∪ R × (−∞, γ4])

⇐⇒ (x, y) ∈ (−∞, γ1 ∧ γ3] × (−∞, γ2]

∪ (−∞, γ1] × (−∞, γ2 ∧ γ4].

Note that γ1 ≤ γ3 ⇐⇒ a1 + a ≥ b1 + c and γ2 ≤ γ4 ⇐⇒ a1 + b ≥ b1 + d. Therefore, if

a1 + a ≥ b1 + c and a1 + b ≥ b1 + d, then

f−1
2 (−∞, e] = (−∞, γ1] × (−∞, γ2].

Thus in this case f2 can be realized in the architecture D1E0.

If, however, a1 + a < b1 + c and a1 + b < b1 + d, then

f−1
2 (−∞, e] = (−∞, γ3] × (−∞, γ2] ∪ (−∞, γ1] × (−∞, γ4],

which is not realizable as the sublevel set of a function of D1E0 architecture.
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(iii) The proof is a simple modification of the proof of (ii). For α > 0,

αf2(x, y) ≤ e ⇐⇒ f1 + a1 ≤
e

α
and g1 + b1 ≤

e

α

⇐⇒ f1 ≤
e

α
− a1 and g1 ≤

e

α
− b1

⇐⇒ (x + a ≤
e

α
− a1 and y + b ≤

e

α
− a1)

and (x + c ≤
e

α
− b1 or y + d ≤

e

α
− b1)

⇐⇒ (x, y) ∈ (−∞, γ1] × (−∞, γ2]

∩ ((−∞, γ3] × R ∪ R × (−∞, γ4])

⇐⇒ (x, y) ∈ (−∞, γ1 ∧ γ3] × (−∞, γ2]

∪ (−∞, γ1] × (−∞, γ2 ∧ γ4].

Note that γ1 ≤ γ3 ⇐⇒ a1 + a ≥ b1 + c and γ2 ≤ γ4 ⇐⇒ a1 + b ≥ b1 + d.

Therefore, if a1 + a ≥ b1 + c and a1 + b ≥ b1 + d, then

(αf2)
−1(−∞, e] = (−∞, γ1] × (−∞, γ2].

Thus, in this case, f2 can be realized in the architecture D1E0 → L. More explicitly, for

β > −1,

β max{x + u, y + v} ≤ e ⇐⇒ x ≤
e

β
− u and y ≤

e

β
− v. (A.25)

Equating e
β

− u = e
α

− a1 − a, e
β

− v = e
α

− a1 − b, we can see that one can take

β = α, u = a + a1, v = b + a1 to realize the function αf2 in the D1E0 → L architecture.

If, however, a1 + a < b1 + c and a1 + b < b1 + d, then

(αf2)
−1(−∞, e] = (−∞, γ3] × (−∞, γ2]

∪ (−∞, γ1] × (−∞, γ4],

which is not realizable as the sublevel set of a function of D1E0 → L architecture.

(iv) It can be proved in the same way as (ii)

92



List of Publications Related to the Thesis

[1] Ranjan Mondal, Deepayan Chakraborty, and Bhabatosh Chanda. “Learning 2D

Morphological Network for Old Document Image Binarization”. In: 2019 Interna-

tional Conference on Document Analysis and Recognition (ICDAR). IEEE. 2019,

pp. 65–70.

[2] Ranjan Mondal, Moni Shankar Dey, and Bhabatosh Chanda. “Image Restoration by

Learning Morphological Opening-Closing Network”. In: Mathematical Morphology-

Theory and Applications 4.1 (2020), pp. 87–107.

[3] Ranjan Mondal, Soumendu Sundar Mukherjee, Sanchayan Santra, and Bhabatosh

Chanda. “Morphological Network: How Far Can We Go with Morphological Neurons?”

In: IEEE Transactions on Neural Networks and Learning Systems(under review)

(2019).

[4] Ranjan Mondal, Pulak Purkait, Sanchayan Santra, and Bhabatosh Chanda. “Mor-

phological networks for image de-raining”. In: International Conference on Discrete

Geometry for Computer Imagery. Springer. 2019, pp. 262–275.

