
Constructions and Analyses of Efficient
Symmetric-Key Primitives for Authentication and

Encryption

A thesis submitted to the Indian Statistical Institute
in partial fulfillment of the thesis requirements for the degree of

Doctor of Philosophy in Computer Science

Author:

Sebati Ghosh

Supervisor:

Prof. Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute

203, B. T. Road,
Kolkata, India - 700108.

August, 2021.

To Baba, Maa

&

Sir
(Late Jayanta Roy)

Acknowledgements

I believe writing a PhD thesis is not only a journey of five or six years, but the preparation
preceding this journey starts much earlier. Innumerable people contribute to this preparation
and the journey itself in some way or the other. There is a saying - each person you meet
in life either leaves a memory or a lesson. At this moment I really want to thank each and
everyone of them (though it is difficult to mention everyone) for enriching me.

There are a few people to whose contribution towards this thesis I can never do justice
by using any amount of words. At the very outset I must mention the name of my thesis
supervisor Prof. Palash Sarkar. It is needless to say that this thesis could never happen
without his tremendous inspiration and continuous encouragement; but I must mention also
that this could have never started had I not been inspired to go for a PhD by seeing him. On
the very first day when I met him as one of his PhD students, he told me something which
immediately made it clear to me how lucky his students were. He told “no one works under
me, rather they work with me.” In the subsequent five and a half years, I have actually felt
the veracity of those words. He has been not a supervisor to me, but a true “guide”. None
of his qualities as a PhD supervisor needs to be mentioned by me. Those are already well
established. All I can say is that I consider myself as one of the exceptionally luckiest persons
to have such an out-and-out honest and pure human being as my thesis supervisor. He has
provided me the perfect balance of independence and guidance throughout. Additionally, I
take this opportunity to thank him for supervising my M.Tech dissertation as well.

I am deeply indebted to Prof. Debrup Chakraborty who has been my co-author more
than once. He has always been happily available for any academic discussion or guidance
even for the works where he was not a co-author. He has played an important role in my
training in Intel Intrinsics programming.

I would like to thank my another co-author Cuauhtemoc Mancillas López with whom I
had several interesting academic discussions. He has been really nice each time I needed any
assistance.

I would like to extend my gratitude to all the present and former members, I know, of
the Cryptology Research Group in ISI, Kolkata. I thank Prof. Rana Barua, Prof. Bimal
Kumar Roy, Prof. Kishan Chand Gupta, Prof. Subhamoy Maitra, Prof. Mridul Nandi, Prof.
Sushmita Ruj, Prof. Anisur Molla and Prof. Goutam Paul for their constant support and
encouragement. I gladly remember the several nice and motivating discussions I had with
Prof. Arijit Chaudhuri, Prof. Swapan Parui, Prof. Tapas Samanta, Prof. Anup Dewanji,
Prof. Mandar Mitra, Prof. Sarbani Palit and Prof. Mrinal Nandi.

The excellent time spent at our very own Turing Lab will always occupy a special place
in my heart. Whenever life has been tough on me, I have taken solace at my little corner in
the Turing Lab.

I fondly remember all of my colleagues, seniors and juniors who have made this journey
special. I thank all of them - Abhinandan, Amit (Jana), Amit-da (Sharma), Anwesha,
Anindita-di, Aniruddha, Ashwin, Atanu-da, Avijit, Avik-da, Avishek, Binanda-da, Biswajit,
Butu-da, Diptendu, Indranil-da, Jyotirmoy, Karati-da (though he is a faculty in ISI now, I

i

like to thank him as a senior and a friend), Kaushik-da (Majumder), Kaushik-da (Nath),
Laltu, Madhurima, Mostaf, Nayana, Nilanjan-da, Nishant, Prabal, Pritam, Rahul, Ritam,
Samir, Sanjay-da, Shashank-da, Shion, Somindu-di, Sreyosi, Srimanta-da, Subhadip, Subhra,
Suchana, Suchismita-di, Sumit-da, Suprita and Tapas-da.

I would like to thank Prof. Debrup Chakraborty, Prof. Mridul Nandi and Avijit for
also providing comments on some of our works. I thank all the reviewers of our works for
providing helpful comments and feedback. Thanks to Sanjay-da, Nilanjan-da, Shashank-da,
Shion, Binanda-da, Indranil-da, Karati-da and Sumit-da for their academic suggestions and
help in different technical matters also. I am thankful for all the academic and non-academic
help, encouragement and fun moments that I have been gifted with in several occasions from
many of my colleagues.

Both the reviewers of this thesis have provided kind comments and feedback, which
helped in improving the work further. I would like to thank both of them.

Thanks to all the technical staff and office staff of ASU for being immensely helpful in
the hour of need. Also the technical staff of CSSC laboratory deserve gratitude for providing
all the necessary facilities.

In my personal circle, I will start with the persons who are not there in the physical
world for almost a decade and a half now, but their memories have given me the exceptional
strength and motivation whenever I needed them. I cannot explain the influence Sir (Late
Jayanta Roy) has on my life and career. He is the person who for the first time taught me to
aim something extra-ordinary. The immense belief he had in my abilities has always ignited
me to push myself beyond my comfort zone. My another hidden source of strength has been
my Grandmother - Thamma (Late Parul Rani Ghosh). The immense struggle (along with
my father) she had bravely gone through throughout her life has probably been genetically
transferred to me to a small extent. I believe that has really helped me to come out of the
darkest phases of my life so far. Today these two persons would really have been immensely
happy and proud of me.

In the beginning of my career I could come out of a corporate job and return to aca-
demics for the support and encouragement given by Maharaj (Swami Ritananda Maharaj
of Ramakrishna Mission Order), Swami Sarvapriyananda Maharaj (of the same order), Jy-
athima (Ms. Leena Bhattacharya), Indranilda and Avik. I would like to thank Swami
Sarvapriyananda Maharaj for understanding me and encouraging me to pursue higher stud-
ies. I consider myself to be very much fortunate for receiving unconditional affection, support
and encouragement from Swami Ritananda Maharaj and Jyathima (and her family mem-
bers). They have pulled me out of many of my low phases both during PhD and otherwise. I
cannot thank them enough. Indranilda has played an instrumental role behind my apathy to
a corporate job and instead pursuing something more “meaningful”. Thanks to him (along
with some of his family members and Sunipa Aunty) for guiding me in several other occa-
sions. Avik has forced me to ultimately give up on my most “comfortable” dream of being
a full-timer in home-making and to stand on my own feet. Though I hated that initially,
today I must thank him. I would like to thank my elder Sister Sonali Ghosh Chakraborty
for teaching me to have patience and considerate in the toughest of times.

I would like to thank Amit uncle (Dr. Chakraborty) and Dr. Uncle (Dr. Bandyopadhyay)
for the affection and support they have given me. Thanks to Dr. Amit Ranjan Biswas for the

ii

kindness he has shown, though till now we have never met in person. I thank Sreemoyee-di
(Dr. Tarafder) for all the support and guidance she has given and for being so nice to me.
Thanks to Master Ruma Roy Chowdhury (the Taekwondo trainer in ISI, Kolkata) for being
so friendly and supportive. I thank my Dance teachers and all the members of the Dance
class for renewing my energy each time I have met them.

Aditi, Arkadeep, Arnab, Arunima, Bhavana, Bhuvana, Bibek-da, Debarati, Diptyajit,
Namrata, Nandini, Samikshan, Shibsankar, Sreedhar and some of my colleagues in ISI are
people who have been there during many ups and downs in the journey. Thanks to all of them
for bringing me out of my several low and dark phases. Among them, during these years,
Nandini has voluntarily shifted from the position of a friend to a “parent” of a stubborn
“child” like me. I could possibly never start writing this thesis ultimately if I had not been
so much irritated with her nagging day in and day out. Really I cannot thank her enough
for all of her contributions!

There is a bunch of little ones whose contribution in boosting me up is anything but little.
Leju and her entire gang have been truly instrumental not only in my PhD period, but in
many difficult phases of my life. Their soft touches have done magic each time I needed
them. Mithi (my Taekwondo partner!), Rik (my nephew Aarush Chakraborty), Ritavori
and Riddhyan (Indranilda’s kids) deserve big thanks for just being there.

As I told in the beginning, I can do no justice to the contribution of a very few people
towards this thesis by writing down any amount of words. The other two such persons are
undoubtedly my Parents - Baba and Maa. Their immense contribution towards my life can
never be expressed in words. I could not have been even one percent of what I am today
if they were not there with me continuously. My Mother, Rubykana Ghosh, has always
prioritised my well-being, my studies, my career even over her own physical health. Till
now, when I feel the most vulnerable, Maa is the person who I ultimately run to for seeking
the comfort. I can never thank her enough for all that she has done for me till now. I want
to conclude this acknowledgement thanking my Father, Samir Kumar Ghosh, not because
he has the least contribution towards this thesis, rather the exact opposite. Ultimately he
is the person who has the most long lasting impact on my entire life so far. Besides being
my childhood hero and the all-time role model, Baba is the person who had for the first
time shown me the fun inside Mathematics. We have actually spent a lot of quality time
over Mathematics. Besides that, I can not really list down all the efforts and tremendous
sacrifices he has made so far just for my sake. The selfless care he has always taken to make
me an independent woman is unparalleled. I will always admire the humane qualities inside
him and that is without any bias. No amount of love and gratefulness will be enough for
these two poles of my life, Baba and Maa.

iii

List of Tables

4.1 Timing results for BRW128 and POLYVAL. 40
4.2 Timing results for BRW256. 40

5.1 Summary of the features of the basic scheme, Horner and BRW for hashing η`
blocks with η = 2a+1 − 1 for some a ≥ 1. 45

5.2 Computation of vecHash2L. 48
5.3 Efficiency and AU bound for BRWτ (m1, . . . ,mη) over F2n with η = 2a+1−1 ≥

3. 52
5.4 Cycles per byte for computing Hash2L, GHASH and POLYVAL on Haswell. For

both n = 128 and n = 256, Karatsuba gave better performance compared to
the schoolbook method. 55

5.5 Cycles per byte for computing Hash2L, GHASH and POLYVAL on Skylake. For
n = 128, schoolbook was faster than Karatsuba, while for n = 256, Karatsuba
was faster. 55

6.1 For the schemes in (6.5) to (6.12), a summary of whether the input and/or
the key of F and/or Hash depend on the tag length λ. 69

6.2 A secure and efficient nvMAC scheme from a random function. 76
6.3 A secure and efficient nvMAC scheme using a stream cipher supporting an

initialisation vector. 85
6.4 A secure and efficient nvMAC scheme using a short output length PRF. . . 88

7.1 Encryption and decryption algorithms for FAST. 97
7.2 A two-round Feistel construction required in Table 7.1. 98
7.3 Computations of vecHorner and vecHash2L. The string 1n denotes the element

of F2n whose binary representation consists of the all-one string. Here η is a
positive integer ≥ 3 and d(η) denote the degree of BRWτ (m1, . . . ,mη), where
m1, . . . ,mη ∈ F2n . 100

7.4 Game Greal. 111
7.5 Game Gint. 112
7.6 Game Grnd . 114
7.7 Comparison of different tweakable enciphering schemes according to compu-

tational efficiency. [BC] denotes the number of block cipher calls; [M] denotes
the number of field multiplications; [D] denotes the number of doubling (‘mul-
tiplication by x’) operations; . 123

7.8 Comparison of different tweakable enciphering schemes according to practical
and implementation simplicity. [BCK] denotes the number of block cipher
keys; and [HK] denotes the number of blocks in the hash key. 125

7.9 Comparison of the cycles per byte measure of FAST with those of XCB, EME2
and AEZ in the setting of Fx256. 132

7.10 Report of cycles per byte measure for the setting of Gn for FAST[Gn, k, vecHorner]
and FAST[Gn, k, 31, vecHash2L]. 133

iv

List of Figures

5.1 The 31-block BRW tree. 53

7.1 The hash functions H and G. 98

8.1 Enciphering a 4-block message χ0||x||m||m or χ1||x ⊕ χ0τ ⊕ χ1τ ||m||m with
tweak e under XCB. 141

8.2 Enciphering a 4-block message χ0||x||m||m or χ1||x⊕ χ0τ ⊕ χ1τ ||m||m under
TET. 143

8.3 Enciphering a 4-block message χ0||x||m||m or χ1||x⊕ s||m||m under FAST. . 146
8.4 The hash functions H (left) and G′ (right). 147
8.5 Enciphering a 3-block message m||χ0||x or m||χ1||x ⊕ s under CMC. Corre-

spondingly, M = 2(P1 ⊕ P3) and M ′ = 2(P ′1 ⊕ P ′3). 150
8.6 Enciphering a 3-block message m||x||x or m||x ⊕ 6L||x ⊕ 6L under EME.

Correspondingly, M = MQ⊕EK(MQ), where MQ = EK(m⊕ L)⊕EK(x⊕
2L) ⊕ EK(x ⊕ 4L) ⊕ T and M ′ = MQ′ ⊕ EK(MQ′) where MQ′ = EK(m ⊕
L)⊕ EK(x⊕ 4L)⊕ EK(x⊕ 2L)⊕ T . 153

v

Contents

1 Introduction 1
1.1 Overview of the Thesis . 4

2 A Brief Survey of the Literature 8
2.1 Universal Hash Functions . 8

2.1.1 Efficiency Issues . 10
2.1.2 Collision and Differential Probabilities 11

2.2 Message Authentication Code . 11
2.3 Tweakable Enciphering Scheme . 12
2.4 Post Quantum Cryptography . 14

3 Preliminaries and Background 15
3.1 Universal Hashing . 16

3.1.1 Polynomial Hashing . 16
3.1.2 BRW Hashing . 17

3.2 Adversarial Model . 17
3.3 Pseudo-Random Function . 18

3.3.1 Counter Mode . 18
3.4 Message Authentication Code . 19
3.5 Tweakable Enciphering Scheme . 19

4 Evaluating Bernstein-Rabin-Winograd Polynomials 21
4.1 Preliminaries . 21
4.2 Algorithm . 23
4.3 Correctness and Complexity . 29

4.3.1 Structural Properties of unreducedBRW 29
4.3.2 Correctness of EvalBRW . 31
4.3.3 Complexity of EvalBRW . 34

4.4 Design of Hash Function . 36
4.5 Implementation . 38

4.5.1 Timings . 39
4.6 Summary . 40

5 Hash2L: A Fast Two-Level Universal Hash Function 41
5.1 Combining BRW with Horner . 43
5.2 Two-Level Hash Function . 46

5.2.1 Hashing a Vector of Strings . 47
5.3 Implementations Based on pclmulqdq . 49

5.3.1 Field Multiplication . 50
5.3.2 Efficient Reduction . 50
5.3.3 Arithmetic Operations for Computing BRW 52
5.3.4 Computing BRW Polynomials . 53

vi

5.3.5 Decimated Horner . 54
5.3.6 Implementation of Hash2L . 54

5.4 Implementation Strategy Without Using pclmulqdq 56
5.5 Message Authentication Code . 58
5.6 Comparison to Some Previous Works . 58

5.6.1 Comparison to Schemes Using Long Hash Keys 58
5.6.2 Comparison to Schemes Using Short Hash Keys 60

5.7 Summary . 60

6 Variants of Wegman-Carter Message Authentication Code Supporting Vari-
able Tag Lengths 62
6.1 Definitions . 64

6.1.1 Variable Tag Length Nonce-Based Message Authentication Code . . . 64
6.2 Towards Building a Variable Tag Length MAC 67
6.3 Secure and Efficient MAC Schemes with Variable Length Tag 76

6.3.1 Reducing Key Size . 84
6.4 Summary . 90

7 FAST: Disk Encryption and Beyond 91
7.1 Preliminaries . 94
7.2 Construction . 95
7.3 Instantiations of FAST . 97

7.3.1 Hash Functions . 98
7.3.2 Specific Instantiations . 101

7.4 Security . 107
7.4.1 Pseudo-Random Function . 107
7.4.2 Tweakable Enciphering Scheme . 107
7.4.3 Security of FAST . 108

7.5 Comparison . 123
7.6 Software Implementation . 126

7.6.1 Implementation of the Hash Functions 127
7.6.2 Implementation of FAST . 129
7.6.3 Timing Results . 131

7.7 Additional Material on Implementation of AEZ 133
7.7.1 Software Implementation . 134

7.8 Summary . 135

8 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm 136
8.1 Preliminaries . 137

8.1.1 Tweakable Enciphering Scheme . 137
8.1.2 Simon’s Algorithm with Spurious Collisions 137

8.2 Outline of the Attacks . 138
8.3 Partial Key Recovery Attacks . 140

8.3.1 XCB . 140

vii

8.3.2 TET . 142
8.3.3 FAST . 145

8.4 Distinguishing Attacks . 149
8.4.1 CMC . 149
8.4.2 EME . 152

8.5 Summary . 155

9 Future Research Possibilities 157

viii

Chapter 1

Introduction

In symmetric key cryptography there are two fundamental objectives, viz. 1. confidentiality
or secrecy of message from unexpected party and 2. authentication of message which includes
authenticating the source of the message as well as integrity of the message against any
unwanted modification. Let us first concentrate on confidentiality. In classical symmetric-
key cryptography two parties, say Alice and Bob, first secretly exchange a key-pair (e, d).
Later, if Alice wishes to send a secret message m ∈ M to Bob, she computes c = Ee(m)
and transmits c to Bob. Upon receiving c, Bob computes Dd(c) = m and gets the original
message. Here either e and d are identical or can be derived from each other via a simple
transformation. For authentication, if Alice wants to send a message m ∈M to Bob, which
is not secret but needs to be conveyed to Bob in its original form, she computes a tag
t = He(m) and sends the pair (m, t) to Bob. Upon receiving the pair, Bob runs a verification
algorithm on it. He becomes sure that the message was indeed sent by Alice and has not
been modified on the way if the pair passes the verification test. In this case Bob accepts it;
otherwise he rejects the pair.

From the discussion above, it is clear that symmetric-key cryptography involves three
sets, viz. key-space, which contains all possible secret keys for the transformations, message-
space, which contains all possible messages or plaintexts to be conveyed to the other party and
output-space which contains the ciphertexts in case of confidentiality and tags (or digests)
in case of authentication. In case of confidentiality, the algorithms E and D are called
encryption algorithms and decryption algorithms respectively. In case of authentication H
is called tag-generation algorithm in general.

To construct these algorithms we use some basic cryptographic primitives in a way which
will serve our purpose. Block ciphers, stream ciphers and universal hash functions are three
of the fundamental primitives in symmetric key cryptography.

Let n be a fixed integer. Informally, a block cipher converts an n-bit plaintext into an
n-bit ciphertext through an invertible mapping parameterised by a key K, taking values from
the key-space. This is the encryption algorithm and the inverse mapping is the corresponding
decryption algorithm, where n denotes the block size of the block cipher. The block size
denotes the length of plaintext unit that can be encrypted per application of the block cipher.

Another important encryption primitive is a stream cipher, which takes a short secret
random key and, in most cases, a unique initialisation vector (IV) as input and generates a
long random looking keystream as output. Though there are stream ciphers, which do not
take IV, almost all modern practical stream ciphers support that. Encryption is performed by
bitwise XORing the output keystream, truncated at the appropriate length, to the message
and decryption is done by doing the same to the ciphertext. The IV is a public quantity, but
it needs to be unique for each encryption for secure use of all conventional stream ciphers.

Next comes the hash functions. An important primitive in cryptography which is partic-
ularly relevant to this thesis is a family of universal hash functions. Roughly speaking, it is
an indexed family of functions satisfying certain conditions. For each index (normally called

1

2 Introduction

the hash key) the function generally maps a string of arbitrary length into a short fixed
length output. Two kinds of probabilities are associated with a universal function family.
Here we will introduce them informally. Precise definitions are available in a subsequent
chapter.

Collision probability: For a pair of distinct inputs, the collision probability of the hash
function for the particular pair is defined to be the probability that the hash output on the
two inputs are equal.

Differential probability: Suppose the hash outputs are from an additively written group.
For a pair of distinct inputs and an element from the hash output field, the differential prob-
ability of the hash function for this triplet is the probability that the difference of the hash
outputs on the two inputs equals that particular field element.

Both kinds of probabilities are taken over uniform random choices of the hash key. When
a single value is mentioned for either of these probabilities for a hash function, in general
that is the maximum value possible for the function for any input. Roughly speaking, for
a hash function, if the collision probability for each pair of inputs is upper bounded by a
quantity ε which is “sufficiently low”, that hash function is called an ε-almost universal (ε-
AU) function; similarly a hash function with differential probability bounded by “sufficiently
low” ε, is called an ε-almost XOR universal (ε-AXU) hash function. The term “sufficiently
low” has later been quantified concretely.

As is mentioned earlier in case of authentication, when Alice wants to send the message
m to Bob, she computes a tag t and sends (m, t) to Bob. The tag is in general desired
to be a short fixed length string, such that the authentication of the tag will ensure the
authentication of the long message. Hence this short tag needs to depend both on the source
of the message and on the message itself. One way to accomplish this using a universal hash
function family is the following. Alice and Bob secretly exchange a hash key e and a function
F (·). Let the universal hash family be denoted by h and let m be the n-th message sent
by Alice to Bob. Alice computes the hash output he(m) on the message for the key e. She
masks this output with the random number (precise description is available in the subsequent
chapters) F (n), i.e. she computes t = he(m) + F (n) (+ is assumed to be the corresponding
field operation). Alice sends (m, t, n) to Bob. Upon receiving a tuple (m′, t′, n′), as Bob has
the secret key e and the function F (·), he can recompute the tag corresponding to m′ and
n′. If the tag he computes equals t′, he accepts the message; otherwise he rejects it. This
idea was proposed by Wegman and Carter in [110] and has been described more formally
later. It is to be noted that the tag t depends both on the message m and the origin of the
message Alice (through the secret key and the secret function).

On the other hand, as (m, t, n) is sent through an insecure channel, the adversary has
access to this tuple. So, it needs to be ensured that the probability of the adversary com-
puting a valid tuple (m′, t′, n′), such that (m, t, n) 6= (m′, t′, n′) is low. Otherwise, if, for
example, the adversary can easily come up with a (m′, t′, n′) where m′ 6= m is any message
of its choice and t′ is a valid tag corresponding to m′ and n′, then it can replace (m, t, n) with
(m′, t′, n′). Bob will accept it believing it to be a message sent by Alice. The provably low

3

collision and differential probabilities of the universal hash function family play important
role, along with other features of the construction (e.g. the random mask), in preventing
this possibility.

However, the above discussion implies that just with these stand-alone primitives, we can
achieve cryptographic goals in essentially a very restricted domain. With block ciphers we
can encrypt messages of a particular length only, whereas in real life messages to be encrypted
may be and, in most cases, will be of different and variable lengths. Though with stream
ciphers, this restriction on the length of the message is not there, stream cipher by itself
does not give authentication. Also only a family of universal hash functions is not enough to
achieve authentication. As we will see in later chapters, even the construction of a universal
hash function family involves many subtleties. Thus in reality, it is not enough to have only
these basic primitives to achieve the cryptographic goals in practical scenarios. Hence comes
the necessity to build several modes of operations according to the requirements. While
building a mode these issues are taken care of. First we need to construct the basic primitives
with sufficient power to achieve our goals. Next, we need to modify them appropriately so
that they can be used in real life for any possible input message without compromising on
the issue of the related cryptographic security. In most of the cases more than one of these
primitives need to be operated together to achieve the target.

Universal hash function is a primitive which has applications in many important modes
of operations like message authentication codes, tweakable enciphering schemes etc. It was
introduced almost four decades ago. As a result there have been many works in the literature
around this primitive. Several constructions of universal hash functions have been proposed
so far. One important category among them, which is particularly relevant to this thesis,
is univariate polynomial based hash functions. The digest of this type of hash functions is
obtained by evaluating a univariate polynomial over a finite field where the coefficients of
the polynomial are the blocks of the input to the hash function; the polynomial is evaluated
at the hash key, which is a single field element. Two important polynomial based universal
hash functions are the following.

• Honer’s rule based hash: The digest of this type of hash function is obtained by
evaluating a usual univariate polynomial of degree ` for an input consisting of ` blocks.
Using Horner’s rule, this can be evaluated using `− 1 field multiplications.

• Bernstein-Rabin-Winograd polynomial based hash: Bernstein [15] built on a
previous work by Rabin and Winograd [91] to propose a hash function using a class of
univariate polynomials called the BRW polynomials [98]. The main advantage of this
type of hashing over Horner’s rule based hashing is that it requires half the number
of multiplications than that required by Horner’s rule based hashing. For hashing an
input consisting of ` blocks using BRW polynomial based hash, the number of field
multiplications required is b`/2c with an additional blg `c squarings. On the other
hand, there is a difficulty of BRW polynomials as far as efficient implementation is
concerned. The definition of these polynomials is inherently recursive. As a result a
straightforward implementation of these polynomials based hash for arbitrary input
length suffers from recursive implementation overhead.

4 Introduction

Formal definitions of these hash functions along with a more detail discussion on universal
hashing in general are present in subsequent chapters.

An important mode of operation which is particularly important to this thesis, is tweak-
able enciphering scheme (TES). A TES is a tweak-based length preserving encryption, i.e.
the length of the ciphertext is equal to the length of the plaintext. The tweak is an addi-
tional quantity, which determines the ciphertext, but is itself not encrypted. As a result of
the dependency on the tweak, identical plaintexts while encrypted with same key but under
different tweaks, give rise to ciphertexts that look unrelated to computationally bounded
adversary. The most popular use of TES is in disk encryption algorithms. A disk is divided
into sectors where each sector can store a fixed number of bytes. Each sector has a unique
address. This sector address works as the tweak in case of disk encryption.

Another point to be noted is that, in many of the practical applications, we require not
only secrecy or authentication separately, but we require both together. The related schemes
are called authenticated encryption (AE). In some cases, there is some additional data (AD)
along with the message, where the AD needs only authentication and message needs both
confidentiality and authentication. Examples are network packets with header as associated
data. The corresponding schemes are called authenticated encryption with associated data
(AEAD). Normally AE or AEAD schemes take nonce as an input. Deterministic authen-
ticated encryption (with associated data) (DAE(AD)) is an authenticated encryption (with
associated data) scheme which does not use a nonce. Otherwise, such a scheme is almost
the same as an AE(AD) scheme as far as syntax or security formalisation are concerned.

1.1 Overview of the Thesis

This thesis is in the areas of universal hash functions and modes of operations. It is structured
as follows. Chapter 2 consists of a brief survey of the relevant works present in the literature.
In Chapter 3 we set the notation and describe other prerequisite materials required for the
rest of the thesis.

In Chapter 4, we describe an algorithm which can efficiently evaluate BRW polynomials
constructed from m field elements without any restriction on m. As mentioned earlier, BRW
polynomials are by definition recursive. Hence, in a scenario where m can vary, there can be
a recursive implementation of BRW polynomials evaluated on m field elements; but that will
not be efficient. To the best of our knowledge, till this algorithm was proposed, there had
been no efficient algorithm for evaluating this polynomial on arbitrary number of elements.
This is the first algorithm which non-recursively evaluates the polynomial on inputs of any
length efficiently. Previously the best known complexity of evaluating a BRW polynomial
on m ≥ 3 field elements was bm/2c field multiplications. Typically, a field multiplication
consists of a basic multiplication followed by a reduction. The new algorithm requires bm/2c
basic multiplications and 1 + bm/4c reductions. This is a significant practical speedup. As a
practical contribution, we propose two new hash functions BRW128 and BRW256 with digest
sizes 128 bits and 256 bits respectively, based on the new algorithm for evaluating these
polynomials. The practicability of these hash functions is demonstrated by implementing
them using instructions available on modern Intel processors. Timing results obtained from

Overview of the Thesis 5

the implementations suggest that the new hash function compares favourably to the highly
optimised implementation by Gueron of Horner’s rule based hash function.

Chapter 5 proposes a new universal hash function, which combines the advantages pro-
duced by two of its predecessors, viz. Horner’s rule based polynomial hash and BRW poly-
nomial based hash function. This hash function is the present state-of-the-art in terms of
efficiency (CPU cycles required per byte of the digest/output) in high end Intel processors.
It is a two-level hash function which employs BRW polynomial based hash in the lower level
and Horner’s rule based hash in the upper level. As mentioned earlier, BRW polynomial
based hash requires half the number of multiplications required by Horner’s rule based hash.
On the other hand, Horner’s rule based hash can efficiently handle an arbitrary length mes-
sage which the inherently recursive BRW polynomial based hash cannot. Our new hash
function Hash2L combines these two hashes such that the number of multiplications required
is much lesser than that required by the Horner’s rule based hash function and the difficulty
of the BRW polynomial based hashing in handling a variable length message is avoided.
Thus it combines the advantages produced by the two hashes and gives a new efficient two
level universal hash. Though it is two-level, it has the attractive feature of using a single key.
Here we propose two such hash functions, one for dealing a single binary string as a message
and the other for dealing vector of binary strings as a message. We have provided concrete
implementations of two instantiations of the first type of hash function using Intel Intrinsic
and provided timing measurements for Haswell and Skylake processors. The two instanti-
ations are Hash128, dealing with messages from 128 bit binary field GF(2128) and Hash256,
dealing with messages from 256 bit binary field GF(2256). Comparative timing measurements
are provided with respect to highly efficient implementations by Gueron of two Horner’s rule
based hashing and results show that Hash2L is significantly faster than both of them.

In Chapter 6, we study message authentication code (MAC) schemes supporting variable
tag lengths. MAC is the cryptographic mechanism to ensure the authenticity of messages
transmitted across a public channel. A MAC scheme typically appends a short length tag
to the message which is then transmitted. At the receiving end, a verification algorithm is
run on the message-tag pair to confirm the authenticity. In such a set-up, the sender and
the receiver share a previously agreed upon secret key. Most MAC schemes in the literature
specify a single value for the tag length. The question that we address in this chapter is the
following. Is it possible to have MAC schemes where the tag length can vary? While the
question seems to be a natural one, there does not appear to have been much discussion about
this issue in the literature except a brief mention more than 15 years ago and the proposal
of KMAC [69]. Variable tag lengths may be used with the same key due to “misuse and
poorly engineered security systems” [92]. Also for resource constrained devices, variable tag
lengths may be desirable where changing the key for every tag length may be infeasible due
to limited bandwidth and low power. A more concrete example of this scenario is mentioned
in the respective chapter.

We provide a formalisation of a variable tag length MAC scheme. Several variants of
the classical Wegman-Carter MAC scheme are considered. Most of these are shown to be
insecure by pointing out detailed attacks. One of these schemes is highlighted and proved
to be secure. We further build on this scheme to obtain single-key variable tag length MAC
schemes utilising either a stream cipher or a short-output pseudo-random function. These

6 Introduction

schemes can be efficiently instantiated using practical well known primitives.
Chapter 7 introduces a new family of tweakable enciphering schemes (TES) called FAST.

Several instantiations of FAST have been described. These are targeted towards use in the
following two settings. The first one is the fixed length setting which is targeted towards disk
encryption application. In this case, the tweak is a sector address and can be encoded using
a short fixed length string; the messages are contents of a sector and so are fixed length
strings equal to the size of the sector. The second one is the general setting suitable for
a wide variety of practical applications. Here the message space consists of binary strings
of different lengths; the tweak space can also consist of strings of different lengths or even
vector of strings where the numbers of components in the vectors can vary. This richness
in the tweak space provides considerable flexibility in applications where there is a message
and an associated set of attributes. The message is to be encrypted while the attributes
are to be in the clear but the ciphertext needs to be bound to the attributes. One possible
application of such a functionality is the following. The message is a data packet that is to
be stored at a destination node while the vector of attributes encode the path taken by the
data packet to reach the destination node with the components of the vector identifying the
intermediate nodes.

A major contribution here is to present detailed and careful software implementations of
all of these instantiations and some other important TES schemes in the literature. These
implementations are targeted towards modern Intel processors and are in Intel intrinsics
using the specialised AES-NI instructions and the pclmulqdq instruction. The code for
the software implementation of FAST is publicly available; the reference is available in the
respective chapter. Comparative performance is measured on the Skylake and the Kabylake
processors of Intel. For disk encryption, the results from the implementations show that
FAST compares very favourably to the IEEE disk encryption standards XCB and EME2 as
well as the more recent proposal AEZ.

FAST is built using a fixed input length pseudo-random function and an appropriate
hash function. It uses a single-block key, is parallelisable and can be instantiated using only
the encryption function of a block cipher. The property of not requiring the invertibility
property of a block cipher has the advantage of requiring a smaller hardware in a hardware
implementation, a smaller size code in a software implementation and having the security
proof of FAST on a weaker assumption on the underlying block cipher (PRF rather than
SPRP). The hash function can be instantiated using either the Horner’s rule based usual
polynomial hashing or hashing based on the more efficient Bernstein-Rabin-Winograd poly-
nomials. Security of FAST has been rigorously analysed using the standard provable security
approach and concrete security bounds have been derived.

Chapter 8 evaluates the post-quantum security of some tweakable enciphering schemes.
The eventual availability of large-scale quantum computers appears to be a certainty. This
will have major impact on cryptography. It seems that public key cryptography will be
severely affected and some part of it will be completely broken by quantum algorithms like
the one by Shor [102]. On the other hand, though already some devastating attacks have
been shown on some symmetric key algorithms, this area is still not sufficiently understood.
In past few years there have been some works to evaluate the security provided by symmetric
key crypto-systems in the post-quantum world. Some of them have shown the applicability

Overview of the Thesis 7

of Simon’s period finding quantum algorithm [104] to the cryptanalysis of certain modes of
operation. In this chapter we continue this line of work. Our target modes of operations
are several tweakable enciphering schemes, namely, CMC, EME, XCB, TET and FAST. For
all of the five TESs, we show distinguishing attacks, while for XCB, TET and FAST, the
attacks reveal portions of the secret keys. It shows that for post-quantum world, many of
the existing TESs will not work and we need to search for suitable solution.

Chapter 9 concludes the thesis and provides a brief discussion on the future direction of
the relevant research.

Publications: This thesis is based on the following published works.

1. Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level
universal hash function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

2. Sebati Ghosh and Palash Sarkar. Evaluating Bernstein-Rabin-Winograd polynomials.
Des. Codes Cryptogr., 87(2-3):527–546, 2019.

3. Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, and Palash Sarkar.
FAST: disk encryption and beyond. Advances in Mathematics of Communications.
https://www.aimsciences.org/article/doi/10.3934/amc.2020108, 2020.

4. Sebati Ghosh and Palash Sarkar. Variants of Wegman-Carter message authentication
code supporting variable tag lengths. Des. Codes Cryptogr., doi: https://doi.org/

10.1007/s10623-020-00840-w, 2021.

5. Sebati Ghosh and Palash Sarkar. Breaking tweakable enciphering schemes using Si-
mon’s algorithm. Preprint: IACR Cryptology ePrint Archive 2019: 724, 2019. Com-
municated.

https://www.aimsciences.org/article/doi/10.3934/amc.2020108
https://doi.org/10.1007/s10623-020-00840-w
https://doi.org/10.1007/s10623-020-00840-w

Chapter 2

A Brief Survey of the Literature

This chapter consists of a brief survey of the literature mainly relevant to the works done in
this thesis. The goal of this survey is in no way to give an exhaustive list of all the works
available in the literature on a particular topic. Rather we aim to give the reader a more or
less bird eye view of the overall development of the area.

As discussed in Chapter 1, the basis of the area are some fundamental stand-alone prim-
itives which are capable of providing sufficient security and robustness. These are in turn
appropriately modified and combined into suitable modes in order to accomplish a crypto-
graphic target.

One of the most important basic primitives relevant to this thesis is universal hash func-
tion. A brief survey of the well known universal hash functions of the literature is provided in
Section 2.1. Sections 2.2 and 2.3 give overviews of two of its important applications relevant
to this thesis, viz. message authentication code schemes and tweakable enciphering schemes
respectively. Section 2.4 provides a brief overview of some of the works done in the area of
post-quantum cryptanalysis on certain modes.

2.1 Universal Hash Functions

A good survey on various constructions of universal hash functions can be found in each
of [15, 101]. Here we do not provide all the details available there. On the other hand, here
we mention some constructions which are subsequent to [15, 101] and hence are not present
there.

Universal hash functions were introduced by Carter and Wegman [28] in the year of 1979.
Here they exhibit three universal classes of functions which can be evaluated easily and give
several examples of the use of those functions. A well known proposal to another universal
hash function called Multilinear Map [54] was given by Gilbert, MacWilliams and Sloane.
This requires l field multiplications to obtain the digest when the message consists of l field
elements. This computational complexity can be reduced to l/2 field multiplication by using
the pseudo-dot product construction proposed by Winograd [111]. One negative issue for
both the multi-linear hash and the pseudo-dot product is that the key required for the hash
function is as long as the message.

This problem can be avoided by using another well known approach, which has been
briefly discussed in Chapter 1. Here we provide more details. In this case the digest is
obtained by evaluating a univariate polynomial over a finite field. The coefficients of the
polynomial are the message blocks and the point at which the polynomial is evaluated is
the hash key. As a result, the hash key consists of a single field element. Using Horner’s
rule, a univariate polynomial of degree l can be evaluated using (l–1) field multiplications.
This cost is about the same as that required for multilinear map based hash function. The

8

Universal Hash Functions 9

advantage is in terms of key length. Examples of Horner’s rule based polynomial hashing
are Poly1305 [13], PolyR [73], GHASH [85] and POLYVAL [60].

Poly1305 is part of several practical and important platforms including the Transport
Layer Security protocol version 1.3 [5]. Here, the arithmetic is over the prime field Fp with
p = 2130 − 5. Initially, clever use of floating point techniques were made to provide efficient
implementation of Poly1305 in [13]. Later significant speedups in high end Intel processors
have been reported in [55] and [18], none of which has used floating point techniques.

PolyR is a universal hash function family which hashes short messages faster than long
ones. This is quite contrary to most of the hash functions as they do better as the length of
the message increases. As most network traffic is short, this property of PolyR is desirable
in authenticating network traffic. Due to this property, another important use of PolyR is
in a multi-layer hashing construction which is used for message authentication. Here, a first
layer of fast hashing is applied on the input to get an output of length much smaller than
the input. Now on this short message PolyR is applied for fast authentication. Another
attractive property of PolyR is that its key requires no preprocessing to achieve maximal
efficiency.

GHASH is also an important universal hash function, where the arithmetic is over the field
F2128 . As it forms a part of the NIST standard [45], there has been much research in efficient
implementation of GHASH. In fact, one of the reasons for Intel to include the pclmulqdq

instruction, which multiplies two degree 64 polynomials, is to be able to efficiently implement
GHASH. The best known highly optimized implementation of GHASH using pclmulqdq is by
Gueron [59].

POLYVAL is also a univariate polynomial hashing algorithm. More precisely, this is a
byte-swapped version of GHASH, applied over byte-swapped message. In this case also, the
arithmetic is over the field F2128 . Again, the highly optimised implementation of POLYVAL
using pclmulqdq is due to Gueron [57].

Another significant univariate polynomial based universal hash function, which we have
briefly discussed in Chapter 1, was proposed by Bernstein. Bernstein [15] built on a previous
work by Rabin and Winograd [91] to design a family of polynomials which was later named
the BRW polynomials [98]. The importance of such polynomials for constructing a universal
family of hash functions has been discussed in [15]. The hash key is still a single element
of the field. The main advantage of BRW polynomial based hashing is that the number of
multiplications required for hashing a message consisting of l ≥ 3 blocks is bl/2c with an
additional blg lc squarings. In fact, what the pseudo-dot product is to the multilinear hash,
the BRW polynomials is to the Horner based hash.

There is, however, an obstacle in efficient implementation of BRW polynomials. These
polynomials are inherently recursive. As a result a straightforward implementation of these
polynomials based hash functions for arbitrary length messages has recursive implementation
overhead. Possibly due to this reason, until recently there had been no efficient software
implementation of BRW based hash function for arbitrary length inputs. On the other
hand, hardware implementations for fixed length inputs are known [33]. A work [30] gives
software implementations of BRW polynomials having l ≤ 31 blocks over the fields F2128 and
F2256 . Another work [52] describes the first non-recursive algorithm which can efficiently
evaluate BRW polynomials for arbitrary length inputs. This algorithm also results in a

10 A Brief Survey of the Literature

practical speedup in evaluating these polynomials. Based on the new algorithm two new
hash functions BRW128 and BRW256 with digest sizes 128 bits and 256 bits respectively
have been proposed, along with their implementation on modern Intel processors. These are,
to the best of our knowledge, the first efficient software implementation of BRW polynomials
based hash function for arbitrary length inputs.

Well known constructions of hash functions based on the pseudo-dot product are hashes
used in UMAC [20] and VMAC [72]. The core of the MAC scheme UMAC is the hash function
NHT which is based on integer arithmetic. This hash function processes an l-block message
with each block being w-bit long to produce a digest of size 2tw for some parameter t ≥ 1.
The hash key consists of l + 2(t − 1)w-bit blocks. So, the length of the hash key is longer
than the length of the message to be hashed. The core of VMAC is the hash function VHASH
which is also based on integer arithmetic and requires a key which is longer than the message.
A more recent pseudo-dot-product based construction is the hash function Hash256, the core
of the MAC scheme Auth256 [16]. This hash function uses arithmetic over F2256 and the
key is as long as the message. The work [16] reports an implementation of Hash256 using a
tower field representation and a new FFT-based algorithm for field multiplication. It does
not use the pclmulqdq instruction on Intel processors. The construction of the hash function
CLHASH, proposed in [77], is based on the idea of VHASH, although the computation is over
F264 . The hash function produces 64-bit outputs. We note that more than 10 years ago,
Bernstein had commented [107] that a 64-bit digest provides inadequate security.

2.1.1 Efficiency Issues

As can be understood from the above discussion one continuous target in this area has
been to construct a universal hashing requiring minimum number of field multiplications to
evaluate it. The reason is field multiplication is a costly operation in the sense it requires
more CPU time than other field operations. Typically, a field multiplication consists of a
basic multiplication followed by a reduction operation. Gueron and Kounavis [58] described
an efficient method for reduction over binary fields. Late, or, delayed reduction is a well
known technique for speeding up a group of field multiplications. Essentially, the idea is
to perform several polynomial multiplications, add the results and then perform a single
reduction for the entire group of multiplication. The most recent implementations of both
GHASH [59] and POLYVAL [57] by Gueron use delayed reduction through the use of pre-
computed tables. The implementation of Hash2L [31] also uses delayed reduction to achieve
efficiency. In [51], reduction has been delayed as far as possible to achieve an algorithm which
reduces the practical CPU time required for computing BRW polynomials to a considerable
extent.

In [87] Nandi has shown a lower bound on the number of multiplications required for
secure hashing which shows that the pseudo-dot and BRW based hashing essentially require
an optimal number of field multiplications.

Message Authentication Code 11

2.1.2 Collision and Differential Probabilities

In Chapter 1 we have informally introduced collision and differential probabilities associated
with a universal hash function family. In general, for a Horner’s rule based polynomial hash,
on the field F, for messages consisting of at most l field elements the collision probability
is ((l − 1)/#F) and the differential probability is l/#F, where #F means the cardinality of
the field F. Let the degree of BRW polynomial on a message consisting of l field elements
be denoted by deg(l). Then deg(l) = 2blg lc+1 − 1 [15]. As a consequence, for BRW hashing
the collision probability is deg(l)/#F and the differential probability is deg(l) + 1/#F , for
messages consisting of at most l field elements.

For the pseudo-dot-product based hash function NHT, which is the core of the UMAC, the
collision probability is 2−tw, where the parameters t and w are defined before. For Auth256
the collision probability is at most 2−256 and differential probability is at most 2−255.

Universal hash function families have many applications in cryptography including construc-
tions of message authentication code (MAC), authenticated encryption and disk encryption
schemes among others.

2.2 Message Authentication Code

The notion of MAC is several decades old. So, there is an extensive literature on this topic.
Most MAC schemes specify a single value for the tag length. In this thesis, we address the
following question. Is it possible to have MAC schemes where the tag length can vary? Here
we mainly discuss those works which are directly related to our work.

Wegman and Carter proposed [110] the following method of using an AXU hash function
to construct a MAC scheme. Let {Hτ}τ be an AXU hash function family such that the
output of Hτ is n-bit; let {FK}K be a pseudo-random function family where FK maps n-bit
strings to n-bit strings. Roughly speaking, the function family {FK}K is considered to be
pseudo-random if a resource limited adversary is unable to distinguish it from a uniform
random function from {0, 1}n to {0, 1}n. Formal definition is provided in the subsequent
chapter. Using H and F a construction of a MAC scheme is the following. Using the key
(K, τ), a nonce-message pair (N,M) is mapped to the n-bit tag FK(N) ⊕ Hτ (M). Since
then it has been used in several important and practical MAC schemes, such as UMAC [20]
and Poly1305-AES [13]. From a theoretical point of view, the security of the Wegman-Carter
scheme was later analysed by Shoup [103] and Bernstein [14]. Recently, the optimality of
Bernstein’s bound was established in [79, 88].

The problem of tag length variability has been briefly mentioned about 15 years ago [107]
in the context of UMAC [71]. Since then, to the best of our knowledge, the only proposal
of a variable tag length MAC is KMAC [69]. KMAC is based on a sponge function called
KECCAK [17] and it does not use nonce.

The point that tag lengths can vary in MAC schemes depending on the application has
been noted in [96] where the problem of determining an economically optimal tag length has
been considered from a game theoretic point of view. This is completely different from the

12 A Brief Survey of the Literature

problem considered in this thesis.

Other Types of MACs: Here we have considered MAC schemes based on universal
hash functions. Note that there are several MAC schemes based on primitives other than
universal hash functions. Some popular examples are HMAC [9] based on collision resistant
hash functions, CMAC [44] based on block cipher mode of operation, KMAC [69] based on
sponge functions. On many systems HMAC is expected to be faster than CMAC, as collision
resistant hash functions are usually faster than block ciphers. On the other hand, CMAC can
be preferred over HMAC for short length messages or if there is special hardware support for
the underlying block cipher. In terms of efficiency the universal hash function based Wegman-
Carter MAC is superior to HMAC or CMAC. As far as security guarantees are concerned, the
security of HMAC can be proved assuming certain properties on the underlying hash function.
The security of CMAC depends on the security provided by the underlying block cipher. For
universal hash function based MACs concrete security proofs can be given depending on
the low collision or differential probability bound of the underlying hash function. On the
other hand, none of HMAC, CMAC or KMAC uses nonce, whereas Wegman-Carter MACs use
nonce. This nonce can be misused in some cases to break the security of this type of MACs.

2.3 Tweakable Enciphering Scheme

Another important application of universal hash functions in cryptography, as mentioned
earlier, is construction of disk encryption schemes. A disk encryption mechanism is an ex-
ample of a length preserving encryption where the length of the ciphertext is equal to the
length of the plaintext. Further, there is another quantity (which is generally the sector ad-
dress in case of disk encryption) which determines the ciphertext but, is itself not encrypted.
In the literature this quantity has been called a tweak. The functionality of a tweak-based
length preserving encryption has been called a tweakable enciphering scheme (TES) [65].

The notion of a tweakable block cipher and its security was formalised by Liskov, Rivest
and Wagner [78]. This was followed by a formalisation of the notion of a tweakable encipher-
ing scheme by Halevi and Rogaway [65]. The paper also described a TES called CMC which
is based on the CBC mode of operation. A subsequent work [66] by the same authors intro-
duced a TES called EME which is a parallelisable mode of operation of a block cipher. EME
was extended to handle arbitrary length messages by Halevi [62] and the resulting scheme
was called EME∗. The EME family of TESs does not require finite field multiplication. The
main cost of encryption is roughly two block cipher calls per block of the message.

Construction of a TES using a counter based mode of operation of a block cipher and
a Horner type hash function was first proposed by McGrew and Fluhrer [81]. This scheme
was called XCB. A later variant [83] of XCB was proposed to improve efficiency and reduce
key size. Various security problems for XCB have been pointed out [32].

There have been a number of works proposing different constructions of TESs. Examples
are PEP [36], ABL [84], HCTR [109], HCH [37], TET [63] and HEH [98]. An improved
security analysis of HCTR has been done later [35]. A generalisation of EME using a general
masking scheme has been proposed [97].

Tweakable Enciphering Scheme 13

Most of the TES proposals in the literature, including the ones that have been standard-
ised are modes of operations of a block cipher and use both the encryption and the decryption
functions of the underlying block cipher. The possibility of constructing a TES using only the
encryption function of a block cipher has been suggested first in [100]. The work was more
at a conceptual level using generic components and some unnecessary operations. It did not
provide any specific instantiation or implementation. Subsequent to [100], the constructions
AEZ [67] and FMix [19] proposed single key TESs using only the encryption function of the
block cipher. FMix is a sequential scheme while AEZ is parallelisable.

The possibility of constructing TESs from stream ciphers has been considered [100].
Concrete proposals and detailed FPGA implementations of stream cipher based TESs have
been described [34].

While disk encryption is a very important application of a TES, the full functionality
of a TES is much more broader than just disk encryption. For the specific case of disk
encryption, messages are contents of a sector and so are fixed length strings. A TES can
have a more general message space consisting of binary strings of different lengths. Similarly,
in the case of disk encryption, the tweak is a sector address and can be encoded using a short
fixed length string. More generally, the tweak space in a TES can also consist of strings of
different lengths or even consist of vectors of strings. The idea of having associated data to
be a vector of strings was earlier proposed [95] in the context of deterministic authenticated
encryption. AEZ [67] provides a conceptual level description of how to handle a vector of
strings as tweak using an almost XOR universal hash function to process the vector. A
generic security bound is provided in terms of the collision probability of the hash function.
No concrete proposal for the hash function is provided.

Another line of investigation has been the construction of ciphers that can securely enci-
pher their own keys [64, 10]. A generic method is known [10] which converts a conventional
TES to one which can be proved to be secure even under the possibility of encrypting its
own key. This generic method has been applied to EME2 [10]. We note that the method
can equally well be applied to the construction FAST [29].

IEEE [3] has standardised two tweakable enciphering schemes, namely EME2 and XCB.
Essentially, EME2 is the variant EME∗ [62] while the standardised version of XCB is a vari-
ant [83] of the original scheme [81]. Both EME2 and XCB are patented algorithms. To the
best of our knowledge, till date there is no unpatented algorithm which has been standard-
ised. An earlier IEEE standard is XTS [2] which has also been standardised [46] by NIST
of USA. This is based on the XEX construction of Rogaway [94]. XTS is not a TES and
the security provided by XTS is not adequate for disk encryption application. Rogaway [1]
himself mentioned that XTS only provides light security and should be preferred only when
there is an overriding concern for speed.

One of the problems considered in this thesis is on cryptanalysis of several TESs against a
quantum adversary. Hence, in the next section we give a brief overview of some relevant
previous works.

14 A Brief Survey of the Literature

2.4 Post Quantum Cryptography

An important line of works involving a significant portion of the community at present is the
post-quantum cryptography. As the availability of large-scale quantum computers appears
to be only a matter of time now, cryptographers almost in every branch of cryptography are
in search of primitives that will be able to resist quantum adversaries. Different quantum
adversarial models and the notion of security against such adversaries have been formalised
in [21, 22, 105, 40, 49, 25, 6]. Public-key cryptography based on factoring and the discrete
logarithm problem will be completely broken by Shor’s algorithm [102]. Sensing the massive
impact quantum algorithms are going to have on public-key cryptography, NIST, back in
2017, had already started the process of inviting ideas and evaluating them in order to
standardise quantum-safe public-key cryptosystems. The process is referred to as post-
quantum cryptography standardization [4] and is currently in its third round.

For symmetric key ciphers, exhaustive key search will be speeded up by a quadratic
factor using Grover’s algorithm [56]. A series of works have shown the applicability of Si-
mon’s period finding quantum algorithm [104] to cryptanalysis of certain modes of operation.
Whereas a 3-round Fiestel cipher with internal permutations is secure against any chosen
plaintext attack on the classical computer, it can be distinguished efficiently from a random
permutation by a polynomial quantum algorithm. This algorithm has been proposed in [75]
and uses Simon’s algorithm. Simon’s algorithm has also been used to show [76] that the
quantum version of the Even-Mansour cipher is insecure. Anand et al. have used [7] this pe-
riod finding quantum algorithm in cyptanalysis of some modes of operation like CBC, CFB
and XTS. The work [68] by Kaplan et al. has shown its applicability to cryptanalysis of
several other symmetric cryptosystems. These include many widely used modes of operation
for authentication and authenticated encryption, viz. CBC-MAC, PMAC, GMAC, GCM,
OCB etc. A generalisation of Simon’s algorithm has been proposed [23] and used to mount a
key-recovery attack on the authenticated encryption algorithm AEZ [67] against a quantum
adversary. This line of work on cryptanalysis of symmetric-key primitives has been taken
forward in [42]. These attacks require quantum access to the cryptographic algorithm. More
recently, there has been work [24] on developing attacks based on offline Simon’s algorithm
which do not need to make quantum queries.

Chapter 3

Preliminaries and Background

In this chapter, we fix the notation which are used in several parts of the thesis. Some nota-
tion are problem specific and have been set in the beginning of the corresponding chapter.

Throughout the thesis, F will denote a finite field. The two standard operations over F are
multiplication and addition. For α, β ∈ F, the product (resp. sum) of α and β will be
denoted as αβ (resp. α + β) as is conventional.

Throughout the thesis, n is a positive integer. In most of the cases we have considered the
underlying field to be GF (2n), where GF (2n) is the finite field of 2n elements. We will denote
GF (2n) by F2n . Using a fixed irreducible polynomial of degree n over GF (2) to represent
F2n , the elements of F2n can be identified with the binary strings of length n. Viewed in this
manner, an n-bit binary string will be considered to be an element of F2n . GF (2n) is a field
of characteristic two. The addition operation over F2n will be denoted by ⊕; The additive
identity of F2n will be denoted as 0 and will be represented as 0n; the multiplicative identity
of F2n will be denoted as 1 and will be represented as 0n−11.

For n = 128, let F2n be represented as GF (2)[x]/ψ(x) where ψ(x) = x128⊕x7⊕x2⊕x⊕1.
The 128-bit string α is considered to be a polynomial α(x) ∈ GF (2)[x]. Let β be a 128-bit
string representing the polynomial β(x) = xα(x) mod ψ(x). The string β can be obtained
from the string α as β = (α � 1) ⊕ (msb(α) · 135). Over F2n , this operation corresponds
to the ‘multiply by x’ map and has been called a doubling operation [94]. For n = 256, the
irreducible polynomial is ψ(x) = x256 ⊕ x10 ⊕ x5 ⊕ x2 ⊕ 1.

Let p be a prime. The finite field GF (pn) will be denoted as Fpn . More details about this
field will be provided in the chapter where it is used.

• Let α and β be two strings from any finite field F.

• The length of α will be denoted as len(α). If α is a binary string, then len(α) is the
number of bits in α.

• The concatenation of α and β will be denoted as α||β.

• For an integer i with 0 ≤ i < 2n, binn(i) denotes the n-bit binary representation of
i.

• Let α be a non-empty binary string.

• msb(α) denotes the most significant bit of α.

• For a non-negative integer λ, msbλ(α) denotes the λ most significant bits of α.

• For 0 < i ≤ len(α), firsti(α) will denote the first (or, the most significant) i bits of
α.

15

16 Preliminaries and Background

• formatn(α) denotes (α1, α2, . . . , αm) where α = α1||α2|| · · · ||αm, m = dlen(x)/ne,
len(αi) = n for 1 ≤ i ≤ m − 1 and 1 ≤ len(αm) ≤ n. In other words, formatn(α)
divides the string α into m − 1 n-bit blocks α1, . . . , αm−1 and a possibly partial
last block αm.

• For any polynomial q(x), the degree of it is represented by deg(q).

3.1 Universal Hashing

Let M, G and T be finite non-empty sets. Let {Hτ}τ∈T be an indexed family of functions
such that for each τ ∈ T, Hτ : M → G. The index set T is considered to be the set of
all keys and a particular τ from T is considered to be the key for Hτ . The sets M and
G are respectively the message and the digest spaces. We define two kinds of probabilities
associated with such a function family.

Collision probability: For distinct m,m′ ∈ M, the collision probability of {Hτ}τ∈T for
the pair (m,m′) is defined to be Prτ [Hτ (m) = Hτ (m

′)].

Differential probability: Suppose G is an additively written group. For distinct m,m′ ∈
M and any g ∈ G, the differential probability of {Hτ}τ∈T for the triplet (m,m′, g) is
defined to be Prτ [Hτ (m)−Hτ (m

′) = g].

In the above, the probabilities are taken over uniform random choices of τ from T.
These probabilities may depend on the lengths of m and m′. Suppose L is the maximum

of the lengths of the elements inM. Let εc : {0, . . . , L}2 → [0, 1] be a function such that the
collision probability for any (m,m′) is at most εc(len(m), len(m′)). Then the family {Hτ}τ∈Θ

is said to be εc-almost universal (εc-AU). Similarly, let εd : {0, . . . , L}2 → [0, 1] be a
function such that the differential probability for any (m,m′, g) is at most εd(len(m), len(m′)).
Then the family {Hτ}τ∈Θ is said to be εd-almost XOR universal (εd-AXU).

