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Chapter 0

Introduction

A fundamental result of Riemannian geometry states that if (M, g) is a Riemannian manifold,

then there exists a unique connection ∇ on the space of one-forms Ω1(M) of M which is tor-

sionless and compatible with g. The connection ∇ is called the Levi-Civita connection for the

pair (M, g). The goal of this thesis is to study analogues of this theorem in the context of non-

commutative geometry. The noncommutative geometry of a unital (possibly noncommutative)

algebra A is dictated by the choice of a differential calculus on A. Thus, given a differential

calculus on A, the task of making sense of the question of existence of a Levi-Civita connection

includes the following steps: Firstly, one needs to define a notion of pseudo-Riemannian metrics

on a differential calculus. Second, one needs to make sense of the torsion of connections and

that of the compatibility of a connection with a pseudo-Riemannian metric. Then, we need to

verify whether there indeed exists any connection on the space of one-forms of the differential

calculus which is both torsionless and compatible with the given pseudo-Riemannian metric.

Finally, there is the question of uniqueness of such a connection. As we will shortly discuss,

there are already a number of articles available in literature which have addressed the question

of existence of Levi-Civita connections on some particular noncommutative manifolds. In many

of these articles, the technique to prove the existence of Levi-Civita connections is example

specific. Moreover, the definitions of metric as well as the metric compatibility conditions vary

from example to example. There are also some works (see [22], as well as Appendix B of [51])

where the existence or uniqueness of a Levi-Civita connection fails.

Our goal in this thesis is to derive some sufficient conditions on the differential calculus

which will guarantee the existence and uniqueness of Levi-Civita connections for some class
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2 Chapter 0. Introduction

of noncommutative manifolds. We have focussed our attention to a class of differential calculi

constructed via spectral triples and a class of bicovariant differential calculi on Hopf algebras.

The notion of spectral triples was introduced by Connes ([25]). A spectral triple on an algebra

A is the data (A,H, D) where A is a *-subalgebra of the bounded linear operators on a Hilbert

space H and D is a (typically unbounded) self-adjoint operator on H satisfying some conditions.

Starting from a spectral triple, there is a canonical construction of the space of forms. Other

than Connes’ seminal text [25], some of the books which provide introductory as well as extensive

overview of spectral triple-based noncommutative geometry are [28], [64], [60] and [89]. On the

other hand, bicovariant differential calculi are a class of differential calculi on Hopf algebras

and were introduced by Woronowicz ([93]). For generalities on Hopf algebras and bicovariant

differential calculi, we refer to [1], [23], [71], [78] and references therein.

Now we explain the set-up under which we will work. If (Ω•(A), d) is a differential calculus on

an algebra A, our connections will be maps ∇ : Ω1(A)→ Ω1(A)⊗A Ω1(A) satisfying a Leibniz

rule. Thus, unlike the articles [83], [3], [4], [5] and [80], we will not be working with covariant

derivatives on the level of vector fields of a differential calculus. Our pseudo-Riemannian metric

are right A-linear maps g : Ω1(A) ⊗A Ω1(A) → A satisfying a symmetry condition and a

nondegeneracy condition. Since in most occasions, we will not be using the *-structure on the

algebra and the space of forms, we do not assume g to be sesquilinear or positive definite. In the

case of spectral triples (Chapters 2 and 3), we will in addition assume g to be left A-linear while

in the case of bicovariant differential calculi, we concentrate on those pseudo-Riemannian metric

which are left-invariant with respect to the coaction of the Hopf algebra A. For making sense of

the symmetry in g, we need a braiding-like operator σ : Ω1(A)⊗A Ω1(A) → Ω1(A)⊗A Ω1(A).

For spectral triples, we postulate the existence of this map σ while for bicovariant differential

calculi, σ is the canonical braiding map discovered by Woronowicz.

In order to formulate the metric-compatibility conditions, we need some assumptions. For

spectral triples, these are conditions which appear in the definition of tame spectral triples.

Moreover, our proof of existence and uniqueness of Levi-Civita connections works for pseudo-

Riemannian bilinear metrics, i.e. those which are both left and right A-linear. In the case

of bicovariant differential calculi, we assume that the braiding map σ as discussed above is

diagonalisable in a certain sense. Moreover, we restrict our attention to left-invariant pseudo-

Riemannian metrics.

Let us mention a few relevant topics and questions which have appeared in literature but
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which will not be addressed in this thesis. Firstly, in the last decade, there has been a lot

of research around the scalar curvature coming from the asymptotic expansion of a Laplace-

type operator associated to a spectral triple. This approach was pioneered by the landmark

paper of Connes and Tretkoff ([30]) which proves a noncommutative analogue of the Gauss-

Bonnet theorem. We refer to the papers [38], [39], [29], [65], [67] and references therein for the

subsequent developments around this topic. For a different treatment of curvature on Hilbert

modules, we refer to [77]. For computation of curvature of a noncommutative manifold via

the Levi-Civita connection, we refer to [70], [72], [73] and references therein. A comprehensive

account of the work of Beggs, Majid and their collaborators in this regard can be found in [11].

Many interesting examples of differential calculi on *-algebras are equipped with *-structures

in the sense of [9]. The *-compatibility of a connection was also studied in the same paper. For

examples of *-compatible Levi-Civita connections, we refer to [9] and [19]. A weaker notion of

metric compatibility called cotorsion free has been studied by Beggs, Majid and their collabo-

rators (see [73]). In [46], spin geometry on quantum groups have been studied. Very recently,

the author of [76] proved the existence of a torsion and cotorsion free connection for the Fubini-

Study metric on quantum projective spaces. For existence of Chern connections on quantum

complex manifolds, we refer to [10]. The article [44] deals with a notion of strong connections to

introduce a definition of a global curvature form. The article [34] considers metric compatibility

of pairs of left and right connections.

Let us give a brief overview of the contents of this thesis.

In Chapter 1, we collect some initial notions and results needed in later chapters, to make

the text reasonably self-contained. In Sections 1.1 and 1.2, we recall the concepts of algebras, in

particular C*-algebras and Hopf algebras, and modules and comodules over them. Section 1.3

will introduce the notion of noncommutative calculi on noncommutative spaces. This section

contains two subsections. The first one is on spectral triples due to Connes ([25]) and the second

on bicovariant differential calculi due to Woronowicz [93]. The contents of the rest of the thesis

also fall under these two broad headings. Indeed, whereas Chapters 2 and 3 are devoted to

spectral triples, Chapters 4, 5 and 6 are devoted to bicovariant differential calculi. In Section

1.4 of Chapter 1, we briefly discuss the Levi-Civita connection problem on classical (pseudo-

)Riemannian geometry and some equivalent formulations. The section ends with some basic

definitions regarding connections in noncommutative differential calculi.
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Chapter 2 deals with the existence and uniqueness of Levi-Civita connections on the class of

tame spectral triples as given in [15,16]. The chapter begins with a brief discussion on centered

bimodules over algebras, on which the space of one-forms will be modelled. In Section 2.2,

a more general class called quasi-tame spectral triples is introduced. In Section 2.3 pseudo-

Riemannian metrics are defined on quasi-tame spectral triples. Following [41], we introduce a

canonical candidate for a pseudo-Riemannian bilinear metric on a spectral triple and discuss

some regularity conditions. From Section 2.4 onwards, we restrict our focus to the class of tame

spectral triples. A definition of compatibility of connections on the space of one-forms on tame

spectral triples with pseudo-Riemannian metrics is discussed. This, in particular, provides the

definition of Levi-Civita connections on tame spectral triples. In Section 2.5, we prove that given

a bilinear pseudo-Riemannian metric on a tame spectral triple, there exists a unique Levi-Civita

connection on the space of one-forms.

Chapter 3 continues the discussion on tame spectral triples, and provides some concrete

examples. In Section 3.1, the example of fuzzy 3-sphere as given in [41] is recalled and is shown

to be a tame spectral triple. In Section 3.2, we discuss the spectral triple on the quantum

Heisenberg manifold as defined in [22] and show that it is an example of a tame spectral

triple. Spectral triples on Rieffel deformations ([82], [26]) of compact Riemannian manifolds

were defined in [27]. In Section 3.3, we show that under some technical assumptions, these turn

out to be tame spectral triples. In particular, the last section shows that our formulation of Levi-

Civita connections is well-behaved with respect to Rieffel deformations of compact Riemannian

manifolds.

In Chapter 4, we concentrate on the existence and uniqueness of Levi-Civita connections

on bicovariant differential calculi over Hopf algebras. We begin by collecting some preliminary

material on bicovariant bimodules over Hopf algebras and their relationship with Yetter-Drinfeld

modules. In Section 4.2, we discuss a mild constraint on Woronowicz’s braiding map given in

[93], for bicovariant bimodules. In Section 4.3, we define and discuss the notion of invariant

pseudo-Riemannian metrics on bicovariant differential calculi. In Section 4.4, we define the

compatibility of left-covariant connections with left-invariant pseudo-Riemannian metrics as per

[17]. In Section 4.5, we discuss a metric-independent sufficient condition for the existence of a

unique left-covariant Levi-Civita connection compatible with a bi-invariant pseudo-Riemannian

metric. In this section, we also show that subject to the Hopf algebra being cosemisimple, the

unique left-covariant connection is also right covariant.
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Chapters 5 and 6 are devoted to providing examples of bicovariant differential calculi which

satisfy the criterion of existence and uniqueness of Levi-Civita connections as derived in Chapter

4. In Chapter 5, the concrete example is that of cocycle deformations, as given in [74], of dif-

ferential calculi over Hopf algebras of regular functions on linear algebraic groups. On the way

we discuss the cocycle deformation of bicovariant differential calculi and bi-invariant pseudo-

Riemannian metrics on the differential calculi of (not necessarily commutative) Hopf algebras.

We show that our formulation of bicovariant Levi-Civita connections is well-behaved with co-

cycle deformations, i.e., Levi-Civita connections associated to bicovariant differential calculi

are in one-to-one correspondence with those on their cocycle deformations. This in particular

proves the existence of a unique bicovariant Levi-Civita connection for every bi-invariant pseudo-

Riemannian metric on the Hopf algebra of regular functions of a linear algebraic group. Chapter

6 deals with the example of example of 4D± calculi on the Hopf algebra SUq(2) as introduced

in [93]. We recall results in [73] and [20] to show that the corresponding Woronowicz braiding

maps satisfy the requisite assumptions made in Chapter 4. Regarding the metric-independent

sufficient condition for the existence of a unique bi-covariant Levi-Civita connection, the com-

plexity of the 4D± calculi required us to use brute-force to verify this, rather than as part of

any axiomatic framework.





Chapter 1

Preliminaries

In this chapter, we collect preparatory material for this thesis. In Sections 1.1 and 1.2, we recall

the notions of algebras, modules and comodules. As examples of interest, we introduce various

noncommutative spaces. In Section 1.3, we introduce noncommutative differential calculi on

noncommutative spaces, which are one of the basic objects of study for our purpose. By way

of examples, we give a couple of constructions of differential calculi. Section 1.4 is devoted to

a brief discussion of the Levi-Civita connection problem in classical Riemannian geometry, and

then to some inital notions for investigating the problem in the noncommutative set-up.

Throughout this thesis, we will work over the field of complex numbers. Thus, unless mentioned

otherwise, all vector spaces, algebras and modules will be over C.

1.1 Algebras and Modules

Definition 1.1.1. An algebra is a triple (A, µ, u) with A a vector space, µ : A⊗CA → A a

linear map called the multiplication map and u : C→ A a linear map called the unit, such that

µ(id⊗Cµ) = µ(µ⊗Cid), µ(u⊗A id) = µ(id⊗Cu) = id.

Let (A, µA, uA) and (B, µB, uB) be two algebras. A linear map T : A → B is called an algebra

map if T ◦ µA = µB ◦ (T⊗CT ) and T ◦ uA = uB.

7



8 Chapter 1. Preliminaries

We will for the most part replace µ(a⊗Cb) with the usual ab to imply multiplication of

elements a and b of an algebra. Next we introduce the definition of left and right modules over

an algebra.

Definition 1.1.2. Given an algebra A, a left A-module is a pair (M,.) with a vector space M

and a linear map . : A⊗CM →M such that

.(u⊗Cid) = id, .(µ⊗Cid) = .(id⊗C.).

Similarly, a right A-module is a pair (M,/) with a vector space M and a linear map / :

M⊗CA →M such that

/(id⊗Cu) = id, /(id⊗Cµ) = /(/⊗Cid).

Lastly, an A-bimodule is a triple (M,., /) such that (M,.) is a left A-module, (M,/) is a right

A-module and

.(id⊗C/) = /(.⊗Cid).

From now on, we are going to dispense of the symbols / and . whenever the implied algebra

actions are unambiguous.

Definition 1.1.3. Given two left A-modules M and N , a linear map T : M → N is called a

left A-linear map if for all a in A and m in M , T (am) = aT (m).

If M and N are two right A-modules, a linear map T : M → N is called a right A-linear map

if T (ma) = T (m)a.

If M and N are A-bimodules, then a map T : M → N is called an A-bimodule map or A-bilinear

map if it is both left and right A-linear.

The set of all right A-linear maps from M to N will be denoted by HomA(M,N), the set of all

left A-linear maps from M to N will be denoted by AHom(M,N) and the set of all A-bilinear

maps from M to N will be denoted by AHomA(M,N).

Definition 1.1.4. Given two A-bimodules M and N , one can give an A-bimodule structure

on HomA(M,N). If T is a map in HomA(M,N), the left and right module actions are defined

respectively by

(aT )(m) = a(T (m)) and (Ta)(m) = T (am),

for all a in A and m in M .
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Now we recall the notion of a right (respectively, left) A-total set in a right (respectively,

left) A-module.

Definition 1.1.5. A subset S of a right A-module M is called right A-total in M if

M = SpanC{sa : s ∈ S, a ∈ A}.

Similarly, a subset S of a left A-module M is called left A-total in M if M = SpanC{as : s ∈

S, a ∈ A}.

Then we have the following lemma which will be used repeatedly in the thesis.

Lemma 1.1.6. Let S be a right A-total subset of a right A-module M . If T1 and T2 are two

right A-linear maps from M to another right A-module N such that they agree on S, then they

agree everywhere on M .

Proof. If m is an element of M , there exist elements si in S and ai in A such that m =
∑

i siai.

Then,

T1(m) =
∑
i

T1(si)ai =
∑
i

T2(si)ai = T2(m).

We record the following lemma for future use.

Lemma 1.1.7. Let M be an A-bimodule and h : M ⊗AM → A be a right A-linear map such

that the map

Vh : M →M∗ := HomA(M,A), Vh(m)(m′) = h(m⊗A m′)

for all m,m′ in M is a right A-linear isomorphism.

Then for all T in AHomA(M,M), there exists a unique element T ∗ in HomA(M,M) such that

for all m,m′ in M ,

h(T ∗(m)⊗A m′) = h(m⊗A T (m′)).

Proof. Suppose m is an element in M . We define an element z(m) in M by the equation

Vh(z(m))(m′) = h(m⊗A T (m′)) for all m′ in M .
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The above definition is well-defined since Vh : M →M∗ is an isomorphism. Clearly, the element

z(m) is the unique choice for T ∗(m).

For proving that the map m 7→ T ∗(m) := z(m) is right A-linear, we compute

Vh(T ∗(ma))(m′) = Vh(ma)(T (m′)) = h(ma⊗A T (m′))

= h(m⊗A aT (m′)) = h(m⊗A T (am′)) (since T is left A-linear)

= Vh(T ∗(m))(am′) = Vh(T ∗(m)a)(m′).

Since Vh is an isomorphism, we have T ∗(ma) = T ∗(m)a.

The following well-known fact is known to experts (see [55]), but we provide a proof for the

sake of completeness.

Proposition 1.1.8. Let M and N be A-bimodules which are finitely generated and projective

as right A-modules. Then for elements mi in M , n in N and φi in N∗ := HomA(N,A), the

map

ζM,N : M ⊗A N∗ → HomA(N,M), ζM,N (
∑
i

mi ⊗A φi)(f) =
∑
i

miφi(n)

defines an isomorphism of A-bimodules.

Proof. Since M is finitely generated projective, there exists an integer d and an idempotent

P in HomA(Ad,Ad) such that M = P (Ad). Let {a1, a2, ..., ad} be a basis of Ad so that M is

generated by {P (ai)}i. If T be an element of HomA(N,M), then there exists elements φj in

N∗ such that

T (n) =
∑
j

P (aj)φj(n), for all n.

Clearly, T = ζM,N (
∑

j P (aj)⊗A φj), proving that ζM,N is onto. For proving that ζM,N is one-

to-one, we observe that it can be easily verified that the map ζM,N is a restriction of ζAd,N and

therefore also one-to-one. This completes the proof.

We will be using the notions of left and right duals in certain monoidal categories and so we

recall the relevant definitions and results here.

Definition 1.1.9. ([37]) Suppose (C,⊗, 1) is a (strict) monoidal category. An object X in C is

said to have a left dual if there exists an object X̃ in C and morphisms

evX : X̃ ⊗X → 1 and coevX : 1→ X ⊗ X̃
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such that the following two equations hold:

(idX ⊗ evX)(coevX ⊗ idX) = idX , (evX ⊗ id
X̃

)(id
X̃
⊗ coevX) = id

X̃
.

X is said to have a right dual if there exists an object ∗X in C and morphisms

ev′X : X ⊗ ∗X → 1 and coev′X : 1→ ∗X ⊗X

such that

(ev′X ⊗ idX)(idX ⊗ coev′X) = idX and (id∗X ⊗ ev′X)(coev′X ⊗ id∗X) = id∗X .

We collect some well-known facts about left duals in a monoidal category in the next propo-

sition.

Proposition 1.1.10. (Subsection 2.10 of [37]) Suppose (C,⊗, 1) is a monoidal category and X

be an object in C. We have the following:

(i) If X admits a left dual, then it is unique upto isomorphism. In fact, if (ev1, coev1, X̃) and

(ev2, coev2, Y ) are two left duals of the object X, then the morphism

(ev1 ⊗ idY )(id
X̃
⊗ coev2) : X̃ → Y

is actually an isomorphism.

(ii) Now suppose D is another monoidal category and F a monoidal functor from C to D. If

X̃ is a left dual of the object X, then F (X̃) is a left dual of the object F (X) in D.

Proof. We refer to Proposition 2.10.5 and Exercise 2.10.6 of [37] for the proofs.

We recall that an object V in an abelian category C is said to be a direct sum of objects Vi,

i = 1, 2, · · ·n, if there exist morphisms αi, i = 1, 2, · · ·n, in Hom(Vi, V ) and βi, i = 1, 2, · · ·n, in

Hom(V, Vi) such that

βiαi = 1Vi ∀ i = 1, 2, · · ·n,
n∑
i=1

αiβi = 1V . (1.1.1)

The following result is well-known to the experts. Nevertheless, we prove it for the sake of

completeness.



12 Chapter 1. Preliminaries

Proposition 1.1.11. If V and W are two objects in a semisimple monoidal category C, then

dim(Hom(V,W )) = dim(Hom(W,V )).

Proof. We consider the decomposition V ∼= ⊕ni=1(Zi)
⊕ki and W ∼= ⊕ni=1(Zi)

⊕li into mutually

non-isomorphic simple objects Zi, where some of the ki’s and li’s could be zero. Thus, there

exist morphisms αi,s, s = 1, 2, · · · ki, i = 1, 2, · · ·n, in Hom(Zi, V ) and βi,s, s = 1, 2, · · · ki,

i = 1, 2, · · ·n, in Hom(V,Zi) such that

βi,sαi,s = 1Zi,s and
∑
i,s

αi,sβi,s = 1V . (1.1.2)

Similarly, from the decomposition W ∼= ⊕ni=1(Zi)
⊕li , we have morphisms σi,t, t = 1, 2, · · · li,

i = 1, 2, · · ·n, in Hom(Zi,W ) and morphisms µi,t, t = 1, 2, · · · li, i = 1, 2, · · ·n, in Hom(W,Zi).

The morphism βi,sαi,t belongs to Hom(Zi,t, Zi,s) and so by Schur’s Lemma, βi,sαi,t = cis,t

for some scalars cis,t. Let ci denote the matrix whose (s, t)-th element is cis,t. We claim that the

matrix ci is the identity matrix. Indeed,

(c2
i )(s,t) =

∑
k

cis,kc
i
k,t

= βi,s(
∑
k

αi,kβi,k)αi,t

= βi,s(
∑
j,k

αj,kβj,k)αi,t

(as Schur′s Lemma implies βi,sαj,k ∈ Hom(Zj , Zi) equals 0 if i 6= j)

= βi,sαi,t (by (1.1.2))

= cis,t.

Moreover, (1.1.2) implies that cis,s = 1 for all s.

Thus, ci is an idempotent matrix such that its trace is equal to n. Hence, ci is equal to the

identity matrix. This proves our claim.

We note that for all i, t, j, s, µi,tfαj,s is in Hom(Zj , Zi) and since Zi, Zj are simple objects,

Schur’s Lemma implies that

µi,tfαj,s = δijλ
i
t,s1Zi for some scalar λit,s. (1.1.3)
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Now suppose f is an element in Hom(V,W ). Then we can write

f = 1W f1V

=
∑
i,t,j,s

σi,tµi,tfαj,sβj,s

=
∑
i,t,j,s

σi,tδijλ
i
t,s1Ziβj,s (by (1.1.3))

=
∑
i,s,t

λit,sσi,tβi,s.

Thus, any element f in Hom(V,W ) is a linear combination of elements in the set S = {σi,tβi,s :

i = 1, · · ·n, s = 1, · · · ki, t = 1, · · · li}. If we can prove that S is a linearly independent set, then

it follows that dim(Hom(V,W )) =
∑n

i=1 |{k : ki 6= 0}| . |{l : li 6= 0}| .

Similarly, dim(Hom(W,V )) =
∑n

i=1 |{l : li 6= 0}| . |{k : ki 6= 0}| . Hence, the proof is complete

once we can deduce that S is a linearly independent set.

To that end, let dit,s be scalars so that

∑
i,t,s

dit,sσi,tβi,s = 0. (1.1.4)

We fix indices i0, s0, t0. Then we have

µi0,t0(
∑
i,t,s

dit,sσi,tβi,s)αi0,s0 = 0.

However,

µi0,t0(
∑
i,t,s

dit,sσi,tβi,s)αi0,s0 =
∑
i,t,s

dit,sµi0,t0σi,tβi,sαi0,s0

=
∑
t,s

di0t,sµi0,t0σi0,tβi0,sαi0,s0 (as βi,sαi0,s0 ∈ Hom(Zi0 , Zi))

=
∑
t,s

di0t,sµi0,t0σi0,tc
i0
s,s0

=
∑
t

di0t,s0µi0,t0σi0,t

since ci0 is the identity matrix. Due to similar reasons,
∑

t d
i0
t,s0
µi0,t0σi0,t = di0t0,s0 .

Therefore, (1.1.4) reduces to the equation di0t0,s0 = 0. Since i0, s0, t0 are arbitrary, this proves

that S is a linearly independent set completing the proof of the proposition.
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For more details on monoidal categories and duality therein, we refer to the books [37] and

[59].

We will be using the notions of duality in monoidal categories for the category of A-bimodules

in this section and categories of covariant bimodules (see Section 1.2) later.

Definition 1.1.12. We will denote the category of all A-bimodules by the symbol AMA. Thus,

the objects of AMA are A-bimodules. If F and G are objects of AMA, then a morphism from

F to G is nothing but an A-bimodule map from F to G.

The category AMA is a monoidal category, i.e., if F , G are objects of AMA, then the balanced

tensor product F ⊗A G is an object in AMA. The following proposition gives a necessary and

sufficient condition for the existence of a left dual in the monoidal category AMA.

Proposition 1.1.13. (Exercise 2.10.16 of [37]) Suppose M is an object in AMA. Then M has

a left dual if and only if M is finitely generated and projective as a right A-module.

If E is an A-bimodule, we will continue to denote HomA(E ,A) by the symbol E∗. It is well-

known (see, for example, [7]) that E is finitely generated and projective as a right A-module

if and only if there exists a natural number n and elements e1, · · · en in E and e∗1, · · · e∗n in

E∗ = HomA(E ,A) such that for all e in E and for all φ in E∗, the following equations hold:

e =
∑
i

eie
∗
i (e), φ =

∑
i

φ(ei)e
∗
i .

The pair {ei, e∗i } is called a pair of dual bases for E .

If E is an A-bimodule, then from Definition 1.1.4, we know that E∗ = HomA(E ,A) is also an

A-bimodule. The following proposition holds.

Proposition 1.1.14. ([7]) If E and F are A-bimodules such that they are finitely generated and

projective as right A-modules, then the following statements hold:

(i) The left dual Ẽ of E (in the category AMA) is isomorphic to E∗ = HomA(E ,A).

(ii) The left dual of the object E ⊗A F (in the category AMA) is isomorphic to F∗ ⊗A E∗. In

particular, (E ⊗A F)∗ ∼= F∗ ⊗A E∗ as right A-modules.
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Proof. Since both the assertions have been proved in [7], we provide the sketch of the proof.

We will let {ei, e∗i : i = 1, · · ·n} and {fj , f∗j : j = 1, 2, · · ·m} denote pairs of dual bases for E

and F respectively.

For the first assertion, consider the A-bimodule maps

evE : E∗ ⊗A E → A, φ⊗A e 7→ φ(e), coevE : A → E ⊗A E∗, coevE(a) = a
∑
i

ei ⊗A e∗i .

Then it can be easily checked that

(idE ⊗A evE)(coevE ⊗A idE) = idE , (evE ⊗A idE∗)(idE∗ ⊗A coevE) = idE∗ .

Since the left dual of E is unique upto isomorphism, this proves that Ẽ is isomorphic to E∗.

Now, for the second assertion, the evaluation and the coevaluation maps can be defined as:

evE⊗AF : (F∗ ⊗A E∗)⊗A (E ⊗A F)→ A; (ψ ⊗A φ)⊗A (e⊗A f) 7→ ψ(φ(e)f),

coevE⊗AF : A → (E ⊗A F)⊗A (F∗ ⊗A E∗); coevE⊗AF (a) = a
∑
i,j

(ei ⊗A fj)⊗A (f∗j ⊗A e∗i ).

Thus, ˜E ⊗A F is isomorphic to F∗⊗A E∗. However, by the first assertion, ˜E ⊗A F is isomorphic

to (E ⊗A F)∗ and so (E ⊗A F)∗ is isomorphic to F∗ ⊗A E∗.

1.1.1 C∗-algebras and Hilbert C∗-modules

In this subsection, we briefly recall the notion of C∗-algebras. The discussion that follows

illustrates why C∗-algebras are good analogues for classical topological spaces.

Definition 1.1.15. Let A be an algebra over C. A norm ‖·‖ on A is said to be submultiplicative

if

‖ab‖ ≤ ‖a‖‖b‖

for all a, b in A. If ‖ · ‖ is a submultiplicative norm on an algebra A, then the pair (A, ‖ · ‖) is

called a normed algebra. If the algebra is unital and ‖1‖ = 1 then A is a unital normed algebra.

A complete normed algebra is called a Banach algebra. Unital Banach algebras are defined in

the obvious way.
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Definition 1.1.16. A Banach ∗-algebra is a triplet (A, ‖ · ‖, ∗) where (A, ‖ · ‖) is a Banach

algebra and ∗ : A → A is an involution such that for all a, b in A and for all λ in C,

(λa+ b)∗ = λa∗ + b∗, ‖a∗‖ = ‖a‖.

A C∗-algebra is a Banach ∗-algebra such that the “C∗-identity” holds:

‖a∗a‖ = ‖a‖2

for all a in A

The Gelfand-Naimark theorem states that any unital commutative C∗-algebra is isomet-

rically isomorphic to C(X) for some compact Hausdorff space X. On the other hand, any

C∗-algebra is isometrically isomorphic to a norm closed ∗-subalgebra of B(H) for some Hilbert

space H.

Definition 1.1.17. Given a C∗-algebra A, a representation (H, π) on it consists of a Hilbert

space H and a ∗-homomorphism π : A → B(H). The representation is called faithful if π is

one-to-one.

Let us give some examples of some noncommutative C∗-algebras that we are going to use in

this thesis.

Example 1.1.18. The noncommutative 2-torus C(T2
θ), defined for θ in [0, 1] is the universal

C∗-algebra generated by two unitary elements U and V satisfying the relation UV = e2πiθV U .

The C∗-algebra C(T2
θ) has a representation (L2(S1), π), with π defined on the generators U and

V by

π(U)(f)(z) = f(e2πiθz), π(V )(f)(z) = zf(z),

where f is an elements in L2(S1) and z is in S1.

Now we come to the examples of reduced and twisted group C∗-algebras.

Example 1.1.19. Suppose Γ is a discrete group and for g in Γ, let λ be the left-regular repre-

sentation of Γ on l2(Γ). Thus, λg : l2(Γ)→ l2(Γ) will denote the operator defined by

λgξ(h) = ξ(g−1h) for all ξ in l2(Γ) and h in Γ.
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The reduced reduced C∗-algebra of the group Γ, denoted by C∗r (Γ) is defined to be the C∗-

subalgebra of B(l2(Γ) generated by {λg : g ∈ Γ}.

A slight variation of the above example produces twisted group C∗-algebras associated to

cocycles. In this thesis, we will only need the θ-twisted reduced group C∗-algebra for Γ = Zn.

Example 1.1.20. Consider the group Zn. We will denote an element (m1, · · ·mn) by the symbol

m. Fix an n× n real skew-symmetric matrix θ.

For n in Zn, we define a bounded operator λθn on l2(Zn) by the formula

λθnξ(m) = e−πi〈m,θn〉ξ(m− n).

The θ-twisted reduced C∗-algebra of the group Zn, denoted by C∗r (Zn, θ) is defined to be the

C∗-subalgebra of B(l2(Γ) generated by {λθn : n ∈ Zn}.

For n = 2, this construction gives us back the noncommutative 2-torus defined above. So, in

general, this C∗-algebra is called the noncommutative n-torus and denoted by C(Tnθ )

The following recipe produces interesting examples of noncommutative C∗-algebras from

commutative ones.

Example 1.1.21. (Rieffel deformation, [82]) We will continue to use the notations introduced

in Example 1.1.20. Suppose the group Tn has a strongly continuous action α on a unital C∗-

algebra A. The spectral subspaces are parametrized by the dual group Zn and are defined by

An := {a ∈ A : αg(a) = χn(g)a},

where χm(g1, · · · , gn) = gm1
1 · · · gmnn . Consider the set

Aalg
θ = SpanC{a⊗ λθn : a ∈ An, }.

Then Aalg
θ is a ∗-closed subalgebra of A⊗ C(Tnθ ).

The norm-closure of Aalg
θ in A⊗C(Tnθ ) is a unital C∗-algebra called the Rieffel deformation

of A under the action α and denoted by Aθ.
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Rieffel deformation for actions of the groups Rn and Tn were introduced by Rieffel in [82].

Our reference is the paper [95]. For the generalization of this construction to the case of actions

of locally compact abelian groups, we refer to [58].

Before we can define what is called a GNS triple on C∗-algebra, we need the following

definition.

Definition 1.1.22. An element x in a C∗-algebra A is said to be positive if there exists some

y in A such that x = y∗y. The set of positive elements on A is denoted by A+

A linear functional φ : A → C is said to be positive if φ(x) ≥ 0 for all x in A+. A positive

linear functional φ that satisfies φ(1) = 1 is called a state.

We have the following:

Definition 1.1.23. (G.N.S construction) Given a C∗-algebra A equipped with a state φ, one

can construct a Gelfand-Naimark-Segal (GNS) triple (L2(A, φ), πφ, ξφ), where L2(A, φ) is the

Hilbert space completion of A with respect to the semi-inner product 〈〈a, b〉〉 = φ(a∗b) on A,

πφ : A → B(L2(A, φ)) is a ∗-representation and ξφ is a cyclic vector in L2(A, φ), i.e., the set

Span{πφ(x)ξφ : x ∈ A} is dense in L2(A, φ). This GNS triple satisfies the relation

φ(x) = 〈ξφ, πφ(x)ξφ〉.

For a Hilbert space H, the weak operator topology (WOT) is a locally convex topology on

B(H) given by a family of seminorms

F1 := {pξ,η : ξ, η ∈ H} where pξ,η(X) = |〈xξ, η〉|.

This places us in a position to define von Neumann algebras.

Definition 1.1.24. A unital ∗-subalgebra A of the space of bounded operators B(H) of a Hilbert

space H which is closed under WOT is said to be a von Neumann algebra.

We need to recall the following two notions before we can give the statement of von Neu-

mann’s Double Commutant Theorem. Firstly, the strong operator topology (SOT) on the space

of bounded operator B(H) of a Hilbert space H is given by a family of seminorms

F2 := {pξ : ξ ∈ H} where pξ(x) = ||xξ||.
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Also, for any subset B of B(H), the commutant B′ is defined by

B′ := {x ∈ B(H) : xb = bx ∀b ∈ B}.

Moreover, we use the symbol B′′ to denote the set (B′)′. Then we can state the following:

Theorem 1.1.25. (von Neumann) Given a Hilbert space H and a unital ∗-subalgebra A of

B(H), the closures of A under WOT and SOT are equal, and they are further equal to the

double commutant A′′ of A.

Note that, as a consequence of the above theorem, a C∗-algebra which is equal to its double

commutant is a von Neumann algebra.

Definition 1.1.26. A linear functional φ on a von Neumann algebra A is said to be normal if

whenever a net of positive elements xα in A increases to an element x, φ(xα) goes to φ(x).

For more details on C∗ and von Neumann algebras, we refer to the books [31,88].

Now we come to the definition and examples of Hilbert C∗-modules.

Definition 1.1.27. Let A be a C∗-algebra with norm ‖ · ‖. A pre-Hilbert A-module is a right

A-module M together with a map 〈·, ·〉 : M ×M → A which is linear in the second variable and

satisfies the following conditions:

(i) 〈x, ya〉 = 〈x, y〉a;

(ii) 〈x, y〉∗ = 〈y, x〉;

(iii) 〈x, x〉 ≥ 0;

(iv) x 6= 0 implies 〈x, x〉 6= 0;

for all x, y in M and a in A.

A pre-Hilbert module (M, 〈·, ·〉) is called a Hilbert C∗-module (or simply, a Hilbert module)

if M is complete under the norm defined by ‖x‖ := ‖〈x, x〉‖
1
2 .

We have the following analogue of Cauchy-Schwarz inequality for Hilbert modules:

Lemma 1.1.28. Let M be a Hilbert A-module. Then for all x, y in M, the following inequality

holds: ‖〈x, y〉‖ ≤ ‖x‖‖y‖.
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A Hilbert A-module M is said to be countably generated if there exists a set S = {xn : n ∈

N, xn ∈M} such that the set {xna : xn ∈ S, a ∈ A} is dense in M .

Given a C∗-algebra A, let HA denote the set of all A-valued sequences (an)n∈N such that∑
n ‖a∗nan‖ <∞. Then the A-valued inner product

〈a, b〉 =
∑
n

a∗nbn

turns HA into a Hilbert module. We have the following theorem by Kasparov.

Theorem 1.1.29. (Kasparov’s stabilization theorem) A countably generated Hilbert A-module

E is isomorphic to a complemented Hilbert submodule of HA. Moreover,

E ∼= E ⊕HA.

For more details on Hilbert C∗-modules, we refer to the book [63].

1.2 Hopf algebras and covariant bimodules

In this section, we introduce the notion of Hopf algebras. We start by recalling the definitions

of coalgebras and bialgebras.

A coalgebra over C is a triple (C,∆, ε) with C a vector space, ∆ a linear map called the

comultiplication map and ε : C → C a linear map called the counit, such that

(∆⊗Cid)∆ = (id⊗C∆)∆, (id⊗A ε)∆ = (ε⊗A id)∆ = id.

Here, we have identified C⊗CC and C⊗CC with C.

Sweedler notation

Let (C,∆, ε) be a coalgebra. Let c be in C with ∆(c) =
∑

i c1i⊗Cc2i, where cji are in C. We

indicate such an expression by the form

∆(c) = c(1)⊗Cc(2),
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suppressing the summation
∑

and the index i. Thus coassociativity of ∆ yields

c(1)⊗C(c(2))(1)⊗C(c(2))(2) = (c(1))(1)⊗C(c(1))(2)⊗Cc(2).

So we write (∆⊗Cid)∆(c) = (id⊗C∆)∆(c) in the form

c(1)⊗Cc(2)⊗Cc(3).

Using the coassociativity on the higher order tensor products, we can similarly define, without

ambiguity, a map C → C⊗(n):

c 7→ c(1)⊗C · · · ⊗Cc(n).

Definition 1.2.1. Let (C,∆C , εC) and (D,∆D, εD) be coalgebras. A linear map T : C → D is

called a coalgebra map if (T⊗CT )∆C = ∆DT and εDT = εC. In Sweedler notation, the first

equation can be written as

T (c)(1)⊗CT (c)(2) = T (c(1))⊗CT (c(2)).