93



List of Other Publications

[1] R. Mondal, S. Santra, and B. Chanda. “Image Dehazing by Joint Estimation of

Transmittance and Airlight Using Bi-Directional Consistency Loss Minimized FCN”.

In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW). June 2018, pp. 1033–10338. doi: 10.1109/CVPRW.2018.

00137.

[2] Ranjan Mondal and Bhabatosh Chanda. “Anomaly Detection using Context De-

pendent Optical Flow”. In: Proceedings of the 11th Indian Conference on Computer

Vision, Graphics and Image Processing. 2018, pp. 1–8.

[3] S. Santra, R. Mondal, and B. Chanda. “Learning a Patch Quality Comparator for

Single Image Dehazing”. In: IEEE Transactions on Image Processing 27.9 (Sept.

2018), pp. 4598–4607. issn: 1057-7149. doi: 10.1109/TIP.2018.2841198.

[4] Sanchayan Santra, Ranjan Mondal, Pranoy Panda, Nishant Mohanty, and Shub-

ham Bhuyan. “Image Dehazing via Joint Estimation of Transmittance Map and

Environmental Illumination”. In: 2017 Ninth International Conference on Advances

in Pattern Recognition (ICAPR). IEEE. 2017, pp. 1–6.

94



References

[1] Ricardo de A. Araujo. “A morphological perceptron with gradient-based learning for

Brazilian stock market forecasting”. In: Neural Networks 28 (Apr. 2012), pp. 61–81.

issn: 0893-6080.

[2] Muhammad Aminul Islam et al. “Deep Morphological Hit-or-Miss Transform Neural

Network”. In: arXiv (2019), arXiv–1912.

[3] Codruta O Ancuti, Cosmin Ancuti, Radu Timofte, and Christophe De Vleeschouwer.

“O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops. 2018, pp. 754–762.

[4] Cosmin Ancuti et al. “NTIRE 2018 challenge on image dehazing: Methods and

results”. In: CVPR Workshops. Vol. 1. 2018.

[5] Cosmin Ancuti, Codruta O Ancuti, and Christophe De Vleeschouwer. “D-hazy: A

dataset to evaluate quantitatively dehazing algorithms”. In: 2016 IEEE International

Conference on Image Processing (ICIP). IEEE. 2016, pp. 2226–2230.

[6] Jesus Angulo. “A mathematical morphology approach to cell shape analysis”. In:

Progress in Industrial Mathematics at ECMI 2006. Springer, 2008, pp. 543–547.

[7] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic particles

in high-energy physics with deep learning”. In: Nature communications 5 (2014),

p. 4308.

[8] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei. “What’s the

point: Semantic segmentation with point supervision”. In: European conference on

computer vision. Springer. 2016, pp. 549–565.

[9] Yoshua Bengio. “Learning deep architectures for AI”. In: Foundations and trends R© in

Machine Learning 2.1 (2009), pp. 1–127. issn: 1935-8237. doi: 10.1561/2200000006.

[10] D. Berman, T. Treibitz, and S. Avidan. “Non-local Image Dehazing”. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016,

pp. 1674–1682. doi: 10.1109/CVPR.2016.185.

[11] Alan C Bovik. “Handbook of image and video processing”. In: (2005).

95



References

[12] Leo Breiman. “Hinging hyperplanes for regression, classification, and function ap-

proximation”. In: IEEE Transactions on Information Theory 39.3 (1993), pp. 999–

1013.

[13] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao. “Dehazenet:

An end-to-end system for single image haze removal”. In: IEEE Transactions on

Image Processing 25.11 (2016), pp. 5187–5198.

[14] Sema Candemir et al. “Lung segmentation in chest radiographs using anatomical

atlases with nonrigid registration”. In: IEEE transactions on medical imaging 33.2

(2013), pp. 577–590.

[15] Vasileios Charisopoulos and Petros Maragos. “Morphological perceptrons: geometry

and training algorithms”. In: International Symposium on Mathematical Morphology

and Its Applications to Signal and Image Processing. Springer. 2017, pp. 3–15.