3.1.1 Polynomial Hashing

For ` ≥ 0, the polynomial Hornerτ (m1,m2, · · · ,m`) in the variable τ with m1, . . . ,m` ∈ F is
defined as follows:

If ` = 0, then Hornerτ () = 0; and for ` > 0,

Hornerτ (m1,m2, · · · ,m`)
= m1τ

`−1 +m2τ
`−2 + · · ·+m`−1τ +m`

= (((m1τ +m2)τ +m3)τ + · · ·+m`−1)τ +m`.

 (3.1)

Note that computing Horner on ` field elements requires `− 1 additions and `− 1 multipli-
cations.

It is well known that {Hornerτ}τ∈F, is ((` − 1)/#F)-AU. Further, the hash function
{τHornerτ}τ∈F is (`/#F)-AXU. These bounds on the collision and differential probabilities
are under the assumption that the maximum length of any input message can be at most `.

Adversarial Model 17

3.1.2 BRW Hashing

In [15], Bernstein defined a family of polynomials based on previous work by Rabin and
Winograd [91], later called the BRW polynomials in [98]. For ` ≥ 0, BRWτ (m1,m2, · · · ,m`)
with m1, . . . ,m` ∈ F is a polynomial in the variable τ and is defined as follows:

• BRWτ () = 0;
• BRWτ (m1) = m1;
• BRWτ (m1,m2) = m1τ +m2;
• BRWτ (m1,m2,m3) = (τ +m1)(τ 2 +m2) +m3;
• BRWτ (m1,m2, · · · ,m`)

= (τ k +mk)× BRWτ (m1, · · · ,mk−1) + BRWτ (mk+1, · · · ,m`);
if k ∈ {4, 8, 16, 32, · · · } and k ≤ ` < 2k.

Suppose ` ≥ 3. Following [15], it can be shown that BRWτ (m1, . . . ,m`) can be computed
using b`/2c multiplications and blg `c additional squarings to compute τ 2, τ 4,

Let d(`) denote the degree of BRWτ (m1, . . . ,m`). Then d(`) = 2blg `c+1 − 1 [15] and so
d(`) ≤ 2`− 1 where the bound is achieved if and only if ` = 2a for some a ≥ 2 and d(`) = `
if and only if ` = 2a+1 − 1 for some a ≥ 1.

It has been proved in [15] that the map from F` to F[τ] given by

(m1, . . . ,m`) 7−→ BRWτ (m1, . . . ,m`)

is injective. As a consequence, the hash function {BRWτ}τ∈F, BRWτ : (m1, . . . ,m`) 7→
BRWτ (m1, . . . ,m`) is (d(`)/#F)-AU. Further, the hash function {τBRWτ}τ∈F, τBRWτ :

(m1, . . . ,m`) 7→ τ · BRWτ (m1, . . . ,m`) is (d(`)+1
#F)-AXU. Again, these bounds are under the

assumption that the maximum length of any input message can be at most `. As d(`) ≤ 2`−1,
we can also say that the the hash function {BRWτ} is ((2`−1)/#F)-AU and the hash function
{τBRWτ} is (2`

#F)-AXU.

3.2 Adversarial Model

In this thesis, the security analysis of some of the schemes uses the following adversarial
model. An adversary A is a possibly probabilistic algorithm with access to one or more
oracles. The output of an adversary is a single bit. The notation AO1,O2,... ⇒ 1 denotes the
fact that A outputs the bit 1 after interacting with the oracles O1,O2, The interaction
of A with its oracles is allowed to be adaptive, i.e., the adversary is allowed to choose an
oracle and a query to be made to this oracle based on the responses it has received to its
previous queries.

The important parameters of an adversary are its running time T, the number of queries
q that it makes to all its oracles and its query complexity σ. The definition query complexity
may vary from case to case.

The bulk of the actual security analysis will be in the information theoretic sense which
in particular means that there is no restriction on the resources of the adversary. For such
analysis, it is sufficient to consider the adversary to be a deterministic algorithm.

18 Preliminaries and Background

3.3 Pseudo-Random Function

Let D, R and K be finite non-empty sets. Let {FK}K∈K be a keyed family of functions where
for each K ∈ K, FK : D → R. Here K is the keyspace, D is the domain and R is the range.

Informally speaking, the function family {FK}K∈K is considered to be pseudo-random if a
resource limited adversary is unable to distinguish it from a uniform random function from D
to R. In other words, for a randomly chosen K ∈ K, on distinct inputs, the outputs of FK(·)
appear independent and uniformly distributed to a computationally bounded adversary. This
is formalised in the following manner.

We consider an adversary A which has access to an oracle O, which is written as AO. A
adaptively sends queries to O and receives appropriate responses. We will assume that A
does not repeat a query. At the end of the interaction, A outputs a bit. The adversary is
allowed to perform computations and also has access to private random bits.

Let (K
$← K : AFK(·) ⇒ 1) denote the event that K is chosen uniformly at random from

K and the adversary produces 1 after interacting with the oracle FK(·). Let $(·) be a function
chosen uniformly at random from the set of all functions from D to R. An equivalent and
more convenient view of $ is the following. For distinct elements X1, . . . , Xq from D, the
elements $(X1), . . . , $(Xq) are independent and uniformly distributed elements of R. Let
(A$(·) ⇒ 1) denote the event that the adversary produces 1 after interacting with the oracle
$(·).

The advantage of A in breaking the pseudo-randomness of {FK}K∈K is defined as follows.

Adv
prf
F (A) = Pr

[
K

$← K : AFK(·) ⇒ 1
]
− Pr

[
A$(·) ⇒ 1

]
. (3.2)

The probabilities are over the randomness of A, the choice of K and the randomness of $(·).
Suppose that A makes a total of q queries sending a total of σ bits in all the queries. By

Adv
prf
F (T, q, σ) we denote the maximum of Adv

prf
F (A) over all adversaries A taking time at

most T, making at most q queries and sending at most σ bits in all its queries. The function

family {FK}K∈K (or, more simply F) is said to be a (T, q, σ, ε)-PRF if Adv
prf
F (T, q, σ) ≤ ε.

Some of our constructions require pseudo-random function mapping n-bit strings to n-
bit strings. More precisely, {FK}K∈K needs to be a family of functions, where for K ∈ K,
FK : {0, 1}n → {0, 1}n. In this case, it is possible to instantiate F using the encryption (or
the decryption) function of a block cipher. In particular, one may use the encryption function
of AES to instantiate F . This, however, is an overkill, since the invertibility property of the
block cipher is not required for being a pseudo-random function.

3.3.1 Counter Mode

Generally, the PRF F can handle only fixed length strings. The manner in which longer
strings are handled is shown for the PRF {FK}K∈K, where for K ∈ K, FK : {0, 1}n → {0, 1}n.
The method can be extended to other PRFs with suitable mapping of the underlying input
field into binary extension field.

Message Authentication Code 19

Let α be a non-empty binary string. For K ∈ K and s ∈ {0, 1}n, we define CtrK,s(α) in
the following manner.

CtrK,s(α) = (s1 ⊕ α1, . . . , sm−1 ⊕ αm−1, firstr(sm)⊕ αm) (3.3)

where (α1, . . . , αm)← formatn(α), len(αm) = r and si = FK(s⊕ binn(i)). This variant of the
counter mode was originally used in HCTR [109]. Note that the PRF F is used to define
the counter mode, but, the counter mode itself as defined here is not a PRF.

3.4 Message Authentication Code

Here we consider nonce-based message authentication code (MAC) algorithms. Such a MAC
scheme is parameterised by a secret key K ∈ K, which is shared between the sender and
the receiver. The sender runs a tag generation algorithm which takes as input a nonce
N ∈ N and a message M ∈M and generates a output tag ∈ T . The sender sends the tuple
(N,M, tag) to the receiver. Upon receiving it, the receiver runs a verification algorithm on
this tuple, which checks the authenticity of the message-tag pair. If the tuple passes this
verification test, then the receiver accepts it; otherwise he rejects it.

Formally a nonce-based MAC scheme is a pair MAC = (MAC.Gen,MAC.Verify) where

• MAC.Gen : K ×N ×M→ T and

• MAC.Verify : K ×N ×M× T → {true, false};

where K, N ,M are finite non-empty sets and T is the set containing all valid tags. The set
K is called the key space, N is called the nonce space, M is called the message space and
T is called the tag space. The output of MAC.Verify is either true indicating that the input
is accepted or false indicating that the input is rejected.

In Chapter 6, we have added a new feature to this framework and have discussed the
corresponding security notion.

3.5 Tweakable Enciphering Scheme

A tweakable enciphering scheme is a pair TES = (TES.Encrypt,TES.Decrypt) where

TES.Encrypt,TES.Decrypt : K × T × P → P

for finite non-empty sets K, T and P . The set K is called the key space, T is called the
tweak space and P is called the message/ciphertext space. We write TES.EncryptK(·, ·) (resp.
TES.DecryptK(·, ·)) to denote TES.Encrypt(K, ·, ·) (resp. TES.Decrypt(K, ·, ·)). The functions
TES.Encrypt and TES.Decrypt satisfy the following two properties. For K ∈ K, T ∈ T and
P ∈ P ,

1. TES.DecryptK(T,TES.EncryptK(T, P)) = P ;

20 Preliminaries and Background

2. len (TES.EncryptK(T, P)) = len(P).

The first property states that the encryption and the decryption functions are inverses of each
other while the second property states that the length of the ciphertext is equal to the length
of the plaintext. In other words, TES.EncryptK(T, ·) is a length preserving permutation of
P .

The corresponding security notion is discussed in detail in Chapter 7.

Chapter 4

Evaluating Bernstein-Rabin-Winograd
Polynomials

The Bernstein-Rabin-Winograd (BRW) polynomials were introduced by Bernstein in [15],
as an important stepping stone towards constructing an efficient AXU family of hash func-
tions. We note in particular that the evaluation of BRW polynomials requires about half the
number of multiplications required for evaluating usual polynomial based AXU functions.
So, designing AXU families based on BRW polynomials is particularly attractive from a
practical point of view.

A BRW polynomial is constructed from ` ≥ 0 field elements. It is a univariate polynomial
and evaluating it for ` field elements requires b`/2c field multiplications.

The definition of BRW polynomials is recursive. A recursive implementation is possible,
but, will not be efficient. To the best of our knowledge, till date no algorithm has been
proposed for efficiently evaluating BRW polynomials where ` can vary.

In this chapter, we present an efficient non-recursive algorithm for evaluating BRW poly-
nomials constructed from ` field elements without any restriction on `. The algorithm pro-
cesses its input in a left-to-right fashion and maintains a set of partial results computed from
the elements that have been processed. For a fixed t ≥ 2, the algorithm reads the next 2t

elements and updates the partial results. The subtlety of the algorithm is in the manner in
which the partial results are maintained and updated.

For ` ≥ 3, Bernstein [15] showed that a BRW polynomial defined using ` field elements
can be evaluated using b`/2c field multiplications. Typically, a field multiplication consists of
a basic multiplication followed by a reduction operation. We show that a BRW polynomial
defined using ` ≥ 3 field elements can be evaluated using b`/2c basic multiplications and
1 + b`/4c reduction operations. This is a significant reduction in the number of operations.

As a practical contribution, we propose two new hash functions, namely BRW128 and
BRW256 which are based on BRW polynomials over the fields F2128 and F2256 respectively.
These hash functions have been implemented using the Intel intrinsics instruction set avail-
able on modern Intel processors. Timing results for BRW128 compare favourably to those
of a highly optimised implementation by Gueron [60] of Horner’s rule based hash function.

This chapter is based on the work [52].

4.1 Preliminaries

Here we consider GF (pn), the finite field of pn elements. As mentioned earlier it is denoted
here by Fpn .

For X, Y ∈ Fpn , let mult(X, Y) denote the operation used to compute the product XY .
The operation mult(X, Y) consists of two distinct steps. The first step consists of a basic or

21

22 Evaluating Bernstein-Rabin-Winograd Polynomials

an unreduced multiplication unreducedMult(X, Y) which returns a value Z and the second
step consists of an operation reduce(Z), i.e.,

mult(X, Y) = reduce(unreducedMult(X, Y)). (4.1)

Depending on the value of n, there are two scenarios.

1. Case n = 1. In this case, the corresponding field is Fp and its elements are represented
by the integers 0, . . . , p−1. Given two integers X and Y in {0, . . . , p−1}, the operation
unreducedMult(X, Y) performs the integer multiplication of the integers X and Y . The
result Z is then at most (p − 1)2 and the operation reduce(Z) returns the element
W ∈ {0, . . . , p− 1} such that W ≡ Z mod p.

2. Case n > 1. In this case, using a fixed irreducible polynomial ψ(x) of degree n over
Fp, the elements of Fpn can be identified with the polynomials over Fp of degrees
less than n. Given two such polynomials X = X(x) and Y = Y (x), the operation
unreducedMult(X, Y) performs the polynomial multiplication of X(x) and Y (x) and
returns the result Z = Z(x) which is a polynomial of degree at most 2(n− 1) over Fp.
The operation reduce(Z) returns W = W (x) such that the degree of W (x) is less than
n and W (x) ≡ Z(x) mod ψ(x).

Though BRW polynomials have been introduced in detail in Chapter 3, here we repeat
them with reference to the particular field Fpn . This is because these polynomials are at the
center of this chapter and hence all specific details about them need to be emphasised.

BRW polynomials: For ` ≥ 0, let BRW : Fpn × (Fpn)` → Fpn be the function defined
below, where, we write BRWz(· · ·) to denote BRW(z, · · ·).

• BRWz() = 0;
• BRWz(M1) = M1;
• BRWz(M1,M2) = M1z +M2;
• BRWz(M1,M2,M3) = (z +M1)(z2 +M2) +M3;
• BRWz(M1,M2, . . . ,M`) = (zk +Mk)× BRWz(M1, . . . ,Mk−1) + BRWz(Mk+1, . . . ,M`);

if k ∈ {4, 8, 16, 32, . . .} and k ≤ ` < 2k, i.e. k is the largest power of 2 such that ` ≥ k.

BRWz(M1,M2, . . . ,M`) is a polynomial in z whose coefficients are defined from M1, . . . ,M`.
We will use the convention that BRWz(M1,M2, . . . ,M`) denotes a polynomial in the indeter-
minate z while BRWτ (M1,M2, . . . ,M`) is a field element obtained by substituting the field
element τ for z in BRWz(M1,M2, . . . ,M`). We consider the following problem:

Given τ,M1, . . . ,M` ∈ Fpn compute BRWτ (M1,M2, . . . ,M`).

Informally, we will say that the evaluation of BRWτ (M1,M2, . . . ,M`) is an `-block BRW
computation.

The following facts have been proven in [15].

1. For ` ≥ 3, BRWτ (M1, . . . ,M`) can be computed using b`/2c field multiplications and
blg `c additional field squarings to compute τ 2, τ 4,

Algorithm 23

2. Let d(`) denote the degree of BRWz(M1, . . . ,M`). For ` ≥ 3, d(`) = 2blg `c+1− 1 and so
d(`) ≤ 2` − 1; the bound is achieved if and only if ` = 2a; and d(`) = ` if and only if
` = 2a − 1; for some integer a ≥ 2.

3. The map from (Fpn)` to Fpn [z] given by (M1, . . . ,M`) 7−→ BRWz(M1, . . . ,M`) is
injective. Consequently, for (M1, . . . ,M`), (M

′
1, . . . ,M

′
`) ∈ (Fpn)`, (M1, . . . ,M`) 6=

(M ′
1, . . . ,M

′
`), and a uniform random τ from Fpn ,

Pr[BRWτ (M1, . . . ,M`) = BRWτ (M
′
1, . . . ,M

′
`)] ≤

d(`)

pn
≤ 2`− 1

pn
. (4.2)

It follows from (4.2) that for a fixed value of `, {BRWτ} is ((2`− 1)/pn)-AU. In a similar
manner, it can be shown that for a fixed value of `, the family {τ · BRWτ} is (2`/pn)-AXU.
In Section 4.4 we show how to build an AXU family from BRW polynomials whose domain
is the set of all bit strings of lengths less than 2n.

4.2 Algorithm

The definition of BRW polynomials is recursive. It is easy to write a recursive program which
takes as inputs τ and M1, . . . ,M`, ` ≥ 0 and produces as output BRWτ (M1, . . . ,M`). The
function will make two calls to itself on inputs of smaller sizes leading to a binary recursion
tree. Such a recursive program, however, will have substantial overhead of stack maintenance
and will not lead to a fast implementation. Due to this reason, we do not consider a recursive
implementation of BRW.

Suppose ` is a fixed integer. For ` = 1, 2 or 3, the evaluation of BRWτ (M1, . . . ,M`) is
given by a simple formula. For ` = 4, 5, 6, 7 and 8, the definitions of BRWτ (M1, . . . ,M`) are
the following:

BRWτ (M1, . . . ,M4) = (τ 4 +M4)× BRWτ (M1,M2,M3);
BRWτ (M1, . . . ,M5) = (τ 4 +M4)× BRWτ (M1,M2,M3) +M5;
BRWτ (M1, . . . ,M6) = (τ 4 +M4)× BRWτ (M1,M2,M3) +M5τ +M6;
BRWτ (M1, . . . ,M7) = (τ 4 +M4)× BRWτ (M1,M2,M3) + (τ +M5)(τ 2 +M6) +M7;
BRWτ (M1, . . . ,M8) = (τ 8 +M8)× BRWτ (M1, . . . ,M7).

(4.3)

Again, it is easy to write a sequence of field operations (additions and multiplications) to
evaluate BRWτ (M1, . . . ,M`) in each of the above cases. Continuing, this process can be
carried out for any `. This process, however, is not general as separate code is required for
each value of `. In [30], implementations of this approach over F2128 and F2256 have been
reported for ` = 1, . . . , 31.

The goal is to obtain a non-recursive algorithm to evaluate BRWτ (M1, . . . ,M`) which
works for any `. Suppose the input blocks are M1, . . . ,M`. From a practical point of view
as well as for an efficient implementation, it is desirable to process the blocks in a left-to-
right manner. A typical left-to-right algorithm would maintain a partial result X obtained
by processing blocks M1, . . . ,Mi and would read the next block Mi+1 and update X. We

24 Evaluating Bernstein-Rabin-Winograd Polynomials

discuss the difficulties faced when trying to use this approach to design an algorithm to
evaluate BRW.

Suppose that i blocks have been processed and i ≡ 0 mod 4 and the partial result com-
puted so far is X. If there are exactly i + 1 blocks to be processed, then the final result
is X + Mi+1; if there are exactly i + 2 blocks to be processed, then the final result is
X +Mi+1τ +Mi+2; and if there are exactly i+ 3 blocks to be processed, then the final result
is X + (τ + Mi+1)(τ 2 + Mi+2) + Mi+3. This shows that reading only the next unprocessed
block, i.e., one block look-ahead is not sufficient. So, the question arises as to how many
look-ahead blocks are needed?

There is another difficulty. Suppose, there are exactly i + 4 blocks to be processed.
Since i is a multiple of 4, so is i + 4. If i + 4 is a power of two, then the final result is
(X + (Mi+1 + τ)(Mi+2 + τ 2) + Mi+3)(Mi+4 + τ i+4). On the other hand, if i + 4 is not a
power of two, then to obtain the final result, (Mi+4 + τ i+4) is not to be multiplied with
(X + (Mi+1 + τ)(Mi+2 + τ 2) + Mi+3); instead, it has to be multiplied with the result Y
corresponding to the last (i+ 4− k) blocks where k ∈ {4, 8, 16, 32, · · · } and k ≤ i+ 4 < 2k.
Since only X is kept as the partial result of processing the blocks M1, . . . ,Mi, Y is not
available. This indicates that more than one partial result has to be maintained. The
corresponding question is how many partial results need to be maintained and how are these
to be updated?

We develop a non-recursive algorithm to compute BRWτ (M1, . . . ,M`) for any ` ≥ 1. The
number of look-ahead blocks can be 2t for any t ≥ 2. Relevant partial results are stored in
an array. The subtlety of the algorithm arises from the maintenance and updation of the
partial results. In particular, we note that the number of partial results to be stored is not
monotonically increasing with `.

Evaluation of BRW polynomials requires field multiplications. As discussed in Section 8.1,
a field multiplication is a composition of an unreducedMult operation followed by a reduce
operation. The number of unreducedMult operations required in evaluating BRW is necessar-
ily equal to the number of field multiplications. On the other hand, it is possible to reduce
the number of reduce operations. To be able to do this, we define a modification of BRW
polynomials where the final result is not reduced.

• unreducedBRWz() = 0;
• unreducedBRWz(M1) = M1;
• unreducedBRWz(M1,M2) = unreducedMult(M1, z) +M2;
• unreducedBRWz(M1,M2,M3) = unreducedMult((z +M1), (z2 +M2)) +M3;
• unreducedBRWz(M1,M2, . . . ,Mk)

= unreducedMult(reduce(unreducedBRWz(M1, . . . ,Mk−1)), (zk +Mk)),
if k ∈ {4, 8, 16, 32, . . .};

• unreducedBRWz(M1,M2, . . . ,M`)
= unreducedBRWz(M1, . . . ,Mk) + unreducedBRWz(Mk+1, . . . ,M`),
if k ∈ {4, 8, 16, 32, . . .} and k < ` < 2k.

EvalBRW given in Algorithm 1 shows how to compute BRWτ (M1, . . . ,M`) for any ` ≥ 1.
The following parameters and data structures are used in the algorithm.

Algorithm 25

t: an integer ≥ 2 which is a parameter to the algorithm;
isDef[0, . . .]: a bit array;
res[0, . . .]: an array where partial results are stored;

keyPow[0, . . .]: the j-th location stores τ 2j .

The interpretation of the two arrays isDef and res is as follows: isDef[j] = 1 if and only if
res[j] holds a valid partial result.

The array isDef can be implemented using a b-bit unsigned integer: the initialisation in
Steps 8 to 13 can be done simply as isDef ← 0; the value of the j-th position can be obtained
as ((isDef � j) and 1) (required in Steps 10 and 30); the value of the j-th bit can be set to
1 using isDef ← (isDef or (1� j)) (required in Step 22); the j least significant bits of isDef
can be set to 0 using isDef ← (isDef and (1b � j)) (required in Steps 15 to 17).

At Step 8, EvalBRW calls unreducedBRW on 2t−1 blocks while at Step 28, EvalBRW calls
unreducedBRW on η blocks where 0 ≤ η < 2t. The algorithm assumes that there is a separate
subroutine which returns the evaluation of unreducedBRW on η blocks for 0 ≤ η < 2t. Since t
is a fixed parameter of the algorithm, the computation of unreducedBRW on η blocks can be
done by a fixed sequence of field operations without any loop or branch statement (essentially
as a straight line program). For η = 1, 2, 3, the definition of unreducedBRWτ (X1, . . . , Xη) is
simple and the code to directly evaluate the expression is also quite simple. If t = 2, then
the code to compute unreducedBRW on η blocks for η = 0, 1, 2 and 3 is sufficient. For t ≥ 3,
similar code for direct computation of unreducedBRW on η blocks can be worked out from
the definition. For F2n with n = 128 or n = 256, such implementations have been reported
in [30] for t = 5 and correspondingly 1 ≤ η ≤ 31.

For ` ≥ 4 and ` ≡ 0 mod 4, evaluating BRWτ (M1, . . . ,M`) requires τ and τ 2 along with
various other powers of τ . These powers appear in a particular sequence as shown in the
following figure.

` powers of τ
4 4
8 4, 8

12 4, 8, 4
16 4, 8, 4, 16
20 4, 8, 4, 16, 4
24 4, 8, 4, 16, 4, 8
28 4, 8, 4, 16, 4, 8, 4
32 4, 8, 4, 16, 4, 8, 4, 32
36 4, 8, 4, 16, 4, 8, 4, 32, 4
40 4, 8, 4, 16, 4, 8, 4, 32, 4, 8
44 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4
48 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16
52 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16, 4
56 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16, 4, 8
60 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16, 4, 8, 4
64 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16, 4, 8, 4, 64

26 Evaluating Bernstein-Rabin-Winograd Polynomials

Algorithm 1 Evaluation of BRWτ (M1, . . . ,M`), ` ≥ 1.

1: function EvalBRW(τ,M1, . . . ,M`)
2: keyPow[0]← τ ;
3: if ` > 2 then
4: for j = 1 to blg `c do
5: keyPow[j]← keyPow[j − 1]2;
6: end for;
7: end if ;
8: isDef[0]← 0;
9: if ` ≥ 2t then

10: for j = 1 to blg `c − t + 1 do
11: isDef[j]← 0;
12: end for;
13: end if ;
14: for i = 1 to b`/2tc do
15: res[0]← unreducedBRWτ (M2t·i−(2t−1), . . . ,M2t·i−1);
16: j ← 1; tmp← res[0];
17: while (isDef[j] = 1) do
18: tmp← tmp + res[j];
19: j ← j + 1;
20: end while;
21: res[j]← unreducedMult(reduce(tmp),M2t·i + keyPow[j + t− 1]);
22: isDef[j]← 1;
23: for k = 0 to j − 1 do
24: isDef[k]← 0;
25: end for;
26: end for;
27: r = ` mod 2t;
28: tmp← unreducedBRWτ (M`−r+1, . . . ,M`);
29: for j = 1 to blg `c − t + 1 do
30: if isDef[j] = 1 then
31: tmp← tmp + res[j];
32: end if ;
33: end for;
34: return reduce(tmp);
35: end function.

Algorithm 27

The diagonal of the above array shows a regular structure1. Further, each row is equal to
the prefix of the diagonal upto that row. It may be helpful to keep the above picture in mind
while going through Algorithm EvalBRW.

Example: We provide an example of the execution of Algorithm EvalBRW. The purpose
is to show how the array res is used to store partial results and how it is updated. For
simplicity of understanding the basic flow of the algorithm, in the example, we ignore the
efficiency issue of unreduced multiplications and instead consider all multiplications (and
BRW computations) to be reduced. Let t = 2 and ` = 16. Then the powers of τ that are
required are τ , τ 2, τ 4, τ 8 and τ 16. These powers are computed in Steps 2 to 7 and stored in
appropriate locations of keyPow. Steps 8 to 13 initialise the required locations of the array
isDef to 0. With ` = 16 and t = 2, the loop in Steps 14 to 26 runs for i = 1, . . . , 4. The value
of r computed at Step 27 is 0 and so Steps 28 to 33 have no effect on the final result. So,
the main computation is done in Steps 14 to 26. These steps successively compute partial
results and store them in various locations in res and also set the corresponding locations of
isDef to 1. The details are as follows.

i operations Step(s)

1

res[0]← BRWτ (M1,M2,M3) 15
tmp← res[0] 16
tmp← res[0] 17-20
res[1]← tmp · (τ 4 +M4) 21
isDef[1]← 1 22
isDef[0]← 0 23-25

2

res[0]← BRWτ (M5,M6,M7) 15
tmp← res[0] 16
tmp← res[0] + res[1] 17-20
res[2]← tmp · (τ 8 +M8) 21
isDef[2]← 1 22
isDef[0]← 0, isDef[1]← 0 23-25

3

res[0]← BRWτ (M9,M10,M11) 15
tmp← res[0] 16
tmp← res[0] 17-20
res[1]← tmp · (τ 4 +M12) 21
isDef[1]← 1 22
isDef[0]← 0 23-25

4

res[0]← BRWτ (M13,M14,M15) 15
tmp← res[0] 16
tmp← res[0] + res[1] + res[2] 17-20
res[3]← tmp · (τ 16 +M16) 21
isDef[3]← 1 22
isDef[0]← 0, isDef[1]← 0, isDef[2]← 0 23-25

1One of the reviewers has observed that this forms a fractal.

28 Evaluating Bernstein-Rabin-Winograd Polynomials

The various assignments to different locations of res have the following effects.

• For i = 1, the assignment res[1]← tmp·(τ 4+M4) ensures that res[1] stores BRWτ (M1, . . . ,M4).

• For i = 2, the assignment tmp← res[0]+res[1] ensures that tmp stores BRWτ (M5,M6,M7)+
BRWτ (M1, . . . ,M4). Subsequently, the assignment res[2] ← tmp · (τ 8 + M8) ensures
that res[2] stores BRWτ (M1, . . . ,M8).

• For i = 3, the assignment res[1]← tmp·(τ 4+M12) ensures that res[1] stores BRWτ (M9, . . . ,M12).

• For i = 4, the assignment tmp ← res[0] + res[1] + res[2] ensures that tmp stores
BRWτ (M13,M14,M15) + BRWτ (M9, . . . ,M12) + BRWτ (M1, . . . ,M8). Subsequently, the
assignment res[3]← tmp · (τ 16 +M16) ensures that res[3] stores BRWτ (M1, . . . ,M16).

As mentioned earlier, the above explanation does not take into account the efficiency im-
provements obtained by separating a field multiplication into an unreduced multiplication
and a reduction operation. It is only intended to help the reader to get an idea of how the
algorithm proceeds with the computation. Detailed proofs of correctness and complexity of
the complete algorithm are provided later.

Remarks:

1. At each iteration of the loop from Steps 14 to 26, not all the contents of the array
res store useful information. In the above example, for i = 2, res[2] contains useful
information, but, res[1] is undefined (since isDef[1] = 0). Similarly, for i = 4, res[3]
contains useful information while res[1] and res[2] are undefined. This suggests that it
may be possible to obtain a more compressed representation of res which avoids having
undefined locations. One of the reviewers has outlined a method which implements
res using a stack and tentatively reduces the overall size of res by half. The trade-
off is that some additional conditional statements are required which may lead to a
somewhat slowdown of the resulting code. A possible future work can explore the
details of this idea.

2. In EvalBRW, the number of blocks ` is assumed to be known. The value of ` is used
to determine the maximum value of the loop counter at Step 7, to compute the value
of r at Step 27 and in the computation of unreducedBRW at Step 28. It is possible to
modify the algorithm to work in the case where the number of blocks is not known at
the beginning. The idea is the following. While the buffer is not empty, attempt to read
the next 2t blocks from the buffer. If 2t blocks are indeed retrieved, then these blocks
are processed in the same manner as in EvalBRW; if less than 2t blocks are retrieved,
then these are the last blocks in the buffer and the “wrapping up” procedure is executed
in a manner also similar to that of EvalBRW. With this idea, it is straightforward to
write out the details of an algorithm which does not require to know the value of ` at
the outset. Hence, we do not provide an explicit description of such an algorithm.

Correctness and Complexity 29

4.3 Correctness and Complexity

The material in this section is divided into three parts. In the first part, we prove some results
on the structure of unreducedBRW. These results are required in the proofs of correctness
and complexity of EvalBRW. The second part proves the correctness of EvalBRW while the
third part proves the complexity of EvalBRW.

4.3.1 Structural Properties of unreducedBRW

We start with the following simple result.

Lemma 1. For ` ≥ 0, BRWz(M1, . . . ,M`) = reduce(unreducedBRWz(M1, . . . ,M`)).

Proof. From the definition of BRW, we obtain the following.

1. For k ∈ {4, 8, 16, 32, . . .}, BRWz(M1, . . . ,Mk) = (zk +Mk)× BRWz(M1, . . . ,Mk−1).

2. For k ∈ {4, 8, 16, 32, . . .} and k < ` < 2k, BRWz(M1, . . . ,M`) = BRWz(M1, . . . ,Mk) +
BRWz(Mk+1, . . . ,M`).

Using these two facts and (4.1), the result follows from the definition of unreducedBRW by
induction on `.

The next result is more complicated and forms the intuition behind the correctness of
EvalBRW.

Lemma 2. Let t ≥ 2 be an integer. For any ` ≥ 2t, write⌊
`

2t

⌋
= 2k1 + 2k2 + · · ·+ 2ks , (4.4)

where k1, . . . , ks are integers such that k1 > k2 > · · · > ks ≥ 0. Let K0 = 0, K1 = 2t+k1,
K2 = 2t+k1 + 2t+k2 , . . . , Ks = 2t+k1 + · · ·+ 2t+ks. Then

unreducedBRWz(M1, . . . ,M`)

= unreducedBRWz(MK0+1, . . . ,MK1) + unreducedBRWz(MK1+1, . . . ,MK2)

+ · · ·+ unreducedBRWz(MKs+1, . . . ,M`). (4.5)

Proof. Let r = ` mod 2t. For 1 ≤ i ≤ s, Ki −Ki−1 = 2t+ki and `−Ks = `− 2t(2k1 + 2k2 +
· · ·+ 2ks) = r. So, the first s terms on the right hand side of (4.5) consist of unreducedBRW
on 2t+k1 , 2t+k2 , . . . , 2t+ks blocks respectively while the last term on the right hand side of (4.5)
consists of unreducedBRW on r blocks. If r = 0, then the last term is not present. As a
result, the number of terms on the right hand side of (4.5) equals s or s + 1 depending on
whether 2t divides ` or not.

The proof of (4.5) is by induction on s ≥ 1.

30 Evaluating Bernstein-Rabin-Winograd Polynomials

Base step: For s = 1, b`/2tc = 2k1 and K1 = 2t+k1 . So, 2t+k1 ≤ ` < 2t+k1 + 2t ≤ 2t+k1+1

and we can write

unreducedBRWz(M1, . . . ,M`)

= unreducedBRWz(M1, . . . ,M2t+k1) + unreducedBRWz(M2t+k1+1, . . . ,M`)

= unreducedBRWz(MK0+1, . . . ,MK1) + unreducedBRWz(MK1+1, . . . ,M`).

This proves the base case.
Induction step: Fix s > 1 and suppose that (4.5) holds for all ` ≥ 2t such that b`/2tc is
the sum of s− 1 powers of two.

Now consider ` such that b`/2tc = 2k1 + · · · + 2ks with k1 > k2 > · · · > ks ≥ 0. Since
s > 1, ` > 2t+k1 = K1. From k1 > k2 > · · · > ks ≥ 0, it follows that ki ≤ k1− i+ 1 for i ≥ 2;
and k1 ≥ s− 1. So,

` = 2t(2k1 + 2k2 + · · ·+ 2ks) + r

< 2t+k1 + 2t+k2 + 2t+k3 + · · ·+ 2t+ks + 2t (as r = ` mod 2t)

≤ 2t+k1 + 2t+k1−1 + 2t+k1−2 + · · ·+ 2t+k1−(s−1) + 2t

= 2t+k1 + 2t+k1−s+1(2s−2 + 2s−3 + · · ·+ 21 + 1) + 2t

= 2t+k1 + 2t+k1−s+1(2s−1 − 1) + 2t

≤ 2t+k1 + 2t+k1 − 2t + 2t (as k1 − s+ 1 ≥ 0)

= 2t+k1+1.

So, we have K1 = 2t+k1 < ` < 2t+k1+1 = 2K1. Since t ≥ 2 and ` ≥ 2t ≥ 4, it follows from the
definition of unreducedBRW that

unreducedBRWz(M1,M2, . . . ,M`)

= unreducedBRWz(M1, . . . ,MK1) + unreducedBRWz(MK1+1, . . . ,M`). (4.6)

Let `′ = `−K1 = 2t+k2 + · · ·+ 2t+ks + r and note that (MK1+1, . . . ,M`) consists of `′ blocks.
Also, b`′/2tc = 2k2 + · · · + 2ks , i.e., b`′/2tc can be written as sum of s − 1 powers of two.
Since s > 1, we have s − 1 ≥ 1 which implies that `′ ≥ 2t. So, we can apply the induction
hypothesis to unreducedBRWz(MK1+1, . . . ,M`) to obtain

unreducedBRWz(MK1+1, . . . ,M`)

= unreducedBRWz(MK1+1, . . . ,MK2) + · · ·+ unreducedBRWz(MKs+1, . . . ,M`). (4.7)

Combining (4.7) with (4.6) gives the desired result.

The next result determines the number of unreducedMult and reduce operations required
in the evaluation of unreducedBRW. These counts are independent of EvalBRW and are
obtained from the recursive definition of unreducedBRW.

Lemma 3. For ` ≥ 1, evaluating unreducedBRWτ (M1, . . . ,M`) requires b`/2c unreducedMult
operations and b`/4c reduce operations. Additionally, for ` > 2, blg `c squarings are required
to compute the relevant powers of τ .

Correctness and Complexity 31

Proof. From the definition of unreducedBRW, the statement is clearly true for ` = 1, 2, 3.

For ` ≥ 4, the proof follows by induction on `.

If ` = 2l, then from the definition of unreducedBRW the number of unreducedMult (resp.
reduce) operations is 1 + b(2l − 1)/2c = 2l−1 (resp. 1 + b(2l − 1)/4c = 2l−2).

If ` is not a power of two, then ` can be written as ` = 2l + `1 with `1 < 2l. In this case,
from the definition of unreducedBRW the number of unreducedMult (resp. reduce) operations
is 2l−1 + b`1/2c = b`/2c (resp. 2l−2 + b`1/4c = b`/4c).

4.3.2 Correctness of EvalBRW

For the correctness proof of EvalBRW some preliminary results are required.

Lemma 4. For ` > 2, Steps 3 to 7 of EvalBRW ensure that keyPow[j] = τ 2j for j =
1, . . . , blg `c.

Lemma 5. Let t ≥ 2 and ` ≥ 2t. Let the loop counter i ∈ {1, . . . , imax}, with imax = b`/2tc,
in Step 7 of EvalBRW be written as

i = 2ki,1 + 2ki,2 + · · ·+ 2ki,si (4.8)

where ki,1 > ki,2 > · · · > ki,si ≥ 0. Let Ki,0 = 0, Ki,1 = 2t+ki,1 , Ki,2 = 2t+ki,1+2t+ki,2 , . . . , Ki,si =
2t+ki,1 + · · ·+ 2t+ki,si . After i iterations of the loop given by Steps 7 to 26, the following prop-
erties hold. For l ∈ {1, . . . , si},

isDef[j] =

{
1 if j = 1 + ki,l;
0 otherwise.

res[1 + ki,l] = unreducedBRWτ (MKi,l−1+1, . . . ,MKi,l).

Proof. The proof is by induction on i ≥ 1.

Base step: For i = 1, si = 1, ki,1 = 0 and Ki,1 = 2t. The entries of the array isDef are set to
0 before Step 7. So, the while loop given by Steps 10 to 13 is not executed and in Step 22,
j has the value it was assigned in Step 9 which is 1. As a result, isDef[1] = isDef[1 + ki,1] is
set to 1 in Step 22 and all other entries of isDef remain 0.

In Step 8, res[0] is set to unreducedBRWτ (M1, · · · ,M2t−1) and in Step 9, tmp is set
to res[0]. In Step 14, the value of j is 1 and res[1] = res[1 + ki,1] is set to the value
unreducedMult(reduce(tmp),M2t + keyPow[t]). The correctness of this value is seen from
the following simple computation.

unreducedMult(reduce(tmp),M2t + keyPow[t])

= unreducedMult(reduce(res[0]),M2t + τ 2t) (from Lemma 4)

= unreducedMult(reduce(unreducedBRWτ (M1, . . . ,M2t−1)),M2t + τ 2t)

= unreducedBRWτ (M1, . . . ,M2t) (from the definition of unreducedBRW)

= unreducedBRWτ (MKi,0+1, . . . ,MKi,1).

32 Evaluating Bernstein-Rabin-Winograd Polynomials

Inductive step: Suppose that the lemma holds for i = 2ki,1 + 2ki,2 + · · · + 2ki,si ≥ 1. We
have to show that it holds for i+ 1. Note that

i+ 1 = 2ki,1 + 2ki,2 + · · ·+ 2ki,si + 1

= 2ki+1,1 + 2ki+1,2 + · · ·+ 2ki+1,si+1 .

Below we derive the expressions for ki+1,1, . . . , ki+1,si+1
in terms of ki,1, . . . , ki,si .

By the induction hypothesis, after i iterations, for l = 1, . . . , si, isDef[j] = 1 if and only
if j = 1 + ki,l and res[1 + ki,l] = unreducedBRWτ (MKi,l−1+1, . . . ,MKi,l).

There are two cases.
Case i is even: In this case ki,si > 0 and so si+1 = si + 1, ki+1,1 = ki,1, . . . , ki+1,si = ki,si
and ki+1,si+1

= 0 resulting in Ki+1,l = Ki,l for l = 1, . . . , si and Ki+1,si+1
= Ki,si + 2t.

Since ki,si > 0, at the end of the i-th iteration, isDef[1] = 0 and so in the (i + 1)-
st iteration, the while loop in Steps 10 to 13 is not executed. As a result, in Step 22,
isDef[1] = isDef[1 + ki+1,si+1

] is set to 1. No other value of isDef is changed. So, the stated
conditions on isDef after i+ 1 iterations hold.

By a similar reasoning, at the end of the (i+ 1)st iteration, res[1] = res[1 + ki+1,si+1
] gets

set to unreducedBRWτ (MKi+1,si
+1, . . . ,MKi+1,si+1

). No other value of res changes and so the
stated conditions on res after i+ 1 iterations hold.
Case i is odd: In this case ki,si = 0. Let ξ ∈ {1, . . . , si} be the minimum value such that
ki,ξ = si− ξ. Since ki,ξ > ki,ξ+1 > · · · > ki,si , it follows that for l = ξ, . . . , si− 1, ki,l = si− l.
Further, if ξ > 1, then ki,ξ−1 > ki,ξ + 1 = si − ξ + 1. So,

i = 2ki,1 + · · ·+ 2ki,ξ−1 + 2si−ξ+1 − 1 and i+ 1 = 2ki,1 + · · ·+ 2ki,ξ−1 + 2si−ξ+1.

Consequently, si+1 = ξ and ki+1,l = ki,l for l = 1, . . . , ξ − 1 and ki+1,ξ = si − ξ + 1.
From the induction hypothesis, after the ith iteration, isDef[1 + ki,l] = 1 for l = 1, . . . , si

and 0 elsewhere. This in particular means that isDef[1] = isDef[2] = · · · = isDef[1+si−ξ] = 1
and isDef[2 + si − ξ] = 0 after the ith iteration. So, during the (i + 1)st iteration, at the
end of the while loop given by Steps 10 to 13, the value of j is 2 + si − ξ. This results in
setting isDef[1 + ki+1,ξ] = isDef[2 + si − ξ] = 1. The for loop given by Steps 15 to 17 results
in setting the values of isDef[0], . . . , isDef[1 + si− ξ] to 0. No other value of isDef is changed.
As a result, at the end of the (i + 1)st iteration, isDef[1 + ki+1,l] = isDef[1 + ki,l] = 1 for
l = 1, . . . , ξ − 1; isDef[1 + ki+1,ξ] = 1 and all other positions of isDef contain 0. This shows
that the stated conditions on isDef after i+ 1 iterations hold.

From the values of ki+1,1 to ki+1,ξ, it follows thatKi+1,0 = Ki,0 = 0, Ki+1,1 = Ki,1, . . . , Ki+1,ξ−1 =
Ki,ξ−1 and Ki+1,ξ = Ki+1,ξ−1 + 2si−ξ+t+1. As a result, for l = 1, . . . , ξ − 1,

res[1 + ki+1,l] = res[1 + ki,l]

= unreducedBRWτ (MKi,l−1+1, . . . ,MKi,l)

= unreducedBRWτ (MKi+1,l−1+1, . . . ,MKi+1,l
).

So, we only need to argue that res[1+ki+1,ξ] contains unreducedBRWτ (MKi+1,ξ−1+1, . . . ,MKi+1,si+1
)

which is an application of unreducedBRW on 2si−ξ+t+1 blocks.

Correctness and Complexity 33

Since the total number of blocks processed up to and including the ith iteration is i · 2t,
we have Ki,si = i · 2t and similarly, Ki+1,si+1

= (i+ 1)2t. After Step 8, in (i+ 1)st iteration,

res[0] = unreducedBRWτ (M2t·i+1, . . . ,M2t(i+1)−1)

= unreducedBRWτ (MKi,si+1, . . . ,MKi+1,si+1
−1).

Note that

Ki,ξ = Ki,ξ−1 + 2t+ki,ξ = Ki,ξ−1 + 2t+si−ξ

Ki,ξ+1 = Ki,ξ + 2t+ki,ξ+1 = Ki,ξ + 2t+si−ξ−1

· · · · · · ·
Ki,si = Ki,si−1 + 2t+ki,si = Ki,si−1 + 2t.

From the induction hypothesis, at the end of the ith step

res[1 + si − ξ] = res[1 + ki,ξ] = unreducedBRWτ (MKi,ξ−1+1, . . . ,MKi,ξ)

res[1 + si − ξ − 1] = res[1 + ki,ξ+1] = unreducedBRWτ (MKi,ξ+1, . . . ,MKi,ξ+1
)

· · · · · · ·
res[1 + si − si] = res[1 + ki,si] = unreducedBRWτ (MKi,si−1+1, . . . ,MKi,si

).

In the (i+ 1)st iteration, at the end of the while loop given by Steps 10 to 13, the variable
tmp contains the sum res[0] + · · · + res[1 + si − ξ]; in Step 14, reduce(tmp) is multiplied
(without reduction) to (M2t(i+1) + τ 21+si−ξ+t

) and the value is assigned to res[2 + si − ξ]. We
have

res[0] + res[1] + · · ·+ res[1 + si − ξ]
= unreducedBRWτ (MKi,si+1, . . . ,MKi+1,si+1

−1)

+unreducedBRWτ (MKi,si−1+1, . . . ,MKi,si
)

+ · · ·+ unreducedBRWτ (MKi,ξ−1+1, . . . ,MKi,ξ)

= unreducedBRWτ (MKi,ξ−1+1, . . . ,MKi+1,si+1
−1) (from Lemma 2).

So, at the end of (i+ 1)st iteration,

res[1 + ki+1,ξ] = res[2 + si − ξ]
= unreducedMult(reduce(res[0] + · · ·+ res[1 + si − ξ]),M2t(i+1) + τ 21+si−ξ+t

)

= unreducedMult(reduce(unreducedBRWτ (MKi,ξ−1+1, . . . ,MKi+1,si+1
−1)),

MKi+1,si+1
+ τ 21+si−ξ+t

)

(s)
= unreducedBRWτ (MKi,ξ−1+1, . . . ,MKi+1,si+1

)

= unreducedBRWτ (MKi+1,ξ−1+1, . . . ,MKi+1,ξ
).

The equality in Step (s) above follows from the definition of unreducedBRW.
This completes the induction step and the proof.

34 Evaluating Bernstein-Rabin-Winograd Polynomials

Next we prove the correctness of EvalBRW.

Theorem 1. For any t ≥ 2 and any ` ≥ 1, EvalBRW(τ,M1, . . . ,M`) correctly computes
BRWτ (M1, · · · ,M`).

Proof. In Step 34, EvalBRW returns reduce(tmp). From Lemma 1, it follows that it is suffi-
cient to show that tmp in Step 34 is equal to unreducedBRWτ (M1, · · · ,M`).

If ` < 2t, then the for loop from Step 7 to 26 is not executed. In Step 28, tmp gets
assigned to unreducedBRWτ (M1, . . . ,M`) which remains unchanged till Step 34. This proves
the result for ` < 2t.

So, suppose ` ≥ 2t and as in Lemma 2, let b`/2tc be written as b`/2tc = 2k1 + · · · + 2ks

and K0 = 0, K1 = 2t+k1 , K2 = 2t+k1 + 2t+k2 , . . . , Ks = 2t+k1 + · · · + 2t+ks . Let r = ` mod 2t

so that ` = 2t(2k1 + · · ·+ 2ks) + r implying Ks = `− r. From Lemma 2, we can write

unreducedBRWτ (M1, . . . ,M`)

= unreducedBRWτ (MK0+1, . . . ,MK1) + · · ·+ unreducedBRWτ (MKs−1+1, . . . ,MKs)

+unreducedBRWτ (MKs+1, . . . ,M`)

= unreducedBRWτ (MK0+1, . . . ,MK1) + · · ·+ unreducedBRWτ (MKs−1+1, . . . ,MKs)

+unreducedBRWτ (M`−r+1, . . . ,M`). (4.9)

The loop counter i of the for loop in Step 7 runs from 1 to imax = b`/2tc. Applying
Lemma 5 to imax, we obtain that after imax iterations, for l ∈ {1, . . . , s},

isDef[j] =

{
1 if j = 1 + kl;
0 otherwise.

res[1 + kl] = unreducedBRWτ (MKl−1+1, . . . ,MKl).

From ` = 2t(2k1 + · · · + 2ks) + r and 0 ≤ r < 2t, we have 2t(2k1 + · · · + 2ks) ≤ ` <
2t(2k1 + · · · + 2ks + 1). Since k1 > k2 > · · · > ks, we obtain 2t+k1 ≤ ` < 2t+k1+1 and so
k1 = blg `c − t. As a result, we get that the maximum positions of isDef and res that are
accessed by the algorithm are both equal to 1 + blg `c− t. This justifies the upper bound on
the loop counter of the for loops in Steps 10 and 29.

In Step 28, tmp is initialised to unreducedBRWτ (M`−r+1, . . . ,M`). For j = 1, . . . , 1 +
blg `c − t, the for loop in Steps 29 to 33 adds res[j] to tmp if and only if isDef[j] = 1. As a
result, after this for loop

tmp = unreducedBRWτ (MK0+1, . . . ,MK1) + · · ·+ unreducedBRWτ (MKs−1+1, . . . ,MKs)

+unreducedBRWτ (M`−r+1, . . . ,M`).

From (4.9), we have that in Step 34, tmp = unreducedBRWτ (M1, . . . ,M`) as desired.

4.3.3 Complexity of EvalBRW

The space complexity of EvalBRW is determined by the maximum sizes of the arrays res, isDef
and keyPow (plus a constant number of variables). The sizes of these arrays are determined
in the proof of Theorem 1 and we record these in the following result.

Correctness and Complexity 35

Proposition 1. Let t ≥ 2. For correctly computing BRWτ (M1, . . . ,M`), it is sufficient for
the arrays isDef and res to have length blg `c − t + 2. Further, for ` > 2, keyPow stores
1 + blg `c elements of Fpn.

Proof. The proof of Theorem 1 shows that the maximum positions of isDef and res that are
accessed are both equal to blg `c − t + 1. Since both the arrays start from position 0, the
length is blg `c − t + 2.

We now consider the time complexity of EvalBRW(τ,M1, . . . ,M`). For this, we separately
count the number of unreducedMult and reduce operations that are required.

Theorem 2. For ` ≥ 2, EvalBRW(τ,M1, . . . ,M`) requires b`/2c unreducedMult operations
and 1 + b`/4c reduce operations. Additionally, for ` > 2, blg `c squarings are required to
compute the relevant powers of τ .

Proof. The final output returned by EvalBRW(τ,M1, . . . ,M`) at Step 34 is reduce(tmp). So,
it is sufficient to show that computing tmp up to Step 34 requires b`/2c unreducedMult
operations and b`/4c reduce operations.

The call to unreducedBRW in Step 8 is on 2t − 1 blocks while the call to unreducedBRW
in Step 28 is on r blocks. From Lemma 3, we have that for any fixed t ≥ 2, a straight line
code to compute unreducedBRWτ in Step 8 requires 2t−1 − 1 unreducedMult operations and
2t−2 − 1 reduce operations. Similarly, the call to unreducedBRWτ in Step 28 requires br/2c
unreducedMult operations and br/4c reduce operations.

Let imax = b`/2tc. The counter of the for loop in Step 7 runs up to imax. Then ` = imax ·
2t +r, where r = ` mod 2t is computed in Step 27. Since t ≥ 2, we have (`−r)/2 = imax ·2t−1

and (`− r)/4 = imax · 2t−2 to be both integers.
First consider the number of unreducedMult operations required for computing tmp at

Step 34. Each iteration of the for loop given by Steps 7 to 26 makes one call to unreducedBRW
on 2t − 1 blocks and one unreducedMult operation. The call to unreducedBRW operations
requires 2t−1 − 1 unreducedMult operations. So, the number of unreducedMult operations
required during the entire for loop given by Steps 7 to 26 is imax(1 + 2t−1− 1). Additionally,
br/2c unreducedMult operations are required by the call to unreducedBRW in Step 28. As a
result, the total number of unreducedMult operations required to compute tmp required at
Step 34 is

imax · 2t−1 + br/2c = (`− r)/2 + br/2c = b`/2c.

Since (` − r)/2 is an integer, ` and r are either both even or both odd. If both are even,
then the last equality is immediate while if they are both odd, then writing (` − r)/2 =
(`− 1)/2− (r − 1)/2 shows the last equality.

For the number of reduce operations required for computing tmp at Step 34, a reasoning
similar to above shows that the required number is

imax · 2t−2 + br/4c = (`− r)/4 + br/4c = b`/4c.

In this case, for the last equality, we have to use the fact that (` − r)/4 is an integer
implies that ` ≡ r mod 4 so that if ` mod 4 = a = r mod 4, then (` − r)/4 + br/4c =
(`− a)/4− (r − a)/4 + (r − a)/4 = (`− a)/4 = b`/4c.

36 Evaluating Bernstein-Rabin-Winograd Polynomials

In Algorithm EvalBRW, the main intuition for reducing the number of reduce operations
is a lazy strategy, i.e. do not reduce immediately after each multiplication and instead apply
the reduce operation to an unreduced quantity only when this quantity is an operand in
a multiplication operation. Theorem 2 provides the formal argument that for an `-block
computation, 1 + b`/4c reduce operations are sufficient for all values of t ≥ 2.

One of the reviewers has suggested the following example to see why b`/4c reduce oper-
ations are sufficient for ` blocks. Suppose t = 3 so that blocks are processed in groups of
8. Let A1, . . . , A8 be the next 8 blocks. Let B1 = τ + A1, B2 = τ 2 + A2, B4 = τ 4 + A4,
B5 = τ + A5 and B6 = τ 2 + A6. Then the computation associated with these 8 blocks is
either

X+((B1·B2+A3)B4+B5·B6+A7)(τ 8+A8), or (X+(B1·B2+A3)B4+B5·B6+A7)(τ 2k+A8),

where X is an unreduced partial result and in the second expression τ 2k is an appropriate
power of τ . For the above computation, one reduce operation is required for B1 · B2 and
another for the either the quantity ((B1 ·B2 +A3)B4 +B5 ·B6 +A7) or the quantity (X+(B1 ·
B2 +A3)B4 +B5 ·B6 +A7) before the multiplication to (τ 8 +A8) or (τ 2k +A8) respectively.
The result is kept in unreduced form. So, for processing 8 blocks, only 2 reduce operations
are sufficient.

The role of the parameter t: Note that from Theorem 2, the number of operations
required by EvalBRW does not depend on t. The parameter t determines the number of
blocks in the unreducedBRW call at Step 8. As mentioned earlier, it is assumed that there
is a subroutine for this computation and the subroutine performs this computation as a
straight line code without any loop. In other words, the value of t determines the extent of
loop unrolling. To some extent, using a greater amount of loop unrolling leads to improved
efficiency as indicated by the results of our implementations.

4.4 Design of Hash Function

We propose a hash function based on BRW polynomials. The description uses the terminol-
ogy padn(·), which is defined as follows.

padn(X): For a binary string X and n > 0, if X is the empty string, then padn(X) will
denote the string 0n; while if X is non-empty, then padn(X) will denote X||0i, where
i ≥ 0 is the minimum integer such that n divides len(X||0i).

Note that the notations binn(·) and formatn(·), used in Algorithm 2 are defined in Chapter 3.
The hash function that we define uses BRW computation over F2n . Using a fixed irre-

ducible polynomial over GF (2) of degree n, it is possible to identify the elements of F2n with
the elements of {0, 1}n. In the following, we will implicitly assume this identification.

For a positive integer n, let

D =
2n−1⋃
i=0

{0, 1}i. (4.10)

Design of Hash Function 37

We define the hash function BRWn in the following manner.

BRWn : {0, 1}n ×D → {0, 1}n. (4.11)

Here D is the message space of BRWn. The computation of BRWn is shown in Algorithm 2.

Algorithm 2 Computation of BRW based hash function.

1: function BRWn(τ,X)
2: (X1, . . . , X`)← formatn(padn(X));
3: Y ← EvalBRW(τ,X1, . . . , X`);
4: Z ← τ(τY ⊕ binn(len(X)));
5: return Z;
6: end function.

We will write BRWnτ (·) to denote BRWn(τ, ·).
The following result shows that the differential probability of BRWn is small.

Proposition 2. Let X,X ′ ∈ D, X 6= X ′ and α ∈ F2n. Then for a uniform random τ ∈ F2n,

Pr[BRWnτ (X)⊕ BRWnτ (X
′) = α] ≤ 2 max(`, `′) + 1

2n
(4.12)

where ` (resp. `′) denotes the number of blocks in the output of formatn(padn(X)) (resp.
formatn(padn(X ′))).

Proof. Let (X1, . . . , X`) = formatn(padn(X)), Y = EvalBRW(τ,X1, . . . , X`), BRWnτ (X) =
Z = τ(τY ⊕ binn(len(X))). Similarly, for X ′, let (X ′1, . . . , X

′
`′) = formatn(padn(X ′)), Y ′ =

EvalBRW(τ,X ′1, . . . , X
′
`′) and BRWnτ (X

′) = Z ′ = τ(τY ′ ⊕ binn(len(X ′))).
Y (resp. Y ′) is a polynomial in τ of degree d(`) (resp. d(`′)). Consequently, Z (resp. Z ′)

is a polynomial in τ of degree d(`) + 2 (resp. d(`′) + 2). Assume without loss of generality
` ≥ `′, so that max(`, `′) = `.