Definition 1.2.2. Given a coalgebra C, a left C-comodule is a pair (N,∆N ) where N is a vector

space N and ∆N : N → C⊗CN is a C-linear map such that

(ε⊗Cid)∆N = id, (id⊗C∆N )∆N = (∆⊗Cid)∆N .

Similarly, a right C-module is a pair (N,N∆) with a vector space N and a linear map N∆ :

N → N⊗CC such that

(id⊗Cε)N∆ = id, (N∆⊗Cid)N∆ = (id⊗C∆)N∆.

Lastly, a C-bicomodule is a triple (N,∆N ,N∆) such that (N,∆N ) is a left C-comodule, (N,N∆)

is a right C-comodule and

(id⊗CN∆)∆N = (∆N⊗Cid)N∆
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Sweedler notation

The Sweedler notation for coalgebras can be extended to the setting of comodules. For n in N ,

we write

∆N (n) = n(−1)⊗Cn(0), N∆(n) = n(0)⊗Cn(1).

Note that the index (0) indicates the comodule tensorand and non-zero indices indicate the

coalgebra tensorand.

Let C and D be coalgebras. We define ∆C⊗CD : C⊗CD → (C⊗CD)⊗C(C⊗CD) by

∆C⊗CD = (id⊗Cflip⊗Cid)(∆C⊗C∆D),

where flip : C⊗CD → D⊗CC is the permutation of the two factors. Then (C⊗CD,∆C⊗CD) is a

coalgebra called the tensor product of C and D. Explicitly,

∆(c⊗Cd) = c(1)⊗Cd(1)⊗Cc(2)⊗Cd(2) and ε(c⊗Cd) = ε(c)ε(d).

Now suppose that (A,m, u) is an algebra and (A,∆, ε) is a coalgebra. Thus A⊗CA is an

algebra as well as a coalgebra. One has the following proposition.

Proposition 1.2.3. The following are equivalent:

(i) m and u are coalgebra maps;

(ii) ∆ and ε are algebra maps.

Definition 1.2.4. A pentuple (A,m, u,∆, ε) satisfying any of the equivalent conditions of the

above proposition is called a bialgebra.

Let us recall the convolution product. Let (C,∆) be a coalgebra and (A,m) an algebra. We

put an algebra structure on HomC(C,A), called the convolution algebra as follows:

T1 ∗ T2 = m(T1⊗CT2)∆.

Explicitly, (T1 ∗ T2)(c) = T1(c(1))T2(c(2)).
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Now suppose (A,m, u,∆, ε) is a bialgebra. We write AC for the underlying coalgebra and

for the algebra, again A. Then HomC(AC ,A) is an algebra under the convolution product. We

note that the identity operator id : A → A is an element of HomC(AC ,A).

A convolution inverse S in HomC(AC ,A) of id : A → A is called an antipode of the bialgebra

A. Explicitly, S(a(1))a(2) = a(1)S(a(2)) = ε(a)1 for all a in A. Note that by definition, an

antipode if exists, is unique.

Definition 1.2.5. A bialgebra with an antipode is called a Hopf algebra.

Definition 1.2.6. ([61]) A (left) 2-cocycle γ on a Hopf algebra (A,∆) is a C-linear map γ :

A⊗CA → C such that it is convolution invertible, unital, i.e,

γ(a⊗C1) = ε(a) = γ(1⊗Ca)

and for all a, b, c in A,

γ(a(1)⊗Cb(1))γ(a(2)b(2)⊗Cc) = γ(b(1)⊗Cc(1))γ(a⊗Cb(2)c(2)). (1.2.1)

The convolution inverse γ of γ is a right 2-cocyle on the Hopf algebra (A,∆), i.e. a C-linear

map from A⊗CA to C which is convolution invertible with convolution inverse γ, unital and

satsifies, for all a, b, c in A,

γ(a(1)b(1)⊗Cc)γ(a(2)⊗Cb(2)) = γ(a⊗Cb(1)c(1))γ(b(2)⊗Cc(2)).

Given a Hopf algebra (A,∆) and such a 2-cocycle γ as above, we have a new Hopf algebra

(Aγ ,∆γ) as given by the following definition.

Definition 1.2.7. ([32]) If (A,∆) is a Hopf algebra and γ is a 2-cocycle as above, the cocycle

deformed Hopf algebra is given by the pair (Aγ ,∆γ) where Aγ is equal to A as a vector space

and the coproduct ∆γ = ∆. The algebra structure ∗γ on Aγ is defined by the following equation:

a ∗γ b = γ(a(1)⊗Cb(1))a(2)b(2)γ(a(3)⊗Cb(3)). (1.2.2)

Remark 1.2.8. The deformation of Aγ by γ gives back A, i.e. (Aγ)γ ∼= A.

As an example of Hopf algberas, we introduce the Hopf algebra SUq(2).
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Definition 1.2.9. For q ∈ [−1, 1]\0, SUq(2) is the ∗-algebra generated by the two elements

α, γ, and their adjoints, satisfying the following relations:

α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1,

γ∗γ = γγ∗, αγ = qγα, αγ∗ = qγ∗α.

The comultiplication map ∆ is given on the generators by

∆(α) = α⊗Cα− qγ∗⊗Cγ, ∆(γ) = γ⊗Cα+ α∗⊗Cγ.

For more details on Hopf algebras, we refer to the books [1, 23, 59, 61, 78, 87]. In this thesis,

we will only deal with the algebraic aspects of Hopf algebras. For the analytic aspects, we refer

to [62,68,75,90,91,94].

Now we recall the notion of covariant bimodules over a Hopf algebra A. Covariant bimodules

have been studied (under the name Hopf-bimodules) by many algebraists including Abe ([1])

and Sweedler ([87]). They were introduced independently by Woronowicz ([93]) for studying

differential calculi over Hopf algebras.

Definition 1.2.10. Suppose M is an A-bimodule such that (M,∆M ) is a left A-comodule.

Then (M,∆M ) is called a left-covariant bimodule if for all a in A and m in M , the following

equations hold:

∆M (am) = ∆(a)∆M (m), ∆M (ma) = ∆M (m)∆(a).

Similarly, if M∆ is a right comodule coaction on M, then (M,M∆) is called a right covariant

bimodule if for any a in A and m in M ,

M∆(am) = ∆(a)M∆(m), M∆(ma) = M∆(m)∆(a).

Finally, let M be a bimodule over A and ∆M : M → A⊗CM and M∆ : M →M⊗CA be C-linear

maps. Then we say that (M,∆M ,M∆) is a bicovariant A-bimodule if the following conditions

are satisfied:

(i) (M,∆M ) is left-covariant bimodule,

(ii) (M,M∆) is a right-covariant bimodule,

(iii) (id⊗CM∆)∆M = (∆M⊗Cid)M∆.
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Note that, by definition, a bicovariant A-bimodule is in particular an A-bicomodule.

The vector space of left (respectively, right) invariant elements of a left (respectively, right)

covariant bimodules will play a crucial role in Chapter 4, and we introduce notations for them

here.

Definition 1.2.11. Let (M,∆M ) be a left-covariant bimodule over A. The subspace of left-

invariant elements of M is defined to be the vector space

0M := {m ∈M : ∆M (m) = 1⊗Cm}.

Similarly, if (M,M∆) is a right-covariant bimodule over A , the subspace of right-invariant

elements of M is the vector space

M0 := {m ∈M : M∆(m) = m⊗C1}.

Let us note the immediate consequences of the above definitions.

Lemma 1.2.12. (Theorem 2.4 of [93]) Suppose M is a bicovariant A-bimodule. Then

M∆(0M) ⊆ 0M⊗CA, ∆M (M0) ⊆ A⊗CM0. (1.2.3)

Explicitly, if {mi}i is a (finite) basis of 0M, then there exist elements {aji}ij in A such that

M∆(mi) =
∑
j

mj⊗Caji. (1.2.4)

Proof. This is a simple consequence of the fact that M∆ intertwines with ∆M .

Let (M,∆M ,M∆) and (N,∆N ,N∆) be bicovariant A-bimodules. Then

(M ⊗A N,∆M⊗AN ,M⊗AN∆) forms a bicovariant A-bimodule, called the tensor product of M

and N where the coactions ∆M⊗AN : M ⊗A N → A⊗CM ⊗A N and M⊗AN∆ : M ⊗A N →

M ⊗A N⊗CA are defined by

∆M⊗AN (m⊗A n) = m(−1)n(−1)⊗Cm(0) ⊗A n(0)

M⊗AN∆(m⊗A n) = m(0) ⊗A n(0)⊗Cm(1)n(1).
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We recall now the definition of covariant maps between bimodules.

Definition 1.2.13. Let (M,∆M ) and (N,∆N ) be left-covariant A-bimodules and T be a C-

linear map from M to N.

T is called left-covariant if for all m in M , n in N , a in A,

(id⊗CT )(∆M (m)) = ∆N (T (m)).

T is called a right-covariant map between right-covariant A-bimodules (M,M∆) and (N,N∆) if

for all m in M , n in N , a in A,

(T⊗Cid)(M∆(m)) = N∆(T (m)).

Finally, a map which is both left and right covariant A-bilinear map will be called a bicovariant

map.

1.3 Noncommutative differential calculus

In this section, we shall recall the notion of differential calculi on algebras. In Subsections 1.3.1

and 1.3.2, we shall give two examples of constructions of differential calculi, given by Connes

and Woronowicz respectively. These will be used extensively in the thesis.

Definition 1.3.1. A differential calculus on an algebra A is a triple (Ω(A),∧, d), where

(i) Ω(A) :=
⊕

k≥0 Ωk(A) is a graded A-bimodule, i.e., each Ωk(A) is an A-bimodule, with

Ω0(A) = A,

(iii) ∧ : Ω(A)⊗AΩ(A)→ Ω(A) is a graded A-bilinear map, i.e., it restricts to A-bilinear maps

∧|Ωk(A)⊗AΩl(A) : Ωk(A)⊗A Ωl(A)→ Ωk+l(A),

(iii) d : Ω(A)→ Ω(A) is a graded exterior derivative with degree one, i.e. d restricts to maps

d|Ωk : Ωk(A)→ Ωk+1(A)
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and for any ω, ω′ in Ω(A),

d(ω ∧ ω′) = d(ω) ∧ ω′ + (−1)degωω ∧ d(ω′),

(iv) Ωk(A) = SpanC{
∑
d(a0) ∧ d(a1) ∧ . . . d(ak−1)ak : al ∈ A}.

The above definition is the noncommutative analogue of the following example:

Example 1.3.2. Let M be a smooth manifold of dimension n and A be the algebra C∞(M)

of smooth functions on M. Let Ωk(M) denote the A-bimodule of k-forms on M and Ω(M) =

⊕nk=0Ωk(M). We have the de-Rham differential d : Ωk(M)→ Ωk+1(M) and the classical wedge

map ∧ : Ωk(M) ⊗A Ωl(M) → Ωk+l(M). The triplet (Ω(M),∧, d) is a differential calculus over

the algebra A. We will call this calculus the classical differential calculus on M.

Definition 1.3.3. A first order differential calculus on A is a pair (Ω1(A), d) where Ω1(A) is

an A-bimodule and d : A → Ω1(A) is a derivation such that Ω1(A) = SpanC{d(a)b : a, b ∈ A}.

1.3.1 Spectral triples

In this subsection, we recall the notion of spectral triples due to Connes ([25]) and the con-

struction of a differential calculus out of it. Spectral triples will be the basic objects of study

in Chapters 2 and 3. Our references for this subsection are [25], [64].

Definition 1.3.4. A spectral triple on a unital ∗-algebra A is a triple (A,H, D) where H is a

separable Hilbert space and D is a (possibly unbounded) self-adjoint operator on H such that the

following conditions are satisfied:

(i) there exists a faithful representation π of A on H,

(i) for all a in A, the operator [D,π(a)] has a bounded extension.

In addition, if the operator (1 + D2)−
1
2 is compact, we say that the spectral triple (A,H, D)

is of compact type. A spectral triple of compact type is called finitely summable if there exists

some p′ > 0 such that Tr(|D|−p′) < ∞. The infimum p of all such admissible p′ is called the

dimension of the spectral triple and the spectral triple is called p-summable.
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Note that in the above definition, the functional Tr denotes the usual trace on B(H).

All the examples of spectral triples in this thesis will be of compact type. It is clear from the

definition that the algebra A sits inside B(H) as a ∗-closed subalgebra {π(a) : a ∈ A}. However,

in order to simplify notations, we will often omit the representation π. Thus, we will simply

write [D, a]b to denote the bounded operator [D,π(a)]π(b).

There is a canonical spectral triple of compact type associated to any compact Riemannian

manifold. We explain this in the next example.

Example 1.3.5. Let (M, g) be a compact Riemannian manifold of dimension m and Ωk(M)

be the space of smooth k-forms on M. The space of all differential forms Ω(M) =
⊕m

k=0 Ωk(M)

can be made into a pre-Hilbert space via the pre-inner product given by

〈〈ω, η〉〉 =

∫
M
?(ω) ∧ ηdvol,

where ? denotes the Hodge ?-map and dvol denotes the volume form. Let H denote the Hilbert

space completion of Ω(M). The C∞(M) left-module structure on Ωk(M) extends to define a

representation π of C∞(M) on H.

If d denotes the de-Rham differential and d∗ its adjoint, then the Hodge-Dirac operator d+d∗

is a self-adjoint (densely defined) operator on H. The triplet (C∞(M),H, d+d∗) forms a spectral

triple of compact type which is m-summable.

Next we give an example of a compact spectral triple over a genuinely noncommutative

algebra.

Example 1.3.6. Recall the example (Example 1.1.18) of the noncommutative 2-torus C(T2
θ)

generated by two unitary elements U and V . Consider the dense ∗-algebra C∞(T2
θ) of C(T2

θ)

defined as:

C∞(T2
θ) := {

∑
m,n∈Z

amnU
mV n : supm,n|mknlamn| <∞ ∀k, l ∈ N}.

We define two derivations d1 and d2 on C∞(T2
θ) defined on the generators U and V by

d1(U) = U, d1(V ) = 0,

d2(U) = 0, d2(V ) = V.
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A faithful trace τ can be defined on C∞(T2
θ) by:

τ(
∑
m,n

amnU
mV n) = a00.

Define H := L2(τ)⊕L2(τ) where L2(τ) denotes the GNS Hilbert space of C(T2
θ) with respect to

the state τ. The representation of C(T2
θ) on H is given by the diagonal embedding a 7→

a 0

0 a


into B(H). Finally, define

D :=

 0 d1 + id2

d1 − id2 0

 .

Then, (C∞(T2
θ),H, D) gives a spectral triple of compact type on C(T2

θ).

For examples of spectral triples on SUq(2), we refer to [21] and [35]. We refer to [33] for an

examples of a spectral triple on the Podles’ spheres S2
q,c. For spectral triples on q-deformations

of compact semisimple Lie groups, we refer to [79].

Now we spell out the construction of the first order differential calculus (Definition 1.3.3)

arising out of a spectral triple (A,H, D).

Definition 1.3.7. The first order differential calculus on the spectral triple (A,H, D) is the

pair (Ω1
D(A), dD), where

(i) dD :=
√
−1[D, ·] : A → B(H),

(ii) Ω1
D(A) = SpanC(dD(a)b : a, b ∈ A).

Remark 1.3.8. By the above definition, Ω1
D(A) is a subset of B(H), and its A-bimodule struc-

ture is inherited from B(H).

For the rest of this subsection, we are going to dispense of the notation dD and denote the

derivative by d.

The space of two forms

The definition of the space of the higher order forms on (A,H, D) requires a little more work.

Even though B(H) comes with a natural multiplication map, which let us for the moment denote
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by m0, this is not a good candidate for the ∧ map of ΩD(A). This is because there can possibly

be a finite set ai0 , ai1 , . . . , aik such that
∑
ai0d(ai1) . . . d(aik) = 0 in B(H) (multiplication un-

derstood to be as between elements of B(H)), but
∑
d(ai0)d(ai1) . . . d(aik) 6= 0. This would in

turn mean that d is not a well-defined exterior derivative. Since for the purpose of this thesis,

we require only one-forms and two-forms of a calculus, we need only define the ∧ and d maps

onto the space of two-forms Ω2
D(A). For this reason, we introduce the following definition.

Definition 1.3.9. We denote by m0 : Ω1
D(A)⊗A Ω1

D(A)→ B(H) the natural multiplication on

the space of one-forms as a subspace of B(H). Moreover, we define J , called the space of junk

forms, to be the right A-submodule of the range of m0, to be denoted by Ran(m0), spanned by

elements of the set {
∑

i d(ai)d(bi) : ai, bi ∈ A,
∑

i aid(bi) = 0}.

Lemma 1.3.10. The space of junk forms J is closed under left and right A-action. Thus,

the quotient Ran(m0)/J is a well-defined A-bimodule, and the composition of the quotient map

with the multiplication map m0 given by

Ω1
D(A)⊗A Ω1

D(A)→ Ran(m0)→ Ran(m0)/J

is a well-defined A-bilinear map.

Proof. J is by definition a right A-submodule of Ran(m0), so we have to verify that it is also

closed under left A-action. To this end, let
∑

i aid(bi) = 0 be a finite sum, where ai, bi are in

A. For an arbitrary elements c in A,

c
∑
i

d(ai)d(bi) =
∑
i

d(cai)d(bi)− d(c)
∑
i

aid(bi) =
∑
I

d(cai)d(bi),

as
∑

i aid(bi) = 0.

But since
∑

i caid(bi) = 0, we have that
∑

i d(cai)d(bi) is in J , which implies that J is closed

under left A-action.

Since we have proved that J is an A-sub-bimodule of Ran(m0), the quotient Ran(m0)/J is a

well-defined A-bimodule and the quotient map is an A-bilinear map. Since m0 is the multipli-

cation in B(H) and A is contained in B(H), m0 is an A-bilinear map, thus the composition of

the quotient map and m0 is also an A-bilinear map. Thus we have our results.

Now we can satisfactorily make the following definition.
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Definition 1.3.11. Given a spectral triple (A,H, D), we define the space of two-forms as

Ω2
D(A) := Ran(m0)/J as in Lemma 1.3.10. The map ∧ : Ω1

D(A) ⊗A Ω1
D(A) → Ω2

D(A) is

defined as the composition of the quotient map and the map m0 as in the same lemma.

For a compact Riemannian manifold M , consider the spectral triple (C∞(M),H, D) of Ex-

ample 1.3.5. The operator

d : H0 := Ω0(M) = L2(M,dvol)→ H1 := Ω1(M), d =
√
−1[D, ·]

is a densely defined operator which is closable. The operator

L := −d∗d : H0 → H0

is a self-adjoint (unbounded) operator whose domain contains C∞(M). The operator L is called

the Hodge-Laplacian and contains a lot of geometric information on the manifold.

In Chapter 2, we will need a noncommutative analogue of the Hodge Laplacian introduced

by Goswami in [43]. So we record it here for later use. First we need to introduce an analogue

of the volume form dvol for p-summable spectral triples. Here, and elsewhere, the domain of an

unbounded operator will be denoted by Dom(T ).

Definition 1.3.12. For a p-summable spectral triple (A,H, D), the Dixmier trace on B(H) is

given by the positive linear functional τ ,

τ(X) = Limω
Tr(X|D|−p)
Tr(|D|−p)

,

where Limω is as in Chapter 4 of [25].

For the spectral triple (C∞(M),H, D) of Example 1.3.5, the functional τ of the above defi-

nition gives back the volume form dvol. Then we have the following.

Proposition 1.3.13. (Lemma 3.1, Lemma 3.2 and Lemma 5.1 of [43]) Let (A,H, D) be a p-

summable spectral triple of compact type and τ be as in Definition 1.3.12. We assume that the

formula 〈η, η′〉 = τ(η∗η′) is a semi-inner product on the vector space Ω1
D(A). We will denote

the Hilbert space completion of Ω1
D(A) under this semi-inner product by the symbol H1

D.
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We further assume that for all X in the ∗-algebra generated by A and [D,A], the map

R→ B(H), t 7→ eitDXe−itD

is differentiable at t = 0 in the norm topology of B(H).

Consider the densely defined operator d :=
√
−1[D, ·] : L2(A, τ)→ H1

D. We have the follow-

ing:

(i) d is closable. If L is defined to be the operator −d∗d, then A ⊆ Dom(L) and L(A) ⊆ A′′ ⊆

B(H).

(ii) If moreover, L(A) ⊆ A, then

(i) For all x in A, we have

L(x∗) = (L(x))∗. (1.3.1)

(ii) For all b, c in A, the following equation holds:

d∗(d(b)c) = −1

2
(bL(c)− L(b)c− L(bc)). (1.3.2)

1.3.2 Bicovariant differential calculi

In Section 1.2, we had recalled the notions of Hopf algebras and covariant bimodules. In this

subsection, we recall bicovariant differential calculi on Hopf algebras.

Definition 1.3.14. (Definitions 1.2, 1.3 of [93]) Let (E , d) be a first order differential calculus

on a Hopf algebra A.

We say that (E , d) is left-covariant if for any ak, bk in A, k = 1, . . . ,K,

(
∑
k

akdbk = 0) implies that (
∑
k

∆(ak)(id⊗Cd)∆(bk) = 0).

We say that (E , d) is right-covariant if for any ak, bk in A, k = 1, . . . ,K,

(
∑
k

akdbk = 0) implies that (
∑
k

∆(ak)(d⊗Cid)∆(bk) = 0).

We say (E , d) is bicovariant if it is both left-covariant and right-covariant.
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Bicovariant differential calculi on Hopf algebras have been studied by many mathematicians

(including [20, 42, 45, 52, 53, 69, 92, 93] and references therein). Majid and Oeckl ([74]) proved

that if (E , d) is a bicovariant differential calculus on a Hopf algebra A and γ is a 2-cocycle (in

the sense of Definition 1.2.6), then (E , d) can be twisted to a bicovariant differential calculus

(Eγ , dγ) over the twisted Hopf algebra Aγ (as in Definition 1.2.7). This particular example will

be studied in Chapter 5. The bicovariant 4D± calculi on the Hopf algebra SUq(2) will be studied

in Chapter 6. For more details on bicovariant differential calculi and their classifications, we

refer to the books [61], [71] and references therein. For examples of covariant differential calculi

on quantum homogeneous spaces, we refer to [47–50] and references therein.

Woronowicz ([93]) proved that a bicovariant differential calculus is automatically endowed

with a left as well as a right comodule coaction.

Proposition 1.3.15. (Propositions 1.2, 1.3 and 1.4 of [93]) Let (E , d) be a bicovariant first

order differential calculus on A. Then there exists linear mappings

∆E : E → A⊗CE , E∆ : E → E⊗CA

such that

(i) (E ,∆E , E∆) is a bicovariant A-bimodule, i.e. (E ,∆E) is a left A-comodule, (E , E∆) is a

right A-comodule and the following equations hold for all e in E and a in A:

∆E(ae) = ∆(a)∆E(e), ∆E(ea) = ∆E(e)∆(a) (1.3.3)

E∆(ae) = ∆(a)E∆(e), E∆(ea) = E∆(e)∆(a) (1.3.4)

(id⊗CE∆)∆E = (∆E⊗Cid)E∆ (1.3.5)

(ii) d is bicovariant, i.e.

∆E ◦ d = (id⊗Cd)∆ E∆ ◦ d = (d⊗Cid)∆. (1.3.6)

We note the following consequence of Proposition 1.3.15.

Lemma 1.3.16. For any a ∈ A, the following equations holds:

(i) a(1)⊗Cd(a(2)) = (da)(−1)⊗C(da)(0)
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(ii) d(a(1))⊗Ca(2) = (da)(0)⊗C(da)(1)

(iii) a(1)⊗Cd(a(2))⊗Ca(3) = (da)(−1)⊗C(da)(0)⊗C(da)(1)

Proof. Part (i) and part (ii) follow from (1.3.6). For Part (iii), we have

a(1)⊗Cd(a(2))⊗Ca(3) = (id⊗Cd⊗Cid)(id⊗C∆)∆(a)

= (id⊗CE∆)(id⊗Cd)∆(a) (by(1.3.6)) = (id⊗CE∆)∆E(da) (by(1.3.6))

= (id⊗CE∆)((da)(−1)⊗C(da)(0)) = (da)(−1)⊗CE∆((da)(0))

= (da)(−1)⊗C(da)(0)⊗C(da)(1).

This proves the lemma.

The space of two-forms

Following Woronowicz ([93]), let us define the space of two forms associated to a bicovariant

different calculus. For this we need to recall the following fundamental result concerning bico-

variant bimodules.

Proposition 1.3.17. (Proposition 3.1 of [93]) Given two bicovariant A-bimodules E and F ,

there exists a unique bimodule homomorphism σ : E⊗AF → F⊗AE such that σ(ω⊗Aη) = η⊗Aω

for any left-invariant element ω in E and right-invariant element η in F .

In particular, taking F = E, there exists a unique bimodule homomorphism

σ : E ⊗A E → E ⊗A E such that

σ(ω ⊗A η) = η ⊗A ω (1.3.7)

for any left-invariant element ω and right-invariant element η in E. σ is invertible and is a

bicovariant A-bimodule map from E ⊗A E to itself, i.e

(idA ⊗A σ)∆E⊗AE = ∆E⊗AE ◦ σ, (σ ⊗A idA)E⊗AE∆ = E⊗AE∆ ◦ σ. (1.3.8)

Moreover, σ satisfies the following braid equation on E ⊗A E ⊗A E :

(id⊗A σ)(σ ⊗A id)(id⊗A σ) = (σ ⊗A id)(id⊗A σ)(σ ⊗A id).
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Then, the space of two-forms is defined as follows:

Definition 1.3.18. Let (E , d) be a bicovariant first order differential calculus and σ be the map

as in Proposition 1.3.17. We define

Ω2(A) := (E ⊗A E)
/

Ker(σ − 1).

The symbol ∧ will denote the quotient map

∧ : E ⊗A E → Ω2(A).

Finally, we will denote Ker(∧) by the symbol E ⊗sym
A E . Thus,

Ker(∧) = Ker(σ − 1) = E ⊗sym
A E (1.3.9)

From now on, we will use the notation ρ ∧ ρ′ := ∧(ρ⊗A ρ′), for elements ρ, ρ′ in E .

Proposition 1.3.19. The subspace E⊗sym
A E := Ker(∧) is a bicovariant sub-bimodule of E⊗AE.

Moreover, the space Ω2(A) is a bicovariant bimodule, and the quotient map ∧ is a bicovariant

bimodule map.

Proof. Since the map σ is a bicovariant bimodule map, E ⊗sym
A E = Ker(σ − 1) is a sub-

bimodule of E ⊗A E invariant under the left and right coactions of A. The quotient Ω2(A) =

(E ⊗A E)
/

Ker(σ− 1) is the cokernel of the inclusion map E ⊗sym
A E ↪→ E ⊗A E . Hence, Ω2(A) is

a bicovariant A-bimodule, and the quotient map ∧ is a bicovariant bimodule map.

The other order forms are defined similarly. We refer to [93] for the details. In particular,

we have Ω0(A) = A and Ω1(A) = E . Then ∧ extends to a map

∧ : Ωk(A)⊗A Ωl(A)→ Ωk+l(A).

Collecting all the notations and results, we have the following proposition.

Proposition 1.3.20. ([93]) Suppose (E , d) is a first order bicovariant differential calculus on

A and Ω2(A) is the space of two-forms. The left and right comodule coactions ∆E⊗AE and

E⊗AE∆ of A on E ⊗A E descend to comodule coactions of A on Ω2(A) as Ker(σ − 1) is left and
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right-invariant. This makes Ω2(A) a bicovariant A-bimodule. The same is true for Ωk(A) for

all k ≥ 0.

Moreover, the map d extends uniquely to a bicovariant map from ⊕k≥0Ωk(A) to itself and

satisfies d2 = 0 and

d(θ ∧ θ′) = dθ ∧ θ′ + (−1)kθ ∧ dθ′

if θ is in Ωk(A).

Our definition of two-forms is in general different than that considered in [51].

Remark 1.3.21. Suppose A is a q-deformation of a classical compact semisimple Lie group and

E be a bicovariant bimodule over A. Then typically, the (q-dependent) eigenvalues of σ consist

of real numbers other than ±1. Let I be the set of eigenvalues of σ which tend (in limit) to 1 as

q tends to 1.

The authors of [20] define

Ω2(A) :=
E ⊗A E

Πλ∈I(σ − λ )
.

It is this definition of Ω2(A) which was taken in [51]. Thus, the definition of two-forms

considered in this chapter are different than that in [51] unless the only eigenvalues of σ are ±1.

1.4 Connections in classical and noncommutative geometry

Connections on noncommutative differential calculi are the main focus of study in this thesis.

The rest of the thesis will then be devoted to giving a coherent definition of Levi-Civita connec-

tions on some classes of noncommutative differential calculi, and investigating their existence

and uniqueness.

1.4.1 Levi-Civita connections in Riemannian geometry

Throughout this subsection, M will denote a smooth manifold and A will stand for the unital

algebra C∞(M) of smooth functions on a smooth manifold M . The symbols X(A) and Ωk(M)

will denote the Lie algebra of smooth vector fields and the set of all smooth k-forms on M

respectively. In particular, Ω1(M) = HomA(X(A),A). Since A is commutative, the right A-

modules X(A) and Ωk(M) are A-bimodules in a natural way.
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Vector fields on M are in one to one correspondence with derivations of the algebra A =

C∞(M). This correspondence maps X in X(A) to the map δX : A → A defined by

δX(a) = da(X).

Since δX is a derivation, it satisfies the identity

δX(ab) = δX(a)b+ aδX(b)

for all a, b in A.

We have an A-bilinear map

∧ : Ω1(M)⊗A Ω1(M)→ Ω2(M), ω ⊗A η 7→ ω ∧ η.

The space of k-forms Ωk(M) are spanned (as right A-modules) by elements of the form da1 ∧

· · ·∧dak where a1, · · · , ak are elements in A. The next proposition collects some well-known facts

about the spaces of one and two-forms on a manifold. We will see that any tame differential

calculi on a (possibly) noncommutative algebra (Chapter 2) and certain bicovariant differential

calculi on a Hopf algebra (Chapter 4) satisfy some of these properties.

Proposition 1.4.1. The following short-exact sequence of right A-modules splits:

0→ Ker(∧)→ Ω1(M)⊗A Ω1(M)→ Ω2(M)→ 0.

We have

Ω1(M)⊗A Ω1(M) = Ker(∧)⊕F (1.4.1)

where F is isomorphic to Ω2(M) as right A-modules. Concretely, we have

Ker(∧) = {ω ⊗A η + η ⊗A ω : ω, η ∈ Ω1(M)}, F = {ω ⊗A η − η ⊗A ω : ω, η ∈ Ω1(M)}.

Let Psym : Ω1(M) ⊗A Ω1(M) → Ω1(M) ⊗A Ω1(M) be the idempotent with range Ker(∧) and

kernel equal to F . Then the map Psym is A-bilinear and given by the formula:

Psym(ω ⊗A η) =
1

2
(ω ⊗A η + η ⊗A ω)

for all ω, η in Ω1(M).
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Definition 1.4.2. A connection on a manifold M is a C-linear map ∇ : Ω1(M)→ Ω1(M)⊗A

Ω1(M) such that

∇(ωa) = ∇(ω)a+ ω ⊗A da

for all ω in Ω1(M) and for all a in A.

A covariant derivative on M is a map

X(A)× X(A)→ X(A), (X,Y ) 7→ ∇YX

such that for all a in A and for all X,Y,X ′, Y ′ in X(A), the following equations hold:

∇Y (X +X ′) = ∇YX +∇YX ′, ∇Y+Y ′(X) = ∇YX +∇Y ′X,

∇Y aX = (∇YX)a, ∇Y (Xa) = (∇YX)a+XδY (a).

The notions of connections and covariant derivatives are equivalent. Indeed, given a connection

∇ on Ω1(M), a covariant derivative on the level of vector fields is uniquely defined by the

following equation for all ω in Ω1(A) :

ω(∇YX) = δY (ω(X))− (∇(ω))(X ⊗A Y ). (1.4.2)

Conversely, given a covariant derivative, a connection ∇ can be recovered from (1.4.2).

Now we recall the notion of torsionless-ness of a connection.

Definition 1.4.3. A connection ∇ on M is called torsionless if the covariant derivative defined

by (1.4.2) satisfies the following equation for all X,Y in X(A) :

∇XY −∇YX − [X,Y ] = 0.

Let us state the definition of a pseudo-Riemannian metric on a manifold. In this section, the

symbol flip : Ω1(M)⊗AΩ1(M)→ Ω1(M)⊗AΩ1(M) will denote the flip map, i.e, flip(ω⊗A η) =

η ⊗A ω.
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Definition 1.4.4. A pseudo-Riemannian metric on a manifold M is a right A-linear map

g : Ω1(M)⊗A Ω1(M)→ A such that

(i) g ◦ flip = g,

(ii) the map

Vg : Ω1(M)→ HomA(Ω1(M),A), Vg(ω)(η) = g(ω ⊗A η)

is an isomorphism of right A-modules.

Remark 1.4.5. Since A = C∞(M) is commutative and aω = ωa for all a in A and ω in

Ω1(M), a pseudo-Riemannian metric g is automatically left A-linear. Thus, g is A-bilinear.

The same is true for the map Vg.

Throughout this thesis, we will not postulate the condition of positive definiteness in the def-

inition of a metric. The next proposition shows that pseudo-Riemannian metrics as in Definition

1.4.4 are in one to one correspondence with the usual notion of pseudo Riemannian metrics on

the level of vector fields.

Proposition 1.4.6. Let fl̃ip : X(A)⊗AX(A)→ X(A)⊗AX(A) denote the flip map on the level

of vector fields and g be a pseudo-Riemannian metric on M as in Definition 1.4.4. Then

g̃ : X(A)⊗A X(A)→ A, g̃(X ⊗A Y ) = g(V −1
g (X)⊗A V −1

g (Y ))

coincides with the usual notion of a smooth pseudo-Riemannian metric in differential geometry,

i.e, g̃ ◦ fl̃ip = g̃ and on a co-ordinate neighborhood (U, x) of M, the matrix ((g̃ij))ij = ((g̃( ∂
∂xi
⊗A

∂
∂xj

)))ij is an invertible matrix with entries in C∞(U).

Proof. We begin by observing that as g maps Ω1(M) ⊗A Ω1(M) to A, the range of g̃ also lies

in A. If X,Y belong to X(A), we have

g̃(fl̃ip(X ⊗A Y )) = g̃(Y ⊗A X) = g(V −1
g (Y )⊗A V −1

g (X)) = g(flip(V −1
g (X)⊗A V −1

g (Y )))

= g(V −1
g (X)⊗A V −1

g (Y )) = g̃(X ⊗A Y ).

Next, if (U, x) is a co-ordinate of M, then by an usual partition of unity argument, we can extend

the local vector fields ∂
∂xi

smoothly to the whole of M. Then since g̃(X(A)⊗AX(A)) ⊆ A, g̃ij ∈ A

and in particular, the map U → C, m 7→ g̃ij(m) belongs to C∞(U).
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Finally, we need to check the invertibility of the matrix (g̃ij). We view the local vector fields

∂
∂xi

as elements of HomA(Ω1(M),A). Since g is a pseudo-Riemannian metric, the condition (ii)

of Definition 1.4.4 implies that the matrix ((gij))ij is invertible, where gij = g(dxi ⊗A dxj).

Denote the inverse of the matrix by the notation ((gij))ij . Then the following computation

shows that the matrix gt = (((gij))ij)
t is the inverse to the matrix ((g̃ij))ij and in particular,

((g̃ij))ij is an invertible matrix.

∑
j

g̃ij(g
t)jk =

∑
j

g̃ijgkj =
∑
j

g̃(
∂

∂xi
⊗A gkj

∂

∂xj
)

=g̃(
∂

∂xi
⊗A Vg(dxk)) (since Vg(dxk) =

∑
j

gkj
∂

∂xj
)

=g̃(
∑
l

gilVg(dxl)⊗A Vg(dxk)) (since
∂

∂xi
=
∑
l

gilVg(dxl))

=
∑
l

gilglk (by the definition of g̃)

=δik.

The following definition is regarding the compatibility of a connection with respect to a

pseudo-Riemannian metric in terms of the associated covariant derivative.

Definition 1.4.7. Suppose g is a pseudo-Riemannian metric on a manifold M. A connection

∇ on M is said to be compatible with g if

δY (g̃(Z ⊗A X)) = g̃(∇Y Z ⊗A X) + g̃(∇YX ⊗A Z)

for all X,Y, Z in X(A).

Now we state some equivalent criteria for a connection to be torsionless and compatiblity

with a pseudo-Riemannian metric. These criteria are well-known but since we were unable to

find a reference which states these criteria exactly as we need them, let us refer to Proposition

5.1 and Proposition 5.4 of [14] for the proofs.
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Proposition 1.4.8. A connection ∇ on a manifold M is torsionless if and only if

∧ ◦ ∇(ω) = −dω for all ω in Ω1(M).