[16] John D Cook. “Basic properties of the soft maximum”. In: UT MD Anderson Cancer

Center Department of Biostatistics Working Paper Series; Working Paper 70 (2011).

[17] Jennifer L. Davidson and Frank Hummer. “Morphology neural networks: An in-

troduction with applications”. en. In: Circuits, Systems and Signal Processing 12.2

(June 1993), pp. 177–210. issn: 1531-5878. doi: 10.1007/BF01189873.

[18] Eric Dubois and Anita Pathak. “Reduction of bleed-through in scanned manuscript

documents”. In: PICS. Vol. 1. 2001, pp. 177–180.

[19] Nick Efford. Digital image processing: a practical introduction using java (with

CD-ROM). Addison-Wesley Longman Publishing Co., Inc., 2000.

[20] Raanan Fattal. “Dehazing Using Color-Lines”. In: ACM Trans. Graph. 34.1 (Dec.

2014), 13:1–13:14. issn: 0730-0301. doi: 10.1145/2651362. url: http://doi.acm.

org/10.1145/2651362.

[21] Raanan Fattal. “Dehazing using color-lines”. In: ACM transactions on graphics

(TOG) 34.1 (2014), p. 13.

[22] Richard J Feehs and Gonzalo R Arce. “Multidimensional morphological edge detec-

tion”. In: Visual Communications and Image Processing II. Vol. 845. International

Society for Optics and Photonics. 1987, pp. 285–292.

[23] Gianni Franchi, Amin Fehri, and Angela Yao. “Deep morphological networks”. In:

Pattern Recognition (2020), p. 107246.

[24] Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao, and John Paisley. “Clearing

the skies: A deep network architecture for single-image rain removal”. In: IEEE TIP

26.6 (2017), pp. 2944–2956.

96



References

[25] Xueyang Fu et al. “Removing rain from single images via a deep detail network”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2017, pp. 3855–3863.

[26] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference

on computer vision. 2015, pp. 1440–1448.

[27] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feed-

forward neural networks”. In: Proceedings of the thirteenth international conference

on artificial intelligence and statistics. 2010, pp. 249–256.

[28] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn”.

In: Proceedings of the IEEE international conference on computer vision. 2017,

pp. 2961–2969.

[29] Kaiming He, Jian Sun, and Xiaoou Tang. “Single Image Haze Removal Using Dark

Channel Prior”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

33.12 (Dec. 2011), pp. 2341–2353. issn: 0162-8828. doi: 10.1109/TPAMI.2010.168.

[30] Kaiming He, Jian Sun, and Xiaoou Tang. “Single image haze removal using dark

channel prior”. In: IEEE transactions on pattern analysis and machine intelligence

33.12 (2010), pp. 2341–2353.

[31] HJAM Heijmans. “Morphological Image Operators, Acad”. In: Press, Boston (1994).

[32] HJAM Heijmans, Michael Buckley, and Hugues Talbot. “Path-based morphological

openings”. In: 2004 International Conference on Image Processing, 2004. ICIP’04.

Vol. 5. IEEE. 2004, pp. 3085–3088.

[33] A. D. Hoover, V. Kouznetsova, and M. Goldbaum. “Locating blood vessels in retinal

images by piecewise threshold probing of a matched filter response”. In: IEEE

Transactions on Medical Imaging 19.3 (2000), pp. 203–210. doi: 10.1109/42.845178.

[34] Stefan Jaeger et al. “Two public chest X-ray datasets for computer-aided screening

of pulmonary diseases”. In: Quantitative imaging in medicine and surgery 4.6 (2014),

p. 475.

[35] Fuxi Jia, Cunzhao Shi, Kun He, Chunheng Wang, and Baihua Xiao. “Degraded

document image binarization using structural symmetry of strokes”. In: Pattern

Recognition 74 (2018), pp. 225–240.

[36] Alexander Kalinovsky and Vassili Kovalev. “Lung image Ssgmentation using deep

learning methods and convolutional neural networks”. In: (2016).

[37] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: arXiv:1412.6980 [cs] (Dec. 2014).