Suppose that X and X ′ are of different lengths. Then the coefficients of τ in Z and Z ′

are different. Consequently Z ⊕ Z ′ ⊕ α is a non-zero polynomial of degree at most d(`) + 2.
So, suppose that X and X ′ have the same length. Then ` = `′. Since X 6= X ′, it follows

that (X1, . . . , X`) 6= (X ′1, . . . , X
′
`). By the injectivity of BRW (see Section 8.1), it follows that

the polynomials Y and Y ′ are distinct. Consequently, Z ⊕ Z ′ ⊕ α is a non-zero polynomial
of degree at most d(`) + 2.

In both cases, we have Z⊕Z ′⊕α to be a non-zero polynomial of degree at most d(`)+2.
The probability that a uniform random τ from F2n is a root of this polynomial is at most
(d(`) + 2)/2n ≤ (2`+ 1)/2n. The last inequality follows from the fact that d(`) ≤ 2`− 1 (see
Section 8.1).

Remark: Proposition 2 guarantees low differential probability of {BRWnτ} under the con-
dition that the key τ is chosen uniformly at random from F2n . As mentioned in previous
chapters, one popular method of using an AXU hash function family {Hτ}τ to construct

38 Evaluating Bernstein-Rabin-Winograd Polynomials

a MAC scheme is the following. Using the key (K, τ), a nonce-message pair (N,M) is
mapped to the n-bit tag FK(N) ⊕ Hτ (M); here let the digest size of {Hτ}τ be n-bit and
{FK}K be either a pseudo-random function family or a pseudo-random permutation family,
mapping n-bit strings to n-bit strings. Consider this MAC scheme with the hash function
instantiated by BRWn, i.e. a nonce-message pair (N,M) is mapped using a key (K, τ) to
FK(N)⊕BRWnτ (M). Here K and τ are independent and this scheme can be analysed under
the condition that τ is uniformly distributed. On the other hand, there could be applications
where the hash key τ is obtained as the output of some other cryptographic primitive. In
this case, the uniform distribution assumption on τ would not be justified.

The above issue is not particular to {BRWnτ} and is relevant for any AXU hash function
family. We consider this issue in some more detail. Suppose X is some cryptographic
functionality built using several components one of which is an AXU family {Hτ}τ where
the key τ of Hτ is derived using a pseudo-random function (PRF) FK . A typical reductionist
security proof for X would provide an upper bound on the advantage of an adversary in
defeating the security of X, in terms of the security bounds of the individual components.
The security bound for X would consist of at least two components – an appropriate security
bound for the PRF F and a bound on the differential probability of H. The security bound
for F will cover the adversary’s advantage in distinguishing the actual distribution of τ from
a uniform random string of the same length. Consequently, this will allow analysing the
differential probability of {Hτ}τ for a uniform random τ .

4.5 Implementation

We report implementations of BRW128 and BRW256. These require the implementations of
EvalBRW over F2n in the two cases of n = 128 and n = 256.

Our target platform for the implementation was the Intel Skylake processor, which sup-
ports the Intel Intrinsics instruction set2. The instruction of particular interest for our
implementation was pclmulqdq, which takes as input two polynomials over GF (2) of de-
grees at most 63 each and returns their product which is a polynomial over GF (2) of degree
at most 126. The two input polynomials fit into 64-bit words while the output polynomial
fits into a 128-bit word.

A field multiplication in F2n consists of a unreducedMult followed by a reduce operation.

1. For each unreducedMult over F2128 , we need to compute the polynomial multiplica-
tion of two polynomials of degrees at most 127 each. Using the schoolbook method
this requires 4 pclmulqdq instructions while using Karatsuba’s algorithm it requires 3
pclmulqdq instructions and some additional XOR instructions. It has been reported
in [60] that on the Skylake processor, the schoolbook method is faster and so we have
used this method.

2. For each unreducedMult over F2256 , we need to compute the polynomial multiplication
of two polynomials of degrees at most 255 each. For this, the schoolbook and Karat-

2https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

Implementation 39

suba’s methods require 16 and 9 pclmulqdq instructions respectively. In this case,
Karatsuba’s method gives better performance [30] and so we have used this method.

For the reduce operation over F2128 , following the procedure described in [58] the reduction
modulo ψ(x) = x128 ⊕ x7 ⊕ x2 ⊕ x ⊕ 1 can be done using 2 pclmulqdq instructions along
with some XORs and shifts. An extension of this procedure [30] for F2256 shows that the
reduction modulo ψ(x) = x256 ⊕ x10 ⊕ x5 ⊕ x2 ⊕ 1 requires 4 pclmulqdq instructions along
with some XORs and shifts.

EvalBRW has the parameter t. For the implementation, we have considered t = 2, 3, 4
and 5. This requires implementation of unreducedBRW as a straight line program for ` blocks
with 1 ≤ ` ≤ 31. Implementations of BRW for 1 to 31 blocks have been reported in [30].
Here we use these implementations with the modification that the final reduction is not
applied so that unreducedBRW is computed instead of BRW.

The code for our implementations of BRW128 and BRW256 is publicly available3.

4.5.1 Timings

For measuring time, we followed the strategy of [74], which we briefly describe below. On x86
machines, there is a time-stamp counter (TSC) which increments once per CPU cycle. The
difference in the values of TSC before and after a group of operations provides the number
of cycles required to execute this group of operations. In the present context, the following
strategy has been used. Fix a value λ and consider M sets of N messages of length λ
bytes. Using the TSC, find the number of cycles required to process each set of N messages.
This provides a set of M values and the median of these values is taken. Recording the
median avoids outliers which arise from possible system interrupts. Dividing this median
by N , represents the number of cycles c required to process a message of length λ. Further,
dividing c by λ, the cycles per byte measure is obtained. Note that before recording timings,
the code to be timed is executed a sufficient number of times so that both the code and the
data are present in the Level 1 cache of the machine. This ensures that the timing results
are not much affected by the time required to access the memory.

The timing measurements were taken on a single core of a machine with Intel Core i7-
6500U Skylake @ 2.5GHz. The operating system was 64-bit Ubuntu-14.04-LTS and the C
codes were complied using GCC version 4.8.4. The corresponding timing results that were
obtained are shown in Tables 4.1 and 4.2. The column headers of the first row provide the
message size in bytes. From the second row onwards, the rows are for different values of t.
The entries in these rows are in cycles per byte.

For n = 128, we provide the timings of POLYVAL [60] for the purpose of comparison. The
code for POLYVAL is essentially a highly optimised implementation of Horner’s rule based
polynomial hash. In particular, it performs a single reduction for every eight polynomial
multiplications and the ordering of the instructions seems to have been done very carefully
so as to minimise the cycle counts.

In contrast, we would like to clarify that we do not claim to have provided the best possible
implementations of BRW128 and BRW256. We have considered the possible algorithmic

3https://github.com/sebatighosh/BRW

https://github.com/sebatighosh/BRW

40 Evaluating Bernstein-Rabin-Winograd Polynomials

Table 4.1: Timing results for BRW128 and POLYVAL.

512 1024 4096 8192 16384 30000
t = 2 0.819 0.611 0.425 0.388 0.368 0.356
t = 3 0.826 0.623 0.444 0.407 0.389 0.379
t = 4 0.787 0.583 0.401 0.364 0.344 0.336
t = 5 0.776 0.552 0.348 0.309 0.287 0.278
POLYVAL 0.786 0.549 0.376 0.347 0.333 0.328

Table 4.2: Timing results for BRW256.

512 1024 4096 8192 16384 30000
t = 2 1.162 0.909 0.675 0.628 0.603 0.587
t = 3 1.118 0.864 0.629 0.581 0.559 0.539
t = 4 1.099 0.841 0.607 0.558 0.533 0.519
t = 5 1.095 0.862 0.619 0.569 0.544 0.529

improvements and the corresponding implementation in Intel intrinsics. For concrete speed-
ups one also needs to consider details of instruction level pipelining issues and also possibly
carry out an implementation in assembly. Since the main goal of our implementation was
to show the practicability of Algorithm EvalBRW, we have not tried to aggresively optimise
the code. Future implementation efforts may attempt such work.

4.6 Summary

In this chapter, we have given an efficient non-recursive algorithm for evaluating BRW poly-
nomials. This is the first non-recursive algorithm to evaluate this polynomial for input of any
length. As recursive implementation has significant overhead, this algorithm, for the first
time gives efficient implementation of BRW polynomials. Besides, this algorithm improves
the so far established complexity of evaluating these polynomials by reducing the number of
field reductions required by a significant number. Actual implementation of a BRW based
hash function where BRW polynomial has been evaluated by this new algorithm shows its
performance superiority over a highly efficient implementation of POLYVAL by Gueron in
high end Intel processors.

Chapter 5

Hash2L: A Fast Two-Level Universal Hash
Function

Two well known universal hash functions based on univariate polynomials are Horner’s rule
based polynomial hashing and BRW (Bernstein-Rabin-Winograd) polynomial based hash
function. Though the computational complexity of BRW polynomial based hashing is signif-
icantly smaller than Horner’s rule based hashing, implementation of BRW polynomials for
variable length messages present significant difficulties.

The definition of BRW polynomial is inherently recursive and the computation for an `-
block message requires two recursive calls on messages consisting of smaller number of blocks.
In principle, the recursion can be simulated in a bottom-up fashion. The major problematic
issue is that even the first recursive call cannot be made unless the length of the whole
message is available. The whole message has to be buffered before even the first message
block can be processed. A second problem is that at each point of the computation, it is
quite complicated to figure out the operands that are to be multiplied. Again, in principle
this can be done, but, actually determining the operands requires additional time.

In this chapter, we investigate the possibility of harnessing the speed of BRW polynomial
based hashing without the associated difficulties in implementation. To this end, our first
observation is that if the number of blocks in a message is a small fixed number, then the
above mentioned difficulties disappear. Making effective use of this observation leads us to
consider a two-level hash design. Suppose BRW is to be applied when the number of blocks is
η. Let us call an η-block message to be a super-block. The input message blocks are divided
into super-blocks and BRW is applied to each super-block. The outputs of these BRW calls
are then combined using a Horner based hashing.

The number of multiplications required for a message consisting of ` super-blocks is about
`η/2 + ` − 1 (the precise count is provided later). Applying Horner to such a message will
require `η − 1 multiplications while BRW will require `η/2 multiplications. By choosing a
suitable value of η, the number of multiplications required by the new hash function can be
made quite close to that of BRW. Such a two-level strategy has the advantage that it avoids
the difficulties associated with implementing BRW on variable length messages.

The idea of two-level (or, multi-level) hashing is not new and has been proposed in the
literature [106, 89, 99]. Two-level hashing in general requires independent keys for each level.
So, applied directly, the hash key will consist of two field elements. For many applications,
it is desirable to have only a single field element as the overall hash key.

An important aspect of our construction is the fact that the hash key consists of a single
field element. Suppose the hash key for the BRW layer is τ . We show that it is possible to
use a suitable power of τ as the key to the Horner layer. Moreover, if η is one less than some
power of two, then the required power of τ can be computed using only one extra squaring
over and above the computations required by BRW.

The underlying field for the new hash function can be any field. In particular, this field

41

42 Hash2L: A Fast Two-Level Universal Hash Function

can be a suitable binary field or, it can be a field of large characteristic such as F2130−5, the
field which has been used in Poly1305.

To make the ideas concrete, we instantiate the two-level hash construction for the binary
fields F2128 and F2256 . For implementing the new hash functions, the basic requirement is
efficient implementation of multiplication over F2n for n equal to either 128 or 256. Being
a binary field, it is possible to utilise the instruction pclmulqdq available in modern Intel
processors for field multiplication. The instruction pclmulqdq multiplies two 64-bit poly-
nomials and returns the 128-bit polynomial as the product. Our implementations for both
F2128 and F2256 are based on the pclmulqdq instruction.

A field multiplication in F2n consists of a polynomial multiplication followed by a reduc-
tion modulo the irreducible polynomial representing the field. Late, or, delayed reduction is
a well known technique for speeding up a group of field multiplications. Essentially, the idea
is to perform several polynomial multiplications, add the results and then perform a single
reduction for the entire group of multiplication. This technique cannot always be applied.
We carefully analyse the structure of BRW and identify the groups of multiplications for
which a single reduction suffices. Our implementations of the hash function for n = 128 and
n = 256 make use of delayed reduction to achieve efficiency improvement.

Several other concrete efficiency issues for BRW have been identified and implemented.
One of these is to perform independent multiplications together so that all the pclmulqdq

instructions for these multiplications can be placed together.
This permits possible utilisation of instruction level pipelining. For n = 128, the im-

plementation of the new hash function is faster than the implementation of GHASH by
Gueron [59]; on the Haswell processor of Intel, we obtain speed improvements of about 23%
to 49%, while on the Skylake processor, the speed improvements are about 25% to 53%.
In [61], Gueron and Lindell have proposed a new nonce misuse-resistant AEAD scheme
called GCM-SIV. This scheme uses a polynomial based hash function called POLYVAL, which
has a highly optimised implementation by Gueron [57]. The implementation of the new hash
function for n = 128 is faster than the aforementioned implementation of POLYVAL by 15%
to 19% on Haswell processors and by 10% to 15% on Skylake processors.

The work by Bernstein and Chou [16] reports the implementation of a pseudo-dot product
based hash function over F2256 . This implementation does not use the pclmulqdq instruction
and is instead based on the Fast Fourier Transform (FFT) algorithm. The work shows that
the hash function can be computed at the cost of 29 bit operations per bit of the digest.
There is, however, a considerable hidden cost of generating the hash key which is as long as
the message. This cost is not accounted for in the 29 bit operations per bit measure given
in [16].

The FFT based multiplication algorithm can also be used with the new hash construc-
tion that we propose. The code for the multiplication algorithm described in [16] is not
publicly available and so we could not carry out a concrete implementation. Instead, we
used the operation counts for direct and inverse FFT, pointwise multiplication and the re-
duction algorithm reported in [16], to derive an expression for the number of bit operations
per bit of the digest for the new hash function. For η = 31, this cost is at most about 46,
while for η = 63 or 127, the cost is lower. The cost of 46 bit operations per bit is higher
than the cost of 29 bit operations per bit reported in [16]. On the other hand, unlike [16],

Combining BRW with Horner 43

in our case there is no hidden cost of generating the hash key. Securely generating a long
hash key will have a significant cost and if this cost is taken into account, then we expect
the total cost in [16] to be significantly more than the 46 bit operations per bit that we obtain.

This chapter is based on the work [30].

5.1 Combining BRW with Horner

Both {Hornerτ} and {BRWτ} use a single key τ ∈ F. The number of multiplications in F
required to evaluate the two functions, though, are different. For a message consisting of `
field elements, Horner can be evaluated using ` − 1 multiplications, while for ` ≥ 3, BRW
requires b`/2c multiplications plus blog2 `c squarings. In theory, this difference makes BRW
much faster than Horner.

The problem, however, is that the definition of BRW is recursive. It is possible to have a
recursive implementation of BRW. The overhead of such an implementation will nullify the
benefit of lesser number of multiplications. On the other hand, if ` is a fixed integer, then it
is possible to have a very fast non-recursive implementation of BRW.

Horner on the other hand can handle arbitrary values of ` quite easily. So, it makes sense
to try and combine BRW and Horner so that the benefits of both the approaches can be
obtained. One top-level strategy for doing this is the following. Suppose the message is a
bit string which is formatted into a sequence of blocks where each block is an element of
the field F. Divide the sequence of field elements into groups of η blocks (assuming that η
divides the number of blocks in the message). Each such group will be called a super-block.

We fix the value of η. The function BRW is used to process each super-block. Each
invocation of BRW on a superblock produces a field element. These field elements are
processed using Horner. So, there are two levels of the hash function. At the lower level, the
message is formatted into super-blocks and BRW is used to process the super-blocks, while
at the upper level, Horner is used to process the outputs of the BRW invocations. Since
the number of blocks in a super-block is fixed, a fast non-recursive implementation of BRW
can be used to process the super-blocks. A fast implementation of Horner can be used to
combine the outputs of BRW calls. The number of multiplications required by this approach
is a little greater than that of BRW and is significantly smaller than that of Horner.

An important issue that needs to be properly tackled is the size of the key for the
hash function. Generic approaches to multi-level hash [106, 89, 99] require the key to have
independent components for each level of the hash. For a two-level hash, this would normally
require two independent field elements as the key. It is, however, desirable to use a single
field element as the key. We show how this can be done.

Proposition 3. Let η, ` be positive integers. For M ∈ Fη` write M = (M1, . . . ,M`) where

44 Hash2L: A Fast Two-Level Universal Hash Function

each Mi ∈ Fη. We define Gτ (M1, . . . ,M`) to be a polynomial in τ in the following manner.

Gτ (M1, . . . ,M`)

= Hornerτd(η)+1 (BRWτ (M1), . . . ,BRWτ (M`))

= τ (d(η)+1)(`−1)BRWτ (M1) + τ (d(η)+1)(`−2)BRWτ (M2) +

· · ·+ τ (d(η)+1)BRWτ (M`−1) + BRWτ (M`). (5.1)

The following hold for the function G given by (5.1).

1. The degree of G in τ is `d(η) + `− 1.

2. G injectively maps Fη` to F[τ].

Consequently, the hash family {Gτ}τ∈F is ((`d(η) + ` − 1)/#F)-AU and the hash family
{τ Gτ}τ∈F is ((`d(η) + `)/#F)-AXU.

Proof. Since each Mi ∈ Fη, the degree of BRWτ (Mi) is d(η) and so the degree of the poly-
nomial G is (d(η) + 1)(`− 1) + d(η) = `d(η) + `− 1. This proves the first point.

Each Mi ∈ Fη and so for all i, BRWτ (Mi) has degree d(η). Let

BRWτ (Mi) = τ d(η)ci,d(η) + τ d(η)−1ci,d(η)−1 + · · ·+ τci,1 + ci,0

for some ci,d(η), . . . , ci,1, ci,0 ∈ F which depend on Mi. Using this, we write

Gτ (M1, . . . ,M`)

= τ (d(η)+1)(`−1)+d(η)c1,d(η) + · · ·+ τ (d(η)+1)(`−1)+1c1,1 + τ (d(η)+1)(`−1)c1,0

+τ (d(η)+1)(`−2)+d(η)c2,d(η) + · · ·+ τ (d(η)+1)(`−2)+1c2,1 + τ (d(η)+1)(`−2)c2,0

+ · · ·+
+τ (d(η)+1)(`−i)+d(η)ci,d(η) + · · ·+ τ (d(η)+1)(`−i)+1ci,1 + τ (d(η)+1)(`−i)ci,0

+ · · ·+
+τ 2d(η)+1c`−1,d(η) + · · ·+ τ d(η)+2c`−1,1 + τ d(η)+1c`−1,0

+τ d(η)c`,d(η) + · · ·+ τc`,1 + c`,0.

Considered as a polynomial in τ , the coefficients of Gτ (M1, . . . ,M`) are ci,j with 1 ≤ i ≤ `
and 0 ≤ j ≤ d(η). Due to the choice of the key for Horner to be τ d(η)+1, each ci,j is associated
with a unique power of τ .

Let M,M ′ ∈ Fη` with M 6= M ′. Write M ′ = (M ′
1, . . . ,M

′
`) with each M ′

i ∈ Fη. Let
c′i,j be the coefficients of the polynomial Gτ (M

′
1, . . . ,M

′
`). Since M 6= M ′, there is an i

such that Mi 6= M ′
i . From the injectivity property of BRW, it follows that BRWτ (Mi) 6=

BRWτ (M
′
i) and so there is a j ∈ {0, 1, . . . , d(η)} such that ci,j 6= c′i,j. From this it follows

that Gτ (M1, . . . ,M`) 6= Gτ (M
′
1, . . . ,M

′
`). This shows the second point.

Since for distinct M and M ′, Gτ (M1, . . . ,M`) and Gτ (M
′
1, . . . ,M

′
`) are distinct and have

the same degree, it follows that Gτ (M1, . . . ,M`)−Gτ (M
′
1, . . . ,M

′
`) is a non-zero polynomial

of degree at most `d(η) + ` − 1. Consequently, the probability that Gτ (M1, . . . ,M`) is

Combining BRW with Horner 45

Table 5.1: Summary of the features of the basic scheme, Horner and BRW for hashing η`
blocks with η = 2a+1 − 1 for some a ≥ 1.

scheme # sqr # mult AU bound
Horner – η`− 1 (η`− 1)/#F
BRW blg η`c bη`/2c d(η`)/#F
Gτ a + 1 `(η + 1)/2− 1 (η`+ `− 1)/#F

equal to Gτ (M
′
1, . . . ,M

′
`) is the probability that τ is a root of the non-zero polynomial

Gτ (M1, . . . ,M`) − Gτ (M
′
1, . . . ,M

′
`). The number of distinct roots of a non-zero polynomial

over a field is at most its degree from which it follows that the required probability is at
most (`d(η) + `− 1)/#F. This shows the AU property.

For the AXU property, we note that the degree of τ Gτ (M1, . . . ,M`) is `d(η) + `. The
rest of the argument is similar to that of the AU propery.

A crucial point in the above construction and the proof is the choice of the appropriate
power of τ as the key for Horner so that the injectivity of Gτ follows directly from the
injectivity of BRWτ . The key for BRWτ is τ and the degree of BRWτ in τ is d(η). Based on
this, the key for Horner is chosen to be τ d(η)+1. This ensures that during the computation of
Horner, the BRW polynomials arising from distinct super-blocks do not “overlap”.

For η ≥ 3 suppose a ≥ 1 is such that 2a ≤ η < 2a+1. Then d(η) = 2a+1−1. The number of
multiplications required in evaluating (5.1) is given by the number of multiplications required
to evaluate all the BRW invocations and the number of multiplications required to evaluate
the single Horner invocation. Each BRW requires bη/2c multiplications and Horner requires
` − 1 multiplications for a total of `bη/2c + ` − 1 multiplications. Additionally, blg ηc = a
squarings are required to compute the powers τ 2, . . . , τ 2a which are used for evaluating BRW;
an additional squaring is required to compute the power τ d(η)+1 = τ 2a+1

which is used as a
key to Horner. So a total of blg ηc + 1 squarings are required to compute all the required
powers of τ .

For η = 2a+1 − 1 with a ≥ 1, Table 5.1 compares the efficiency and security of Gτ with
that of Horner and BRW. The ratio of the number of multiplications required by Gτ to that
required by Horner is (`(η+1)−2)/(2(`η−1)) and the ratio of the number of multiplications
required by BRW to that required by Gτ is 2bη`/2c/(`(η+ 1)− 2). Suppose η = 31: the first
ratio is (16`− 1)/(31`− 1) which equals 1/2 for ` = 1 and has the limiting upper bound of
16/31 ≈ 0.52; the second ratio is b31`/2c/(16` − 1) which equals 1 for ` = 1 and decreases
to about 0.97 as ` increases. So, for η = 31, the number of multiplications required by Gτ is
about 50% to 52% of that required by Horner while the number of multiplications required
by BRW is about 97% to 100% of that required by Gτ .

For η = 31, the AU bound for Horner is (31`−1)/#F; the AU bound forGτ is (32`−1)/#F;
and the AU bound for BRW is d(31`)/#F = (2blg(31`)c+1 − 1)/#F. The AU bound for BRW
is in general higher than the AU bound for Gτ . The two bounds can be equal, e.g. for
` = 1, 2, 4, 8, On the other hand, the AU bound for BRW can be about twice as large as
the AU bound for Gτ , e.g. for ` = 9, the bound for Gτ is 287/#F and the bound for BRW

46 Hash2L: A Fast Two-Level Universal Hash Function

is 511/#F.
Overall, Gτ allows a range of efficiency/security trade-offs between BRW and Horner. By

choosing an appropriate value for η, it is possible to attain speed nearly equal to that of
BRW with AU bound not too larger than Horner.

Multi-level hashing: The idea of using BRW at the lower level and Horner at the upper
level can be extended to more than one level. The critical issue is to choose an appropriate
power of τ as the key for each level. While this can be done, extending to more than two
levels results in a rather complicated construction which would mainly be of theoretical,
rather than any practical, interest. So, we did not pursue the idea of multi-level hashing.

5.2 Two-Level Hash Function

For practical applications, it is required to handle variable length strings. We show how to
modify the construction in Proposition 3 to be able to do this. For concreteness, in the rest
of this chapter we will fix the finite field F to be F2n for some positive integer n. The ideas,
on the other hand, are quite general and can be adapted to work with other finite fields.

The following notation will be used in addition to the general notation already set.

• Given a positive integer n and a binary string S, let padn(S) denote S||0i where i is
the minimum non-negative integer such that len(S) + i is divisible by n.

Let

M =
2n−1⋃
i=0

{0, 1}i. (5.2)

The reason for the bound 2n − 1 on the length of the strings in M is that we require the
binary representation of the length of any string inM to fit into an n-bit string. For M ∈M,
we define a function superBlksn,η(M) as follows. Consider padn(M) to be formatted into a
sequence of n-bit blocks. Let ` be such that

len(padn(M))

n
= η(`− 1) + λ (5.3)

for some λ ∈ {1, . . . , η}. Then padn(M) consists of `− 1 full super-blocks and one possibly
partial super-block. Let superBlksn,η(M) denote these super-blocks and we write

superBlksn,η(M) = (M1, . . . ,M`)

where M1, . . . ,M`−1 are full super-blocks (consisting of exactly η n-bit blocks each) and M`

is a possibly partial superblock (consisting of at most η n-bit blocks).

Theorem 3. Let M be as given in (5.2). Define a hash family {Hash2Lτ}τ∈F2n
where

Hash2Lτ :M→ {0, 1}n such that for M ∈M,

Hash2Lτ (M)

= τ 2Hornerτd(η)+1(BRWτ (M1), . . . ,BRWτ (M`))⊕ τbinn(len(M)) (5.4)

Two-Level Hash Function 47

where (M1, . . . ,M`) = superBlksn,η(M).
Let M and M ′ be distinct elements of M with len(M) ≥ len(M ′). For a uniform random

τ ∈ F2n and any β ∈ F2n

Pr
τ

[Hash2Lτ (M)⊕ Hash2Lτ (M
′) = β] ≤ `(d(η) + 1) + 1

2n
(5.5)

where ` is the number of super-blocks in M .

Proof. The proof follows if we can show that Hash2Lτ (M)⊕ Hash2Lτ (M
′)⊕ β is a non-zero

polynomial in τ of degree at most `(d(η) + 1) + 1. The maximum degree of Hash2Lτ (M) as
a polynomial in τ is `d(η) + ` − 1 + 2 = `(d(η) + 1) + 1. So, we only need to argue that
P = Hash2Lτ (M)⊕ Hash2Lτ (M

′)⊕ β is a non-zero polynomial.
First suppose that len(M) 6= len(M ′). The coefficient of τ in Hash2Lτ (M) is binn(len(M))

and the coefficient of τ in Hash2Lτ (M
′) is binn(len(M ′)) 6= binn(len(M)). So, P is a non-zero

polynomial in τ .
So, suppose that len(M) = len(M ′). Then ` = `′ and an argument similar to that

provided for Proposition 3 shows that P is a non-zero polynomial in τ . The only difference
with the argument in Proposition 3 is that the last super-blocks M` and M ′

` may be partial.
This, however, does not affect the argument, since the property that M` 6= M ′

` implies
BRWτ (M`) 6= BRWτ (M

′
`) is preserved.

Remark: The manner in which Hash2Lτ (M) has been defined ensures the AXU property.
If only the AU property is desired, then one can define Hash2Lτ (M) to be

τHornerτd(η)+1(BRWτ (M1), . . . ,BRWτ (M`))⊕ binn(len(M)).

This requires one less multiplication.

5.2.1 Hashing a Vector of Strings

The hash family Hash2L handles a single binary string. We show how to extend it to handle
a vector where each component is a binary string.

The parameters n and η are defined as in the case of Hash2L. We define the hash family

{vecHash2Lτ}τ∈F2n
such that vecHash2Lτ : VD → F2n . (5.6)

The domain VD consists of variable length vectors of binary strings. Formally,

VD =
255⋃
k=0

{
(M1, . . . ,Mk) : 0 ≤ len(Mi) ≤ 2n−16 − 1

}
. (5.7)

The reason for the bound k ≤ 255 is that we require the binary representation of k to fit
into a byte. Similarly, the reason for the bound len(Mi) ≤ 2n−16 − 1 is that we require the
binary representation of the length of any Mi to fit into n− 16 bits. If k = 0, then the input
is the empty list. Note that this input is different from the input where k = 1 and M1 is the
empty string.

The computation of the output of vecHash2Lτ is shown in Table 5.2.

48 Hash2L: A Fast Two-Level Universal Hash Function

Table 5.2: Computation of vecHash2L.

vecHash2Lτ (M1, . . . ,Mk)
if k == 0 return 1nτ ;
digest = 0n;
for i = 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,`i) = superBlksn,η(Mi);
Li = binn(len(Mi));
for j = 1, . . . , `i do

digest = τ d(η)+1digest⊕ BRWτ (Mi,j);
end for;
digest = τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,`k) = superBlksn,η(Mk);
Lk = bin8(k)||08||binn−16(len(Mk));
for j = 1, . . . , `k do

digest = τ d(η)+1digest⊕ BRWτ (Mk,j);
end for;
digest = τdigest⊕ Lk;
digest = τdigest;
return digest.

Theorem 4. Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and M′ = (M ′
1, . . . ,M

′
k′) be two distinct

vectors in VD. For a uniform random τ ∈ F2n and for any β ∈ F2n,

Pr
τ

[vecHash2Lτ (M)⊕ vecHash2Lτ (M
′) = β] ≤ max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′)

2n
(5.8)

where Λ =
∑k

i=1 `i and Λ′ =
∑k′

i=1 `
′
i.

Proof. Quantities corresponding to M ′ will have the superscript ′.
For i = 1, . . . , k and 1 ≤ j ≤ `i, the degree of BRWτ (Mi,j) is d(η) for 1 ≤ j < `i and it is

at most d(η) for j = `i. Write

BRWτ (Mi,j) = ci,j,0 ⊕ ci,j,1τ ⊕ · · · ⊕ ci,j,d(η)τ
d(η)

where the c’s depend on the Mi’s. So, each Mi contributes at most `i(d(η)+1)+1 coefficients

ci,1,0, . . . , ci,1,d(η), . . . , ci,`i,0, . . . , ci,`i,d(η), Li

to vecHash2Lτ (M). The total number of coefficients is at most k + (d(η) + 1)Λ. The last
step in the digest computation increases the degree by one and so the maximum degree of
vecHash2Lτ (M) is equal to the maximum number of coefficients in vecHash2Lτ (M). The
degree of

P = vecHash2Lτ (M)⊕ vecHash2Lτ (M
′)⊕ β

is max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′). The result follows if we can show that P is a
non-zero polynomial in τ . The detailed proof is divided into several cases.

Implementations Based on pclmulqdq 49

Case k′ = 0: Since M 6= M′, it follows that k > 0. vecHash2Lτ (M
′) equals 1nτ . Since

k > 0, vecHash2Lτ (M) is of the form Lkτ ⊕ τ 2(· · ·) where

Lk = bin8(k)||08||binn−16(len(Mk)) 6= 1n.

So, P is a non-zero polynomial.

Case k > k′ > 0: In this case, we have vecHash2Lτ (M) of the form Lkτ ⊕ τ 2(· · ·) and
vecHash2Lτ (M

′) of the form L′k′τ ⊕ τ 2(· · ·) where

Lk = bin8(k)||08||binn−16(len(Mk)) 6= bin8(k′)||08||binn−16(len(M ′
k′)) = L′k′ .

So, again P is a non-zero polynomial.

Case k = k′ > 0: There are two subcases to consider.

Sub-case (a): There is some i such that len(Mi) 6= len(M ′
i). Let i be the maximum such

value and so, len(Mj) = len(M ′
j) for j = i+ 1, . . . , k. Since len(Mi) 6= len(M ′

i), it follows that

Li 6= L′i. Let s = 1 + (k− i) +
∑k

j=i+1 `j(d(η) + 1) = 1 + (k′− i) +
∑k′

j=i+1 `
′
j(d(η) + 1). Then

the coefficient of τ s in P is Li ⊕ L′i 6= 0. So, again P is a non-zero polynomial.

Sub-case (b): In this case, len(Mi) = len(M ′
i) for i = 1, . . . , k. As a result, in this case

the number of components and the length of all the components in M and M′ are equal.
Since M 6= M′, it follows that there must be some s such that Ms 6= M ′

s.
Since len(Ms) = len(M ′

s), it follows that the number of superblocks of Ms and M ′
s are

equal, i.e., `s = `′s. The super-blocks corresponding to Ms are Ms,1, . . . ,Ms,`s while the
super-blocks corresponding to M ′

s are M ′
s,1, . . . ,M

′
s,`s

. Since Ms 6= M ′
s, at least one of the

superblocks must be unequal. Let t ∈ {1, . . . , `s} be such that Ms,t 6= M ′
s,t. By the injectivity

of BRW, it follows that BRWτ (Ms,t) 6= BRWτ (M
′
s,t) and so there is a k ∈ {0, . . . , d(η)} such

that cs,t,k 6= c′s,t,k. As a result, P is a non-zero polynomial.
This completes all the cases and the proof.

5.3 Implementations Based on pclmulqdq

Our target platform were the Intel processors which support the pclmulqdq instruction.
This instruction takes as input two degree 64 polynomials over GF (2) (represented as two
64-bit words) and returns as output the degree 128 polynomial which is the product of the
two input polynomials. The implementation was done using Intel intrinsics.

We report implementations for n = 128 and n = 256. As mentioned in Chapter 3, for n =
128, F2128 was represented using the irreducible polynomial ψ(x) = x128⊕x7⊕x2⊕x⊕1 and for
n = 256, F2256 was represented using the irreducible polynomial ψ(x) = x256⊕x10⊕x5⊕x2⊕1.
In both cases, ψ(x) is of the form xn⊕ g0(x) where g0(x) is a polynomial of degree less than
n/2 having exactly 4 non-zero coefficients.

50 Hash2L: A Fast Two-Level Universal Hash Function

We report timings on two different machines. For the timing measurements, we followed
the strategy of [74]. The first timing measurements were taken on a single core of a machine
with Intel Core i7-4790 Haswell @ 3.60GHz. The second timing measurements were taken
on a single core of a machine with Intel Core i7-6500U Skylake @ 2.5GHz. In both cases, the
operating system was 64-bit Ubuntu-14.04-LTS and the C code was complied using GCC
version 4.8.4. The code is publicly available1.

5.3.1 Field Multiplication

The multiplication of two 128-bit polynomials using the schoolbook method requires 4
pclmulqdq calls and using Karatsuba’s algorithm requires 3 pclmulqdq calls. The mul-
tiplication of two 256-bit polynomials using the schoolbook method requires 16 pclmulqdq

calls and using Karatsuba’s algorithm requires 9 pclmulqdq calls. The reduction step can
also be computed using pclmulqdq calls. From the work of Gueron and Kounavis [58] one
obtains that for n = 128, 2 pclmulqdq calls are sufficient for the reduction while for n = 256,
4 pclmulqdq calls are sufficient. Details are provided in Section 5.3.2 below.

Batch multiplications: Suppose m independent multiplications are to be computed. The
code can be arranged such that the pclmulqdq instructions for these multiplications can be
grouped together. This may help the instruction scheduler to utilise instruction pipelining
to speed up the computation. We have experimented with values of m ≤ 4 and have found
some speed improvements. In theory, the speed improvement should continue as m increases.
In practice, however, this does not always happen.

5.3.2 Efficient Reduction

Let n be a positive even integer and F2n be represented by an irreducible polynomial ψ(x)
of degree n over GF (2). Elements of F2n are represented using polynomials over GF (2) of
degrees less than n. Let α = α(x) and β = β(x) be two elements of F2n . The computation of
αβ = α(x)β(x) mod ψ(x) consists of two steps. In the first step, α(x) and β(x) are multiplied
together to obtain a result e(x) of degree less than 2n− 1 and then e(x) is reduced modulo
ψ(x) to obtain the desired result. Let e(x) = α(x)β(x) and write e(x) = d(x)⊕c(x)xn where
c(x) and d(x) have degrees less than n. The essential task is to compute c(x)xn mod ψ(x). A
method for doing this was described by Gueron and Kounavis [58]. We review their method
and determine the number of pclmulqdq instructions required for the reduction for both
n = 128 and n = 256.

Let q(x) and h(x) be such that c(x)xn = q(x)ψ(x) ⊕ h(x) with deg(q), deg(h) ≤ n − 1.
The goal is to find h(x). Write ψ(x) = xn ⊕ ψ∗(x), where deg(ψ∗) ≤ n − 1. The equation
c(x)xn = q(x)ψ(x) ⊕ h(x) becomes c(x)xn = q(x)xn ⊕ q(x)ψ∗(x) ⊕ h(x) and so h(x) =
q(x)ψ∗(x) mod xn. So, finding q(x) is sufficient for obtaining h(x).

1https://github.com/sebatighosh/HASH2L.git

https://github.com/sebatighosh/HASH2L.git

Implementations Based on pclmulqdq 51

Let q+(x) and h+(x) be such that x2n = q+(x)ψ(x) ⊕ h+(x) with deg(h+) ≤ n − 1 and
deg(q+) = n. So,

c(x)x2n = q(x)ψ(x)xn ⊕ h(x)xn

⇒ c(x)(q+(x)ψ(x)⊕ h+(x)) = q(x)ψ(x)xn ⊕ h(x)xn

⇒ c(x)q+(x)ψ(x)⊕ c(x)h+(x) = q(x)ψ(x)xn ⊕ h(x)xn

⇒
⌊
c(x)q+(x)ψ(x)⊕c(x)h+(x)

x2n

⌋
=

⌊
q(x)ψ(x)xn⊕h(x)xn

x2n

⌋
⇒

⌊
c(x)q+(x)ψ(x)

x2n

⌋
=

⌊
q(x)ψ(x)

xn

⌋
.

In the above the following two facts have been used: deg(ch+) ≤ 2n− 2 and deg(h) ≤ n− 1.
Let u(x) be of degree at most n − 1, v1(x) of degree at most 2n − 1 and v2(x) of degree at
most n−1 such that c(x)q+(x)ψ(x) = u(x)x2n⊕v1(x) and q(x)ψ(x) = u(x)xn⊕v2(x). From
this we obtain c(x)q+(x)ψ(x)/xn = u(x)xn ⊕ v1(x)/xn = q(x)ψ(x)⊕ v2(x)⊕ v1(x)/xn. This
is re-written as c(x)q+(x)/xn = q(x) ⊕ v2(x)/ψ(x) ⊕ v1(x)/ψ(x)xn. Since deg(v2) ≤ n − 1,
bv2(x)/ψ(x)c = 0 and since deg(v1) ≤ 2n − 1, bv1(x)/(ψ(x)xn)c = 0. So, we obtain q(x) =
bc(x)q+(x)/xnc .

Further simplifications: Suppose n is even, and ψ∗(x) = g0(x) with deg(g0) < n/2.
So, ψ(x) = xn ⊕ g0(x). We have xn = ψ(x) ⊕ g0(x) and so x2n = ψ2(x) ⊕ g0(x2). Since
deg(g0) ≤ n/2 − 1, deg(g0(x2)) ≤ n − 2. So, q+(x) = ψ(x) and h+(x) = g0(x2). Write
c(x) = c1(x)xn/2 ⊕ c0(x) where deg(c1), deg(c0) < n/2. Consider the product

c(x)q+(x) = c(x)ψ(x) = c(x)(xn ⊕ g0(x)) = c(x)xn ⊕ c(x)g0(x)

= c(x)xn ⊕ (c1(x)xn/2 ⊕ c0(x))g0(x) = c(x)xn ⊕ xn/2c1(x)g0(x)⊕ c0(x)g0(x).

Since deg(c0g0) ≤ n− 2, b(c0g0)/xnc = 0 and we have

q(x) =

⌊
c(x)q+(x)

xn

⌋
= c(x)⊕

⌊
xn/2c1(x)g0(x)

xn

⌋
= c(x)⊕

⌊
c1(x)g0(x)

xn/2

⌋
.

Write q(x) = q1(x)xn/2 ⊕ q0(x) with deg(q1), deg(q0) < n/2. Since deg(c1), deg(g0) < n/2, it
follows that deg(c1g0) < n− 1 and so b(c1(x)g0(x))/xn/2c is a polynomial of degree less than
n/2. So, we have q(x) = c1(x)xn/2⊕ c0(x)⊕

⌊
(c1(x)g0(x))/xn/2

⌋
. In effect, q1(x) = c1(x) and

q0(x) = c0(x) ⊕ b(c1(x)g0(x))/xn/2c. Computing q(x) requires computing c1(x)g0(x) which
accounts for one n/2-bit polynomial multiplication.

Given the quantity q(x), h(x) is obtained as h(x) = q(x)ψ∗(x) mod xn = q(x)g0(x) mod
xn = q1(x)g0(x)xn/2⊕q0(x)g0(x) mod xn = c1(x)g0(x)xn/2⊕q0(x)g0(x) mod xn. The product
c1(x)g0(x) has already been computed. So, computing h(x) requires another additional n/2-
bit polynomial multiplication, namely q0(x)g0(x). So, the entire reduction can be carried
out using 2 n/2-bit polynomial multiplications. For n = 128, n/2 = 64 and the two n/2-bit
polynomial multiplications can be computed using 2 pclmulqdq calls. The entire reduction
e(x) mod ψ(x) requires a total of 7 instructions. For n = 256, n/2 = 128 and an n/2-bit
polynomial multiplication is a 128-bit polynomial multiplication. We choose g0(x) to have
degree less than 64. Since c1(x) is a polynomial of degree less than 128, the product c1(x)g0(x)

52 Hash2L: A Fast Two-Level Universal Hash Function

sqr # n-bit XORs # poly mult # red AU bnd
a 14 · 2a−2 − 4 2a − 1 2a−1 η/2n

Table 5.3: Efficiency and AU bound for BRWτ (m1, . . . ,mη) over F2n with η = 2a+1− 1 ≥ 3.

can be computed using 2 pclmulqdq instructions. Similarly, the product q0(x)g0(x) can also
be computed using 2 pclmulqdq instructions. So, 4 pclmulqdq instructions are sufficient for
the reduction and the code for computing e(x) mod ψ(x) requires a total of 14 instructions.

5.3.3 Arithmetic Operations for Computing BRW

Let η = 2a+1 − 1 ≥ 3. Suppose Aa+1 is the number of field additions required to evaluate
BRWτ (m1, . . . ,mη). Then Aa+1 = 2+2Aa, a ≥ 2 and using A2 = 3, we have Aa+1 = 5·2a−1−2
for a ≥ 1.

The number of multiplications for computing BRWτ (m1, . . . ,mη) is bη/2c = 2a− 1. Two
field elements β and γ are represented using polynomials over GF (2) of degrees less than n.
Let us denote these polynomials as β(x) and γ(x). As described above, the computation of
βγ is done in two steps, namely a polynomial multiplication followed by a reduction.

For computing BRW, it is possible to reduce the number of reductions. We describe
this with respect to F2n , but, the general idea also applies to other fields. While comput-
ing BRWτ (m1, . . . ,mη) with η = 2a+1 − 1 ≥ 3, the product of BRWτ (m1, . . . ,m2a−1) and
(τ 2a + m2a) is added to BRWτ (m2a+1, . . . ,m2a+1−1). This involves a reduction step in the
computation of the product (τ 2a +m2a)×BRWτ (m1, . . . ,m2a−1) and a reduction step in the
computation of the output of BRWτ (m2a+1, . . . ,m2a+1−1). These two reductions can be com-
bined into a single reduction in the following manner. Perform the polynomial multiplication
of BRWτ (m1, . . . ,m2a−1) and (τ 2a + m2a); compute BRWτ (m2a+1, . . . ,m2a+1−1) without the
final reduction; add the two polynomials; then perform a reduction on the resulting polyno-
mial.

For η = 2a+1 − 1 ≥ 3, let Ra+1 be the number of reductions required to compute
BRWτ (m1, . . . ,mη) with R2 = 1. The computation of BRWτ (m1, . . . ,m2a−1) requires Ra

reductions; the computation of BRWτ (m2a+1, . . . ,m2a+1−1) without the final reduction re-
quires Ra− 1 reductions; and there is a final reduction. So, Ra+1 = Ra + (Ra− 1) + 1 = 2Ra

for a ≥ 2, R2 = 1 and we obtain Ra+1 = 2a−1.

A field addition in F2n is XOR of two n-bit strings. In trying to reduce the number of
reductions, the number of n-bit XORs go up. Unreduced quantities are 2n-bit polynomials
and adding together two such polynomials require 2 n-bit XORs. Further, the cross product
terms of the different multiplications are first added together and then shifted. This requires
an extra n-bit XOR per delayed reduction. Let Na+1 be the number of n-bit XORs required
to evaluate BRWτ (m1, . . . ,mη) with η = 2a+1 − 1 ≥ 3. Then Na+1 = 2Na + 4 for a ≥ 2 with
N2 = 3 so that Na+1 = 14 · 2a−2 − 4.

The relevant parameters for computing BRWτ (m1, . . . ,mη) along with the AU bound are
summarised in Table 5.3.

Implementations Based on pclmulqdq 53

5.3.4 Computing BRW Polynomials

For the actual implementation, for both n = 128 and n = 256, we set η = 31, i.e., the number
of n-bit blocks in a super-block is 31. For the two-level hash function, the last super-block
can be partial. So, we did separate implementations of BRW for handling number of blocks
from 1 to 31. Below we provide the details for the BRW implementation for 31-block inputs.

On a 31-block input, BRW requires a total of 15 n-bit multiplications. There is some
amount of parallelism in these multiplications. A convenient way to bring out this parallelism
is to represent the BRW computation using a tree as has been done in [33]. Such a tree depicts
the dependencies among the multiplications required for BRW computation. We omit the
details of how the tree is constructed as these details are not directly relevant to the present
work.

The relevant part of a 31-block BRW tree is shown in Figure 5.1. Each node is marked
by an even number between 2 and 30 corresponding to the 15 multiplications that are
required. (For the reason why the node labels are 2 to 30 instead of 1 to 15, we refer
to [33].) If there is an edge from a lower marked node to a higher marked node, then
the multiplication corresponding to the lower marked node has to be computed before the
multiplication corresponding to the higher marked node. So, for example, the multiplication
corresponding to node 2 has to be computed before the multiplication corresponding to node
4 can be computed and the multiplications corresponding to nodes 8, 12 and 14 have to be
computed before the multiplication corresponding to node 16 can be computed.

Figure 5.1: The 31-block BRW tree.

141062 18 22 26 30

4 12 20 28

8 24

16

Nodes which are not connected by an edge are independent and can be computed in

54 Hash2L: A Fast Two-Level Universal Hash Function

parallel. For example, the eight multiplications at the lowest level are independent; the four
multiplications at the next level are independent; and so on. There are, however, other ways
to group the independent multiplications. Such groupings allow using batch multiplications
to speed up the computations. Using batch size 3 as given below is particularly nice since
the 15 multiplications can be cleanly grouped into 5 batches of 3 multiplications each.
Batch size 3: {2, 6, 10}, {14, 18, 22}, {26, 30, 4}, {20, 12, 8}, {28, 24, 16}.

In conjunction with the above, we also implemented the delayed reduction strategy de-
scribed in Section 5.3.3. From Table 5.3, for η = 31, 15 multiplications of n-bit polynomials,
8 reductions and 52 n-bit XORs are required.

5.3.5 Decimated Horner

Given a sequence of n-bit blocks m1, . . . ,m` and a positive integer d ≥ 1, Hornerτ (m1, . . . ,m`)
can be computed as

Hornerτ (m1, . . . ,m`) = τ ρ−1Hornerτd(m1,md+1,m2d+1, . . .)

⊕ · · ·
⊕ τ ρ−ρHornerτd(mρ,md+ρ,m2d+ρ, . . .)

⊕ τ d−1Hornerτd(mρ+1,md+ρ+1,m2d+ρ+1, . . .)

⊕ · · ·
⊕ τ d−(d−ρ)Hornerτd(md,m2d,m3d, . . .) (5.9)

where ρ = ` mod d. We call this d-decimated Horner computation. In (5.9), the d calls
to Horner are independent leading to d independent multiplications at each step with the
boundary conditions appropriately handled. These d independent multiplications can be
computed as a batch multiplication. After the individual Horner calls are completed, the
outputs are multiplied by τ ρ−1, . . . , 1, τ d−1, . . . , τ ρ which can be done as a batch multiplication
with batch size d− 1 (since one multiplication is by 1).

5.3.6 Implementation of Hash2L

During implementation, there is a choice of batch size for BRW. For n = 128, we have found
that choosing the batch size to be 3 provides slightly better speed compared to choosing the
batch size to be 1. So, for n = 128, we implemented BRW using batch size 3 and 3-decimated
Horner. For n = 256, however, there does not seem to be any noticeable improvement in
speed by choosing the batch size to be greater than 1. So, in this case, we implemented both
BRW and Horner using batch size 1.

Timing results on the Haswell and the Skylake processors are presented in Tables 5.4
and 5.5 respectively. The percentage figures indicate the percentage of speed improvement
obtained by our implementation of Hash2L over the publicly available implementations of
GHASH and POLYVAL. The implementation of GHASH is by Gueron and has been taken
from [59]. The implementation uses a delayed reduction strategy whereby a single reduction
is done per four polynomial multiplications. This strategy requires pre-computing a table

Implementations Based on pclmulqdq 55

128-bit 256-bit
length of message in bytes length of message in bytes

512 1024 4096 8192 512 1024 4096 8192

Hash2L 0.88 0.687 0.498 0.463 1.4 0.95 0.718 0.67
GHASH [59] 1.15 1.02 0.93 0.91 – – – –

(23.5%) (32.6%) (46.5%) (49.1%) – – – –
POLYVAL [57] 1.09 0.81 0.602 0.567 – – – –

(19.3%) (15.2%) (17.3 %) (18.3%) – – – –

Table 5.4: Cycles per byte for computing Hash2L, GHASH and POLYVAL on Haswell. For
both n = 128 and n = 256, Karatsuba gave better performance compared to the schoolbook
method.

128-bit 256-bit
length of message in bytes length of message in bytes

512 1024 4096 8192 512 1024 4096 8192

Hash2L 0.667 0.468 0.33 0.301 1.11 0.758 0.562 0.525
GHASH [59] 0.89 0.77 0.67 0.65 – – – –

(25.1%) (39.2%) (50.7%) (53.7%) – – – –
POLYVAL [57] 0.79 0.55 0.369 0.339 – – – –

(15.6%) (14.9%) (10.6%) (11.2%) – – – –

Table 5.5: Cycles per byte for computing Hash2L, GHASH and POLYVAL on Skylake. For
n = 128, schoolbook was faster than Karatsuba, while for n = 256, Karatsuba was faster.

consisting of 4 consecutive powers of the hash key. The implementation of POLYVAL is also
by Gueron and has been taken from [57]. This implementation also uses a delayed reduction
strategy, but here a single reduction is done per eight polynomial multiplications. Hence,
it requires a pre-computed table consisting of 8 consecutive powers of the hash key. Thus,
the implementation of POLYVAL in [57] requires half the number of reductions required by
the implementation of GHASH in [59] which leads to significant speed up. We note that an
implementation of GHASH using one reduction per 8 polynomial multiplications will have
the same performance as that of the implementation of POLYVAL in [57].

For POLYVAL, both intrinsics and assembly codes are provided and it is mentioned that
the performance of both the codes are similar. Since, we have implemented in intrinsics, we
chose to compare to the intrinsics implementation in [57]. We measured the time required by
the intrinsics implementation of GHASH in [59] and of POLYVAL in [57] on the same machine
where we measured the time required by Hash2L.

For timing each of Hash2L, GHASH and POLYVAL, the hash key was updated in every
iteration. This ensured that the timing measurements included the time for pre-computing
the powers of τ in case of Hash2L and the pre-computed tables in Gueron’s implementations
of both GHASH and POLYVAL.

56 Hash2L: A Fast Two-Level Universal Hash Function

From the results in Tables 5.4 and 5.5 we find that Hash2L is about 23% to 49% faster
than GHASH and about 15% to 19% faster than POLYVAL on the Haswell processor. On
Skylake processor, these figures are about 25% to 53% and 10% to 15% respectively.

In theory, the number of multiplications required by Hash2L is slightly more than half
the number of multiplications required by GHASH or POLYVAL. This, however, does not
directly turn into a roughly two times speed improvement for the following reasons. First,
the strategy of delayed reduction used in GHASH and POLYVAL to some extent mitigates
the effect of requiring about two times as many multiplications for short messages. Second,
the code for GHASH is much more simpler and smaller than that for Hash2L and this has an
effect on the overall speed.

To summarise, the speed improvements that we are able to achieve are indicative of the
algorithmic superiority of Hash2L over Horner based hash computations such as GHASH and
POLYVAL. We do not claim that our code provides the fastest possible timing for Hash2L.
Experts on intrinsics and assembly programming should be able to tune the code to achieve
even higher speeds. Further, we have considered only η = 31 for implementation. It would
be interesting to explore the speed achievable using other values of η. We leave these as
interesting work for the future.

5.4 Implementation Strategy Without Using pclmulqdq

For n = 256, Bernstein and Chou [16] have provided a description of how to implement
binary field arithmetic using the Fast Fourier Transform (FFT) algorithm. The method does
not require the pclmulqdq instruction. The following counts of number of bit operations are
provided in [16]. Forward Fourier transform: 4068−656 = 3412 bit operations without radix
conversions; pointwise multiplications: 64·110 bit operations; inverse Fourier transform: 5996
bit operations; reduction: 992 bit operations.

In the FFT based polynomial multiplication, the inverse Fourier transform is applied
to the pointwise product. As pointed out in [16], to compute an expression of the type
α1α2 + β1β2, it is equivalent to compute the pointwise multiplications for α1, α2 and β1, β2;
add the vectors; and then perform a single inverse Fourier transform. So, whenever a sum of
products of polynomials is to be computed, a single inverse Fourier transform suffices. In the
present context, this means that the number of inverse Fourier transforms to be computed
is equal to the number of reductions.

We consider the use of this strategy for computing Hash2L. The polynomial multiplication
and reduction procedures used in [16] can be directly considered in the present context.

Suppose η = 2a+1 − 1 ≥ 3. From Table 5.3, computing BRWτ (m1, . . . ,mη) requires
14 ·2a−2−4 256-bit XORs; 2(2a−1) forward Fourier transforms (each polynomial multiplica-
tion requires two forward Fourier transforms); 2a − 1 pointwise multiplications; 2a−1 inverse
Fourier transforms; and 2a−1 reductions. The total number of bit operations for computing
BRWτ (m1, . . . ,mη) comes to

256(14 · 2a−2 − 4) + 2 · 3412 · (2a − 1) + (64 · 110)(2a − 1) + 5996 · 2a−1 + 992 · 2a−1

= 18254 · 2a − 14888. (5.10)

Implementation Strategy Without Using pclmulqdq 57

The number of bits in (m1, . . . ,mη) is 256η = 256 · (2a+1 − 1) and so the number of bit
operations per bit for computing BRWτ (m1, . . . ,mη) is

Ba+1 =
18254 · 2a − 14888

256 · (2a+1 − 1)
.

We have B2 ≈ 28.2, B3 ≈ 32.4, B4 ≈ 34.2, B5 ≈ 34.9, B6 ≈ 35.3, B7 ≈ 35.5.
For Hash2L having η` 256-bit blocks, there are ` super-blocks consisting of η 256-bit blocks

each. Processing these super-blocks require Ba+1 bit operations per block. Additionally, the
` blocks which are produced as the output of the ` BRW invocations are processed using
Horner. For achieving AXU, this requires ` field multiplications. In the multiplications
of Horner computation, one of the operands is always τ 2a+1

and so the number of forward
Fourier transforms is `+1 (one transform for each of the ` blocks, plus a transform for τ d(η)+1)
instead of 2`. In addition to these, there are ` pointwise multiplications; ` inverse Fourier
transforms; ` reductions; and ` 256-bit XORs. Plugging in the number of bit operations for
each of the aforementioned operations shows that a total of 17696`+ 3412 bit operations are
required for evaluating Horner. Since there are a total of η` 256-bit blocks, the number of
bit operations per bit for evaluating Horner is (17696` + 3412)/(256 · η`) = 69.125/(2a+1 −
1) + 13.22/(`(2a+1 − 1)).

There is an additional cost for computing the powers τ 2, τ 4, . . . , τ 2a+1
. Each of these is a

squaring and requires 17440 bit operations for a total of 17440 · a bit operations to compute
all the powers. Amortised over the entire computation, the cost per bit for computing the
powers is (17440 · a)/(256 · η`).

So, the total number of bit operations per bit for computing Hash2L on η` 256-bit blocks
with η = 2a+1 − 1 is

Ca+1 = Ba+1 + 69.125/(2a+1 − 1) + (68.125 · a + 13.22)/(`(2a+1 − 1)).

We have C2 ≈ 51.2 + 27.1/`, C3 ≈ 42.3 + 21.4/`, C4 ≈ 38.8 + 14.5/`, C5 ≈ 37.2 + 9.2/`,
C6 ≈ 36.4 + 5.6/`, C7 ≈ 36.0 + 3.3/`.