If g is a pseudo-Riemannian metric on M, then a connection ∇ is compatible with g if and

only if

(g ⊗A id)[flip23(∇(ω)⊗A η) + (ω ⊗A ∇(η))] = d(g(ω ⊗A η))

for all ω, η in Ω1(M).

If g is a pseudo-Riemannian metric on a manifold M and ∇ is a connection on M which is

torsionless and compatible with g, then ∇ is called a Levi-Civita connection. The fundamental

theorem of differential geometry states that such a connection exists uniquely.

Theorem 1.4.9. (Levi-Civita’s theorem) If g is a pseudo-Riemannian metric on a manifold

M, there exists a unique connection on M which is torsionless and compatible with g.

The goal of this thesis is to prove this theorem for some bimodules over a (possibly) non-

commutative algebra.

1.4.2 Connections on a noncommutative differential calculus

In Subsection 1.4.1, we discussed connections on the module of one-forms of manifolds (Defini-

tion 1.4.2), and their torsion (Proposition 1.4.8). This motivates the following definitions.

Definition 1.4.10. Given a first order differential calculus (Ω1(A), d) on an algebra A, a (right)

connection ∇ on the space of one-forms Ω1(A) is a C-linear map ∇ : Ω1(A)→ Ω1(A)⊗AΩ1(A)

such that, for any ω in Ω1(A) and a in A,

∇(ωa) = ∇(ω)a+ ω ⊗A d(a).

Definition 1.4.11. Given a differential calculus (Ω(A),∧, d) on an algebra A, the torsion T∇

of a connection ∇ is a right A-linear map T∇ : ∧ ◦∇+ d : Ω1(A)→ Ω2(A). A connection ∇ is

said to be torsionless if T∇ = 0.

Remark 1.4.12. There are articles in literature which work with left connections (for example

[41], [51]). A left connection is a C-linear map ∇ : Ω1(A) → Ω1(A) ⊗A Ω1(A) such that
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∇(aω) = a∇(ω) + d(a)⊗A ω. In this case, the torsion is defined to be the map ∧◦∇− d. In this

thesis, we will only work with right connections.



Chapter 2

Levi-Civita connections on tame

spectral triples

In this chapter, we deal with the question of existence of Levi-Civita connections for a class

of spectral triples which we call tame spectral triples. As explained before, the formulation

of the question of existence and uniqueness of Levi-Civita connection for a bimodule E over

a (possibly) noncommutative algebra A needs two ingredients: firstly, an analogue of the flip

map and a metric compatibility condition. We start with a class of spectral triples called quasi-

tame spectral triples (see Section 2.2) with the bimodule of one-forms E which postulates a

decomposition of the A-bimodule E ⊗A E analogous to Proposition 1.4.1. This gives rise to a

canonical A-bilinear map σ : E ⊗A E → E ⊗A E (satisfying σ2 = id) which plays the role of the

flip map in this chapter. As a bonus, we also demonstrate that if E is the bimodule of one-forms

on a quasi-tame spectral triple, then E always admits a torsionless connection. In Section 2.3

we define and study the notion of pseudo-Riemannian metrics on a quasi-tame spectral triple.

We also give a candidate of a canonical Riemannian bilinear metric for a spectral triple. This

solves the first problem.

Next, in order to formulate the metric-compatibility condition, we will work with a smaller

class of spectral triples which are the tame spectral triples introduced in Section 2.4. In the

same section, we also introduce the notion of compatibility of connections associated to tame

spectral triple with pseudo-Riemannian metrics. In Theorem 2.5.1, we prove that if g is a pseudo-

Riemannian bilinear metric on the space of one-forms of a tame spectral triple, then there exists

a unique connection on the space of one-forms of the spectral triple which is torsionless and

43
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compatible with g. Examples of tame spectral triples will be given in the next chapter. At the

end of this chapter, we have compared our approach with some of the existing works in the

literature.

All algebras discussed here will be unital and all spectral triples will be of compact type.

The contents of this chapter are from [16].

2.1 Centered Bimodules

As mentioned above, the existence and uniqueness theorem for Levi-Civita connections that we

are going to prove works for tame spectral triples. We will soon see (Remark 2.4.2) that the

space of one-forms of a tame spectral triple is a centered bimodule. In this section, we recall

the definition of centered bimodules and discuss some of their properties which will be useful

for us.

Definition 2.1.1. The center of a bimodule E over an algebra A is defined to be the set

Z(E) = {e ∈ E : ea = ae ∀ a ∈ A}.

The bimodule E is called centered if Z(E) is right A-total in E, i.e, the right A-linear span of

Z(E) is equal to E.

From the above definition, it is easy to see that Z(E) is a Z(A)-bimodule. Indeed, if e is an

element of Z(E), a belongs to Z(A) and b belongs to A, then

b(ea) = eba = (ea)b.

Remark 2.1.2. In [36], a related notion called central bimodules is defined. An A-bimodule E

is called central if every element e in E commutes with every element of Z(A).

If E is a centered module in the sense of Definition 2.1.1, then it is also central. Indeed, if e is

an element of the centered bimodule E, then there exists some elements ei in Z(E) and ai in A,

for a finite number i, such that e =
∑

i eiai. Then, for an arbitrary element a′ in Z(A),

ea′ =
∑
i

eiaia
′ = a′

∑
i

eiai = a′e.
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The converse however, does not hold in general as the notion of centered bimodules is more

stringent.

The following example motivates our interest in centered bimodules.

Example 2.1.3. If A = C∞(M) for some compact manifold M , and Γ(E) is the A-bimodule

of sections of some smooth vector bundle E on M , then since A is commutative, the right A-

action on E can be defined to be the left A-action and so Γ(E) is centered. In particular, the

A-bimodule Ωk(M) of k-forms on M is centered.

The following is an example of a centered bimodule over a noncommutative algebra.

Example 2.1.4. Suppose A is a (possibly) noncommutative unital algebra. Then E := A ⊕

· · · ⊕ A, i.e. the direct sum of finitely many copies of A, is a centered A-bimodule. The center

Z(E) is given by Z(A)⊕ · · · ⊕ Z(A). It is easy to see that Z(E) is right A-total in E.

As an immediate corollary to the definition of centered bimodules, we have the following

lemma:

Lemma 2.1.5. Suppose E is a centered bimodule over A. Then the following statements hold:

(i) Z(E) is also left A-total in E.

(ii) The set {ω ⊗A η : ω, η ∈ Z(E)} is both left and right A-total in E ⊗A E.

(iii) If X is an element of E ⊗A E , there exist ωi in E, ηi in Z(E) and ai in A such that

X =
∑
i

ωi ⊗A ηiai.

(iv) If in addition, E is a free right A-module with a basis {e1, e2, · · · , en} ⊆ Z(E), then any

element X in E ⊗A E can be written as a unique linear combination
∑

ij ei ⊗A ejaij for

some elements aij in A.

Proof. Let e be an element of E . Since Z(E) is right A-total in E , there exist ωi ∈ Z(E) and ai

in A such that e =
∑

i ωiai. But since ωi belongs to Z(E), we have ωiai = aiωi for all i. Thus,

e =
∑
i

aiωi,
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proving that Z(E) is left A-total in E .

Now we prove part (ii). Let e and f belong to E . It is enough to prove that e⊗A f belongs

to the complex linear span of the set {ω ⊗A ηa : ω, η ∈ Z(E), a ∈ A}. Indeed, if there exist

ωi, ηi ∈ Z(E) and ai in A such that

e⊗A f =
∑
i

ωi ⊗A ηiai, (2.1.1)

then

e⊗A f =
∑
i

ωi ⊗A aiηi =
∑
i

ωiai ⊗A ηi =
∑
i

aiωi ⊗A ηi

proving that {ω ⊗A η : ω, η ∈ Z(E)} is left A-total in E ⊗A E .

The fact that e⊗A f is of the form (2.1.1) is also easily proved. Since Z(E) is right A-total

in E , there exist ωk, ηl in Z(E) and ak, bl in A such that

e =
∑
k

ωkak, f =
∑
l

ηlbl

and so

e⊗A f = (
∑
k

ωkak)⊗A (
∑
l

ηlbl) =
∑
k,l

ωk ⊗A akηlbl

=
∑
k,l

ωk ⊗A ηlakbl.

This finishes the proof of part (ii).

The third assertion directly follows from the second.

Finally, we prove the last assertion. By part (iii), X =
∑

k ωk ⊗A ηkak where ωk are in E , ηk

are in Z(E) and ak are in A. Since E is a free right A-module with a basis {e1, · · · en}, there

exist elements cik, djk in A such that

ωk =
∑
i

eicik, ηl =
∑
j

ejdjl.
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Hence,

X =
∑
k

(
∑
i

eicik)⊗A (
∑
j

ejdjk)ak =
∑
i,j,k

ei ⊗A cikejdjkak

=
∑
i,j,k

ei ⊗A ejcikdjkak =
∑
i,j

ei ⊗A ej(
∑
k

cikdjkak)

where we have used the fact that aei = eia for all i since ei belongs to Z(E). Finally, uniqueness

of the expression follows from the fact that E ⊗A E is a free right A-module with a basis

{ei ⊗A ej}ij .

We will use the lemma above repeatedly in the chapter, sometimes, without mentioning.

For the purposes of this chapter, we will be dealing with a specific class of centered bimodules.

The next proposition is motivated towards the same.

Proposition 2.1.6. Suppose E is an A-bimodule such that the map uE : Z(E) ⊗Z(A) A → E

given by

uE
(∑

i

e′i ⊗Z(A) ai
)

=
∑
i

e′iai

is an isomorphism of vector spaces. Then we have the following isomorphism of A-bimodules:

E ∼= A⊗Z(A) Z(E) ∼= Z(E)⊗Z(A) A.

The A-bimodule structure of Z(E)⊗Z(A) A is given by

b(e⊗Z(A) a)c = e⊗Z(A) bac,

where e is in Z(E), a, b, c are in A. The A-bimodule structure of A ⊗Z(A) Z(E) is similarly

given. In particular, the set Z(E) is right A-total in E , i.e, E is centered.

Proof. Since uE is an isomorphism, any element e can be written as
∑

i eiai, where ei are in

Z(E) and ai in A. Let us make a small observation at this point. We claim that if b is in Z(A),

be = eb for all e in E . Let e =
∑

i eiai as above. Then be = b
∑

i eiai =
∑

i eibai =
∑

i eiaib = eb

as ei are in Z(E) and b is in Z(A). This proves the claim. It is clear from the definitions that the

map uE is left Z(A)-linear and right A-linear. Let us define a left A-linear, right Z(A)-linear
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map vE : A⊗Z(A) Z(E)→ E by

vE
(∑

i

ai ⊗Z(A) e
′
i

)
=
∑
i

aie
′
i.

Consider the map p : Z(E)×A → A⊗Z(A) Z(E) given by (e, a) 7→ (a⊗Z(A) e). Using the claim

made above, it is clear that p(ea′, a) = p(e, a′a), so that we get a well-defined map

p : Z(E)⊗Z(A) A → A⊗Z(A) Z(E), given by (e⊗Z(A) a) 7→ (a⊗Z(A) e).

It is in fact an isomorphism, with the inverse map, say q, given by

q(a⊗Z(A) e) = (e⊗Z(A) a).

Observe that vE = uE ◦ q, hence vE is an isomorphism as well. Thus, the map vE is also a vector

space isomorphism as well.

Next, we endow Z(E)⊗Z(A) A with an A-bimodule structure defined by

b(e⊗Z(A) a)c = e⊗Z(A) bac,

where e is in Z(E), a, b, c are in A. Then it is easy to see that uE defines an A-bimodule

isomorphism. The other isomorphism follows by using the map vE .

The following theorem is crucial for this chapter.

Theorem 2.1.7. (Theorem 6.10 of [85]) Let E be an A-bimodule which is centered. Then there

exists a unique A-bimodule isomorphism σcan : E ⊗A E → E ⊗A E such that

σcan(ω ⊗A η) = η ⊗A ω

for all ω, η in Z(E). Moreover, (σcan)2 = id so that P can
sym := 1

2(1 + σcan) : E ⊗A E → E ⊗A E is

an A-bilinear idempotent map.

Proof. We only need to remark that the equation (σcan)2 = id is derived in the proof of Theorem

6.10 of [85]. Indeed, since E is centered, E ⊗A E = SpanC{e⊗A fa : e, f ∈ Z(E), a ∈ A}, by part
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(iii) of Lemma 2.1.5, it is enough to observe that

(σcan)2(e⊗A fa) = σcan(σcan(e⊗A fa)) = σcan(f ⊗A ea) = e⊗A fa.

Let us make the following observation:

Lemma 2.1.8. For a centered A-bimodule E, we have σcan(ω⊗Ae) = e⊗Aω and σcan(e⊗Aω) =

ω ⊗A e for all ω in Z(E) and e in E .

Proof. Since E is centered and σ is right A-linear, it is enough to prove the lemma for elements

e of the form ηb where η is in Z(E) and b is in A.

We compute σcan(ω⊗A ηb) = σcan(ω⊗A η)b = (η⊗A ω)b = η⊗A ωb = η⊗A bω = ηb⊗A ω =

e⊗A ω.

The other equality follows similarly.

We will end this subsection with Lemma 2.1.10. But before that, we want to state and

prove Proposition 2.1.9 whose proof is basically a reformulation of the proof of the existence

and uniqueness of Levi-Civita connections for pseudo-Riemannian manifolds.

Let V be a complex vector space and flip denotes the map from V⊗CV → V⊗CV de-

fined on simple tensors by the formula flip(v⊗Cw) = w⊗Cv. We will use the maps flip12 :=

flip⊗CidV , flip23 := idV⊗Cflip and flip13 := flip12flip23flip12.

Then the map PC := flip+1
2 is an idempotent. We will denote Ran(PC) by V ⊗sym

C V. We will

need the maps PC
12 := PC⊗CidV and PC

23 := idV⊗CP
C. Thus, for elements v1, v2, v3 in V,

PC
12(v1⊗Cv2⊗Cv3) =

1

2
(v1⊗Cv2 + v2⊗Cv1)⊗Cv3

and PC
23(v1⊗Cv2⊗Cv3) = v1⊗C

1

2
(v2⊗Cv3 + v3⊗Cv2).

Proposition 2.1.9. If V is a vector space, then each of the following maps is an isomorphism

of vector spaces.

PC
12|Ran(PC

23) : Ran(PC
23) = V⊗C(V ⊗sym

C V )→ Ran(PC
12) = (V ⊗sym

C V )⊗CV
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PC
23|Ran(PC

12) : Ran(PC
12) = (V⊗C

symV )⊗C V → Ran(PC
23) = V⊗C(V ⊗sym

C V )

Proof. We prove the statement about the first of the two maps since the proof for the other

map is similar. Let us begin by proving that the first map is one-to-one. Let X be in Ran(PC
23)

such that PC
12(X) = 0. That is, flip23(X) = X and flip12(X) = −X. Now, it is easy to verify

the following braid relations:

flip12flip23flip12 = flip23flip12flip23. (2.1.2)

But we have flip12flip23flip12(X) = −flip12flip23(X) = −flip12(X) = X. On the other hand,

flip23flip12flip23(X) = flip23flip12(X) = −flip23(X) = −X.

This implies, X = −X, i.e. X = 0. Thus, the map PC
12|Ran(PC

23) is injective.

Now we come to surjectivity. If V is finite dimensional, surjectivity follows since Ran(PC
23)

and Ran(PC
12) are of the same dimension and PC

12|Ran(PC
23) is injective. In the general case,

given any ξ in (V ⊗sym
C V )⊗CV such that flip23(ξ) = ξ, there exists a natural number n and

linearly independent elements e1, e2, ..., en of V such that ξ belongs to (K ⊗sym
C K)⊗CK, where

K := span{e1, e2, ..., en}. If PC
K,12 denotes the map PC

12|K⊗CK⊗CK , then by the surjectivity of

PC
12|Ran(PC

23) for finite dimensional vector spaces, there exists η in K⊗C(K ⊗sym
C K) such that

PC
K,12(η) = ξ. Since ξ is arbitrary, the proof of surjectivity is complete.

Lemma 2.1.10. Let E be a centered A-bimodule and σcan : E ⊗A E → E ⊗A E be as in Theorem

2.1.7. Define P can
ij := 1

2(1 + σcan
ij ) : E ⊗A E ⊗A E → E ⊗A E ⊗A E, (i, j) = (12), (13), (23). Then

the following maps are bimodule isomorphisms:

P can
12 |Ran(P can

23 ) : Ran(P can
23 )→ Ran(P can

12 ), P can
23 |Ran(P can

12 ) : Ran(P can
12 )→ Ran(P can

23 ).

Proof. We begin by noting that since σcan is a bimodule map, the maps σcan
12 , σ

can
23 , σ

can
13 : E ⊗A

E ⊗A E → E ⊗A E ⊗A E defined as σcan ⊗A idE , idE ⊗A σcan, σcan
12 σ

can
23 σ

can
12 respectively are well

defined bimodule morphisms. The proof of injectivity follows by a verbatim adaptation of the

arguments of Proposition 2.1.9, as the braid relations (2.1.2) do hold for the maps σcan
ij as well.
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For surjectivity, we also use Proposition 2.1.9. Consider the vector space Z(E)⊗CZ(E)⊗CZ(E).

By Proposition 2.1.9, taking V = Z(E), we have that

PC
12P

C
23(Z(E)⊗CZ(E)⊗CZ(E)) = PC

12(Z(E)⊗CZ(E)⊗CZ(E)). (2.1.3)

Let q : Z(E)⊗CZ(E)⊗CZ(E) → Z(E) ⊗Z(A) Z(E) ⊗Z(A) Z(E) be the canonical quotient map.

Let us also define a map P̃ can : Z(E)⊗Z(A) Z(E)→ Z(E)⊗Z(A) Z(E) given by

P̃ can(ω ⊗Z(A) η) =
1

2
(ω ⊗Z(A) η + η ⊗Z(A) ω).

To see that this map is well defined it is enough to note that Z(E) is a centered Z(A)-bimodule

with Z(Z(E)) = Z(E). Hence, by Theorem 2.1.7, there exists a well defined Z(A)-bilinear

idempotent map P̃ can = (P can
sym)Z(E) : Z(E)⊗Z(A) Z(E)→ Z(E)⊗Z(A) Z(E). It is easy to check

that for all ω, η, ξ in Z(E),

qPC
12(ω⊗Cη⊗Cξ) = P̃ can

12 q(ω⊗Cη⊗Cξ), (2.1.4)

qPC
12P

C
23(ω⊗Cη⊗Cξ) = P̃ can

12 P̃ can
23 q(ω⊗Cη⊗Cξ), (2.1.5)

where P̃ can
12 = P̃ can ⊗Z(A) idZ(E) and P can

23 = idZ(E) ⊗Z(A) P̃ can. This implies that

P̃ can
12 P̃ can

23 (Z(E)⊗Z(A) Z(E)⊗Z(A) Z(E)) = P̃ can
12 P̃ can

23 q(Z(E)⊗CZ(E)⊗CZ(E))

=qPC
12P

C
23(Z(E)⊗CZ(E)⊗CZ(E)) (by (2.1.5))

=qPC
12(Z(E)⊗CZ(E)⊗CZ(E)) (by (2.1.3))

=P̃ can
12 q(Z(E)⊗CZ(E)⊗CZ(E)) (by (2.1.4)) = P̃ can

12 (Z(E)⊗Z(A) Z(E)⊗Z(A) Z(E)).

Now, let us define the map

µ : Z(E)⊗Z(A) Z(E)⊗Z(A) Z(E)⊗Z(A) A → E ⊗A E ⊗A E

given by µ(ω ⊗Z(A) η ⊗Z(A) ξ ⊗Z(A) a) = ω ⊗A η ⊗A ξa. Since {ω ⊗A η ⊗A ξ : ω, η, ξ ∈ Z(E)}

is right A-total in E ⊗A E ⊗A E , µ is an onto map. Moreover, by simple computation, it follows

that P can
12 ◦ µ = µ ◦ (P̃ can

12 ⊗Z(A) idA) and P can
12 P can

23 ◦ µ = µ ◦ (P̃ can
12 P̃ can

23 ⊗Z(A) idA). Since
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Ran(P̃ can
12 P̃ can

23 ) = Ran(P̃ can
12 ), we can thus compute

Ran(P can
12 P can

23 ) = Ran(P can
12 P can

23 ◦ µ) (since µ is onto)

=Ran(µ ◦ (P̃ can
12 P̃ can

23 ⊗Z(A) idA)) = Ran(µ ◦ (P̃ can
12 ⊗Z(A) idA))

=Ran(P can
12 ◦ µ) = Ran(P can

12 ) (since µ is onto).

Thus, we have that P can
12 |Ran(P can

23 ) : Ran(P can
23 )→ Ran(P can

12 ) is an onto map.

The surjectivity of the other map follows in a similar way.

2.2 Quasi-tame spectral triples

Recall that in Subsection 1.3.1 we defined Connes’ space of forms for a spectral triple and

in Subsection 1.4.2, the notion of torsionless connections on the space of one-forms. In this

section, we define a certain class of spectral triples which we call quasi-tame spectral triples

and prove that the bimodule of one-forms Ω1
D(A) of any quasi-tame spectral triple admits a

canonical torsionless connection. Moreover, in the next subsection, we will use the canonical

A-bilinear map σ of a quasi-tame spectral triple (see Definition 2.2.1) to define the notion of a

pseudo-Riemannian metric.

From Proposition 1.4.1, we know that if M is a manifold with Ω1(M) as the space of one-

forms, we have the following decomposition of C∞(M)-bimodules:

Ω1(M)⊗C∞(M) Ω1(M) = Ker(∧)⊕F .

Here, Ker(∧) is the space of all symmetric two-tensors and F is the space of all anti-symmetric

2-tensors which is isomorphic to Ω2(M). This motivates the following definition.

Definition 2.2.1. We say that a spectral triple (A,H, D) is quasi-tame if the following condi-

tions hold:

(i) The bimodule Ω1
D(A) is finitely generated and projective as a right A-module.

(ii) There exists a right A-module F such that the following equality holds as right A-modules:

Ω1
D(A)⊗A Ω1

D(A) = Ker(∧)⊕F . (2.2.1)
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(iii) The idempotent Psym ∈ HomA(Ω1
D(A)⊗AΩ1

D(A),Ω1
D(A)⊗AΩ1

D(A)) mapping onto Ker(∧)

and with kernel F is an A-bimodule map.

Then we will denote Ker(∧) by the symbol Ω1
D(A)⊗sym

A Ω1
D(A).

Moreover, σ will denote the map 2Psym − 1.

The following lemma collects some consequences of the above definition.

Lemma 2.2.2. Let (A,H, D) be a quasi-tame spectral triple. Then we have the following

(i) Ω1
D(A)⊗sym

A Ω1
D(A) := Ker(∧) and Ran(∧) are A-bimodules.

(ii) σ is an A-bimodule map.

(iii) P 2
sym = Psym and σ2 = id.

Proof. By Lemma 1.3.10 and Definition 1.3.11, the map ∧ is A-bilinear, hence Ker(∧) and

Ran(∧) are A-bimodules. This gives us the first claim. The second claim, i.e the A-bilinearity

of σ follows from the A-bilinearity of Psym. The third claim follows from the fact that Psym is

an idempotent.

Let us recall (Definition 1.4.11) that a connection ∇ on Ω1
D(A) is said to be torsionless if

T∇ = ∧ ◦∇+ d = 0. We have the following result as a consequence of the assumptions made in

Definition 2.2.1.

Theorem 2.2.3. If (A,H, D) is a quasi-tame spectral triple, there exists a torsionless connec-

tion on Ω1
D(A).

Proof. We have a sub-bimodule F = Ran(1 − Psym) of Ω1
D(A) ⊗A Ω1

D(A) and a bimodule

isomorphism, say Q, from F to Ran(∧) = Ω2
D(A), satisfying

Q((1− Psym)(β)) = ∧(β) for all β ∈ Ω1
D(A)⊗A Ω1

D(A). (2.2.2)

Moreover, as Ω1
D(A) is finitely generated and projective, we can find a free rank n right A-

module A⊗CCn containing Ω1
D(A) as a complemented right submodule. Let p be an idempotent

in Mn(A) ∼= HomA(A⊗CCn,A⊗CCn) such that Ω1
D(A) = p(A⊗CCn). Let ei, i = 1, . . . n, be the
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standard basis of Cn (viewed as 1A⊗CCn, where 1A is the identity element in A) and define

∇̃0 : A⊗CCn → Ω1
D(A)⊗A Ω1

D(A) by

∇̃0(eia) := −Q−1(d(p(ei)))a+ p(ei)⊗A da, i = 1, . . . , n, a ∈ A. (2.2.3)

Then ∇0 = ∇̃0|Ω1
D(A) (2.2.4)

defines a connection on Ω1
D(A).

Since Ran(Psym) = Ω1
D(A)⊗sym

A Ω1
D(A) = Ker(∧), we observe that

∧ ◦ Psym = 0.

Hence,

∧ ◦Q−1(∧(β)) = ∧ ◦Q−1(Q(1− Psym)β) = ∧((1− Psym)β) = ∧(β) ∀ β ∈ Ω1
D(A)⊗A Ω1

D(A)

by using (2.2.2).

Thus, ∧◦Q−1 : Ran(∧)→ Ran(∧) is the identity map. Since d(p(ei)a) belongs to the image

of the map ∧, we can write

∧ ◦ ∇0(p(ei)a) = − ∧ (Q−1(d(p(ei))a)) + p(ei) ∧ da (by (2.2.3))

= −d(p(ei))a+ p(ei) ∧ da

= −d(p(ei)a).

Therefore, ∇0 is a torsionless connection on Ω1
D(A).

2.3 Pseudo-Riemannian metrics on quasi-tame spectral triples

In this section, we want to introduce a noncommutative analogue of pseudo-Riemannian metrics.

Recall that in Definition 1.4.4, we had defined pseudo-Riemannian metrics on manifolds. In the

classical case there is no difference between right module maps or bimodule maps, as the left

and right C∞(M)-actions on the module of forms coincide. This is no longer true in the

noncommutative framework. In fact, as we will see, requiring a pseudo-metric to be a bimodule
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map restricts the choice of metrics. It is reasonable to require one-sided (right/left) A-linearity

only. For this reason, we give the following definition:

Definition 2.3.1. Let E := Ω1
D(A) be the A-bimodule of one-forms of a quasi-tame spectral

triple (A,H, D) and σ be the A-bilinear map of Definition 2.2.1. A pseudo-Riemannian metric

g on E is an element of HomA(E ⊗A E ,A) such that

(i) g is symmetric, i.e. g ◦ σ = g,

(ii) g is non-degenerate, i.e, the right A-linear map Vg : E → E∗ defined by Vg(ω)(η) =

g(ω ⊗A η) is an isomorphism of right A modules.

We will say that a pseudo-Riemannian metric g is a pseudo-Riemannian bilinear metric if g is

an A-bimodule map. It is called a Riemannian metric if for all ω1, ω2, . . . , ωn in E, the matrix

((g(ω∗i ⊗A ωj)))i,j is a positive element of Mn(A) for all n.

As an immediate consequence of the definition, we have the following important proposition.

Proposition 2.3.2. Suppose g is a pseudo-Riemannian bilinear metric on the space of one-

forms E := Ω1
D(A) of a quasi-tame spectral triple. Then

g(ω ⊗A η) ∈ Z(A) if both ω and η belong to Z(E). (2.3.1)

In particular, if E is a free right A-module of rank n admitting a central basis {ωi}i ⊆ Z(E),

then the components of the metric gij := g(ωi ⊗A ωj) belong to Z(A).

Proof. The proof is a trivial consequence of the fact that g is an A-bimodule map. Indeed, since

ω, η are in Z(E),

g(ω ⊗A η)a = g(ω ⊗A ηa) = g(ω ⊗A aη) = g(ωa⊗A η) = ag(ω ⊗A η).

We record a remark at this point as clarification to the above result.

Remark 2.3.3. If A is noncommutative, the metric need not take values in the center on the

whole of E ⊗A E . For example, if ω, η is in Z(E) and a in A, then g(ω⊗A ηa) typically does not

belong to Z(A) unless a is in Z(A).
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Moreover, our definition of nondegeneracy of g is stronger than the definition given by most

authors who require only the injectivity of Vg. However, in the classical situation, i.e, when A =

C∞(M), these two definitions are equivalent as Vg is a bundle map from T ∗M to (T ∗M)∗ ∼= TM

in that case and the fibers are finite dimensional.

To compare our definition of a pseudo-Riemannian metric with that of [41], [83] and [6], let us

consider the case when E is free (of rank n) as a right A-module, i.e, E is isomorphic to Cn⊗CA

as a right A-module. Let ei, i = 1, . . . , n be the standard basis of Cn. A pseudo-Riemannian

metric in our sense is determined by an invertible element A := ((gij))ij of Mn(A), where

gij = g((ei⊗C1)⊗A (ej⊗C1)) and g((ei⊗Ca)⊗A (ej⊗Cb)) = gijab

for all a, b in A. On the other hand, a pseudo-metric in the sense of [6] will be given by the

sesquilinear pairing

〈〈ei ⊗C a, ej ⊗C b〉〉 = a∗gijb.

Thus, there is a one-to-one correspondence between these two notions of pseudo-metric at least

for the case when E is free as a right A module. In fact, they do agree in a sense on the basis

elements. But their extensions are quite different as maps.

Throughout this section, we will assume that (A,H, D) is a quasi-tame spectral triple, so

that we can freely use the notation σ introduced in Definition 2.2.1 and the results in Lemma

2.2.2.

Definition 2.3.4. Suppose g is a pseudo-Riemannian bilinear metric on E. We define

g(2) : (E ⊗A E)⊗A (E ⊗A E)→ A, by

g(2)((e⊗A f)⊗A (e′ ⊗A f ′)) = g(e⊗A g(f ⊗A e′)f ′)

We spell out the relationship between g(2) and the inner product on the internal tensor

product of Hilbert modules. Suppose (A,H, D) is a spectral triple, E the bimodule of one-

forms. We will need to make explicit use of the ∗-structure on A and E := Ω1
D(A) inherited

from B(H). Let us recall the conjugate bimodule E (see [55], [9] and references therein) which

is equal to E as a set but with the A-bimodule structures defined by the following equations:

ae = ea∗, ea = a∗e.
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Here, e is an element of E viewed in E .

We have a well-defined map S : E ⊗A E → E ⊗A E , defined by

S(e⊗A f) = f ⊗A e.

Now suppose g is a pseudo-Riemannian bilinear metric on E . Then the following map makes E

into a right A-pre-Hilbert module:

〈〈e, f〉〉g = g(e⊗A f).

On the right hand side of this equation, we have used the obvious identification between E and

E .

Consequently, the A-valued inner product on the internal tensor product E ⊗A E is given by

〈〈e⊗A f, e′ ⊗A f ′〉〉g(2) = 〈〈f, 〈〈e, e′〉〉gf ′〉〉g.

We refer to [55] for the details.

We claim that 〈〈e⊗A f, e′ ⊗A f ′〉〉g(2) = g(2)(S(e⊗A f)⊗A (e′ ⊗A f ′)). Indeed,

〈〈e⊗A f, e′ ⊗A f ′〉〉g(2) = 〈〈f, g(e⊗A e′)f ′〉〉g

= g(f ⊗A g(e⊗A e′)f ′) = g(2)((f ⊗A e)⊗A (e′ ⊗A f ′))

= g(2)(S(e⊗A f)⊗A (e′ ⊗A f ′)).

We end this subsection by showing that the map g(2) is nondegenerate in a suitable sense.

Proposition 2.3.5. Suppose E is the bimodule of one-forms of a quasi-tame spectral triple. We

assume that E is centered as an A-bimodule and also that E is finitely generated and projective

as a right A-module. Let g be a pseudo-Riemannian bilinear metric on E . Then the map Vg(2) :

E ⊗A E → (E ⊗A E)∗ defined by

Vg(2)(e⊗A f)(e′ ⊗A f ′) = g(2)((e⊗A f)⊗A (e′ ⊗A f ′))

is an isomorphism of right A-modules. Moreover, the maps g(2) and Vg(2) are both left A-bilinear.

Proof. Throughout the proof, we will repeatedly use Lemma 2.1.5.
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Let us start by proving that the map Vg(2) is onto. Since E is a finitely generated projective

module over A, we can use the isomorphism of (E ⊗A E)∗ with E∗ ⊗A E∗ (Proposition 1.1.14).

Thus, it is enough to show that Vg(e)⊗AVg(f) belongs to the range of Vg(2) for arbitrary elements

e, f of Z(E). Indeed, if xij in E ⊗A E is such that Vg(2)(xij) = Vg(ei)⊗AVg(fj) for some elements

ei, fj in Z(E), then for elements ai, bj in A and ω =
∑
eiai, η =

∑
fjbj , we have

Vg(ω)⊗A Vg(η) =
∑
i,j

Vg(ei)ai ⊗A Vg(fj)bj =
∑
i,j

Vg(ei)⊗A Vg(aifj)bj

=
∑
i,j

Vg(ei)⊗A Vg(fj)aibj =
∑
i,j

Vg(2)(xij)aibj =
∑
i,j

Vg(2)(xijaibj),

where we have used the fact that Vg is A-bilinear as g is a bilinear pseudo-Riemannian metric.

Now, for e, f in Z(E) and ω, η in E , we compute

Vg(2)(f ⊗A e)(ω ⊗A η) = g(2)((f ⊗A e)⊗A (ω ⊗A η)) = g(f ⊗A g(e⊗A ω)η)

= g(g(e⊗A ω)f ⊗A η) = g(e⊗A ω)g(f ⊗A η) = (Vg(e)⊗A Vg(f))(ω ⊗A η).

Hence, we have Vg(e)⊗A Vg(f) = Vg(2)(f ⊗A e).

For proving that Vg(2) is one-to-one, let us suppose that for i = 1, 2, · · ·n, there exist ωi, ηi in E

such that for all ω′, η′ in E ,

g(2)((
∑
i

ωi ⊗A ηi)⊗A (ω′ ⊗A η′)) = 0.

Then by the definition of g(2), we see that

Vg(
∑
i

ωig(ηi ⊗A ω′)) = 0.

By nondegeneracy of g, we conclude that

∑
i

ωig(ηi ⊗A ω′) = 0.

Thus, if ζE,E is the map introduced in Proposition 1.1.8, then we have:

ζE,E(
∑
i

ωi ⊗A ηi)(ω′) = 0 for all ω′ ∈ E ,

implying that
∑

i ωi ⊗A ηi = 0.
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The left A-linearity of Vg(2) comes from the left A-linearity of g. The right A-linearity of Vg(2)

comes from the fact that g(2) is a well-defined map on (E ⊗A E)⊗A (E ⊗A E).

2.3.1 The canonical Riemannian (bilinear) metric for a spectral triple

Let (A,H, D) be a p-summable spectral triple (Definition 1.3.4) of compact type. Before we end

this section, we want to derive some sufficient regularity conditions for obtaining a canonical

bilinear form (candidate of a pseudo-Riemannian bilinear metric) on the module E := Ω1
D(A)

of one-forms.

Consider the positive linear functional τ on B(H) given by

τ(X) = Limω
Tr(X |D|−p)
Tr(|D|−p)

,

where Limω is as in Chapter 4 of [25]. We will denote the ∗-subalgebra generated by A and

[D,A] in B(H) by S0. We will assume that τ is a faithful normal trace on the von Neumann

algebra generated by S0.

Let us recall from [41] the construction of an A′′-valued inner product 〈〈· , ·〉〉 on E = Ω1
D(A)

defined by the following equation:

τ(〈〈ω, η〉〉 a) = τ(ω∗ηa) ∀ a ∈ A′′ and ω, η ∈ E ⊆ B(H).

Here, ω∗ denotes the usual adjoint of ω in B(H).

As seen in Theorem 2.9 of [41], it can be proved that 〈〈ω, η〉〉 takes values in A′′ ⊆ L2(A′′, τ).

Now define a natural A′′-valued bilinear form g as follows:

Lemma 2.3.6. Let g : E⊗CE → A′′ be given by

g(ω⊗Cη) = 〈〈ω∗, η〉〉 .

Then for all ω, η in E and a in A, we have:

g(ωa⊗Cη) = g(ω⊗Caη), g(aω⊗Cη) = ag(ω⊗Cη), g(ω⊗Cηa) = g(ω⊗Cη)a.
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Proof. The proof of the above statements are straightforward consequences of the properties of

an inner product and the fact that (Xa)∗ = a∗X∗ for all a,X in B(H).

Thus, g descends to an A-bilinear, A′′-valued map, to be denoted by g again. The restriction

of g to Ω1
D(A)⊗AΩ1

D(A) is the candidate of a Riemannian bilinear metric in our sense, provided

g(ω ⊗A η) is in A for all ω, η in Ω1
D(A).