97



References

[38] Harald Koschmieder. “Theorie der horizontalen Sichtweite”. In: Beitrage zur Physik

der freien Atmosphare (1924), pp. 33–53.

[39] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Tech. rep. University of Toronto, 2009.

[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based

learning applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),

pp. 2278–2324.

[41] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng. “AOD-Net:

All-In-One Dehazing Network”. In: Proceedings of the IEEE International Conference

on Computer Vision. 2017, pp. 4770–4778.

[42] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng. “Aod-net:

All-in-one dehazing network”. In: Proceedings of the IEEE International Conference

on Computer Vision. 2017, pp. 4770–4778.

[43] Yu Li, Robby T Tan, Xiaojie Guo, Jiangbo Lu, and Michael S Brown. “Rain streak

removal using layer priors”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016, pp. 2736–2744.

[44] Elena Limonova, Daniil Matveev, Dmitry Nikolaev, and Vladimir V Arlazarov.

“Bipolar morphological neural networks: convolution without multiplication”. In:

Twelfth International Conference on Machine Vision (ICMV 2019). Vol. 11433.

International Society for Optics and Photonics. 2020, 114333J.

[45] Yu Luo, Yong Xu, and Hui Ji. “Removing rain from a single image via discriminative

sparse coding”. In: Proceedings of the IEEE International Conference on Computer

Vision. 2015, pp. 3397–3405.

[46] Diego Marin, Arturo Aquino, Manuel Emilio Gegúndez-Arias, and José Manuel

Bravo. “A new supervised method for blood vessel segmentation in retinal images

by using gray-level and moment invariants-based features”. In: IEEE Transactions

on medical imaging 30.1 (2010), pp. 146–158.

[47] Jonathan Masci, Jesús Angulo, and Jürgen Schmidhuber. “A learning framework

for morphological operators using counter–harmonic mean”. In: International Sym-

posium on Mathematical Morphology and Its Applications to Signal and Image

Processing. Springer. 2013, pp. 329–340.

[48] Bhabatosh Chanda Mayank Wadhwani Debapriya Kundu. “Old Handwritten Docu-

ment Restoration Based and Clean Text Extraction Using Deep Learning”. In: 2nd

Workshop on Digital Heritage (WDH’ 18) IIIT Hyderabad, Hyderabad ().

98



References

[49] Dorra Mellouli, Tarek M Hamdani, Mounir Ben Ayed, and Adel M Alimi. “Morph-

CNN: a morphological convolutional neural network for image classification”. In:

International Conference on Neural Information Processing. Springer. 2017, pp. 110–

117.

[50] Gili Mendel. “Optical Character Recognition Using Morphological Attributes.” In:

(1993).

[51] Reza Farrahi Moghaddam and Mohamed Cheriet. “RSLDI: Restoration of single-

sided low-quality document images”. In: Pattern Recognition 42.12 (2009), pp. 3355–

3364.

[52] Ranjan Mondal, Deepayan Chakraborty, and Bhabatosh Chanda. “Learning 2D

Morphological Network for Old Document Image Binarization”. In: 2019 Interna-

tional Conference on Document Analysis and Recognition (ICDAR). IEEE. 2019,

pp. 65–70.

[53] Ranjan Mondal, Pulak Purkait, Sanchayan Santra, and Bhabatosh Chanda. “Mor-

phological Networks for Image De-raining”. In: International Conference on Discrete

Geometry for Computer Imagery. Springer. 2019, pp. 262–275.

[54] Ranjan Mondal, Sanchayan Santra, and Bhabatosh Chanda. “Dense Morphological

Network: An Universal Function Approximator”. In: arXiv preprint arXiv:1901.00109

(2019).

[55] Ranjan Mondal, Sanchayan Santra, and Bhabatosh Chanda. “Image Dehazing by

Joint Estimation of Transmittance and Airlight using Bi-Directional Consistency

Loss Minimized FCN”. In: CVPR Workshops. 2018, pp. 920–928.

[56] Susanta Mukhopadhyay and Bhabatosh Chanda. “A multiscale morphological ap-

proach to local contrast enhancement”. In: Signal Processing 80.4 (2000), pp. 685–

696.