Choosing η = 31 = 25− 1 shows that the number of bit operations per bit for computing
Hash2L is 37.2+9.2/` ≤ 46.4 By choosing η = 63 or 127, it is possible to lower the number of
bit operations per bit though this is still greater than the 29 bit operations per bit required
for the pseudo-dot product [16]. The main reason behind the cost of Hash2L being higher
than that of the pseudo-dot product is that in the later case, there is a single inverse Fourier
transform and a single reduction for the entire computation. The problem with the pseudo-
dot product, however, is that the hash key is as long as the message. The cost of securely
generating this key will be significant and has not been considered in [16].

Remark: The complete Hash2L requires an additional multiplication to process the block
containing the message length. The above cost measure does not include this multiplication.
The reason is that a complete hash function based on the pseudo-dot product will also
require such a multiplication and this is not covered by the figure of 29 bit operations per
bit reported in [16].

58 Hash2L: A Fast Two-Level Universal Hash Function

5.5 Message Authentication Code

As mentioned in Chapter 2, a well known method for constructing a nonce-based MAC
scheme from a hash function is the following [110]. Let F : K ×N → {0, 1}n be a mapping
and {Hτ}τ∈T with Hτ :M→ {0, 1}n be a hash family. The key space for the MAC scheme
is K×T, the nonce space is N and the message space isM. Given a nonce N and a message
M , the output of the MAC scheme under a key (K, τ) is

(N,M)
(K,τ)−→ FK(N)⊕Hτ (M). (5.11)

It is possible to instantiate the hash function H using Hash2L. In this case, the message M
is a binary string. More generally, it is possible to instantiate H using vecHash2L in which
case the message M is a vector where each component is a binary string. The function FK
can be either a block cipher or a stream cipher.

Analysis of this scheme under the assumption that F is either a pseudo-random function
(PRF) or a pseudo-random permutation (PRP) has a long history starting from [110] with
the best known bounds appearing in [14]. If F is instantiated using a stream cipher, then
security is based on the assumption that F is a PRF while if F is instantiated using a block
cipher, then security is based on the assumption that F is a PRP. The overall security bound
for the MAC scheme is obtained from the security assumption on F and the AXU bound on
Hτ . These bounds are derived in [14] and so we do not repeat them here.

Instantiation at the 128-bit security level: It is possible to use a 128-bit block cipher
such as AES to instantiate FK . The size of K could be any of the options allowed for AES
and the size of N will be 128 bits. It is also possible to instantiate F using a stream cipher
whose key size is at least 128 bits.

Instantiation at the 256-bit security level: A 128-bit block cipher such as AES cannot
be directly used to instantiate F at the 256-bit security level. Instead, a stream cipher
supporting a 256-bit key can be directly used to instantiate F .

5.6 Comparison to Some Previous Works

We consider some of the important universal hash functions and corresponding MAC schemes
that have been proposed. The discussion is divided into two parts. In the first part, we
consider schemes for which the keys to the hash function are long and in the second part,
we consider schemes for which the keys to the hash functions are short.

5.6.1 Comparison to Schemes Using Long Hash Keys

Some important and popular hash functions which fall under this category are NHT used in
UMAC, VHASH used in VMAC, Hash256 used in Auth256 and CLHASH. More details about
these are already discussed in Chapter 2.

Comparison to Some Previous Works 59

For hash functions using long keys, in practice, the key has to be generated using either a
stream cipher or a block cipher mode of operation. This leads to both efficiency and security
issues as mentioned below.

Efficiency: Generation of the key can be either done on the fly, or, it could be pre-
computed and stored. Both the approaches have problems. Generating the key on
the fly requires significant additional time which should be included in the total time
for hashing. However, the above mentioned schemes do not report this time. On the
other hand, pre-computing and storing a large key has its own problems. To quote
Bernstein [14], the large key “creates a huge speed penalty: cache misses become much
more common and much more expensive.”

Security: The analysis of the scheme given in (5.11) is well known when K and τ are chosen
independently and uniformly at random with the best known bounds appearing in [14].
However, if τ is generated using a mode of operation of a block or a stream cipher,
then there are two issues. If the key for the mode of operation used to generate τ is
the same as that of F , then the independence condition is violated. Even if the key
for the mode of operation is independent of the key for F , using a mode of operation
to generate τ violates the uniform distribution property of τ . Consequently, if τ is
generated using a mode of operation, the analysis and the bounds provided in [14] do
not direcly apply and a fresh analysis and security bound need to be worked out. In
fact, there has been a lengthy discussion on this issue [107] in the context of UMAC
where Bernstein had strongly argued for the necessity of precise security statement and
proof for UMAC. By the same reasoning, a precise security statement and proof is also
required for Auth256 which is not available in [16].

While the above issues are relevant for hash functions which use long keys, we note below
two issues which are particularly relevant to Hash256 and Auth256.

1. Hash256 avoids using pclmulqdq under the rationale that not all processors provide this
instruction. Consider this issue in conjunction with the requirement of generating the
hash key using AES in counter mode. Processors which do not provide an instruction
similar to pclmulqdq are unlikely to provide support in the instruction set for AES.
So, on such processors, the generation of the hash key will take significantly more time
than the actual hashing. This time is neither reported nor considered in [16].

2. The digest size of Hash256 is 256 bits and so the goal of Auth256 is the 256-bit security
level. It is suggested in [16] that the hash key can be generated using counter-mode
AES. Since AES is a 128-bit block cipher, a direct use of counter-mode AES will not
provide security at the 256-bit level. So, a combination of Hash256 with counter-mode
AES is unlikely to provide 256-bit security. A further issue is that of instantiating F
in (5.11) using AES. The output of F is required to be 256 bits long and since AES is a
128-bit cipher, it cannot be directly used to instantiate F . Since [16] does not provide
a clear description of how the hash key for Hash256 is to be generated and how F is
to be instantiated, the acutal security claim of Auth256 at the 256-bit level is unclear.

60 Hash2L: A Fast Two-Level Universal Hash Function

In terms of efficiency, [16] reports a cost of 29 bit operations per bit for computing Hash256
along with a hidded cost of generating the hash key. Any secure method for generating
the long hash key will have a significant cost. In Section 5.4, we have shown that choosing
η = 31 leads to a cost of at most 46.4 bit operations per bit. There is, however, no associated
hidden cost of generating the hash key. The cost can be made lower by choosing a higher
value of η. While the comparison in terms of bit operation counts is indicative, it would
have been better to obtain the actual speed measurements. Since the code for Hash256 is
not (yet) publicly available, we were unable to do this.

5.6.2 Comparison to Schemes Using Short Hash Keys

Some important and popular hash functions which fall under this category are Poly1305,
GHASH and POLYVAL. More details about these hash functions are provided in Chapter 2.

All three of Poly1305, GHASH and POLYVAL are computed using Horner and hence,
require `−1 multiplications for evaluating an `-block message. The design approach proposed
here, on the other hand, requires a little more than `/2 multiplications. So, inherently this
approach is faster than each of those hash schemes. We have instantiated this approach over
binary fields to develop Hash2L. On the other hand, if one wishes to work over prime fields,
it is equally possible to instantiate the approach over any appropriate field such as F2130−5.

The hash key for Poly1305, GHASH, POLYVAL and also Hash2L is a single field element.
So, in terms of key agility, there is no difference between these four algorithms. The collision
probabilities for Poly1305, GHASH and POLYVAL are those obtained from the usual Horner
style hash and hence are only slightly lower than that of Hash2L. See Table 5.1 for more
details.

Poly1305, GHASH and POLYVAL are designed for the 128-bit security level. The speeds
of GHASH, POLYVAL and Hash2L for both Haswell and Skylake processors have been stated
earlier. For Poly1305, in Haswell, the best reported speed we could find is 0.65 cycles/byte
using 64-bit AVX2 instructions2. The instantiation of Hash2L at the 128-bit security level
turns out to be faster than all of these functions on Haswell processor of Intel; it is faster
than GHASH and POLYVAL on Skylake; and we were unable to locate a speed report for
Poly1305 on Skylake. We expect the 128-bit version of Hash2L to be faster than GHASH and
POLYVAL on any platform and to be faster than Poly1305 on any processor which supports
the pclmulqdq instruction. The comparison of Hash2L to Poly1305 on processors which do
not provide support for pclmulqdq cannot be determined without getting into the details of
a particular processor.

5.7 Summary

In this chapter, we have proposed a single-key two-level universal hash function which com-
bines the advantages given by Horner’s rule based hash and BRW polynomial based hash
function. One important aspect here is an efficient software implementation for high-end

2https://www.openssl.org/blog/blog/2016/02/15/poly1305-revised/

https://www.openssl.org/blog/blog/2016/02/15/poly1305-revised/

Summary 61

Intel processors. Comparative timing measurements show that this hash function is signif-
icantly faster than highly efficient implementations of GHASH and POLYVAL by Gueron.
This indicates that this hash function is current state-of-the-art universal hash as far as the
efficiency in high end processors is concerned. The security bound is same as given by the
standard universal hashes.

Chapter 6

Variants of Wegman-Carter Message Au-
thentication Code Supporting Variable
Tag Lengths

As already mentioned in Chapter 2, most MAC schemes, in the literature so far, specify
a single value for the tag length. The question that we explore here is the following. Is
it possible to have a variable tag length MAC scheme? While the question seems to be a
natural one, there does not appear to have been much discussion about this issue in the
literature. There is an almost 15-year old CFRG [107] discussion pertaining to different tag
lengths suggested for the MAC scheme UMAC [71]. This scheme had the possibility of using
32-bit, 64-bit, 96-bit and 128-bit tags. Finney [47], crediting “Dan Bernstein’s poly1305-aes
mailing list”, had pointed out that this feature would allow forging a 64-bit tag using about
233 queries. A later post [48] explains the issue further and suggests how a valid 128-bit tag
can be obtained with only about 234 queries. Wagner [108] supporting the issue raised by
Finney, had mentioned that to fix the problem “it suffices to ensure that the tag length is
a parameter that is immutably bound to the key and never changed. In other words, never
use the same key with different parameter sizes.” Following this suggestion, Section 6.5 of
the UMAC specification [71] states that a “UMAC key (or session) must have an associated
and immutable tag length”. Another suggestion put forward by Finney [48] to handle the
issue requires “stealing two bits of input into the block cipher from the nonce and using
them to encode tag size”. More recently a variable tag-length MAC scheme KMAC [69] has
been proposed by Kelsey at al., based on the sponge function KECCAK [17].

The question of variable tag length received some attention in the past few years in
the context of authenticated encryption (AE) schemes and the CAESAR [26] competition.
Manger [80] pointed out that for the AE scheme OCB, 64-bit, 96-bit and 128-bit tags are
defined where the “64-bit and 96-bit tags are simply truncated 128-bit tags”. This leads to
simple truncation attacks on the scheme. An earlier paper by Rogaway and Wagner [93] had
also discussed the problem of variable tag lengths in the context of the AE scheme CCM.
A formal treatment of variable tag length AE schemes has been given by Reyhanitabar,
Vaudenay and Vizár [92].

Two concrete motivations are provided in [92] as to why a variable tag length AE scheme
may indeed be desirable in practice. The first mentions that variable tag lengths may be
used with the same key due to “misuse and poorly engineered security systems”. The second
reason is that for resource constrained devices, variable tag lengths may be desirable though
changing the key for every tag length may be infeasible due to limited bandwidth and low
power.

While the above two reasons have been put forward in the context of AE schemes, they
are equally valid for MAC schemes. More generally, the issue of “mis-implementation” (also
called “footguns”) [90] of cryptographic primitives has been extensively discussed as part of

62

63

the discussion forum on post-quantum cryptography.

More concretely, Auth256 [16] is a Wegman-Carter type construction targeted at the
256-bit security level. Similarly, a 256-bit secure universal hash function has been proposed
in [30], which can be mated to a 256-bit secure PRF using the Wegman-Carter template to
obtain a 256-bit secure MAC. Such MAC schemes would be appropriate for high-security ap-
plications, or, for a post-quantum world. On the other hand, bandwidth limited applications
would require shorter tags. Also, the possibility of mis-implementation using tag truncation
remains. So, the question of designing a MAC scheme which can support various tag lengths
up to 256 bits is of practical interest.

To summarise, the problem of constructing variable tag length MAC schemes did not
gain much attention, though, it is of contemporary and future practical interest.

In this chapter, we provide a formalisation of the notion of security for a variable tag
length MAC scheme. For the same key, the desired tag length is to be provided as part of
the input to the tag generation algorithm. Consequently, in the security model, we allow the
adversary to control the tag length as well as the message. This is an extension of the usual
security model for MAC schemes.

We consider the problem of obtaining secure variable tag length MAC schemes. The
Wegman-Carter [110] scheme is the classical nonce-based MAC scheme. A naive approach
to obtain a variable tag length MAC scheme is to truncate tags produced by the Wegman-
Carter scheme. We show an easy attack on such a truncation scheme. Next, we consider
eight possible “natural” variants that arise from the Wegman-Carter MAC scheme. We
show attacks on six of these schemes. These attacks do not repeat nonces for tag generation
queries. Among the attacked schemes is the scheme obtained by nonce stealing following the
suggestion of Finney [47] as mentioned in Chapter 2. One of the eight schemes is generically
secure since it uses independent keys for different tag lengths. The last of the eight schemes
is proved to be secure. This scheme uses nonce stealing but, for different tag lengths, it uses
independent keys for the universal hash function component of the Wegman-Carter scheme.

From a practical point of view, it is desirable to have a scheme which uses a single key.
The key for the hash function is then derived from the key of the scheme and the tag length.
The manner in which such derivation is made depends upon the primitive used to derive the
hash key. We show two methods of deriving the hash key. The first method uses a stream
cipher while the second method uses a short output length pseudo-random function (PRF).
So, in effect, we obtain two constructions of single key variable tag length MAC scheme.

All the schemes that we describe can be instantiated by readily available concrete cryp-
tographic primitives. For example, either of the 256-bit secure universal hash functions
in [16, 30] can be combined with Salsa20 [12] to obtain nonce-based MAC schemes support-
ing variable tag lengths up to 256 bits. So, here we provide templates for designing efficient
and practical MAC schemes which support variable tag lengths.

This chapter is based on the work [53].

Relation to the work of Reyhanitabar et al. [92]: The notion of authenticated encryp-
tion with associated data (AEAD) which can support variable tag lengths was introduced

64Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

in [92]. An AEAD scheme has two algorithms, namely encryption and decryption. The en-
cryption algorithm takes as input a nonce, a plaintext, an associated data and a tag length
and returns the corresponding ciphertext; while the decryption algorithm takes as input a
nonce, a ciphertext, an associated data and a tag length and either returns ⊥ indicating that
the input is improper, or, returns the corresponding plaintext. Such an AEAD scheme can
be considered to be a nonce-based MAC scheme where the plaintext is always fixed to the
empty string and the message to be authenticated is provided as the associated data. With
this modification, the formalisation of the authenticity of the AEAD scheme in [92] turns
out to be the same as the formalisation of the variable tag length nonce-based MAC scheme
introduced in this chapter. The difference between our formalisation and that of [92] is in
the treatment of adversarial resources. We have considered the notion of query profile, while
the usual notion of query complexity has been considered in [92]. In terms of construction,
the contribution of [92] is different from ours. A variant of OCB [74] is considered in [92],
while we describe variants of the Wegman-Carter scheme.

6.1 Definitions

Throughout this chapter, n is a fixed positive integer.

We consider an ε-AXU family of hash functions {Hτ}τ∈T, where for each τ ∈ T, Hτ :
M→ {0, 1}n. Typically, a message is a binary string of some maximum length.

For the pseudo-random function (PRF) {FK}K∈K, FK : D → R as well, we consider D
and R to be finite non-empty sets of binary strings.

6.1.1 Variable Tag Length Nonce-Based Message Authentication
Code

A MAC scheme has two algorithms, namely, the tag generation algorithm and the verification
algorithm. Typically, in a MAC scheme, tags are binary strings of some fixed length. The
definition of MAC schemes, however, does not require tags to have the same length. So, it
is possible to consider variable length tags within the ambit of the currently used definition
of MAC schemes.

Our goal, on the other hand, is different. We would like the tag length to be provided as
part of the input to the tag generation and verification algorithms. So, for the same message,
by providing different values of the tag length, it is possible to generate tags of different
lengths. This feature is not covered by the presently used definition of MAC schemes. We
extend the syntax of MAC schemes and the definition of security to incorporate this feature.

A nonce-based MAC scheme is given by the message space M, the nonce space N ,
the key space K, the allowed set L of tag lengths, the tag space T ; and two algorithms
nvMAC.Gen(K,N,m, λ) and nvMAC.Verify(K,N,m, tag, λ), where K ∈ K, N ∈ N , m ∈M,
λ ∈ L and tag ∈ T . We consider M, N , K and L to be finite non-empty sets and T to
be equal to ∪i∈L{0, 1}i. We write nvMAC.GenK(N,m, λ) to denote nvMAC.Gen(K,N,m, λ),
and similarly nvMAC.VerifyK(N,m, tag, λ) to denote nvMAC.Verify(K,N,m, tag, λ).

Definitions 65

The inputs and outputs of nvMAC.GenK(N,m, λ) and nvMAC.VerifyK(N,m, tag, λ) are as
follows.

• nvMAC.GenK(N,m, λ):
input: K ∈ K; N ∈ N ; m ∈M; and λ ∈ L.
output: tag ∈ T is a binary string of length λ.

• nvMAC.VerifyK(N,m, tag, λ):
input: K ∈ K; N ∈ N ; m ∈ M; tag ∈ T ; and λ ∈ L such that tag is of length λ.
Note that for a correct implementation it must be checked that the tag provided is
actually of length λ.
output: an element from the set {true, false}. The value true indicates that the input
is accepted while the value false indicates that the input is rejected.

The following correctness condition must hold.

nvMAC.VerifyK(N,m, nvMAC.GenK(N,m, λ), λ) = true.

Security: The security for a (nonce-based) MAC scheme against an adversary A is mod-
elled as follows. Suppose K is chosen uniformly at random from K and the tag generation
and verification algorithms are instantiated with K. A is given oracle access to the tag gen-
eration and the verification algorithms. A makes a total of qg queries to the tag generation
oracle and a total of qv queries to the verification oracle. The queries are made adaptively
and queries to the tag generation oracle can be interleaved with those to the verification
oracle.

Let the queries to the tag generation oracle be(
N (1)
g ,m(1)

g , λ(1)
g

)
, . . . ,

(
N (qg)
g ,m(qg)

g , λ(qg)
g

)
and the corresponding responses be tag

(1)
g , . . . , tag

(qg)
g respectively. Similarly, let the queries

to the verification oracle be(
N (1)
v ,m(1)

v , tag(1)
v , λ(1)

v

)
, . . . ,

(
N (qv)
v ,m(qv)

v , tag(qv)
v , λ(qv)

v

)
and the corresponding responses be xxx

(1)
v , . . . , xxx

(qv)
v respectively, where for 1 ≤ j ≤ qv,

xxx
(j)
v is either true or false. The query profile of A is the list

C = (qg, qv, (n
(1)
g ,m(1)

g , λ(1)
g), . . . , (n(qg)

g ,m(qg)
g , λ(qg)

g), (n(1)
v ,m(1)

v , λ(1)
v),

. . . , (n(qv)
v ,m(qv)

v , λ(qv)
v)) (6.1)

where for 1 ≤ s ≤ qg, n
(s)
g = len(N

(s)
g),m

(s)
g = len(m

(s)
g) and for 1 ≤ s ≤ qv, n

(s)
v =

len(N
(s)
v),m

(s)
v = len(m

(s)
v).

There are two restrictions on the adversary. The first is a weaker form of nonce-respecting

behaviour, namely,
(
N

(i)
g , λ

(i)
g

)
6=
(
N

(j)
g , λ

(j)
g

)
for 1 ≤ i < j ≤ qg. Note that the adversary

is allowed to repeat (nonce, tag-length) pair for verification queries and it is also allowed to

66Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

re-use a (nonce, tag-length) pair used in a tag generation query in one or more verification
queries. Usual nonce-respecting behaviour requires the nonces in the tag generation queries
to be distinct. By relaxing this condition, we provide the adversary with more power. So,
a scheme proved secure against the weaker form of nonce-respecting behaviour maintains
security even if nonces are repeated in tag generation queries as long as the (nonce, tag-
length) pairs are distinct. The second restriction on the adversary is that it should not make
any useless query. A query is useless if its response can be computed by the adversary.
This means that the adversary should not repeat a query to the tag generation oracle or the

verification oracle; and it should not query the verification oracle with
(
N

(i)
g ,m

(i)
g , tag

(i)
g , λ

(i)
g

)
for any i in {1, . . . , qg}, where the query made to the tag generation oracle should be prior
to the current verification query.

The adversary makes a number of verification queries. The tag lengths of these queries
could be different. There is no restriction on the adversary to choose a target tag length
before making the queries to its oracles. For any tag length λ, the adversary is successful
if a verification query for this tag length returns true. So, for any value of the tag length,
there is a corresponding event that the adversary is successful for a particular tag length.
Formally, for λ ∈ L, let succA(λ) be the event that there is some j ∈ {1, . . . , qv} such

that λ
(j)
v = λ and nvMAC.VerifyK

(
N

(j)
v ,m

(j)
v , tag

(j)
v , λ

(j)
v

)
returns true. For each λ ∈ L, the

adversary’s advantage in breaking the authenticity of nvMAC is defined to be Pr[succA(λ)].
This is written as follows.

Advauth
nvMAC[λ](A) = Pr [succA(λ)] . (6.2)

The above probability is taken over the uniform random choice of K from K and over the
possible internal randomness of the adversary A.

Given a query profile C, Advauth
nvMAC[λ](T,C) is the maximum of Advauth

nvMAC[λ](A) taken over
all adversaries running in time T and having query profile C.

Remark: The security model allows nonces to be repeated with different tag lengths. As
explained above, this provides the adversary with more power. We further note that allowing
nonces to be reused with different tag lengths permits generation of fewer nonces which may
be of interest in some resource-constrained applications. At this point though, we are unable
to provide a concrete example.

Security in terms of query complexity: The query complexity is the total number of
bits sent by the adversary in all its queries. For tag generation queries, this consists of the
number of bits sent as part of the nonces, the messages and the λg’s; for verification queries,
this consists of the number of bits sent as part of the nonces, the messages, the tags and
the λv’s. Let the qg tag generation queries require a total of σg bits and the qv verification

queries require a total of σv bits. So, σg =
∑

1≤i≤qg(len(N
(i)
g) + len(m

(i)
g) + len(λ

(i)
g)) =∑

1≤i≤qg(n
(i)
g +m

(i)
g +len(λ

(i)
g)) and σv =

∑
1≤i≤qv(len(N

(i)
v)+len(m

(i)
v)+len(tag

(i)
v)+len(λ

(i)
v)) =∑

1≤i≤qv(n
(i)
v +m

(i)
v +λ

(i)
v +len(λ

(i)
v)), as len(tag

(i)
v) = λ

(i)
v . If the elements of L are expressed as t-

bit binary strings, then σg =
∑

1≤i≤qg(n
(i)
g +m

(i)
g)+qgt and σv =

∑
1≤i≤qv(n

(i)
v +m

(i)
v +λ

(i)
v)+qvt.

Towards Building a Variable Tag Length MAC 67

Given query complexity (σg, σv), Advauth
nvMAC[λ](T, σg, σv) is the maximum of Advauth

nvMAC[λ](A)
taken over all adversaries A running in time up to T and having query complexity (σg, σv).

Given a query profile C of any adversary A the corresponding query complexity (σg, σv)
can be readily derived in the above manner. On the other hand, it is to be noted that, various
query profiles can have the same query complexity. Hence, in the security definition above in
terms of query complexity, when one maximises over query complexity, the value obtained is
the maximum over all possible query profiles which have that same query complexity. This
gives us the following relation.

Definition 5. Let us fix a query complexity (σg, σv) and let Ç(σg ,σv) be the set of all query
profiles having query complexity (σg, σv), i.e.,

Ç(σg ,σv) := {C : the query complexity of C is (σg, σv)}.

Then,

Advauth
nvMAC[λ](T, σg, σv) = max

C∈Ç(σg,σv)
Advauth

nvMAC[λ](T,C). (6.3)

Later we explain the rationale for considering query profiles.

Information theoretic security: This consists of analysing the security of a MAC scheme
against a computationally unbounded adversary. In other words, the probability in (6.2) is
considered for an adversary A without any reference to the run time of A. For such a
computationally unbounded adversary A, without loss of generality, we may assume A to
be deterministic. In the context of information theoretic security, given a query profile C,

Advauth
nvMAC[λ](C) is the maximum of Advauth

nvMAC[λ](A) taken over all adversaries A having query
profile C.

6.2 Towards Building a Variable Tag Length MAC

It may appear that a variable tag length nonce-based MAC scheme can be obtained simply
by truncating the output of the Wegman-Carter MAC algorithm. This, however, does not
work as we show in this section. We further consider several “natural” extensions of the
Wegman-Carter MAC algorithm and show that most of them are insecure. Only two of these
extensions are secure: one of them is a generic construction, while we prove the security of the
other in the next section. Overall, the discussion in the present section may be considered
as showing the subtlety involved in constructing a variable tag length nonce-based MAC
scheme.

LetN be the nonce space andM be the message space. Let {FK}K∈K be a PRF such that
FK : N → {0, 1}n; let {Hashτ}τ∈T be an AXU hash function such that Hashτ :M→ {0, 1}n.
Given {FK}K∈K and {Hashτ}τ∈T, the Wegman-Carter MAC [110] is the following. A nonce-
message pair (N,m) is mapped under a key (K, τ) to FK(N)⊕ Hashτ (m), i.e.,

WC-nvMAC : (N,m)
(K,τ)−→ FK(N)⊕ Hashτ (m). (6.4)

68Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

Below we argue that several natural extensions of WC-nvMAC are not secure. We assume
that binary representation of tag lengths fit within a byte. The attacks are shown for the
following specific choice of the hash function. Under a fixed representation of the elements
of the finite field F2n , we identify the elements of F2n with the set {0, 1}n. The specific hash
function that we consider is Hashτ (m) = τm, i.e., the output of Hashτ (m) is the n-bit string
representing the product of τ and m considered as elements of F2n . This hash function is
known to be AXU. Attacks on schemes built using this specific hash function is sufficient to
show that the schemes described below are not secure for an arbitrary AXU hash function.
The choice of the hash function fixes the key space of the hash function to be T = F2n and
the message space M to be either F2n or F2n−8 , depending on the scheme.

We will use the following simple fact about the specific hash function that we consider.

Proposition 4. Consider the AXU hash function {Hashτ}τ∈F2n
where Hashτ (m) = τm. Let

m1 and m2 be distinct elements of F2n and c be such that Hashτ (m1)⊕ Hashτ (m2) = c, then
τ = c(m1 ⊕m2)−1.

The most obvious approach to obtain a variable tag length scheme from (6.4) is to
truncate the output, i.e.,

trunc : (N,m, λ)
(K,τ)−→ msbλ(WC-nvMACK,τ (N,m)) = msbλ(FK(N)⊕ Hashτ (m)).

The scheme trunc is not secure as can be seen from the following attacks. Note that in this
case the message space is F2n .

Attack 1 on trunc: Let m be a message and N be a nonce. The adversary makes a tag
generation query (N,m, n) and gets in response t. Now the adversary makes a verifi-
cation query (N,m,msbn−1(t), n− 1) and it is successful with probability 1. Thus the
adversary makes a successful forgery with only one tag generation query.

Attack 2 on trunc: Another attack which repeats nonces in tag generation queries and reveals
more information is the following. Let m1,m2 and m3 be distinct messages and N be a
nonce. The adversary makes two tag generation queries (N,m1, n) and (N,m2, n− 1)
and gets in response t1 and t2 respectively. So, we have the following relations: FK(N)⊕
Hashτ (m1) = t1 and msbn−1(FK(N)⊕ Hashτ (m2)) = t2. From the second relation, it
follows that either FK(N)⊕ Hashτ (m2) = t2||0 or FK(N)⊕ Hashτ (m2) = t2||1. Using
Proposition 4, the adversary solves the equations Hashτ (m1)⊕Hashτ (m2) = t1⊕ (t2||0)
and Hashτ (m1) ⊕ Hashτ (m2) = t1 ⊕ (t2||1) for τ to obtain the solutions τ0 and τ1

respectively. As FK(N)⊕ Hashτ (m2) takes exactly one of the two values t2||0 or t2||1,
τ takes exactly one of the two values τ0 or τ1. Let y0 = t1⊕Hashτ0(m1). The adversary
makes a verification query (N,m3, y0 ⊕ Hashτ0(m3), n). If the verification query is
successful then τ0 is the correct value of τ . If the verification query fails, then τ1 is the
correct value of τ . Thus the adversary recovers the hash key with two tag generation
and one verification queries.

The first attack shows that a simple truncation of the Wegman-Carter MAC scheme does
not work while the second attack shows that by repeating nonces in tag generation queries

Towards Building a Variable Tag Length MAC 69

Table 6.1: For the schemes in (6.5) to (6.12), a summary of whether the input and/or the
key of F and/or Hash depend on the tag length λ.

scheme F Hash secure?
i/p key i/p key

nvMAC-t1 yes no no no no
nvMAC-t2 no no yes no no
nvMAC-t3 yes no yes no no
nvMAC-Generic no yes no yes yes
nvMAC-t4 no yes no no no
nvMAC-t5 no yes yes no no
nvMAC-t6 no no no yes no
nvMAC yes no no yes yes

the hash key can be obtained. One possibility of modifying trunc is to apply FK a second
time before applying truncation, i.e., the tag is obtained as msbλ(FK(FK(N)⊕ Hashτ (m))).
The resulting scheme is also not secure. The first simple attack on trunc also works for this
modified scheme.

In the scheme trunc, the output of neither F nor Hash depends on λ. To rectify this
situation, one may introduce λ as part of the input of one or both of F and Hash. Another
possibility is to have one or both of the keys K and τ to depend on λ. Key dependencies
are achieved by using a family of independent keys {Kλ}λ∈L and/or a family of independent
keys {τλ}λ∈L. The various schemes that arise from such considerations are as follows.

nvMAC-t1K,τ : (N,m, λ)
(K,τ)−→ msbλ(FK(bin8(λ)||N)⊕ Hashτ (m)). (6.5)

nvMAC-t2K,τ : (N,m, λ)
(K,τ)−→ msbλ(FK(N)⊕ Hashτ (bin8(λ)||m)). (6.6)

nvMAC-t3K,τ : (N,m, λ)
(K,τ)−→ msbλ(FK(bin8(λ)||N)⊕ Hashτ (bin8(λ)||m)).

(6.7)

nvMAC-Generic(Kλ,τλ)λ∈L : (N,m, λ)
(Kλ,τλ)−→ msbλ(FKλ(N)⊕ Hashτλ(m)). (6.8)

nvMAC-t4(Kλ,τ)λ∈L : (N,m, λ)
(Kλ,τ)−→ msbλ(FKλ(N)⊕ Hashτ (m)). (6.9)

nvMAC-t5(Kλ,τ)λ∈L : (N,m, λ)
(Kλ,τ)−→ msbλ(FKλ(N)⊕ Hashτ (bin8(λ)||m)). (6.10)

nvMAC-t6(K,τλ)λ∈L : (N,m, λ)
(K,τλ)−→ msbλ(FK(N)⊕ Hashτλ(m)). (6.11)

nvMAC(K,τλ)λ∈L : (N,m, λ)
(K,τλ)−→ msbλ(FK(bin8(λ)||N)⊕ Hashτλ(m)). (6.12)

Dependencies of input and/or key on λ for the above schemes are summarised in Table 6.1.

Nonce stealing: Finney [47] had suggested that the nonce may be reduced by a few bits
and a binary encoding of the tag length be inserted. In the present context, this refers to
letting the input of F depend on the tag length. From Table 6.1, we see that the schemes

70Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

nvMAC-t1, nvMAC-t3 and nvMAC use nonce stealing. While nvMAC is secure (as proved
later), schemes nvMAC-t1 and nvMAC-t3 are insecure. So, nonce stealing by itself does not
guarantee security.

For the ensuing discussion, we will consider the message space for the schemes nvMAC-t1,
nvMAC-Generic, nvMAC-t4 and nvMAC-t6 to be F2n , and that for the schemes nvMAC-t2,
nvMAC-t3 and nvMAC-t5 to be F2n−8 .

Algorithm 3 describes an attack on nvMAC-t1 which uses findTag as a subroutine. In the
attack, the tag generation and verification oracles are denoted by Og and Ov respectively.
On being supplied with input (N,m, λ), the function findTag(N,m, λ) finds tag such that
(N,m, tag, λ) passes the test by the verification oracle. To do this, findTag repeatedly queries
the verification oracle, until a suitable tag is obtained. The expected number of queries made
by findTag(N,m, λ) is 2λ. Algorithm 3 invokes findTag with values of the tag length which
are less than the target tag length.

The intuition behind the attack in Algorithm 3 is the following. The key (K, τ) of the
scheme does not depend on λ. In particular, as the hash key τ does not depend on λ, the
attack retrieves τ using a smaller value of λ and uses it for the forgery with the target λ
successfully. Retrieving τ using a smaller value of λ requires significantly less number of
oracle queries than that required for an attack by exhaustive search for the target λ. The
analysis of the attack is given in Proposition 5. This divide-and-conquer attack strategy of
using shorter tag length to learn information, with low cost, which is useful for longer tag
lengths has previously been used in the context of AE [41, 92].

Algorithm 3 Attack on nvMAC-t1 for λ = n.

1: set λ← n;
2: choose λ1 ∈ L, such that λ1 < λ;
3: choose distinct N1, N2 ∈ N and distinct m1,m2,m3,m4 ∈M;
4: tag(1) ← Og(N1,m1, λ1);
5: tag(2) ← findTag(N1,m2, λ1);
6: set C ← {};
7: do
8: choose c← {0, 1}n−λ1 \ C;
9: set C ← C ∪ {c};

10: using Proposition 4 solve Hashτ (m1)⊕ Hashτ (m2) = (tag(1) ⊕ tag(2))||c
11: for τ and let the solution be τc;
12: set mc ← tag(1) ⊕msbλ1(Hashτc(m1));

13: R(3)
v ← Ov(N1,m3,mc ⊕msbλ1(Hashτc(m3)), λ1);

14: while R(3)
v = false;

15: tag(4) ← Og(N2,m4, λ);
16: choose any m ∈M \ {m4};
17: return (N2,m,Hashτc(m)⊕ Hashτc(m4)⊕ tag(4), λ).

Proposition 5. The attack given in Algorithm 3 on the scheme nvMAC-t1 given in (6.5)
produces a forgery for tag length λ which is correct with probability 1. It requires one tag

Towards Building a Variable Tag Length MAC 71

findTag(N,m, λ)

1: set D ← {};
2: do
3: choose tag← {0, 1}λ \ D;
4: set D ← D ∪ tag;
5: Rv ← Ov(N,m, tag, λ);
6: while Rv = false
7: return tag.

generation query and at most 2λ1 + 2n−λ1 verification queries on tag length λ1 and one tag
generation query and one verification query on tag length λ.

Proof. That the attack mentioned in Algorithm 3 forges with probability 1 is proved if
it can be shown that the forgery returned by the attack in Step 17 is accepted, i.e. the
corresponding response from Ov is true.
From Step 4 we get,

msbλ1(FK(bin8(λ1)||N1)⊕ Hashτ (m1)) = tag(1). (6.13)

The tag(2) returned by Step 5 satisfies

msbλ1(FK(bin8(λ1)||N1)⊕ Hashτ (m2)) = tag(2). (6.14)

So, from (6.13) and (6.14) we get,

msbλ1(Hashτ (m1)⊕ Hashτ (m2)) = tag(1) ⊕ tag(2). (6.15)

Here tag(1) ⊕ tag(2) is a λ1-bit binary string. Following Proposition 4, for each choice of c in
the do-while loop in Steps 7 to 14, the equation in Step 10 can be solved to get τc and mc.
The fact that Hashτ (m1)⊕ Hashτ (m2) ∈ {0, 1}n and (6.15) suggest that there is a correct c,
such that the equation in Step 10 holds and we consider that iteration of the do-while loop
which deals with this particular c. The τc obtained in this iteration is the actual hash key
used in the scheme. So,

nvMAC-t1(N1,m3, λ1)

= msbλ1(FK(bin8(λ1)||N1)⊕ Hashτc(m3))

= tag(1) ⊕msbλ1(Hashτc(m1))⊕msbλ1(Hashτc(m3)) (6.16)

= mc ⊕msbλ1(Hashτc(m3)). (6.17)

The expression in (6.16) comes from (6.13) and that in (6.17) comes from Step 12 in

Algorithm 3. Hence, in this particular iteration of the do-while loop, R(3)
v = true and the

loop terminates.
Since λ = n, from Step 15 we obtain FK(bin8(λ)||N2) = Hashτc(m4) ⊕ tag(4). For the

choice of m in Step 16, i.e., m ∈M \ {m4} we have

nvMAC-t1(N2,m, λ) = FK(bin8(λ)||N2)⊕ Hashτc(m)

= Hashτc(m4)⊕ tag(4) ⊕ Hashτc(m), (6.18)

72Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

which is returned as the tag for (N2,m, λ) in the forgery and hence, the corresponding
response from Ov is true with probability 1, which proves the first part of the result.

In the attack, there are 2 tag generation queries in Steps 4 and 15. The subroutine findTag
makes a maximum of 2λ1 verification queries on tags of lengths λ1. The do-while loop in
Steps 7 to 14 iterates at most 2n−λ1 times for different values of c making a maximum of 2n−λ1

verification queries on tags of lengths λ1. The forgery returned in Step 17 is a verification
query on a tag of length λ. Hence, the attack requires 2 tag generation queries and at most
2λ1 + 2n−λ1 + 1 verification queries including the forgery.

Remarks:

1. One may note that here we consider variable length tags. So, the adversary can make
verification queries for a particular tag length and provide a forgery for another tag
length. The attack given in Algorithm 3 on the scheme nvMAC-t1, forges the scheme
with an n-bit tag, i.e. the attack is for tag length n; whereas, as shown in Proposition 5,
the attack requires 2 tag generation queries and 2λ1 + 2n−λ1 + 1 verification queries
including the forgery, where λ1 < λ. Among these queries, 1 tag generation query and
2λ1 + 2n−λ1 verification queries are with tag length λ1. For example, suppose n = 128,
and let λ1 = 64. So, the attack uses 265 + 1 < 2128 verification queries and produces a
forgery for tag length 128. This constitutes a valid attack for tag length 128.

2. The security model for variable length tag nonce-based MAC allows nonces in tag
generation queries to be repeated as long as the tag lengths are distinct. The attack in
Algorithm 3 does not repeat nonces in tag generation queries. So, the scheme nvMAC-t1
is insecure even under the restriction that nonces in tag generation queries are distinct.

Insecurities of the schemes nvMAC-t1 to nvMAC-t5 follow from applications of Algorithm 3.

Attack on nvMAC-t2: Algorithm 3 works with the only modification that the forgery is
changed to (N2,m,Hashτc(bin8(λ)||m4)⊕ tag(4) ⊕ Hashτc(bin8(λ)||m), λ).

Attack on nvMAC-t3: Algorithm 3 works with the only modification that the forgery is
changed to (N2,m,Hashτc(bin8(λ)||m)⊕ Hashτc(bin8(λ)||m4)⊕ tag(4), λ).

Attack on nvMAC-t4: Algorithm 3 works with the only modification that the forgery is
changed to (N2,m,Hashτc(m)⊕ Hashτc(m4)⊕ tag(4), λ).

Attack on nvMAC-t5: Algorithm 3 works with the only modification that the forgery is
changed to (N2,m,Hashτc(bin8(λ)||m)⊕ Hashτc(bin8(λ)||m4)⊕ tag(4), λ).

Algorithm 4 describes an attack on nvMAC-t6 which also uses findTag as a subroutine; Og
and Ov are as described before.

Proposition 6. The attack given in Algorithm 4 on the scheme nvMAC-t6 produces a forgery
for tag length λ which is correct with probability 1. It requires at most 2λ1+1 + 2n−λ1 verifi-
cation queries on tag length λ1 and one tag generation query and at most 2n−λ1 verification
queries on tag length λ.

Towards Building a Variable Tag Length MAC 73

Algorithm 4 Attack on nvMAC-t6 for λ = n:

1: set λ← n;
2: choose λ1 ∈ L, such that λ1 < λ;
3: choose any N1 ∈ N and distinct m1,m2,m3,m4,m ∈M;
4: tag(1) ← findTag(N1,m1, λ1);
5: tag(2) ← findTag(N1,m2, λ1);
6: set C1 ← {};
7: do
8: choose c1 ← {0, 1}n−λ1 \ C1;
9: set C1 ← C1 ∪ {c1};

10: using Proposition 4 solve Hashτλ1 (m1)⊕ Hashτλ1 (m2) = (tag(1) ⊕ tag(2))||c1

11: for τλ1 and let the solution be τc1 ;
12: set mc1 ← tag(1) ⊕msbλ1(Hashτc1 (m1));

13: R(3)
v ← Ov(N1,m3,mc1 ⊕msbλ1(Hashτc1 (m3)), λ1);

14: while R(3)
v = false;

15: tag(4) ← Og(N1,m4, λ);
16: set C2 ← {};
17: do
18: choose c2 ← {0, 1}n−λ1 \ C2;
19: set C2 ← C2 ∪ {c2};
20: solve Hashτλ(m4) = msbλ1(tag(4))⊕mc1||c2

21: for τλ and let the solution be τc2 ;
22: set mc2 ← (msbλ1(tag(4))⊕mc1||c2)⊕ tag(4);

23: R(5)
v ← Ov(N1,m,mc2 ⊕ Hashτc2 (m), λ);

24: while R(5)
v = false.

74Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

Proof. That the attack mentioned in Algorithm 4 forges with probability 1 is proved if it
can be shown that there is an iteration of the do-while loop in Steps 17 to 24 such that
R(5)
v = true, i.e. there is a verification query in Step 23 which succeeds.

From Steps 4 and 5, we get that

msbλ1(FK(N1)⊕ Hashτλ1 (m1)) = tag(1). (6.19)

msbλ1(FK(N1)⊕ Hashτλ1 (m2)) = tag(2). (6.20)

So,

msbλ1(Hashτλ1 (m1)⊕ Hashτλ1 (m2)) = tag(1) ⊕ tag(2). (6.21)

Here tag(1) ⊕ tag(2) is a λ1-bit binary string.
Following Proposition 4, for each choice of c1 in the do-while loop in Steps 7 to 14,

the equation in Step 10 can be solved to get τc1 and mc1 . The fact that Hashτλ1 (m1) ⊕
Hashτλ1 (m2) ∈ {0, 1}n and (6.21) suggest that there is a correct c1, such that the equation
in Step 10 holds and we consider that iteration of the do-while loop which deals with this
particular c1. The τc1 obtained in this iteration is the actual hash key used in the scheme.
So,

nvMAC-t6(N1,m3, λ1)

= msbλ1(FK(N1)⊕ Hashτc1 (m3))

= tag(1) ⊕msbλ1(Hashτc1 (m1))⊕msbλ1(Hashτc1 (m3)) (6.22)

= mc1 ⊕msbλ1(Hashτc1 (m3)). (6.23)

The expression in (6.22) comes from (6.19) and that in (6.23) comes from Step 12 in Algo-

rithm 4. Hence, in this particular iteration of the do-while loop, R(3)
v = true and the loop

terminates.
Noting that λ = n, from Step 15, we get

FK(N1)⊕ Hashτλ(m4) = tag(4) ⇒ Hashτλ(m4) = tag(4) ⊕ FK(N1). (6.24)

Here, the n bits of tag(4) and msbλ1(·) of FK(N1), which is mc1 , are known. As Hashτλ(m4) ∈
{0, 1}n, there is a c2 ∈ {0, 1}n−λ1 , such that,

Hashτλ(m4) = msbλ1(tag(4) ⊕ FK(N1))||c2 = (msbλ1(tag(4))⊕mc1)||c2. (6.25)

For the correct choice of c2, the correct values of τc2 and mc2 are obtained in Steps 21 and 22
respectively. For the correct c2, from (6.24) and (6.25), we get,

FK(N1) = Hashτλ(m4)⊕ tag(4) = ((msbλ1(tag(4))⊕mc1)||c2)⊕ tag(4), (6.26)

which equals mc2 according to Step 22 in Algorithm 4. Hence,

nvMAC-t6(N1,m, λ) = FK(N1)⊕ Hashτc2 (m) = mc2 ⊕ Hashτc2 (m). (6.27)

Towards Building a Variable Tag Length MAC 75

The last equality follows from (6.26). From (6.27), it is clear that for the iteration of the

do-while loop in Steps 17 to 24, in which the correct c2 is used, R(5)
v = true with probability

1, which proves the first part of the Lemma.

Steps 4 and 5 each require at most 2λ1 verification queries for tag length λ1. Step 13
requires at most 2n−λ1 verification queries for tag length λ1. A tag generation query for tag
length λ is made in Step 15 and at most 2n−λ1 verification queries are made for tag length
λ in Step 23. This shows the complexity of the attack.

Remarks:

1. With λ = n suppose λ1 = n/2. Then the adversary makes a maximum of 3 · 2n/2
verification queries for tag length n/2, one tag generation query and at most 2n/2

verification queries for tag length n. It produces a forgery for tag length n which is
correct with probability 1. So, this is a valid forgery attack for tag length n.

2. Algorithm 4 makes a single tag generation query. Hence, the issue of repeating nonces
in tag generation queries does not arise.

The scheme nvMAC-Generic can be considered to be a collection of #L independent
WC-nvMAC schemes, one for each value of λ. Each of the individual schemes for fixed values
of λ are already known to be secure, since the proof from [14] applies to the individual schemes
where the values of λ are fixed. Since the keys of the various schemes are independent, it
can be argued that the collection is also secure. The problem, however, is that size of the
key increases by a factor of #L. So, nvMAC-Generic cannot be considered to be a practical
solution to the problem of obtaining a variable tag length MAC scheme.

The first step towards reducing key size is taken in the scheme nvMAC which uses a single
key K for F and independent keys τλ. In the next section, we prove nvMAC to be secure
and also consider further variants with smaller keys.

Remark: Suppose nvMAC-t1 is modified to obtain a scheme nvMAC-t1′ in the following
manner. The tag is obtained as msbλ(FK(FK(bin8(λ)||N)⊕Hashτ (m))), i.e., a second appli-
cation of FK is made before truncating. It is not difficult to show that the scheme mapping
(N,m, λ), under the key (K, τ), to the quantity FK(FK(bin8(λ)||N)⊕ Hashτ (m)) is a PRF.
It can be argued that nvMAC-t1′ is a secure variable tag length MAC scheme. However, the
security bound for nvMAC-t1′ will be in the order of q2ε, where the total number of queries
is q and the hash function is ε-AXU. This bound is higher than the bounds obtained for the
schemes that we consider. Hence, we do not consider nvMAC-t1′. In the above discussion,
we have considered modification of nvMAC-t1 to nvMAC-t1′. The same comments apply to
similar modifications of the other insecure schemes, namely nvMAC-t2 to nvMAC-t6.

76Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

6.3 Secure and Efficient MAC Schemes with Variable

Length Tag

We start with the scheme nvMAC given in (6.12). We carry out an information theoretic
analysis of this scheme. To this end, we consider the scheme obtained by replacing FK with
a random function f : {0, 1}n → {0, 1}n. The tag generation algorithm for this scheme is
shown in Table 6.2. We require a hash family {Hashτ}τ∈T, where for each τ ∈ T, Hashτ :
M→ {0, 1}n, with M = ∪Li=0{0, 1}i for some sufficiently large positive integer L.

The nonce space for the scheme nvMAC is N = {0, 1}n−8 and the message space is M.
Let L ⊆ {1, . . . ,min(256, n)} be the allowed set of tag lengths. Note that tag length equal
to zero is not allowed and there are 256 possible values of the tag length that are supported.
If λ is the tag length, then λ − 1 is at most 255 and consequently fits within a byte. So,
instead of encoding λ, we encode λ− 1. This is a modification that we make to the scheme
given in (6.12). Note that larger (or smaller) values of #L can be considered by suitably
adjusting the length of the nonces. From a practical point of view, however, it is difficult to
think of any application which would require #L to be more than 256.

The key space for nvMAC is T#L, i.e., a particular key is a tuple (τλ)λ∈L. The key
generation algorithm consists of choosing τλ independently and uniformly at random from
T for each λ. The verification algorithm is as follows. Given (N,m, tag, λ), compute tag′ =
nvMAC.Gen(τλ)λ∈L(N,m, λ); if tag = tag′ then return true, else return false.

Here f is a random function but, not necessarily a uniform random function. Given q
pairs (a1, b1), . . . , (aq, bq), the q-interpolation probability [14] of f is defined to be Pr[f(a1) =
b1, . . . , f(aq) = bq]. Following the analysis in [14], the security bound for the resulting scheme
is obtained in terms of the interpolation probability of f . Known bounds on the interpola-
tion probability of uniform random function and uniform random permutation provide the
corresponding bounds on the security of the resulting nvMAC schemes.

Table 6.2: A secure and efficient nvMAC scheme from a random function.

nvMAC.Gen(τλ)λ∈L(N,m, λ)
Q = f(bin8(λ− 1)||N);
R = Q⊕ Hashτλ(m);
tag = msbλ(R);

return tag.

Theorem 6. In the scheme nvMAC defined in Table 6.2, suppose that the hash function
{Hashτ}τ∈T is ε-AXU, where ε(`, `′) ≥ 1/2n for all `, `′ ≤ L.

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation
(resp. verification) queries for λ which are in C. Let λ be such that qv,λ ≥ 1 and for

1 ≤ i ≤ qv,λ, let Q
(i)
v,λ = (N

(i)
v,λ,m

(i)
v,λ, tag

(i)
v,λ, λ) be the i-th verification query with tag length

λ. Let `
(i)
v,λ = len(m

(i)
v,λ). Corresponding to Q

(i)
v,λ, there is at most one tag generation query

Secure and Efficient MAC Schemes with Variable Length Tag 77

Q
(i?)
g,λ = (N

(i?)
g,λ ,m

(i?)
g,λ , λ) such that N

(i)
v,λ = N

(i?)
g,λ . Let `

(i?)
g,λ = len(m

(i?)
g,λ) if there is such a Q

(i?)
g,λ ,

otherwise `
(i?)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the
verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most
q distinct (nonce, tag-length) values. Further, suppose δi be such that the i-interpolation
probability of f is at most δi/(2

n)i. Then

Advauth
nvMAC[λ0](T,C) ≤ 1

2λ0
×

∑
1≤i≤qv,λ0

γi (6.28)

where γi = 2nδqε
(
`

(i)
v,λ0

, `
(i?)
g,λ0

)
if there is a Q

(i?)
g,λ0

corresponding to Q
(i)
v,λ0

with N
(i)
v,λ0

= N
(i?)
g,λ0

;

otherwise γi = δq+1.

Remark: It has been proved in [14], that for 1 ≤ j ≤ 2n, if f is a uniform random function,
then δj = 1, and if f is a uniform random permutation, then δj ≤ (1− (j − 1)/2n)−j/2.

Proof. The proof builds upon and generalises ideas used in the security proof of the Wegman-
Carter nonce-based MAC scheme given in [14].

Let A be an adversary attacking the authenticity of nvMAC. The result concerns infor-
mation theoretic security and so we consider the adversary to be deterministic. A makes a
number of queries to its oracles and receives the appropriate responses. The interaction of
A with its two oracles is given by a transcript T which is a list of the queries made by A
and the responses it received in return. The adversary’s view of the oracles is completely
determined by the transcript T . By A(T), we will denote the interaction of A with the
oracles as given by the transcript T . The responses to the queries made by A are computed
using the random function f and hence are random variables. Since A is deterministic, the
randomness in a transcript T arises only from these responses. By succ(A(T), λ0) we will
denote the event that the adversary A with transcript T makes a verification query for tag
length λ0 which returns true. So, if the transcript T corresponds to the query profile C, then

Advauth
nvMAC[λ0](T,C) = Pr[succ(A(T), λ0)].
The first reduction is to assume that qv,λ0 = 1. If qv,λ0 = 0, i.e., A does not make any

verification query, then clearly, A has advantage 0 so that the theorem is trivially proved.
So, suppose that A with transcript T makes qv,λ0 > 1 verification queries for tag-length λ0.
Let E be the event that the first verification query for the tag length λ0 is successful and S
be the event that one of the later verification queries for the tag length λ0 is successful. So,

Advauth
nvMAC[λ0](A) = Pr[succ(A(T), λ0)] = Pr[E ∨ S] = Pr[E ∨ (E ∧ S)]

= Pr[E] + Pr[E ∧ S].

Given the adversary A and the transcript T , we define two adversaries A′ and A′′ and
correspondingly two transcripts T ′ and T ′′ in the following manner.

• Adversary A′ is the same as A up to and including the first verification query for tag
length λ0; the transcript T ′ is obtained from T by dropping from T all queries after
the first verification query for tag length λ0. So, Pr[succ(A′(T ′), λ0)] = Pr[E].

78Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

• Adversary A′′ is the same as A except for the first verification query for tag length λ0.
A′′ does not issue the first verification query for tag length λ0. The transcript T ′′ is
the same as that of T except that in T ′′, the answer to the first verification query for
tag length λ0 is set to be false1. The event E ∧ S captures the following situation for
A on the transcript T : the response to the first verification query for tag length λ0 is
false and A is successful on some later verification query for tag length λ0. Note that
this situation is exactly the event that A′′ is successful for tag length λ0 on transcript
T ′′. So, Pr[succ(A′′(T ′′), λ0)] = Pr[E ∧ S].

Note that A′′ makes qv,λ0−1 verification queries for tag length λ0. So, the problem of proving
the result for qv,λ0 verification queries has been reduced to the problem of proving the result
for qv,λ0−1 verification queries. Proceeding by induction, to prove the bound given in (6.28),
it is sufficient to consider an adversary which makes exactly one verification query for tag
length λ0. Let the single verification query for tag length λ0 be (N,m, tag, λ0).

The second reduction is to ignore all queries in T after the verification query for tag
length λ0. Such queries have no effect on the success probability of the verification query for
tag length λ0.

The third reduction is the following. If the queries in Sλ0 give rise to less than q distinct
(nonce, tag-length) values, then insert additional tag generation queries to the transcript
with (nonce, tag-length) values not equal to (N, λ0) such that the queries in the augmented
Sλ0 give rise to exactly q distinct (nonce, tag-length) values. Such augmentation of the
transcript does not decrease the adversary’s advantage.

In view of the above reductions, it is sufficient to consider an adversaryA with a transcript
T where the last query is the verification query (N,m, tag, λ0) for tag length λ0 and the
queries in Sλ0 give rise to exactly q distinct (nonce, tag-length) values. The transcript T
can contain any number of tag generation queries for the tag length λ0. However, by the
restriction that among the tag generation queries, the (nonce, tag-length) pair cannot repeat,
T can contain at most one tag generation query of the form (N,m′, λ0). For λ 6= λ0, the
transcript T can contain multiple verification queries with the same value for the (nonce, λ)
pair. So, the total number of queries in Sλ0 can be greater than q.

Let N = bin8(λ0−1)||N , Q = f(N) and τ0 = τλ0 . Let the q distinct values of (nonce, tag-
length) pairs arising from the queries in Sλ0 be (N (1), λ(1)), . . . , (N (q), λ(q)). For i = 1, . . . , q,
let N(i) = bin8(λ(i) − 1)||N (i) and Q(i) = f(N(i)). Define Q = (Q(1), . . . , Q(q)). Let q′ be
the number of distinct tag-length values arising from the queries in Sλ0 and let λ(1), . . . , λ(q′)

be these tag lengths. For i = 1, . . . , q′, define τi = τλ(i) and τ = (τ1, . . . , τq′). The entire
randomness in the transcript arises from Q and τ .

Consider the final verification query (N,m, tag, λ0) and let ` = len(m). Let `(?) =
len(m(?)) if there is a prior tag generation query (N (?),m(?), λ(?)) (with response tag(?)) such

1Bernstein’s proof in [14] for nonce-based MAC considers simulation of the first forgery attempt with the
simulator returning true if the provided tag is equal to the tag returned by a previous tag generation query
on the same nonce and message, and false otherwise. In our case, since we are disallowing useless queries,
there could not have been a previous tag generation query for the tag length λ0 with the same nonce and
message as that of the first verification query for tag length λ0. So, in our case, such a simulator would
always return false.

Secure and Efficient MAC Schemes with Variable Length Tag 79

that N (?) = N and λ(?) = λ0; otherwise, `(?) is undefined. Let γ = 2nδqε(`, `
(?)) if `(?) is

defined, otherwise, γ = δq+1. To prove the theorem, it is sufficient to show

Pr[succ(A(T), λ0)] ≤ γ/2λ0 . (6.29)

The verification query is successful if tag = msbλ0(Q⊕ Hashτ0(m)). So,

Pr[succ(A(T), λ0)] = Pr[msbλ0(Q⊕ Hashτ0(m)) = tag]. (6.30)

We consider the probability on the right hand side of (6.30) under two cases.