Let us recall the definition of a quasi-tame spectral triple as well as the notation σ from

Definition 2.2.1. Then we have the following definition:

Definition 2.3.7. Let (A,H, D) be a quasi-tame spectral triple. Suppose the A-bilinear map

g as in Lemma 2.3.6 is A-valued, Vg : E → E∗ is nondegenerate and g ◦ σ = g, i.e., it gives a

bilinear metric. Then we call g a canonical Riemannian bilinear metric for the spectral triple

(A,H, D).

When A = C∞(M) for a compact Riemannian manifold M, then this construction recovers

the usual Riemannian metric (see page 128-129 of [41] and Subsection 2.1.3 of [40]). However,

in the general noncommutative set-up, one usually needs additional regularity assumptions to

ensure that g takes values in A (as opposed to A′′). This is the content of the next proposition

for which we will make use of the noncommutative Laplacian introduced in Proposition 1.3.13

and its properties.

Proposition 2.3.8. Let (A,H, D) be a p-summable spectral triple and τ is faithful on the von-

Neumann algebra generated by S0. Let H1
D be the Hilbert space of one-forms and L = −d∗d as

in Proposition 1.3.13.

Suppose that for all X in the ∗-algebra generated by A and [D,A], the map

R→ B(H) defined by t 7→ eitDXe−itD

is differentiable at t = 0 in the norm topology of B(H). If we moreover assume that L(A) ⊆ A,

then

g(ω ⊗A η) ∈ A for all ω, η ∈ Ω1
D(A).

Proof. In this proof, we will denote the domain of the unbounded operator T by Dom(T ). We

begin by noting that since τ is faithful on the von-Neumann algebra generated by S0, the vector
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space Ω1
D(A) can be equipped with a semi-inner product defined by the equation:

〈η, η′〉 = τ(η∗η′).

Moreover, as L(A) ⊆ A, all the hypotheses of Proposition 1.3.13 are satisfied.

We claim that

g(da⊗A db) = −1

2
(L(b∗a∗)− L(b∗)a∗ − b∗L(a∗)) ∀ a, b ∈ A,

where d(a) =
√
−1[D, a] as in Subsection 1.3.1.

Indeed, for all c in A, by using the self-adjointness of L, L(x∗) = (L(x))∗ (Lemma 3.2, [43]

and Lemma 5.1 of [43]), we have

τ(〈〈(da)∗, db〉〉 c) = τ(〈〈(da)∗, db.c〉〉)

= 〈d(a∗), db.c〉 (as (da)∗ = d(a∗))

= 〈a∗, d∗(db.c)〉

= −1

2
〈a∗, (bL(c)− L(b)c− L(bc))〉 (by (1.3.2))

= −1

2
〈L(b∗a∗)− L(b∗)a∗ − b∗L(a∗), c〉 (as L is self-adjoint and by (1.3.1))

= −1

2
τ(〈〈L(b∗a∗)− L(b∗)a∗ − b∗L(a∗), c〉〉).

Thus, by the normality and faithfulness of τ on A′′, we conclude that

g(da⊗A db) = 〈〈(da)∗, db〉〉 = 〈〈da∗, db〉〉 = −(
1

2
L(b∗a∗)− L(b∗)a∗ − b∗L(a∗)).

This proves the claim. Since L(A) ⊆ A, the proof of the proposition is complete.

Remark 2.3.9. Our H1
D and d are the same as the bimodule and derivation respectively con-

structed by Cipriani and Sauvagoet ([24]) from the Dirichlet form

(a, b) 7→ −〈L(a), b〉, a, b ∈ Dom((−L)
1
2 ).

It also follows from the definition of inner product that the map Vg is one-to-one. However,

the invertibility of Vg, which is the nondegeneracy in our sense, has to be verified case by case.
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2.4 Tame spectral triples and metric compatibility of connec-

tions

In this section we finally define the notion of ‘tame spectral triples’, the class of spectral triples

for which our main result, Theorem 2.5.1 holds. In Subsection 1.4.1, we had recalled the notion

of metric-compatibility of connections in pseudo-Riemannian geometry. We use the tameness

of the differential calculus to define a suitable notion of metric-compatibility of connections.

In Subsection 2.4.1, we define and study tame spectral triples. We observe that the bimodule

of one-forms of a tame spectral triple is a centered bimodule in the sense of Section 2.1. In

Subsection 2.4.2, we prove a technical result which will be used in the next chapter. Subsection

2.4.3 is devoted mainly to defining compatibility of a connection on the space of one-forms of

a tame spectral triple with a pseudo-Riemannian bilinear metric. In that subsection, we also

show why our definition is compatible with the usual notion in the classical case.

2.4.1 Tame spectral triples

Let us recall the maps Psym and σ from Definition 2.2.1 and the map σcan from Theorem 2.1.7.

Definition 2.4.1. Suppose (A,H, D) is a spectral triple such that the following conditions hold:

(i) E := Ω1
D(A) is a finitely generated projective right A-module,

(ii) The map uE : Z(E)⊗Z(A) A → E defined by

uE(
∑
i

e′i ⊗Z(A) ai) =
∑
i

e′iai

is an isomorphism of vector spaces,

(iii) Suppose that there exists a right A-module F such that E ⊗A E = Ker(∧) ⊕ F as right

A-modules,

(iv) σ = σcan.

Then, we say that (A,H, D) is a tame spectral triple.

Here, the existence of the map σ follows from the decomposition E ⊗A E = Ker(∧)⊕F as in

Definition 2.2.1. Moreover, the map σcan is as in Theorem 2.1.7.
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Remark 2.4.2. By virtue of Proposition 2.1.6, the condition (ii) of Definition 2.4.1 implies that

the bimodule E of one-forms of a tame spectral triple is centered. So the statement σ = σcan

makes sense. Secondly, we are allowed to use all the results of Subsection 2.1 on centered

bimodules for tame spectral triples.

It is worthwhile to explain the significance of the equality σ = σcan. This is what we record

in the following two propositions:

Proposition 2.4.3. If (A,H, D) is a tame spectral triple and g is a pseudo-Riemannian metric

on E = Ω1
D(A), then we have

g(ω ⊗A η) = g(η ⊗A ω)

if either ω or η belongs to Z(E).

Proof. Let ω be in Z(E) and η be in E . As σ = σcan, Lemma 2.1.8 implies that

g(ω ⊗A η) = g ◦ σ(ω ⊗A η) = g(σcan(ω ⊗A η)) = g(η ⊗A ω).

The next proposition should be compared with the classical results in Proposition 1.4.1.

Proposition 2.4.4. Suppose (A,H, D) is a tame spectral triple

(i) Let E = Ω1
D(A). Then the decomposition E ⊗A E = Ker(∧) ⊕ F on simple tensors is

explicitly given by

ω ⊗A ηa =
1

2
(ω ⊗A ηa+ η ⊗A ωa) +

1

2
(ω ⊗A ηa− η ⊗A ωa),

for all ω, η in Z(E) and for all a in A.

(ii) If E is a free right A-module with a central basis {e1, e2, ..., en} and g is a pseudo-

Riemannian metric on E, then the components gij = g(ei ⊗A ej) of g are symmetric

in i and j.

Proof. The second assertion of Lemma 2.1.5 implies that any element of E ⊗A E is a C-linear

sum of elements of the form ω ⊗A ηa, where ω, η are in Z(E) and for a in A. Since σ = σcan,

Psym(ω ⊗A ηa) =
1

2
(1 + σcan)(ω ⊗A ηa) =

1

2
(ω ⊗A ηa+ η ⊗A ωa)
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and (1− Psym)(ω ⊗A ηa) =
1

2
(1− σcan)(ω ⊗A ηa) =

1

2
(ω ⊗A ηa− η ⊗A ωa).

Since Psym is an idempotent, this implies that 1
2(ω⊗A ηa+ η⊗A ωa) is in Ran(Psym) = Ker(∧)

and 1
2(ω ⊗A ηa− η ⊗A ωa) is in Ker(Psym) = F .

Now we prove the second assertion. Since g is a pseudo-Riemannian metric, and σ = σcan, we

have

gij = g(ei ⊗A ej) = g ◦ σ(ei ⊗A ej) = g(ej ⊗A ei) = gji.

This finished the proof.

Let us make the following observation at this point:

Lemma 2.4.5. Suppose that (A,H, D) is a tame spectral triple. Then Psym is an A-bimodule

map. In particular, a tame spectral triple is a quasi-tame spectral triple.

Proof. Since equation (2.2.1) is satisfied, Psym is a right A-linear map by definition. But as

σ = σcan and σcan is A bilinear by Theorem 2.1.7, σ is A bilinear. Therefore Psym = 1+σ
2 is also

A bilinear.

2.4.2 A remark on the isomorphism of the map uE

In this subsection, we derive a sufficient condition which ensures the isomorphism of the map

uE . The following result will be crucially used in Section 3.3, where we prove the existence

of the Levi-Civita connection on a class of Connes-Landi isospectral deformations of classical

spectral triples.

Proposition 2.4.6. Suppose (A,H, D) is a spectral triple. Suppose that there exists a unital

subalgebra A′ of Z(A) and an A′-submodule E ′ of Z(E) such that E ′ is projective and finitely

generated as a right A′-module. If the map

uEE ′ : E ′ ⊗A′ A → E ,

defined by

uEE ′
(∑

i

e′i ⊗A′ ai
)

=
∑
i

e′iai
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is an isomorphism of vector spaces, then uE : Z(E)⊗Z(A) A→ E is an isomorphism. Moreover,

if Z(E) is a finitely generated projective module over Z(A), then uE is an isomorphism if and

only if there exists E ′ and A′ such that uEE ′ is an isomorphism.

Proof. If uEE ′ is an isomorphism, we claim that Z(E) ∼= E ′ ⊗A′ Z(A). If our claim is true, then

we have

Z(E)⊗Z(A) A ∼= E ′ ⊗A′ Z(A)⊗Z(A) A = E ′ ⊗A′ A ∼= E ,

so that uE is an isomorphism. Thus, it is enough to prove our claim.

By a verbatim adaptation of the proof of Proposition 2.1.6, we have that E ′ ⊗A′ A ∼= E as

bimodules where the bimodule structure of E ′ ⊗A′ A is defined by b1(e′ ⊗A′ a)b2 = e′ ⊗A′ b1ab2.

Since E is a centered A-bimodule, this implies that E ′ ⊗A′ A is also a centered A-bimodule

and Z(E ′ ⊗A′ A) ∼= Z(E). Since Z(A) ⊆ A, we have that E ′ ⊗A′ Z(A) ⊆ E ′ ⊗A′ A. Now, let∑
i ei ⊗A′ ai be an arbitrary element of E ′ ⊗A′ Z(A). For any element b in A, since ai are all in

Z(A), we have that b(
∑

i ei⊗A′ ai) =
∑

i ei⊗A′ bai =
∑

i ei⊗A′ aib = (
∑

i ei⊗A′ ai)b. Thus, we

have that
∑

i ei ⊗A′ ai is in Z(E ′ ⊗A′ A) and that E ′ ⊗A′ Z(A) ⊆ Z(E ′ ⊗A′ A) ∼= Z(E).

For the reverse inclusion, we use the fact that E ′ is finitely generated and projective as a

right A′-module. Thus, there exists a free A′-module G and an idempotent P on G such that

P (G) = E ′. Let m1,m2, · · ·mn be a basis of G. Therefore,

E ∼= E ′ ⊗A′ A = P (G)⊗A′ A = (P ⊗A′ idA)(G ⊗A′ A).

Clearly, P ⊗A′ idA is an idempotent on G ⊗A′ A and thus for all y in E ′ ⊗A′ A ⊆ G ⊗A′ A, we

have

(P ⊗A′ idA)(y) = y. (2.4.1)

On the other hand, Z(E ′ ⊗A′ A) is also a submodule of G ⊗A′ A and if x is an element of

Z(E ′ ⊗A′ A) ∼= Z(E), there exist unique elements ai in A such that x =
∑

imi ⊗A′ ai. Since

xb = bx for all b in A, we see that ai in Z(A) for all i. Hence,

(P ⊗A′ idA)(x) =
∑
i

(P ⊗A′ idA)(mi ⊗A′ ai) =
∑
i

P (mi)⊗A′ ai ∈ E ′ ⊗A′ Z(A).

But by (2.4.1), (P ⊗A′ idA)(x) = x so that x is in E ′ ⊗A′ Z(A). Since x is an arbitrary element

of Z(E ′ ⊗A′ A) ∼= Z(E), this completes the proof.
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2.4.3 The metric compatibility of a connection on Ω1
D(A)

In this subsection, we formulate a notion of metric compatibility of a connection on the space of

one-forms of a tame spectral triple. Recall that in Proposition 1.4.8, we had given an equivalent

definition for the compatibility of a connection with a pseudo-Riemannian metric on a manifold.

The definition of metric compatibility (Definition 2.4.11) in this section is motivated by that

equivalent formulation. However, since our algebra A is in general not commutative, and the

left and right-actions of A on Ω1
D(A) do not coincide, we require some preparation.

Throughout the rest of this section, we will work with tame spectral triples and continue to

denote Ω1
D(A) by the symbol E . By Lemma 2.4.5, we are allowed to use all results concerning a

quasi-tame spectral triple proved before and also the A-bilinearity of the map Psym. Moreover,

g will denote any pseudo-Riemannian bilinear metric (not necessarily the canonical one) on the

bimodule E of one-forms.

Definition 2.4.7. Let ∇ be a connection on E. Then we define Π0
g(∇) : Z(E)⊗CZ(E)→ E by

the map given by

Π0
g(∇)(ω⊗Cη) = (g ⊗A id)σ23(∇(ω)⊗A η +∇(η)⊗A ω).

Then, we have the following:

Lemma 2.4.8. Π0
g(∇) descends to a map from Z(E) ⊗Z(A) Z(E) to E, to be denoted by the

same notation. Moreover, for all a′ in Z(A) and ω, η in Z(E)

Π0
g(∇)(ω ⊗Z(A) ηa

′) = Π0
g(ω ⊗Z(A) η)a′ + g(ω ⊗A η)da′. (2.4.2)

Proof. We write ∇(η) =
∑

i η
(1)
i ⊗A η

(2)
i , where η

(1)
i , η

(2)
i are in E and the sum has finitely many

terms. Since ω, η are in Z(E), Lemma 2.1.8 implies that

σ23(ω ⊗A da′ ⊗A η) = ω ⊗A η ⊗A da′ and σ23(∇(η)a′ ⊗A ω) =
∑
i

η
(1)
i ⊗A ω ⊗A η

(2)
i a′.
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Using these equations and the Leibniz rule for the connection ∇, we get

Π0
g(∇)(ωa′⊗Cη)

= (g ⊗A id)σ23(∇(ω)a′ ⊗A η + ω ⊗A da′ ⊗A η +∇(η)⊗A ωa′)

= (g ⊗A id)σ23(∇(ω)⊗A ηa′) + g(ω ⊗A η)da′ +
∑
i

g(η
(1)
i ⊗A ω)η

(2)
i a′

= (g ⊗A id)σ23(∇(ω)⊗A ηa′) + g(η ⊗A ω)da′ +
∑
i

g(η
(1)
i ⊗A ω)η

(2)
i a′ (by Proposition 2.4.3)

= (g ⊗A id)σ23(∇(ω)⊗A ηa′ + η ⊗A da′ ⊗A ω +∇(η)a′ ⊗A ω)

= (g ⊗A id)σ23(∇(ω)⊗A ηa′ +∇(ηa′)⊗A ω)

= Π0
g(∇)(ω⊗Cηa

′)

= Π0
g(∇)(ω⊗Ca

′η).

This proves the first assertion. To prove the second assertion we make the following compu-

tation: for a′ in Z(A) and ω, η in Z(E), we have:

Π(0)
g (∇)(ω ⊗Z(A) ηa

′) = (g ⊗A id)σ23(∇(ω)⊗A ηa′ +∇(ηa′)⊗A ω)

= (g ⊗A id)σ23(∇(ω)⊗A ηa′ +∇(η)a′ ⊗A ω + η ⊗A da′ ⊗A ω)

(since ∇ is a connection)

= (g ⊗A id)σ23(∇(ω)⊗A η +∇(η)⊗A ω)a′ + (g ⊗A id)(η ⊗A ω ⊗A da′)

(using Lemma 2.1.8)

= Π0
g(ω ⊗Z(A) η)a′ + g(ω ⊗A η)da′,

where we have used Proposition 2.4.3.

For the next definition, recall that uE is left Z(A)-linear so that the map idZ(E) ⊗Z(A) u
E is

well-defined.

Definition 2.4.9. We define a map from Z(E)⊗Z(A)Z(E)⊗Z(A)A to→ E⊗AE by the formula:

uE⊗AE := (uE ⊗A idE) ◦ (idZ(E) ⊗Z(A) u
E).

We note that uE⊗AE is an isomorphism since uE is so.
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For all ω, η in Z(E) and a in A, define Πg(∇) : E ⊗A E → E by

Πg(∇) ◦ uE⊗AE(ω ⊗Z(A) η ⊗Z(A) a) = Π0
g(∇)(ω ⊗Z(A) η)a+ g(ω ⊗A η)da

Therefore, for ω, η in Z(E) and a in A, we have

Πg(∇)(ω ⊗A ηa) = Π0
g(∇)(ω ⊗Z(A) η)a+ g(ω ⊗A η)da. (2.4.3)

Proposition 2.4.10. Let dg : E ⊗A E → E be the map defined by

dg(e⊗A f) = d(g(e⊗A f)).

The map Πg(∇) defined in Definition 2.4.9 is a well defined map from E ⊗A E to E . Moreover,

Πg(∇)− dg : E ⊗A E → E is right A-linear.

Proof. Since the map uE⊗AE is an isomorphism, it is enough to check that the map

Πg(∇) ◦ uE⊗AE : Z(E)⊗Z(A) Z(E)⊗Z(A) A → E

is well defined. For ω, η in Z(E), a in Z(A), b in A, the equalities

Πg(∇) ◦ uE⊗AE(ωa⊗Cη⊗Cb) = Πg(∇) ◦ uE⊗AE(ω⊗Caη⊗Cb) and

Πg(∇) ◦ uE⊗AE(ω⊗Cηa⊗Cb) = Πg(∇) ◦ uE⊗AE(ω⊗Cη⊗Cab)

follow from Lemma 2.4.8 and Equation (2.4.2) respectively.

Lemma 2.1.5 implies that {ω ⊗A η : ω, η ∈ Z(E)} is right A-total in E ⊗A E . Therefore, for

proving the right A-linearity of the map Πg(∇)− dg it is sufficient to evaluate it on ω ⊗A ηab,
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where ω, η ∈ Z(E), a, b ∈ A, since uE⊗AE is an isomorphism.

(Πg(∇)− dg)(ω ⊗A ηab) =Π0
g(∇)(ω ⊗Z(A) η)ab+ g(ω ⊗A η)d(ab)

− d(g(ω ⊗A ηab)) (by (2.4.3))

=Π0
g(∇)(ω ⊗Z(A) η)ab+ g(ω ⊗A η)(da.b+ a.db)

− d(g(ω ⊗A ηa))b− g(ω ⊗A ηa)db

=(Π0
g(∇)(ω ⊗Z(A) η)a+ g(ω ⊗A η)d(a)− dg(ω ⊗A ηa))b

=(Πg(∇)− dg)(ω ⊗A ηa)b

by another application of (2.4.3).

Now we are in a position to suitably define compatibility of a connection with a pseudo-

Riemannian bilinear metric.

Definition 2.4.11. Let dg : E ⊗A E → E be as defined in Proposition 2.4.10. We say that a

connection ∇ on E is compatible with a pseudo-Riemannian metric g if for all e, f in E ,

Πg(∇)(e⊗A f) = dg(e⊗A f).

Proposition 2.4.12. The above definition of metric compatibility coincides with that in the

classical case.

Proof. Let (M, g) be a pseudo-Riemannian manifold and A be the algebra C∞(M) of smooth

functions on M. Thus, in this case, we have A = Z(A) = C∞(M), E = Z(E) = Ω1(M) and

σ = flip.

By Proposition 1.4.8, a connection ∇ on Ω1(M) is compatible in the classical sense with g if

and only if for all ω, η in E ,

(g ⊗A id)[flip23(∇(ω)⊗A η) + (ω ⊗A ∇(η))] = dg(ω ⊗A η).

As σ = flip and g(e⊗A f) = g(f ⊗A e) for all e, f in E , it can be easily checked that

(g⊗Aid)[flip23(∇(ω)⊗Aη)+(ω⊗A∇(η))] = (g⊗Aid)σ23(∇(ω)⊗Aη+∇(η)⊗Aω) = Πg(∇)(ω⊗Aη).

Thus, our definition of metric compatibility coincides with that in the classical case.
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2.5 Existence and uniqueness of Levi-Civita connections for tame

spectral triples

The goal of this section is to prove the following theorem:

Theorem 2.5.1. Suppose (A,H, D) is a tame spectral triple and E is the space of one-forms on

it. If g is any pseudo-Riemannian bilinear metric on E, then there exists a unique connection on

E which is torsionless and compatible with g (in the sense of Definition 2.4.11). In particular,

this applies to the candidate of a Riemannian bilinear map in Definition 2.3.7.

The theorem will be proved in two steps. In the first step, we construct a right A-linear map

Φg : HomA(E , E ⊗sym
A E)→ HomA(E ⊗sym

A E , E) (see Definition 2.5.3) and prove that (Theorem

2.5.5) the isomorphism of Φg is a sufficient condition for the existence and uniqueness of Levi-

Civita connections for tame spectral triples. Then we show that for tame spectral triples, Φg is

indeed an isomorphism.

Since we will be working with tame spectral triples, the isomorphism of the map uE implies

that E is centered. Therefore, we will freely use the fact that E is centered throughout this

section, sometimes without mentioning.

We collect some results in a preparatory lemma.

Lemma 2.5.2. (i) The map Πg(∇)− dg ∈ HomA(E ⊗A E , E) is determined by its restriction

on E ⊗sym
A E for any connection ∇ and can be viewed as an element of HomA(E ⊗sym

A E , E)

(ii) For any two torsionless connections ∇1 and ∇2, ∇1 −∇2 ∈ HomA(E , E ⊗sym
A E)

Proof. By the definition of Π0
g(∇) and the equality g ◦σ = g, it follows that Π0

g(∇) ◦σ = Π0
g(∇)

on Z(E)⊗Z(A) Z(E). Now for ω, η ∈ Z(E) and a ∈ A, we have

(Πg(∇)− dg) ◦ σ(ω ⊗A ηa) = (Πg(∇)− dg)(σ(ω ⊗A η)a) = (Πg(∇)− dg) ◦ σ(ω ⊗A η)a

= (Πg(∇)− dg)(ω ⊗A η)a = (Πg(∇)− dg)(ω ⊗A ηa),

since Πg(∇)−dg is rightA-linear by Proposition 2.4.10. Therefore, Πg(∇)−dg = (Πg(∇)−dg)◦σ

on the whole of E ⊗A E . Since E ⊗sym
A E = Ran(Psym) = Ran(1+σ

2 ), this proves (i).

Now we prove (ii). If ∇1 and ∇2 are two torsionless connections, ∧ ◦ ∇1 = −d = ∧ ◦ ∇2.
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Therefore, Ran(∇1 −∇2) ⊆ Ker(∧) = E ⊗sym
A E . Moreover (∇1 −∇2)(ωa) = ∇1(ω)a−∇2(ω)a

for ω in E and for a in A. Hence, ∇1 −∇2 ∈ HomA(E , E ⊗sym
A E).

Definition 2.5.3. We define a map

Φg : HomA(E , E ⊗sym
A E)→ HomA(E ⊗sym

A E , E) by

Φg(L) = (g ⊗A id)σ23(L⊗A id)(1 + σ).

Proposition 2.5.4. Φg is a right A-linear map.

Proof. Let ω, η be in Z(E), and a, b in A and L in HomA(E , E⊗sym
A E). Then by using Proposition

2.4.3, the A-bilinearity of σ (Lemma 2.4.5) and the equality σ = σcan, we obtain

Φg(La)(ω ⊗A ηb) = (g ⊗A id)σ23(La⊗A id)(1 + σ)(ω ⊗A ηb)

= (g ⊗A id)σ23(La⊗A id)(ω ⊗A ηb+ η ⊗A ωb)

= (g ⊗A id)σ23(L(aω)⊗A ηb+ L(aη)⊗A ωb)

= (g ⊗A id)σ23(L⊗A id)(aω ⊗A ηb+ aη ⊗A ωb)

= (g ⊗A id)σ23(L⊗A id)(1 + σ)(a(ω ⊗A ηb))

= (Φg(L)a)(ω ⊗A ηb).

Hence we have that Φg(La) = Φg(L)a.

Now we are in a position to prove the following result which gives a sufficient condition for

the existence and uniqueness of Levi-Civita connections.

Theorem 2.5.5. If Φg : HomA(E , E ⊗sym
A E)→ HomA(E ⊗sym

A E , E) is an isomorphism of right

A-modules, then there exists a unique connection on E which is torsionless and compatible with

g.

Proof. We recall the torsionless connection ∇0 constructed in Lemma 2.2.3. By (i) of Lemma

2.5.2, dg−Πg(∇0) ∈ HomA(E ⊗sym
A E , E). Since Φg is an isomorphism from HomA(E , E ⊗sym

A E)

to HomA(E ⊗sym
A E , E) there exists a unique element Φ−1

g (dg − Πg(∇0)) ∈ HomA(E , E ⊗sym
A E).

Define the C-linear map

∇ := ∇0 + Φ−1
g (dg −Πg(∇0)).
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We claim that ∇ is a torsionless connection on E which is compatible with g. Indeed, if ω is in

E and a in A, we have

∇(ωa) = ∇0(ω)a+ ω ⊗A da+ Φ−1
g (dg −Πg(∇0))(ω)a

= ∇(ω)a+ ω ⊗A da.

so that ∇ is a connection. That ∇ is a torsionless connection is verified from the following:

∧ ◦ ∇ = ∧ ◦ ∇0 + ∧ ◦ Φ−1
g (dg −Πg(∇0))

= ∧ ◦ ∇0 (since Ran(Φ−1
g )(dg −Πg(∇0) ⊆ E ⊗sym

A E = Ker(∧))

= −d.

By virtue of (ii) of Lemma 2.5.2, this in particular implies that ∇−∇0 in HomA(E , E ⊗sym
A E)

so that Φg(∇−∇0) is well-defined. Moreover, for ω, η in Z(E) and a in A, we have

(Πg(∇)−Πg(∇0))(ω ⊗A ηa)

=Π0
g(∇)(ω ⊗Z(A) η)a−Π0

g(∇0)(ω ⊗Z(A) η)a (by (2.4.3))

=(g ⊗A id)σ23

(
(∇(ω)⊗A η +∇(η)⊗A ω)− (∇0(ω)⊗A η +∇0(η)⊗A ω)

)
a

=(g ⊗A id)σ23((∇−∇0)⊗A id)(1 + σ)(ω ⊗A ηa)

=Φg(∇−∇0)(ω ⊗A ηa).

Therefore, Φg(∇−∇0) = Πg(∇)−Πg(∇0). Since Φg(∇−∇0) = dg −Πg(∇0) by the definition

of ∇, we have Πg(∇) = dg. Therefore, ∇ is compatible with g.

To show uniqueness, suppose ∇′ is another torsionless connection compatible with the metric

g. Then exactly as above, ∇−∇′ ∈ HomA(E , E ⊗sym
A E) and

Φg(∇−∇′) = Πg(∇)−Πg(∇′) = dg − dg = 0,

where we have used the fact that ∇ and ∇′ are compatible with g. Hence, ∇ = ∇′, as Φg is an

isomorphism.
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The rest of this section will be devoted to proving that for tame spectral triples, Φg is indeed

an isomorphism, which will then prove Theorem 2.5.1. We will make use of the isomorphism

ζE⊗AE,E : E ⊗A E ⊗A E∗ → HomA(E , E ⊗A E)

as introduced in Proposition 1.1.8.

Lemma 2.5.6. Let g be a pseudo-Riemannian bilinear metric on E and L be an element of

HomA(E , E ⊗A E) such that ζ−1
E⊗AE,E(L) = ξ ⊗A η ⊗A Vg(ω) for some ξ, η, ω in E .

(i) Then for all e in E , we have

L(e) = ξ ⊗A ηg(ω ⊗A e).

(ii) Let us define then an element L′ in HomA(E , E ⊗A E) by the equation

ζ−1
E⊗AE,E(L

′) = η ⊗A ξ ⊗A Vg(ω).

If L in HomA(E , E⊗sym
A E) and ξ, η, ω are in Z(E), then L = L′ as elements of HomA(E , E⊗A

E). Moreover,

ξ ⊗A η ⊗A Vg(ω) = η ⊗A ξ ⊗A Vg(ω).

(iii) The set {ζE⊗AE,E(ξ ⊗A η ⊗A Vg(ω) : ξ, η, ω ∈ Z(E)} is right A-total in HomA(E , E ⊗A E).

Proof. Throughout the proof, we will repeatedly use Lemma 2.1.8 and the equation σ = σcan.

Let e denote an element of E . By the definition of ζE⊗AE,E , it follows that

L(e) = ξ ⊗A ηVg(ω)(e) = ξ ⊗A ηg(ω ⊗A e).

Now we prove part (ii). By part (i), we have

Psym(L(e)) =
1

2
(ξ ⊗A η + η ⊗A ξ)g(ω ⊗A e).

Since L(e) is in E ⊗sym
A E , we have PsymL(e) = L(e). Therefore, 1

2(ξ ⊗A η + η ⊗A ξ)g(ω ⊗A e) =

ξ ⊗A ηg(ω ⊗A e) which implies that ξ ⊗A ηg(ω ⊗A e) = η ⊗A ξg(ω ⊗A e). This proves that
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L(e) = L′(e). Hence,

ξ ⊗A η ⊗A Vg(ω) = ζ−1
E⊗AE,E(L) = ζ−1

E⊗AE,E(L
′) = η ⊗A ξ ⊗A Vg(ω).

Finally, for part (iii), we note that since g is bilinear, the set S = {ξ ⊗A η ⊗A Vg(ω) : ξ, η, ω ∈

Z(E)} is right A-total in E⊗AE⊗AE∗ and therefore ζE⊗AE,E(S) is right A-total in HomA(E , E⊗A

E).

Now we are going to make an use of Lemma 1.1.7. In the notation of Lemma 1.1.7, we define

F = E ⊗A E , h = g(2)and T = Psym. Since Psym is A-bilinear (Lemma 2.4.5) and Proposition

2.3.5 implies that Vg(2) : E ⊗A E → (E ⊗A E)∗ is an isomorphism, Lemma 1.1.7 implies that the

adjoint P ∗sym of Psym exists.

Lemma 2.5.7. For all ω, η in E, Vg(2)σ(ω ⊗A η) = Vg(2)(ω ⊗A η)σ. In particular, Psym = P ∗sym

in the notation of Lemma 1.1.7.

Proof. As Vg(2) is right A-linear by Proposition 2.3.5, σ = 2Psym− 1 is A-bilinear and {ω⊗A η :

ω, η ∈ Z(E)} is right A-total in E⊗AE (Lemma 2.1.5), it is enough to prove that for all ω, η, ω′, η′

in Z(E),

Vg(2)(σ(ω ⊗A η))(ω′ ⊗A η′) = Vg(2)(ω ⊗A η)σ(ω′ ⊗A η′).

But this follows from the following computation:

Vg(2)(σ(ω ⊗A η))(ω′ ⊗A η′) = g(2)((η ⊗A ω)⊗A (ω′ ⊗A η′))

= g(η ⊗A η′)g(ω ⊗A ω′)

= g(ω ⊗A ω′)g(η ⊗A η′) (by Proposition 2.3.2 )

= Vg(2)(ω ⊗A η)σ(ω′ ⊗A η′).

This finishes the proof.

Lemma 2.5.8. Let L be in HomA(E , E ⊗A E) be such that ζ−1
E⊗AE,E(L) = ξ ⊗A η ⊗A Vg(ω) for

some ξ, η, ω in Z(E). Then

Φg(L) = ζE,E⊗AE(η ⊗A Vg(2)(ξ ⊗A ω + ω ⊗A ξ)). (2.5.1)
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Proof. The set {ω ⊗A η : ω, η ∈ Z(E)} is right A-total in E ⊗A E by Lemma 2.1.5 and the map

Φg(L) is right A-linear. Therefore, it is enough to prove that for all ω′, η′ in Z(E),

Φg(L)(ω′ ⊗A η′) = ηVg(2)(ξ ⊗A ω + ω ⊗A ξ)(ω′ ⊗A η′).

By using part (i) of Lemma 2.5.6, we compute

Φg(L)(ω′ ⊗A η′) = (g ⊗A id)σ23(L(ω′)⊗A η′ + L(η′)⊗A ω′)

= (g ⊗A id)σ23(ξ ⊗A ηg(ω ⊗A ω′)⊗A η′ + ξ ⊗A ηg(ω ⊗A η′)⊗A ω′)

= (g ⊗A id)(ξ ⊗A η′ ⊗A ηg(ω ⊗A ω′) + ξ ⊗A ω′ ⊗A ηg(ω ⊗A η′))

= g(ξ ⊗A η′)ηg(ω ⊗A ω′) + g(ξ ⊗A ω′)ηg(ω ⊗A η′)

= ηg(ξ ⊗A η′)g(ω ⊗A ω′) + ηg(g(ξ ⊗A ω′)ω ⊗A η′) (since g is bilinear)

= ηVg(2)(ξ ⊗A ω + ω ⊗A ξ)(ω′ ⊗A η′).

We have assumed that our pseudo-Riemannian metric g is bilinear and so in particular, left

A-linear. This implies that the map Vg (and hence V −1
g ) is left A-linear. Hence, the map

id⊗A V −1
g in the following proposition makes sense.

Proposition 2.5.9. Let L be in HomA(E , E ⊗sym
A E). Then

1

2
Φg(L) = ζE,E⊗AE(id⊗A Vg(2))(Psym)23(id⊗A V −1

g )ζ−1
E⊗AE,E(L). (2.5.2)

Proof. Let L be in HomA(E , E ⊗sym
A E) be such that ζ−1

E⊗AE,E(L) = ξ ⊗A η ⊗A Vg(ω) for some

ξ, η, ω in Z(E). Then by part 2. of Lemma 2.5.6, we have ξ ⊗A η ⊗A Vg(ω) = η ⊗A ξ ⊗A Vg(ω).

Therefore,

ζE,E⊗AE((id⊗A Vg(2))(Psym)23(id⊗A V −1
g )ζ−1

E⊗AE,E(L))

= ζE,E⊗AE((id⊗A Vg(2))(Psym)23(id⊗A V −1
g )(ξ ⊗A η ⊗A Vg(ω)))

= ζE,E⊗AE((id⊗A Vg(2))(Psym)23(η ⊗A ξ ⊗A ω))

=
1

2
ζE,E⊗AE(η ⊗A Vg(2)(ξ ⊗A ω + ω ⊗A ξ)) (since ξ, ω ∈ Z(E))

=
1

2
Φg(L) (by Lemma 2.5.8).
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Thus, we have proved (2.5.2) for all L of the above form. But since the maps ζE⊗AE,E , Φg, Vg(2)

and Psym are all right A-linear, we can conclude that (2.5.2) holds for all L in HomA(E , E⊗sym
A E)

by appealing to part (iii) of Lemma 2.5.6.

Lemma 2.5.10. Vg(2) is an isomorphism from E ⊗sym
A E onto (E ⊗sym

A E)∗.

Proof. Let us start by claiming that (E ⊗sym
A E)∗ can be identified with the bimodule {φ ∈

(E ⊗A E)∗ : φ ◦ (1−Psym) = 0}. Indeed, if ψ is in (E ⊗sym
A E)∗, then ψ can be uniquely extended

to an element φ in (E ⊗A E)∗ by using the decomposition E ⊗A E = Ran(Psym)⊕Ran(1−Psym).

Clearly, ψ = φ ◦ Psym. Conversely, if φ is in (E ⊗A E)∗ then φ ◦ Psym defines an element of

(E ⊗sym
A E)∗. This proves our claim.

Now we use our claim to prove that Vg(2) is one-to-one and onto as a map from E ⊗sym
A E to

(E ⊗sym
A E)∗. Let φ in (E ⊗A E)∗ be such that φ◦ (1−Psym) = 0. Since Vg(2) : E ⊗A E → (E ⊗A E)∗

is an isomorphism by Proposition 2.3.5, there exists ψ in E ⊗A E such that Vg(2)(ψ) = φ. We

claim that Psymψ = ψ. Indeed,

Vg(2)(Psymψ) = Vg(2)(ψ) ◦ Psym = φ ◦ Psym (since, by Lemma 2.5.7 P ∗sym = Psym)

= φ ◦ Psym + φ ◦ (1− Psym) = φ

= Vg(2)(ψ).

By using Proposition 2.3.5, we conclude that Psymψ = ψ. This proves that Vg(2) maps onto

(E ⊗sym
A E)∗.