[57] Yuval Netzer et al. “Reading digits in natural images with unsupervised feature

learning”. In: NIPS workshop on deep learning and unsupervised feature learning.

Vol. 2011. 2011, p. 5.

[58] Meindert Niemeijer, Joes Staal, Bram van Ginneken, Marco Loog, and Michael D

Abramoff. “Comparative study of retinal vessel segmentation methods on a new

publicly available database”. In: Medical imaging 2004: image processing. Vol. 5370.

International Society for Optics and Photonics. 2004, pp. 648–656.

[59] Keiller Nogueira, Jocelyn Chanussot, Mauro Dalla Mura, William Robson Schwartz,

and Jefersson A dos Santos. “An Introduction to Deep Morphological Networks”.

In: arXiv preprint arXiv:1906.01751 (2019).

99



References

[60] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning deconvolution

network for semantic segmentation”. In: Proceedings of the IEEE international

conference on computer vision. 2015, pp. 1520–1528.

[61] Nobuyuki Otsu. “A threshold selection method from gray-level histograms”. In:

IEEE transactions on systems, man, and cybernetics 9.1 (1979), pp. 62–66.

[62] Lúcio F. C. Pessoa and Petros Maragos. “Neural networks with hybrid morpho-

logical/rank/linear nodes: a unifying framework with applications to handwritten

character recognition”. In: Pattern Recognition 33.6 (June 2000), pp. 945–960. issn:

0031-3203. doi: 10.1016/S0031-3203(99)00157-0.

[63] Bryan A Plummer et al. “Flickr30k entities: Collecting region-to-phrase correspon-

dences for richer image-to-sentence models”. In: Proceedings of the IEEE interna-

tional conference on computer vision. 2015, pp. 2641–2649.

[64] Ioannis Pratikakis, Konstantinos Zagoris, George Barlas, and Basilis Gatos. “IC-

DAR2017 competition on document image binarization (DIBCO 2017)”. In: 2017

14th IAPR International Conference on Document Analysis and Recognition (IC-

DAR). Vol. 1. IEEE. 2017, pp. 1395–1403.

[65] Ioannis Pratikakis, Konstantinos Zagoris, and Basilis Gatos. “IICFHR 2018 Compe-

tition on Handwritten Document Image Binarization (H-DIBCO 2018)”. In: 2018

16th International Conference on Frontiers in Handwriting Recognition. IEEE. 2018.

[66] Kendall Preston Jr and Michael JB Duff. Modern cellular automata: theory and

applications. Springer Science & Business Media, 2013.

[67] Rabia Rashid, Muhammad Usman Akram, and Taimur Hassan. “Fully Convolutional

Neural Network for Lungs Segmentation from Chest X-Rays”. In: International

Conference Image Analysis and Recognition. Springer. 2018, pp. 71–80.

[68] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv

preprint arXiv:1804.02767 (2018).

[69] Wenqi Ren et al. “Single Image Dehazing via Multi-scale Convolutional Neural

Networks”. en. In: Computer Vision - ECCV 2016. Lecture Notes in Computer

Science. Springer, Cham, Oct. 2016, pp. 154–169. doi: 10.1007/978-3-319-46475-

6_10.

[70] Wenqi Ren et al. “Single image dehazing via multi-scale convolutional neural net-

works”. In: European conference on computer vision. Springer. 2016, pp. 154–169.

[71] Elisa Ricci and Renzo Perfetti. “Retinal blood vessel segmentation using line opera-

tors and support vector classification”. In: IEEE transactions on medical imaging

26.10 (2007), pp. 1357–1365.

100



References

[72] G. X. Ritter and P. Sussner. “An introduction to morphological neural networks”.

In: Proceedings of 13th International Conference on Pattern Recognition. Vol. 4.

Aug. 1996, 709–717 vol.4. doi: 10.1109/ICPR.1996.547657.

[73] David Rivest-Hénault, Reza Farrahi Moghaddam, and Mohamed Cheriet. “A local

linear level set method for the binarization of degraded historical document images”.

In: International Journal on Document Analysis and Recognition (IJDAR) 15.2

(2012), pp. 101–124.