The first case is when there is no tag generation query having (nonce, tag-length) pair
to be equal to (N, λ0) in T . In this case, N(1), . . . ,N(q),N are distinct values to which f is
applied. Since the adversary is adaptive, the m and tag in the final verification query are
functions of the earlier responses it received and in turn are functions of Q and τ . We write
m ≡ m(Q, τ) and tag ≡ tag(Q, τ) to denote this functional dependence. We would like to
emphasise that the adversary does not have access to Q and τ and writing m and tag as
functions of Q and τ is only to help in the argument. Let α and a be arbitrary values of τ0

and τ . Let β1, . . . , βq be arbitrary n-bit strings and let b = (β1, . . . , βq). So,

Pr[msbλ0(Q⊕ Hashτ0(m(Q, τ))) = tag(Q, τ)]

= Pr[msbλ0(Q) = tag(Q, τ)⊕msbλ0(Hashτ0(m(Q, τ)))]

=
∑
a,α

Pr[msbλ0(Q) = tag(Q, τ)⊕msbλ0(Hashτ0(m(Q, τ))) ∧ (τ = a) ∧ (τ0 = α)]

=
∑
a,α

Pr[msbλ0(Q) = tag(Q, a)⊕msbλ0(Hashα(m(Q, a))) ∧ (τ = a) ∧ (τ0 = α)]

=
∑
a,α

Pr[msbλ0(Q) = tag(Q, a)⊕msbλ0(Hashα(m(Q, a)))] Pr[(τ = a) ∧ (τ0 = α)].

(6.31)

80Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

Let c be an arbitrary (n− λ0)-bit binary string. We consider

Pr[msbλ0(Q) = tag(Q, a)⊕msbλ0(Hashα(m(Q, a)))]

=
∑
b

Pr[msbλ0(Q) = tag(Q, a)⊕msbλ0(Hashα(m(Q, a))) ∧ (Q = b)]

=
∑
b

Pr[msbλ0(Q) = tag(b, a)⊕msbλ0(Hashα(m(b, a))) ∧ (Q = b)]

=
∑
b

Pr[msbλ0(Q) = β ∧ (Q = b)]

(where β = tag(b, a)⊕msbλ0(Hashα(m(b, a))))

=
∑
b

Pr[msbλ0(f(N)) = β, f(N(1)) = β1, . . . , f(N(q)) = βq]

=
∑
b

∑
c

Pr[f(N) = β||c, f(N(1)) = β1, . . . , f(N(q)) = βq]

≤
∑
b

2n−λ0δq+1/(2
n)q+1

= 2n−λ0δq+1/2
n = γ/2λ0 . (6.32)

Combining (6.31) and (6.32), we have

Pr[msbλ0(Q⊕ Hashτ0(m(Q, τ))) = tag(Q, τ)]

=
∑
a,α

Pr[msbλ0(Q) = tag(Q, a)⊕msbλ0(Hashα(m(Q, a)))] Pr[(τ = a) ∧ (τ0 = α)]

≤ γ/2λ0
∑
a,α

Pr[(τ = a) ∧ (τ0 = α)] = γ/2λ0 . (6.33)

This proves the first case.
In the second case, let the transcript T be such that there is a tag generation query
(N (?),m(?), λ(?)) (with response tag(?)) where N (?) = N and λ(?) = λ0. Note that by the
query restriction on the adversary, m(?) 6= m. Let N(?) = bin8(λ(?)− 1)||N (?), Q(?) = f(N(?))
and τ? = τλ(?) . Then Q(?) = Q and τ? = τ0. Let Q be the vector consisting of Q(1), . . . , Q(q)

but, not containing Q(?) and let τ be the vector consisting of τ1, . . . , τq′ but, not containing
τ?. So, Q is a vector having q − 1 components and τ is a vector having q′ − 1 components.
In this case, m ≡ m(Q, τ , tag(?)) and tag ≡ tag(Q, τ , tag(?)). As in the earlier argument,
we highlight that the adversary does not have access to Q and τ and writing m and tag
as functions of Q and τ (and also tag(?)) is to help in the argument. Due to the adaptive
nature of the adversary, m(?) is also a function of portions of Q and τ which corresponds to
the queries earlier to (N (?),m(?), λ(?)). Hence, we write m(?) ≡ m(?)(Q, τ). Note that τ0 is
independent of τ .

Secure and Efficient MAC Schemes with Variable Length Tag 81

Let a and t be arbitrary values for τ and tag(?) respectively. Then

Pr[msbλ0(Q⊕ Hashτ0(m(Q, τ , tag(?)))) = tag(Q, τ , tag(?))]

=
∑
a,t

Pr[(msbλ0(Q⊕ Hashτ0(m(Q, τ , tag(?)))) = tag(Q, τ , tag(?))) ∧ (τ = a)

∧(tag(?) = t)]

=
∑
a,t

Pr[(msbλ0(Q⊕ Hashτ0(m(Q, a, t))) = tag(Q, a, t))

∧(msbλ0(Q⊕ Hashτ0(m
(?)(Q, a))) = t) ∧ (τ = a)]

=
∑
a

(∑
t

Pr[(msbλ0(Hashτ0(m(Q, a, t))⊕ Hashτ0(m
(?)(Q, a))) = tag(Q, a, t)⊕ t)

∧(msbλ0(Q) = tag(Q, a, t)⊕msbλ0(Hashτ0(m(Q, a, t))))]
)
× Pr[τ = a]. (6.34)

Let b and α be an arbitrary value of Q and τ0. Let c1 and c2 be arbitrary (n − λ0)-bit
strings. We consider

Pr[(msbλ0(Hashτ0(m(Q, a, t))⊕ Hashτ0(m
(?)(Q, a))) = tag(Q, a, t)⊕ t)

∧(msbλ0(Q) = tag(Q, a, t)⊕msbλ0(Hashτ0(m(Q, a, t))))]

=
∑
b

Pr[(msbλ0(Hashτ0(m(Q, a, t))⊕ Hashτ0(m
(?)(Q, a))) = tag(Q, a, t)⊕ t)

∧(msbλ0(Q) = tag(Q, a, t)⊕msbλ0(Hashτ0(m(Q, a, t)))) ∧ (Q = b)]

=
∑
b

Pr[(msbλ0(Hashτ0(m(b, a, t))⊕ Hashτ0(m
(?)(b, a))) = tag(b, a, t)⊕ t)

∧(msbλ0(Q) = tag(b, a, t)⊕msbλ0(Hashτ0(m(b, a, t)))) ∧ (Q = b)]

To simplify notation, we write m(b, a, t) as m, m?(b, a) as m? and tag(b, a, t) as tag. So,
we have ∑

b

Pr[(msbλ0(Hashτ0(m)⊕ Hashτ0(m
(?))) = tag ⊕ t)

∧(msbλ0(Q) = tag ⊕msbλ0(Hashτ0(m))) ∧ (Q = b)]

=
∑
b,α

Pr[(msbλ0(Hashα(m)⊕ Hashα(m(?))) = tag ⊕ t)

∧(msbλ0(Q) = tag ⊕msbλ0(Hashα(m))) ∧ (Q = b) ∧ (τ0 = α)]

=
∑
b,α

Pr[(msbλ0(Hashα(m)⊕ Hashα(m(?))) = tag ⊕ t) ∧ (τ0 = α)]

×Pr[(msbλ0(Q) = tag ⊕msbλ0(Hashα(m))) ∧ (Q = b)]

=
∑
b,α

Pr[(msbλ0(Hashα(m)⊕ Hashα(m(?))) = tag ⊕ t) ∧ (τ0 = α)]

×

(∑
c1

Pr[(Q = (tag ⊕msbλ0(Hashα(m)))||c1) ∧ (Q = b)]

)

82Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

Let β = (tag ⊕msbλ0(Hashα(m)))||c1). Then Pr[(Q = β) ∧ (Q = b)] is bounded from above
by the q-interpolation probability of f . So, we have∑

b,α

Pr[(msbλ0(Hashα(m)⊕ Hashα(m(?))) = tag ⊕ t) ∧ (τ0 = α)]

×

(∑
c1

Pr[(Q = β) ∧ (Q = b)]

)

≤
∑
b,α

Pr[(msbλ0(Hashα(m)⊕ Hashα(m(?))) = tag ⊕ t) ∧ (τ0 = α)]× 2n−λ0
δq

(2n)q

= 2n−λ0
δq

(2n)q
×
∑
b,α

Pr[(msbλ0(Hashα(m)⊕ Hashα(m(?))) = tag ⊕ t) ∧ (τ0 = α)]

= 2n−λ0δq/(2
n)q ×

∑
b

Pr[msbλ0(Hashτ0(m)⊕ Hashτ0(m
(?))) = tag ⊕ t]

= 2n−λ0δq/(2
n)q ×

∑
b

∑
c2

Pr[Hashτ0(m)⊕ Hashτ0(m
(?)) = (tag ⊕ t)||c2]

≤ 2n−λ0δq/(2
n)q ×

∑
b

2n−λ0ε(`, `(?))

= 2n−λ0δq/(2
n)q × (2n)q−1 × 2n−λ0ε(`, `(?))

= 2n−2λ0δqε(`, `
(?)). (6.35)

Combining (6.34) and (6.35), we have,

Pr[msbλ0(Q⊕ Hashτ0(m(Q, τ , tag(?)))) = tag(Q, τ , tag(?))]

≤
∑
a

(∑
t

2n−2λ0δqε(`, `
(?))
)
× Pr[τ = a]

=
∑
t

2n−2λ0δqε(`, `
(?))×

∑
a

Pr[τ = a]

= 2λ02n−2λ0δqε(`, `
(?))

= 2n−λ0ε(`, `(?))δq = γ/2λ0 . (6.36)

This proves the second case.

Tightness of the security bound: The scheme nvMAC is obtained as a variant of the
Wegman-Carter scheme. The statement and proof of Theorem 6 follows the bound on the
Wegman-Carter scheme established by Bernstein [14]. As mentioned earlier, Bernstein’s
bound has been proved to be tight [79, 88]. A natural question is to consider whether the
bound of Theorem 6 is also tight. We have considered this question for nvMAC. It does not
seem possible to use the proof approach used in [79, 88] to show the tightness of the bound
in Theorem 6. In fact, the approach does not also seem to work for the generic scheme
nvMAC-Generic.

Secure and Efficient MAC Schemes with Variable Length Tag 83

The security bound of Theorem 6 in terms of query complexity: The statement
of Theorem 6 and the security bound provided in it are in terms of query profile. If it is
to be translated to terms of query complexity, the following point is to be noted. The hash
function {Hashτ}τ∈T may be such that, the differential probability of the hash function may
depend on the lengths of the particular queries. For example, if {Hashτ}τ∈T is a polynomial
hash, the degree of the polynomial formed from the messages and hence the corresponding
differential probability is a function of the lengths of the messages. The details of this
variation in the query lengths are lost when we move from the notion of query profile to the
notion of query complexity. As a result, the variability in the differential probability also
cannot be captured when the security is considered in terms of query complexity. In this
case, a uniformity is required in the probability and to attain that, the maximum of all the
differential probabilities is considered. As a result, the security bound obtained in terms
of query complexity is not precise and depending on the particular queries made by the
adversary, it may be an over-estimation by a large margin. Hence, in the detailed security
analysis we consider the notion of query profile and the security in terms of query complexity
has been mentioned in respective corollaries.

The statement of Theorem 6 and the security bound provided in it look as follows in
terms of query complexity.

Corollary 1. In the scheme nvMAC defined in Table 6.2, suppose that the hash function
{Hashτ}τ∈T be such that for any distinct m,m′ ∈ M and any y ∈ {0, 1}n, Pr[Hashτ (m) ⊕
Hashτ (m

′) = y] is at most ε ≥ 1/2n, i.e. ε is the maximum of the differential probabilities
for all combination of messages.

For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp. verification)
queries for λ. Let the total number of bits in the tag generation queries be σg and that in the
verification queries be σv. Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary
other than the verification queries for tag length λ0. Suppose that the queries in Sλ0 give
rise to at most q distinct (nonce, tag-length) values. Further, suppose δq be such that the
q-interpolation probability of f is at most δq/(2

n)q and (q + 1)-interpolation probability of f
is at most (δqε)/(2

n)q. Then

Advauth
nvMAC[λ0](T, σg, σv) ≤ 2n−λ0qv,λ0δqε. (6.37)

Essentially, in this case the bound is similar to the bound given in the security proof of the
Wegman-Carter nonce-based MAC scheme given in [14]. If in some case the actual queries
are such that the corresponding differential probabilities are much less than the maximum
value, then this bound becomes much higher than the actual advantage of the adversary,
i.e. the bound becomes more loose. Let us consider a numerical example to illustrate this
scenario.

In this example, we will consider Horner’s rule based hash function and the underlying
field to be F2n . The differential probability of the Horner’s rule based hash for two distinct
messages of length ` and `′, where ` ≥ `′, is given by ε(`, `′) = `/2n. For ease of understand-
ing, in this example let us consider δq = 1, which is true for a uniform random function. Let
n = 128, λ0 = 96, qv,λ0 = 1. Let us consider an (rather artificial) upper limit of 220 n-bit

84Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

blocks on the length of the message the adversary can query on. We consider some scenarios
and the corresponding query profile based advantages.

• Scenario 1: For tag length λ0, let the adversary make 1 tag generation query and 1
verification query, each on a message containing 512 blocks. The differential probability
reflected in the bound (6.28) is ε(512, 512) = 29/2128 and the corresponding bound
becomes 2−87.

• Scenario 2: For tag length λ0, let the adversary make 1023 tag generation queries
and 1 verification query, each on a message containing 1 block. Let one of the tag
generation queries have the same nonce as the verification query. Then, the differential
probability reflected in the bound (6.28) is ε(1, 1) = 1/2128 and the corresponding
bound becomes 2−96.

• Scenario 3: For tag length λ0, let the adversary make one tag generation query and
one verification query on messages having 220 blocks and the same nonce. Then, the
differential probability reflected in the bound (6.28) is ε(220, 220) = 220/2128 and the
corresponding bound becomes 2−76.

Let us now consider the query complexity based advantage for the above scenarios. Looking
at the bound in (6.37), we have no clue about which value of the differential probability
to be used here. The reason is, in this case, we only have the information regarding the
total query complexity, but we do not know the length of each message. As a result, we
are forced to use the maximum value of the differential probability which is obtained for
220-block messages resulting in the differential probability to be 220/2128. The corresponding
bound given by (6.37) in all three scenarios becomes 2−76. So, we see that even though the
query complexities in Scenarios 1 and 2 is 1024 blocks and the query complexity in Scenario 3
is 221 blocks, the query complexity based advantage in all three cases are the same. This
illustrates that compared to the query complexity based advantage, the query profile based
advantage provides a more granular information about the advantage.

It is to be noted that, the bound given by Bernstein [14] in the security proof of the
Wegman-Carter nonce-based MAC scheme is qv,λ0δqε. This bound also lacks the information
of particular message lengths. Hence, the difficulty stated above in case of complexity based
advantage is applicable for this bound as well.

We have highlighted the differences between query profile based and query complexity
based advantages. Also, we have provided bounds for both kinds of advantages. Depending
on the requirement, one may use the appropriate kind of advantage and the corresponding
bound.

6.3.1 Reducing Key Size

In a practical instantiation of nvMAC, the random function f will be instantiated by a keyed
function FK . The key for the entire scheme will consist of the key K along with the #L keys
(τλ)λ∈L for the hash function Hash. Depending on the size of L, for certain applications,
the size of the key may be too large. Our next constructions show how to obtain nvMAC
schemes with short keys.

Secure and Efficient MAC Schemes with Variable Length Tag 85

The hash family {Hashτ}τ∈T, the nonce space N , the message spaceM, the set of allowed
tag lengths L and the tag space remain the same as in the case of nvMAC.

Our goal is to derive the key for the hash function by applying a PRF to the concatenation
of the tag length and the nonce. Thus essentially here we intend to use a fixed input-length
PRF to obtain a variable input-length MAC. Depending upon the actual choice of the hash
function, the key could either be an n-bit string (or, a string of some fixed length which is
at least n), or, it could be a variable length string which depends upon the length of the
message. Typical examples of hash function where the key is a fixed length string is the
polynomial hash or the BRW hash [13, 85, 15] while typical examples of hash function where
the key depends upon the length of the message is either the multi-linear hash [54], or the
pseudo-dot product [111], or the UMAC [20] construction.

We consider the key of the hash function to be a sequence of n-bit blocks with the last
block possibly being a partial block. Given the hash function Hash and a message m, let b(m)
denote the number of n-bit blocks of key material required by Hash to process the message
m. As mentioned above, depending upon the choice of Hash, b(m) could be independent of
m (i.e., Hash uses fixed length keys), or, it could depend upon m (i.e., Hash uses a key which
depends upon the length of m).

We start by constructing a nonce-based MAC scheme from a stream cipher supporting
an initialisation vector. The assumption on such a stream cipher is that it is a PRF [11].
Formally, we use the PRF {SCK}K∈K, where SCK is a stream cipher which maps an n-bit
string under the key K to an output keystream. We will assume that the output keystream
is of some fixed length which is sufficiently big for all practical applications. An appropriate
length prefix of the output keystream is used in a particular context. We denote the nvMAC
scheme built from SC as SC-nvMAC. The tag generation algorithm for the SC-nvMAC scheme
is shown in Table 6.3. The verification algorithm SC-nvMAC.VerifyK(N,m, tag, λ) works as
follows: compute tag′ = SC-nvMAC.GenK(N,m, λ); return true if tag = tag′, else return false.

The key space for SC-nvMAC is K. The key generation algorithm consists of sampling K
uniformly at random from K.

Table 6.3: A secure and efficient nvMAC scheme using a stream cipher supporting an ini-
tialisation vector.

SC-nvMAC.GenK(N,m, λ)
b = b(m);
(Q, τ) = msb(b+1)n(SCK(bin8(λ− 1)||N));
R = Q⊕ Hashτ (m);
tag = msbλ(R);

return tag.

The security of SC-nvMAC is given by the following result.

Theorem 7. In SC-nvMAC defined in Table 6.3, suppose that the hash function {Hashτ}τ∈T
is ε-AXU, where ε(`, `′) ≥ 1/2n for all `, `′ ≤ L.

86Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation
(resp. verification) queries for λ which are in C. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let

σg (resp. σv) be the total number of bits in all the tag generation (resp. verification) queries
in C.
Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let Q

(i)
v,λ = (N

(i)
v,λ,m

(i)
v,λ, tag

(i)
v,λ, λ) be the

i-th verification query with tag length λ. Let `
(i)
v,λ = len(m

(i)
v,λ). Corresponding to Q

(i)
v,λ, there

is at most one tag generation query Q
(i?)
g,λ = (N

(i?)
g,λ ,m

(i?)
g,λ , λ) such that N

(i)
v,λ = N

(i?)
g,λ . Let

`
(i?)
g,λ = len(m

(i?)
g,λ) if there is such a Q

(i?)
g,λ , otherwise `

(i?)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the
verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

Advauth
SC-nvMAC[λ0](T,C) ≤ Adv

prf
SC (T + T′, qg + qv, n(qg + qv)) +

1

2λ0
×

∑
1≤i≤qv,λ0

γi

(6.38)

where γi = 2nε(`
(i)
v,λ0

, `
(i?)
g,λ0

) if there is a Q
(i?)
g,λ0

corresponding to Q
(i)
v,λ0

with N
(i)
v,λ0

= N
(i?)
g,λ0

;
otherwise γi = 1. Here T′ is the time required to hash qv + qg messages of total length at
most σg + σv, plus some bookkeeping time.

Proof. The proof is similar to the proof of Theorem 6. We mention the differences.
The first reduction is to replace SCK by a uniform random function ρ from {0, 1}n to

{0, 1}L. The advantage of the adversary in detecting this change is captured by the term

Adv
prf
SC (T + T′, qg + qv, n(qg + qv)) in (6.38). Let the scheme resulting from the replacement

be denoted as ρ-nvMAC.
Since SCK has been taken care of, the ensuing analysis is information theoretic. Let A be

a deterministic and computationally unbounded adversary attacking ρ-nvMAC and having

query profile C. It is required to upper bound Advauth
ρ-nvMAC[λ0](A).

As in the proof of Theorem 6, the task reduces to analysing the probability of the event
succ(A(T), λ0) for a transcript T whose query profile is C.

The second reduction is to assume that qv,λ0 = 1; the third reduction is to assume that all
queries after the single verification query for tag length λ0 are discarded. These reductions
are also used in the proof of Theorem 6 and the justifications for these reductions in the
present context are the same as those described in the proof of Theorem 6. As in Theorem 6,
consider the set Sλ0 which consists of all queries made byA other than the verification queries
for λ0. Further, similar to the proof of Theorem 6, insert queries to the transcript T , to
ensure that the number of distinct (nonce, tag-length) pairs arising from the queries in Sλ0
is q.

In view of the above reductions, it is sufficient to consider an adversaryA with a transcript
T where the last query is the verification query (N,m, tag, λ0) for tag length λ0. Also, let
(N (1), λ(1)), . . . , (N (q), λ(q)) be the distinct (nonce, tag-length) pairs arising from the queries
in Sλ0 . For 1 ≤ i ≤ q, define N(i) = bin8(λ(i) − 1)||N (i), (Q(i), τi) = ρ(N(i)) (considering the
full length output of ρ), Q = (Q(1), . . . , Q(q)) and τ = (τ1, . . . , τq). The entire randomness
in the transcript arises from Q and τ .

Secure and Efficient MAC Schemes with Variable Length Tag 87

At this point, we would like to mention a small difference with the proof of Theorem 6.
In the scheme nvMAC, the hash key depends upon the tag length, whereas in SC-nvMAC,
the hash key is determined by (nonce, tag-length) pair. As a consequence, the vector τ
defined above has q components, while the vector τ defined in the proof of Theorem 6 has q′

components, where q′ is the number of distinct tag lengths arising from the queries in Sλ0 .
Modulo this small difference, the rest of the proof is the same as the proof of Theorem 6.

In particular, the proof divides into two cases. The first case is where the adversary does not
make any previous tag generation query with (nonce, tag-length) pair equal to (N, λ0) and
the second case is where the adversary does make such a query. The probability calculations
for these two cases are almost the same as those in the proof of Theorem 6. The only
difference is that in the present case, ρ is uniform random function and so δj = 1. Using
these values of δj, the calculations done in the two cases of the proof of Theorem 6 show the
bound stated in (6.38).

The following corollary provides the translation of Theorem 7 in terms of query complex-
ity.

Corollary 2. In SC-nvMAC defined in Table 6.3, suppose that the hash function {Hashτ}τ∈T
be such that for any distinct m,m′ ∈M and any y ∈ {0, 1}n, Pr[Hashτ (m)⊕Hashτ (m

′) = y]
is at most ε ≥ 1/2n, i.e. ε is the maximum of the differential probabilities for all combination
of messages.

For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp. verification) queries
for λ. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let σg (resp. σv) be the total number of bits

in all the tag generation (resp. verification) queries.
Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the

verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

Advauth
SC-nvMAC[λ0](T, σg, σv) ≤ Adv

prf
SC (T + T′, qg + qv, n(qg + qv)) + 2n−λ0qv,λ0ε.

(6.39)

Here T′ is the time required to hash qv + qg messages of total length at most σg + σv, plus
some bookkeeping time.

In the scheme SC-nvMAC, the pair (Q, τ) is derived by applying the stream cipher to
bin8(λ−1)||N . Since a stream cipher produces a long enough keystream, a single application
of SC is sufficient to obtain the pair (Q, τ). Suppose that we wish to use a PRF F whose
output is an n-bit string (or, a short fixed length string). Clearly, then a single invocation
of F will not be sufficient to obtain the pair (Q, τ). The PRF F will have to be invoked
repeatedly to obtain an output bit string of desired length from which the pair (Q, τ) can
be obtained.

Formally, we use a PRF family {FK}K∈K, where for each K ∈ K, FK : {0, 1}n → {0, 1}n.
Similar to the case of SC-nvMAC, the hash family {Hashτ}τ∈T, the nonce space N , the
message space M, the set of allowed tag lengths L and the tag space remain the same as

88Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

in the case of nvMAC. The key space for the scheme is K. The key generation algorithm
consists of sampling K uniformly at random from K.

The tag generation algorithm of an nvMAC scheme built from the PRF F is shown in Ta-
ble 6.4 and is denoted as F -nvMAC.Gen. The verification algorithm F -nvMAC.Verify(N,m, tag, λ)
works as follows. Given (N,m, tag, λ), compute tag′ = F -nvMAC.GenK(N,m, λ); if tag =
tag′, return true, else return false. In Table 6.4, F is used in a counter type mode of operation
which was proposed in [109].
Instantiation of F may be done by a fixed output length PRF such as Siphash [8]. Alterna-
tively, it can also be done using the encryption function EK(·) of a block cipher. Since E is
a bijection, the PRF assumption on EK(·) does not hold beyond the birthday bound. While
using EK(·), it would have been better to perform the analysis under the assumption that
EK(·) is a pseudo-random permutation (PRP). This, however, is problematic. The key τ to
the hash function is derived by applying EK(·). Under the assumption that EK(·) is a PRP,
it would not be possible to assume that τ is uniformly distributed. The differential prob-
ability determining the AXU property of the hash function is computed based on uniform
random τ . So, if τ cannot be considered to be uniform random, the AXU property of the
hash function cannot be invoked. As a result, the proof would not go through. On the other
hand, up to the birthday bound, it is reasonable to assume that the encryption function of
a secure block cipher behaves like a PRF.

Table 6.4: A secure and efficient nvMAC scheme using a short output length PRF.

F -nvMAC.GenK(N,m, λ)
b = b(m);
S = FK(bin8(λ− 1)||N);
(Q, τ) = FK(S⊕ binn(1))|| · · · ||FK(S⊕ binn(b+ 1));
R = Q⊕ Hashτ (m);
tag = msbλ(R);

return tag.

The security of F -nvMAC is given by the following result.

Theorem 8. In F -nvMAC defined in Table 6.4, suppose that the hash function {Hashτ}τ∈T
is ε-AXU, where ε(`, `′) ≥ 1/2n for all `, `′ ≤ L.

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation
(resp. verification) queries for λ which are in C. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let

σg (resp. σv) be the total number of bits in all the tag generation (resp. verification) queries
in C.
Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let Q

(i)
v,λ = (N

(i)
v,λ,m

(i)
v,λ, tag

(i)
v,λ, λ) be the

i-th verification query with tag length λ. Let `
(i)
v,λ = len(m

(i)
v,λ). Corresponding to Q

(i)
v,λ, there

is at most one tag generation query Q
(i?)
g,λ = (N

(i?)
g,λ ,m

(i?)
g,λ , λ) such that N

(i)
v,λ = N

(i?)
g,λ . Let

`
(i?)
g,λ = len(m

(i?)
g,λ) if there is such a Q

(i?)
g,λ , otherwise `

(i?)
g,λ is undefined.

Secure and Efficient MAC Schemes with Variable Length Tag 89

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the
verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

Advauth
F-nvMAC[λ0](T,C) ≤ Adv

prf
F (T + T′, Bg +Bv, n(Bg +Bv))

+
(Bg +Bv)

2

2n
+

1

2λ0
×

∑
1≤i≤qv,λ0

γi (6.40)

where

• γi = 2nε(`
(i)
v,λ0

, `
(i?)
g,λ0

) if there is a Q
(i?)
g,λ0

corresponding to Q
(i)
v,λ0

with N
(i)
v,λ0

= N
(i?)
g,λ0

;
otherwise γi = 1;

• b
(i)
v,λ = b(m

(i)
v,λ), Bv =

∑
λ

∑
1≤i≤qv,λ

(b
(i)
v,λ + 2);

• b
(i)
g,λ = b(m

(i)
g,λ), Bg =

∑
λ

∑
1≤i≤qg,λ

(b
(i)
g,λ + 2).

Here T′ is the time required to hash qv + qg messages of total length at most σg + σv, plus
some bookkeeping time.

Proof. The proof is very similar to the proofs of Theorems 6 and 7. We briefly discuss the
differences. There are two differences in the bound.

The first difference is in the number of queries to the PRF F in the expression Adv
prf
F . In

the present case, if a query requires b+1 n-bit blocks to obtain the pair (Q, τ), the number of
times F is invoked is b+ 2. The rest of the analysis proceeds by replacing F with a uniform
random function ρ from {0, 1}n to {0, 1}n.

The main argument requires that for distinct values of (N, λ), the random variables
(Q, τ) are independent and uniformly distributed. The pair (Q, τ) is derived by successively
applying ρ to S ⊕ binn(1), . . . , S ⊕ binn(b + 1) where S itself is obtained by applying ρ to
bin8(λ−1)||N . If for distinct values of (N, λ), the quantities S, S⊕binn(1), . . . , S⊕binn(b+1)
are distinct, then the independent and uniform random distribution of (Q, τ) is ensured.

Let the q distinct values of (nonce, tag-length) pairs arising from the queries in Sλ0 be
(N (1), λ(1)), . . . , (N (q), λ(q)). Let D(i) = {S(i), S(i)⊕binn(1), . . . , S(i)⊕binn(b(i) +1)} be the set
of random variables in the input of ρ corresponding to (N (i), λ(i)). Let D = ∪qi=1D(i) and so
#D ≤ Bg +Bv. Let bad be the event that any two of the variables in D are equal. Using the
fact that ρ is a uniform random function, it is standard to see that Pr[bad] ≤ (Bg +Bv)

2/2n.
Let A be an adversary attacking the scheme where F is replaced with ρ. We assume

that A is deterministic and computationally unbounded. Let succ(A) be the event that an
adversary A is successful. Then

Pr[succ(A)] ≤ Pr[bad] + Pr[succ(A)|bad]

≤ (Bg +Bv)
2

2n
+ Pr[succ(A)|bad].

90Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths

Conditioned on the event bad, the pairs (Q(i), τ (i)) are independent and uniformly distributed.
From this point onwards, the rest of the proof is exactly the same as the proof of Theorem 7
and provides the same bound. We skip these details.

The following corollary provides the translation of Theorem 8 in terms of query complex-
ity.

Corollary 3. In F -nvMAC defined in Table 6.4, suppose that the hash function {Hashτ}τ∈T
be such that for any distinct m,m′ ∈M and any y ∈ {0, 1}n, Pr[Hashτ (m)⊕Hashτ (m

′) = y]
is at most ε ≥ 1/2n, i.e. ε is the maximum of the differential probabilities for all combination
of messages.

For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp. verification) queries
for λ. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let σg (resp. σv) be the total number of bits

in all the tag generation (resp. verification) queries.

Let λ be such that qg,λ, qv,λ ≥ 1 and for 1 ≤ i ≤ qg,λ, let Q
(i)
g,λ = (N

(i)
g,λ,m

(i)
g,λ, λ) be the i-th

tag generation query with tag length λ; for 1 ≤ i ≤ qv,λ, let Q
(i)
v,λ = (N

(i)
v,λ,m

(i)
v,λ, tag

(i)
v,λ, λ) be

the i-th verification query with tag length λ.
Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the

verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

Advauth
F-nvMAC[λ0](T, σg, σv) ≤ Adv

prf
F (T + T′, Bg +Bv, n(Bg +Bv))

+
(Bg +Bv)

2

2n
+ 2n−λ0 × qv,λ0ε, (6.41)

where b
(i)
v,λ = b(m

(i)
v,λ), b

(i)
g,λ = b(m

(i)
g,λ), Bv =

∑
λ

∑
1≤i≤qv,λ

(b
(i)
v,λ + 2) and Bg =

∑
λ

∑
1≤i≤qg,λ

(b
(i)
g,λ + 2).

Here T′ is the time required to hash qv + qg messages of total length at most σg + σv, plus
some bookkeeping time.

6.4 Summary

In this chapter, we have considered the problem of constructing MACs supporting variable
tag lengths. It has several important practical motivations as mentioned earlier, but has
not gained much attention in the literature till now. We have formalised the security notion
of this type of MACs. Next, we have considered the problem of obtaining secure variable
tag length MAC schemes. Several variants of classical Wegman-Carter MAC schemes are
considered, most of which are shown to be insecure by giving detailed attacks. One of them is
proved to be secure. We further build on this scheme to obtain single-key variable tag length
MAC schemes utilising either a stream cipher or a short-output pseudo-random function.
These schemes can also be efficiently instantiated using practical well known primitives.

Chapter 7

FAST: Disk Encryption and Beyond

There is a huge amount of data residing on various kinds of storage devices. For example,
the Indian national repository of biometric data called Aadhaar runs into several petabytes1.
In today’s world, much of the data at rest are sensitive and require encryption to be pro-
tected from unwanted access or tampering. The solution is to use full disk encryption where
the storage device holds the encryption of the data under a secret key. Reading from the
disk requires decrypting the relevant portion of the disk, while writing to the disk requires
encrypting the data and then storing it at an appropriate location on the disk. The tasks
of encryption and decryption are performed using a disk encryption algorithm. To be useful
in practice a disk encryption algorithm needs to be both secure and efficient. The goal of
security is to ensure that unwanted access or tampering is indeed not feasible while the goal
of efficiency is to ensure that there is no noticeable slowdown in the process of reading from
or writing to the disk.

A logical level view of a hard disk and most other storage devices is as a collection of
sectors where each sector can store a fixed number of bytes. For example, present day hard
disks have 4096-byte sectors while some of the older disks had 512-byte sectors2. Each sector
has a unique address. A read or write operation on a disk works at the granularity of sectors.
A read operation will specify a bunch of sector addresses and the complete contents of those
sectors will be returned. Similarly, a write operation will specify the data and a bunch of
sector addresses and the contents of the corresponding sectors will be overwritten with the
new data.

A disk encryption algorithm proceeds sector by sector. The content of a sector is en-
crypted using the secret key and stored in-place, i.e., the content of the sector is overwritten
using the encrypted content. The original unencrypted content is not stored anywhere. Us-
ing only encryption is not sufficient for security as can be seen from the following simple
attack. Suppose that the contents of two successive sectors s1 and s2 are C1 and C2 corre-
sponding to plaintexts P1 and P2 respectively. An adversary may simply swap C1 and C2.
Subsequent decryption will show s1 containing P2 and s2 containing P1 whereas decryption
before the swap would have shown s1 containing P1 and s2 containing P2. If it turns out that
s1 containing P2 and s2 containing P1 is meaningful data, then by a simple swap operation,
the adversary has been able to alter the content of the disk to a meaningful data which was
not originally stored on the disk.

To prevent the above possibility, the encryption of the content of a sector needs to be
somehow tied to the sector address. Decryption of any adversarially modified content of a
sector should result in a random looking string which is unlikely to be meaningful data.

Viewed in this manner, a disk encryption mechanism is a tweak-based length preserving
encryption which has been called a tweakable enciphering scheme (TES) [65] in the literature.
In a TES, the tweak is a quantity which determines the ciphertext but, is itself not encrypted.

1https://www.cse.iitb.ac.in/~comad/2010/pdf/IndustrySessions/UID_Pramod_Varma.pdf
2https://en.wikipedia.org/wiki/Disk_sector

91

https://www.cse.iitb.ac.in/~comad/2010/pdf/Industry Sessions/UID_Pramod_Varma.pdf
https://en.wikipedia.org/wiki/Disk_sector

92 FAST: Disk Encryption and Beyond

In case of disk encryption, the sector address works as tweak.
While disk encryption is a very important application of a TES, the full functionality

of a TES is much more broader than just disk encryption. For the specific case of disk
encryption, messages are contents of a sector and so are fixed length strings. A TES can
have a more general message space consisting of binary strings of different lengths. Similarly,
in the case of disk encryption, the tweak is a sector address and can be encoded using a short
fixed length string. More generally, the tweak space in a TES can also consist of strings of
different lengths or even consist of vectors of strings.

This chapter describes a new family of tweakable enciphering schemes called FAST which
is built using a pseudo-random function (PRF) and a hash function with provably low
collision and differential probabilities. The domain and the range of the pseudo-random
function are both equal to the set of all n-bit binary strings for an appropriately chosen n.
The hash function is built using arithmetic over the finite field F2n . Some of the salient
aspects of FAST are described below.

Wide range of applications: FAST can be used in the following settings.

• Fixed length setting: This setting is targeted towards disk encryption application. It
supports an n-bit tweak and messages whose lengths are a fixed multiple of the block
size n.

• General setting: This setting is very general. As mentioned earlier, here messages are
allowed to have different lengths and tweaks are allowed to be vectors of binary strings
where the numbers of components in the vectors can vary. The richness of the tweak
space provides considerable flexibility in applications where there is a message and an
associated set of attributes. In Chapter 1, we have already mentioned one possible
application for such a functionality. Here we mention another.

– The message consists of biometric information while the attributes are date-time,
gender and other related information. A possible application would be to the
Aadhaar database mentioned earlier.

We note that the idea of having associated data to be a vector of strings was earlier pro-
posed [95] in the context of deterministic authenticated encryption. AEZ [67] provides a
conceptual level description of how to handle a vector of strings as tweak using an almost
XOR universal hash function to process the vector. A generic security bound is provided
in terms of the collision probability of the hash function. No concrete proposal for the
hash function is provided. Consequently, the efficiency of processing the tweak cannot be
determined and neither it is possible to obtain a concrete security bound. In contrast, fol-
lowing our objective of practical implementation we put forward several concrete designs for
hashing a vector of strings with associated concrete secuity bounds and detailed software
implementations.

Software implementations: A major objective here consists of rigorous software imple-
mentations of FAST and the most important TES schemes in the literature. The goal of such

93

implementations is to perform a comparative study of the performances of FAST with those
of the previous schemes in software. To this end, we have carried out detailed software im-
plementations of the IEEE standards XCB [83] and EME2 [62] as well as AEZ (instantiated
with the encryption function of the AES block cipher) along with similar implementations
of variants of FAST. For a fair comparison, we have incorporated similar efficiency measures
in all the implementations.

As mentioned earlier, this implementation is targeted towards modern Intel processors
and is in Intel intrinsics using the specialised AES-NI instructions and the pclmulqdq instruc-
tion. The code for the software implementation of FAST is publicly available from https:

//github.com/sebatighosh/FAST. The implementation of FAST covers both the fixed
length and the general settings. We provide timing results for the Skylake and the Kabylake
processors of Intel.

Results arising from the implementations show that the new proposal compares favourably
to the most important previous constructions in software. For the fixed length setting, the
best speed achieved by FAST on the Intel Skylake platform is 1.24 cycles per byte (cpb).
In comparison, XCB, EME2 and AEZ achieve speeds of 1.92 cpb, 2.07 cpb and 1.74 cpb
respectively. The corresponding figures on Kabylake for FAST, XCB, EME2 and AEZ are
1.19, 1.85, 1.99 and 1.70 cpb respectively. Further timing details are provided later.

Dispensing with invertibility: There are several concrete TES proposals in the litera-
ture. Most of these proposals including the ones that have been standardised are modes of
operations of a block cipher and use both the encryption and the decryption functions of
the underlying block cipher. FAST, on the other hand, uses a PRF and does not require
the invertibility property of a block cipher. The PRF itself may be instantiated using the
encryption function of a block cipher such as AES. This provides two distinct advantages.

1. From a practical point of view, the advantage is that the decryption function of the
block cipher does not require to be implemented. This is an advantage in hardware
implementation since it results in a smaller hardware. A software implementation also
benefits by requiring a smaller size code.

2. From a theoretical point of view, a block cipher is modelled as a strong pseudo-random
permutation (SPRP). A PRF assumption on the encryption function of a block cipher
is a weaker assumption than an SPRP assumption on the block cipher. So security of
FAST can be based on a weaker assumption on the underlying block cipher.

As mentioned earlier, a previous work [100] had pointed out the possibility of using only the
encryption function of a block cipher to build a TES. The work was more at a conceptual
level using generic components and some unnecessary operations. It did not provide any
specific instantiation or implementation. Subsequent to [100], the constructions AEZ [67]
and FMix [19] proposed single key TESs using only the encryption function of the block
cipher. FMix is a sequential scheme while AEZ is parallelisable. Later we discuss in more
details several issues regarding the comparison of FAST to previous schemes.

https://github.com/sebatighosh/FAST
https://github.com/sebatighosh/FAST

94 FAST: Disk Encryption and Beyond

Parallelisable: At a top level, the construction applies a Feistel layer of encryption on the
first two message blocks and sandwiches a counter type mode of operation in-between two
layers of hashing for the rest of the message. The counter mode is fully parallelisable. This
leads to efficient implementations in both software and hardware.

Design of hash functions: We provide instantiations using two kinds of hash functions
both of which are based on arithmetic over the finite field F2n . The first kind of hash function
is based on the usual polynomial based hashing using Horner’s rule. The second kind is based
on a class of polynomials [15] which was later called BRW polynomials [98]. For tackling
variable length inputs, a combination of BRW and Horner based hashing called Hash2L [30]
turns out to be advantageous. For the fixed length setting, we show instantiations using
Horner and BRW while for the general setting, we use the vector version vecHorner of Horner
and the vector version vecHash2L of Hash2L.

Provable security treatment: The security of the proposed scheme is analysed following
the standard provable security methodology. The theoretical notion of security of a TES is
shown to hold under the assumption that the encryption function of the underlying block
cipher is a PRF. The proof requires the hash functions to satisfy certain properties. We show
that the hash functions obtained from Horner, vecHorner, BRW and vecHash2L satisfy the
required properties. Concrete security bounds are derived for the different instantiations.
These bounds show that the security of FAST is adequate for practical purposes and is
comparable to those achieved in previous designs.

Promising candidate for standardisation: As mentioned earlier, both the IEEE [3]
standardisation of TESs, namely EME2 and XCB, are patented algorithms. To the best
of our knowledge, till date there is no unpatented algorithm which has been standardised.
Apart from offering superior performance guarantees with respect to previous schemes XCB,
EME2 and AEZ, it is our hope that FAST will also fill the gap of providing an attractive
solution which is unencumbered by intellectual property claims.

This chapter is based on the work [29].

7.1 Preliminaries

Throughout this chapter, we fix a positive integer η ≥ 3.

Notation: Let α be a binary string. We define the following additional terminology for
this chapter.

• padn(α): For n > 0, if α is the empty string, then padn(α) will denote the string 0n;
while if α is non-empty, then padn(α) will denote α||0i, where i ≥ 0 is the minimum
integer such that n divides len(α||0i).

Construction 95

• parsen(α): Let α be such that len(α) ≥ 2n; parsen(α) denotes (α1, α2, α3) where
len(α1) = len(α2) = n and α = α1||α2||α3. In other words, parsen(α) divides the
string α into three parts with the first two parts having length n bits each with the
remaining bits of α (if any) forming the third part.

• Number of n-bit blocks: Let the expression formatn(padn(α)) return α1|| · · · ||αm. We
will say that the number of n-bit blocks in α is m. Note that if α is the empty string,
then pad(α) is 0n and so formatn(padn(α)) is also 0n whence m = 1, i.e., as per our
formalism, the empty string has one n-bit block. The number of n-bit blocks in α will
be denoted by l(α).
For a vector of binary strings β = (β1, . . . , βk), by the number of n-bit blocks in β we
will mean the sum of the numbers of n-bit blocks in the strings β1, . . . , βk. The number
of n-bit blocks in β will be denoted by t(β).

• superBlksn,η(α): superBlksn,η(α) denotes the vector of strings (α1, . . . , α`) obtained as
(α1, . . . , α`) ← formatnη(padn(α)). For 1 ≤ i ≤ ` − 1, αi is an nη-bit string while α`
is a string whose length is at most nη and is divisible by n. The strings α1, . . . , α`
are called super-blocks. The first `− 1 of these super-blocks consist of exactly η n-bit
blocks while the last super-block consists of at most η n-bit blocks. We will say that
the number of super-blocks in α is `.

7.2 Construction

Formally, FAST = (FAST.Encrypt,FAST.Decrypt) where

FAST.Encrypt,FAST.Decrypt : K × T × P → P , (7.1)

• K is a finite non-empty set called the key space,

• T is a finite non-empty set called the tweak space and

• P denotes both the message and the ciphertext spaces such that for any string P ∈ P ,
len(P) > 2n. So, for any P ∈ P , the number of n-bit blocks in padn(P) is at least
three. This requirement will be called the length condition on P .

We emphasise that P does not necessarily contain all strings of lengths greater than 2n. We
provide the precise definitions of P for specific instantiations later.

Let K ∈ K and T ∈ T . For P ∈ P , we write FAST.EncryptK(T, P) in order to denote
FAST.Encrypt(K,T, P); and for C ∈ P , we write FAST.DecryptK(T,C) in order to denote
FAST.Decrypt(K,T,C).

The definitions of FAST.EncryptK(T, P) and FAST.DecryptK(T,C) are given in Table 7.1.
These definitions use the functions Hτ , Gτ , H′τ and G′τ which themselves are defined using
two hash functions h and h′ in the following manner.

Hτ (P1, P2, P3, T) = (P1 ⊕ hτ (T, P3), P2 ⊕ τ(P1 ⊕ hτ (T, P3)));
Gτ (X1, X2, X3, T) = (X1 ⊕ hτ (T,X3), X2 ⊕ τX1);
H′τ (C1, C2, C3, T) = (C1 ⊕ τ(C2 ⊕ h′τ (T,C3)), C2 ⊕ h′τ (T,C3));
G′τ (Y1, Y2, Y3, T) = (Y1 ⊕ τY2, Y2 ⊕ h′τ (T, Y3)).

(7.2)

96 FAST: Disk Encryption and Beyond

The schematic diagrams of H and G are given in Figure 7.1. The diagrams for H′ and G′

will be similar.

From the definitions of Hτ ,Gτ and H′τ ,G
′
τ it is easy to verify the following properties.

Hτ (P1, P2, P3, T) = (A1, A2) implies Gτ (A1, A2, P3, T) = (P1, P2);
H′τ (C1, C2, C3, T) = (B1, B2) implies G′τ (B1, B2, C3, T) = (C1, C2).

(7.3)

Note that for fixed τ , P3 and T , Hτ (·, ·, P3, T) and Gτ (·, ·, P3, T) are inverses of one another
and similarly, H′τ (·, ·, P3, T) and G′τ (·, ·, P3, T) are inverses of one another.

The hash functions h and h′ required in the definitions of H,G and H′,G′ respectively
and the other components used in Table 7.1 are given below.

1. The two hash functions h and h′ are defined in the following manner.

h, h′ : F2n × T ×M→ F2n , (7.4)

where

M = {β : α||β ∈ P for some α ∈ {0, 1}2n}; (7.5)

F2n is the key space and also the digest space, T is the tweak space and M is the
message space for the hash functions. For τ ∈ F2n , T ∈ T and M ∈ M, we will
write hτ (T,M) (resp. h′τ (T,M)) to denote h(τ, T,M) (resp. h′(τ, T,M)). Note that in
FAST, both h and h′ share the same key τ . Later we discuss the properties required of
the pair of hash functions (h, h′) and how to construct such pairs using standard hash
functions.

2. A PRF {FK}K∈K where for K ∈ K, FK : {0, 1}n → {0, 1}n. The PRF is used in the
Ctr mode as given in (3.3). Since strings in P are of length greater than 2n, the Ctr
mode is applied to non-empty strings.

3. A fixed n-bit string fStr.

4. Sub-routines Feistel and Feistel−1 which are shown in Table 7.2.

From the descriptions of FAST.EncryptK(T, P) and FAST.DecryptK(T,C) in Table 7.1, the
following two facts are easy to verify. For K ∈ K, T ∈ T and P ∈ P ,

FAST.DecryptK(T,FAST.EncryptK(T, P)) = P ; (7.6)

len (FAST.EncryptK(T, P)) = len(P). (7.7)

From (7.6), it follows that the decryption function of FAST is the inverse of the encryption
function, while (7.7) shows that the length of the ciphertext produced by the encryption
function is equal to the length of the plaintext.

Instantiations of FAST 97

Table 7.1: Encryption and decryption algorithms for FAST.

CtrK

Hτ

τG’

1P 2P 3P

1A 2A

 1B B 2

 1C 2C 3C

Feistel
Layer

Z

T

T

Algorithm FAST.EncryptK(T, P)
1. τ ← FK(fStr);
2. (P1, P2, P3)← parsen(P);
3. (A1, A2)← Hτ (P1, P2, P3, T);
4. (B1, B2)← FeistelK(A1, A2);
5. Z ← A2 ⊕B1;
6. C3 ← CtrK,Z(P3);
7. (C1, C2)← G′τ (B1, B2, C3, T);
8. return (C1||C2||C3).

Algorithm FAST.DecryptK(T,C)
1. τ ← FK(fStr);
2. (C1, C2, C3)← parsen(C);
3. (B1, B2)← H′τ (C1, C2, C3, T);

4. (A1, A2)← Feistel−1
K (B1, B2);

5. Z ← A2 ⊕B1;
6. P3 ← CtrK,Z(C3);
7. (P1, P2)← Gτ (A1, A2, P3, T);
8. return (P1||P2||P3).

Remarks:

1. From the schematic diagram of the encryption algorithm in Table 7.1, FAST.EncryptK(T, P)
can be seen as consisting of three distinct layers – a hashing layer using the hash func-
tion Hτ ; an encryption layer consisting of the two-round Feistel and the counter mode;
and the hashing layer using the hash function G′τ . The quantity τ is the key for the
hashing layers and is not used in the encryption layer while K is used only in the
encryption layer and not in the hashing layers.

2. The quantity Z in FAST.EncryptK(T, P) and FAST.DecryptK(T,C), given in Table 7.1
is defined to be equal to A2 ⊕ B1. In an earlier version, we had defined Z to be equal
to P2⊕C1. The suggestion to define Z as A2⊕B1 is due to Mridul Nandi. This saves
a few cycles in a pipelined hardware implementation when F is instantiated with AES;
it has no effect on the efficiency of software implementation.

7.3 Instantiations of FAST

Certain properties are required from the pair of hash functions (h, h′). These properties
will be used in the security argument to show that in an information theoretic setting, the
adversary’s probability of breaking the security of FAST is low. The specific properties that
will be required are formalised below.

98 FAST: Disk Encryption and Beyond

Table 7.2: A two-round Feistel construction required in Table 7.1.

FK

FK

 2A 1A

 1B 2B

FeistelK(A1, A2)
1. B1 ← A1 ⊕ FK(A2);
2. B2 ← A2 ⊕ FK(B1);
return (B1, B2).

Feistel−1
K (B1, B2)

1. A2 ← B2 ⊕ FK(B1);
2. A1 ← B1 ⊕ FK(A2);
return (A1, A2).

hτ

P3 T

A1

P1

·τ

A2

P2

hτ

P3 T

P1

A1

·τ

P2

A2

Figure 7.1: The hash functions H and G.

Definition 9. Let (h, h′) be a pair of hash functions where h, h′ : F2n×T ×M→ F2n satisfy
the following properties. For any (T,M), (T ′,M ′) ∈ T ×M, with (T,M) 6= (T ′,M ′); any
α, β ∈ F2n; and τ chosen uniformly at random from F2n:

Pr[τ(hτ (T,M)⊕ α) = β] ≤ ε1(t, l); (7.8)

Pr[τ(h′τ (T,M)⊕ α) = β] ≤ ε1(t, l); (7.9)

Pr[τ(hτ (T,M)⊕ hτ (T ′,M ′)⊕ α) = β] ≤ ε2(t, l, t′, l′); (7.10)

Pr[τ(h′τ (T,M)⊕ h′τ (T ′,M ′)⊕ α) = β] ≤ ε2(t, l, t′, l′). (7.11)

For any (T,M), (T ′,M ′) ∈ T ×M; any α, β ∈ F2n; and τ chosen uniformly at random from
F2n:

Pr[τ(hτ (T,M)⊕ h′τ (T ′,M ′)⊕ α) = β] ≤ ε2(t, l, t′, l′). (7.12)

Here t ≡ t(T), t′ ≡ t(T ′), l ≡ l(M), l′ ≡ l(M ′); and ε1 and ε2 are functions of t, l, t′ and l′.
Then (h, h′) is said to be an (ε1, ε2)-eligible pair of hash functions.

Before considering the specific instantiations of FAST, we briefly discuss the hash func-
tions used for the purpose.

7.3.1 Hash Functions

For the following two standard hash functions, the details are available in Chapter 3. Here
we repeat only the definitions.

Instantiations of FAST 99

• Polynomials: For ` ≥ 0, let Horner : F2n × (F2n)` → F2n be defined as follows.

Horner(τ,m1,m2, · · · ,m`)

=

{
0, if ` = 0;
m1τ

`−1 ⊕m2τ
`−2 ⊕ · · · ⊕m`−1τ ⊕m`, if ` > 0.

We denote Horner(τ,m1, . . . ,m`) by Hornerτ (m1, . . . ,m`). Hornerτ (m1, . . . ,m`), as a
polynomial in τ , has degree at most `− 1.

• BRW polynomials: For ` ≥ 0, let BRW : F2n × (F2n)` → F2n be defined as follows.
We write BRWτ (· · ·) to denote BRW(τ, · · ·).

• BRWτ () = 0;
• BRWτ (m1) = m1;
• BRWτ (m1,m2) = m1τ ⊕m2;
• BRWτ (m1,m2,m3) = (τ ⊕m1)(τ 2 ⊕m2)⊕m3;
• BRWτ (m1,m2, · · · ,m`)

= (τ k ⊕mk)× BRWτ (m1, · · · ,mk−1)⊕ BRWτ (mk+1, · · · ,m`);
if k ∈ {4, 8, 16, 32, · · · } and k ≤ ` < 2k.

From the definition it follows that for ` ≥ 3, BRWτ (m1,m2, · · · ,m`) is a monic poly-
nomial and for ` = 0, 1, 2, BRWτ (m1, . . . ,m`) = Hornerτ (m1, . . . ,m`).

7.3.1.1 Hash function vecHorner

Let

VD =
255⋃
k=0

{(M1, . . . ,Mk) : Mi ∈ {0, 1}∗, 0 ≤ len(Mi) ≤ 2n−16 − 1}. (7.13)

The upper bound of 255 on k ensures that the value of k fits in a byte and the upper bound of
2n−16−1 on the lengths of strings ensures that the lengths of such strings fit into an (n−16)-
bit binary string. The definition of vecHorner : F2n ×VD → F2n is shown in Table 7.3 where
we write vecHornerτ (·) to denote vecHorner(τ, ·). From a top level abstraction, vecHorner can
be seen as a two-step process: the first step is to perform a one-one encoding of the input
vector of strings into a single string; and the second layer consists of applying the Horner’s
rule to the encoded string. The degree of vecHornerτ (M1, . . . ,Mk) is at most k +

∑k
i=1 mi

and its constant term is 0. Here mi = l(Mi), i = 1, . . . , k.
The following result shows that vecHorner is an AXU family.

Proposition 7. Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and M′ = (M ′
1, . . . ,M

′
k′) be two distinct

vectors in VD and α ∈ F2n. For a uniform random τ ∈ F2n,

Pr
τ

[vecHornerτ (M)⊕ vecHornerτ (M
′) = α] ≤

max
(
k +

∑k
i=1 mi, k

′ +
∑k′

j=1 m
′
j

)
2n

(7.14)

where mi (resp. m′j) is the number of n-bit blocks in padn(Mi) (resp. padn(M ′
j)).

100 FAST: Disk Encryption and Beyond

Table 7.3: Computations of vecHorner and vecHash2L. The string 1n denotes the element of
F2n whose binary representation consists of the all-one string. Here η is a positive integer
≥ 3 and d(η) denote the degree of BRWτ (m1, . . . ,mη), where m1, . . . ,mη ∈ F2n .

vecHornerτ (M1, . . . ,Mk)
if k = 0 return 1nτ ;
digest← 0;
for i← 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,mi)← formatn(padn(Mi));
Li ← binn(len(Mi));
for j ← 1, . . . ,mi do

digest← τdigest⊕Mi,j;
end for;
digest← τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,mk)← formatn(padn(Mk));
Lk ← bin8(k)||08||binn−16(len(Mk));
for j ← 1, . . . ,mk do

digest← τdigest⊕Mk,j;
end for;
digest← τdigest⊕ Lk;
digest← τdigest;
return digest.

vecHash2Lτ (M1, . . . ,Mk)
if k = 0 return 1nτ ;
digest← 0;
for i← 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,`i)← superBlksn,η(Mi);
Li ← binn(len(Mi));
for j ← 1, . . . , `i do

digest← τ d(η)+1digest⊕ BRWτ (Mi,j);
end for;
digest← τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,`k)← superBlksn,η(Mk);
Lk ← bin8(k)||08||binn−16(len(Mk));
for j ← 1, . . . , `k do

digest← τ d(η)+1digest⊕ BRWτ (Mk,j);
end for;
digest← τdigest⊕ Lk;
digest← τdigest;
return digest.

Instantiations of FAST 101

Proof. Let p(τ) = vecHornerτ (M) ⊕ vecHornerτ (M
′) ⊕ α. If p(τ) is a non-zero polynomial,

then the degree of p(τ) is at most max
(
k +

∑k
i=1 mi, k

′ +
∑k′

j=1 m
′
j

)
. The probability that a

uniform random τ is a root of p(τ) is at most the stated bound. So, it is sufficient to argue
that p(τ) is non-zero.

If k′ = 0, then, as M 6= M′, k > 0. In this case, vecHornerτ (M
′) = 1nτ and the coefficient

of τ in vecHornerτ (M) is Lk 6= 1n. Hence, in this case p(τ) is a non-zero polynomial.
Let Mi1,i2 (resp. M ′

j1,j2
) be the n-bit blocks obtained from M (resp. M′) using format.