To prove that Vg(2) is one-to-one as a map from E ⊗sym
A E to (E ⊗sym

A E)∗, let ψ in E ⊗sym
A E

be such that Vg(2)(ψ) ◦ Psym = 0. Therefore, by Lemma 2.5.7, we have

Vg(2)(ψ) = Vg(2)Psym(ψ) = Vg(2)(ψ) ◦ Psym = 0, (2.5.3)

so that by Proposition 2.3.5, we have ψ = 0.

Finally, we give a proof of our main theorem for this chapter using the results just proved.
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Proof of Theorem 2.5.1. We need to prove that the map Φg is an isomorphism from

HomA(E , E ⊗sym
A E) to HomA(E ⊗sym

A E , E). By Lemma 2.1.10, the map

(Psym)23 : (E ⊗sym
A E)⊗A E → E ⊗A (E ⊗sym

A E)

is an isomorphism of right A modules. Since (id ⊗A V −1
g )ζ−1

E⊗AE,E is an isomorphism from

HomA(E , E ⊗sym
A E) to (E ⊗sym

A E)⊗A E and Vg(2) is an isomorphism from E ⊗sym
A E to (E ⊗sym

A E)∗

by Lemma 2.5.10, we see that ζE,E⊗AE(id⊗AVg(2))(Psym)23(id⊗AV −1
g )ζ−1

E⊗AE,E is an isomorphism

from HomA(E , E ⊗sym
A E) to HomA((E ⊗sym

A E)⊗A E). Finally, the equation (2.5.2) implies that

Φg is an isomorphism.

We end this chapter by comparing some of the related results in the literature. We will

need the terminology of tame differential calculus whose definition is a verbatim adaptation of

the definition of tame spectral triples in the context of differential calculi. Thus, a differential

calculus is called tame if the bimodule of one-forms of the differential calculus satisfies conditions

(i)-(iv) of Definition 2.4.1. For a precise definition of a tame differential calculus, we refer to

Definition 2.2 of [14]. We continue to have an A-bilinear map σ : E ⊗A E → E ⊗A E as in

Definition 2.2.1.

In [15] and [14], Theorem 2.5.1 was proved for an arbitrary tame differential calculus by

adapting the classical Koszul-formula proof of existence and uniqueness of Levi-Civita connec-

tions. Indeed, Proposition 5.6 of [14] deduces a Koszul-formula for the Levi-Civita connection.

Now, we discuss the relevance of bimodule connections for tame spectral triples.

Definition 2.5.11. Suppose E be the bimodule of one-forms of a differential calculus and σ′ :

E ⊗A E → E ⊗A E be a bimodule map. A right connection ∇1 on E is said to be a bimodule

connection for the pair (E , σ′) if for all a in A and for all e in E , the following equation holds:

∇1(ae) = a∇1(e) + σ′(da⊗A e).

The following theorem was proved in [15].

Theorem 2.5.12. (Theorem 7.3, [15]) If g is a pseudo-Riemannian bilinear metric on a tame

differential calculus (E , d), then the unique Levi-Civita connection for (E , g) is a bimodule con-

nection for the pair (E , σ).
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Now we come to the issue of existence and uniqueness of Levi-Civita connections for pseudo-

Riemannian metrics which are not necessarily A-bilinear. Let us make the following definition:

Definition 2.5.13. A pseudo-Riemannian metric (not necessarily A-bilinear) g on a tame

spectral triple is called strongly σ-compatible if for all e, f, e′, f ′ in E ,

g(2)(σ(e⊗A f)⊗A (e′ ⊗A f ′)) = g(2)((e⊗A f)⊗A σ(e′ ⊗A f ′)).

Our Lemma 2.5.7 implies that any pseudo-Riemannian bilinear metric on a tame spectral

triple is automatically strongly σ-compatible.

The main result of [13] states that if g is a strongly σ-compatible pseudo-Riemannian metric

on any tame differential calculus (E , d) (see Definition 2.2 of [14]), then there exists a unique

Levi-Civita connection for the triplet (E , d, g).

Since tame spectral triples are examples of tame differential calculus, the two results men-

tioned above also hold for tame spectral triples.



Chapter 3

Examples of Tame Spectral Triples

This chapter illustrates examples of tame spectral triples. By Theorem 2.5.1 these admit a

unique torsionless connection compatible with a pseudo-Riemannian bilinear metric.

In Section 3.1, we discuss the example of the fuzzy 3-spheres. The question of existence and

uniqueness of Levi-Civita connections on fuzzy 3-spheres was addressed in [41], albeit with a

different formulation of metric compatibility. We will see (Proposition 3.1.4) that the candidate

of a pseudo-Riemannian bilinear metric proposed in Lemma 2.3.6 is actually a Riemannian

bilinear metric. Let us denote this by g. The authors of [41] proved that a family of Levi-Civita

connections in the sense of that paper exist for the triple (E , d, g). However, if in addition,

one demands the Levi-Civita connection to be real, then there exists a unique connection. In

Theorem 3.1.5, we show that the spectral triple in [41] are tame. Thus, by Theorem 2.5.1,

for each pseudo-Riemannian bilinear metric, there exists a unique Levi-Civita connection. In

particular, if we take the Riemannian bilinear metric g as above, then the Levi-Civita connection

from Theorem 2.5.1 coincides with the unique real Levi-Civita connection obtained in [41]. In

[15], a spectral triple is defined on the fuzzy 3-spheres which is a truncated version of the spectral

triple discussed here and in [41]. That spectral triple was also shown to be a tame spectral triple

(Theorem 8.5 of [15]). In particular, after obtaining the unique Levi-Civita connection, that

article also computes the Ricci and scalar curvatures associated to the spectral triple. We will

not be addressing the issue of curvature in this thesis.

In Section 3.2, we discuss the example of the quantum Heisenberg manifolds introduced in

[81]. In [22], a family of spectral triples and the corresponding space of forms were studied.

However, it turned out that with a particular choice of a metric and the definition of the metric

79
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compatibility of the connection in the sense of [41], there exists no connection on the space of

one-forms which is both torsionless and compatible with the metric. In Theorem 3.2.6, we show

that the spectral triples of [22] are tame spectral triples, and hence each pseudo-Riemannian

bilinear metric admits a unique Levi-Civita connection. We would like to mention that in [56]

and [57] compatible connections for Hermitian metrics and Yang-Mills theory on the quantum

Heisenberg manifolds have been studied.

In Section 3.3, we discuss the example of Connes Dubois-Violette Rieffel deformations

C∞(M)θ ([26, 82]) of a compact Riemannian manifold M and a spectral triples on it given

in [27]. In Theorem 3.3.1, we show that this spectral triple is a tame spectral triple under

some technical assumptions, thus admitting a unique Levi-Civita connection (as per our for-

mulation) for each pseudo-Riemannian bilinear metric. In Corollary 3.3.38, we show that this

unique Levi-Civita connection is the θ-deformation of the classical Levi-Civita connection on

a compact Riemannian manifold. This also demonstrates that our formulation of Levi-Civita

connections respects θ-deformations.

We would like to mention that in the recent paper [54], a spectral triple on the Cuntz

algebra with three generators was given. In Theorem 3.4 of the same paper, it was shown that

this spectral triple is a tame spectral triple, and thus admits a unique Levi-Civita connection

for each pseudo-Riemannian bilinear metric.

The contents of this chapter are from [16]. As in the previous chapter, if (A,H, D) is a

spectral triple, we will often denote the space of one-forms Ω1
D(A) of this spectral triple by the

symbol E .

3.1 Levi-Civita connection for fuzzy 3-spheres

We start by giving a brief description of the spectral triple on the fuzzy 3-sphere. Let G denote

the compact Lie group SU(2) and Vj , j ∈ 1
2N0, denote the (2j + 1) dimensional irreducible

representation of SU(2). Let k be a positive integer and H0 :=
⊕

j=0, 1
2
,..., k

2
V ∗j ⊗CVj and A :=

B(H0). Let W be the carrier vector space of the irreducible representation of the Clifford algebra

generated by the vector space TeG with respect to the Killing form on G as defined by equations

(3.4) and (3.5) of [41]. There exists a spectral triple (A,H, D), where H := H0⊗CW , called the

“fuzzy” or non-commutative 3-sphere. We refer to [41] for the details.

In what follows, we will denote the elements 1⊗Cψi in the center of E := Ω1
D(A) as in [41] by
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the symbol ei, so that

ej ∧ ek = −ek ∧ ej

and {ei ∧ ej : i ≤ j} is linearly independent. Let E := Ω1
D(A). One has the following result.

Theorem 3.1.1. (Equation (3.19) and Theorem 3.2 of [41]) The space of forms for the spectral

triple (A,H, D) has the following description:

(i) The module E is isomorphic to SpanC{eiai : i = 1, 2, 3} and thus is a free right A module

of rank three.

(ii) The bimodule Ω2
D(A) of two-forms is isomorphic to SpanC{ei ∧ ejaij : aij = −aji} is a

free right A module of rank three.

Moreover, it was also proven in [41] that the space of three-forms is a free rank one module

and all the higher forms are zero. The bimodule structure for E := Ω1
D(A) (and similarly, for

the higher forms) is given by

a(b⊗Cψi)c = abc⊗Cψi = eiabc.

We note that this implies that E is centered. In fact, Z(E) is a complex linear span of {e1, e2, e3}.

We also note that we can identify E ⊗A E with SpanC{ei ⊗A eja : i, j = 1, 2, 3}.

Lemma 3.1.2. The space Ker(∧) is generated (as a right A module) by the set

{ei ⊗A ei, ei ⊗A ej + ej ⊗A ei : i, j = 1, 2, 3, i 6= j}.

Proof. Throughout this proof, we will be using the fact that the elements ei are in Z(E). Let

ω =
∑

j ejaj , η =
∑

k ekbk be elements of E . If εijk denotes the Levi-Civita tensor, i.e,

εijk =


0, if any two indices are repeated

1, if (ijk) is an even permutation

−1, if (ijk) is an odd permutation,
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then by equation (3.29) of [41], we have

ω ∧ η =
∑
ijk

(εijk)
2ejaj ∧ ekbk =

∑
ijk

(εijk)
2ej ∧ ekajbk

=
∑
jk=2,3

(ε1jk)
2ej ∧ ekajbk +

∑
jk=1,3

(ε2jk)
2ej ∧ ekajbk +

∑
jk=1,2

(ε3jk)
2ej ∧ ekajbk

=
∑
j 6=k

ej ∧ ekajbk

=
∑
j<k

ej ∧ ek(ajbk − akbj).

Therefore, we have

ei ∧ ei = 0 = ei ∧ ej + ej ∧ ei.

Hence, {ei ⊗A ei, ei ⊗A ej + ej ⊗A ei : 1 ≤ i ≤ j ≤ 3} ⊆ Ker(∧).

Conversely, if aij in A is such that ∧(
∑

i,j ei ⊗A ejaij) = 0, then by the above computation,

we can conclude that
∑

i<j ei ∧ ej(aij − aji) = 0. Since {ei ∧ ej : i < j} is linearly independent,

we have aij = aji. Therefore,

Ker(∧) ⊆ SpanA{ei ⊗A ei, ei ⊗A ej + ej ⊗A ei : i, j = 1, 2, 3}.

This finishes the proof.

Proposition 3.1.3. Let F denote the right A-linear span of the set {ei ⊗A ej − ej ⊗A ei : 1 ≤

i < j ≤ 3}. Then, the bimodule E ⊗A E admits a decomposition E ⊗A E = Ker(∧)⊕ F as right

A-modules. Moreover, the map σ = 2Psym − 1 is equal to the map σcan as in Theorem 2.1.7,

i.e. for all ω, η in Z(E), and a in A,

σ(ω ⊗A ηa) = η ⊗A ωa.

Proof. From the description of Ker(∧) in Lemma 3.1.2 and the isomorphism Ω2
D(A) ∼= SpanC{ei∧

ejaij : aij = −aji} ((ii) of Theorem 3.1.1), it is clear that we have a right A-linear splitting:

E ⊗A E = Ker(∧) ⊕ F where F = SpanC{ei ⊗A ejaij : aij = −aji} is satisfied. Moreover, it is

easy to verify that for all ω, η in Z(E), the map

ω ⊗A η 7→
1

2
(ω ⊗A η + η ⊗A ω)
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extends to a bilinear idempotent map on E ⊗A E with range equal to Ker(∧) and kernel equal

to F . Thus, for all ω, η in Z(E), we have

Psym(ω ⊗A η) =
1

2
(ω ⊗A η + η ⊗A ω),

where Psym is as in Definition 2.2.1. Therefore, σ = 2Psym − 1 = σcan.

The following result concerns the canonical Riemannian bilinear metric of spectral triples

discussed in Lemma 2.3.6.

Proposition 3.1.4. The bilinear form g constructed in Lemma 2.3.6, given by g(ei ⊗A ej) =

δij1A in the case of the fuzzy 3-spheres, is a Riemannian bilinear metric.

Proof. From equation (3.49) of [41], we see that g : E ⊗A E → A is defined by

g(ω ⊗A η) =
∑

i=1,2,3

aibi,

where ω =
∑

i=1,2,3 eiai, η =
∑

i=1,2,3 eibi.

We need to check the conditions of Definition 2.3.7. From the definition of g, it is clear that g

is an A-valued map. Next, we check that the map Vg is nondegenerate. Let ω in E be such that

Vg(ω)(η) = 0 for all η in E . In particular, g(ω ⊗A ej) = 0 for all j = 1, 2, 3. If ω =
∑

i=1,2,3 eiai,

we conclude that ai = 0 for all i. Therefore, ω = 0, proving that Vg is one-to-one.

Now we prove that Vg is onto. Suppose ω ∈ E is of the form
∑

i eiai. Then we define φω in E∗

by

φω(eib) = aib.

It is clear that any φ in E∗ is of the form φω for some ω in E . Since Vg(
∑

i=1,2,3 eiωi) = φω, Vg

is onto.

Now we prove that g satisfies the equation g ◦ σ = g. We have

g ◦ σ(ei ⊗A ej) = g(ej ⊗A ei) = δij1A = g(ei ⊗A ej).

Since Z(E) = Span{ei : i = 1, 2, 3} and E ⊗A E = SpanC = {ω ⊗A η : ω, η ∈ Z(E)} by Lemma

2.1.5, g ◦ σ(e⊗A f) = g(e⊗A f) for all e, f in E .

Finally, we have first of the two main results of this section.
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Theorem 3.1.5. The spectral triple (A,H, D) is a tame spectral triple. Hence, for each pseudo-

Riemannian bilinear metric g on E := Ω1
D(A), there exists a unique torsionless connection which

is compatible with g.

Proof. We need to show that the spectral triple satisfies the hypotheses of Definition 2.4.1. By

virtue of Theorem 3.1.1 and Proposition 3.1.3, we are left to verify that uE : Z(E)⊗Z(A)A → E

is an isomorphism. But this is clear, since Z(A) = C.1 and Z(E) is the C-linear span of e1, e2, e3.

Therefore, by Theorem 2.5.1, for each pseudo-Riemannian bilinear metric g on E there exists a

unique torsionless connection which is compatible with g.

The authors of [41] investigated the existence of torsionless and unitary connections on E .

While the definition of torsion of a connection discussed in their paper is the same as that in

ours, the definitions of “metric compatibility” of a connection are different, since the paper

[41] views a Riemannian metric as a sesquilinear form as opposed to a bilinear form as in this

thesis. In Proposition 3.7 of [41], it is proven that there exists a nontrivial family of torsionless

connections which are also unitary. However, once the additional condition of the connection to

be real is imposed, then Corollary 3.8 of [41] proves that such a connection is unique. We have

the following result:

Theorem 3.1.6. Consider the Riemannian bilinear metric g of Proposition 3.1.4. Then the

Levi-Civita connection of Theorem 3.1.5 for the triple (E , d, g) coincides with the unique real

unitary torsionless connection in Corollary 3.8 of [41].

Proof. We take basis elements ei in E and use the fact that ei are elements of Z(E). We denote

by Γijk the Christoffel symbols given by ∇(ei) =
∑

jk ej ⊗A ekΓijk. Then, we explicitly compute

the metric compatibility criterion for the fuzzy 3-sphere by our definition:

0 = d(δij) = d(g(ei ⊗A ej))

= (g ⊗A id)(id⊗A σ)(∇(ei)⊗A ej +∇(ej)⊗A ei)

= (g ⊗A id)(id⊗A σ)(
∑
k,l

ek ⊗A el ⊗A ejΓikl +
∑
k,l

ek ⊗A el ⊗A eiΓjkl)

= (g ⊗A id)(
∑
k,l

ek ⊗A ej ⊗A elΓikl +
∑
k,l

ek ⊗A ei ⊗A elΓjkl)

=
∑
l

el(Γ
i
jl + Γjil), for all l and for all i 6= j.
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Hence, the metric compatibility criterion gives us that Γijl = −Γjil. In [41], combining the

necessary and sufficient condition for a connection to be unitary (Equation (3.51) of [41]) and

to be a real connection, i.e. the connection coefficients must be anti-Hermitian, we get that the

connection coefficients must satisfy Γijk = −Γjik. We see that this is the same condition that we

arrive at for a metric compatible connection in our sense.

The torsionless criterion gives us that for all basis elements ei in E ,

0 = (∧ ◦ ∇+ d)(ei) =
∑
jk

ej ∧ ekΓijk −
√
−1
∑
jk

εijkej ∧ ek,

where we obtain the expression for d(ei) from Equation (3.31) of [41]. From Proposition 6.6

and Proposition 3.7 of [41], we know that this is equivalent to the criterion Γijk−Γikj =
√
−1εijk

We see that the solution Γijk =
√
−1
2 εijk satisfies both the metric compatibility as well as the

torsionless criteria. Hence these are the Christoffel symbols of our unique Levi-Civita connection.

Hence, the unique real unitary torsionless connection in Corollary 3.8 of [41] and the unique

Levi-Civita connection for the fuzzy 3-sphere obtained by Theorem 3.1.5 coincide.

3.2 Levi-Civita connection for quantum Heisenberg manifold

In this section, we consider the spectral triple on the quantum Heisenberg manifold as defined

and studied in [22]. The definition of the Dirac operator and the space of one-forms require

the Pauli spin matrices denoted by σ1, σ2, σ3 in [22]. In particular, the σi’s satisfy the following

relations:

σ2
j = 1, σjσk = −σkσj , σ1σ2 =

√
−1σ3, σ2σ3 =

√
−1σ1, σ1σ3 =

√
−1σ2. (3.2.1)

Moreover, we are going to work with right connections instead of left connections as had been

done in [22].

The description of the algebra of quantum Heisenberg manifold in [81] is as follows.

Definition 3.2.1. For any positive integer c, let Sc denote the space of infinitely differentiable

functions Φ : R× T× Z→ C that satisfy the following two conditions:
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(i) Φ(x+ k, y, p) = e2πickpyΦ(x, y, p) for all k ∈ Z,

(ii) for every partial differential operator X̃ = ∂m+n

∂xm∂yn on R×T and every polynomial p on Z,

the function P (p)(X̃Φ)(x, y, p) is bounded on K × Z for any compact set K of R× T.

For each ~, µ, ν ∈ R with µ2 + ν2 6= 0, let A∞~ denote the space Sc equipped with product and

involution defined, respectively, by

(Φ ∗Ψ)(x, y, p) =
∑

q Φ(x− ~(q − p)µ, y − ~(q − p)ν, q)Ψ(x− ~qµ, y − ~q, ν, p− q),

Φ∗(x, y, p) = Φ(x, y,−p).

Let π be the representation of A∞~ on L2(R× T× Z) given by

(π(Φ)ξ)(x, y, p) =
∑
q

Φ(x− ~(q − 2p)µ, y − ~(q − 2p)ν, q)ξ(x, y, p− q).

Then π gives a faithful representation of the ∗-algebra A∞~ . The norm closure of π(A∞~ ), denoted

by Ac,~µ,ν is called the quantum Heisenberg manifold.

For the rest of this section, we will denote the ∗-algebra A∞~ by A. The algebra A admits an

action of the Heisenberg group. The symbol τ will denote a certain state on A invariant under

the action of the Heisenberg group. Let X1, X2, X3 denote the canonical basis of the Lie algebra

of the Heisenberg group so that we have associated self-adjoint operators dXi on L2(A, τ) in

the natural way. Then the triple (A, L2(A, τ)⊗CC2, D) defines a spectral triple on A where A

is represented on L2(A, τ)⊗CC2 diagonally and the Dirac operator D is defined as

D =
∑
j

dXj⊗Cσj ,

where σj , j = 1, 2, 3 are the self-adjoint Pauli spin matrices satisfying (3.2.1).

Let us denote the operator 1⊗Cσi by the symbol ei. Then, the following lemma is a direct

consequence of the proof of Proposition 9 of [22].

Lemma 3.2.2. For all a in A,

d(a) =
3∑
j=1

ej∂j(a),

where ∂1(a) =
∂a

∂x
, ∂2(a) = −2π

√
−1cpxa+

∂a

∂y
, ∂3(a) = −2π

√
−1cpαa
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for some α greater than 1. The derivations ∂1, ∂2, ∂3 satisfy the following relation:

[∂1, ∂3] = [∂2, ∂3] = 0, [∂1, ∂2] = ∂3. (3.2.2)

The space of one-forms and two-forms for the spectral triple (A, L2(A, τ)⊗CC2, D) are as

follows:

Proposition 3.2.3. For i = 1, 2, 3, let ei denote the element 1⊗Cσi. The module of one-forms

E := Ω1
D(A) is a free module generated by e1, e2, e3. Moreover, e1, e2, e3 are central elements.

As a subset of B(L2(A, τ)⊗CC2), E can be described as follows:

E = {
∑
i

ai⊗Cσi : ai ∈ A} = {
∑
i

aiei : ai ∈ A}.

The set of junk forms (see Subsection 1.3.1) is equal to {a⊗C1 : a ∈ A}, and therefore is

isomorphic to A. Finally, the space of two forms Ω2
D(A) is isomorphic to A⊕A⊕A. Explicitly,

Ω2
D(A) = {a1⊗Cσ1σ2 + a2⊗Cσ2σ3 + a3⊗Cσ1σ3 : a1, a2, a3 ∈ A} ⊆ B(L2(A, τ)⊗CC2).

Proof. The space of one-forms is described in Proposition 21 of [22]. The fact that e1, e2, e3 are

central can be easily seen from the definition of the representation of A on L2(A, τ)⊗CC2. The

statement about the two forms follow from Proposition 22 of the same paper.

Proposition 3.2.4. The bilinear form g constructed in Lemma 2.3.6 satisfies the conditions of

Definition 2.3.7, i.e, it is the canonical Riemannian bilinear metric for the spectral triple.

Proof. We need to check the conditions of Definition 2.3.7. This essentially follows from the

results of [22]. We will use Proposition 3.2.3 to identify E with A⊗CC3, the bimodule structure

being defined as:

a(eib)c = eiabc.

We will let τ denote the functional on B(H) as in Subsection 2.3.1. Let ψ : A → C be the

faithful normal tracial state on A′′ as in Section 2 of [22] (denoted by τ in [22]). By Proposition

14 of [22],

τ(X) = (
1

2
ψ⊗CTr)(X) for all X ∈ E .
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since ψ is faithful on A′′, we can conclude that τ is faithful on the ∗-algebra generated by A

and {[D, a] : a ∈ A}. Moreover, by identifying A ⊆ E = A⊗CC3 via a 7→ a ⊗ I2, τ(a) = ψ(a)

for all a in A.

If ω =
∑3

i=1 eiai and η =
∑3

i=1 eibi are two one-forms, then

1

2
(I⊗CTr)(ωη) =

3∑
i=1

aibi.

Therefore, for all c in A, the formula g(ω ⊗A η) = 〈〈ω∗, η〉〉 (Lemma 2.3.6) implies that

τ(g(ω ⊗A η)c) = τ(〈〈ω∗, η〉〉 c) = τ(ωηc)

= (
1

2
ψ⊗CTr))(ωηc) =

∑
i

ψ(aibic) = τ((
3∑
i=1

aibi)c).

Therefore, g(ω ⊗A η) =
∑3

i=1 aibi is in A. The nondegeneracy of the map Vg follows just as in

Proposition 3.1.4.

Proposition 3.2.5. Let F denote the right A-linear span of the set {ei ⊗A ej − ej ⊗A ei : 1 ≤

i < j ≤ 3}. Then, the bimodule E ⊗A E admits a decomposition E ⊗A E = Ker(∧)⊕ F as right

A-modules. Moreover, the map σ = 2Psym − 1 is equal to the map σcan as in Theorem 2.1.7,

i.e. for all e, f in Z(E), and a in A,

σ(e⊗A fa) = f ⊗A ea.

Proof. We will use the fact that ei are central elements throughout the proof. Moreover, let

∧,m0,J , be as in Subsection 1.3.1 while Psym will be as in Definition 2.2.1. By the description

of J and that of Ω2
D(A) in Proposition 3.2.3, it is easy to see that Ker(∧) is spanned by

{ei ⊗A ej + ej ⊗A ei : 1 ≤ i ≤ j ≤ 3} as a right A-module and F = SpanA{ei ⊗A ej − ej ⊗A ei :

1 ≤ i < j ≤ 3}. Clearly, E ⊗A E = Ker(∧)⊕F as right A modules.

Since e1, e2, e3 ∈ Z(E), it can be easily checked that uE is an isomorphism. In particular, E

is centered. Moreover, by the description of Ker(∧) as above, we have

Psym(ei ⊗A ej − ej ⊗A ei) = 0, Psym(ei ⊗A ej + ej ⊗A ei) = ei ⊗A ej + ej ⊗A ei

and thus 2Psym(ei ⊗A ej) = ei ⊗A ej + ej ⊗A ei.
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Therefore, σ(ei ⊗A ej) = (2Psym − 1)(ei ⊗A ej) = ej ⊗A ei.

Therefore, σ = σcan.

Finally, we have the main result of this section.

Theorem 3.2.6. The spectral triple (A, L2(A, τ)⊗CC2, D) is a tame spectral triple. Hence, for

any pseudo-Riemannian bilinear metric g on E, there exists a unique Levi-Civita connection on

the module E compatible with g.

Proof. In Proposition 3.2.3 and Proposition 3.2.5, we have verified that the conditions of Def-

inition 2.4.1, so the spectral triple is a tame spectral triple. By Theorem 2.5.1, we have the

second part of our result.

3.3 Levi-Civita connection for Connes-Landi deformed spectral

triples

Suppose M is a compact Riemannian manifold such that the maximal torus of the isometry

group of M has rank greater than or equal to 2. Then the action of the maximal torus on C∞(M)

allows us to define a deformed algebra C∞(M)θ ([82], [26]). Moreover, the torus equivariant

spectral triple (C∞(M),H, d+d∗) on M (as in Example 1.3.5) can be deformed to a new spectral

triple on C∞(M)θ([27]).

The goal of this section is to prove the following theorem:

Theorem 3.3.1. Suppose M is a compact Riemannian manifold equipped with a free isometric

action of Tn. Let E := Ω1(M) denote the space of one-forms of the spectral triple (C∞(M),H, d+

d∗) discussed in Example 1.3.5. Then the deformed spectral triple (C∞(M)θ,H, d + d∗) as in

Theorem 3.3.25 is a tame spectral triple and the metric g deforms to a Riemannian metric gθ

on the bimodule of one-forms Eθ of the spectral triple (C∞(M)θ,H, d+ d∗). Hence, there exists

a unique Levi-Civita connection on Eθ for gθ.

In the first subsection, we prove some preparatory results on the fixed point algebra under the

action of a compact abelian Lie group. In Subsection 3.3.2 we prove some results on generalities

of Rieffel deformations. In Subsection 3.3.3 we prove that there exists a Riemannian bilinear
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metric on Eθ and that it is the deformation of the canonical metric on E . In Subsection 3.3.4, we

prove that under our assumptions, the deformed module of one-forms on the Rieffel deformed

manifold satisfies the conditions of Definition 2.4.1.

Now we recall the concepts of spectral subspaces and spectral subalgebras (or spectral sub-

modules) for actions of the group Tn on algebras and modules.

Definition 3.3.2. Suppose β is an action of Tn on a module G (or an algebra D). Then the

spectral subspace corresponding to a character m ≡ (m1, ...,mn) in T̂n ∼= Zn, denoted by Gm

(respectively Dm), consists of all ξ such that βt(ξ) = χm(t)ξ for all t = (t1, . . . , tn) in Tn, where

χm(t) := tm1
1 . . . tmnn .

It is easily seen that DmDn ⊆ Dm+n.

Suppose that G is a D-bimodule. Moreover, let us assume that both D and G are equipped

with actions of Tn in such a way that G becomes a Tn-equivariant D-bimodule. This means

that for all e in G and for all a, b in D, we have:

βt(aeb) = αt(a)βt(e)αt(b).

In this case, we have

GmDn ⊆ Gm+n and DnGm ⊆ Gm+n. (3.3.1)

The subspace SpanC{Dm : m ∈ Zn} comprises the so-called ‘spectral subalgebra’ for the action.

Similarly, SpanC{Gm : m ∈ Zn} is called the spectral submodule of the action.

Let G be a group. Let us recall that a spectral triple (A,H, D) is called G-equivariant if

there exists a unitary representation β of G on H such that βgD = Dβg. Moreover, we recall

the following well known fact (see [26] for the details).

Proposition 3.3.3. Suppose that M is a compact Riemannian manifold with an isometric

action of the n-torus Tn on M . Consider the spectral triple (C∞(M),H, D) of Example 1.3.5,

i.e, H is the Hilbert space of all forms, d is the de-Rham differential on H and D = d+ d∗. The

Tnaction on smooth forms extends to a unitary representation β on H and the spectral triple

is equivariant w.r.t this representation of Tn. In particular, if α denotes the action of Tn on

C∞(M) and δ(·) =
√
−1[D, ·], then for all t in Tn and for all f, g in C∞(M),

βt(fδ(g)) = αt(f)βt(δ(g)) = αt(f)δ(αt(g)).
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In this set-up, it is easy to see the following result:

Lemma 3.3.4. If D is a subalgebra of C∞(M) kept invariant by the action of a compact

group G acting by isometries on M and Ω1(D) := SpanC{fdg : f, g ∈ D}, then the map

∧ : Ω1(D)⊗D Ω1(D)→ Ω2(D) is G-equivariant.

As an immediate corollary, we have

Corollary 3.3.5. With the notations of Lemma 3.3.4, we have a decomposition

Ω1(D)⊗D Ω1(D) = Ker(∧)⊕ G,

where Ker(∧) = SpanC{e⊗D f + f ⊗D e : e, f ∈ Ω1(D)} and G = SpanC{e⊗D f − f ⊗D e : e, f ∈

Ω1(D)}.

Moreover, Ker(∧) and G are also kept invariant by G.

Proof. The decomposition Ω1(D) ⊗D Ω1(D) = Ker(∧) ⊕ G follows exactly as in the classical

case.

The G-invariance of Ker(∧) follows from the G-equivariance of ∧. Moreover, we have G =

Ker(1− flip). Since flip is G-equivariant, G is G-invariant.

3.3.1 Some results on the fixed point algebra

Let us consider a compact Riemannian manifold M with the Tn-equivariant spectral triple

(C∞(M),H, d+d∗) as in Proposition 3.3.3. Throughout this section, we will follow the notations

introduced in the following definition.

Definition 3.3.6. Let E := Ω1(M) and A := C∞(M). F will denote the Tn-equivariant

spectral submodule of E. The symbol Fk will denote the k-th spectral subspace of F . Thus, F =

SpanC{Fk : k ∈ Zn}. Similarly, we define C to be the spectral subalgebra SpanC{Ck : k ∈ Zn} of

A where Ck is the k-th spectral subspace of C. In particular, C0 and F0 denote the Tn-invariant

spectral subalgebra and the Tn-invariant spectral submodule respectively.

Remark 3.3.7. It is clear from the definition of spectral subspaces of algebras and modules that

if Ak and Ek denote the spectral subspaces of A and E respectively, then Ak = Ck and Ek = Fk.

We will from now on use this fact, often without mentioning.
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Remark 3.3.8. Since the representation β as in Proposition 3.3.3 commutes with d+ d∗, it is

easy to see that βt(F) ⊆ F for all t in Tn. Moreover, it is easy to see that the space of one-forms

for the spectral triple (C,H, d+ d∗) is precisely F .

Recall that one of the conditions of Definition 2.4.1 requires the map

uE : Z(E)⊗Z(A) A → E

to be an isomorphism for the underlying spectral triple to be a tame one. In the example of

Connes-Landi deformed spectral triples of compact Riemannian manifolds, it proves difficult to

show this directly. In Subsection 2.4.2, we discussed an auxiliary map

uEE ′ : E ′ ⊗A′ A → E ,

where A′ is a unital subalgebra of Z(A) and E ′ is an A′-submodule of Z(E).

In particular, Proposition 2.4.6 shows that if Z(E) is a finitely generated projective module

over Z(A), then uE is an isomorphism if and only if uEE ′ is one. We will employ that proposition

in this section to obtain our desired result. The aim of this subsection is to prove that if the

action of Tn on M is free, then the spectral subalgebra C0 and the spectral submodule F0 satisfy

the hypotheses of Proposition 2.4.6.

Lemma 3.3.9. Suppose that the Tn action on M is free. Then F0 is a finitely generated

projective right module over C0.

Proof. For a module G equipped with an action of Tn, let us denote the Tn-invariant submodule

of G by the symbol GTn . Since the Tn-action on M is free, M/Tn is a smooth compact manifold

and M is a principal Tn-bundle over M/Tn. Let π denote the projection map from M onto

M/Tn. Given any point in M , we can find a Tn-invariant open neighborhood U which is Tn-

equivariantly diffeomorphic with U/Tn × Tn. Moreover, we can choose U in such a way that

U/Tn is the domain of a local coordinate chart for the manifold M/Tn. Thus, without loss in

generality, we can assume that U = π−1(V ), where V is the domain of some local chart for

M/Tn.

This gives the following isomorphism:

Ω1(U)T
n ∼= Ω1(U/Tn)⊗C Ω1(Tn)T

n ∼= Ω1(U/Tn)⊗C L,
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L being the complexified Lie algebra of Tn which is nothing but Cn. As U/Tn is the do-

main of a local coordinate chart, the module of one-forms is a free C∞(U/Tn) module, say

C∞(U/Tn)⊗CCk, hence Ω1(U)
Tn

is isomorphic with C∞(U/Tn)⊗CCn+k, i.e. Ω1(U/Tn) is free.

By covering M with finitely many such neighbourhoods, one proves that Ω1(M)T
n

is finitely

generated projective over C∞(M/Tn).

We observe that C0 is a unital subalgebra of Z(C) = C and F0 is a C0-submodule of Z(F) = F .

So we can make use of the notation

uFF0
: F0 ⊗C0 C → F

introduced in Subsection 2.4.2.

Lemma 3.3.10. If for each m in Zn, we can find a1, . . . , ak in Cm and b1, . . . , bk in C−m (k

depends on m) such that
∑

i biai = 1, then the map uFF0
is an isomorphism.

Proof. We need to prove that under the above assumption, the map uFF0
has a right C-linear

inverse. However, since uFF0
is right C-linear to start with, it suffices to prove that uFF0

defines

an isomorphism of vector spaces. Hence, it is sufficient to prove that for all m, the restriction

pFm of uFF0
to F0 ⊗C0 Cm is a vector space isomorphism onto its image Fm.

To this end, consider the map

qFm : Fm → F0 ⊗C0 Cm defined by qFm(e) :=
∑
i

ebi ⊗C0 ai.

Then pFm ◦ qFm = id.

On the other hand, as abi is in C0 if a is in Cm, we have

qFm ◦ pFm(e⊗C0 a) =
∑
i

eabi ⊗C0 ai = e⊗C0
∑
i

abiai = e⊗C0 a.

This finishes the proof of the lemma.

Now we shall identify Cm with the bimodule of sections of a certain vector bundle over M/Tn.

Lemma 3.3.11. Let M be a smooth compact Riemannian manifold equipped with a smooth and

free right action of a compact connected abelian Lie group K. Let M ×χ−m C → M/K denote

the associated vector bundle (of M →M/K) corresponding to the character χ−m.
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Then the elements in Cm = {f ∈ A : f(x.t) = χm(t)f(x)} is in one to one correspondence

with the set of all smooth sections of the vector bundle M ×χ−m C→M/K.

Proof. The elements of the total space of the associated vector bundle M ×χ−m C are given by

the equivalence class [y, λ] of (y, λ) in M × C such that (y, λ) ∼ (y.t, χ−m(t−1)λ) for all t ∈ K.

Now, for f in Cm, we can define a section of the above vector bundle sf by

sf ([x]) = [x, f(x)],

where [x] denotes the class of the point x in M/K. We need to show that this is well defined.

But for any t in K,

sf ([x.t]) = [x.t, f(x.t)] = [x.t, χm(t)f(x)] = [x.t, χ−m(t−1)f(x)] = [x, f(x)].