[74] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-

works for biomedical image segmentation”. In: International Conference on Medical

image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[75] A Rosenfeld. AC Kak Digital Picture Processing vol. 2. 1982.

[76] Azriel Rosenfield and Avinash C Kak. “Digital picture processing”. In: New York:

Academic (1982).

[77] Eyad Haj Said, Diaa Eldin M Nassar, Gamal Fahmy, and Hany H Ammar. “Teeth

segmentation in digitized dental X-ray films using mathematical morphology”. In:

IEEE transactions on information forensics and security 1.2 (2006), pp. 178–189.

[78] Jaakko Sauvola and Matti Pietikäinen. “Adaptive document image binarization”.

In: Pattern recognition 33.2 (2000), pp. 225–236.

[79] Dan Schonfeld and John Goutsias. “Optimal morphological pattern restoration

from noisy binary images”. In: IEEE Transactions on Pattern Analysis & Machine

Intelligence 1 (1991), pp. 14–29.

[80] J Serra. “Image analysis and mathematical morphology, Acad”. In: Press, NY

(1982).

[81] J Serra. “The Boolean model and random sets”. In: Image Modeling. Elsevier, 1981,

pp. 343–370.

[82] Jean Serra. Image Analysis and Mathematical Morphology: Vol.: 2: Theoretical

Advances. Academic Press, 1988.

[83] Jean Serra and Pierre Soille. Mathematical morphology and its applications to image

processing. Vol. 2. Springer Science & Business Media, 2012.

[84] Frank Y Shih. Image processing and mathematical morphology: fundamentals and

applications. CRC press, 2009.

[85] Frank Y Shih, Yucong Shen, and Xin Zhong. “Development of deep learning frame-

work for mathematical morphology”. In: International Journal of Pattern Recognition

and Artificial Intelligence 33.06 (2019), p. 1954024.

101



References

[86] João VB Soares, Jorge JG Leandro, Roberto M Cesar, Herbert F Jelinek, and

Michael J Cree. “Retinal vessel segmentation using the 2-D Gabor wavelet and

supervised classification”. In: IEEE Transactions on medical Imaging 25.9 (2006),

pp. 1214–1222.

[87] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever, and Bram

Van Ginneken. “Ridge-based vessel segmentation in color images of the retina”. In:

IEEE transactions on medical imaging 23.4 (2004), pp. 501–509.

[88] Stanley R Sternberg. “Grayscale morphology”. In: Computer vision, graphics, and

image processing 35.3 (1986), pp. 333–355.

[89] P. Sussner. “Morphological perceptron learning”. In: Proceedings of the 1998 IEEE

International Symposium on Intelligent Control (ISIC) held jointly with IEEE

International Symposium on Computational Intelligence in Robotics and Automation

(CIRA) Intell. Sept. 1998, pp. 477–482. doi: 10.1109/ISIC.1998.713708.

[90] Ketan Tang, Jianchao Yang, and Jue Wang. “Investigating haze-relevant features in

a learning framework for image dehazing”. In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2014, pp. 2995–3000.

[91] Luc Vincent. “Morphological area openings and closings for grey-scale images”. In:

Shape in Picture. Springer, 1994, pp. 197–208.

[92] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. “Regularization

of neural networks using dropconnect”. In: ICML. 2013, pp. 1058–1066.

[93] Shuning Wang. “General constructive representations for continuous piecewise-linear

functions”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 51.9

(2004), pp. 1889–1896.

[94] Shuning Wang and Xusheng Sun. “Generalization of hinging hyperplanes”. In: IEEE

Transactions on Information Theory 51.12 (2005), pp. 4425–4431.

[95] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image quality

assessment: from error visibility to structural similarity”. In: IEEE TIP 13.4 (2004),

pp. 600–612.

[96] Gui-Song Xia et al. “Structural high-resolution satellite image indexing”. In: 2010.

[97] Yong Xia, Dagan Feng, and Rongchun Zhao. “Morphology-based multifractal esti-

mation for texture segmentation”. In: IEEE Transactions on Image Processing 15.3

(2006), pp. 614–623.