If k > k′ > 0, then the coefficient of τ in p(τ) is Lk ⊕ L′k′ 6= 0 and so p(τ) is a non-zero
polynomial. So, suppose k = k′. If there is an i such that Li 6= L′i, let i be the maximum such
index. Using the maximality of i it is possible to argue that Li ⊕ L′i occurs as a coefficient
of some power of τ in p(τ) and again it follows that p(τ) is a non-zero polynomial. So, now
suppose that Li = L′i for all 1 ≤ i ≤ k = k′. Since M 6= M′, there must be an i and j such
that Mi,j 6= M ′

i,j again showing that p(τ) is a non-zero polynomial.

7.3.1.2 Hash function vecHash2L [30]

Two universal hash functions, namely Hash2L and vecHash2L, have been defined earlier [30].
Here we only recall the definition of vecHash2L since we will not be using the hash function
Hash2L in this chapter. The definition of vecHash2L : F2n × VD → F2n is given in Table 7.3
where we write vecHash2Lτ (·) to denote vecHash2L(τ, ·). For better understanding of the
function one may refer to [30]. The degree of vecHash2Lτ (M1, . . . ,Mk) is at most (d(η) +
1)(`1 + · · · + `k) + k, and its constant term is 0. The values of `1, . . . , `k are defined by
the algorithm given in Table 7.3. Theorem 2 of [30] shows that vecHash2L is an AXU
family. More precisely, the following is proved. Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and
M′ = (M ′

1, . . . ,M
′
k′) be two distinct vectors in VD. For a uniform random τ ∈ F2n and for

any α ∈ F2n ,

Pr
τ

[vecHash2Lτ (M)⊕ vecHash2Lτ (M
′) = α]

≤ max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′)

2n
(7.15)

where Λ =
∑k

i=1 `i and Λ′ =
∑k′

j=1 `
′
j; `i (resp. `′j) is the number of super-blocks in Mi (resp.

M ′
j).
Note that the hash function vecHash2L is parameterised by the value of η. In the rest

of the chapter, we will assume that η + 1 is a power of two so that the degree d(η) of
BRWτ (m1, . . . ,mη) is η.

7.3.2 Specific Instantiations

For specific instantiations of FAST, we consider the following two scenarios.

Fixed length setting Fxm for some positive integer m > 2: For this setting, in (7.1),
we define

T = {0, 1}n, P = {0, 1}mn and so M = {0, 1}n(m−2). (7.16)

102 FAST: Disk Encryption and Beyond

In other words, a tweak T is an n-bit string while plaintexts and ciphertexts consist of m
n-bit strings. This particular setting is suited for disk encryption application, where for a
fixed n, the number of blocks m in a message is determined by the size of a disk sector. In
this case, for M ∈ M, l(M) = m − 2 and for T ∈ T , t(T) = 1. By the length condition on
P , we must have m ≥ 3.

Consider the encryption and decryption algorithms of FAST. The number of n-bit blocks
in P (resp. C) is m and so the number of n-bit blocks in P3 (resp. C3) is m − 2. The
hash functions h and h′ are invoked in FAST as h(T, P3) and h′(T,C3). So, in Definition 9,
T = F2n and M = (F2n)m−2 and we have

h, h′ : F2n × F2n × (F2n)m−2 → F2n . (7.17)

For the setting of Fxm, we describe two instantiations of h and h′, one with Horner and the
other with BRW. The corresponding instantiations of FAST will be denoted as FAST[Fxm,Horner]
and FAST[Fxm,BRW].

General setting Gn: Let k be a fixed integer in the range {0, . . . , 254}. For this setting,
in (7.1), we define

T =
k⋃

k=0

{(T1, . . . , Tk) : 0 ≤ len(Ti) ≤ 2n−16 − 1}; (7.18)

P =
2n−16−1⋃
i>2n

{0, 1}i; and so (7.19)

M =
2n−16−2n−1⋃

i>0

{0, 1}i. (7.20)

A tweak T is a vector T = (T1, . . . , Tk) where 0 ≤ k ≤ k and each Ti is a binary string. Since
k ≤ 254, k + 1 ≤ 255 and so the binary representation of k + 1 will fit in a byte.

For P ∈ P , suppose M ∈ M is such that P = X||M for some binary string X of
length 2n. Then l(M) = m − 2, where m is the number of blocks in padn(P). For a tweak
T = (T1, . . . , Tk), t(T) =

∑k
i=1 mi, where mi is the number of blocks in padn(Ti).

The parameter k controls the maximum number of components that can appear in a
tweak. This does not imply that the number of components in all the tweaks is equal to k.
Rather, the number of components in a tweak is between 0 and k. So, the above definition
of the tweak space models tweaks as vectors having variable number of components. Since
we put an upper bound of 254 on k, one possibility is to do away with the parameter k and
replace it with the value 254. The reason we do not do this is the following. The parameter
k enters the security bound. If we replace k by 254, then this value would enter the security
bound. If in practice, the actual value of k is much less than 254 (as it is likely to be), then
using 254 instead of k will lead to a looser security bound than what it should actually be.
It is to avoid this unnecessary looseness in the security bound that we introduce and work
with the parameter k.

Instantiations of FAST 103

For the setting of Gn, we describe two instantiations of h and h′. One of these is based on
vecHorner while the other is based on vecHash2L. The parameter k is required in both cases
while the parameter η is required only in the case of vecHash2L. The instantiations of FAST
in the general setting with vecHorner and vecHash2L will be denoted as FAST[Gn, k, vecHorner]
and FAST[Gn, k, η, vecHash2L] respectively.

In the general setting, the lengths of the plaintexts can vary. Also, the tweak space has
a rich structure which provides considerable flexibility in applications. Examples of such
applications have been mentioned in the introduction. On the downside, the specific instan-
tiations of the general setting are somewhat slower than the corresponding instantiations for
the fixed length setting. So, for targeted applications such as disk encryption, it would be
preferable to use the fixed length setting leaving out some of the extra overheads incurred
in the general setting.

7.3.2.1 Hash functions h and h′ for FAST[Fxm,Horner]

Fix a positive integer m ≥ 3 so that the length condition on P is satisfied. The hash functions
h, h′ are defined using Horner as follows:

hτ (T,X1|| · · · ||Xm−2) = τHornerτ (1, X1, . . . , Xm−2, T); (7.21)

h′τ (T,X1|| · · · ||Xm−2) = τ 2Hornerτ (1, X1, . . . , Xm−2, T). (7.22)

Note that Hornerτ (1, X1, . . . , Xm−2, T) is a monic polynomial in τ of degree m − 1. Conse-
quently, h and h′ are monic polynomials in τ of degrees m and m + 1 respectively whose
constant terms are zero.

Proposition 8. Let m ≥ 3 be an integer. The pair (h, h′) of hash functions defined in (7.21)
and (7.22) for the construction FAST[Fxm,Horner] is an (ε1, ε2)-eligible pair, where ε1 = ε2 =
(m + 2)/2n.

Proof. In this case, for M ∈ M, l(M) = m − 2 and for T ∈ T , t(T) = 1. We write l and t
instead of l(M) and t(T).

The polynomials τ(hτ (T,X1|| · · · ||Xm−2)⊕α)⊕β and τ(h′τ (T,X1|| · · · ||Xm−2)⊕α)⊕β are
monic polynomials of degrees l+ t+2 = m+1 and l+ t+3 = m+2 in τ respectively. So, the
probability that a uniform random τ in F2n is a root of τ(hτ (T,X1|| · · · ||Xm−2)⊕α)⊕β (resp.
τ(h′τ (T,X1|| · · · ||Xm−2)⊕α)⊕β) is (l+t+2)/2n = (m+1)/2n (resp. (l+t+3)/2n = (m+2)/2n).
This shows the value of ε1.

Let X = X1|| · · · ||Xm−2 and X ′ = X ′1|| · · · ||X ′m−2 and T, T ′ be such that (T,X) 6=
(T ′, X ′). Then hτ (T,X)⊕hτ (T ′, X ′) is a non-zero polynomial of degree at most l+ t = m−1
whose constant term is zero. This is because the leading terms of hτ (T,X) and hτ (T

′, X ′) will
cancel out in the sum hτ (T,X)⊕hτ (T ′, X ′) so that its degree will be at most m−1; (T,X) 6=
(T ′, X ′) ensures that hτ (T,X)⊕hτ (T ′, X ′) is a non-zero polynomial; and the constant terms
of both hτ (T,X) and hτ (T

′, X ′) are zero. As a result, τ(hτ (T,X)⊕ hτ (T ′, X ′)⊕ α)⊕ β is a
non-zero polynomial in τ of degree at most m. So, the probability that a uniform random
τ is a root of this polynomial is at most (l + t + 1)/2n = m/2n. A similar reasoning shows
that the probability that a uniform random τ is a root of τ(h′τ (T,X)⊕ h′τ (T ′, X ′)⊕ α)⊕ β
is at most (l + t + 2)/2n = (m + 1)/2n.

104 FAST: Disk Encryption and Beyond

For any (T,X) and (T ′, X ′), the polynomial hτ (T,X)⊕h′τ (T ′, X ′) is a monic polynomial
of degree l + t + 2 = m + 1 whose constant term is zero. Consequently, the polynomial
τ(hτ (T,X)⊕h′τ (T ′, X ′)⊕α)⊕β is a monic polynomial of degree m+2 and so the probability
that a uniform random τ is a root of this polynomial is (l + t + 3)/2n = (m + 2)/2n. This
shows the value of ε2.

7.3.2.2 Hash functions h and h′ for FAST[Fxm,BRW]

Fix an integer m ≥ 4. From the length condition on P , we only need m ≥ 3 and the condition
m ≥ 4 is a special requirement for FAST[Fxm,BRW] as we explain below. In this case, the
hash functions h, h′ are defined using BRW as follows:

hτ (T,X1|| · · · ||Xm−2) = τBRWτ (X1, . . . , Xm−2, T); (7.23)

h′τ (T,X1|| · · · ||Xm−2) = τ 2BRWτ (X1, . . . , Xm−2, T). (7.24)

Note that from the definition of BRW polynomials, for m = 3, the polynomial BRWτ (X1, . . . , Xm−2, T)
is not necessarily monic, while for m ≥ 4, the polynomial BRWτ (X1, . . . , Xm−2, T) is nec-
essarily monic. It is to ensure the monic property that we enforce the condition m ≥ 4
for FAST[Fxm,BRW]. An alternative would have been to prepend 1 as in the case of
FAST[Fxm,Horner]. This though would create complications which do not seem to be neces-
sary for the fixed length setting. Instead, we use this technique later in the context of the
general setting.

Recall that the degree of BRWτ (X1, . . . , Xm−2, T) is denoted as d(m − 1). So, h and h′

are also monic polynomials of degrees 1 + d(m − 1) and 2 + d(m − 1) respectively whose
constant terms are zero.

Proposition 9. Let m ≥ 4 be an integer. The pair (h, h′) of hash functions defined in (7.23)
and (7.24) for the construction FAST[Fxm,BRW] is an (ε1, ε2)-eligible pair, where ε1 = ε2 =
(3+d(m−1))/2n. Further, if m is a power of two, then (h, h′) is an ((m+2)/2n, (m+2)/2n)-
eligible pair.

Proof. The proof is analogous to the proof of Proposition 8. It is required to use the ex-
pression d(m− 1) for the degree of BRWτ (X1, . . . , Xm−2, T) and further the injectivity of the
map (X1, . . . , Xm−2, T) 7−→ BRWτ (X1, . . . , Xm−2, T) ensures that for (T,X) 6= (T ′, X ′), the
polynomial BRWτ (X1, . . . , Xm−2, T)⊕ BRWτ (X

′
1, . . . , X

′
m−2, T

′) is not zero.
The last statement follows from the previously mentioned fact that d(m− 1) = m− 1 if

and only if m ≥ 4 is a power of two.

Remark: In the case where m is a power of two, (h, h′) is an ((m+2)/2n, (m+2)/2n)-eligible
pair for both FAST[Fxm,Horner] and FAST[Fxm,BRW].

7.3.2.3 Hash functions h and h′ for FAST[Gn, k, vecHorner]

In this setting, we define h, h′ : F2n × T ×M → F2n where T and M are given by (7.18)
and (7.20) respectively. For T = (T1, . . . , Tk) ∈ T and M ∈M, let d = t(T) + l(M) + k+ 2.

Instantiations of FAST 105

We define

hτ (T,M) = τ d ⊕ vecHornerτ (T1, . . . , Tk,M); (7.25)

h′τ (T,M) = τ(τ d ⊕ vecHornerτ (T1, . . . , Tk,M)). (7.26)

It is easy to see that h and h′ are monic polynomials of degrees d and d + 1 respectively
whose constant terms are zero.

The computation of τ d ⊕ vecHornerτ (T1, . . . , Tk, M) can be done by the following simple
modification of the algorithm for computing vecHorner shown in Table 7.3. The initialisation
of digest using digest = 0 is to be replaced with digest = 1.

Proposition 10. The hash functions h and h′ defined in (7.25) and (7.26) respectively for
the construction FAST[Gn, k, vecHorner] form an (ε1, ε2)-eligible pair, where

ε1 =
t + l + k + 4

2n
; ε2 =

max(t + l, t′ + l′) + k + 4

2n
.

Note: In this case, both ε1 and ε2 depend linearly on the total number of n-bit blocks
in the tweak (t), the number of n-bit blocks in the message (l) and the upper bound on the
number of components in the tweak (k).

Proof. For T = (T1, . . . , Tk), recall that t = t(T) =
∑k

i=1 mi where mi is the number of n-bit
blocks in padn(Ti). Also, l = l(M) is the number of n-bit blocks in padn(M).

The degree of hτ (T,M) is d = t + l + k + 2 ≤ t + l + k + 2 and the degree of h′τ (T,M)
is d + 1 = t + l + k + 3 ≤ t + l + k + 3. So, the polynomial τ(hτ (T,M)⊕ α)⊕ β is a monic
polynomial of degree at most t+ l+ k+ 3 and the polynomial τ(h′τ (T,M)⊕α)⊕β is a monic
polynomial of degree at most t + l + k + 4. This shows the value of ε1.

Consider (T ′,M ′) 6= (T,M) where T ′ = (T ′1, . . . , T
′
k′), t

′ = t(T ′) and l′ = l(M ′). Without
loss of generality assume that k ≥ k′. Let p(τ) = τ(hτ (T,M) ⊕ hτ (T

′,M ′) ⊕ α) ⊕ β. If
the degrees of hτ (T,M) and hτ (T

′,M ′) are not equal, then p(τ) is a polynomial of degree
max(t + l + k + 3, t′ + l′ + k′ + 3) ≤ max(t + l + k + 3, t′ + l′ + k + 3). So, suppose that
the degrees of hτ (T,M) and hτ (T

′,M ′) are equal. The leading monic terms of the two
polynomials cancel out. If p(τ) is a non-zero polynomial, then it has maximum degree
max(t+ l+ k+2, t′+ l′+ k+2). So, it is sufficient to show that p(τ) is a non-zero polynomial.
This argument is similar to that of Proposition 7. Further, a similar argument applies for h′

where the degree of τ(h′τ (T,M)⊕h′τ (T ′,M ′)⊕α)⊕β is at most max(t+ l+k+4, t′+ l′+k+4).

Now consider (T,M) and (T ′,M ′) which are not necessarily distinct and let p(τ) =
τ(hτ (T,M) ⊕ h′τ (T

′,M ′) ⊕ α) ⊕ β. The coefficient of τ in hτ (T,M) is L = bin8(k +
1)||08||binn−16(len(M)) 6= 0 which is the coefficient of τ 2 in τhτ . The coefficient of τ 2 in
τh′τ (T

′,M ′) is 0 and so the coefficient of τ 2 in p(τ) is L 6= 0. So, p(τ) is a non-zero polyno-
mial. The degree of p(τ) is at most max(t + l + k + 3, t′ + l′ + k + 4).

This completes the proof.

106 FAST: Disk Encryption and Beyond

7.3.2.4 Hash functions h and h′ for FAST[Gn, k, η, vecHash2L]

In this setting, we define h, h′ : F2n × T ×M → F2n where T and M are given by (7.18)
and (7.20) respectively. For T = (T1, . . . , Tk) ∈ T and M ∈ M, let the number of super-
blocks in padn(Ti) be `i and the number of super-blocks in padn(M) be `. Let d = (d(η) +
1)(`1 + · · ·+ `k + `) + k + 2. We define

hτ (T,M) = τ d ⊕ vecHash2Lτ (T1, . . . , Tk,M); (7.27)

h′τ (T,M) = τ(τ d ⊕ vecHash2Lτ (T1, . . . , Tk,M)). (7.28)

The definition of vecHash2L requires choosing the value η. As mentioned earlier, we will
assume that η is chosen so that η + 1 is a power of two and so d(η) = η. The computation
of τ d ⊕ vecHash2Lτ (T1, . . . , Tk,M) can be done by the following simple modification of the
algorithm for computing vecHash2L shown in Table 7.3. The initialisation of digest using
digest = 0 is to be replaced with digest = 1.

Proposition 11. Let the parameter η ≥ 3 required in the definition of vecHash2L be such that
η+1 is a power of two. The hash functions h and h′ defined in (7.27) and (7.28) respectively
for the construction FAST[Gn, k, η, vecHash2L] form an (ε1, ε2)-eligible pair, where

ε1 =
((η + 1)/η)(t + l) + (k + 1)(η + 2) + 3

2n
;

ε2 =
((η + 1)/η) max(t + l, t′ + l′) + (k + 1)(η + 2) + 3

2n
.

Note: In this case, once the parameter η is fixed, both ε1 and ε2 depend linearly on the
total number of n-bit blocks in the tweak (t), the number of n-bit blocks in the message (l)
and the upper bound on the number of components in the tweak (k).

Proof. Since η + 1 ≥ 4 is a power of two, d(η) = η.
For i = 1, . . . , k, let the number of super-blocks in padn(Ti) be `i and the number of

super-blocks in padn(M) be `. For i = 1, . . . , k, let the number of n-bit blocks in padn(Ti)
be mi, so that t = t(T) =

∑k
i=1 mi and the number of n-bit blocks in padn(M) be l. In

padn(Ti), each of the first `i − 1 super-blocks contains exactly η n-bit blocks and the last
super-block contains at most η blocks. Since the total number of n-bit blocks in padn(Ti) is
mi, we have mi > η(`i−1) from which we obtain (η+ 1)`i < mi((η+ 1)/η) +η+ 1. Similarly,
(η + 1)` < l((η + 1)/η) + η + 1. We have

d = (d(η) + 1)(`1 + · · ·+ `k + `) + k + 2

≤ (d(η) + 1)(`1 + · · ·+ `k + `) + k + 2

= (η + 1)(`1 + · · ·+ `k + `) + k + 2 (since d(η) = η)

< ((η + 1)/η)(t + l) + (k + 1)(η + 1) + k + 2

≤ ((η + 1)/η)(t + l) + (k + 1)(η + 2) + 1. (7.29)

So, the degree of τhτ (T,M) is d + 1 which is at most ((η + 1)/η)(t + l) + (k + 1)(η + 2) + 2
and the degree of τh′τ (T,M) is d+ 2 which is at most ((η + 1)/η)(t+ l) + (k+ 1)(η + 2) + 3.
This shows the value of ε1.

Security 107

Consider (T ′,M ′) 6= (T,M) where T ′ = (T ′1, . . . , T
′
k′), t

′ = t(T ′) and l′ = l(M ′). Let d′ be
the degree of hτ (T

′,M ′). For any α, β ∈ F2n , we wish to bound the probability (over uniform
random choice of τ in F2n) that the polynomial p1(τ) = τ(hτ (T,M) ⊕ hτ (T ′,M ′) ⊕ α) ⊕ β
is zero. If d 6= d′, then p1(τ) is a monic polynomial of degree max(d + 1, d′ + 1) and so the
probability that it is zero is at most max(d + 1, d′ + 1)/2n. If d = d′, then p1(τ) is zero if
and only if the polynomial

p2(τ) = τ(vecHash2Lτ (T1, . . . , Tk,M)⊕ vecHash2Lτ (T
′
1, . . . , T

′
k′ ,M

′)⊕ α)⊕ β

is zero. Using Theorem 2 of [30] (see (7.15)), we have this probability to be at most
max(d, d′)/2n. So, the probability that p1(τ) is zero is at most max(d+1, d′+1)/2n. Similarly,
the probability that τ(h′τ (T,M)⊕h′τ (T ′,M ′)⊕α)⊕β is zero is at most max(d+2, d′+2)/2n.

Consider (T,M) and (T ′,M ′) which are not necessarily distinct. Fix α, β ∈ F2n and
consider p(τ) = τ(hτ (T,M)⊕ h′τ (T ′,M ′)⊕ α)⊕ β. The coefficient of τ in

hτ (T,M) = τ d ⊕ vecHash2Lτ (T1, . . . , Tk,M)

is
L = bin8(k + 1)||08||binn−16(len(M)) 6= 0,

which is the coefficient of τ 2 in τhτ (T,M). The coefficient of τ 2 in τh′τ (T
′,M ′) is 0 and so

the coefficient of τ 2 in p(τ) is L 6= 0. So, p(τ) is a non-zero polynomial. The degree of p(τ)
is at most max(d + 1, d′ + 2) ≤ max(d + 2, d′ + 2). This shows the value of ε2.

7.4 Security

In this section, we provide the formal definitions and the formal security statement for FAST.

7.4.1 Pseudo-Random Function

The pseudo-random function (PRF) and its security notion have already been defined in
Chapter 3. Here we define only the query complexity of the adversary when it queries an
oracle corresponding to the PRF. Suppose the adversary A makes a total of q queries which
are X(1), . . . , X(q). The query complexity of A is the sum total of the number of n-bit blocks
in padn(X(s)), s = 1, . . . , q.

7.4.2 Tweakable Enciphering Scheme

The tweakable enciphering scheme has already been defined in Chapter 3. The notion of
security for a TES that we consider is that of indistinguishability from uniform random
strings. This is the standard security model used for a TES and implies other notions of
security. For details, we refer to [65].

Let F be the set of all functions f from T ×P to P such that for any T ∈ T and P ∈ P ,
len(f(T, P)) = len(P). Let ρ1 and ρ2 be two functions chosen independently and uniformly
at random from F.

108 FAST: Disk Encryption and Beyond

An adversary A attacking a TES has access to two oracles which we will call the left and
the right oracles. Both the oracles are functions from F. An input to the left oracle is of the
form (T, P) and the response is C, while an input to the right oracle is of the form (T,C)
and the response is P . The adversary A adaptively queries its oracles possibly interweaving
its queries to its left and right oracles. At the end, A outputs a bit.

We assume that the adversary does not make any pointless query. This means that A
does not repeat a query to any of its oracles; does not query the right oracle with (T,C) if
it received C in response to a query (T, P) made to its left oracle; and does not query the
left oracle with (T, P) if it received P in response to a query (T,C) made to its right oracle.
The advantage of A in breaking TES is defined as follows:

Adv±rnd
TES (A)

= Pr
[
K

$← K : ATES.EncryptK(·,·),TES.DecryptK(·,·) ⇒ 1
]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
.

(7.30)

Suppose the adversaryAmakes q queries (T (1), X(1)), . . . , (T (q), X(q)) where T (s) = (T
(s)
1 , . . . , T

(s)

k(s)
)

and X(s) is either P (s) or C(s). For j = 1, . . . , k(s), let m
(s)
j be the number of n-bit blocks

in padn(T
(s)
j) and let m(t) be the number of n-bit blocks in padn(X(t)). We will write t(s) to

denote t(T (s)). Let X(s) = X
(s)
1 ||X

(s)
2 ||X

(s)
3 with len(X

(s)
1) = len(X

(s)
2) = n and len(X

(s)
3) ≥ 1.

Then X
(s)
3 ∈M and l(X

(s)
3) = m(s) − 2. We will write n(s) to denote l(X

(s)
3).

The tweak query complexity θ, the message query complexity ω and the total query
complexity σ are defined as follows.

θ =

q∑
s=1

t(T (s)) =

q∑
s=1

t(s); (7.31)

ω =

q∑
t=1

m(t); (7.32)

σ = θ + ω. (7.33)

By Adv±rnd
TES (T, q, θ, ω) we denote the maximum of Adv±rnd

TES (A) over all adversaries A
which run in time T, make q queries and have tweak query complexity θ and message query

complexity ω. TES is said to be (T, q, θ, ω, ε)-secure if Adv±rnd
TES (A) ≤ ε for all A running

in time T, making a total of q queries with tweak query complexity θ and message query
complexity ω.

7.4.3 Security of FAST

The security proof for FAST is the following.

Theorem 10. Let n be a positive integer; F2n is represented using some fixed irreducible
polynomial of degree n over GF (2); {FK}K∈K where for K ∈ K, FK : {0, 1}n → {0, 1}n;

Security 109

(h, h′) is an (ε1, ε2)-eligible pair of hash functions, where h, h′ : F2n × T ×M → F2n; and
fStr is a fixed n-bit string used to build the TES

FAST = (FAST.Encrypt,FAST.Decrypt)

given in Table 7.1. Fix q, ω ≥ q to be positive integers and θ to be a non-negative integer.
For all T > 0,

Adv±rnd
FAST (T, q, θ, ω) ≤ Adv

prf
F (T + T′, ω + 1, ω + 1) + ∆(FAST), where

∆(FAST) = 2ω

(
q∑
s=1

ε
(s)
1

)
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2 +

3ω2

2n
; (7.34)

T′ is the time required to answer q queries with tweak query complexity θ and message
query complexity ω plus some bookkeeping time; and for 1 ≤ s, t ≤ q, ε

(s)
1 = ε1(t(s), n(s)),

ε
(s,t)
2 = ε2(t(s), n(s), t(t), n(t)).

Proof. Let A be an adversary attacking FAST. We use A to build an adversary B attacking
the PRF-property of F . B has access to an oracle which is either FK(·) for a uniform random
K in K, or, the oracle is ρ which is a uniform random function from {0, 1}n to {0, 1}n.
Adversary B uses the (ε1, ε2)-eligible pair of hash functions (h, h′) to set up an instance of
FAST and invokes A to attack this instance. A makes a number of oracle queries to the
encryption and decryption oracles of FAST. B uses its own oracle and the hash functions h
and h′ to compute the responses which it provides to A. At the end, A outputs a bit and
B outputs the same bit. Note that both encryption and decryption queries by A can be
answered using the oracle of B and the hash functions h, h′.

The running time of B is the running time of A along with the time required to compute
the responses to the queries made by A using B’s oracle plus some bookkeeping time which
includes the time for set-up. So, the total running time of B is T + T′ as desired. Further,
to answer A’s queries, B needs to make a query to its oracle on fStr and to answer the s-th
query, it needs to make m(s) queries to its oracle. So, the total number of times B queries
its oracle is 1 +

∑q
s=1 m

(s) = ω + 1. Since each query of B consists of a single n-bit block,
the query complexity is also ω + 1.

If the oracle to B is the real oracle, i.e., the oracle is FK , then A gets to interact with
the real encryption and decryption oracles of FAST. So,

Pr
[
K

$← K : BFK(·) ⇒ 1
]

= Pr
[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]
. (7.35)

Denote by FASTρ the instance of FAST where FK is replaced by ρ. If the oracle to B is the
random oracle, i.e., the oracle is ρ, then

Pr
[
Bρ(·) ⇒ 1

]
= Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
. (7.36)

So,

Adv
prf
F (B) = Pr

[
K

$← K : BFK(·) ⇒ 1
]
− Pr

[
Bρ(·) ⇒ 1

]
= Pr

[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]

−Pr
[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
. (7.37)

110 FAST: Disk Encryption and Beyond

The advantages of A and B are related as follows. Recall that F is the set of all functions
f from T × P to P such that for any T ∈ T and P ∈ P , len(f(T, P)) = len(P). Let ρ1(·, ·)
and ρ2(·, ·) be two independent and uniform random functions from F.

Adv±rnd
FAST (A)

= Pr
[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
= Pr

[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]

−Pr
[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
+ Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
= Adv

prf
F (B) + Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
−Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
. (7.38)

There are two events to consider, namely,

AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1 and Aρ1(·,·),ρ2(·,·) ⇒ 1.

Consider the event AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1. Suppose A makes a total of q queries
with tweak query complexity θ and message query complexity ω. For 1 ≤ s ≤ q, let
ty(s) = enc if the s-th query is an encryption query and ty(s) = dec if the s-th query is a
decryption query. Denote the tweak, the plaintext and the ciphertext associated with the
s-th query by T (s), P (s) = P

(s)
1 ||P

(s)
2 ||P

(s)
3 and C(s) = C

(s)
1 ||C

(s)
2 ||C

(s)
3 respectively. We have

t(s) = t(T (s)) and m(s) is the number of n-bit blocks in padn(P (s)) and padn(C(s)). Also,

n(s) = l(P
(s)
3) = l(C

(s)
3) = m(s) − 2.

The interaction of A with the oracle in this setting is given by the game Greal which is
shown in Table 7.4. In this game, the random function ρ is built incrementally. Whenever a
“new” input to ρ is received, the output is chosen independently and uniformly at random.
The variable bad is set to true if it turns out that two inputs to ρ collide. Let Badreal(A)
be the event that bad is set to true in the game Greal. Also, by AGreal ⇒ 1 we denote
the event that A outputs 1 in the game Greal. Note that AGreal ⇒ 1 is exactly the event
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1.

If Badreal(A) does not occur, then the boxed instruction in game Greal is not executed.
The absence of the boxed instruction does not affect the probability of Badreal(A). We
consider the distributions of the plaintexts and ciphertexts when Badreal(A) does not occur.

Let Y
(s)

1 denote the output of Ch-ρ(A
(s)
2) and Y

(s)
2 denote the output of Ch-ρ(B

(s)
1). Suppose

ty(s) = enc, i.e., the s-th query is an encryption query. Then from game Greal, we can write

C
(s)
1 = Y

(s)
1 ⊕ P (s)

1 ⊕ τC
(s)
2 ⊕ τh′τ (T (s), C

(s)
3)⊕ hτ (T (s), P

(s)
3);

C
(s)
2 = Y

(s)
2 ⊕ P (s)

2 ⊕ τP
(s)
1 ⊕ h′τ (T (s), C

(s)
3)⊕ τhτ (T (s), P

(s)
3);

C
(s)
3,i = S

(s)
i ⊕ P

(s)
3,i for i = 1, . . . ,m(s) − 3;

C
(s)

3,m(s)−2
= firstr(s)(D

(s))⊕ P (s)

3,m(s)−2
;

Security 111

Table 7.4: Game Greal.

Subroutine Ch-ρ(X)

Y
$← {0, 1}n;

if X ∈ D then bad ← true; Y ← ρ(X); endif;

ρ(X)← Y ; D ← D ∪ {X}; return(Y);
Initialization:

τ
$← {0, 1}n; D ← {fStr}; bad← false.

ty(s) = enc: input (T (s), P (s))

(P
(s)
1 , P

(s)
2 , P

(s)
3)← parsen(P (s));

A
(s)
1 ← P

(s)
1 ⊕ hτ (T (s), P

(s)
3);

A
(s)
2 ← τA

(s)
1 ⊕ P

(s)
2 ;

B
(s)
1 ← A

(s)
1 ⊕ Ch-ρ(A

(s)
2);

B
(s)
2 ← A

(s)
2 ⊕ Ch-ρ(B

(s)
1);

C
(s)
1 ← τB

(s)
2 ⊕B

(s)
1 ;

Z(s) ← A
(s)
2 ⊕B

(s)
1 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i);

S
(s)
i ← Ch-ρ(J

(s)
i);

C
(s)
3,i ← P

(s)
3,i ⊕ S

(s)
i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2);

D(s) ← Ch-ρ(J
(s)

m(s)−2
);

C
(s)

3,m(s)−2
← P

(s)

3,m(s)−2
⊕ firstr(s)(D

(s));

C
(s)
2 ← B

(s)
2 ⊕ h′τ (T (s), C

(s)
3);

return (C
(s)
1 ||C

(s)
2 ||C

(s)
3).

ty(s) = dec: input (T (s), C(s))

(C
(s)
1 , C

(s)
2 , C

(s)
3)← parsen(C(s));

B
(s)
2 ← C

(s)
2 ⊕ h′τ (T (s), C

(s)
3);

B
(s)
1 ← C

(s)
1 ⊕ τB

(s)
2 ;

A
(s)
2 ← B

(s)
2 ⊕ Ch-ρ(B

(s)
1);

A
(s)
1 ← B

(s)
1 ⊕ Ch-ρ(A

(s)
2);

P
(s)
2 ← τA

(s)
1 ⊕A

(s)
2 ;

Z(s) ← A
(s)
2 ⊕B

(s)
1 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i);

S
(s)
i ← Ch-ρ(J

(s)
i);

P
(s)
3,i ← C

(s)
3,i ⊕ S

(s)
i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2);

E(s) ← Ch-ρ(J
(s)

m(s)−2
);

P
(s)

3,m(s)−2
← C

(s)

3,m(s)−2
⊕ firstr(s)(E

(s));

P
(s)
1 ← A

(s)
1 ⊕ hτ (T (s), P

(s)
3);

return (P
(s)
1 ||P

(s)
2 ||P

(s)
3).

When Badreal(A) does not occur, Y
(s)

1 , Y
(s)

2 , S
(s)
i , (i = 1, . . . ,m(s)−3), D(s) are independent and

uniform random strings. From the above relations, it is easy to argue that the ciphertext C(s)

is also independent and uniform random. A similar argument shows that when ty(s) = dec,
i.e., the query is a decryption query, then P (s) is an independent and uniform random string.
So, if Badreal(A) does not occur, then the adversary obtains independent and uniform random
strings as responses to all its queries.

In the next step, the game Greal is modified to the game Gint. This game is shown
in Table 7.5. In this game, the outputs of ρ are not chosen directly. Instead, these are
defined from the plaintexts and the ciphertexts. For a enciphering query, the ciphertext is
chosen independently and uniformly at random while for a deciphering query, the plaintext
is chosen independently and uniformly at random. The outputs of ρ are defined from these

112 FAST: Disk Encryption and Beyond

Table 7.5: Game Gint.

Subroutine ChkDom(X)
if X ∈ D then bad ← true; endif;
D ← D ∪ {X};

Initialization:

τ
$← {0, 1}n; D ← {fStr}; bad← false.

ty(s) = enc: input (T (s), P (s))

(P
(s)
1 , P

(s)
2 , P

(s)
3)← parsen(P (s));

C
(s)
1

$← {0, 1}n; C
(s)
2

$← {0, 1}n;

for i = 1, . . . ,m(s) − 3 do C
(s)
3,i

$← {0, 1}n;

W (s) $← {0, 1}n; C3,m(s)−2 ← firstr(s)(W
(s));

A
(s)
1 ← P

(s)
1 ⊕ hτ (T (s), P

(s)
3);

A
(s)
2 ← τA

(s)
1 ⊕ P

(s)
2 ; ChkDom(A

(s)
2);

Y
(s)

1 ← C
(s)
1 ⊕ P

(s)
1 ⊕ τ(C

(s)
2 ⊕ h′τ (T (s), C

(s)
3))

⊕hτ (T (s), P
(s)
3);

ρ(A
(s)
2)← Y

(s)
1 ;

B
(s)
1 ← A

(s)
1 ⊕ Y

(s)
1 ; ChkDom(B

(s)
1);

Y
(s)

2 ← C
(s)
2 ⊕ P

(s)
2 ⊕ τP (s)

1 ⊕ h′τ (T (s), C
(s)
3)

⊕τhτ (T (s), P
(s)
3);

ρ(B
(s)
1)← Y

(s)
2 ;

B
(s)
2 ← A

(s)
2 ⊕ Y

(s)
2 ;

C
(s)
1 ← τB

(s)
2 ⊕B

(s)
1 ;

Z(s) ← A
(s)
2 ⊕B

(s)
1 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i); ChkDom(J

(s)
i);

ρ(J
(s)
i)← C

(s)
3,i ⊕ P

(s)
3,i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2);

ChkDom(J
(s)

m(s)−2
);

D(s) ←W (s) ⊕ (P
(s)

3,m(s)−2
||0n−r(s));

ρ(J
(s)

m(s)−2
)← D(s);

return (C
(s)
1 ||C

(s)
2 ||C

(s)
3).

ty(s) = dec: input (T (s), C(s))

(C
(s)
1 , C

(s)
2 , C

(s)
3)← parsen(C(s));

P
(s)
1

$← {0, 1}n; P
(s)
2

$← {0, 1}n;

for i = 1, . . . ,m(s) − 3 do P
(s)
3,i

$← {0, 1}n;

V (s) $← {0, 1}n; P3,m(s)−2 ← firstr(s)(V
(s));

B
(s)
2 ← C

(s)
2 ⊕ h′τ (T (s), C

(s)
3);

B
(s)
1 ← C

(s)
1 ⊕ τB

(s)
2 ; ChkDom(B

(s)
1);

Y
(s)

2 ← C
(s)
2 ⊕ P

(s)
2 ⊕ τP (s)

1 ⊕ h′τ (T (s), C
(s)
3)

⊕τhτ (T (s), P
(s)
3);

ρ(B
(s)
1)← Y

(s)
2 ;

A
(s)
2 ← B

(s)
2 ⊕ Y

(s)
2 ; ChkDom(A

(s)
2);

Y
(s)

1 ← C
(s)
1 ⊕ P

(s)
1 ⊕ τ(C

(s)
2 ⊕ h′τ (T (s), C

(s)
3))

⊕hτ (T (s), P
(s)
3);

ρ(A
(s)
2)← Y

(s)
1 ;

A
(s)
1 ← B

(s)
1 ⊕ Y

(s)
1 ;

P
(s)
2 ← τA

(s)
1 ⊕A

(s)
2 ;

Z(s) ← A
(s)
2 ⊕B

(s)
1 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i); ChkDom(J

(s)
i);

ρ(J
(s)
i)← C

(s)
3,i ⊕ P

(s)
3,i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2);

ChkDom(J
(s)

m(s)−2
);

E(s) ← V (s) ⊕ (C
(s)

3,m(s)−2
||0n−r(s));

ρ(J
(s)

m(s)−2
)← E(s);

return (P
(s)
1 ||P

(s)
2 ||P

(s)
3).

in the following manner.

ρ(A
(s)
2) = Y

(s)
1 ← C

(s)
1 ⊕ P

(s)
1 ⊕ τC(s)

2 ⊕ τh′τ (T (s), C
(s)
3)⊕ hτ (T (s), P

(s)
3);

ρ(B
(s)
1) = Y

(s)
2 ← C

(s)
2 ⊕ P

(s)
2 ⊕ τP (s)

1 ⊕ h′τ (T (s), C
(s)
3)⊕ τhτ (T (s), P

(s)
3);

ρ(J
(s)
i) = C

(s)
3,i ⊕ P

(s)
3,i for i = 1, . . . ,m(s) − 3;

ρ(J
(s)

m(s)−2
) =

{
D(s) ⊕ (P

(s)

3,m(s)−2
||0n−r(s)) if ty(s) = enc;

E(s) ⊕ (C
(s)

3,m(s)−2
||0n−r(s)) if ty(s) = dec;

(7.39)

Security 113

As for an encryption query, C
(s)
1 , C

(s)
2 , C

(s)
3,1 , . . . , C

(s)

3,m(s)−3
, D(s) are chosen independently

and uniformly at random, from (7.39) it follows that the outputs of ρ are also independent and

uniformly distributed. Similarly, for a decryption query, P
(s)
1 , P

(s)
2 , P

(s)
3,1 , . . . , P

(s)

3,m(s)−3
, E(s)

are chosen independently and uniformly at random. Again, from (7.39) it follows that the
outputs of ρ are also independent and uniformly distributed. So, as in game Greal, in game
Gint also the outputs of ρ are independent and uniformly distributed.

Let Badint(A) be the event that the variable bad is set to true in the game Gint. Let
AGint ⇒ 1 denote the event that A outputs 1 in the game Gint. From the description of the
games, it follows that if bad does not occur, then A’s views in both Greal and Gint are the
same. Also, the probabilities that bad occurs in the two games are equal. This gives the
following.

Claim 1.

Pr
[(
AGreal ⇒ 1

)
∧ Badreal(A)

]
= Pr

[(
AGint ⇒ 1

)
∧ Badint(A)

]
;

Pr [Badreal(A)] = Pr [Badint(A)] .

Next, the game Gint is changed to the game Grnd which is shown in Table 7.6. In this
game, there is no ρ. For an enciphering query, the ciphertext is chosen independently and
uniformly at random and for a deciphering query, the plaintext is chosen independently
and uniformly at random. These are returned to A. After the interaction is over, in the
finalisation step, the internal random variables are included in D and bad is set to true if
there is a collision in D. Let Badrnd(A) be the event that the variable bad is set to true in
the game Grnd. Let AGrnd ⇒ 1 denote the event that A outputs 1 in the game Grnd. If bad
does not occur, then in both the games Gint and Grnd, A obtains independent and uniform
random strings as responses to all its queries. Also, the probabilities that bad occurs in the
two games are equal. So, we have the following.

Claim 2.

Pr
[(
AGint ⇒ 1

)
∧ Badint(A)

]
= Pr

[(
AGrnd ⇒ 1

)
∧ Badrnd(A)

]
;

Pr [Badint(A)] = Pr [Badrnd(A)] .

Note that the event AGrnd ⇒ 1 is exactly the event Aρ1(·,·),ρ2(·,·) ⇒ 1.
Using (7.38) along with Claims 1 and 2, we have the following.

Adv±rnd
FAST (A)

= Pr
[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
+Adv

prf
F (B)

= Adv
prf
F (B) + Pr

[
AGreal ⇒ 1

]
− Pr

[
AGrnd ⇒ 1

]
≤ Adv

prf
F (B) + Pr

[(
AGreal ⇒ 1

)
∧ Badreal(A)

]
+ Pr [Badreal(A)]

−Pr
[(
AGrnd ⇒ 1

)
∧ Badrnd(A)

]

114 FAST: Disk Encryption and Beyond

Table 7.6: Game Grnd

Respond to the sth adversary query as follows:

if ty(s) = enc; C
(s)
1 ||C

(s)
2 ||C

(s)
3,1 || . . . ||C

(s)

3,m(s)−3
||D(s) $← {0, 1}nm(s)

;

C
(s)

3,m(s)−2
← firstr(s)(D

(s)) return C(s) = C
(s)
1 ||C

(s)
2 ||C

(s)
3,1 || . . . ||C

(s)

3,m(s)−2
;

if ty(s) = dec; P
(s)
1 ||P

(s)
2 ||P

(s)
3,1 || . . . ||P

(s)

3,m(s)−3
||E(s) $← {0, 1}nm(s)

;

P
(s)

3,m(s)−2
← firstr(s)(E

(s)) return P (s) = P
(s)
1 ||P

(s)
2 ||P

(s)
3,1 || . . . ||P

(s)

3,m(s)−2
;

Finalisation:

D ← {fStr}; bad← false; τ
$← {0, 1}n;

for s = 1 to q do

A
(s)
1 ← P

(s)
1 ⊕ hτ (T (s), P

(s)
3);

B
(s)
2 ← C

(s)
2 ⊕ h′τ (T (s), C

(s)
3);

A
(s)
2 ← τA

(s)
1 ⊕ P

(s)
2 = τ(P

(s)
1 ⊕ hτ (T (s), P

(s)
3))⊕ P (s)

2 ;

D ← D ∪ {A(s)
2 };

B
(s)
1 ← C

(s)
1 ⊕ τB

(s)
2 = C

(s)
1 ⊕ τ(C

(s)
2 ⊕ h′τ (T (s), C

(s)
3));

D ← D ∪ {B(s)
1 };

Z(s) ← A
(s)
2 ⊕B

(s)
1 ;

for i = 1 to m(s) − 2;

J
(s)
i ← Z(s) ⊕ binn(i) = A

(s)
2 ⊕B

(s)
1 ⊕ binn(i);

D ← D ∪ {J (s)
i };

end for;
end for;
if (some value occurs more than once in D) then bad ← true endif;

Security 115

= Adv
prf
F (B) + Pr

[(
AGint ⇒ 1

)
∧ Badint(A)

]
+ Pr [Badint(A)]

−Pr
[(
AGrnd ⇒ 1

)
∧ Badrnd(A)

]
= Adv

prf
F (B) + Pr [Badrnd(A)] . (7.40)

Adversary A runs in time T. We instead consider an adversary C which is allowed un-
bounded runtime and also unbounded memory. Consider the interaction of C with the oracle
in the game Grnd and define the event Pr [Badrnd(C)] in a manner analogous to Pr [Badrnd(A)].
Clearly, we have

Pr [Badrnd(A)] ≤ Pr [Badrnd(C)] . (7.41)

So, it is sufficient to upper bound Pr [Badrnd(C)]. Since C has unbounded computational
power, without loss of generality, we may assume that C is deterministic.

Upper bound on Pr [Badrnd(C)]: An upper bound on Pr [Badrnd(C)] is obtained by showing
that in the game Grnd the event that two random variables in D are equal occurs with low
probability. The main crux of the whole proof is to argue this in the various cases that arise
in considering the different pairs of random variables from D. The claims below tackle all
the different cases that can arise.

Claim 3. For 1 ≤ s ≤ q, Pr[A
(s)
2 = fStr] ≤ ε

(s)
1 .

Proof.

Pr[A
(s)
2 = fStr] = Pr[τP

(s)
1 ⊕ τhτ (T (s), P

(s)
3)⊕ P (s)

2 = fStr]

= Pr[τ(hτ (T
(s), P

(s)
3)⊕ P (s)

1) = P
(s)
2 ⊕ fStr]

≤ ε
(s)
1 .

The last inequality follows from (7.8).

Claim 4. For 1 ≤ s ≤ q, Pr[B
(s)
1 = fStr] ≤ ε

(s)
1 .

Proof.

Pr[B
(s)
1 = fStr] = Pr[τC

(s)
2 ⊕ τh′τ (T (s), C

(s)
3)⊕ C(s)

1 = fStr]

= Pr[τ(h′τ (T
(s), C

(s)
3)⊕ C(s)

2) = C
(s)
1 ⊕ fStr]

≤ ε
(s)
1 .

The last inequality follows from (7.9).

Claim 5. For 1 ≤ s ≤ q, 1 ≤ i ≤ m(s) − 2, Pr[J
(s)
i = fStr] = 1/2n.

116 FAST: Disk Encryption and Beyond

Proof.

J
(s)
i ⊕ fStr = Z(s) ⊕ binn(i)⊕ fStr

= A
(s)
2 ⊕B

(s)
1 ⊕ binn(i)⊕ fStr

= τ(P
(s)
1 ⊕ hτ (T (s), P

(s)
3))⊕ P (s)

2 ⊕ C
(s)
1 ⊕ τ(C

(s)
2 ⊕ h′τ (T (s), C

(s)
3))

⊕binn(i)⊕ fStr.

When ty(s) = enc, then C
(s)
1 is an n-bit uniform random string which is independent of the

other quantities and when ty(s) = dec, then P
(s)
2 is an n-bit uniform random string which is

independent of the other quantities. So in both cases we have the required probability.

Claim 6. For s 6= t, Pr[A
(s)
2 = A

(t)
2] ≤ max{ε(s,t)2 , 1/2n}.

Proof.

A
(s)
2 ⊕ A

(t)
2 = τ(P

(s)
1 ⊕ P

(t)
1)⊕ τ(hτ (T

(s), P
(s)
3)⊕ hτ (T (t), P

(t)
3))⊕ P (s)

2 ⊕ P
(t)
2 .

There are four cases to consider.

Case 1: ty(s) = ty(t) = enc. There are two sub-cases.

(a) Case 1a: (T (s), P
(s)
1 , P

(s)
3) = (T (t), P

(t)
1 , P

(t)
3).

As the adversary is not allowed to repeat a query, hence
(T (s), P

(s)
1 , P

(s)
3) = (T (t), P

(t)
1 , P

(t)
3) implies P

(s)
2 6= P

(t)
2 and so Pr[A

(s)
2 = A

(t)
2] = 0.

(b) Case 1b: (T (s), P
(s)
1 , P

(s)
3) 6= (T (t), P

(t)
1 , P

(t)
3).

If (T (s), P
(s)
3) = (T (t), P

(t)
3), then P

(s)
1 6= P

(t)
1 and so A

(s)
2 ⊕A

(t)
2 = τ(P

(s)
1 ⊕ P

(t)
1)⊕

P
(s)
2 ⊕P

(t)
2 is a non-zero polynomial in τ of degree 1. Thus, Pr[A

(s)
2 = A

(t)
2] = 1/2n.

If (T (s), P
(s)
3) 6= (T (t), P

(t)
3), then

Pr[A
(s)
2 = A

(t)
2]

= Pr[τ(hτ (T
(s), P

(s)
3)⊕ hτ (T (t), P

(t)
3)⊕ P (s)

1 ⊕ P
(t)
1) = P

(s)
2 ⊕ P

(t)
2]

≤ ε
(s,t)
2 .

The last inequality follows from (7.10).

Case 2: ty(s) = ty(t) = dec. In this case all of P
(s)
1 , P

(t)
1 , P

(s)
2 , P

(t)
2 are independent and

uniformly distributed n-bit strings and so Pr[A
(s)
2 = A

(t)
2] = 1/2n.

Case 3: ty(s) = enc and ty(t) = dec. In this case P
(t)
1 and P

(t)
2 are independent and

uniformly distributed n-bit strings and so Pr[A
(s)
2 = A

(t)
2] = 1/2n.

Case 4: ty(s) = dec and ty(t) = enc. In this case P
(s)
1 and P

(s)
2 are independent and

uniformly distributed n-bit strings and so Pr[A
(s)
2 = A

(t)
2] = 1/2n.

Security 117

Claim 7. For s 6= t, Pr[B
(s)
1 = B

(t)
1] ≤ max{ε(s,t)2 , 1/2n}.

The proof is almost the same as the proof of Claim 6.

Claim 8. For 1 ≤ s, t ≤ q, Pr[A
(s)
2 = B

(t)
1] ≤ max{ε(s,t)2 , 1/2n}.

Proof.

A
(s)
2 ⊕B

(t)
1

= τ(P
(s)
1 ⊕ C

(t)
2)⊕ τ(hτ (T

(s), P
(s)
3)⊕ h′τ (T (t), C

(t)
3))⊕ (P

(s)
2 ⊕ C

(t)
1).

There are four cases.

Case 1: ty(s) = ty(t) = enc. In this case, C
(t)
1 is an independent and uniform random

n-bit string and so Pr[A
(s)
2 = B

(t)
1] = 1/2n.

Case 2: ty(s) = enc and ty(t) = dec. We have

Pr[A
(s)
2 = B

(t)
1]

= Pr[τ(P
(s)
1 ⊕ C

(t)
2)⊕ τ(hτ (T

(s), P
(s)
3)⊕ h′τ (T (t), C

(t)
3)) = P

(s)
2 ⊕ C

(t)
1]

= Pr[τ(hτ (T
(s), P

(s)
3)⊕ h′τ (T (t), C

(t)
3)⊕ P (s)

1 ⊕ C
(t)
2) = P

(s)
2 ⊕ C

(t)
1]

≤ ε
(s,t)
2 .

The last inequality follows from (7.12).

Case 3: ty(s) = dec and ty(t) = enc. In this case, P
(s)
2 is an independent and uniform

random n-bit string and so Pr[A
(s)
2 = B

(t)
1] = 1/2n.

Case 4: ty(s) = ty(t) = dec. In this case also, P
(s)
2 is an independent and uniform

random n-bit string and so Pr[A
(s)
2 = B

(t)
1] = 1/2n.

Claim 9. For 1 ≤ s, t ≤ q and 1 ≤ i ≤ m(t) − 2, Pr[A
(s)
2 = J

(t)
i] ≤ ε

(s)
1 .

Proof.

Pr[A
(s)
2 = J

(t)
i] = Pr[A

(s)
2 = A

(t)
2 ⊕B

(t)
1 ⊕ binn(i)]

= Pr[τ(hτ (T
(s), P

(s)
3)⊕ P (s)

1)⊕ P (s)
2

= τ(P
(t)
1 ⊕ hτ (T (t), P

(t)
3))⊕ P (t)

2

⊕C(t)
1 ⊕ τ(C

(t)
2 ⊕ h′τ (T (t), C

(t)
3))⊕ binn(i)].

First suppose that s 6= t. If ty(t) = enc, then C
(t)
1 is a uniform n-bit string which is indepen-

dent of the other quantities and if ty(t) = dec, then P
(t)
2 is a uniform n-bit string which is

independent of the other quantities. In both cases, the above probability is 1/2n.

118 FAST: Disk Encryption and Beyond

So, suppose that s = t. Then the required probability reduces to

Pr[A
(s)
2 = J

(s)
i] = Pr[B

(s)
1 = binn(i)]

= Pr[τ(C
(s)
2 ⊕ h′τ (T (s), C

(s)
3)) = C

(s)
1 ⊕ binn(i)]

≤ ε
(s)
1 .

If ty(s) = enc, then C
(s)
1 is a uniform n-bit string which is independent of the other quantities

and so the probability is equal to 1/2n; on the other hand, if ty(s) = dec, then the last
inequality follows from (7.9).

Claim 10. For 1 ≤ s, t ≤ q and 1 ≤ i ≤ m(t) − 2, Pr[B
(s)
1 = J

(t)
i] ≤ ε

(s)
1 .

The proof is almost the same as the proof of Claim 9.

Claim 11. For 1 ≤ s, t ≤ q, 1 ≤ i ≤ m(s) − 2, 1 ≤ j ≤ m(t) − 2 and (s, i) 6= (t, j),

Pr[J
(s)
i = J

(t)
j] ≤ 1/2n.

Proof.

J
(s)
i ⊕ J

(t)
j = A

(s)
2 ⊕B

(s)
1 ⊕ A

(t)
2 ⊕B

(t)
1 ⊕ binn(i)⊕ binn(j)

= τ(P
(s)
1 ⊕ hτ (T (s), P

(s)
3))⊕ P (s)

2 ⊕ C
(s)
1 ⊕ τ(C

(s)
2 ⊕ h′τ (T (s), C

(s)
3))

⊕ τ(P
(t)
1 ⊕ hτ (T (t), P

(t)
3))⊕ P (t)

2 ⊕ C
(t)
1 ⊕ τ(C

(t)
2 ⊕ h′τ (T (t), C

(t)
3))

⊕ binn(i)⊕ binn(j).

If s = t, then i 6= j and so Pr[J
(s)
i = J

(t)
j] = Pr[binn(i) = binn(j)] = 0. Suppose that s 6= t.

There are four cases to consider.

• If ty(s) = ty(t) = enc, then both C
(s)
1 and C

(t)
1 are independent and uniform random

strings which are independent of the other quantities.

• If ty(s) = ty(t) = dec, then both P
(s)
2 and P

(t)
2 are independent and uniform random

strings which are independent of the other quantities.

• If ty(s) = enc and ty(t) = dec, then both C
(s)
1 and P

(t)
2 are independent and uniform

random strings which are independent of the other quantities.

• If ty(s) = dec and ty(t) = enc, then both P
(s)
2 and C

(t)
1 are independent and uniform

random strings which are independent of the other quantities.

From the above it follows that if s 6= t, then in all cases the probability is equal to 1/2n.
Thus, the claim follows.

By Claims 3 to 11 and the union bound we have

Pr [Badrnd(C)]

≤ 2

q∑
s=1

ε
(s)
1 +

q∑
s=1

(
m(s) − 2

2n

)
+

∑
1≤s<t≤q

2

(
ε

(s,t)
2 +

1

2n

)

Security 119

+
∑

1≤s≤t≤q

(
ε

(s,t)
2 +

1

2n

)
+ 2

(
q∑
s=1

ε
(s)
1

)(
q∑
t=1

(m(t) − 2)

)

+
1

2n

(∑q
s=1(m(s) − 2)

2

)
= 2

(
q∑
s=1

ε
(s)
1

)(
1 +

q∑
t=1

(m(t) − 2)

)
+

3

2n
q(q − 1)

2
+

q

2n
+ 3

∑
1≤s<t≤q

ε
(s,t)
2

+

q∑
s=1

ε
(s,s)
2 +

q∑
s=1

(
m(s) − 2

2n

)
+

1

2n

(∑q
s=1(m(s) − 2)

2

)

≤ 2

(
q∑
s=1

ε
(s)
1

)
(1 + ω − 2q) +

2q2

2n
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2

+
ω − 2q

2n
+

1

2n
ω(ω − 1)

2

≤ 2ω

(
q∑
s=1

ε
(s)
1

)
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2 +

3ω2

2n
.

(7.42)

Putting together (7.40), (7.41) and (7.42) we obtain

Adv±rnd
FAST (A) ≤ Adv

prf
F (B) + 2ω

(
q∑
s=1

ε
(s)
1

)
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2 +

3ω2

2n
.

The relations between the resources of A and B have been stated earlier. Maximising the left
hand side on the resources shows the required result and completes the proof of Theorem 10.

We have the following consequences of Theorem 10 for the specific instantiations of FAST.