This proves that sf is well defined.

Conversely, given a section s of the above vector bundle we can define a function fs on M

by fs(x) = λx where λx ∈ C is such that s([x]) = [x, λx]. Clearly, λx is uniquely determined,

because the K action is free. Moreover,

[x, λx] = s([x]) = s([x.t]) = [x.t, λx.t] = [x.t, χ−m(t−1)χ−m(t)λx.t] = [x, χ−m(t)λx.t].

Therefore, λx = χ−m(t)λx.t, i.e, λx.t = χm(t)λx.

Thus, fs belongs to Cm.

Finally, it is easy to verify that the maps f 7→ sf and s 7→ fs are inverses of one another,

completing the proof.

The following lemma is well-known. However, we give a proof for it since we could not find

any appropriate references.

Lemma 3.3.12. For a complex smooth Hermitian vector bundle over a compact manifold M,

there are finitely many smooth sections si’s such that
∑

i 〈〈si, si〉〉 = 1 where 〈〈·, ·〉〉 denotes the

C∞(M)-valued inner product coming from the Hermitian structure.

Proof. Corresponding to a finite open cover {Ui, i = 1, . . . , l} choose finitely many smooth

sections γi which are non zero on Ui. Then choosing a smooth partition of unity ψi, i = 1, . . . , l,
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we can construct ti = ψiγi’s so that t =
∑

i〈〈ti, ti〉〉 is nowhere zero. The sections si = ti

t
1
2

satisfy

the conditions of the lemma.

This gives us the following:

Lemma 3.3.13. Suppose M is a compact Riemannian manifold equipped with a free and iso-

metric action of Tn. Then the map uFF0
: F0 ⊗C0 C → F is an isomorphism.

Moreover, the map uEE0 : E0 ⊗A0 Am → Em is one-to-one.

Proof. Without loss of generality, we can assume M to be connected. In general, if M has k

connected components M1,M2, · · ·Mk, the module F decomposes as F1 ⊕ · · · Fk, where Fi is

the linear span of spectral subspaces of Ω1(Mi), and it is suffices to prove that for all i, uFF0
is

an isomorphism from (Fi)0 ⊗(Ci)0 Ci onto Fi.

Since the action of Tn on M is free, M → M/Tn is a principal Tn-bundle. Consider the

associated vector bundle M ×χ−m C → M/K as in Lemma 3.3.11. Then Lemma 3.3.12 gives

us finitely many smooth sections {si}i of this vector bundle such that
∑

i 〈〈si, si〉〉 = 1. From

Lemma 3.3.11, for each i, we have an element fsi (belonging to Cm) corresponding to the section

si.

The relation
∑
〈〈si, si〉〉 = 1 implies that

∑
i

fsifsi = 1.

Since fsi belongs to Cm, the function fsi belongs to C−m. Thus, we can apply Lemma 3.3.10 to

deduce the first assertion of the theorem.

Now we prove the second assertion. The fact that uFF0
: F0 ⊗C0 C → F is an isomorphism

implies that for all m, the restriction

uFF0
: F0 ⊗C0 Cm → Cm

is a one-to-one map. Since E0 = F0 and Am = Cm, this means that uEE0 : E0 ⊗A0 Am → Em is a

one-to-one map.

Next we prove that with the hypothesis of Lemma 3.3.13, the map uEE0 is also an isomorphism.
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Lemma 3.3.14. The map uEE0 : E0 ⊗A0 A → E is an isomorphism.

Proof. Let us start by proving that the map is one-to-one. Let e′i ∈ E0 and fi ∈ A be elements

such that

uEE0(
∑
i

e′i ⊗A0 fi) = 0, i.e,
∑
i

e′ifi = 0.

Then each spectral projection Pm(
∑

i e
′
ifi) = 0 i.e,

∑
i e
′
iPm(fi) = 0. So for all m, we obtain

uEE0(
∑
i

e′i ⊗A0 Pm(fi)) = 0.

But from Lemma 3.3.13, we know that the map uEE0 : E0 ⊗A0 Am → Em is one-to-one. Hence,

for all m, ∑
i

e′i ⊗A0 Pm(fi) = 0

which implies that ∑
i

e′i ⊗A0 fi = lim
N

(
∑

i,|m|≤N

e′i ⊗A0 Pm(fi)) = 0,

where lim denotes the limit in the Frećhet topology. Therefore, the map is one-to-one.

Now we show that the map is onto. Since the map uEE0 is right A-linear, it suffices to check

that for all f in A, df has a pre-image in E0 ⊗A0 A. Consider the principal T = Tn bundle

π : M → M/T . Since M/T is compact, we can take a finite atlas (Ui, φi) on it such that the

bundle π−1(Ui)→ Ui is T -equivariantly diffeomorphic with the canonical bundle Ui × T → Ui.

Let {ψi}i be a partition of unity on M subordinate to (Ui, φi). Then f =
∑

i fψi and df =∑
i d(fψi). Thus in particular we can assume that f is supported in π−1(Ui) or equivalently in

U × T .

Let {dxi} be a basis for differential forms along the direction of U i.e. the horizontal direction

of the bundle U ×T → U and {ωj} be a basis of right invariant 1-forms in the vertical direction

corresponding to the basis {χj} of right invariant vector fields along the direction of T . Then

df =
∑
i

dxi.
∂

∂xi
(f) +

∑
j

ωj .χj(f).

The right action of T on U × T acts trivially in the direction of U, hence dxi is in E0. Since ωj

is invariant under the action induced by the right action of T on U × T , so ωj is in E0. Hence
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df has a pre-image
∑

i dxi ⊗A0
∂
∂xi

(f) +
∑

j ωj ⊗A0 χj(f) in E0 ⊗A0 A. Therefore, we have that

uEE0 is an onto map. This completes the proof.

3.3.2 Some generalities on Rieffel-deformation

Our main reference for Rieffel deformation of a C∗-algebra endowed with a strongly continuous

action by Tn is [82]. However, we will also need to use equivalent descriptions of this deforma-

tion given in [26], [27], [66] and [67].

We begin with the definitions of Tn smooth modules and Tn smooth algebras from [67] for

which we recall that the action α of a locally compact group G on a Fréchet space V is said to

be strongly continuous if the map

G→ V, g 7→ αg(v)

is continuous for all v in V.

Definition 3.3.15. A Fréchet space V , whose topology is defined by a family of semi-norms is

said to be a Tn smooth module if V admits a strongly continuous Tn action αt : V → V such

that the function t 7→ αt(v) belongs to C∞(Tn, V ) for all v in V .

An algebra D is said to be a Tn smooth algebra if it is a Tn smooth module and the multipli-

cation map m : D⊗CD → D is Tn-equivariant and jointly continuous.

A D-bimodule G is said to be a Tn smooth D-bimodule if it is a Tn smooth module such that

the left and right D-module structures are Tn-equivariant and are jointly continuous.

The following is our motivating example of Tn smooth modules and algebras for this section.

Example 3.3.16. Let M be a Riemannian manifold equipped with a smooth action of Tn. Then

the natural action of Tn on C∞(M) makes the latter a Tn smooth algebra.

Moreover, the space of one-forms Ω1(M) which is a C∞(M)-bimodule admits an induced smooth

action of Tn and forms a Tn smooth C∞(M)-bimodule.

We next define the deformation of a Tn smooth algebra D. We refer to [67] for details.
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Definition 3.3.17 (Definition 2.4 of [67]). Let D be a Tn smooth algebra as in Definition 3.3.15.

For a skew symmetric n× n matrix θ, consider the bicharacter χθ defined by

χθ(k, l) = eπi〈k,θl〉, k, l ∈ Zn,

where the pairing 〈., .〉 is the usual inner product in Rn. The deformation of D is the algebra Dθ
whose underlying vector space is equal to D while the multiplication ×θ is deformed as follows:

a×θ b =
∑
k,l∈Zn

χθ(k, l)akbl, ∀ a, b ∈ D, (3.3.2)

where a =
∑

k ak, b =
∑

l bk are the isotypical decompositions.

The bicharacter χθ satisfies the following cocycle identity:

χθ(m, k)χθ(m+ k, l) = χθ(m, k + l)χθ(k, l). (3.3.3)

Remark 3.3.18. By Proposition 2.2 of [67], the isotypical decompositions converge absolutely

to the element.

Dθ turns out to be a Tn smooth algebra and the deformed product is associative.

One can similarly deform Tn smooth D-bimodules (see Definition 3.3.15) as follows:

Definition 3.3.19. Let G be a Tn smooth D-bimodule. Then the deformed bimodule Gθ is a

Dθ-bimodule whose underlying vector space is equal to G while the deformed left and right module

actions are as follows:

e×θ a =
∑
k,l∈Zn

χθ(k, l)ekal, a×θ e =
∑
k,l∈Zn

χθ(k, l)akel ∀ e ∈ G, ∀ a ∈ D, (3.3.4)

where e =
∑

k ek and a =
∑

l al are the isotypical decompositions.

If G is a Tn smooth D-bimodule, the equations (3.3.2) and (3.3.4) imply that

a×θ b = ab, a×θ e×θ b = aeb for all e ∈ G0 and a, b ∈ D0. (3.3.5)

Remark 3.3.20. Using the fact that Gθ is isomorphic as a vector space to G, for e in G, we

will denote its image under this isomorphism in Gθ by eθ from now on.
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As in the case of deformed algebras, Gθ turns out to be a Tn smooth bimodule. In fact, if

β is the Tn-action on the Tn-smooth bimodule G, then we have a deformed Tn-action βθ on Gθ
defined by the following formula:

βθt (eθ) =
∑
k

χk(t)ek ∀ t ∈ Tn. (3.3.6)

Thus, if D and G are as above, the spectral subspaces Dk and Gk make sense. In fact, by

virtue of (3.3.5), we have the following remark:

Remark 3.3.21. (Dθ)0 is isomorphic to D0 as algebras. Moreover, (Gθ)0
∼= G0 as D0-bimodules.

We also note that by (3.3.4), when the right and left D-module actions of G are symmetric,

(Gθ)0 ⊆ Z(Gθ) and in particular (Dθ)0 ⊆ Z(Dθ).

We have the following easy consequence of the definitions above:

Lemma 3.3.22. Let D be a Tn smooth algebra and G1,G2 be Tn smooth D-bimodules, in the

sense discussed above. Let L : G1 → G2 be a Tn-equivariant continuous D-bimodule map.

Then the underlying vector space map L from G1 to G2 becomes a Tn-equivariant continuous

Dθ-bimodule map, denoted by

Lθ : (G1)θ → (G2)θ

defined by the equation

Lθ(eθ) = (L(e))θ ∀ e ∈ G1 (3.3.7)

If L is a D-bimodule isomorphism, then Lθ will be a Dθ-bimodule isomorphism. If G1 and G2

are algebras in particular, then Lθ is an algebra homomorphism.

Now suppose that Ker(L) is complemented as a D-bimodule in G1, i.e, there exists a D-

bimodule M⊆ G1 such that G1
∼= Ker(L)⊕M. Then

(i) Ker(L) is invariant under the action of Tn.

(ii) M∼= Ran(L).

(iii) If M is Tn-invariant, then (G1)θ
∼= Ker(Lθ)⊕Mθ and Mθ

∼= Ran(Lθ).

(iv) If G2 = G1 and L is an idempotent, then Lθ is also idempotent.
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Proof. By 3.3.7, Lθ is equal to L as a vector space map, hence the Tn-equivariance of L implies

the ITn-equivariance of Lθ. To check that Lθ is a Dθ-bimodule map, we first note that since

Lθ is Tn-equivariant, for all eθ in ((G1)θ)k, Lθ(eθ) is in ((G2)θ)k. Then, for eθ in (G1)θ and aθ in

Dθ, we compute the following:

Lθ(eθ ×θ aθ) = Lθ((
∑
k,l

χ(k, l)ekal)θ) = (L(
∑
k,l

χ(k, l)ekal))θ

=(
∑
k,l

χ(k, l)L(ek)al)θ = (L(e))θ ×θ aθ = Lθ(eθ)×θ aθ.

This proves that Lθ is a right Dθ-module map. That Lθ is a left Dθ-module map can be proved

similarly. Since L and Lθ are equal as vector space maps, if L is an isomorphism, then Lθ is also

a Dθ-bimodule isomorphism. Similarly, if L happens to be an algebra homomorphism, then Lθ

is also an algebra homomorphism.

Suppose e is an elements in Ker(L). Since L is Tn-equivariant, L(e) =
∑

k L(ek) = 0.

Projecting onto (G2)l, we see that L(el) = 0 for all l. Suppose β is the Tn action on G1. Then,

L(βt(e)) =
∑

k χk(t)L(ek) = 0. Hence, βt(e) is also in Ker(L) and Ker(L) is invariant under the

action of Tn. This proves assertion (i).

Since G1
∼= Ker(L)⊕M, Ran(L) ∼=

(
Ker(L)⊕M

)
/Ker(L) ∼=M which gives us assertion (ii).

Since L and Lθ are equal as vector space maps and Ker(L) is Tn-equivariant, Ker(L) can

be deformed and Ker(L) = (Ker(L))θ = Ker(Lθ). By assertion (ii), M is a Tn-invariant D-

bimodule, hence M can also be deformed. Therefore, (G1)θ ∼= (Ker(L) ⊕M)θ ∼= (Ker(L))θ ⊕

Mθ
∼= Ker(Lθ)⊕Mθ. The proof of the fact that Mθ

∼= Ran(Lθ) follows along the lines of the

proof of assertion (ii). Hence, assertion (iii) is proved.

Assertion (iv) again follows from the fact that L and Lθ are equal as vector space maps.

The following lemma will also be of use to us.

Lemma 3.3.23. Let D be an algebra equipped with Tn-action and G1,G2 be equivariant D-

bimodules. Then (G1)θ⊗Dθ (G2)θ ∼= (G1⊗DG2)θ as Dθ-bimodules, with the canonical isomorphism

given by

eθ ⊗Dθ fθ 7→ (
∑
k,l∈Zn

χθ(k, l)ek ⊗D fl)θ, (3.3.8)

where e =
∑

k ek and f =
∑

l fl are isospectral deformations of elements in G1 and G2 respec-

tively.
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Proof. Using the notation adopted in Remark 3.3.20, define a map from (G1⊗DG2)θ to (G1)θ⊗Dθ
(G2)θ given by

(e⊗D f)θ 7→
∑
k,l

χ−θ(k, l)(eθ)k ⊗Dθ (fθ)l.

It can be easily checked that this map is an inverse of the map defined in (3.3.8) and that the

map defined in (3.3.8) is a Dθ-bimodule map.

Now we recall the Connes-Landi deformation ([27]) of a spectral triple and its associated

space of forms. We will work in the set-up of Proposition 3.3.3. In particular, A = C∞(M)

and E = Ω1
D(A) where D = d+ d∗. As we recalled in Example 3.3.16, A is a Tn smooth algebra

and E is a Tn smooth A-bimodule. Hence by Definition 3.3.17 and Definition 3.3.19, A and E

can be deformed to the algebra Aθ and the Aθ-bimodule Eθ respectively. In fact, the following

lemma shows that the space of two-forms Ω2
D(A) can also be deformed.

Lemma 3.3.24. In the set-up of Proposition 3.3.3 and with A = C∞(M) and D = d + d∗,

the bimodules of one-form E := Ω1
D(A) and two-forms Ω2

D(A) can be deformed into Tn smooth

Aθ-bimodules Eθ and (Ω2
D(A))θ respectively.

Proof. The lemma easily follows by verifying that Ω1
D(A) and Ω2

D(A) are Tn-smooth bimodules.

The case of Ω1
D(A) follows from Example 3.3.16.

Now we come to the case of Ω2
D(A). By Lemma 3.3.4, the quotient map ∧ : E ⊗A E → Ω2

D(A)

is a Tn-equivariant A-bimodule map, and the Tn action on Ω2
D(A) descends from the diagonal

Tn action β × β on E ⊗A E . Moreover, the A-bimodule structure of Ω2
D(A) also descends from

that of E ⊗A E . Hence, Ω2
D(A) is a Tn smooth A-bimodule. Then by Definition 3.3.19, Ω2

D(A)

deforms to a Tn smooth Aθ-bimodule (Ω2
D(A))θ.

Moreover, we have the following:

Theorem 3.3.25. With the algebra structure of Aθ as in (3.3.2), (Aθ,H, d + d∗) defines a

spectral triple.

If δ : A → E denotes the map which sends a to [d + d∗, a], then we have a deformed map

δθ from Aθ to Eθ. Moreover, Ω1
D(Aθ) and Ω2

D(Aθ) are canonically isomorphic as Aθ-bimodules

with Eθ and (Ω2
D(A))θ respectively.
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Proof. For the proof that (Aθ,H, d+ d∗) is a spectral triple, we refer to [26].

Since the map δ : A → Ω1
D(A) given by a 7→ [d + d∗, a] is a Tn-equivariant map, it can be

deformed to the map δθ, which gives us the second assertion.

The isomorphism of Ω1
D(Aθ) and (Ω1

D(A))θ is an easy consequence of Proposition 2.12 of [67].

Indeed, this result implies that the map πθ : Ω1
D(Aθ)→ (Ω1

D(A))θ defined by

πθ(ωθ)(f) =
∑
k,l

χθ(k, l)(ωθ)k(fl)

defines an isomorphism from Ω1
D(Aθ) to (Ω1

D(A))θ. Here, we have viewed ωθ in Ω1
D(Aθ) as an

operator acting on H. Then it can be easily checked that

πθ(aθ ×θ δθ(bθ)) =
∑
k,l

(χθ(k, l)akδ(bl))θ,

for all a, b in A. To prove the isomorphism of Ω2
D(Aθ) and (Ω2

D(A))θ requires some work. We

start by adopting some notations.

The maps (m0)(A,H,D) : Ω1
D(A)⊗A Ω1

D(A)→ B(H) and (m0)(Aθ,H,D) : Ω1
D(Aθ)⊗Aθ Ω1

D(Aθ)→

(B(H))θ will denote the appropriate multiplication maps.

The spaces J(A,H,D) and J(Aθ,H,D) will denote the junk-forms associated to the respective spec-

tral triples.

The maps q(A,H,D) : Ran((m0)(A,H,D))→ Ran((m0)(A,H,D))/J(A,H,D) and

q(Aθ,H,D) : Ran((m0)(Aθ,H,D)) → Ran((m0)(Aθ,H,D))/J(Aθ,H,D) will denote the respective quo-

tient maps.

Finally, ∧(A,H,D) = q(A,H,D) ◦ (m0)(A,H,D) and ∧(Aθ,H,D) = q(Aθ,H,D) ◦ (m0)(Aθ,H,D) denotes the

wedge maps associated to each spectral triple. By abuse of notation we will often use ∧ in both

cases, when the context is unambiguous. Then we look at the composition of maps

Ω1
D(Aθ)⊗Aθ Ω1

D(Aθ) (Ω1
D(A))θ ⊗Aθ (Ω1

D(A))θ

(Ω2
D(A))θ (Ω1

D(A)⊗A Ω1
D(A))θ

πθ⊗Aθπθ

T ∼=

(∧(A,H,D))θ

where the second map is the isomorphism as in Lemma 3.3.23. We denote this composition of

maps by T . Explicitly, for ωθ and ηθ in Ω1
D(Aθ), we have that

T (ωθ ⊗Aθ ηθ) = (
∑
k,l

χθ(k, l)(ω)k ∧ (η)l)θ.
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We claim that Ker(∧(Aθ,H,D)) ⊆ Ker(T ). If our claim is true, then we have a map T̃ : Ω2
D(Aθ)→

(Ω2
D(A))θ. So, suppose that there exist (ωi)θ, (ηi)θ in Ω1

D(Aθ) such that
∑

i(ωi)θ ⊗Aθ (ηi)θ is in

Ker(∧(Aθ,H,D)). Hence, (m0)(Aθ,H,D)(
∑

i(ωi)θ⊗Aθ (ηi)θ) is in Ker(q(Aθ,H,D)) = J(Aθ,H,D). Since

(m0)(Aθ,H,D)(
∑

i(ωi)θ ⊗Aθ (ηi)θ) is in J(Aθ,H,D), there exist elements aj , bj in A such that

∑
j

(aj)θ ×θ δθ((bj)θ) = 0. (3.3.9)

and

∑
j

(m0)(Aθ,H,D)(δθ((aj)θ)⊗Aθ δθ((bj)θ)) = (m0)(Aθ,H,D)(
∑
i

(ωi)θ ⊗Aθ (ηi)θ) (3.3.10)

Applying the isomorphism πθ : Ω1
D(Aθ)→ (Ω1

D(A))θ on (3.3.9), we get

∑
j

∑
m,n

χθ(m,n)(aj)mδ((bj)n) = 0. (3.3.11)

This implies that

(m0)(A,H,D)(
∑
j

∑
m,n

χθ(m,n)δ((aj)m)⊗A δ((bj)n)) ∈ J(A,H,D) = Ker(q(A,H,D)). (3.3.12)

The multiplication (m0)(Aθ,H,D) is the deformed multiplication ×θ as given in (3.3.2). Hence

(3.3.10) implies that

(m0)(A,H,D)(
∑
j

∑
m,n

χθ(m,n)δ((aj)m)⊗A δ((bj)n)) = (m0)(A,H,D)(
∑
i

∑
k,l

χθ(k, l)(ωi)k ⊗A (ηi)l)

(3.3.13)

Using all of the above, we compute

∑
i

∑
k,l

χθ(k, l)(ωi)k) ∧ ((ηi)l

= ∧(A,H,D) (
∑
i

∑
k,l

χθ(k, l)(ωi)k ⊗A (ηi)l)

=q(A,H,D) ◦ (m0)(A,H,D)(
∑
i

∑
k,l

χθ(k, l)(ωi)k ⊗A (ηi)l)

=q(A,H,D) ◦ (m0)(A,H,D)(
∑
j

∑
m,n

χθ(m,n)δ((aj)m)⊗A δ((bj)n)) (applying (3.3.13))

=0 (using (3.3.12)).
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This proves that the map T̃ : Ω2
D(Aθ)→ (Ω2

D(A))θ given by

T̃ (ωθ ∧ ηθ) = (
∑
k,l

χθ(k, l)(ω)k ∧ (η)l)θ

is well defined. The inverse of T̃ is given by the map

(ω ∧ η)θ 7→
∑
k,l

χ−θ(k, l)(ωθ)k ∧ (ηθ)l.

The proof of the fact that this map is well defined is the same as before. It is easy to check that

T̃ and this map are inverses of each other and that T̃ is an Aθ-bimodule map.

Henceforth we will make the identifications Eθ ∼= Ω1
D(Aθ), Ω2

D(Aθ) ∼= (Ω2
D(A))θ without

explicitly mentioning.

3.3.3 The canonical Riemannian bilinear metric on Eθ

In this subsection, we prove that the prescription of Subsection 2.3.1 is indeed a Riemannian

bilinear metric on Eθ. We prove this in two steps. In the first step, we deform a Riemannian

A-bilinear metric g to an Aθ-bilinear map gθ and show that gθ is a pseudo-Riemannian bilinear

metric. In the second step, we show that the A-bilinear map obtained from Lemma 2.3.6 (for

the spectral triple (Aθ,H, D)) coincides with the deformation gθ of g.

Let us recall the following definition:

Definition 3.3.26. Let G1 and G2 be two D-bimodules admitting actions by Tn and denoted by

β1 and β2 respectively. Then HomA(G1,G2) admits a natural Tn action γ defined by

(γt.T )(e) = (β2)t.(T ((β1)t
−1(e))).

Here, t, T and e belong to Tn,HomD(G1,G2) and G respectively.

Lemma 3.3.27. In the set-up of Definition 3.3.26, assume furthermore that D admits an action

α of Tn and β1, β2 are both α-equivariant. Then HomD(G1,G2) is an Tn smooth D-bimodule,

i.e, for a in D, ω in G1 and T in HomD(G1,G2), we have

γt(Ta)(ω) = (γt(T )αt(a))(ω) and γt(aT )(ω) = αt(a)(γt(T )(ω)).
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Proof. By using the right D-module structure on HomD(G1,G2) from Definition 1.1.4, we com-

pute

γt(Ta)(ω) = (β2)t((Ta)((β1)−1
t (ω))) = (β2)tT (a(β1)−1

t (ω))

= (β2)tT ((β1)t−1(αt(a)ω)) = γt(T )(αt(a)ω)

= (γt(T )αt(a))(ω).

The other equality follows similarly.

As a consequence of the fact that HomD(G1,G2) is an Tn smooth D-bimodule, we have the

following remark.

Remark 3.3.28. If D, G1, G2 are as in Lemma 3.3.27, T an element in the k-th spectral

subspace of HomD(G1,G2) and e belongs to (G1)l, then T (e) belongs to (G2)k+l.

Now we are in a position to prove the following proposition:

Proposition 3.3.29. Suppose M is a compact Riemannian manifold as in Proposition 3.3.3.

If A = C∞(M) and E is the bimodule of one-forms as before, then the A-bimodule E∗ admits a

deformation (E∗)θ.

Moreover, there exists a Tn-equivariant Aθ-bimodule isomorphism from (E∗)θ to (Eθ)∗.

Proof. The bimodule E∗ is isomorphic to the cotangent bundle of M and hence the left and right

A-module structures are jointly continuous. Moreover, by Lemma 3.3.27, E∗ is a Tn smooth

module. Thus, the bimodule E∗ can be deformed.

Next, in order to prove the isomorphism, we define a map T Eθ : (E∗)θ → (Eθ)∗ by

(T Eθ (φθ))(eθ) =
∑
k,l

χθ(k, l)φk(el),

where φ =
∑

k φk and e =
∑

l el are the isospectral decompositions in E∗ and E respectively. In

particular, if e belongs to El, then

(T Eθ (φθ))(eθ) =
∑
k

χθ(k, l)φk(e). (3.3.14)
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Let a =
∑

l al be the isospectral decomposition in A. Then we have that

(T Eθ (φθ))(eθ ×θ aθ) = (T Eθ (φθ))((
∑
k,l

χθ(k, l)ekal)θ)

=
( ∑
k,l,m

χθ(m, k + l)χθ(k, l)φm(ekal)
)
θ

(since ekal ∈ Ek+l by (3.3.1) and applying (3.3.14))

=
( ∑
k,l,m

χθ(m, k)χθ(m+ k, l)φm(ekal)
)
θ

(by virtue of (3.3.3))

=
(∑
k,m

χθ(m, k)φm(ek)
)
θ
×θ aθ

(since by Remark 3.3.28, φm(ek) ∈ Ak+l)

=(T Eθ (φθ))(eθ)×θ aθ.

Hence, (T Eθ (φθ)) is in (Eθ)∗. That T Eθ is right Aθ-linear can be seen from the following.

(T Eθ (φθ ×θ aθ))(eθ) = (T Eθ (
∑
k,l

χθ(k, l)φkal)θ)(eθ)

=
∑
k,l,m

χθ(k, l)χθ(k + l,m)φkal(em) (since by (3.3.1), φkal ∈ E∗k+l)

=
∑
k,l,m

χθ(k, l +m)χθ(l,m)φk(alem) (by (3.3.3))

=(T E(φθ))(aθ ×θ eθ) (since by (3.3.1), aθ ×θ eθ is in (Eθ)l+m).

Let γ denote the action of Tn on E∗ := HomA(E ,A) defined by Definition 3.3.26. The Tn

actions on Eθ and (E∗)θ will be denoted by βθ and γθ respectively as in (3.3.6). Moreover, the

Tn action on (Eθ)∗ := HomAθ(Eθ,Aθ) as obtained from Definition 3.3.26 will be denoted by γ′.

We claim that the map T Eθ is equivariant w.r.t the Tn actions on (E∗)θ and (Eθ)∗, i.e,

T Eθ (γθt (φθ)) = γ′t(T
E
θ (φθ)). (3.3.15)
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Indeed, using the fact that Tn actions preserves spectral subspaces, we have:

T Eθ (γθt (φθ))(eθ) = T Eθ (
∑
k

(γt(φk))θ)(eθ)

=(
∑
k,l

χθ(k, l)(γt(φk))(el))θ =
(∑
k,l

χθ(k, l)αt(φk(βt−1(el)))
)
θ

=αθt (
∑
k,l

χθ(k, l)φk(βt−1(el)))θ = αθt (T
E
θ (φθ)(β

θ
t−1(eθ)))

=(γ′t(T
E
θ (φθ)))(eθ).

This proves (3.3.15).

Thus, we have a well defined equivariant morphism

T Eθ−θ : ((Eθ)∗)−θ → ((Eθ)−θ)∗ ∼= E∗,

and subsequently, a morphism

(T Eθ−θ)θ : (Eθ)∗ ∼= (((E∗)θ)−θ)θ → (E∗)θ.

Finally, it is easy to check that the maps T Eθ and (T Eθ−θ)θ are inverses of one another. This finishes

the proof.

Recall that the action of Tn on C∞(M) and Ω1(M) ∼= E are given by α and β respectively.

Since Tn acts on M by isometries, the Riemannian metric g is equivariant under the Tn action

i.e, for all ω, η in E , we have

g(βt(ω)⊗A βt(η)) = αt(g(ω ⊗A η)). (3.3.16)

Let γ denote the Tn-action on E∗ = HomA(E ,A). Then by the Tn-equivariance of g, it is easy

to see that Vg is a Tn-equivariant map from E to E∗. Indeed,

(γtVg(e))(f) = αt(Vg(e)(β
−1
t (f)))

=αt(g(e⊗A β−1
t (f))) = g(βt(e)⊗A βtβ−1

t (f)) (by (3.3.16))

=Vg(βt(e))(f).
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Hence, the map Vg is equivariant. Thus, by virtue of Lemma 3.3.22, we have a Aθ-bimodule

isomorphism (Vg)θ from Eθ to (E∗)θ.

Now we come to the deformation of the map g which is an element of HomA(E ⊗A E ,A).

The bimodule E ⊗A E is equipped with the natural diagonal action β × β of Tn. Therefore,

by Definition 3.3.26, we have an action of Tn on HomA(E ⊗A E ,A). Since by (3.3.16) g is

Tn-equivariant, by Lemma 3.3.22 we have a deformed map gθ in HomAθ((E ⊗A E)θ,Aθ) by yet

another application of Lemma 3.3.22. However, by Lemma 3.3.23, (E ⊗A E)θ
∼= Eθ⊗Aθ Eθ. Thus,

we have a map in HomAθ(Eθ ⊗Aθ Eθ,Aθ) to be denoted again by gθ which is the candidate for

the Riemannian metric on Eθ = Ω1
D(Aθ).

Our next result connects (Vg)θ with Vgθ .

Proposition 3.3.30. If T Eθ : (E∗)θ → (Eθ)∗ is the isomorphism appearing in the proof of

Proposition 3.3.29. Then

T Eθ ◦ (Vg)θ = Vgθ (3.3.17)

and hence the map Vgθ : Eθ → (Eθ)∗ is an isomorphism.

Proof. Since the map Vg is Tn-equivariant, by Lemma 3.3.22 it can be deformed, and the map

(Vg)θ is an element of HomAθ(Eθ, (E∗)θ). Moreover, the Tn-equivariance of Vg implies that

(Vg(e))k = Vg(ek) for all e in E . Using the notation adopted in Remark 3.3.20, by Proposition

3.3.29, for all eθ, fθ in Eθ,

(T Eθ ◦ (Vg)θ(eθ))(fθ) = T Eθ ((Vg(e))θ)(fθ)

=
∑
k,l

χθ(k, l)(Vg(e))kfl =
∑
k,l

χθ(k, l)g(ek ⊗A fl) (as (Vg(e))k = Vg(ek))

=g(
∑
k,l

χθ(k, l)ek ⊗A fl) = gθ(eθ ⊗Aθ fθ) (by Lemma 3.3.23 and Proposition 3.3.29)

=Vgθ(eθ)(fθ).

Moreover, since Vg is an isomorphism from E to E∗, Lemma 3.3.22 implies that (Vg)θ is an

isomorphism from Eθ to (E∗)θ. As T Eθ is an isomorphism from (E∗)θ to (Eθ)∗, the isomorphism

of Vgθ follows from (3.3.17).

Proposition 3.3.31. gθ is a Riemannian bilinear metric on Eθ.
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Proof. Clearly, σ (= 2Psym − 1) is Tn-equivariant, and as g ◦ σ = g, we have gθ ◦ σθ = gθ too,

i.e. gθ is symmetric. It is also clear that gθ is a bilinear map. Finally, by Proposition 3.3.30,

Vgθ is nondegenerate.

Proposition 3.3.32. Let g′θ : Eθ⊗Aθ Eθ → A′′θ be the Aθ-bilinear map from Lemma 2.3.6. Then

g′θ = gθ and hence g′θ is a Riemannian bilinear metric on Eθ.

Proof. Let ω = [D, a1]a2 and η = [D, b1]b2 be elements in E to be viewed as elements of B(H).

Let us denote the images of ω and η in Eθ by ωθ and ηθ respectively. Similarly, the representation

of Aθ in B(H) will be denoted by πθ. Finally, recall from Subsection 2.3.1 that τ denotes the

state Limω
Tr(X|D|−p)
Tr(|D|−p)

on B(H) for the spectral triple (A,H, D) and so τθ will denote the state

on B(H) for the deformed spectral triple (Aθ,H, D). Then, if p is the dimension of the manifold

M , we compute

τθ(ωθηθ × θaθ) = Limω
Tr([D,πθ(a1)]πθ(a2)[D,πθ(b1)]πθ(b2)πθ(a)|D|−p)

Tr(|D|−p)

= Limω
Tr([D, a1]a2[D, b1]b2a|D|−p)

Tr(|D|−p)
(by Proposition 4.4.2 of [12])

= τ(ωηa)

= τ(g(ω ⊗A η)a)

= τθ(g(ω ⊗A η)θπθ(a)) (by Proposition 4.4.2 of [12])

= τθ(gθ(ωθ ⊗Aθ ηθ)× θaθ)

This proves that the bilinear form of Lemma 2.3.6 for the spectral triple (Aθ,H, D) is equal to

gθ and hence it satisfies all the conditions of Definition 2.3.7.

3.3.4 Existence and uniqueness of Levi-Civita connections

We will continue to use the notations introduced in Definition 3.3.6. The goal of this subsection

is to apply the results deduced in the last two subsections for proving Theorem 3.3.1.

Lemma 3.3.33. Eθ is a finitely generated projective right module over Aθ.

Proof. By Lemma 3.3.9, E0 is a finitely generated projective right A0 module. Then E0 ⊗A0 A

is a finitely generated projective right A module. Since the isomorphism uEE0 : E0⊗A0 A → E as
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given by Lemma 3.3.14 is Tn-equivariant,

Eθ ∼= (E0 ⊗A0 A)θ ∼= (E0)θ ⊗A0 Aθ ∼= E0 ⊗A0 Aθ

is finitely generated as a right Aθ module. Here, we have used the facts that (Aθ)0
∼= A0 and

(E0)θ ∼= E0 as right A0 modules since E0 is the fixed point submodule for the action of Tn.

The projectivity of Eθ ∼= E0 ⊗A0 Aθ follows easily from the fact that E0 is finitely generated

and projective as a right A0 module.

Lemma 3.3.34. The map uEθE0 = (uEE0)θ : E0 ⊗A0 Aθ → Eθ is an isomorphism. Moreover, the

map uEθ : Z(Eθ)⊗Z(Aθ) Aθ → Eθ is an isomorphism.

Proof. By Lemma 3.3.14, the Tn-equivariant map uEE0 : E0⊗A0A → E is an isomorphism. Hence,

by Lemma 3.3.22 and Lemma 3.3.23 the map (uEE0)θ : E0 ⊗A0 Aθ → Eθ is an isomorphism.

For the second assertion, we note that by Lemma 3.3.9, F0 = E0 = (Eθ)0 is finitely generated

projective over C0 = A0 = (Aθ)0. But by Remark 3.3.7, E0 = F0 and C0 = A0 while by Remark

3.3.21, E0 = (Eθ)0 and A0 = (Aθ)0. Hence, (Eθ)0 is finitely generated and projective as a right

(Aθ)0 module.

By Remark 3.3.21, (Aθ)0 ⊆ Z(Aθ) and (Eθ)0 ⊆ Z(Eθ). Therefore, by Proposition 2.4.6, we

conclude that the map uEθ : Z(Eθ)⊗Z(Aθ) Aθ → Eθ is an isomorphism.

Lemma 3.3.35. The bimodule Eθ ⊗Aθ Eθ admits a decomposition Eθ ⊗Aθ Eθ = Ker(∧θ) ⊕Mθ

of right Aθ modules, where Mθ
∼= Ω2(Aθ) is satisfied.

Proof. This follows by applying Lemma 3.3.22, Lemma 3.3.23 and Corollary 3.3.5 applied to

the Tn-equivariant map ∧.

Lemma 3.3.36. The map σ : E ⊗A E → E ⊗A E deforms to a map σθ : Eθ ⊗Aθ Eθ → Eθ ⊗Aθ Eθ.