[98] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms”. In: arXiv preprint arXiv:1708.07747

(2017).

102



References

[99] Yi Yang and Shawn Newsam. “Bag-of-visual-words and spatial extensions for land-

use classification”. In: Proceedings of the 18th SIGSPATIAL international conference

on advances in geographic information systems. 2010, pp. 270–279.

[100] Erik Zamora and Humberto Sossa. “Dendrite morphological neurons trained by

stochastic gradient descent”. In: Neurocomputing 260 (Oct. 2017), pp. 420–431.

[101] Frederic Zana and J-C Klein. “Segmentation of vessel-like patterns using mathe-

matical morphology and curvature evaluation”. In: IEEE transactions on image

processing 10.7 (2001), pp. 1010–1019.

[102] He Zhang and Vishal M Patel. “Densely connected pyramid dehazing network”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2018, pp. 3194–3203.

[103] He Zhang, Vishwanath Sindagi, and Vishal M Patel. “Multi-scale single image

dehazing using perceptual pyramid deep network”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops. 2018, pp. 902–

911.

[104] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. “Beyond

a gaussian denoiser: Residual learning of deep cnn for image denoising”. In: IEEE

Transactions on Image Processing 26.7 (2017), pp. 3142–3155.

[105] Kai Zhang, Wangmeng Zuo, and Lei Zhang. “FFDNet: Toward a fast and flexible so-

lution for CNN-based image denoising”. In: IEEE Transactions on Image Processing

27.9 (2018), pp. 4608–4622.

[106] Yunxiang Zhang, Samy Blusseau, Santiago Velasco-Forero, Isabelle Bloch, and Jesus

Angulo. “Max-plus Operators Applied to Filter Selection and Model Pruning in

Neural Networks”. In: International Symposium on Mathematical Morphology and

Its Applications to Signal and Image Processing. Springer. 2019, pp. 310–322.

[107] Qingsong Zhu, Jiaming Mai, and Ling Shao. “A fast single image haze removal

algorithm using color attenuation prior”. In: IEEE transactions on image processing

24.11 (2015), pp. 3522–3533.

103


	Introduction
	Introduction
	Motivation
	Related Work
	Computer vision problems addressed with proposed networks
	Contribution
	Automatic learning of structuring elements
	Morphological Opening-Closing Network
	Dense Morphological Network
	2D morphological Network

	Organization of Thesis


	Image Restoration by Opening Closing Network
	Image Restoration by Opening-Closing Network
	Introduction
	Proposed Method
	Morphological dilation and erosion layers
	Morphological opening and closing layers
	Back-propagation in Morphological Network
	Verifying the opening and closing operation
	Opening closing network with same structuring kernels in dilation and erosion
	Image De-raining
	Image De-Hazing

	Experimental results
	Experimental Setup and Data Set
	Results of Image De-Raining
	Results of Image De-Hazing

	Summary


	Dense Morphological Network
	Dense Morphological Network
	Introduction
	Morphological Network
	Dilation and Erosion neurons
	The morphological block
	Morphological block as sum of hinge functions
	Single Morphological block as sum of piecewise linear function
	Number of hinged hyperplanes
	A single morphological block and universal approximation
	Universal Approximation
	Deep Morphological network and its properties

	Experimental results
	MNIST Dataset
	Fashion-MNIST Dataset
	CIFAR-10 and SVHN
	Higgs Dataset

	Summary


	2D Morphological Network
	2D Morphological Network
	Introduction
	2D Morphological Network
	2D Dilation and Erosion
	2D Morphological Block
	2D Morphological Network Construction

	Applications
	Aerial image Classification
	Blood Vessel Segmentation in Retinal Images
	Lung image segmentation
	Old Document Image Binarization
	Image Dehazing

	Summary


	Conclusion
	Conclusion and Future Scope of Work
	Conclusion
	Future scope of work


	Appendix
	Proofs of Theorems
	Proof of Soft maximum
	Single morphological block as a sum of hinge functions
	Single Morphological block as sum of piecewise linear function
	Two morphological blocks and universal approximation
	Properties of multilayer morphological networks