Corollary 4. Let m ≥ 3 be a fixed positive integer. Let q and σ ≥ q be positive integers and
ω = σ − q. Consider the instantiations FAST[Fxm,Horner] and FAST[Fxm,BRW] of FAST.
Then for all T > 0,

Adv±rnd
FAST[Fxm,Horner]

(T, q, q, ω)

≤ Adv
prf
F (T + T′, ω + 1, ω + 1) +

1

2n

(
5ω2 + ω +

11ωq

2
+ 3q2 + 2q

)
. (7.43)

If m ≥ 4, then for all T > 0,

Adv±rnd
FAST[Fxm,BRW](T, q, q, ω)

≤ Adv
prf
F (T + T′, ω + 1, ω + 1)

+
1

2n

(
6ωq +

9q2

2
+ 3q + 3ω2 + d(m− 1)

(
2ωq +

3q2

2
+ q

))
≤ Adv

prf
F (T + T′, ω + 1, ω + 1) +

1

2n
(
7ω2 + 3ωq + 2ω

)
. (7.44)

120 FAST: Disk Encryption and Beyond

Further, if m ≥ 4 is a power of two, then for all T > 0,

Adv±rnd
FAST[Fxm,BRW](T, q, q, ω)

≤ Adv
prf
F (T + T′, ω + 1, ω + 1) +

1

2n

(
5ω2 + ω +

11ωq

2
+ 3q2 + 2q

)
. (7.45)

Proof. Let ∆(FAST[Fxm,Horner]) and ∆(FAST[Fxm,BRW]) denote the expressions for ∆
in (7.34) when FAST[Fxm,Horner] and FAST[Fxm,BRW] are respectively used.

In the setting of Fxm, each query consists of a single n-bit block for the tweak and m
n-bit blocks for the plaintext or the ciphertext, i.e., m(s) = m for all 1 ≤ s ≤ q. So, θ = q,
ω = qm and σ = θ + ω = q(m + 1). Also, m ≥ 3 and q ≥ 1 imply that q < ω and m ≤ ω.

From Proposition 8, we have ε
(s)
1 = ε

(s,t)
2 = (m + 2)/2n for 1 ≤ s, t ≤ q. Using these,

∆(FAST[Fxm,Horner]) can be upper bounded as given in (7.43).

From Proposition 9, we have ε
(s)
1 = ε

(s,t)
2 = (3 + d(m − 1))/2n for 1 ≤ s, t ≤ q. Using

these, ∆(FAST[Fxm,BRW]) achieves the first bound and using d(m−1) ≤ 2(m−1)−1 yields
the second bound.

In the case where m ≥ 4 is a power of two, then d(m−1) = m−1. Also, from Proposition 9,

we have ε
(s)
1 = ε

(s,t)
2 = (m+ 2)/2n and so ∆(FAST[Fxm,BRW]) = ∆(FAST[Fxm,Horner]) which

shows the required statement.

Remarks:

1. As mentioned above, the query complexity σ is equal to the sum of the tweak query
complexity θ and the message query complexity ω, i.e., σ = θ + ω. For the setting of
Fx, θ = q so that σ = q + ω. Using this, the bounds in (7.43), (7.44) and (7.45) are
all of the form cσ2 for some small constant c. This is the typical form of the bound
that is obtained for other constructions in the literature. So, FAST does not suffer any
security loss compared to previous constructions.

2. Consider the application of FAST to disk encryption of 4096-byte sectors. Then m = 28.
Using ω = mq, the bounds for ∆(FAST[Fxm,Horner]) and ∆(FAST[Fxm,BRW]) given
by (7.43) and (7.45) respectively both reduce to the following form.

1

2n
(
q2(5 · 216 + 1441) + 258q

)
<

1

2n
(
5σ2 + 2σ

)
.

Let us consider a numerical example to illustrate the above bound. Suppose that an adversary
provides a total of 240 bytes as part of plaintext/ciphertext in all its queries. Assuming the
size of a disk sector to be 4096 bytes, the 240 bytes is provided in a total of 228 queries, i.e.,
q = 228. With this value of q, the above security bound is approximately 2−54.

Corollary 5. Let q, ω ≥ q be positive integers and θ be a non-negative integer. Consider
the instantiations FAST[Gn, k, vecHorner] and FAST[Gn, k, η, vecHash2L] of FAST. Then for all

Security 121

T > 0,

Adv±rnd
FAST[Gn,k,vecHorner](T, q, θ, ω) ≤ Adv

prf
F (T + T′, ω + 1, ω + 1)

+
5ω2 + 2ωθ + ω + θ

2n
+

3q(θ + ω) + (k + 2)((2ω + 1)q + 3q2) + 6q2

2n
;

(7.46)

Adv±rnd
FAST[Gn,k,η,vecHash2L](T, q, θ, ω)

≤ Adv
prf
F (T + T′, ω + 1, ω + 1)

+
(3 + 2(η + 1)/η)ω2 + (2(η + 1)/η)ωθ + ((η + 1)/η)(ω + θ)

2n

+
3q((η + 1)/η)(θ + ω) + ((2ω + 1)q + 3q2)(k + 1)(η + 2) + 3q(2ω + 1) + 9q2

2n
. (7.47)

Proof. Let ∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L]) denote the expres-
sions for ∆ in (7.34) when FAST[Gn, k, vecHorner] and FAST[Gn, k, η, vecHash2L] are respec-
tively used.

First consider FAST[Gn, k, vecHorner]. From Proposition 10, ε
(s)
1 = (t(s) + n(s) + k + 4)/2n

and ε
(s,t)
2 = (max(t(s) + n(s), t(t) + n(t)) + k + 4)/2n. So, ε

(s,s)
2 = ε

(s)
1 . We have

q∑
s=1

ε
(s)
1 =

q∑
s=1

t(s) + n(s) + k + 4

2n
=
θ + ω

2n
+
q(k + 2)

2n
;

∑
1≤s<t≤q

ε
(s,t)
2 ≤

∑
1≤s<t≤q

max(t(s) + n(s), t(t) + n(t)) + k + 4

2n
≤ q(θ + ω)

2n
+
q2(k + 4)

2n
.

Using these in Theorem 10, we obtain

∆(FAST[Gn, k, vecHorner]) ≤ 5ω2 + 2ωθ + ω + θ

2n

+
3q(θ + ω) + (k + 2)((2ω + 1)q + 3q2) + 6q2

2n
.

Now consider FAST[Gn, k, η, vecHash2L]. From Proposition 11,

ε
(s)
1 =

((η + 1)/η)(t(s) + n(s)) + (k + 1)(η + 2) + 3

2n
;

ε
(s,t)
2 =

((η + 1)/η) max(t(s) + n(s), t(t) + n(t)) + (k + 1)(η + 2) + 3

2n
.

So, ε
(s,s)
2 = ε

(s)
1 . We have

q∑
s=1

ε
(s)
1 ≤ ((η + 1)/η)(θ + ω) + q(k + 1)(η + 2) + 3q

2n
;

∑
1≤s<t≤q

ε
(s,t)
2 ≤ q((η + 1)/η)(θ + ω) + q2(k + 1)(η + 2) + 3q2

2n
;

122 FAST: Disk Encryption and Beyond

Using these in Theorem 10, we obtain

∆(FAST[Gn, k, η, vecHash2L])

≤ (3 + 2(η + 1)/η)ω2 + (2(η + 1)/η)ωθ + ((η + 1)/η)(ω + θ)

2n

+
3q((η + 1)/η)(θ + ω) + ((2ω + 1)q + 3q2)(k + 1)(η + 2) + 3q(2ω + 1) + 9q2

2n
.

Remarks:

1. Recall that k is the number of components in the tweak while η is the number of blocks
in a BRW super-block. So, k and η are constants, i.e., they are independent of n.

2. The query complexity σ is equal to the sum of the tweak query complexity θ and the
message query complexity ω, i.e., σ = θ+ω. Using this, it can be seen that the bounds
on

∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L])

given by (7.46) and (7.47) respectively are of the form cσ2 for some constant c. We
provide illustrations below. As mentioned earlier, this is the typical form of the security
bound for earlier constructions and so FAST does not have any security loss compared
to the known constructions.

3. In our implementations, we take η = 31 and we use the bounds (η + 1)/η < 2,
2(η + 1)/η < 3 and 3(η + 1)/η < 4. The value of k and the lengths of the tweaks
depend on the application. We provide two illustrations.
Case k = 1 and each tweak is an n-bit string: In this scenario, the bounds for
∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L]) can be shown to be re-
spectively less than

5σ2 + σq + 12q2 + σ + 3q

2n
and

6σ2 + 135σq + 72q2 + 2σ + 69q

2n
.

Case k = 8 where the components of a tweak can have variable lengths:
The bounds for ∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L]) can be
shown to be respectively less than

1

2n
(
5ω2 + 2ωθ + ω + θ

)
+

1

2n
(
3q(ω + θ) + 10((2ω + 1)q + 3q2) + 6q2

)
(7.48)

and
1

2n
(
6ω2 + 3ωθ + 2(ω + θ) + 6q(θ + ω) + 300q(2ω + 1) + 900q2

)
. (7.49)

The expressions in (7.48) and (7.49) are determined by the values of q, ω and θ. These
quantities are in turn determined by the manner in which the adversary makes its
queries. Since the adversary can make queries of varying lengths, it is not possible to
obtain further simplifications of the expressions given in (7.48) and (7.49).

Comparison 123

7.5 Comparison

This section provides a comparison of the design features of FAST with previously proposed
TESs. As mentioned earlier, an important application of a TES is disk encryption. The
literature, on the other hand, contains a number of proposals for disk encryption which do
not provide provable security as TESs; our comparison does not include such schemes.

Note that FAST and all the previous TESs present in the literature provide security upto
birthday bound. In that sense FAST is as good as its predecessors. Hence, we do not consider
the security aspect in the comparison.

Table 7.7: Comparison of different tweakable enciphering schemes according to computa-
tional efficiency. [BC] denotes the number of block cipher calls; [M] denotes the number of
field multiplications; [D] denotes the number of doubling (‘multiplication by x’) operations;

type scheme [BC] [M] [D]

enc-mix-enc

CMC [65] 2m + 1 – –
EME2∗ [62] 2m + 1 + m/n – 2
AEZ [67] (5m + 4)/2 – m−2

4

FMix [19] 2m + 1 – –

hash-enc-hash

XCB [81] m + 1 2(m + 3) –
HCTR [109] m 2(m + 1) –
HCHfp [37] m + 2 2(m− 1) –
TET [63] m + 1 2m 2(m− 1)
HEH-BRW[98] m + 1 2 + 2b(m− 1)/2c 2(m− 1)
TESX with BRW [100] m + 1 4 + 2b(m− 1)/2c 2(m− 1)
FAST[Fxm,Horner] m + 1 2m + 1 –
FAST[Fxm,BRW] m + 1 2 + 2b(m− 1)/2c –

Several block cipher based TES constructions essentially use a layer of encryption using a
mode of operation of the block cipher sandwiched between two layers of hashing. Differences
arise in the choice of the mode of operation, the choice of the hash functions and other
details.

1. For the mode of operation, the electronic codebook mode (ECB) has been suggested
in TET [63] and HEH [98] while some form of the counter mode of operation has been
used in XCB [81, 83], HCTR [109] and HCH [37]. In this chapter, we use the counter
mode of operation as described in the scheme HCTR [109].

2. For the hash functions, XCB, HCTR and HCH essentially use polynomial hashing
based on Horner’s rule. The cost of hashing in TET is higher. BRW based hashing has
been suggested for HEH and implemented in hardware for fixed length messages [33].

All of the above mentioned TESs require both the encryption and the decryption functions
of the block cipher. The possibility of using only the encryption function of a block cipher

124 FAST: Disk Encryption and Beyond

to build a TES has been reported [100] and for the convenience of description let us denote
this scheme by TESX. The present scheme is based upon the idea behind TESX. In terms
of similarity, both TESX and the scheme in the present chapter use a Feistel layer on the
first two blocks and a counter mode of operation on the rest of the blocks. There are several
differences in the two constructions.

1. For TESX, inside the Feistel layer, the hash function h is used to process A1 and B2.
The key for this hash function is τ ′ which is independent of the key τ which is used
for the hash function outside the Feistel layer. In contrast, FAST is organised such
that the Feistel layer consists of only two encryption rounds and the entire hashing
using a single key τ takes place outside the Feistel layer. In summary, TESX uses two
hash keys while FAST uses a single hash key. This is a significant practical difference
between the two schemes.

2. For TESX, the hash of P3 is masked with β1 and XORed to both P1 and P2 and the
hash of C3 is masked with β2 and XORed to both C1 and C2. FAST does away with
the maskings with β1 and β2; the hash of P3 is XORed to only P1; and the hash of C3

is XORed to only C2.

3. For TESX, the seed to the counter mode is generated as A1 ⊕ P2 ⊕ C1 ⊕ B2. FAST
generates the seed to the counter mode as A2 ⊕B1.

4. The counter mode suggested in TESX requires a doubling operation for each block.
The counter mode used in FAST is given by (3.3) and is based on HCTR [109]; this
counter mode does not require the doubling operation.

Some of the above differences such as reducing the hash key size and avoiding doubling
operations are important from a practical point of view while the others are simplifications
obtained by removing unnecessary operations. Keeping the similarities and the differences
in mind, it would be proper to view the present scheme as a fine-tuned version of TESX.
On the other hand, one may note that the two designs are sufficiently different which is the
reason that FAST requires a separate complete proof. The fine tuning is required from an
engineering point of view where the goal is to obtain an efficient and clean design. More
importantly, we present detailed software implementations of different instantiations of FAST
and thereby actually demonstrate the advantages of the new proposal in comparison to the
previous works.

Another class of block cipher based TESs such as CMC [65], EME [66, 62] (the scheme
EME2 is essentially EME∗ [62]), AEZ [67] and FMix [19] essentially uses several layers of
encryption using a mode of operation of a block cipher. CMC, EME and FMix use two
layers of encryption whereas AEZ uses three layers of encryption. These TESs do not use
any hash function. Out of these CMC and FMix are sequential while EME and AEZ are
parallelisable. AEZ and FMix require only the encryption function of the underlying block
cipher whereas CMC and EME require both the encryption and the decryption functions of
the block cipher. The costs of encryption for CMC, EME and FMix are roughly two block
cipher calls per block of the message and for AEZ the cost is roughly two-and-half block

Comparison 125

Table 7.8: Comparison of different tweakable enciphering schemes according to practical
and implementation simplicity. [BCK] denotes the number of block cipher keys; and [HK]
denotes the number of blocks in the hash key.

type scheme [BCK] [HK] dec module parallel

enc-mix-enc

CMC [65] 1 – reqd no
EME2∗ [62] 1 2 reqd yes
AEZ [67] 1 2 not reqd yes
FMix [19] 1 – not reqd no

hash-enc-hash

XCB [81] 3 2 reqd yes
HCTR [109] 1 1 reqd yes
HCHfp [37] 1 1 reqd yes
TET [63] 2 3 reqd yes
HEH-BRW[98] 1 1 reqd yes
TESX with BRW [100] 1 2 not reqd yes
FAST[Fxm,Horner] 1 – not reqd yes
FAST[Fxm,BRW] 1 – not reqd yes

Note: for both Tables 7.7 and 7.8, the block size is n bits, the tweak is a single n-bit block
and the number of blocks m ≥ 3 in the message is fixed.

cipher calls per block of the message. CMC and FMix do not use any doubling operation
while both EME and AEZ use doubling operations. Since AEZ and EME are parallelisable
while CMC and FMix are not, any reasonable implementations of AEZ and EME will be
faster than both CMC and FMix. Later we provide software implementation results which
show the superiority of FAST in comparison to both AEZ and EME and hence also imply
the superiority of FAST over CMC and FMix.

Table 7.7 and 7.8 compares FAST to previously proposed schemes. From the viewpoint
of efficiency, it is preferable to have schemes which are parallelisable. This would eliminate
CMC and FMix from the comparison. Further, again from an efficiency point of view it would
be preferable to have schemes which use only the encryption module of a block cipher. This
restricts the comparison to AEZ and TESX. As explained above, the current construction
is a fine-tuned version of TESX and Table 7.7 and 7.8 shows the comparative advantage in
terms of operation counts and key size. The inherent simplification of the design of FAST
over that of TESX is not captured by these parameters. Since the design approaches of FAST
and AEZ are different, the comparison between FAST and AEZ cannot be determined only
from the operation counts.

Among the various schemes that have been proposed, only XCB and EME2 (which is
essentially EME∗ [62]) have been standardised. Further, AEZ is a more recent proposal
and has received a fair amount of attention as part of the CAESAR3 competition. So,
it is important to provide more detailed comparison to XCB, EME2 and AEZ. Below we
provide details of the software implementations of FAST and the performance results of these

3https://competitions.cr.yp.to/caesar.html

https://competitions.cr.yp.to/caesar.html

126 FAST: Disk Encryption and Beyond

implementations in comparison to those of XCB, EME2 and AEZ. For the purpose of such
comparison, we have made efficient software implementations of XCB, EME2 and AEZ. In
Section 7.7 we provide a brief overview of the software implementation of AEZ. This is of
some independent interest.

There have been proposals for constructing TESs from stream ciphers. The proposal [34]
provides a scheme called STES which uses hardware oriented stream ciphers from the Es-
tream portfolio to develop TES with small hardware footprint and low power consumption.
A recent proposal [39] provides two TESs called Adiantum and HPolyC aimed at entry level
processors. Adiantum uses four primitives, namely, AES, XChaCha12, NH and Poly1305
while HPolyC uses AES, XChaCHa12 and Poly1305. These schemes are targeted towards
processors which do not provide processor support for AES and binary field multiplication.
The target applications of STES and Adiantum/HPolyC are different from that of FAST.
None of these schemes are expected to be as efficient as FAST on modern Intel processors, or
more generally on processors which provide support for AES and binary field multiplication.

7.6 Software Implementation

In this section, we describe implementations of the various instantiations of FAST in software.
For the implementation, we set n = 128 and so the underlying field is F2128 .

The implementation of the PRF F is done using the encryption function of AES. This
may seem like a mismatch since the encryption function of AES is invertible while a PRF
does not require invertibility. On the other hand, the PRF assumption on the encryption
function of AES is widely believed to hold up to the birthday bound. Since we do not claim
security beyond the birthday bound, the use of the encryption function of AES as a PRF is
justified. The main reason for choosing AES is its universal acceptance.

Our target platforms for software implementation were modern Intel processors which
support the AES-NI instructions which includes the 64-bit binary polynomial multiplication.
The relevant Intel instructions for the two main tasks are the following.

• Computation of AES: The instructions relevant here are aeskeygenassist (for
round key generation); aesenc (for one round of AES encryption) and aesenclast

(for the last round of AES encryption). There are additional instructions for AES
decryption. We do not mention these, since we do not require the AES decryption
module.

• Computation of polynomial multiplication: The relevant instruction is pclmulqdq.
This instruction takes as input two 64-bit unsigned integers representing two polyno-
mials each of maximum degree 63 over GF (2) and returns a 128-bit quantity which
represents the product of these two polynomials over GF (2).

For software implementation, the relevant parameters are latency and throughput. These
are defined4 as follows: “Latency is the number of processor clocks it takes for an instruction
to have its data available for use by another instruction. Throughput is the number of

4https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput

https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput

Software Implementation 127

processor clocks it takes for an instruction to execute or perform its calculations.” On
Skylake the latency/throughput figures of aesenc, aesenclast and pclmulqdq are 4/1.

7.6.1 Implementation of the Hash Functions

The several variants of the hash functions used in this chapter are all based on finite field
computations over F2n . As for the implementation, we choose n = 128, addition over this
field is a simple XOR operation of 128-bit data types. Multiplication, on the other hand, is
more involved.

As mentioned in Chapter 3, we consider the field F2n to be represented using the irre-
ducible polynomial ψ(x) = x128 ⊕ x7 ⊕ x2 ⊕ x ⊕ 1 over GF (2). The elements of F2n are
represented using polynomials over GF (2) of degrees at most 127. Let α(x) and β(x) be
two such polynomials. The multiplication of α(x) and β(x) in F2n consists of the following
two operations. Compute the polynomial multiplication of α(x) and β(x) over GF (2) and
let c(x) be the result. Then c(x) is a polynomial over GF (2) of degree at most 254. The
product of α(x) and β(x) over F2n is c(x) mod ψ(x). The above computation consists of two
distinct steps, namely polynomial multiplication followed by reduction.

Polynomial multiplication: The instruction pclmulqdq multiplies two polynomials over
GF (2) of degrees at most 63 each and returns a polynomial of degree at most 126. This
is a 64-bit polynomial multiplication over GF (2). Our requirement is a 128-bit polynomial
multiplication over GF (2). Using the direct schoolbook method, a 128-bit polynomial mul-
tiplication can be computed using four 64-bit polynomial multiplications and hence using
four pclmulqdq calls. Karatsuba’s algorithm, on the other hand, allows the computation of a
128-bit polynomial multiplication using three pclmulqdq calls at the cost of a few extra XOR
operations. Due to the low latency of pclmulqdq on Skylake processors, it turns out that
schoolbook is faster than Karatsuba. This has been reported by Gueron5 and we also ob-
served this in our experiments. So, we opted to implement 128-bit polynomial multiplication
using the schoolbook method.

Reduction: Efficient computation of c(x) mod ψ(x) has been discussed earlier [58]. It was
shown that this operation can be efficiently computed using two pclmulqdq instructions
along with a few other shifts and xors. A more detailed description of this procedure can
also be found in Chapter 5. We implemented reduction using this method.

Horner: As mentioned earlier, Hornerτ (X1, . . . , Xm) can be computed using m − 1 multi-
plications in F2n . Each multiplication consists of a polynomial multiplication followed by a
reduction. Doing this directly, would lead to a count of m − 1 polynomial multiplications
and m− 1 reductions.

The efficiency can be improved by using a delayed (or lazy) reduction strategy. Let i > 1
be a positive integer and suppose the powers 1, τ, τ 2, . . . , τ i−1, τ i are available (i.e., the powers
τ 2, . . . , τ i−1, τ i have been pre-computed and stored). The expression X1τ

i−1 + · · ·+Xi−1τ +

5https://github.com/Shay-Gueron/AES-GCM-SIV/

https://github.com/Shay-Gueron/AES-GCM-SIV/

128 FAST: Disk Encryption and Beyond

Xi over F2n can be computed using i − 1 polynomial multiplications followed by a single
reduction. Extension to handle arbitrary number of blocks is easy. For simplicity, assume
that i|m and λ = m/i. The m blocks are divided into λ groups of i blocks each. Each group of
i blocks is processed and suppose the outputs are Y1, Y2, . . . , Yλ. Then Hornerτ (X1, . . . , Xm) =
τ i(· · · τ i(τ iY1⊕ Y2)⊕ · · · ⊕ Yλ−1)⊕ Yλ. Processing of a single such group of i blocks requires
i−1 polynomial multiplications and a single reduction plus a multiplication by τ i. Note that
the computation of τ iY1 ⊕ Y2 is done by performing the polynomial multiplication of τ i and
Y1, computing Y2 without the final reduction, adding the two results and then performing a
reduction. Further, this strategy is also carried out for the intermediate computations. So,
processing a group of i blocks requires i polynomial multiplications and a single reduction
except for the last group. In the case where i does not divide m, it is easy to modify this
strategy to handle this case. We have implemented this strategy for i = 8 (for use in Horner
and vecHorner) and i = 9 (for use in vecHash2L). This strategy of delayed reduction has been
earlier used [60] in the context of evaluation of POLYVAL which is a variant of Horner.

There is another technique which can result in efficiency improvement. The sequence
X1, . . . , Xm is decimated into j subsequences X1, Xj+1, . . .; X2, Xj+2, . . .; . . .; Xj, X2j, . . .;
each subsequence is computed as a polynomial in τ j and then the results are combined
together to obtain the final result. This is a well known technique and has been discussed
in more detail in Chapter 5. The advantage of this technique is that the j sub-sequences
can be computed in parallel. In software the ability to batch j independent multiplications
allows the processor to efficiently pre-fetch and pipeline the corresponding operations. We
have experimented with j = 1, 2 and 3 and later we report timing results for j = 3. There
are cases, however, where j = 1 provides slightly better performance than j = 3.

vecHorner: The computation of vecHorner essentially boils down to Horner computation
on several different blocks. The implementation of Horner is extended to implement the
computation of vecHorner.

BRW: Implementation of BRW arises as part of implementing FAST[Fxm,BRW]. For this
implementation, we chose m = 256 and n = 128 (corresponding to a 4096-byte disk sector
to be encrypted using AES). With m = 256, BRW is invoked on m − 2 + 1 = 255 (the
first two message blocks are not hashed while the single tweak block is hashed) blocks. The
implementation of BRW on 255 blocks has been done in the following manner. Write

BRWτ (X1, . . . , X255) = (X128 ⊕ τ 128)× BRWτ (X1, . . . , X127)⊕ BRWτ (X129, . . . , X255).

This shows that the 255-block BRW computation can be broken down into 2 127-block BRW
computations. Continuing, we break up the 255-block BRW computation into 8 31-block
BRW computations. A completely loop unrolled 31-block BRW computation can be imple-
mented using 15 polynomial multiplications and 8 reductions [30] and has been discussed in
Chapter 5. We use this implementation of 31-block BRW computation to build the 255-block
BRW computation. This strategy requires 127 polynomial multiplications and 71 reductions.
Following the delayed reduction strategy for BRW computation [30] discussed in Chapter 5,
it is possible to have a completely loop unrolled 255-block BRW computation requiring 127

Software Implementation 129

polynomial multiplications and 64 reductions. The code for such a loop unrolled implemen-
tation would be quite complex and could lead to a substantial performance penalty. This
is the reason why we have chosen to build the 255-block BRW computation from the (loop
unrolled) implementation of the 31-block BRW computation.

vecHash2L: The function vecHash2L is parameterised by two quantities, namely the block
size n and the super-block size η. The use of AES fixes n to be 128. We have taken
η = 31. This requires the implementations of 31-block BRW and also i-block BRW for
i = 1, . . . , 30 to tackle the last super-block which can possibly have less than 31 blocks. As
mentioned earlier, an implementation of Hash2L for n = 128 and η = 31 was reported in [30],
but, the implementation of vecHash2L was not considered in that work. The computation
of vecHash2L can be conceptually seen as 31-block BRW computations whose outputs are
combined using Horner. Additionally, after each component, the length block is processed. As
discussed above, the computation of Horner can be improved by using the delayed reduction
strategy and the decimation technique. We have experimented with various combinations
and later we report the results for 3-decimated implementations with and without the delayed
reduction strategy.

7.6.2 Implementation of FAST

We have described several variants of FAST. Software implementations of these variants are
built from the implementation of AES and the implementations of the various hash functions.
The AES based parts consist of the Ctr mode and the Feistel layer while the hash functions
are built from either Horner or BRW in case of the fixed length setting and are built from
either vecHorner or vecHash2L in the general setting. We describe these aspects below.

Key schedule generation: All versions of FAST use a single key K which is the key to
the underlying PRF FK . Instantiating FK with the encryption function of AES requires
generating the round keys. This is a one-time activity and is done using the instruction
aeskeygenassist. The generated round keys are stored and used in both the Ctr mode and
the Feistel layer.

Ctr: The Ctr mode defined in (3.3) requires a PRF F which is implemented using the
encryption function of AES. Each invocation of the encryption function can be implemented
using aesenc followed by aesenclast. The invocations of aesenc can be speeded up using
an interleaving of multiple AES invocations. The AES encryption calls in the Ctr mode are
fully parallelisable. Let i ≥ 1 be a positive integer. The computations of the AES calls in
the Ctr mode are done in batches of i calls each. The inputs to one batch of i encryptions
are prepared; then the first rounds of AES encryptions of this batch of i encryptions are
computed using i calls to aesenc; this is followed by the second rounds of this batch of i
encryptions again using aesenc and so on. This ensures that the second round of any AES
encryption does not have to wait to obtain the output of the first round. This interleaved
strategy leads to substantial speed-up over computing the complete AES encryptions one

130 FAST: Disk Encryption and Beyond

after another. In our implementation, we have used i = 8 which follows the earlier work by
Gueron6.

Feistel: The Feistel layer has two calls to AES encryptions. These calls are not parallelisable.
So, these calls are implemented using a sequence of aesenc followed by a single call to
aesenclast to perform the computation of a single AES encryption.

Hash key generation: The hash key τ is obtained by applying FK to fStr. This is a
one-time operation and the value of τ does not change during the life-time of K. So, it is
possible to generate τ once and store it securely along with K. More generally, it is also
possible to use a uniform random τ as the hash key instead of generating it by applying FK to
fStr. This will not affect the security analysis, but, will increase the key storage requirement.
Alternatively, it is possible to generate τ once per session. The cost of generating τ is
amortised over all the encryptions/decryptions per session and hence is negligible. Timing
results provided later include the time for generating τ .

FAST[Fxm,Horner]: In the setting of Fxm, tweaks consist of a single n-bit block while plain-
texts and ciphertexts consist of m n-bit blocks. In our implementation, we have taken m =
256 so that the total number of bytes in a plaintext/ciphertext is 4096. As mentioned earlier,
this corresponds to the size of a modern disk sector. In this case, P3 = (P3,1, . . . , P3,m−2)
consists of (m − 2) n-bit blocks and the hash function Hornerτ (1, P3,1, . . . , P3,m−2, T) needs
to be computed. An implementation of Horner as mentioned above is used. This requires a
total of 255 polynomial multiplications and a total of 32 reductions. Counting a single poly-
nomial multiplication as 4 pclmulqdq and a reduction as 2 pclumulqdq, the total number
of pclmulqdq calls required is 1084.

FAST[Fxm,BRW]: As above, we take m = 256. The requirement is to compute

BRWτ (P3,1, . . . , P3,m−2, T).

This is done as described above which requires 127 polynomial multiplications and 71 reduc-
tions. The total number of pclmulqdq calls required is 650. This is 434 calls lesser than that
required for computing Hornerτ (1, P3,1, . . . , P3,m−2, T). So, one would expect FAST[Fxm,BRW]
to be faster than FAST[Fxm,Horner]. Our implementation shows a speed-up, but, not as much
as one might expect from the counts of the pclmulqdq calls. Indeed instruction cache and
pipelining are rather complicated issues and precise information about these issues for Intel
processors are not easily available7. So, it is possible that the code for BRW that we have
developed can be tuned further to obtain speed improvements.

FAST[Gn, k, vecHorner]: This requires the implementation of the hash function vecHorner
which is an easy extension of the implementation of Horner.

6Interleaving of 8 AES encryptions has been called a sweat point in https://crypto.stanford.edu/

RealWorldCrypto/slides/gueron.pdf
7https://blog.cr.yp.to/20140517-insns.html

https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf
https://blog.cr.yp.to/20140517-insns.html

Software Implementation 131

FAST[Gn, k, η, vecHash2L]: This requires the implementation of the hash function vecHash2L.
The implementation of this hash function has been discussed above.

7.6.3 Timing Results

In this section, we provide timing results for the software implementations of all the four vari-
ants of FAST, i.e. for both the settings of Fx and Gn. As mentioned earlier the corresponding
code is publicly available from

https://github.com/sebatighosh/FAST.

In the setting of Fx, messages are 4096 bytes long, i.e., each message consists of 256 128-
bit blocks and the tweak is a single 128-bit block. The timing results are shown in Table 7.9
along with the timing results for XCB, EME2 and AEZ.

In the setting of Gn, timing measurements are separately reported for messages of lengths
512, 1024, 4096 and 8192 bytes. For tweaks, the number of components has been considered
to be 2, 3 and 4 and the sum of the lengths of the components of the tweaks has been
taken to be 1024 bytes: For tweaks with 2 components, each component has length 512
bytes; for tweaks with 3 components, the 3 components have lengths 336, 336 and 352
bytes; whereas for tweaks with 4 components, each component has length 256 bytes. Two
columns of measurements are shown for FAST[Gn, k, η, vecHash2L]. The column with the
heading ‘delayed’ reports measurements for the case where the Horner layer in vecHash2L has
been implemented using the delayed reduction strategy while the column with the heading
‘normal’ reports measurements for the case where the Horner layer in vecHash2L has been
implemented without using the delayed reduction strategy. The timing results are shown in
Table 7.10.

The timing measurements were taken on two platforms.

• Skylake: The processor was Intel Core i7-6500U @ 2.5GHz. The operating system
was 64-bit Ubuntu 14.04 LTS and the C codes were complied using GCC version 5.5.0.

• Kabylake: The processor was Intel Core i7-7700 @ 3.6GHz. The operating system
was 64-bit Ubuntu 18.04 LTS and the C codes were complied using GCC version 7.3.0.

For the setting of Fx, we have carried out efficient implementations of XCB, EME2 and
AEZ. In the implementation of AEZ, for the underlying block cipher, the full AES has been
used unlike the reduced round versions considered earlier [67]. XCB uses hashing based on
Horner’s rule and we have used the same delayed reduction strategy in the implementation
of this hashing as we did in the implementation of the hash function for FAST[Fx256,Horner].
The efficient software implementations of XCB, EME2 and AEZ are of independent interest.
We provide a brief description of the software implementation of AEZ in Section 7.7. Timing
results from the setting of Fx show that all three of XCB, EME2 and AEZ are slower than
FAST. Consequently, we do not compare FAST to XCB, EME2 and AEZ in the setting of
Gn.

Based on Tables 7.9 and 7.10, we make the following observations.

https://github.com/sebatighosh/FAST

132 FAST: Disk Encryption and Beyond

Table 7.9: Comparison of the cycles per byte measure of FAST with those of XCB, EME2
and AEZ in the setting of Fx256.

scheme Skylake Kabylake
XCB 1.92 1.85

EME2 2.07 1.99
AEZ 1.74 1.70

FAST[Fx256,Horner] 1.63 1.56
FAST[Fx256,BRW] 1.24 1.19

1. In the setting of Fx, FAST[Fx256,BRW] is faster than FAST[Fx256,Horner]. Moreover,
FAST[Fx256,Horner] and FAST[Fx256,BRW] are both faster than all three of XCB, EME2
and AEZ.

2. In the setting of Gn for vecHorner, the speed decreases with increase in message length
while for vecHash2L the speed increases with increase in message length. In both
cases, for the same message length, the speed mostly does not vary much with in-
crease in the number of components in the tweak. In the case of vecHash2L, using
the delayed reduction strategy for implementing the Horner layer results in improved
speed than an implementation without using delayed reduction. Overall, on Kaby-
lake FAST[Gn, k, 31, vecHash2L] is faster than FAST[Gn, k, vecHorner] while on Skylake
FAST[Gn, k, 31, vecHash2L] is faster than FAST[Gn, k, vecHorner] for longer messages.

Remark: From Table 7.9, it may be noted that AEZ is faster than EME2. From Table 7.7,
it can be seen that the number of block cipher calls made by AEZ is more than that made
by EME2. So, the fact that in practice AEZ turns out to be faster may be surprising. The
explanation lies in the difference in the number of doubling operations made by EME2 and
AEZ. From Table 7.7, EME2 requires roughly 2[BC]+2[D] operations per block whereas
AEZ requires roughly 2.5[BC]+0.25[D] operations per block. Executing AES instructions in
groups using pipelining results in very fast AES timings. Our experiment on the Skylake
processor shows that AES requires about 0.65 cycles per byte. In contrast, while the dou-
bling operation should in theory be much faster, there is no support for 128-bit shift and
consequently doubling takes about 0.29 cycles per byte. (We refer to [38] for an elaborate
discussion on various strategies for constant time doubling operation.) Using these figures,
the operations count of 2[BC]+2[D] for EME2 translates to about 1.88 cycles per byte while
the operations count of 2.5[BC]+0.25[D] for AEZ translates to about 1.70 cycles per byte.
This provides an explanation of why AEZ is faster than EME2. Note that EME2 requires
additional block cipher calls and so the actual observed time of 2.07 cycles per byte for
EME2 is a bit higher than the estimated 1.88 cycles per byte whereas the observed and the
estimated timings for AEZ are quite close.

Additional Material on Implementation of AEZ 133

Table 7.10: Report of cycles per byte measure for the setting of Gn for FAST[Gn, k, vecHorner]
and FAST[Gn, k, 31, vecHash2L].

Skylake Kabylake
msg len k vecHorner vecHash2L vecHash2L vecHorner vecHash2L vecHash2L

(bytes) (delayed) (normal) (delayed) (normal)

2 1.51 1.38 1.59 1.42 1.32 1.56
512 3 1.40 1.38 1.39 1.32 1.31 1.35

4 1.34 1.37 1.36 1.26 1.31 1.33
2 1.53 1.34 1.48 1.42 1.27 1.42

1024 3 1.45 1.34 1.34 1.35 1.27 1.30
4 1.40 1.33 1.32 1.29 1.27 1.30
2 1.57 1.30 1.35 1.45 1.24 1.30

4096 3 1.54 1.29 1.31 1.43 1.24 1.27
4 1.51 1.29 1.30 1.40 1.24 1.26
2 1.57 1.27 1.32 1.45 1.22 1.27

8192 3 1.56 1.27 1.30 1.44 1.22 1.25
4 1.54 1.27 1.30 1.43 1.22 1.25

7.7 Additional Material on Implementation of AEZ

For α ∈ {0, 1}128 and i ∈ N, the following operation has been defined [67] in the context of
AEZ:

i · α =


0 if i = 0;
α if i = 1;
(α� 1)⊕ (msb(α) · 135) if i = 2;
2 · (j · α) if i = 2j > 2;
(2j · α)⊕ α if i = 2j + 1 > 2.

(7.50)

The operation in (7.50) corresponding to i = 2 is the doubling operation. (See Section 8.1).
There are different versions of AEZ [67] built from different variants of AES. The version

which is relevant here is the one where the proper AES algorithm is used. Messages of lengths
at least 2n bits are handled differently from messages of lengths less than 2n bits. For our
purpose, we will be considering the portion which can handle messages of lengths at least 2n
bits. This portion has been called AEZ-Core [67]. By AEZ, we will denote AEZ-Core[AES].

The length of the message is written as 2nk + µ bits with 0 ≤ µ < 2n and k ≥ 1. Below
we provide an overview of the encryption algorithm of AEZ where µ = 0. Let m = 2s + 2
and consider a message having m blocks with total length n(2s + 2) bits. The message is
partitioned into two parts: The first part consists of 2sn bits organised as 2s n-bit blocks
M1,M

′
1, . . . ,Ms,M

′
s and the second part consists of 2n bits organised as 2 n-bit blocks Mx

and My. The ciphertext blocks are Ci, C
′
i, i = 1, . . . , s and Cx, Cy.

134 FAST: Disk Encryption and Beyond

At a conceptual level, this encryption consists of three layers. The first and the third
layers consist of a sequence of 2-round Feistel networks where each Feistel network requires
2 block cipher calls. The second layer is a mixing layer and requires one block cipher
call for each i. Let E denote the encryption function of AES and for α ∈ {0, 1}n, define

Ẽi,j
K (α) = EK(α⊕ (i+ 1) · I ⊕ j · J) where I = EK(0) and J = EK(1) [67]. The encryption

proceeds as follows:

• First layer: for i = 1, . . . , s, Wi = Mi ⊕ Ẽ1,i
K (M ′

i); Xi = M ′
i ⊕ Ẽ

0,0
K (Wi);

Sx = Ẽ0,1
K (My)⊕Mx ⊕X ⊕∆; Sy = Ẽ−1,1

K (Sx)⊕My;

• Second layer: for i = 1, . . . , s, S ′i = Ẽ2,i
K (S); Yi = S ′i ⊕Wi; Zi = S ′i ⊕Xi;

• Third layer: for i = 1, . . . , s, C ′i = Yi ⊕ Ẽ0,0
K (Zi); Ci = Zi ⊕ Ẽ1,i

K (C ′i);

Cy = Sx ⊕ Ẽ−1,2
K (Sy); Cx = Sy ⊕ Ẽ0,2

K (Cy)⊕∆⊕ Y ;

Here X = X1 ⊕ · · · ⊕Xs, Y = Y1 ⊕ · · · ⊕ Ys, S = Sx ⊕ Sy and ∆ is obtained by processing
the tweak.

Remarks:

1. For implementation, we have considered n = 128 and m = 256, i.e., messages of lengths
equal to 4096 bytes. So, writing m = 2s + 2 we have s = 127.

2. In our implementations, we have taken ∆ = 0, i.e., we have ignored the processing of
the tweak. Since the resulting implementations of AEZ turn out to be less efficient than
FAST, considering the processing of the tweak for AEZ will result in further slowdown
compared to FAST.

7.7.1 Software Implementation

The design of AEZ is based on OTR [86] and the parallelism in AEZ is the same as that
in OTR. The encryptions in the first layer can be divided into two classes – one class con-
sisting of the encryptions of W1,W2, . . . and the other class consisting of the encryptions of
M ′

1,M
′
2, Following the pipelining strategy for AES described in Section 7.6.2, the en-

cryptions in each class have to be bunched into groups of eight. The encryptions proceed as
follows. One bunch of M ′

i ’s is encrypted followed by the corresponding bunch of Wi’s; then
the next bunch of M ′

i ’s is encrypted followed by the corresponding bunch of Wi’s and so on.
After all the encryptions in the first layer are over, the encryptions in the second layer are
to be computed. These encryptions are independent and can be executed in groups of eight.
The strategy for executing the encryptions in the third layer is similar to that of the first
layer. Though somewhat complicated, the above mentioned strategy can be used to obtain
the benefits of pipelined AES execution.

One important efficiency issue is that of computing the values j ·J . As briefly mentioned
in the work introducing AEZ [67], by storing some of the previously generated values, it is
possible to efficiently generate the required values. We provide some details. A queue of

Summary 135

values 2 ·J, 3 ·J, . . . is maintained. When j ·J is computed, it is added to the tail of the queue.
If the head of the queue contains  ·J , then this value is used to generate 2 ·J and (2+1) ·J
and then the entry  · J is deleted from the queue. Using this strategy, the computation of
2 · J from  · J requires one doubling and the computation of (2+ 1) · J from  · J requires
one XOR. Overall, the computations of 2 · J and (2+ 1) · J require one doubling and one
XOR. For the 2s blocks in the first part, the operation (7.50) will be required to be applied
s times. This will require bs/2c doubling operations and b(s− 1)/2c XOR operations. Since
m = 2s + 2, the computations of all the masks require b(m− 2)/4c doubling operations.

7.8 Summary

In this chapter, we have proposed a new family of TESs called FAST. Several instantiations
of FAST have been presented both for the popular application of TESs in disk encryption
and for a wide variety of more general applications. Such applications of TESs are natural,
but new in the literature. FAST has the attractive features of using a single field element as
the key, being parallelisable and not requiring the inverse function of the underlying block
cipher. One major contribution here is detailed and careful software implementation of all
the instantiations of FAST for modern Intel processors. Comparative timing measurements
show that FAST compares very favourably to the IEEE disk encryption standards XCB and
EME2 as well as the more recent proposal AEZ. Depending on this, FAST indeed becomes a
deserving candidate for standardisation and deployment.

Chapter 8

Breaking Tweakable Enciphering Schemes
using Simon’s Algorithm

The threat of the possible advent of quantum computers in large scale has motivated the
entire cryptography community to search for quantum safe primitives. Adequate cryptanal-
ysis of the current primitives is essential to guess the impact of quantum algorithms on the
classical cryptography. Several works have already been carried out in this direction in the
area of symmetric key ciphers.

Among them, a series of works [75, 76, 68, 23, 42, 24] have already identified the impact of
Simon’s period finding quantum algorithm [104] on certain modes of operation. In this chap-
ter, we continue this line of work on using Simon’s algorithm to the cryptanalysis of several
tweakable enciphering schemes (TESs) [65]. TESs provide several important cryptographic
functionalities including that of full disk encryption. We refer to [65] for a description of how
a TES can be used for disk encryption and to [29] for more general functionalities. Some
TESs have also been standardised [3].

Here, we consider five TESs, namely, CMC [65], EME [66, 62], TET [63], XCB [82, 83]
and FAST [29]. CMC was the first TES to be proposed; IEEE has standardised [3] XCB
and EME; TET uses invertible universal hash; and presently FAST provides the most recent
development.

Following Kaplan et al. [68], the attacks that we describe are essentially based on an
algorithm to solve the following problem.

Simon’s problem: Given a function f : {0, 1}m → {0, 1}n and the promise that there exists
s ∈ {0, 1}m \ 0m such that for all x 6= y, f(x) = f(y) if and only if x⊕ y = s, find s.

The quantity s is called the period of the function. Simon [104] described a quantum
algorithm which, with high probability, finds the period of f with O(m) quantum queries
to the function f and additional polynomial time classical computation. The description
in [104] required f to be a 2-to-1 function which was later modified to a looser condition
in [68].

For each of the TES that we consider, we construct a function f based on the encryption
algorithm of the TES. The function f has a period which is based on variables that are used
during the computation, but is not revealed as part of the ciphertext. Applying Simon’s
algorithm to f uncovers the period and reveals the internal secret variable. In the cases of
TET, XCB and FAST, obtaining the period of f reveals a portion of the secret key of the
TES resulting in a partial key recovery attack. For all the five TESs, we show that using
the period, it is possible to construct two distinct plaintexts such that designated portions
of the corresponding ciphertexts are equal. This results in distinguishing attacks on all the
TESs under consideration.

136

Preliminaries 137

This chapter is based on the work [50].

8.1 Preliminaries

Throughout this chapter, n is fixed a positive integer. A block cipher is a function E :

K×{0, 1}n → {0, 1}n, where K is a finite non-empty set and for each K ∈ K, EK(·) ∆
= E(K, ·)

is a permutation of {0, 1}n. The integer n denotes the block size and K is the key of the block
cipher. The corresponding decryption function is D : K × {0, 1}n → {0, 1}n, where for each

K ∈ K, DK(·) ∆
= D(K, ·) is the inverse of EK(·), i.e., for any x ∈ {0, 1}n, DK(EK(x)) = x.

8.1.1 Tweakable Enciphering Scheme

The notion of security of tweakable enciphering scheme that we consider is that of indistin-
guishability from a random oracle which returns independent and uniform random strings
of appropriate lengths. This implies other notions of security (see [65]). We do not repeat
the formal definition of security of TES since this will not be required here.

Four of the five TESs that we consider, namely, XCB, TET, CMC and EME are built using
n-bit block ciphers. The security proofs of the TESs assume the underlying block cipher to
be strong pseudo-random permutation. The other TES that we consider, namely FAST, is
built using a n-bit to n-bit pseudo-random function. Assuming the underlying primitive
(block cipher or pseudo-random function) to be secure, the security proofs of all the five
TESs provide an upper bound on the advantage of an adversary in distinguishing the TES
from a random oracle. The upper bound is essentially of the form cσ2

n/2
n, where c is a small

constant and σn is the number of n-bit blocks in all the queries made by the adversary.
Ignoring the constant c, at a broad level the proofs show that the TESs are secure up to
about 2n/2 adversarially chosen n-bit blocks.

8.1.2 Simon’s Algorithm with Spurious Collisions

Simon’s problem is a promise problem, i.e., the function f has to satisfy the stated condition
for Simon’s algorithm to work. There may be functions for which there is an s ∈ {0, 1}m\0m,
such that for all (x, y) ∈ {0, 1}m × {0, 1}m, x⊕ y ∈ {0m, s} ⇒ f(x) = f(y), but f(x) = f(y)
does not necessarily imply x ⊕ y ∈ {s, 0m}, i.e., there could be a t different from s and 0m,
such that for some x, f(x) = f(x ⊕ t). Such a collision is called a spurious collision. This
issue was considered in [68], which defined the notion of approximate promise problem. For
f : {0, 1}m → {0, 1}n such that f(x⊕ s) = f(x) for all x, the following quantity was defined
in [68].

ε(f, s) = maxt∈{0,1}m\{0,s} Pr
x

[f(x) = f(x⊕ t)]. (8.1)

Note that here the probability is taken over the random choice of x. If f satisfies the
promise in Simon’s problem and has period s, then ε(f, s) = 0. We say that a function
f : {0, 1}m → {0, 1}n satisfies the promise in Simon’s problem approximately, if there is an s

138 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

such that f(x) = f(x⊕ s) for all x and 0 < ε(f, s) < 1. A modification of Simon’s algorithm
to solve the approximate promise problem has been considered in [68] where the following
result was proved.

Theorem 11 (Kaplan et al. [68]). If ε(f, s) ≤ p0 < 1, then for any constant c, Simon’s
algorithm returns s with cm quantum queries, with probability at least 1− (2(1+p0

2
)c)m.

If f satisfies the approximate promise problem, then Theorem 11 shows that s can be
recovered with high probability.

Remarks:

1. A function satisfying the promise in Simon’s problem is a 2-to-1 function. Simon had
considered a slightly different problem. Given a function f : {0, 1}m → {0, 1}n which
is known to be either injective or 2-to-1, determine the correct condition and if f is
2-to-1, then determine its period.

2. In his formulation, Simon required n ≥ m. The analysis of Simon’s algorithm, on the
other hand, goes through without the condition n ≥ m and later works [68, 23, 43]
have indeed also considered n < m.

8.2 Outline of the Attacks

The attacks that we describe are based on Simon’s algorithm and are distinguishing attacks.
For three of the TESs, namely XCB, TET and FAST, the attacks also reveal part of the secret
key.

Suppose the adversary is provided black-box access to Π, where Π is either the encryption
algorithm of a TES (which we write as Π is real) or Π is a random oracle (which we write
as Π is random). The goal of the adversary is to determine whether Π is real or random.
Using Π we define a function f . If Π is random, then f is a random function. On the other
hand, if Π is real, then either f satisfies the promise in Simon’s problem, or the approximate
promise mentioned in Section 8.1.2. Simon’s algorithm is applied to f which requires making
quantum queries to the given black-box. This is a strong attack model and has been adopted
in previous works [68, 23, 43].

If Π is random, then the output of Simon’s algorithm on f will be a random string. On
the other hand, if Π is real, then with high probability Simon’s algorithm will return the
period of f . So, given the output of Simon’s algorithm, some further work is required to
determine whether Π is real or random. This work consists of making two classical queries
to the black box. These queries are built from the output of Simon’s algorithm. If Π is
real, then we show that the outputs of the two classical queries satisfy a pre-defined relation,
while if Π is random, then the outputs of the two classical queries satisfy the same relation
with very low probability. So, looking at the outputs of the two classical queries, it becomes
possible to determine whether Π is real or random.

The above provides the broad outline of the attacks on the TESs. In the subsequent
sections, we do not repeat the above strategy. Instead, we provide the definition of f when Π

Outline of the Attacks 139

is real, the two classical queries and the pre-defined relation that their outputs satisfy when
Π is real. Plugging these two tools into the above attack strategy provides the complete
attacks on the individual TESs.

As mentioned above, for some of the TESs, we show that f satisfies an approximate
promise. The proof of approximate promise requires upper bounding the probability of
spurious collisions. Since the definition of f is based on the block cipher, to bound the
probability of spurious collisions of f , we need to make an assumption on the underlying
block cipher. The assumption that we make is to consider the block cipher to behave like a
uniform random function. Since a block cipher is an injective map, it would be appropriate
to assume the block cipher to behave like a uniform random permutation. If the number of
inputs on which the block cipher is invoked is below the (quantum) birthday bound, then it
is reasonable to consider the block cipher to behave like a uniform random function. In our
applications, we will consider the application of the block cipher to only a few (at most six)
inputs.

The analyses of the probabilities of spurious collisions for the various TESs have a com-
mon structure. Suppose s is the period of f . We start by considering a non-zero t 6= s which
maximises the probability of spurious collisions. The requirement is to bound the probability
f(x) = f(x⊕ t). Then for any event E , we have

Pr[f(x) = f(x⊕ t)] ≤ Pr[f(x) = f(x⊕ t)|E] + Pr[E]. (8.2)

In the analyses of the individual TESs, we identify a suitable event E and obtain upper
bounds on the two terms in the right hand side of (8.2).

In Section 8.3, we describe the attacks on XCB, TET and FAST. The attacks on XCB, TET
and FAST require the key of the underlying universal hash function to be non-zero. Since
the hash key is a random n-bit quantity, it is zero with probability 1/2n which is negligible
for n = 128 or larger. These attacks also recover the hash key. In Section 8.4, we describe
the distinguishing attacks on CMC and EME. For EME, we require the internal variable L
to be non-zero. Since it is the output of a block cipher instantiated with a random key, it is
zero with probability 1/2n which is negligible for n = 128 or larger.

Offline Simon’s Algorithm

The attacks that we describe require quantum access to the encryption algorithms of the
respective TESs. A recent work [24] has shown that for some symmetric key algorithms, it
is possible to do away with the requirement of quantum access to the encryption algorithms.
The quantum computations are done in an offline manner while all the queries to the en-
cryption algorithms are classical. In particular, Simon’s algorithm is applied in an offline
mode. Such attacks are more practical than attacks which require quantum access to the
encryption algorithms.

The core observation in [24] is that it is possible to determine whether a function of the
form f1 ⊕ f2 has a period without any quantum query to f2 if there is a suitable quantum
state corresponding to f2. Various examples of the idea are provided in [24]. For the TESs
that we have considered, we tried to apply the idea from [24] to obtain attacks which do not

140 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

require quantum access to the encryption algorithms. Our efforts were not successful. It was
not clear how to modify the functions with period that we constructed for the various TESs
to the form f1 ⊕ f2 which seems to be required to apply the technique of [24]. Our inability
does not mean that offline Simon’s algorithm is not applicable to these TESs. There could be
other ways of constructing the functions in the desired form. This though seems to require
more work.

8.3 Partial Key Recovery Attacks

8.3.1 XCB

XCB was proposed by McGrew and Fluhrer [82]. A later variant [83] was standardised by
IEEE [3]. We describe the quantum attack on the standardised version [83] of XCB. A
similar attack also works on the previous version.

XCB is built using a block cipher and a polynomial hash function. The key K of XCB
is the same as the key of the underlying block cipher. XCB defines a tweak space. In our
attack, we will fix the tweak to be the empty string e.

XCB can be used with an n-bit block cipher. For the sake of convenience, we fix n = 128.
Let EK denote the encryption function of the underlying block cipher instantiated with the
key K. Using EK , XCB derives the keys Ke, Kd, Kc and τ . Here τ is used as the key to a
polynomial hash function called GHASH, Kc is the key to the counter mode of encryption
and Ke and Kd are used as shown in Figure 8.1. The counter mode Ctr uses the function
incr to obtain successive values to be encrypted.

Our attack considers 4-block messages. So, we briefly describe the encryption of 4-block
messages with reference to Figure 8.1. The message is partitioned into a single block and a
3-block message. As per the specification of XCB, the quantity A is equal to the last block
of the message and the quantity V is the last block of the ciphertext. In more details, if
y1||y2||y3||y4 is the 4-block ciphertext corresponding to a 4-block message, then V = y4 and
R = y1||y2||y3. The functions h1 and h2 in Figure 8.1 are polynomial hash functions using the
key τ . The counter mode Ctr uses Q as the initialisation vector. The rest of the encryption
algorithm can be understood from Figure 8.1. We provide more details as part of the attack.

Fix m,χ0, χ1 ∈ {0, 1}n, such that χ0 6= χ1; let b denote a bit. For the standardised
version [83], we define the following function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y3, where y1||y2||y3||y4 ←− XCB.EncryptK(e, χb||x||m||m).(8.3)

The function f defined in (8.3) satisfies the following property.

Proposition 12. Let b, b′ ∈ {0, 1}, x, x′ ∈ {0, 1}n. Suppose that the hash key τ is non-zero.
Then, f(b, x) = f(b′, x′)⇔ x⊕ x′ = χbτ ⊕ χb′τ , where χ0 and χ1 are as fixed before.

Proof. Let γ be a 128-bit string which is formed by concatenating the 64-bit binary repre-

Partial Key Recovery Attacks 141

Figure 8.1: Enciphering a 4-block message χ0||x||m||m or χ1||x⊕χ0τ⊕χ1τ ||m||m with tweak
e under XCB.

EKe

A = m

P

h1

Q

S

DKd

V = y4

h2

Ctr

R

B = χ0||x||m or
χ1||x⊕ χ0τ ⊕ χ1τ ||m

y1||y2||y3

e

142 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

sentation of 128 and the 64-bit binary representation of 512. For the input χb||x||m||m,

A = m;

B = χb||x||m;

P = EKe(m);

Q = EKe(m)⊕ χbτ 4 ⊕ xτ 3 ⊕mτ 2 ⊕ γτ ;

R = χb ⊕ EKc(Q)||x⊕ EKc(incr(Q))||m⊕ EKc(incr(incr(Q)));

For the input χb′ ||x⊕ χbτ ⊕ χb′τ ||m||m,

A′ = m;

B′ = χb′ ||x⊕ χbτ ⊕ χb′τ ||m;

P ′ = EKe(m);

Q′ = EKe(m)⊕ χb′τ 4 ⊕ xτ 3 ⊕ χbτ 4 ⊕ χb′τ 4 ⊕mτ 2 ⊕ γτ
= EKe(m)⊕ xτ 3 ⊕ χbτ 4 ⊕mτ 2 ⊕ γτ ;

R′ = χb′ ⊕ EKc(Q′)||x⊕ χbτ ⊕ χb′τ ⊕ EKc(incr(Q′))||m⊕ EKc(incr(incr(Q′)));

We observe, Q = Q′ results in equality of last blocks of R and R′. So, the third blocks of
the outputs are same, establishing one direction of the result.