Moreover,

σθ(ω ⊗Aθ η) = η ⊗Aθ ω

for all ω, η in Z(Eθ).

Proof. The map σ is a Tn-equivariant map and so by Lemma 3.3.22 can be deformed to a map

from (E ⊗A E)θ to Aθ. Using the isomorphism from (E ⊗A E)θ to Eθ⊗Aθ Eθ as in Lemma 3.3.23,

we can view σθ as a map from Eθ ⊗Aθ Eθ to Eθ ⊗Aθ Eθ.
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Let us observe that by Lemma 3.3.34, the map uEθ is an isomorphism, hence Eθ is a centered

Aθ-bimodule. Thus, by Theorem 2.1.7, there indeed exists a unique Aθ-bimodule map from

Eθ ⊗Aθ Eθ to itself which maps ω ⊗Aθ η to η ⊗Aθ ω for all ω and η in Z(Eθ). We need to show

that this map is equal to σθ. For this, let us take eθ, fθ in (Eθ)0. Then, using Lemma 3.3.22, we

get that

σθ(eθ ⊗Aθ fθ) = σθ((χθ(0, 0)e⊗A f)θ) (by Lemma 3.3.23)

=(σ(e⊗A f))θ = (f ⊗A e)θ (since σ is the classical flip map)

=fθ ⊗A eθ.

Now, by Lemma 3.3.34, (Eθ)0 is right Aθ-total in Eθ and hence {eθ⊗Aθ fθ : eθ, fθ ∈ (Eθ)0} is right

Aθ-total in Eθ ⊗Aθ Eθ. Thus, by Lemma 1.1.6 the map σθ is equal to the unique Aθ-bimodule

map on Eθ ⊗Aθ Eθ as in Theorem 2.1.7.

Collecting the above results, we get the following:

Proof of Theorem 3.3.1. We start by recalling that we have already proved (Lemma 3.3.33)

that Eθ is a finitely generated projective right module over Aθ. By Lemma 3.3.34, the map

uEθ : Z(Eθ)⊗Z(Aθ) Aθ → Eθ is an isomorphism.

Next, Ker(∧θ) is complemented in Eθ ⊗Aθ Eθ by Lemma 3.3.35.

Lastly, the equality σθ(ω ⊗Aθ η) = η ⊗Aθ ω for all ω, η ∈ Z(Eθ) follows from Lemma 3.3.36.

Thus we have shown that the spectral triple (Aθ,H, D) is a tame spectral triple. Moreover,

Proposition 3.3.32 asserts that gθ is a Riemannian metric on Eθ. By Theorem 2.5.1, the space

of one-forms Eθ admits a unique Levi-Civita connection for the Riemannian bilinear metric g.

This completes the proof.

Remark 3.3.37. Let F be the spectral submodule of E as in Definition 3.3.6. Then for the

deformed spectral submodule Fθ of Eθ, analogues of the results Lemma 3.3.33, Lemma 3.3.34,

Lemma 3.3.35 and Lemma 3.3.36 are proved the same way. Hence the analogous result of

Theorem 3.3.1 also holds for the deformed submodule.

Corollary 3.3.38. Under the assumptions of Theorem 3.3.1, the Levi-Civita connection ∇ on

the bimodule E deforms to the Levi-Civita connection ∇θ on the bimodule Eθ.
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Proof. Since the spectral triple (A,H, D) is Tn-equivariant, it can be easily checked that the

maps d : A → E and d : E → Ω2(A) are Tn-equivariant. It is easy to see that the map Aθ → Eθ
given by aθ 7→ [D,πθ(aθ)] is nothing but the deformation of the map d : A → E . By Lemma

3.3.22, the maps dθ : Aθ → Eθ and dθ : Eθ → Ω2
D(Aθ) are Tn-equivariant.

Since the map ∇ is the Levi-Civita connection, ∇ is Tn-equivariant. Thus, we have a C-linear

map ∇θ : Eθ → (E ⊗A E)θ ∼= Eθ ⊗Aθ Eθ and it can be easily checked that ∇θ is a connection.

By Lemma 3.3.4, ∧ : E ⊗A E → Ω2(A) is a Tn-equivariant A-bimodule map. Hence, ∧θ :

Eθ ⊗Aθ Eθ → Ω2
D(Aθ) is defined, and ∧θ ◦ ∇θ = (∧ ◦ ∇)θ = −dθ. Therefore, ∇θ is a torsionless

connection.

Lastly we show that ∇θ is compatible with the metric gθ. We need to show that Πgθ(∇θ) = dθgθ.

However, by Lemma 2.4.10, the map Πgθ(∇θ)−dθgθ is right Aθ-linear. Since {ωθ⊗Aθηθ : ωθ, ηθ ∈

Z(Eθ)} is right Aθ-total in Eθ ⊗Aθ Eθ, it is enough to show that for all ωθ, ηθ in Z(Eθ), we have

(Πgθ(∇θ)− dθgθ)(ωθ ⊗Aθ ηθ) = 0 for all ωθ, ηθ in Z(Eθ). Let ωθ, ηθ in Z(Eθ). Then,

(Πgθ(∇θ))(ωθ ⊗Aθ ηθ) = (gθ ⊗Aθ idEθ)(σθ)23(∇θ(ωθ)⊗Aθ ηθ +∇θ(ηθ)⊗Aθ ωθ)

= ((g ⊗A idE) ◦ σ23)θ(∇(ω)⊗A η +∇(η)⊗A ω)θ

=
(
((g ⊗A idE) ◦ σ23)(∇(ω)⊗A η +∇(η)⊗A ω)

)
θ

= (Πg(∇)(ω ⊗A η))θ

= (−dg(ω ⊗A η))θ

= −dθgθ(ωθ ⊗Aθ ηθ).

Therefore, ∇θ is compatible with the metric gθ.

Since the Levi-Civita connection of Theorem 3.3.1 is unique, this completes the proof of the

Corollary.



Chapter 4

Covariant connections on bicovariant

differential calculi

In this chapter, we study the problem of Levi-Civita connections on bicovariant differential cal-

culi over Hopf algebras. As explained in Section 1.4 and as seen in Chapter 2, the formulation

of the question of existence and uniqueness of Levi-Civita connection for a differential calculus

over a (possibly) noncommutative algebra A needs two ingredients: an analogue of the flip map

and a metric compatibility condition. Let us recall that by virtue of Proposition 1.3.15, we know

that if (E , d) is a bicovariant differential calculus on a Hopf algebra A, then E is in fact a bico-

variant A-bimodule. Hence, Proposition 1.3.17 establishes the existence of a unique bicovariant

A-bimodule map σ : E ⊗A E → E ⊗A E satisfying some properties. This map σ will play the

role of the flip map. In order to make sense of the metric-compatibility condition, we restrict

our attention to left-covariant connections and left-invariant pseudo-Riemannian metrics. In

Proposition 4.5.3, we prove a sufficient condition for the existence of a unique left-covariant

Levi-Civita connection for any bi-invariant pseudo-Riemannian metric on a bicovariant differ-

ential calculus satisfying a mild condition. In Theorem 4.5.8, we prove that if the Hopf-algebra

is cosemisimple, then the left-covariant Levi-Civita connection obtained in Proposition 4.5.3 is

actually bicovariant. Our assumptions for these theorems are satisfied for cocycle deformations

of bicovariant differential calculi over algebraic groups as well as the 4D± calculi on SUq(2).

These examples will be discussed in the next two chapters. For alternative approaches to the

proof of existence of Levi-Civita connections on some quantum groups and their homogeneous

spaces, we refer to [2], [7] and [76].

113
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We will discuss bicovariant bimodules and associated notions in Section 4.1. In Section 4.2,

we will impose a mild condition on the braiding map σ as in Proposition 1.3.17 which will lead to

a decomposition of the bicovariant A-bimodule E⊗AE analogous to Proposition 1.4.1. In Section

4.3, we will define and study the notion of invariant pseudo-Riemannian metrics on bicovariant

differential calculi. In Section 4.4, as a direct consequence of the assumptions on the braiding

map σ, Theorem 4.4.4 will give us the construction of a canonical torsionless connection on E .

In the same section, we also introduce the notion of compatibility of left-covariant connections

on E with left-invariant pseudo-Riemannian metrics. A comparison with existing notions of

metric compatibility in literature will also be given.

In Section 4.5, we will discuss a metric-independent sufficient condition for the existence of a

unique left-covariant connection on the space of one-forms of a Hopf algebra, which is torsionless

and compatible with a bi-invariant pseudo-Riemannian metric. For the Hopf algebras of classical

Lie groups, Levi-Civita connections compatible with a bi-invariant metric are automatically

bicovariant. As an analogous result, in this section we will also show that if the Hopf algebra

is cosemisimple, the unique left-covariant connection is also right-covariant. The contents of

Section 4.3 are from [18] and that of the rest of this chapter are from [17].

Throughout this chapter, A will stand for a Hopf algebra. Moreover, the bicovariant differ-

ential calculus over A will always be assumed to be finite in the sense of Definition 4.1.3.

4.1 Bicovariant bimodules and Yetter-Drinfeld modules

We begin by recalling the definitions of certain categories which we will deal with in this chapter

for which we will need the definitions and notations developed in Section 1.2 and Subsection

1.3.2.

Definition 4.1.1. The category AM of left comodules over a Hopf algebra A consists of objects

(V,∆V ) which are left A-comodules as in Definition 1.2.2, and morphisms T : V1 → V2 which

are C-linear maps satisfying

∆V2 ◦ T = (id⊗CT ) ◦∆V1 .

The categoryMA of right comodules over a Hopf algebra A consists of objects (V, V ∆) which

are right A-comodules as in Definition 1.2.2, and morphisms T : V1 → V2 which are C-linear
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maps satisfying

V2∆ ◦ T = (T⊗Cid) ◦ V1∆.

The category AAMA of left covariant bimodules over a Hopf algebra A consists of objects

(M,∆M ) which are left covariant A-bimodules as in Definition 1.2.10, and for all m in M and

a in A, satisfy

∆M (am) = ∆(a)∆M (m), ∆M (ma) = ∆M (m)∆(a).

Morphisms in this category are C-linear maps T : M1 →M2 satisfying

∆M2 ◦ T = (id⊗CT ) ◦∆M1 ,

The category AMAA of right covariant bimodules over a Hopf algebra A consists of objects

(M,M∆) which are right covariant A-bimodules as in Definition 1.2.10, and for all m in M

and a in A, satisfy

M∆(am) = ∆(a)M∆(m), M∆(ma) = M∆(m)∆(a).

Morphisms in the category are C-linear maps T : M1 →M2 satisfying

M2∆ ◦ T = (T⊗Cid) ◦M1∆,

The category AMAA of bicovariant right modules over a Hopf algebra A consists of objects

(M,∆M ,M∆) which are A-bicomodules as in Definition 1.2.2 as well as right A-modules, sat-

isfying for all m in M and a in A

∆M (ma) = ∆M (m)∆(a), M∆(ma) = M∆(m)∆(a),

Morphisms in this category are C-linear maps T : M1 →M2 satisfying

∆M2 ◦ T = (id⊗CT ) ◦∆M1 , M2∆ ◦ T = (T⊗Cid) ◦M1∆.

The category A
AMAA of bicovariant bimodules over a Hopf algebra A consists of objects

(M,∆M ,M∆) which are bicovariant A-bimodules as in Definition 1.2.10, and for all m in
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M and a in A satisfy

∆M (am) = ∆(a)∆M (m), M∆(am) = ∆(a)M∆(m),

∆M (ma) = ∆M (m)∆(a), M∆(ma) = M∆(m)∆(a).

Morphisms in this category are C-linear maps T : M1 →M2 satisfying

∆M2 ◦ T = (id⊗CT ) ◦∆M1 , M2∆ ◦ T = (T⊗Cid) ◦M1∆

We refer to [78] for more details.

Thus, comparing with Definition 1.2.10 and Definition 1.2.13 with Definition 4.1.1, we have

the following:

Proposition 4.1.2. Suppose M is an A-bimodule.

(i) A left A-comodule (M,∆M ) is a left-covariant bimodule if and only if it is an object of

the category AAMA. A left-covariant A-bimodule map between two left-covariant bimodules

over A is nothing but a morphism of the category AAMA.

(ii) A right A-comodule (M,M∆) is a right-covariant bimodule if and only if it is an ob-

ject of the category AMAA. A right-covariant A-bimodule map between two right-covariant

bimodules over A is nothing but a morphism of the category AMAA.

(iii) A bicomodule (M,∆M ,M∆) is a bicovariant bimodule if and only if it is an object of

the category AAMAA. A bicovariant A-bimodule map between two bicovariant bimodules is

nothing but a morphism in the category AAMAA.

We will be using the notations introduced in Definition 1.2.11. Thus, for a left A-comodule

M, the symbol 0M will denote the set of all left-invariant elements in M . Similarly, if M is

right A-comodule, then M0 will denote the set of all right-invariant elements in M .

Definition 4.1.3. We will say that a bicovariant bimodule (M,∆M ,M∆) is finite if 0M is a

finite dimensional vector space.

Remark 4.1.4. Throughout this thesis, we will work only with bicovariant bimodules which are

finite. Thus, if M is a bicovariant bimodule under consideration in this thesis, the vector space

0M is finite dimensional.
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We also need the following notation.

Definition 4.1.5. Let M and N be left-covariant A-bimodules. The set of all right A-linear

left covariant maps from M to N will be denoted by the symbol AHomA(M,N).

The category AAMA has a natural monoidal structure. Indeed, if (M,∆M ) and (N,∆N ) are

left-covariant bimodules over A, then we have a left coaction ∆M⊗AN of A on M ⊗AN defined

by the following formula:

∆M⊗AN (m⊗A n) = m(−1)n(−1)⊗Cm(0) ⊗A n(0). (4.1.1)

Here we have made use of the Sweedler notation introduced in Subsection 1.2. This makes

M⊗AN into a left covariantA-bimodule. Similarly, AMAA also has a natural monoidal structure.

In particular, the category AAMAA is monoidal. Moreover, we have the following:

Theorem 4.1.6. ([93], Theorem 6.3 of [84]) For any two objects M , N in the category AAMAA,

the unique bicovariant bimodule morphism σ : M⊗AN → N⊗AM satisfying σ(m⊗An) = n⊗Am

whenever m is in 0M and n is in N0 (as in Proposition 1.3.17) is a braiding. Along with the

monoidal structure ⊗A as defined in (4.1.1), this makes (AAMAA,⊗A, σ) into a braided monoidal

category.

The fundamental theorem of Hopf modules (Theorem 1.9.4 of [78]) states that if M is a

left-covariant bimodule over A, then M is free as a left (as well as a right) A-module This was

reproved by Woronowicz in [93]. The following statement rephrases the same in our notational

formalism:

Proposition 4.1.7 (Theorem 2.1 and Theorem 2.3 of [93]). Let (M,∆M ) be a left-covariant

bimodule over A. Then the following multiplication maps are isomorphisms:

ũM : 0M⊗CA →M, ṽM : A⊗C0M →M. (4.1.2)

Similarly, if (M,M∆) is a right-covariant bimodule over A, then the multiplication maps

M0⊗CA →M, A⊗CM0 →M, (4.1.3)

are also isomorphisms.

Then, the following is an immediate corollary.
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Corollary 4.1.8. Let (M,∆M ) and (N,∆N ) be left-covariant bimodules over A and {mi}i and

{nj}j be vector space bases of 0M and 0N respectively. Then each element of M ⊗A N can be

written as
∑

ij aijmi ⊗A nj and
∑

ijmi ⊗A njbij, where aij and bij are uniquely determined.

A similar result holds for right-covariant bimodules (M,M∆) and (N,N∆) over A. Finally, if

(M,∆M ) is a left-covariant bimodule over A with basis {mi}i of 0M , and (N,N∆) is a right-

covariant bimodule over A with basis {nj}j of N0, then any element of M ⊗AN can be written

uniquely as
∑

ij aijmi ⊗A nj as well as
∑

ijmi ⊗A njbij.

Proof. The proof of this result is an adaptation of Lemma 3.2 of [93] and we omit it.

Now we recall the notion of right Yetter-Drinfeld modules and Schauenburg’s result which

showed that the category of bicovariant bimodules is braided monoidally equivalent to the

category of right Yetter-Drinfeld modules.

Definition 4.1.9. (Definition 4.1 of [84]) Suppose that A is a Hopf algebra. A right Yetter-

Drinfeld module over A is a triplet (M,↼, δ) where (M,↼) is a right A-module, (M, δ) is

a right A-comodule such that for all a in A and for all m in M , the following compatibility

condition holds:

m(0) ↼ a(1)⊗Cm(1)a(2) = (m↼ a(2))(0)⊗Ca(1)(m↼ a(2))(1).

We will let YDAA denote the category of all right Yetter-Drinfeld modules. Here, the mor-

phisms between two objects M and N in YDAA are C-linear maps T : M → N which are right

A-linear and right A-comodule maps.

Theorem 4.1.10. ([84]) Suppose A is a Hopf algebra with a bijective antipode. Then the

category YDAA has a braided monoidal structure. Indeed, if M and N are objects of YDAA, the

following right A-module and right A-comodule structure makes M⊗CN an object of YDAA :

(m⊗Cn)a = ma(1)⊗Cna(2), M⊗CN∆(m⊗Cn) = m(0)⊗Cn(0)⊗Cm(1)n(1).

The braiding σYD is given by:

σYD : M⊗CN → N⊗CM, σYD(m⊗Cn) = n(0)⊗Cm↼ n(1).
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The bijectivity of the antipode is needed only to guarantee that σYD is a braiding on YDAA.

In general, it is only a pre-braiding. Now we are in a position to state Schauenburg’s results:

Theorem 4.1.11. (Theorem 5.7 of [84]) The following statements hold:

(i) The functor AAMA →MA, M 7→ 0M defines a monoidal equivalence of categories. The

inverse functor is given by V 7→ A⊗CV.

(ii) The functor AMAA → AM, M 7→ M0 defines a monoidal equivalence of categories. The

inverse functor is given by V 7→ V⊗CA.

(iii) The functor AMAA → AM, M 7→M0 defines an equivalence of categories.

(iv) Suppose A is a Hopf algebra with a bijective antipode and consider the braided monoidal

categories (AAMAA,⊗A, σ) and (YDAA,⊗, σYD) as in Theorem 4.1.6 and Theorem 4.1.10

respectively. The functor

(AAMAA,⊗A, σ)→ (YDAA,⊗, σYD), M → 0M

defines a braided monoidal equivalence of categories.

For more details on Yetter-Drinfeld modules, we refer to [96] and [84].

Proposition 4.1.12. (Theorem 5.7 of [84]) Let (M,∆M ) and (N,∆N ) be left-covariant bimod-

ules over A. Following Definition 1.2.11, we denote the left-invariant elements (with respect to

the coaction ∆M⊗AN ) of M ⊗A N by 0(M ⊗A N). Similarly, the right-invariant elements of

M ⊗A N (with respect to the coaction M⊗AN∆) will be denoted by (M ⊗A N)0. Then we have

that

0(M ⊗A N) = SpanC{m⊗A n : m ∈ 0M,n ∈ 0N}. (4.1.4)

Similarly, if (M,M∆) and (N,N∆) are right-covariant bimodules over A, then we have that

(M ⊗A N)0 = SpanC{m⊗A n : m ∈M0, n ∈ N0}.

Thus, 0(M ⊗A N) = 0M⊗C0N and (M ⊗A N)0 = M0⊗CN0.

Proof. This follows directly from the first two monoidal equivalences in Theorem 4.1.11.

Remark 4.1.13. In the light of Proposition 4.1.12, we are allowed to use the notations 0M⊗C0N

and 0(M ⊗A N) interchangeably.
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4.1.1 A characterisation of left covariant maps and some consequences

In this subsection, we collect some results on left covariant maps which we will exploit through-

out the chapter. For the rest of this subsection, we will use the notations introduced in Propo-

sition 4.1.7 freely.

Proposition 4.1.14. Let (M,∆M ) and (N,∆N ) be left-covariant bimodules over A and T be

a left-covariant right A-linear map from M to N . Then T (0M) ⊆ 0N . Moreover, there exists a

unique C-linear map 0T in HomC(0M, 0N) such that

(ũN )−1 ◦ T = (0T⊗Cid)(ũM )−1. (4.1.5)

In particular, a left covariant right A-linear map T from M to N is determined by its action

on 0M.

Proof. Let {mi}i be a vector space basis for 0M and {nj}j be a vector space basis for 0N . Since

T is a left-covariant right A-linear map from M to N , we have that

∆N (T (mi)) = (id⊗CT )∆M (mi) = (id⊗CT )(1⊗Cmi) = 1⊗C(T (mi)).

Therefore, T (mi) is in 0N . This proves the first assertion.

Define 0T to be the restriction of T on 0M . Let m = ũM (
∑

imi⊗Cai), where ũM is as defined

in Proposition 4.1.7. Then

(0T⊗Cid)(ũM )
−1

(m) =
∑
i

0T (mi)⊗Cai = (ũN )
−1 ◦ T (

∑
i

miai) = (ũN )
−1 ◦ T (m)

and thus (4.1.5) follows. The uniqueness follows from the fact that the equation (4.1.5) implies

that 0T (mi) = T (mi) for all i.

Corollary 4.1.15. Let (M,∆M ) be a left-covariant bimodule over A and T be a left-covariant

right A-linear map from M to A. Then there exists a unique C-linear map 0T in HomC(0M,C)

such that

T = (0T⊗Cid)(ũM )−1.

Proof. The proof follows by taking (N,∆N ) = (A,∆) in Proposition 4.1.14.
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Proposition 4.1.16. Let (M,∆M ) and (N,∆N ) be left-covariant bimodules over A. Then

AHomA(M,N) is isomorphic to HomC(0M, 0N) as complex vector spaces. Moreover a left-

covariant right A-linear map T from M to N is invertible if and only if 0T is invertible. More

generally, λ is an eigenvalue of T if and only if λ is an eigenvalue of 0T .

Proof. Let us recall (Definition 4.1.5) that AHomA(M,N) denotes the set of all right A-linear

left-covariant maps from M to N. We define a map

AHomA(M,N)→ HomC(0M, 0N); T 7→ 0T

as in Proposition 4.1.14. As T is left-covariant, by Proposition 4.1.14, T (0M) ⊆ 0N. Since

T is determined by its action on 0(M), this map is one-to-one. Given an element 0T in

HomC(0M, 0N), the map ũN (0T⊗CidA)(ũM )−1 defines an element, say T, in HomA(M,N) which

can be easily checked to be left-covariant and whose image under the above map is 0T. Thus,

the map is a bijection.

The equation (4.1.5) implies that T is invertible if and only if 0T is invertible. Finally, λ

is an eigenvalue of 0T if and only if 0(T − λ.1) = 0T − λ.1 is not invertible and 0(T − λ.1) is

not invertible if and only if T − λ.1 is not invertible by the above argument. Hence, λ is an

eigenvalue of T if and only if it is an eigenvalue of 0T .

Proposition 4.1.17. Let (M,∆M ) and (N,∆N ) be left-covariant A-bimodules. Then a right

A-linear map T : M → N is left-covariant if and only if T (0M) ⊆ 0N .

In particular, if S : M ⊗A N → M ⊗A N is a right A-linear map, then Proposition 4.1.12

implies that S is left-covariant if and only if S(0M⊗C0N) ⊆ 0M⊗C0N.

Proof. If the map T is left-covariant, then by Proposition 4.1.14, T (0M) ⊆ 0N . Conversely,

suppose T is a right A-linear map and T (0M) ⊆ 0N . Let {mi}i be a vector space basis of 0M

and
∑

imiai be an element of M . Then we have that

∆N (T (
∑
i

miai)) =
∑
i

∆N (T (mi)ai) =
∑
i

∆N (T (mi))∆(ai)

=
∑
i

(1⊗CT (mi))(ai(1)⊗Cai(2)) =
∑
i

(ai(1)⊗CT (mi)ai(2))

=(id⊗CT )(
∑
i

ai(1)⊗Cmiai(2)) = (id⊗CT )(∆M (
∑
i

miai)).
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Hence T is a left-covariant map.

Remark 4.1.18. Analogues of Proposition 4.1.14, Corollary 4.1.15, Proposition 4.1.16 and

Proposition 4.1.17 also hold for right-covariant right A-linear maps from (M,M∆) to (N,N∆).

We end this subsection by proving two results related to bicovariant right A-linear maps.

We need to recall (Lemma 1.2.12) that if M is a bicovariant A-bimodule, then 0M is a right

A-comodule.

Proposition 4.1.19. Let (M,∆M ,M∆) and (N,∆N ,N∆) be bicovariant A-bimodules and T

be a left-covariant right A-linear map from M to N. If the map 0T = T |0M : 0M → 0N as

in Proposition 4.1.14 is right-covariant, i.e, N∆ ◦ 0T = (0T⊗Cid)M∆, then the map T is also

right-covariant.

Proof. Let m be an element of 0M and a an element of A. Then by right A-linearity of T and

right-covariance of 0T, we get

N∆(T (ma)) = N∆(T (m)a) = N∆(T (m))∆(a)

= N∆(0T (m))∆(a) = (0T⊗Cid)(M∆(m))∆(a)

= ((0T⊗Cid)(m(0)⊗Cm(1)))(a(1)⊗Ca(2))

= (0T )(m(0))a(1)⊗Cm(1)a(2) = T (m(0)a(1))⊗Cm(1)a(2)

= (T⊗Cid)((m(0)⊗Cm(1))(a(1)⊗Ca(2))) = (T⊗Cid)M∆(ma).

Since 0M is right A-total in M, this proves that T is a right covariant map.

Before stating the next result, let us note that if M and N are bicovariant A-bimodules and

{mi}i and {nj}j are vector space bases for 0M and 0N respectively, then by Lemma 1.2.12, we

get

0M∆(mi) =
∑
k

mk⊗Caki and 0N∆(nj) =
∑
l

nl⊗Cblj ,

for some elements {aki}ki and {blj}lj in A.

Lemma 4.1.20. If an element T of HomC(0M, 0N) is such that for all m, T (mi) =
∑

j njT
i
j

for some elements T ij in C, then T is a right-covariant map from 0M to 0N if and only if

∑
il

nl⊗CbljT
i
j =

∑
jk

nj⊗CT
k
j aki. (4.1.6)
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Proof. If T is a right-covariant complex linear map from 0M to 0N, then 0N∆◦T = (T⊗Cid)0M∆.

Now:

0N∆(T (mi)) = 0N∆(
∑
j

njT
i
j ) =

∑
l

nl⊗C
∑
i

bljT
i
j . (4.1.7)

On the other hand,

(T⊗Cid)0M∆(mi) = (T⊗Cid)(
∑
k

mk⊗Caki) =
∑
j

nj⊗C
∑
k

T kj aki (4.1.8)

Comparing equations (4.1.7) and (4.1.8), we get that T is an element of HomAC (0M, 0N) if and

only if (4.1.6) holds.

4.2 The diagonalisability of 0σ

Recall that in Subsection 1.3.2, we defined bicovariant differential calculi and the space of one-

forms and two-forms for Hopf algebras. The aim of this section is to prove a noncommutative

analogue of the decomposition (1.4.1) under a mild assumption (Theorem 4.2.5) on the bico-

variant differential calculi of a Hopf algebra A. This decomposition will help us to construct a

canonical bicovariant torsionless connection on a bicovariant differential calculus (see Theorem

4.4.4). The Woronowicz braiding map σ (see Proposition 1.3.17) will play the role of the classi-

cal flip map. By Proposition 1.3.15, the space of one-forms of a bicovariant differential calculus

over A is a bicovariant bimodule. Hence all the results on bicovariant bimodules derived in

Section 4.1 can be applied. In the sequel, the symbol E will always stand for the bimodule of

one-forms of a bicovariant differential calculus (E , d).

Let (E , d) be a bicovariant differential calculus on a Hopf algebra A. Proposition 4.1.7

guarantees the isomorphism of the multiplication map

ũE⊗AE : (0E⊗C0E)⊗CA = 0(E ⊗A E)⊗CA → E ⊗A E (4.2.1)

Moreover, by Proposition 1.3.17, we have a canonical bicovariant A-bimodule map σ from E⊗AE

to E ⊗A E . Then Proposition 4.1.14 and Proposition 4.1.12 imply that there exists a unique

map

0σ : 0E⊗C0E = 0(E ⊗A E)→ 0(E ⊗A E) = 0E⊗C0E (4.2.2)
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such that

(ũE⊗AE)−1σ = (0σ⊗Cid)(ũE⊗AE)−1. (4.2.3)

For the rest of this chapter, we will make the assumption that the map 0σ : 0E⊗C0E → 0E⊗C0E

is diagonalisable. This assumption holds for a large class of Hopf algebras as indicated in the

next proposition.

Proposition 4.2.1. Let E be the space of one-forms of a first order differential calculus over a

Hopf algebra and 0σ : 0E⊗C0E → 0E⊗C0E be the map as in (4.2.2). Then

(i) For the classical bicovariant differential calculus on a Lie group, the map 0σ is diagonal-

isable.

(ii) Let (E , d) be the bicovariant differential calculus on the algebra A of regular functions on a

linear algebraic group G such that the category of finite dimensional representations of G is

semisimple. Suppose Aγ is the cocycle deformation of A with respect to a 2-cocycle γ (see

Definition 1.2.7). Then we have a canonical bicovariant differential calculus (Eγ , dγ) on

Aγ obtained by deforming the usual bicovariant differential calculus on A (see Proposition

5.3.1). Let σγ be the braiding map of Proposition 1.3.17 applied to the calculus (Eγ , dγ).

Then 0(σγ) : 0(Eγ ⊗Aγ Eγ)→ 0(Eγ ⊗Aγ Eγ) is diagonalisable.

(iii) The assumption holds for the bicovariant differential calculi on SLq(N), Oq(N), Spq(N)

studied in [51]. More generally, if the map σ satisfies a Hecke-type relation Πi(σ−λi) = 0

for distinct scalars λi, then 0σ is diagonalisable.

Proof. Suppose the map σ satisfies a relation Πi(σ − λi) = 0 for distinct scalars λi. Since

0σ(0E⊗C0E) ⊆ 0E⊗C0E , we have the equality Πi(0σ − λi) = 0 as maps from 0E⊗C0E to itself.

Therefore, the minimal polynomial of the map 0σ is a product of distinct linear factors and so

0σ is diagonalisable. Since the bicovariant differential calculi on SLq(N), Oq(N) and Spq(N)

studied in [51] satisfy Hecke-type relations as above, this completes the proof of part (iii). The

classical case follows similarly, since here σ(e⊗Af) = f⊗Ae for all e, f in E , so that σ2−1 = 0 and

therefore, the above reasoning applies. Finally, cocycle deformations of bicovariant differential

calculi are dealt with in Chapter 5 and we refer to Theorem 5.3.1 for the proof of part (ii).

The sub-bimodule

E ⊗sym
A E := Ker(∧) = Ker(σ − 1)
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was introduced in (1.3.9). This bimodule is going to play an important role in this chapter.

Moreover, let us introduce the following notations.

Definition 4.2.2. Suppose the map 0σ is diagonalisable. The eigenspace decomposition of

0E⊗C0E will be denoted by 0E⊗C0E =
⊕

λ∈Λ Vλ, where Λ is the set of distinct eigenvalues of

0σ and Vλ is the eigenspace of 0σ corresponding to the eigenvalue λ. Thus, V1 will denote the

eigenspace of 0σ for the eigenvalue λ = 1.

Moreover, we define 0E⊗C
sym

0E to be the set of all left-invariant elements of E ⊗sym
A E , i.e,

0E⊗C
sym

0E :=
{∑

k

ρk⊗Aνk ∈ E⊗AE : ∆E⊗AE(
∑
k

ρk⊗Aνk) = 1⊗C
∑
k

ρk⊗Aνk,
∑
k

ρk∧νk = 0
}
.

We also define 0F :=
⊕

λ∈Λ\{1} Vλ.

The assumption that 0σ is diagonalisable is enough to prove Theorem 4.2.5 As a first step

to prove that theorem, we make the following observation:

Lemma 4.2.3. Let 0σ be the map in (4.2.2). Then we have

We have 0E ⊗sym
C 0E = Ker(0σ − 1).

Proof. The result follows by a simple computation. Indeed,

0E ⊗sym
C 0E

= {
∑
k

ρk ⊗A νk ∈ E ⊗A E : ∆E⊗AE(
∑
k

ρk ⊗A νk) = 1⊗C
∑
k

ρk ⊗A νk,
∑
k

ρk ∧ νk = 0}

= {
∑
k

ρk ⊗A νk ∈ E ⊗A E : ∆E⊗AE(
∑
k

ρk ⊗A νk)

= 1⊗C
∑
k

ρk ⊗A νk, (σ − 1)(
∑
k

ρk ⊗A νk) = 0}

(since Ker(∧) = Ker(σ − 1) by (1.3.9))

= {
∑
k

ρk ⊗A νk ∈ 0E⊗C0E : (0σ − 1)(
∑
k

ρk⊗Cνk) = 0}

( as 0(E ⊗A E) = 0E⊗C0E by Proposition 4.1.12 )

= Ker(0σ − 1).

Remark 4.2.4. Let 0E ⊗sym
C 0E and 0F be as in Definition 4.2.2. We have already noted that

0E⊗sym
C 0E = V1, where Vλ is as in Definition 4.2.2. Further note that since 0σ is diagonalisable,
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we have the following decomposition:

0E⊗C0E = 0E ⊗sym
C 0E ⊕ 0F . (4.2.4)

In the sequel, Ω2(A) will denote the space of two-forms as defined in Definition 1.3.18.

Theorem 4.2.5. Suppose that the map 0σ is diagonalisable. Let ũE⊗AE be the isomorphism of

(4.2.1). We define F := ũE⊗AE(0F⊗CA), where 0F is as in Definition 4.2.2. Then ∧|F : F →

Ω2(A) defines an isomorphism of right A-modules. Moreover,

E ⊗A E = Ker(∧)⊕F = E ⊗sym
A E ⊕ F .

Proof. The proof easily follows by a computation and the following observation:

0(E ⊗sym
A E) = 0E⊗C

sym
0E and so ũE⊗AE(0E⊗C

sym
0E⊗CA) = E ⊗sym

A E . (4.2.5)

The equation 0(E ⊗sym
A E) = 0E⊗C

sym
0E follows directly from the definitions of 0E⊗C

sym
0E and

E ⊗sym
A E = Ker(∧). Then the second equation of (4.2.5) follows from Proposition 4.1.7, since

by Proposition 1.3.19, E ⊗sym
A E is a bicovariant bimodule.

Now we can compute:

E ⊗A E = ũE⊗AE(ũE⊗AE)−1(E ⊗A E)

=ũE⊗AE((0E⊗C0E)⊗CA) = ũE⊗AE(((0E⊗C
sym

0E)⊕ 0F)⊗CA) (by(4.2.4))

=ũE⊗AE(((0E⊗C
sym

0E)⊗CA)⊕ (0F⊗CA)) = E ⊗sym
A E ⊕ F

(by (4.2.5) and the definition of F)

=Ker(∧)⊕F (by the definition of E ⊗sym
A E).

Finally, since E ⊗A E = Ker(∧)⊕F , we have that

F ∼= (E ⊗A E)/Ker(∧) = (E ⊗A E)/Ker(σ − 1) = Ω2(A),

by (1.3.9) and the definition of Ω2(A) as in Definition 1.3.18. Hence, ∧|F : F → Ω2(A) is an

isomorphism of right A-modules.
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4.2.1 The idempotent Psym and its properties

In this subsection, we study the idempotent element of HomA(E ⊗A E , E ⊗A E) with range

E ⊗sym
A E and kernel F .

Definition 4.2.6. We will denote by 0(Psym) the idempotent element in HomC(0E⊗C0E , 0E⊗C0E)

with range 0E⊗C
sym

0E and kernel 0F . By Proposition 4.1.16, 0(Psym) extends to a right A-linear

left-covariant map from E ⊗A E to E ⊗A E. We are going to denote the extension by the symbol

Psym. More concretely,

Psym := ũE⊗AE(0(Psym)⊗Cid)(ũE⊗AE)−1.

Proposition 4.2.7. The map Psym is the idempotent map from E ⊗A E to itself, with range

onto E ⊗sym
A E and with kernel F . In fact, Psym is also a left A-linear and bicovariant map.

Thus Psym is a bicovariant A-bimodule map from E ⊗A E to itself.

Proof. By Definition 4.2.6, Psym is a left-covariant right A-linear map from E ⊗A E to itself.

Since 0(Psym) is an idempotent, Psym = ũE⊗AE(0(Psym)⊗Cid)(ũE⊗AE)−1 is also idempotent. We

have that

Ran(Psym) = ũE⊗AE(0(Psym)⊗Cid)(ũE⊗AE)−1(E ⊗A E)

=ũE⊗AE(0(Psym)⊗Cid)((0E⊗C0E)⊗CA) = ũE⊗AE((0E⊗C
sym

0E)⊗CA)

(by the definition of 0(Psym))

=E ⊗sym
A E (by (4.2.5)).