For the other direction, we have

y3 = y′3 ⇒ m⊕ EKc(incr(incr(Q))) = m⊕ EKc(incr(incr(Q′)))

⇒ Q = Q′

⇒ EKe(m)⊕ χbτ 4 ⊕ xτ 3 ⊕mτ 2 ⊕ γτ = EKe(m)⊕ χb′τ 4 ⊕ x′τ 3 ⊕mτ 2 ⊕ γτ
⇒ χbτ

4 ⊕ xτ 3 = χb′τ
4 ⊕ x′τ 3

⇒ x⊕ x′ = χbτ ⊕ χb′τ.

Classical queries: Given the period 1||s = 1||τ(χ0⊕χ1), the two classical queries required
in Section 8.2 are the following. The first query is χ0||x||m||m with output y1||y2||y3||y4 and
the second query is χ1||x ⊕ s||m||m with output y′1||y′2||y′3||y′4. From the proof of Propo-
sition 12 we have that y3 = y′3 which defines the relation between the outputs of the two
classical queries.

Partial key recovery: Once s = τ(χ0 ⊕ χ1) has been obtained, since χ0 and χ1 are
distinct, from s, one obtains the hash key τ as τ = s(χ0 ⊕ χ1)−1.

8.3.2 TET

TET [63] has key space K × K, where K is the key space for the underlying block cipher
having block size n. The tweak space is T = {0, 1}∗. The message space is P = {0, 1}m

Partial Key Recovery Attacks 143

where m ∈ [n, 2n − 1]. Fix arbitrary (K1, K2) from the key-space and arbitrary T from the
tweak-space.

The attack against TET also considers 4-block messages. Hence, we briefly explain
the encryption of 4-block messages with reference to Figure 8.2. EK2 is the encryption
function of the underlying block cipher instantiated with the key K2. The encryption
consists of five layers; the first, second, fourth and fifth being masking layers and the
third layer being application of EK2 . For a 4-block message x1||x2||x3||x4 and hash key
τ , SP = κ−1 (x1τ

4 ⊕ x2τ
3 ⊕ x3τ

2 ⊕ x4τ), where κ = 1⊕ τ ⊕ τ 2 ⊕ τ 3 ⊕ τ 4 which is assumed
to be non-zero. The exact definitions of α, β and SC are not required for our purpose, so,
we skip these details and refer to [63] for their definitions. We only note that the tweak T is
used in determining β.

Figure 8.2: Enciphering a 4-block message χ0||x||m||m or χ1||x ⊕ χ0τ ⊕ χ1τ ||m||m under
TET.

EK2

x/x⊕ s

SP
P2

Q2

R2

S2

αβ

αβ

SC

y2

EK2

m

P3

Q3

R3

S3

SP

α2β

α2β

SC

y3

EK2

χ0/χ1

P1

Q1

R1

S1

SP

β

β

SC

y1

EK2

m

P4

Q4

R4

S4

SP

α3β

α3β

SC

y4

Fix m,χ0, χ1 ∈ {0, 1}n, such that χ0 6= χ1; let b denote a bit and we define the following
function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y3 ⊕ y4, where y1||y2||y3||y4 ←− TET.EncryptK1,K2

(T, χb||x||m||m).

(8.4)

The function f defined in (8.4) satisfies the following property.

Proposition 13. Let b, b′ ∈ {0, 1}, x ∈ {0, 1}n. Suppose that the hash key τ is non-zero.
Then, f(b, x) = f(b′, x⊕ χbτ ⊕ χb′τ), where χ0, χ1 and τ are as described earlier.

144 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

Proof. For the input χb||x||m||m, we have,

SP = κ−1(χbτ
4 ⊕ xτ 3 ⊕mτ 2 ⊕mτ);

Q3 = m⊕ SP ⊕ α2β;

Q4 = m⊕ SP ⊕ α3β;

S3 = EK2(m⊕ SP ⊕ α2β)⊕ α2β;

S4 = EK2(m⊕ SP ⊕ α3β)⊕ α3β;

y3 ⊕ y4 = EK2(m⊕ SP ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ⊕ α3β)⊕ α3β;

For the input χb′ ||x⊕ χbτ ⊕ χb′τ ||m||m, we have,

SP ′ = κ−1(χb′τ
4 ⊕ xτ 3 ⊕ χbτ 4 ⊕ χb′τ 4 ⊕mτ 2 ⊕mτ) = κ−1(χbτ

4 ⊕ xτ 3 ⊕mτ 2 ⊕mτ);

Q′3 = m⊕ SP ′ ⊕ α2β;

Q′4 = m⊕ SP ′ ⊕ α3β;

S ′3 = EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β;

S ′4 = EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β;

y′3 ⊕ y′4 = EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β.

Now, SP = SP ′ implies y3 ⊕ y4 = y′3 ⊕ y′4.
Hence, the proposition is proved.

The above proposition establishes that 1||χ0τ ⊕χ1τ is a period of f . Proposition 13 falls
short of showing that f satisfies the promise of Simon’s problem. We show below, that f
satisfies an approximate promise.

Proposition 14. Assume that the block cipher E instantiated with a uniform random key,
behaves like a uniform random function. Suppose that the hash key τ is non-zero. Then, for
f defined in (8.4), ε(f, 1||χ0τ ⊕ χ1τ) ≤ 5/2n.

Proof. Let υ||t /∈ {0||0n, 1||χ0τ⊕χ1τ} be such that the probability of f(b, x) = f(b⊕υ, x⊕t)
is maximised.

Case 1: Suppose υ = 0. Then t is necessarily non-zero. Let,

SP = κ−1(χbτ
4 ⊕ xτ 3 ⊕mτ 2 ⊕mτ); SP ′ = κ−1(χbτ

4 ⊕ xτ 3 ⊕ tτ 3 ⊕mτ 2 ⊕mτ).(8.5)

As t is necessarily non-zero, SP 6= SP ′.
We have,

f(b, x) = EK2(m⊕ SP ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ⊕ α3β)⊕ α3β;

f(b, x⊕ t) = EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β.

Then f(b, x) = f(b, x⊕ t) if and only if X1 = X2, where

X1 = EK2(m⊕ SP ⊕ α2β)⊕ EK2(m⊕ SP ⊕ α3β);

X2 = EK2(m⊕ SP ′ ⊕ α2β)⊕ EK2(m⊕ SP ′ ⊕ α3β).

Partial Key Recovery Attacks 145

Let E be the event that (m⊕SP⊕α2β), (m⊕SP⊕α3β), (m⊕SP ′⊕α2β) and (m⊕SP ′⊕α3β)
are distinct. As SP 6= SP ′, clearly (m⊕ SP ⊕ α2β) and (m⊕ SP ′ ⊕ α2β) are distinct and
so are (m⊕ SP ⊕ α3β) and (m⊕ SP ′ ⊕ α3β). As β is generated through the application of
a PRF, the probability that (α2β = α3β) is 1/2n. With similar reasoning probability that
SP ⊕SP ′⊕α2β⊕α3β = 0 is 1/2n. So, we have Pr[E] = 4/2n. Conditioned on E , and under
the assumption that E behaves like a uniform random function, the probability that X1 = X2

is at most 1/2n. Using (8.2) we have Prb,x[f(b, x) = f(b⊕ υ, x⊕ t)] = Pr[X1 = X2] ≤ 5/2n.

Case 2: Suppose υ = 1. Then t 6= χ0τ ⊕ χ1τ . Let b′ = b⊕ 1. Let,

SP = κ−1(χbτ
4 ⊕ xτ 3 ⊕mτ 2 ⊕mτ); SP ′ = κ−1(χb′τ

4 ⊕ xτ 3 ⊕ tτ 3 ⊕mτ 2 ⊕mτ);(8.6)

As t 6= χ0τ ⊕ χ1τ , SP 6= SP ′.
We have,

f(b, x) = EK2(m⊕ SP ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ⊕ α3β)⊕ α3β;

f(b⊕ υ, x⊕ t) = f(b′, x⊕ t)

= EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β.

So, again f(b, x) = f(b⊕ υ, x⊕ t) if and only if X1 = X2, where

X1 = EK2(m⊕ SP ⊕ α2β)⊕ EK2(m⊕ SP ⊕ α3β);

X2 = EK2(m⊕ SP ′ ⊕ α2β)⊕ EK2(m⊕ SP ′ ⊕ α3β).

A reasoning similar to Case 1 shows that Prb,x[f(b, x) = f(b⊕ υ, x⊕ t)] is at most 5/2n.

Classical queries: Given the period 1||s = 1||τ(χ0⊕χ1), the two classical queries required
in Section 8.2 are the following. The first query is χ0||x||m||m with output y1||y2||y3||y4 and
the second query is χ1||x ⊕ s||m||m with output y′1||y′2||y′3||y′4. From the proof of Proposi-
tion 13 we have that y3⊕ y4 = y′3⊕ y′4 which defines the relation between the outputs of the
two classical queries.

Partial key recovery: Once s = τ(χ0 ⊕ χ1) has been obtained, since χ0 and χ1 are
distinct, from s, one obtains the hash key τ as τ = s(χ0 ⊕ χ1)−1.

8.3.3 FAST

FAST was proposed by Chakraborty, Ghosh, López and Sarkar [29]. It is built using a
fixed input length pseudo-random function and an appropriate hash function. The key K
of FAST is the same as the key of the underlying pseudo-random function. The pseudo-
random function maps n-bit strings to n-bit strings. For the sake of concreteness, we fix
n = 128. Let FK denote the pseudo-random function instantiated with the key K. FAST
is targeted towards two application scenarios. We describe the quantum attack on the
instantiation targeted towards the specific task of disk encryption. In this case, the tweak

146 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

Figure 8.3: Enciphering a 4-block message χ0||x||m||m or χ1||x⊕ s||m||m under FAST.

CtrK

Hτ

τG’

1 m, m

1P 1Q

S11R

y
1

y
2

y
3,

y
4

x/x s

 /
0

Feistel
Layer

Z

T

T

χ χ

FK

FK

 1Q

1R 1S

1P

FK

Z/Z ⊕ binn(3)

binn(2)

m

y4

FK

Z/Z ⊕ binn(3)

binn(1)

m

y3

space is T = {0, 1}n and the message space is P = {0, 1}mn, where m > 2 is determined by
the size of a disk sector. In our attack we will fix the tweak to be an arbitrary T ∈ T .

Our attack considers 4-block messages. So, we briefly describe the encryption of 4-block
messages with reference to Figures 8.3 and 8.4. From a top level view, FAST consists of three
distinct layers - hash-encrypt-hash. The hashing layers H and G′ are based on two universal
hash functions h and h′, both having the key τ and h′ = τh. For more details of these
functions we refer to [29]. The encryption layer consists of a two-round Feistel network and
a counter mode Ctr. The two-round Feistel is built using the PRF FK and processes the first
two blocks of the plaintext. The third and fourth blocks are encrypted in a counter mode
built using FK . The offset for the counter mode is derived from the input and output of the
Feistel layer. The input of the Feistel layer is obtained by processing the plaintext and the
tweak through the first hash layer. The second hash layer generates the first two blocks of
the ciphertext by processing the output of the Feistel layer and the third and fourth blocks
of the ciphertext. Some more details are provided as part of the attack.

Fix m,χ0, χ1 ∈ {0, 1}n, such that χ0 ⊕ χ1 = 012611; let b denote a bit. We define the
following function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y3 ⊕ y4, where y1||y2||y3||y4 ←− FAST.EncryptK(T, χb||x||m||m).

(8.7)

Partial Key Recovery Attacks 147

Figure 8.4: The hash functions H (left) and G′ (right).

hτ

m||m T

P1

χ0/χ1

·τ

Q1

x/x⊕ s

h′τ

y3||y4 T

y2

S1

·τ

y1

R1

The function f defined in (8.7) satisfies the following property.

Proposition 15. Let b, b′ ∈ {0, 1}, x ∈ {0, 1}n. Suppose that the hash key τ is non-zero.
Then, f(b, x) = f(b′, x⊕ χbτ ⊕ χb′τ). χ0, χ1 and τ are as described before.

Proof. For the input (T, χb||x||m||m),

P1 = χb ⊕ hτ (T,m||m);

Q1 = x⊕ τ(χb ⊕ hτ (T,m||m));

R1 = χb ⊕ hτ (T,m||m)⊕ FK(Q1);

Z = Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1);

y3 = m⊕ FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1));

y4 = m⊕ FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

y3 ⊕ y4 = FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1))

⊕FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

For the input (T, χb′||x⊕ χbτ ⊕ χb′τ ||m||m),

P ′1 = χb′ ⊕ hτ (T,m||m);

Q′1 = x⊕ χbτ ⊕ χb′τ ⊕ τ(χb′ ⊕ hτ (T,m||m))

= x⊕ χbτ ⊕ τhτ (T,m||m);

R′1 = χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1);

Z ′ = Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1);

y′3 = m⊕ FK(Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1));

y′4 = m⊕ FK(Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2));

y′3 ⊕ y′4 = FK(Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1))

⊕FK(Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2))

= FK(Q′1 ⊕ χb ⊕ binn(3)⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1))

⊕FK(Q′1 ⊕ χb ⊕ binn(3)⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2)),

(as χb ⊕ χb′ = binn(3))

= FK(Q′1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2))

⊕FK(Q′1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1)).

148 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

We observe that Q1 = Q′1, which implies y3⊕ y4 = y′3⊕ y′4. This proves the proposition.

The above discussion establishes that 1||χ0τ ⊕ χ1τ is a period of f . Proposition 15 falls
short of showing that f satisfies the promise of Simon’s problem. We show below, that f
satisfies an approximate promise.

Proposition 16. Assume that the PRF F instantiated with a uniform random key, behaves
like a uniform random function. Suppose that the hash key τ is non-zero. Then, for f defined
in (8.7), ε(f, 1||χ0τ ⊕ χ1τ) ≤ 3

2n
.

Proof. Let υ||t /∈ {0||0n, 1||χ0τ⊕χ1τ} be such that the probability of f(b, x) = f(b⊕υ, x⊕t)
is maximised.

• Case 1: Suppose υ = 0. Then t is necessarily non-zero. We have

f(b, x) = FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1))

⊕FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

f(b, x⊕ t) = FK(Q1 ⊕ t⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1 ⊕ t)⊕ binn(1))

⊕FK(Q1 ⊕ t⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1 ⊕ t)⊕ binn(2)).

Let

c1 = Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1),

c2 = Q1 ⊕ t⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1 ⊕ t)⊕ binn(1),

v = binn(1)⊕ binn(2);

Hence

f(b, x) = FK(c1)⊕ FK(c1 ⊕ v);

f(b, x⊕ t) = FK(c2)⊕ FK(c2 ⊕ v).

Let E be the event that c1, c1 ⊕ v, c2 and c2 ⊕ v are distinct. Clearly c1 and c1 ⊕ v are
distinct and so are c2 and c2 ⊕ v. Now we consider the following events.

– E1 := c1 = c2 or, equivalently FK(Q1) ⊕ FK(Q1 ⊕ t) = t. As t 6= 0 and FK is
assumed to be a uniform random function, hence Pr[E1] = 1

2n
.

– E2 := c1 = c2⊕v or, equivalently FK(Q1)⊕FK(Q1⊕ t) = t⊕v. As in the previous
case, Pr[E2] = 1

2n
.

Hence, E := E1∪E2. Note that since v is a non-zero string E1 and E2 are disjoint. Hence,
Pr[E] = Pr[E1] + Pr[E2] = 2

2n
. Conditioned on E , and under the assumption that FK

behaves like a uniform random function, the probability that f(b, x) = f(b, x⊕ t) is at
most 1/2n. Using (8.2) we have Prb,x[f(b, x) = f(b⊕ υ, x⊕ t)] ≤ 3/2n.

Distinguishing Attacks 149

• Case 2: Suppose υ = 1. Then t 6= χ0τ ⊕ χ1τ . Let b′ = b ⊕ 1, Q′1 = x ⊕ t ⊕ τ(χb′ ⊕
hτ (T,m||m)). We have

f(b, x) = FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1))

⊕FK(Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

f(b⊕ υ, x⊕ t) = f(b′, x⊕ t)

= FK(Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1))

⊕FK(Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2));

Let

c1 = Q1 ⊕ χb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1)

c2 = Q′1 ⊕ χb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1),

v = binn(1)⊕ binn(2);

Hence

f(b, x) = FK(c1)⊕ FK(c1 ⊕ v);

f(b⊕ υ, x⊕ t) = FK(c2)⊕ FK(c2 ⊕ v).

A reasoning similar to Case 1 shows that Prb,x[f(b, x) = f(b⊕υ, x⊕ t)] is at most 3/2n.

Classical queries: Given the period 1||s = 1||τ(χ0⊕χ1), the two classical queries required
in Section 8.2 are the following. The first query is χ0||x||m||m with output y1||y2||y3||y4 and
the second query is χ1||x ⊕ τ(χ0 ⊕ χ1)||m||m with output y′1||y′2||y′3||y′4. From the proof of
Proposition 15 we have that y3⊕y4 = y′3⊕y′4 which defines the relation between the outputs
of the two classical queries.

Partial key recovery: Once s = τ(χ0 ⊕ χ1) has been obtained, since χ0 and χ1 are
distinct, from s, one obtains the hash key τ as τ = s(χ0 ⊕ χ1)−1.

8.4 Distinguishing Attacks

8.4.1 CMC

CMC was proposed by Halevi and Rogaway [65], in 2003. It is based on the CBC mode of
operation of a block cipher. The block length of the block cipher can be assumed to be n-bit.
CMC has the key space K × K, where K is the key space for the underlying block cipher
and the tweak space T = {0, 1}n. The message space of CMC is P =

⋃
i∈I{0, 1}i for some

non-empty index set I ⊆ N. Let EK denote the encryption function of the underlying block
cipher instantiated with the key K.

150 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

Our attack considers 3-block messages. Hence, we briefly describe the encryption of 3-
block messages with reference to Figure 8.5. Let CMC be instantiated with the key (K, K̃) ∈
K × K. In our attack we will fix the tweak to be an arbitrary T ∈ T . K̃ is used as the key
to the block cipher E only to produce T from T . At a conceptual level, the CMC encryption
function consists of three layers. The first layer is essentially CBC encryption on the message
blocks, followed by a layer of masking and the third layer is CBC decryption. The rest of
the encryption algorithm can be understood from Figure 8.5. We provide more details as
part of the attack.

Figure 8.5: Enciphering a 3-block message m||χ0||x or m||χ1||x⊕s under CMC. Correspond-
ingly, M = 2(P1 ⊕ P3) and M ′ = 2(P ′1 ⊕ P ′3).

EK

χ0/χ1

EK

x/x⊕ s

EK

m

T

P3

Q3

EK

M

P2

Q2

EK

M

P1

Q1

EK

M

T

y1 y2 y3

Fix m,χ0, χ1 ∈ {0, 1}n, such that χ0 6= χ1; let b denote a bit and we define the following
function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y1, where y1||y2||y3 ←− CMC.EncryptK,K̃(T,m||χb||x). (8.8)

The function f defined in (8.8) satisfies the following property.

Proposition 17. Let b, b′ ∈ {0, 1}, x, x′ ∈ {0, 1}n. Then, f(b, x) = f(b′, x′) ⇔ x ⊕ x′ =
EK(EK(m ⊕ T) ⊕ χb) ⊕ EK(EK(m ⊕ T) ⊕ χb′), where the constants χ0 and χ1 are as fixed
before.

Distinguishing Attacks 151

Proof. Let s = EK(EK(m⊕ T)⊕ χ0)⊕ EK(EK(m⊕ T)⊕ χ1). For the input m||χ0||x,

P1 = EK(m⊕ T);

P2 = EK(χ0 ⊕ EK(m⊕ T));

P3 = EK(x⊕ EK(χ0 ⊕ EK(m⊕ T)));

M = 2(P1 ⊕ P3);

Q1 = P3 ⊕M ;

y1 = EK(Q1)⊕ T;

(8.9)

For the input m||χ1||x⊕ s,

P ′1 = EK(m⊕ T);

P ′2 = EK(χ1 ⊕ EK(m⊕ T));

P ′3 = EK(x⊕ s⊕ EK(χ1 ⊕ EK(m⊕ T)))

= EK(x⊕ EK(EK(m⊕ T)⊕ χ0)⊕ EK(EK(m⊕ T)⊕ χ1)⊕ EK(χ1 ⊕ EK(m⊕ T)))

= EK(x⊕ EK(EK(m⊕ T)⊕ χ0));

M ′ = 2(P ′1 ⊕ P ′3);

Q′1 = P ′3 ⊕M ′;

y′1 = EK(Q′1)⊕ T.
(8.10)

We see P1 = P ′1 and P3 = P ′3 implying M = M ′; P3 = P ′3 and M = M ′ together imply
Q1 = Q′1, which finally establishes y1 = y′1. This proves one direction of the proposition.
Now we see the other direction.

f(b, x) = f(b′, x′) ⇒ y1 = y′1
⇒ EK(Q1)⊕ T = EK(Q′1)⊕ T
⇒ Q1 = Q′1
⇒ P3 ⊕M = P ′3 ⊕M ′

⇒ P3 ⊕ 2(P1 ⊕ P3) = P ′3 ⊕ 2(P ′1 ⊕ P ′3)

⇒ P3 ⊕ 2(P1 ⊕ P3) = P ′3 ⊕ 2(P1 ⊕ P ′3) (as P ′1 = P1)

⇒ P3 = P ′3
⇒ EK(x⊕ EK(χb ⊕ EK(m⊕ T))) = EK(x′ ⊕ EK(χb′ ⊕ EK(m⊕ T)))

⇒ x⊕ EK(χb ⊕ EK(m⊕ T)) = x′ ⊕ EK(χb′ ⊕ EK(m⊕ T))

⇒ x⊕ x′ = EK(χb ⊕ EK(m⊕ T))⊕ EK(χb′ ⊕ EK(m⊕ T)).

The above proposition proves that 1||EK(EK(m ⊕ T) ⊕ χ0) ⊕ EK(EK(m ⊕ T) ⊕ χ1) is
a period for the function f and f is a 2-to-1 function. So, Simon’s algorithm applied to f

152 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

uncovers this period with high probability.

Obtaining the period 1||s, where s = EK(EK(m ⊕ T) ⊕ χ0) ⊕ EK(EK(m ⊕ T) ⊕ χ1)
provides a distinguishing attack against CMC.

Classical queries: Given the period 1||s = 1||EK(EK(m⊕T)⊕χ0)⊕EK(EK(m⊕T)⊕χ1),
the two classical queries required in Section 8.2 are the following. The first query is m||χ0||x
with output y1||y2||y3 and the second query is m||χ1||x⊕ s with output y′1||y′2||y′3. From the
proof of Proposition 17 we have that y1 = y′1 which defines the relation between the outputs
of the two classical queries.

8.4.2 EME

EME also was proposed by Halevi and Rogaway [66]. It was later extended to handle arbitrary
length messages by Halevi [62] and the resulting scheme was called EME∗. EME∗ has been
standardised as a TES by IEEE [3] in the name EME2.

Our attack considers 3-block messages. For this message length the constructions EME
and EME2 are identical, with only the minor replacement of the tweak by a function of the
tweak in the latter. Hence, we will describe the attack in the context of EME only.

EME has the key space K, the same as the underlying block cipher having block size n; the
tweak space is T = {0, 1}n. The message space of EME is P = {0, 1}n∪{0, 1}2n∪· · ·∪{0, 1}n2

.
The key K of EME is the same as the key of the underlying block cipher. Let EK denote
the encryption function of the underlying block cipher instantiated with the key K. In our
attack we fix the tweak to be an arbitrary T ∈ T .

As our attack considers 3-block messages, we will briefly describe the encryption of 3-
block messages with reference to Figure 8.6. The encryption of each of the message blocks
consists of five layers: initial masking followed by an application of EK , then another masking
followed by another application of EK and the final masking. One of the masking elements
is L = 2EK(0n). The middle layer of masking for the first block is of different form from
that for second and third blocks. The rest of the encryption algorithm can be understood
from Figure 8.6. We provide more details as part of the attack.

Notation: Let x denote a root of the primitive polynomial used to represent GF (2n). Note
that, 2L represents L times the field element denoted by x. Similarly, 4L represents L times
the field element denoted by x2; 6L represents L times the field element denoted by x2 ⊕ x.
Hence, 6L = (x2⊕x)L = 4L⊕ 2L. This notation has been used in [66] and so we follow this
notation.

Fix m ∈ {0, 1}n and we define the following function.

f : {0, 1}n → {0, 1}n

x
f7−→ y1, where y1||y2||y3 ←− EME.EncryptK(T,m||x||x). (8.11)

The function f defined in (8.11) satisfies the following property.

Distinguishing Attacks 153

Figure 8.6: Enciphering a 3-block message m||x||x or m||x⊕ 6L||x⊕ 6L under EME. Corre-
spondingly, M = MQ⊕EK(MQ), where MQ = EK(m⊕L)⊕EK(x⊕2L)⊕EK(x⊕4L)⊕T
and M ′ = MQ′ ⊕ EK(MQ′) where MQ′ = EK(m⊕ L)⊕ EK(x⊕ 4L)⊕ EK(x⊕ 2L)⊕ T .

EK

Q2

R2

x/x⊕6L

2L

EK

Q3

R3

x/x⊕6L

4L

EK

Q1

MQ

m

L

EK

MR

R1

Q2 ⊕ Q3 ⊕ T

EK

R2 ⊕ R3 ⊕ T

y1

L

EK

2M

y2

2L

EK

4M

y3

4L

Proposition 18. Let x ∈ {0, 1}n. Then, f(x) = f(x ⊕ 6L), where L is as defined before
and suppose it is non-zero.

Proof. Consider the two inputs m||x||x and m||(x⊕ 6L)||(x⊕ 6L).

154 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

For the input m||x||x,

Q1 = EK(m⊕ L);

Q2 = EK(x⊕ 2L);

Q3 = EK(x⊕ 4L);

MQ = EK(m⊕ L)⊕ EK(x⊕ 2L)⊕ EK(x⊕ 4L)⊕ T ;

MR = EK(MQ);

M = MQ⊕MR;

R2 = EK(x⊕ 2L)⊕ 2M ;

R3 = EK(x⊕ 4L)⊕ 4M ;

SR = EK(x⊕ 2L)⊕ 2M ⊕ EK(x⊕ 4L)⊕ 4M ;

R1 = MR⊕ SR⊕ T ;

y1 = L⊕ EK(R1) = EK(MR⊕ SR⊕ T)⊕ L; (8.12)

For the input m||(x⊕ 6L)||(x⊕ 6L),

Q′1 = EK(m⊕ L);

Q′2 = EK(x⊕ 4L);

Q′3 = EK(x⊕ 2L);

MQ′ = EK(m⊕ L)⊕ EK(x⊕ 4L)⊕ EK(x⊕ 2L)⊕ T ;

MR′ = EK(MQ′);

M ′ = MQ′ ⊕MR′;

R′2 = EK(x⊕ 4L)⊕ 2M ′;

R′3 = EK(x⊕ 2L)⊕ 4M ′;

SR′ = EK(x⊕ 4L)⊕ 2M ′ ⊕ EK(x⊕ 2L)⊕ 4M ′;

R′1 = MR′ ⊕ SR′ ⊕ T ;

y′1 = L⊕ EK(R′1) = EK(MR′ ⊕ SR′ ⊕ T)⊕ L. (8.13)

From above we see that MQ = MQ′; hence, MR = MR′ and M = M ′; M = M ′ implies
SR = SR′. Hence, we see, y1 = y′1, proving the proposition.

The above discussion establishes that 6L is a period of f . Proposition 18 falls short of
showing that f satisfies the promise of Simon’s problem. We show below, that f satisfies an
approximate promise.

Proposition 19. Assume that the block cipher E instantiated with a uniform random key, be-
haves like a uniform random function. Suppose L is non-zero. Then, for f defined in (8.11),
ε(f, 6L) ≤ 1/2n−1.

Proof. Let t /∈ {0n, 6L} be such that the probability of f(x) = f(x⊕ t) is maximised.

Summary 155

We have

f(x) = L⊕ EK(MR⊕ SR⊕ T);

f(x⊕ t) = L⊕ EK(MR′ ⊕ SR′ ⊕ T); where MR = EK(MQ),MR′ = EK(MQ′),

MQ = EK(m⊕ L)⊕ EK(x⊕ 2L)⊕ EK(x⊕ 4L)⊕ T,
MQ′ = EK(m⊕ L)⊕ EK(x⊕ t⊕ 2L)⊕ EK(x⊕ t⊕ 4L)⊕ T,
SR = EK(x⊕ 2L)⊕ 2M ⊕ EK(x⊕ 4L)⊕ 4M,

SR′ = EK(x⊕ t⊕ 2L)⊕ 2M ′ ⊕ EK(x⊕ t⊕ 4L)⊕ 4M ′,

M = MQ⊕MR,M ′ = MQ′ ⊕MR′.

Then f(x) = f(x⊕t)⇔ EK(MR⊕SR⊕T) = EK(MR′⊕SR′⊕T)⇔MR⊕SR = MR′⊕SR′.
So,

Pr[f(x) = f(x⊕ t)]

= Pr[MR⊕MR′ = SR⊕ SR′]
= Pr[MR⊕MR′ = MQ⊕MQ′ ⊕ 6M ⊕ 6M ′] (as SR⊕ SR′ = MQ⊕MQ′ ⊕ 6M ⊕ 6M ′)

= Pr[MQ⊕MR⊕MQ′ ⊕MR′ = 6M ⊕ 6M ′]

= Pr[M ⊕M ′ = 6M ⊕ 6M ′] (8.14)

= Pr[M = M ′] (8.15)

= Pr[EK(MQ)⊕ EK(MQ′) = MQ⊕MQ′] (8.16)

The explanation for obtaining (8.15) from (8.14) is the following. From (8.14), we have
7M = 7M ′. Recall that here 7 is a shorthand for the polynomial x2 ⊕ x⊕ 1, where x is the
root of the degree n primitive polynomial used to represent the field. So, x2 ⊕ x ⊕ 1 is an
invertible element in the field and hence the equality M = M ′ follows.

Let E be the event MQ 6= MQ′. Under the assumption that EK behaves like a uniform
random function, Pr[EK(MQ)⊕EK(MQ′) = MQ⊕MQ′|E] ≤ 1/2n. Since t /∈ {0n, 6L} and
L is non-zero, x ⊕ 2L, x ⊕ 4L, x ⊕ t ⊕ 2L and x ⊕ t ⊕ 4L are distinct. As a result, under
the assumption that EK behaves like a uniform random function, we have, Pr[E] ≤ 1/2n.
From (8.2) and (8.16) we have Pr[f(x) = f(x⊕ t)] ≤ 2/2n.

Classical queries: Given the period 6L, the two classical queries required in Section 8.2
are the following. The first query is m||x||x with output y1||y2||y3 and the second query is
m||x ⊕ 6L||x ⊕ 6L with output y′1||y′2||y′3. From the proof of Proposition 18 we have that
y1 = y′1 which defines the relation between the outputs of the two classical queries.

8.5 Summary

In this chapter, we have shown the applicability of Simon’s period finding quantum algorithm
to the cryptanalysis of five TESs, namely, CMC, EME, XCB, TET and FAST. Although
each of these TESs has standard proof of security in the classical world, this chapter shows

156 Breaking Tweakable Enciphering Schemes using Simon’s Algorithm

that none of them is secure against a quantum adversary. For XCB, TET and FAST, partial
key recovery attacks are possible. For all of the five TESs, we have shown distinguishing
attacks. This shows that for the quantum world, none of these TESs will work and we need
to find one. This piece of information adds another stepping stone in the journey towards
the quantum era.

Chapter 9

Future Research Possibilities

Modes of operations is a pretty old branch of research in the area of Cryptology. It is a
widely spread area and a huge volume of interesting works have been done here. As a result
it is already a immensely developed area, while at the same time being open enough to
attract further attention. We believe each of the five works on which this thesis is based,
has significantly contributed in some way or the other towards further development of the
area. The Chapters 4, 5 and 7 give algorithms or schemes which are more efficient in
some important platform than other candidates of its category present in the literature.
The Chapter 6 adds to the primitive MAC, a new feature which has important practical
motivation, but has not gained much attention before. The Chapter 8 shows the need of
having a TES which will be able to resist a quantum adversary.

• In Chapter 4, we have described an efficient non-recursive algorithm to evaluate BRW
polynomials which works for any number of blocks. This algorithm has been used
to define two concrete hash functions. Implementations of the hash functions using
instructions available on modern Intel processors show promising timing results making
the hash functions worthy candidates for actual deployment. The speed-up that we
have achieved is mainly due to the algorithmic improvement. On the other hand,
there is a possibility of further speed-up by trying to aggresively optimise the code
and by considering the details of instruction level pipelining issues. Implementation
in assembly is also possibly another promising choice. Future implementation efforts
may attempt such works.

• In Chapter 5, we have shown how to combine the BRW family of polynomials with
the Horner based polynomial evaluation to design a new hash function. The number
of multiplications required for computing the digest is a little more than that for BRW
polynomials. The advantage is that the implementation difficulties of BRW polynomials
for variable length messages are eliminated. The combination is a two-level hash with
BRW at the lower level and Horner at the higher level. The hash key is a single
field element and has been appropriately used to work for both the levels. Concrete
instantiations of the hash function over binary fields have been reported. The idea, on
the other hand, is quite general and applies to other fields as well. A possible future
work is to explore this idea to build concrete hash functions over other finite fields.

• In Chapter 6, we have considered the problem of constructing variable tag length MAC
schemes. Several variants obtained from the Wegman-Carter MAC scheme have been
shown to be insecure. One of these variants is proved to be secure. This scheme is
extended to obtain constructions of single-key nonce-based variable tag length MAC
schemes using either a stream cipher or a short-output PRF. To the best of our knowl-
edge, this is the first time that in the literature such an extensive formal treatment of

157

158 Future Research Possibilities

this notion has been considered. An immediate future work can be efficient implemen-
tation of some of the proposed schemes.

• In Chapter 7, we have presented a tweakable enciphering scheme called FAST. Instan-
tiations of the scheme for both fixed length messages with single block tweaks and
variable length messages with very general tweaks have been described. A detailed
security analysis in the style of reductionist security proof has been provided. Software
implementations of both kinds of instantiations have been made. The instantiation
for fixed length messages with single block tweaks is appropriate for low-level disk en-
cryption. The implementation results show that the new scheme outperforms previous
schemes which makes the new scheme an attractive option for designers and stan-
dardisation bodies. Again an implementation in assembly is worth trying as future
endeavour for further speed-up.

• Chapter 8 shows that some of the well known TESs which are secure in the classical
world are broken in the quantum world. This leaves us with the following question.
Can some simple modifications of these schemes make them quantum secure? Perhaps
future research will answer this question.

Bibliography

[1] Public comments on the XTS-AES mode. http://csrc.nist.gov/groups/ST/

toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf.

[2] IEEE Std 1619-2007: Standard for Cryptographic Protection of Data on Block-
Oriented Storage Devices. Available at: http://standards.ieee.org/findstds/

standard/1619-2007.html, 2008.

[3] IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage me-
dia. http://standards.ieee.org/findstds/standard/1619.2-2010.html, March
2011.

[4] Post-Quantum Cryptography standardisation: A process initiated by NIST for stan-
dardising quantum-safe public-key cryptosystems. Available at: https://csrc.nist.
gov/projects/post-quantum-cryptography, 2017-ongoing.

[5] IETF RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3. Available
at: https://tools.ietf.org/html/rfc8446, August 2018.

[6] Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso Gagliardoni, Christian
Schaffner, and Michael St. Jules. Computational security of quantum encryption. In
Anderson C. A. Nascimento and Paulo S. L. M. Barreto, editors, Information Theoretic
Security - 9th International Conference, ICITS 2016, Tacoma, WA, USA, August 9-12,
2016, Revised Selected Papers, volume 10015 of Lecture Notes in Computer Science,
pages 47–71, 2016.

[7] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and Do-
minique Unruh. Post-quantum security of the cbc, cfb, ofb, ctr, and XTS modes of
operation. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th International
Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, vol-
ume 9606 of Lecture Notes in Computer Science, pages 44–63. Springer, 2016.

[8] Jean-Philippe Aumasson and Daniel J. Bernstein. Siphash: A fast short-input PRF. In
Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT
2012, 13th International Conference on Cryptology in India, Kolkata, India, December
9-12, 2012. Proceedings, volume 7668 of Lecture Notes in Computer Science, pages
489–508. Springer, 2012.

[9] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Koblitz [70], pages 1–15.

[10] Mihir Bellare, David Cash, and Sriram Keelveedhi. Ciphers that securely encipher their
own keys. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, Proceedings
of the 18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages 423–432. ACM, 2011.

159

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
http://standards.ieee.org/findstds/standard/1619-2007.html
http://standards.ieee.org/findstds/standard/1619-2007.html
http://standards.ieee.org/findstds/standard/1619.2-2010.html
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://tools.ietf.org/html/rfc8446

160 BIBLIOGRAPHY

[11] Côme Berbain and Henri Gilbert. On the security of IV dependent stream ciphers. In
Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages
254–273. Springer, 2007.

[12] Daniel J. Bernstein. The Salsa20 family of stream ciphers. http://cr.yp.to/

papers.html#salsafamily. Document ID: 31364286077dcdff8e4509f9ff3139ad. Date:
2007.12.25.

[13] Daniel J. Bernstein. The poly1305-aes message-authentication code. In Henri Gilbert
and Helena Handschuh, editors, Fast Software Encryption: 12th International Work-
shop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers, volume
3557 of Lecture Notes in Computer Science, pages 32–49. Springer, 2005.

[14] Daniel J. Bernstein. Stronger security bounds for Wegman-Carter-Shoup authenti-
cators. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in
Computer Science, pages 164–180. Springer, 2005.

[15] Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http:

//cr.yp.to/papers.html#pema.

[16] Daniel J. Bernstein and Tung Chou. Faster binary-field multiplication and faster
binary-field macs. In Antoine Joux and Amr M. Youssef, editors, Selected Areas in
Cryptography - SAC 2014 - 21st International Conference, Montreal, QC, Canada, Au-
gust 14-15, 2014, Revised Selected Papers, volume 8781 of Lecture Notes in Computer
Science, pages 92–111. Springer, 2014.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. KECCAK
sponge function family main document. NIST SHA-3 Submission (updated), http:
//keccak.noekeon.org/, January 2009.

[18] Sreyosi Bhattacharyya and Palash Sarkar. Improved SIMD implementation of
poly1305. IET Inf. Secur., 14(5):521–530, 2020.

[19] Ritam Bhaumik and Mridul Nandi. An inverse-free single-keyed tweakable encipher-
ing scheme. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November 29 - Decem-
ber 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science,
pages 159–180. Springer, 2015.

[20] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC:
Fast and secure message authentication. In Michael J. Wiener, editor, CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 216–233. Springer, 1999.

[21] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun

http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#pema
http://keccak.noekeon.org/
http://keccak.noekeon.org/

BIBLIOGRAPHY 161

Wang, editors, Advances in Cryptology - ASIACRYPT 2011 - 17th International Con-
ference on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Com-
puter Science, pages 41–69. Springer, 2011.

[22] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science, pages 592–608. Springer, 2013.

[23] Xavier Bonnetain. Quantum key-recovery on full AEZ. In Carlisle Adams and Jan
Camenisch, editors, Selected Areas in Cryptography - SAC 2017 - 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, vol-
ume 10719 of Lecture Notes in Computer Science, pages 394–406. Springer, 2017.

[24] Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia, Yu Sasaki, and André
Schrottenloher. Quantum attacks without superposition queries: The offline Simon’s
algorithm. In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology -
ASIACRYPT 2019 - 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part I, volume 11921 of Lecture Notes in Computer Science, pages 552–583. Springer,
2019.

[25] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of
low t-gate complexity. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 609–629. Springer, 2015.

[26] CAESAR. Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html.

[27] Anne Canteaut and Kapalee Viswanathan, editors. Progress in Cryptology - IN-
DOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, In-
dia, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer
Science. Springer, 2004.

[28] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

[29] Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, and Palash Sarkar.
FAST: disk encryption and beyond. Advances in Mathematics of Communications,
2020. https://www.aimsciences.org/article/doi/10.3934/amc.2020108.

[30] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level
universal hash function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

http://competitions.cr.yp.to/caesar.html
https://www.aimsciences.org/article/doi/10.3934/amc.2020108

162 BIBLIOGRAPHY

[31] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. Hash2L implementations (128
and 256-bit). 2017. https://github.com/sebatighosh/HASH2L.git.

[32] Debrup Chakraborty, Vicente Hernandez-Jimenez, and Palash Sarkar. Another look
at XCB. Cryptography and Communications, 7(4):439–468, 2015.

[33] Debrup Chakraborty, Cuauhtemoc Mancillas-López, Francisco Rodŕıguez-Henŕıquez,
and Palash Sarkar. Efficient hardware implementations of BRW polynomials and
tweakable enciphering schemes. IEEE Trans. Computers, 62(2):279–294, 2013.

[34] Debrup Chakraborty, Cuauhtemoc Mancillas-López, and Palash Sarkar. STES: A
stream cipher based low cost scheme for securing stored data. IEEE Trans. Computers,
64(9):2691–2707, 2015.

[35] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR. In
Kaisa Nyberg, editor, Fast Software Encryption, 15th International Workshop, FSE
2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, volume
5086 of Lecture Notes in Computer Science, pages 289–302. Springer, 2008.

[36] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a tweak-
able strong pseudo-random permutation. In Matthew J. B. Robshaw, editor, FSE,
volume 4047 of Lecture Notes in Computer Science, pages 293–309. Springer, 2006.

[37] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme
using the hash-counter-hash approach. IEEE Transactions on Information Theory,
54(4):1683–1699, 2008.

[38] Debrup Chakraborty and Palash Sarkar. On modes of operations of a block cipher
for authentication and authenticated encryption. Cryptography and Communications,
8(4):455–511, 2016.

[39] Paul Crowley and Eric Biggers. Adiantum: length-preserving encryption for entry-level
processors. IACR Trans. Symmetric Cryptol., 2018(4):39–61, 2018.

[40] Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposi-
tion attacks on cryptographic protocols. In Carles Padró, editor, Information Theo-
retic Security - 7th International Conference, ICITS 2013, Singapore, November 28-30,
2013, Proceedings, volume 8317 of Lecture Notes in Computer Science, pages 142–161.
Springer, 2013.

[41] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Remark
on variable tag lengths and OMD. https://groups.google.com/forum/#!searchin/
crypto-competitions/Remark$20on$20variable$20tag$20lengths$20and$20OMD%

7Csort:date/crypto-competitions/sekKDsIJvwU/5_V_TzZQaWYJ, accessed on 15
November, 2019, 2014.

[42] Xiaoyang Dong, Bingyou Dong, and Xiaoyun Wang. Quantum attacks on some feistel
block ciphers. Des. Codes Cryptogr., 88(6):1179–1203, 2020.

https://github.com/sebatighosh/HASH2L.git
https://groups.google.com/forum/#!searchin/crypto-competitions/Remark$20on$20variable$20tag$20lengths$20and$20OMD%7Csort:date/crypto-competitions/sekKDsIJvwU/5_V_TzZQaWYJ
https://groups.google.com/forum/#!searchin/crypto-competitions/Remark$20on$20variable$20tag$20lengths$20and$20OMD%7Csort:date/crypto-competitions/sekKDsIJvwU/5_V_TzZQaWYJ
https://groups.google.com/forum/#!searchin/crypto-competitions/Remark$20on$20variable$20tag$20lengths$20and$20OMD%7Csort:date/crypto-competitions/sekKDsIJvwU/5_V_TzZQaWYJ

BIBLIOGRAPHY 163

[43] Xiaoyang Dong and Xiaoyun Wang. Quantum key-recovery attack on feistel structures.
Sci. China Inf. Sci., 61(10):102501:1–102501:7, 2018.

[44] Morris Dworkin. Recommendation for block cipher modes of operations: the CMAC
mode for authentication, May 2005. National Institute of Standards and Technology,
U.S. Department of Commerce. NIST Special Publication 800-38B.

[45] Morris Dworkin. Recommendation for block cipher modes of operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D, csrc.
nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf, November 2007.

[46] Morris J. Dworkin. SP 800-38E. Recommendation for Block Cipher Modes of Oper-
ation: the XTS-AES Mode for Confidentiality on Storage Devices. Technical report,
Gaithersburg, MD, United States, 2010.

[47] Hal Finney. CFRG discussion on UMAC. https://marc.info/?l=cfrg&m=

143336318427069&w=2, accessed on 15 November, 2019, 2005.

[48] Hal Finney. CFRG discussion on UMAC. https://marc.info/?l=cfrg&m=

143336318527072&w=2, accessed on 15 November, 2019, 2005.

[49] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Semantic security
and indistinguishability in the quantum world. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III, volume 9816 of Lecture Notes in Computer Science, pages 60–89. Springer,
2016.

[50] Sebati Ghosh and Palash Sarkar. Breaking tweakable enciphering schemes using si-
mon’s algorithm. IACR Cryptol. ePrint Arch., 2019:724, 2019.

[51] Sebati Ghosh and Palash Sarkar. BRW efficient non-recursive implementations (128
and 256-bit). 2019. https://github.com/sebatighosh/BRW.

[52] Sebati Ghosh and Palash Sarkar. Evaluating Bernstein-Rabin-Winograd polynomials.
Des. Codes Cryptogr., 87(2-3):527–546, 2019.

[53] Sebati Ghosh and Palash Sarkar. Variants of Wegman-Carter message authentication
code supporting variable tag lengths. Des. Codes Cryptogr., 2021. https://doi.org/
10.1007/s10623-020-00840-w.

[54] Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which detect
deception. Bell System Technical Journal, 53:405–424, 1974.

[55] Martin Goll and Shay Gueron. Vectorization of poly1305 message authentication code.
In 2015 12th International Conference on Information Technology-New Generations,
pages 145–150, 2015.

csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://marc.info/?l=cfrg&m=143336318427069&w=2
https://marc.info/?l=cfrg&m=143336318427069&w=2
https://marc.info/?l=cfrg&m=143336318527072&w=2
https://marc.info/?l=cfrg&m=143336318527072&w=2
https://github.com/sebatighosh/BRW
https://doi.org/10.1007/s10623-020-00840-w
https://doi.org/10.1007/s10623-020-00840-w

164 BIBLIOGRAPHY

[56] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the The-
ory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219.
ACM, 1996.

[57] Shay Gueron. AES-GCM-SIV implementations (128 and 256-bit). 2016. https:

//github.com/Shay-Gueron/AES-GCM-SIV.

[58] Shay Gueron and Michael E. Kounavis. Efficient implementation of the galois counter
mode using a carry-less multiplier and a fast reduction algorithm. Inf. Process. Lett.,
110(14-15):549–553, 2010.

[59] Shay Gueron and Michael E. Kounavis. Intel carry-less multiplication instruction and
its usage for computing the gcm mode. 2010. Intel white paper.

[60] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: specification and
analysis. IACR Cryptol. ePrint Arch., 2017:168, 2017.

[61] Shay Gueron and Yehuda Lindell. Gcm-siv: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 109–119, 2015.

[62] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with asso-
ciated data. In Canteaut and Viswanathan [27], pages 315–327.

[63] Shai Halevi. Invertible universal hashing and the TET encryption mode. In Alfred
Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages
412–429. Springer, 2007.

[64] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, Proceedings
of the 2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, pages 466–475. ACM, 2007.

[65] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 482–499.
Springer, 2003.

[66] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages
292–304. Springer, 2004.

[67] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-encryption
AEZ and the problem that it solves. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 15–44. Springer, 2015.

https://github.com/Shay-Gueron/AES-GCM-SIV
https://github.com/Shay-Gueron/AES-GCM-SIV

BIBLIOGRAPHY 165

[68] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia. Break-
ing symmetric cryptosystems using quantum period finding. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science, pages 207–
237. Springer, 2016.

[69] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 derived functions: cSHAKE,
KMAC, Tuplehash and Parallelhash. NIST Special Publication 800–185, https://

doi.org/10.6028/NIST.SP.800-185, December 2016.

[70] Neal Koblitz, editor. Advances in Cryptology - CRYPTO ’96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science. Springer, 1996.

[71] Ted Krovetz. UMAC: Message authentication code using universal hashing. https:

//tools.ietf.org/html/draft-krovetz-umac-05.html, accessed on 15 November,
2019., 2005.

[72] Ted Krovetz and Wei Dai. VMAC: Message authentication code using universal hash-
ing. 2007.

[73] Ted Krovetz and Phillip Rogaway. Fast universal hashing with small keys and no
preprocessing: The polyr construction. In Dongho Won, editor, ICISC, volume 2015
of Lecture Notes in Computer Science, pages 73–89. Springer, 2000.

[74] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, FSE, volume 6733 of Lecture Notes in
Computer Science, pages 306–327. Springer, 2011.

[75] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the 3-round
feistel cipher and the random permutation. In IEEE International Symposium on
Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings,
pages 2682–2685. IEEE, 2010.

[76] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type even-mansour
cipher. In Proceedings of the International Symposium on Information Theory and its
Applications, ISITA 2012, Honolulu, HI, USA, October 28-31, 2012, pages 312–316.
IEEE, 2012.

[77] Daniel Lemire and Owen Kaser. Faster 64-bit universal hashing using carry-less mul-
tiplications. J. Cryptogr. Eng., 6(3):171–185, 2016.

[78] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti
Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
31–46. Springer, 2002.

https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://tools.ietf.org/html/draft-krovetz-umac-05.html
https://tools.ietf.org/html/draft-krovetz-umac-05.html

166 BIBLIOGRAPHY

[79] Atul Luykx and Bart Preneel. Optimal forgeries against polynomial-based macs and
GCM. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Pro-
ceedings, Part I, volume 10820 of Lecture Notes in Computer Science, pages 445–467.
Springer, 2018.

[80] James H. Manger. Attacker changing tag length in OCB. https://mailarchive.

ietf.org/arch/msg/cfrg/gJtV9FCw92MguqqhxrSNUyIDZIw, accessed on 15 Novem-
ber, 2019., 2013.

[81] David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of
operation. Cryptology ePrint Archive, Report 2004/278, 2004. http://eprint.iacr.
org/.

[82] David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of
operation. IACR Cryptol. ePrint Arch., 2004:278, 2004.

[83] David A. McGrew and Scott R. Fluhrer. The security of the extended codebook (xcb)
mode of operation. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors,
Selected Areas in Cryptography, volume 4876 of Lecture Notes in Computer Science,
pages 311–327. Springer, 2007.

[84] David A. McGrew and John Viega. Arbitrary block length mode, 2004. http://

grouper.ieee.org/groups/1619/email/pdf00005.pdf.

[85] David A. McGrew and John Viega. The security and performance of the Ga-
lois/Counter Mode (GCM) of operation. In Canteaut and Viswanathan [27], pages
343–355.

[86] Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from pseudo-
random functions. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 275–292.
Springer, 2014.

[87] Mridul Nandi. On the minimum number of multiplications necessary for universal hash
functions. In Carlos Cid and Christian Rechberger, editors, Fast Software Encryption
- 21st International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised
Selected Papers, volume 8540 of Lecture Notes in Computer Science, pages 489–508.
Springer, 2014.

[88] Mridul Nandi. Bernstein bound on WCS is tight - repairing luykx-preneel optimal
forgeries. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,

https://mailarchive.ietf.org/arch/msg/cfrg/gJtV9FCw92MguqqhxrSNUyIDZIw
https://mailarchive.ietf.org/arch/msg/cfrg/gJtV9FCw92MguqqhxrSNUyIDZIw
http://eprint.iacr.org/
http://eprint.iacr.org/
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf

BIBLIOGRAPHY 167

CA, USA, August 19-23, 2018, Proceedings, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 213–238. Springer, 2018.

[89] Wim Nevelsteen and Bart Preneel. Software performance of universal hash functions.
In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 24–41. Springer, 1999.

[90] Mike Ounsworth. Footguns as an axis of security analysis. https://groups.

google.com/a/list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI, accessed
on 15 November, 2019, 2019.

[91] Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational
preparation. Communications on Pure and Applied Mathematics, 25:433–458, 1972.

[92] Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Authenticated encryption
with variable stretch. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
396–425, 2016.

[93] P. Rogaway and D. Wagner. A critique of ccm. Cryptology ePrint Archive, Report
2003/070, 2003. https://eprint.iacr.org/2003/070.

[94] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of
Lecture Notes in Computer Science, pages 16–31. Springer, 2004.

[95] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture
Notes in Computer Science, pages 373–390. Springer, 2006.

[96] Reihaneh Safavi-Naini, Viliam Lisý, and Yvo Desmedt. Economically optimal variable
tag length message authentication. In Aggelos Kiayias, editor, Financial Cryptography
and Data Security - 21st International Conference, FC 2017, Sliema, Malta, April 3-7,
2017, Revised Selected Papers, volume 10322 of Lecture Notes in Computer Science,
pages 204–223. Springer, 2017.

[97] Palash Sarkar. A general mixing strategy for the ECB-Mix-ECB mode of operation.
Inf. Process. Lett., 109(2):121–123, 2008.

[98] Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. IEEE Transactions on Information Theory, 55(10):4749–4759, 2009.

[99] Palash Sarkar. A trade-off between collision probability and key size in universal
hashing using polynomials. Des. Codes Cryptography, 58(3):271–278, 2011.

https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI
https://eprint.iacr.org/2003/070

168 BIBLIOGRAPHY

[100] Palash Sarkar. Tweakable enciphering schemes using only the encryption function of
a block cipher. Inf. Process. Lett., 111(19):945–955, 2011.

[101] Palash Sarkar. A new multi-linear universal hash family. Des. Codes Cryptogr.,
69(3):351–367, 2013.

[102] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[103] Victor Shoup. On fast and provably secure message authentication based on universal
hashing. In Koblitz [70], pages 313–328.

[104] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

[105] Vladimir Soukharev, David Jao, and Srinath Seshadri. Post-quantum security models
for authenticated encryption. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography
- 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016,
Proceedings, volume 9606 of Lecture Notes in Computer Science, pages 64–78. Springer,
2016.

[106] Douglas R. Stinson. Universal hashing and authentication codes. Des. Codes Cryptog-
raphy, 4(4):369–380, 1994.

[107] UMAC. CFRG discussion on UMAC. http://marc.info/?l=cfrg&m=

143336318427068&w=2, accessed on 15 November, 2019, 2005.

[108] David Wagner. CFRG discussion on UMAC. https://marc.info/?l=cfrg&m=

143336318527073&w=2, accessed on 15 November, 2019, 2005.

[109] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enci-
phering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume
3822 of Lecture Notes in Computer Science, pages 175–188. Springer, 2005.

[110] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[111] Shmuel Winograd. A new algorithm for inner product. IEEE Transactions on Com-
puters, 17:693–694, 1968.

http://marc.info/?l=cfrg&m=143336318427068&w=2
http://marc.info/?l=cfrg&m=143336318427068&w=2
https://marc.info/?l=cfrg&m=143336318527073&w=2
https://marc.info/?l=cfrg&m=143336318527073&w=2

	Introduction
	Overview of the Thesis

	A Brief Survey of the Literature
	Universal Hash Functions
	Efficiency Issues
	Collision and Differential Probabilities

	Message Authentication Code
	Tweakable Enciphering Scheme
	Post Quantum Cryptography

	Preliminaries and Background
	Universal Hashing
	Polynomial Hashing
	BRW Hashing

	Adversarial Model
	Pseudo-Random Function
	Counter Mode

	Message Authentication Code
	Tweakable Enciphering Scheme

	Evaluating Bernstein-Rabin-Winograd Polynomials
	Preliminaries
	Algorithm
	Correctness and Complexity
	Structural Properties of unreducedBRW
	Correctness of EvalBRW
	Complexity of EvalBRW

	Design of Hash Function
	Implementation
	Timings

	Summary

	Hash2L: A Fast Two-Level Universal Hash Function
	Combining BRW with Horner
	Two-Level Hash Function
	Hashing a Vector of Strings

	Implementations Based on pclmulqdq
	Field Multiplication
	Efficient Reduction
	Arithmetic Operations for Computing BRW
	Computing BRW Polynomials
	Decimated Horner
	Implementation of Hash2L

	Implementation Strategy Without Using pclmulqdq
	Message Authentication Code
	Comparison to Some Previous Works
	Comparison to Schemes Using Long Hash Keys
	Comparison to Schemes Using Short Hash Keys

	Summary

	Variants of Wegman-Carter Message Authentication Code Supporting Variable Tag Lengths
	Definitions
	Variable Tag Length Nonce-Based Message Authentication Code

	Towards Building a Variable Tag Length MAC
	Secure and Efficient MAC Schemes with Variable Length Tag
	Reducing Key Size

	Summary

	FAST: Disk Encryption and Beyond
	Preliminaries
	Construction
	Instantiations of FAST
	Hash Functions
	Specific Instantiations

	Security
	Pseudo-Random Function
	Tweakable Enciphering Scheme
	Security of FAST

	Comparison
	Software Implementation
	Implementation of the Hash Functions
	Implementation of FAST
	Timing Results

	Additional Material on Implementation of AEZ
	Software Implementation

	Summary

	Breaking Tweakable Enciphering Schemes using Simon's Algorithm
	Preliminaries
	Tweakable Enciphering Scheme
	Simon's Algorithm with Spurious Collisions

	Outline of the Attacks
	Partial Key Recovery Attacks
	XCB
	TET
	FAST

	Distinguishing Attacks
	CMC
	EME

	Summary

	Future Research Possibilities