Now we prove that Ker(Psym) = F . We note that Psym is an idempotent from the complex vector

space E⊗AE to itself with range E⊗sym
A E and kernel containing the subspace ũE⊗AE(0F⊗CA) =

F . Since E ⊗A E = E ⊗sym
A E ⊕ F (Theorem 4.2.5), this proves that Ker(Psym) = F .

Finally, we prove that Psym is a bicovariant A-bimodule map. this follows from the observation

that 0(Psym) is a polynomial in 0σ. Indeed, in the notation of Definition 4.2.2, 0(Psym) is the

idempotent with range V1 and kernel ⊕λ∈Λ\{1}Vλ and so

0(Psym) = Πλ∈Λ\{1}
0σ − λ
1− λ

. (4.2.6)
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Therefore,

Psym = ũE⊗AE
(

0(Psym)⊗Cid
)
(ũE⊗AE)−1

=ũE⊗AE
((

Πλ∈Λ\{1}
1

1− λ
(0σ − λ)

)
⊗Cid

)
(ũE⊗AE)−1

=Πλ∈Λ\{1}

(
ũE⊗AE

(
(

1

1− λ
(0σ − λ))⊗Cid

)
(ũE⊗AE)−1

)
= Πλ∈Λ\{1}

( 1

1− λ
(σ − λ)

)
by (4.2.3). Hence,

Psym = Πλ∈Λ\{1}
( 1

1− λ
(σ − λ)

)
. (4.2.7)

Now σ is a bicovariant A-bimodule map from E ⊗A E to itself and so Psym, being a composition

of bicovariant A-bimodule maps from E ⊗A E to E ⊗A E is itself a bicovariant A-bimodule map

from E ⊗A E to E ⊗A E .

In the classical case, we have Λ = ±1 and so in this case, we recover the formula Psym =

1
2(1 + σ) from (4.2.7). Let us collect two facts in the following remark which will be used later.

Remark 4.2.8. Since Psym is a bicovarant A-bimodule map, the right A-module F = Ran(1−

Psym) is actually a bicovariant sub-bimodule of E ⊗A E.

Definition 4.2.9. Let F be the sub-bimodule of E⊗AE as in Theorem 4.2.5. By Theorem 4.2.5,

we have a right A-linear isomorphism ∧|F : F → Ω2(A) which we will denote by Q.

The following result is a corollary to Proposition 4.2.7.

Corollary 4.2.10. If (E , d) is a bicovariant first order differential calculus, then dω is in

0(Ω2(A)) for all ω in 0E = 0(Ω1(A)). Moreover, Q is a bicovariant A-bimodule map.

Proof. From Proposition 1.3.20, we know that d : E → Ω2(A) is bicovariant. Therefore, if ω is

in 0E , we have

∆Ω2(A)(dω) = (idA⊗Cd)∆E(ω) = 1⊗Cdω.

For the second statement, we note that by Remark 4.2.8, F a bicovariant sub-bimodule of

E ⊗A E . By Proposition 1.3.19, the quotient map ∧ is a bicovariant bimodule map. Hence,

the restriction Q := ∧|F is also a bicovariant bimodule map from F to Ran(Q) = Ω2(A). In

particular, this implies that

Q−1(0(Ω2(A))) ⊆ 0F ( Proposition 4.1.17 ). (4.2.8)
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We end this section with one more lemma which will be needed in the proofs of Lemma 4.2.11

and Theorem 4.5.9. In what follows, the set of all linear functionals on a finite dimensional

complex vector space W will be denoted by the symbol W ∗.

Lemma 4.2.11. The following maps, defined in Proposition 1.1.8, are vector space isomor-

phisms:

ζ0E⊗C0E,0E : (0E⊗C
sym

0E)⊗C(0E)∗ → HomC(0E , 0E⊗C
sym

0E),

ζ0E,0E⊗C0E : 0E⊗C(0E⊗C
sym

0E)∗ → HomC(0E⊗C
sym

0E , 0E).

Proof. By the definition of the map ζ0E⊗C0E,0E ,

ζ0E⊗C0E,0E((0E⊗C
sym

0E)⊗C(0E)∗) ⊆ HomC(0E , 0E⊗C
sym

0E).

Since ζ0E⊗C0E,0E is an isomorphism from (0E⊗C0E)⊗C(0E)∗ onto HomC(0E , 0E⊗C0E) and

dim((0E⊗C
sym

0E)⊗C(0E)∗) = dim(HomC(0E , 0E⊗C
sym

0E)),

we have proved the first assertion.

Now we prove the second assertion. By the definition of 0(Psym) (Definition 4.2.6),

0E⊗C0E = Ran(0(Psym))⊕ Ran(1− 0(Psym))

and hence an element ψ of (0E⊗C
sym

0E)∗ = (Ran(0(Psym)))∗ extends to an element ψ̃ of

(0E⊗C0E)∗ by the formula

ψ̃(X) = ψ(0(Psym)(X)) ∀X ∈ 0E⊗C0E .

More generally,

HomC(0E⊗C
sym

0E ,C) = {ψ ∈ HomC(0E⊗C0E ,C) : ψ((1− 0(Psym))(X)) = 0 ∀X ∈ 0E⊗C0E}.

(4.2.9)

This allows us to view ψ ∈ (0E⊗C
sym

0E)∗ as an element ψ̃ in (0E⊗C0E)∗ such that ψ̃((1 −

0(Psym))(X)) = 0.
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Thus, for e in 0E , ψ̃ as above and for all X in 0E⊗C0E , we have

(ζ0E,0E⊗C0E)(e⊗Cψ̃)((1− 0(Psym))(X)) = eψ̃((1− 0(Psym))(X)) = 0.

This implies that

ζ0E,0E⊗C0E(0E⊗C(0E⊗C
sym

0E)∗) ⊆ HomC(0E⊗C
sym

0E , 0E).

As ζ0E,0E⊗C0E is an isomorphism from 0E⊗C(0E⊗C0E)∗ onto HomC(0E⊗C0E , 0E) and

dim(0E⊗C(0E⊗C
sym

0E)∗) = dim(HomC(0E⊗C
sym

0E , 0E)),

ζ0E,0E⊗C0E maps 0E⊗C(0E⊗C
sym

0E)∗ isomorphically onto HomC(0E⊗C
sym

0E , 0E). This finishes

the proof of the lemma.

4.3 Pseudo-Riemannian metrics on bicovariant bimodules

In this section, we study pseudo-Riemannian metrics on bicovariant differential calculi over

Hopf algebras. After defining pseudo-Riemannian metrics, we recall the definitions of left and

right invariance of a pseudo-Riemannian metrics from [51]. We prove that a pseudo-Riemannian

metric is left (respectively, right) invariant if and only if it is left (respectively, right) covariant.

We will see that the coefficients of a left-invariant pseudo-Riemannian metric with respect to

a left-invariant basis of E are scalars. We use this fact to clarify some properties of pseudo-

Riemannian invariant metrics. We end the section by comparing our definition with those by

Heckenberger and Schmüdgen ([51]) as well as by Beggs and Majid.

Definition 4.3.1. ([51]) Suppose E is a bicovariant A-bimodule E and σ : E ⊗A E → E ⊗A E

be the map as in Proposition 1.3.17. A pseudo-Riemannian metric for the pair (E , σ) is a right

A-linear map g : E ⊗A E → A such that the following conditions hold:

(i) g ◦ σ = g.

(ii) If g(ρ⊗A ν) = 0 for all ν in E , then ρ = 0.

For other notions of metrics on covariant differential calculus, we refer to [11] and references

therein.
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Definition 4.3.2. ([51]) A pseudo-Riemannian metric g on a bicovariant A-bimodule E is said

to be left-invariant if for all ρ, ν in E,

(id⊗Cεg)(∆(E⊗AE)(ρ⊗A ν)) = g(ρ⊗A ν).

Similarly, a pseudo-Riemannian metric g on a bicovariant A-bimodule E is said to be right-

invariant if for all ρ, ν in E,

(εg⊗Cid)((E⊗AE)∆(ρ⊗A ν)) = g(ρ⊗A ν).

Finally, a pseudo-Riemannian metric g on a bicovariant A-bimodule E is said to be bi-invariant

if it is both left-invariant as well as right-invariant.

We observe that a pseudo-Riemannian metric is invariant if and only if it is covariant.

Proposition 4.3.3. Let g be a pseudo-Riemannian metric on the bicovariant bimodule E. Then

g is left-invariant if and only if g : E ⊗A E → A is a left-covariant map. Similarly, g is right-

invariant if and only if g : E ⊗A E → A is a right-covariant map.

Proof. Let g be a left-invariant metric on E , and ρ, ν be elements of E . Then the following

computation shows that g is a left-covariant map.

∆(g(ρ⊗A ν)) = ∆((id⊗Cεg)(∆(E⊗AE)(ρ⊗A ν)))

=∆((id⊗Cεg)(ρ(−1)ν(−1)⊗Cρ(0) ⊗A ν(0)))

=∆(ρ(−1)ν(−1))ε(g(ρ(0) ⊗A ν(0)))

=(ρ(−1))(1)(ν(−1))(1)⊗C(ρ(−1))(2)(ν(−1))(2)ε(g(ρ(0) ⊗A ν(0)))

=(ρ(−1))(1)(ν(−1))(1)⊗C((id⊗Cεg)((ρ(−1))(2)(ν(−1))(2)⊗Cρ(0) ⊗A ν(0)))

=ρ(−1)ν(−1)⊗C((id⊗Cεg)(∆(E⊗AE)(ρ(0) ⊗A ν(0))))

(where we have used coassociativity of comodule coactions)

=ρ(−1)ν(−1)⊗Cg(ρ(0) ⊗A ν(0))

=(id⊗Cg)(∆(E⊗AE)(ρ⊗A ν)).
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On the other hand, suppose g : E ⊗A E → A is a left-covariant map. Then we have

(id⊗Cεg)∆(E⊗AE)(ρ⊗A ν) = (id⊗Cε)(id⊗Cg)∆(E⊗AE)(ρ⊗A ν)

=(id⊗Cε)∆(g(ρ⊗A ν)) = g(ρ⊗A ν).

The proof of the right-covariant case is similar.

The following key result will be used throughout the article.

Lemma 4.3.4. ([51]) If g is a pseudo-Riemannian metric which is left-invariant on a left-

covariant A-bimodule E, then g(ω1 ⊗A ω2) ∈ C.1 for all ω1, ω2 in 0E . Similarly, if g is a right-

invariant pseudo-Riemannian metric on a right-covariant A-bimodule, then g(η1 ⊗A η2) ∈ C.1

for all η1, η2 in E0.

Let us clarify some of the properties of a left-invariant and right-invariant pseudo-Riemannian

metrics. To that end, we make the next definition which makes sense as we always work with

finite bicovariant bimodules (see Definition 4.1.3). The notations used in the next definition

will be used throughout the chapter.

Definition 4.3.5. Let E and g be as above. For a fixed basis {ω1, · · · , ωn} of 0E , we define

gij = g(ωi⊗A ωj). Moreover, we define Vg : E → E∗ = HomA(E ,A) to be the map defined by the

formula

Vg(e)(f) = g(e⊗A f).

Proposition 4.3.6. Let g be a left-invariant pseudo-Riemannian metric for E as in Definition

4.3.1. Then the following statements hold:

(i) The map Vg is a one-to-one right A-linear map from E to E∗.

(ii) If e ∈ E is such that g(e⊗A f) = 0 for all f ∈ 0E , then e = 0. In particular, the map Vg|0E

is one-to-one and hence an isomorphism from 0E to (0E)∗.

(iii) The matrix ((gij))ij is invertible.

(iv) Let gij denote the (i, j)-th entry of the inverse of the matrix ((gij))ij. Then gij is an

element of C.1 for all i, j.

(v) If g(e⊗A f) = 0 for all e in 0E, then f = 0.
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Proof. The right A-linearity of Vg follows from the fact that g is a well-defined map from E ⊗AE

to A. The condition (2) of Definition 4.3.1 forces Vg to be one-to-one. This proves (i).

For proving (ii), note that Vg|0E is the restriction of a one-to-one map to a subspace. Hence,

it is a one-to-one C-linear map. Since g is left-invariant, by Lemma 4.3.4, for any e in 0E ,

Vg(e)(0E) is contained in C. Therefore, Vg maps 0E into (0E)∗. Since, 0E and (0E)∗ have the

same finite dimension as vector spaces, Vg|0E : 0E → (0E)∗ is an isomorphism. This proves (ii).

Now we prove (iii). Let {ωi}i be a basis of 0E and {ω∗i }i be a dual basis, i.e, ω∗i (ωj) = δij .

Since Vg|0E is a vector space isomorphism from 0E to (0E)∗ by part (ii), there exist complex

numbers aij such that

(Vg)
−1(ω∗i ) =

∑
j

aijωj

. This yields

δik = ω∗i (ωk) = g(
∑
j

aijωj ⊗A ωk) =
∑
j

aijgjk.

Therefore, ((aij))ij is the left-inverse and hence the inverse of the matrix ((gij))ij . This proves

(iii).

For proving (iv), we use the fact that gij is an element of C.1 for all i, j. Since

∑
k

g(ωi ⊗A ωk)gkj = δij .1 =
∑
k

gikg(ωk ⊗A ωj) = δij ,

we have ∑
k

g(ωi ⊗A ωk)ε(gkj) = δij =
∑
k

ε(gik)g(ωk ⊗A ωj).

So, the matrix ((ε(gij)))ij is also an inverse to the matrix ((g(ωi⊗Aωj)))ij and hence gij = ε(gij)

and gij is in C.1.

Finally, we prove (v) using (iv). Suppose f be an element in E such that g(e⊗A f) = 0 for

all e in 0E . Let f =
∑

k ωkak for some elements ak in A. Then for any fixed index i0, we obtain

0 = g(
∑
j

gi0jωj ⊗A
∑
k

ωkak) =
∑
k

∑
j

gi0jgjkak =
∑
k

δi0kak = ai0 .

Hence, we have that f = 0. This finishes the proof.
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We apply the results in Proposition 4.3.6 to exhibit a basis of the free right A-module Vg(E).

This will be used in the next chapter to make Definition 5.2.1 which will be needed to prove

Theorem 5.2.5.

Lemma 4.3.7. Suppose {ωi}i is a basis of 0E and {ω∗i }i be the dual basis as in the proof of

Proposition 4.3.6. If g is a pseudo-Riemannian left-invariant metric on E , then Vg(E) is a free

right A-module with basis {ω∗i }i.

Proof. We will use the notations (gij)ij and gij from Proposition 4.3.6. Since Vg is a right

A-linear map, Vg(E) is a right A-module. Since

Vg(ωi) =
∑
j

gijω
∗
j (4.3.1)

and the inverse matrix (gij)ij has scalar entries (Proposition 4.3.6), we get

ω∗k =
∑
i

gkiVg(ωi)

and so ω∗k belongs to Vg(E) for all k. By the right A-linearity of the map Vg, we conclude that

the set {ω∗i }i is right A-total in Vg(E).

Finally, if ai are elements in A such that
∑

k ω
∗
kak = 0, then by (4.3.1), we have

0 =
∑
i,k

gkiVg(ωi)ak = Vg(
∑
i

ωi(
∑
k

gkiak)).

As Vg is one-to-one and {ωi}i is a basis of the free module E , we get

∑
k

gkiak = 0 ∀ i.

Multiplying by gij and summing over i yields aj = 0. This proves that {ω∗i }i is a basis of Vg(E)

and finishes the proof.

Remark 4.3.8. Let us note that for all e ∈ E , the following equation holds:

e =
∑
i

ωiω
∗
i (e ). (4.3.2)
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For the next proposition, we will need the notion of a left dual of an object in a monoidal

category as defined in Definition 1.1.9. We observe that if g is a pseudo-Riemannian metric

billinear metric on a bicovariant A-bimodule E , then E is self-dual.

Proposition 4.3.9. Suppose g is a pseudo-Riemannian A-bilinear pseudo-Riemannian metric

on a finite bicovariant A-bimodule. Let Ẽ denote the left dual of the object E in the category

A
AMAA. Then Ẽ is isomorphic to E as objects in the category AAMAA via the morphism Vg.

Proof. Let {ωi}i be a basis of 0E . It is well-known that Ẽ and E∗ are isomorphic objects in the

category AAMAA. This follows by using the bicovariant A-bilinear maps

ev : E∗ ⊗A E → A; φ⊗A e 7→ φ(e), coev : A → E ⊗A E∗; 1 7→
∑
i

ωi ⊗A ω∗i

We define evg : E ⊗A E → A and coevg : A → E ⊗A E by the following formulas:

evg(e⊗A f) = g(e⊗A f), coevg(1) =
∑
i

ωi ⊗A V −1
g (ω∗i ).

Then since g is both left and right A-linear, evg and coevg are A-bimodule maps. The bicovari-

ance of g implies the bicovariance of evg while the bicovariance of coevg = (id ⊗A V −1
g ) ◦ coev

follows from the bicovariance of Vg and coev.

Since the left dual of an object is unique upto isomorphism, we need to check the following

identities for all e in E :

(evg ⊗A id)(id⊗A coevg)(e) = e, (id⊗A evg)(coevg ⊗A id)(e) = e.

But these follow by a simple computation using the fact that 0E is right A-total in E and the

identity (4.3.2).

From the above discussion, we have that E and E∗ are two left duals of the object E in the

category AAMAA. Then by Proposition 1.1.10, we know that (evg ⊗A idE∗)(idE ⊗A coev) is an

isomorphism from E to E∗. But it can be easily checked that (evg ⊗A idE∗)(idE ⊗A coev) = Vg.

This completes the proof.

Now we state a result on bi-invariant pseudo-Riemannian metric.
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Proposition 4.3.10. Let g be a pseudo-Riemannian metric on E and the symbols {ωi}i, {gij}ij

be as above. If

E∆(ωi) =
∑
j

ωj⊗CRji (4.3.3)

(see (1.2.4)), then g is bi-invariant if and only if the elements gij are scalar and

gij =
∑
kl

gklRkiRlj . (4.3.4)

Proof. Since g is left-invariant, the elements gij are in C.1. Moreover, the right-invariance of g

implies that g is right-covariant (Proposition 4.3.3), i.e.

1⊗Cgij = ∆(gij) = (g ⊗A id)E⊗AE∆(ωi⊗Cωj)

=(g ⊗A id)(
∑
kl

ωk ⊗A ωl⊗CRkiRlj) = 1⊗C
∑
kl

gklRkiRlj ,

so that

gij =
∑
kl

gklRkiRlj . (4.3.5)

Conversely, if gij = g(ωi ⊗A ωj) are scalars and (4.3.4) is satisfied, then g is left-invariant and

right-covariant. By Proposition 4.3.3, g is right-invariant.

Next we compare our definition of pseudo-Riemannian metrics with some of the other defi-

nitions available in the literature.

Proposition 4.3.6 shows that our notion of pseudo-Riemannian metric coincides with the

right A-linear version of a “symmetric metric” introduced in Definition 2.1 of [51] if we impose

the condition of left-invariance.

Next, we compare our definition with the one used by Beggs and Majid in Proposition 4.2

of [70] (also see [11] and references therein). To that end, we briefly recall the construction of

the two forms as in Subsection 1.3.2.

If E is a bicovariant A-bimodule and σ be the map as in Proposition 1.3.17, Woronowicz

defined the space of two forms as:

Ω2(A) := (E ⊗A E)
/

Ker(σ − 1).
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The symbol ∧ will denote the quotient map

∧ : E ⊗A E → Ω2(A).

Thus,

Ker(∧) = Ker(σ − 1).

In Proposition 4.2 of [70], the authors define a metric on a bimodule E over a (possibly) noncom-

mutative algebra A as an element h of E ⊗A E such that ∧(h) = 0. We claim that metrics in the

sense of Beggs and Majid are in one to one correspondence with elements g in HomA(E ⊗A E ,A)

(not necessarily left-invariant) such that g ◦ σ = g. Thus, modulo the nondegeneracy condition

(ii) of Definition 4.3.1, our notion of pseudo-Riemannian metric matches with the definition of

metric by Beggs and Majid.

Indeed, if g is in HomA(E ⊗A E ,A) as above and {ωi}i, is a basis of 0E , then the equation

g ◦ σ = g implies that

g ◦ σ(ωi ⊗A ωj) = g(ωi ⊗A ωj).

Moreover, since σ is a bicovariant bimodule map, by Proposition 4.1.14, σ(0E⊗C0E) is contained

in 0E⊗C0E . Hence, by Proposition 4.1.12 we know that

σ(ωi ⊗A ωj) =
∑
k,l

σklijωk ⊗A ωl

for some scalars σklij . Therefore, we have

∑
k,l

σklij g(ωk ⊗A ωl) = g(ωi ⊗A ωj). (4.3.6)

We claim that the element h =
∑

i,j g(ωi ⊗A ωj)ωi ⊗A ωj satisfies ∧(h) = 0. Indeed, by virtue

of (1.3.9), it is enough to prove that (σ− 1)(h) = 0. But this directly follows from (4.3.6) using

the left A-linearity of σ.

This argument is reversible and hence starting from h in E ⊗A E satisfying ∧(h) = 0, we get

an element g in HomA(E ⊗A E ,A) such that for all i, j,

g ◦ σ(ωi ⊗A ωj) = g(ωi ⊗A ωj).
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Since {ωi ⊗A ωj}ij is right A-total in E ⊗A E (Corollary 4.1.8) and the maps g, σ are right

A-linear, we get that g ◦σ = g. This proves our claim. Let us note that since we did not assume

g to be left invariant, the quantities g(ωi ⊗A ωj) need not be scalars. However, the proof goes

through since the elements σijkl are scalars.

4.3.1 The g(2)-adjoint of a left-covariant map

Suppose E is a bicovariant bimodule and g a pseudo-Riemannian metric. Then following the

lines of Definition 2.3.4, it is straightforward to define (Definition 4.3.11) a complex valued

map g(2) on 0E⊗C0E . The goal of this subsection is to show that any complex linear map from

0E⊗C0E to itself admits an adjoint with respect to g(2). Moreover, in Lemma 4.3.13 and Propo-

sition 4.3.14, we show that the maps 0σ and 0(Psym) are actually self-adjoint. These results will

be used in Lemma 4.5.4 and Theorem 4.5.9 for deriving a sufficient condition for the existence

of a Levi-Civita connection.

Let E be a bicovariant bimodule over A and {ωi}i a basis of 0E . Then the set {ωi⊗Cωj}ij

is a basis for the finite dimensional vector space 0E⊗C0E . Thus, we are allowed to make the

following definition.

Definition 4.3.11. Suppose g is a left-covariant pseudo-Riemannian metric on E. We define

a map

g(2) : (0E⊗C0E)⊗C(0E⊗C0E)→ C by the formula

g(2)((ω1⊗Cω2)⊗C(ω3⊗Cω4)) = g(ω1 ⊗A g(ω2 ⊗A ω3)⊗A ω4)

for all ω1, ω2, ω3, ω4 ∈ 0E .

We also define a map Vg(2) : (0E⊗C0E)→ (0E⊗C0E)∗ := HomC(0E⊗C0E ,C) by the formula

Vg(2)(ω1⊗Cω2)(ω3⊗Cω4) = g(2)((ω1⊗Cω2)⊗C(ω3⊗Cω4)).

Since, by the second assertion of Lemma 4.3.4, g(ω1⊗A ω2) belongs to C, it is clear that the

element g(2)((ω1 ⊗A ω2)⊗A (ω3⊗Cω4)) indeed belongs to C.

Let us note that the maps g(2) and Vg(2) are both right A-linear. The following non-

degeneracy property is going to be crucial in the sequel.
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Proposition 4.3.12. Let Y be an element of 0E⊗C0E. If g(2)(X⊗CY ) = 0 for all X in 0E⊗C0E,

then Y = 0. Similarly, if g(2)(Y⊗CX) = 0 for all X in 0E⊗C0E, then Y = 0. In particular, the

map Vg(2) defined in Definition 4.3.11 is a vector space isomorphism from 0E⊗C0E to (0E⊗C0E)∗.

Proof. Let {ωi}i be a basis for 0E so that {ωi⊗Cωj}ij is a basis for 0E⊗C0E . By Proposition

4.3.6, the matrix whose i, j-th element is gij = g(ωi⊗Cωj) is invertible in Mn(C). We will denote

by gij the i, j-th entry of the inverse of the matrix ((gij))ij .

Suppose {bij}ij are complex numbers such that

Y =
∑
ij

ωi⊗Cωjbij .

Let us fix the indices i0, j0 and define

X =
∑
kl

gi0lgj0kωk⊗Cωl.

Then we get

0 = g(2)(X⊗CY ) = g(2)(
∑
ijkl

gi0lgj0k(ωk⊗Cωl)⊗C(ωi⊗Cωj)bij)

=
∑
ijkl

gi0lgj0kg(ωk ⊗A gliωj)bij =
∑
ijkl

gi0lglig
j0kgkjbij =

∑
ij

δi0iδj0jbij = bi0j0 .

Hence, if g(2)(X⊗CY ) = 0 for all X, then Y = 0.

To prove the second statement, fix indices i0, j0 and define X =
∑

kl g
li0gkj0ωk⊗Cωl. Then, we

compute the following.

g(2)(Y⊗CX) =g(2)(
∑
ijkl

(ωi⊗Cωjbij)⊗C(ωk⊗Cωlg
li0gkj0))

=
∑
ijkl

gilg
li0gjkg

kj0bij =
∑
ij

δi0iδj0jbij = bi0j0 .

Hence, if g(2)(Y⊗CX) = 0 for all X, then Y = 0.

Before stating the next lemma, we note that the g(2)-adjoint of the maps 0σ and 0(Psym)

make sense. Indeed, 0σ and 0(Psym) are linear maps from the complex vector space 0E⊗C0E to

itself. By virtue of Proposition 4.3.12, we can apply Lemma 1.1.7 to h = g(2) and T = 0σ or

0(Psym). Thus, (0σ)∗ and (0(Psym))∗ exist.
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Lemma 4.3.13. Let E be a bicovariant A-bimodule, σ the braiding map of Proposition 1.3.17

and g be a bi-invariant pseudo-Riemannian metric on E, then (0σ)∗ = 0σ.

Proof. We will actually prove a stronger statement. Since g(2) is a map from (0E⊗C0E)⊗C(0E⊗C0E)

to C, it extends uniquely to a right A-linear left-covariant map (to be denoted by g(2) again,

by an abuse of notation) from (E ⊗A E)⊗A (E ⊗A E) to A by Proposition 4.1.16. We will prove

that for e, f, e′, f ′ in E ,

g(2)(σ(e⊗A f)⊗A (e′ ⊗A f ′)) = g(2)((e⊗A f)⊗A σ(e′ ⊗A f ′)). (4.3.7)

To this end, we claim that it is enough to prove that for all ω, ω′ in 0E and η, η′ in E0,

g(2)(σ(ω ⊗A η)⊗A (ω′ ⊗A η′)) = g(2)((ω ⊗A η)⊗A σ(ω′ ⊗A η′)). (4.3.8)

Indeed, by Corollary 4.1.8, for every element a in A, there exist elements xi in 0E , yi in E0 and

ai in A such that

a(ω′ ⊗A η′) =
∑
i

xi ⊗A yiai.

Hence, if (4.3.8) is true, the right A-linearity of the map g(2) implies that

g(2)(σ(ω ⊗A ηa)⊗A (ω′ ⊗A η′b)) = g(2)(σ(ω ⊗A η)⊗A a(ω′ ⊗A η′))b

=
∑
i

g(2)(σ(ω ⊗A η)⊗A (xi ⊗A yi))aib =
∑
i

g(2)((ω ⊗A η)⊗A σ(xi ⊗A yi))aib

=
∑
i

g(2)((ω ⊗A η)⊗A σ(xi ⊗A yiai))b = g(2)((ω ⊗A η)⊗A aσ(ω′ ⊗A η′))b

= g(2)((ω ⊗A ηa)⊗A σ(ω′ ⊗A η′b)).

Here we have used the bilinearity of the map σ. Since 0E ⊗A E0 is right A-total in E ⊗A E (by

Corollary 4.1.8), this proves (4.3.7) provided we prove (4.3.8). This proves our claim.

Thus, we are left with proving (4.3.8) which follows from the following computation:

g(2)(σ(ω ⊗A η)⊗A (ω′ ⊗A η′)) = g(2)((η ⊗A ω)⊗A (ω′ ⊗A η′))

=g(η ⊗A η′)g(ω ⊗A ω′) = g(2)((ω ⊗A η)⊗A (η′ ⊗A ω′))

=g(2)((ω ⊗A η)⊗A σ(ω′ ⊗A η′)),
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where we have used σ(ω ⊗A η) = η ⊗A ω (see (1.3.7)) twice and the facts that g(ω ⊗A ω′) and

g(η ⊗A η′) take values in C.1 (second assertion of Lemma 4.3.4). This completes the proof of

the lemma.

Proposition 4.3.14. We have (0(Psym))∗ = 0(Psym). Moreover, if Vg(2) : 0E⊗C0E → (0E⊗C0E)∗

is the map defined in Definition 4.3.11, then

Vg(2)(0(Psym)(X))(Y ) = Vg(2)(X) ◦ 0(Psym)(Y ) ∀X,Y ∈ 0E⊗C0E . (4.3.9)

In particular, Vg(2) is a vector space isomorphism from 0E⊗C
sym

0E onto (0E⊗C
sym

0E)∗.

Proof. Since (0σ)∗ = 0σ by Lemma 4.3.13 and 0(Psym) is a polynomial in 0σ by (4.2.6), we have

(0(Psym))∗ = 0(Psym). Then (4.3.9) follows from the definition of Vg(2) . Finally, for the last

assertion, let us recall the identification

(0E⊗C
sym

0E)∗ = {φ ∈ (0E⊗C0E)∗ : φ(X) = φ(0(Psym)(X)) ∀X ∈ 0E⊗C0E} (4.3.10)

from (4.2.9). Now, if X is in 0E⊗C
sym

0E = Ran(0(Psym)), then for all Y in 0E⊗C0E , we have

Vg(2)(X)(Y ) = Vg(2)(0(Psym)(X))(Y ) = Vg(2)(X)(0(Psym)(Y )).

by (4.3.9). Therefore, Vg(2)(0E⊗C
sym

0E) is a subspace of (0E⊗C
sym

0E)∗ by (4.3.10). Now by

Proposition 4.3.12, the map Vg(2) is one-to-one and so we reach our our desired conclusion by a

dimension argument.

4.4 Bicovariant connections and metric compatibility

Recall that in Definition 1.4.10 and Definition 1.4.11, we had already defined connections on a

first order differential calculus and their torsion. In this section, we define covariant connections

on bicovariant differential calculi. As a consequence of the assumption of diagonalisability of

0σ made in Section 4.2, in Subsection 4.4.1 we construct a canonical torsionless connection on

a bicovariant differential calculus. In Subsection 4.4.2, we introduce the notion of compatibility

of a left covariant connection with a bi-invariant pseudo-Riemannian metric. In that section

we also make a comparison of our notion of metric compatibility with that of [51] in a limited

setting.
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Definition 4.4.1. ([51]) Let (E , d) be a bicovariant differential calculus on A. A (right) con-

nection on E is a C-linear map ∇ : E → E ⊗A E such that, for all a in A and ρ in E, the

following equation holds:

∇(ρa) = ∇(ρ)a+ ρ⊗A da.

The connection ∇ is said to be left (right) covariant if it is a left (right) covariant linear map

from E to E ⊗A E. It is called a bicovariant connection if it is bicovariant as a linear map.

Lemma 4.4.2. ([51]) If ∇ is a left-covariant connection on a bicovariant differential calculus

(E , d), then ∇(0E) ⊆ 0E⊗C0E.

Proof. This follows by combining Proposition 4.1.17 and Proposition 4.1.12.

Our notion of torsion T∇ (see Definition 1.4.11) of a connection is the same as that of [51],

with the only difference being that they work with left connections.

The following result which will be needed in the proof of Proposition 4.5.3.

Lemma 4.4.3. If ∇1 and ∇2 are two left-covariant torsionless connections on a bicovariant

differential calculus (E , d) on A, then ∇1 −∇2 is an element of HomC(0E , 0E⊗C
sym

0E).

Proof. If ∇1 and ∇2 are two torsionless connections, we have that ∧ ◦ ∇1 = −d = ∧ ◦ ∇2.

Therefore,

Ran(∇1 −∇2) ⊆ Ker(∧) = E ⊗sym
A E .

Moreover, by Lemma 4.4.2, if ω is an element of 0E , then (∇1 − ∇2)(ω) is in 0E⊗C0E , i.e,

(∇1 − ∇2)(ω) is invariant under ∆E⊗AE . Hence, by (4.2.5), (∇1 − ∇2)(ω) is an element of

0(E ⊗sym
A E) = 0E⊗C

sym
0E .

4.4.1 A canonical bicovariant torsionless connection

In this subsection, we prove, by construction, the existence of a bicovariant torsionless connection

on any bicovariant differential calculus which satisfies the condition that 0σ is diagonalisable.

Indeed, we will be using the map Q = ∧|F : F → Ω2(A) (Definition 4.2.9) which makes sense

due to the splitting E ⊗A E = (E ⊗sym
A E) ⊕ F (Theorem 4.2.5) which in turn follows from the

assumption of diagonalisability of the map 0σ. Let us recall that Q is a bimodule isomorphism

from F to Ω2(A).
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Theorem 4.4.4. Suppose (E , d) is a bicovariant differential calculus on A such that 0σ is

diagonalisable. Then E admits a bicovariant torsionless connection.

Proof. The proof of existence of a torsionless connection ∇0 follows exactly along the lines of

Theorem 2.2.3 of Chapter 2. The only difference here is that we need to define ∇0 in such a

way that it remains bicovariant.

We define ∇̃0 : 0E → 0E⊗C0E by

∇̃0(ω) = Q−1(−d(ω)).

Indeed, by Corollary 4.2.10 and (4.2.8), ∇̃0(ω) is an element of 0E⊗C0E for all ω in 0E . Let

{ωi}i be a vector space basis of 0E . By the right A-totality of 0E in E , we extend ∇̃0 to a map

∇0 : E → E ⊗A E by the formula

∇0(
∑
i

ωiai) =
∑
i

∇̃0(ωi)ai +
∑
i

ωi ⊗A dai.

Since E is a free module with basis {ωi}i, the above formula is well-defined. It follows that for

all ω in 0E and for all a in A,

∇0(ωa) = ∇̃0(ω)a+ ω ⊗A da.

Then, to verify that ∇0 is a connection we compute the following for ω in 0E and a, b in A.

∇0(ωab) =∇̃0(ω)ab+ ω ⊗A d(ab) = ∇̃(ω)ab+ ω ⊗A da.b+ ω ⊗A adb

=(∇̃(ω)a+ ω ⊗A da)b+ ωa⊗A db = ∇0(ωa)b+ ωa⊗A db

Now we prove that∇0 is torsionless. Indeed, since by Definition 4.2.9, we have ∧◦Q−1 = idΩ2(A),

we can deduce that

∧ ◦ ∇0(ωa) = ∧ ◦(∇̃0(ω)a+ ω ⊗A da) = ∧ ◦Q−1(−d(ω))a+ ω ∧ da

=− d(ω)a+ ω ∧ da = −d(ωa).

Before proceeding further, let us note that since ∇0 coincides with ∇̃0 on 0E and ∇̃0(ω) belongs

to 0E⊗C0E if ω is in 0E , ∇0(ω) is in 0E⊗C0E . We will use this fact in the rest of the proof where

ω and a will stand for arbitrary elements of 0E and A respectively.
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To show that∇0 is left-covariant, we observe that since∇0(ω) is in 0E⊗C0E ,∆E⊗AE(∇0(ω)) =

1⊗C∇0(ω). Using this, we get

(id⊗C∇0)(∆E(ωa)) = (id⊗C∇0)(∆E(ω)∆(a))

=(id⊗C∇0)((1⊗Cω)(a(1)⊗Ca(2))) = a(1)⊗C∇0(ωa(2))

=a(1)⊗C(∇0(ω)a(2) + ω ⊗A da(2)) = (1⊗C∇0(ω))(a(1)⊗Ca(2)) + a(1)⊗Cω ⊗A da(2)

=(1⊗C∇0(ω))(a(1)⊗Ca(2)) + (da)(−1)⊗Cω ⊗A (da)(0)

(
by part (i) of Lemma 1.3.16

)
=∆E⊗AE(∇0(ω))∆(a) + ∆E⊗AE(ω ⊗A da) = ∆E⊗AE(∇0(ω)a+ ω ⊗A da)

=∆E⊗AE(∇0(ωa)).

Finally, we show that ∇0 is also right-covariant. Let ω and a continue to denote elements of 0E

and A respectively. Since E is a bicovariant bimodule, E∆(ω) = ω(0)⊗Cω(1) belongs to 0E⊗CA

by Lemma 1.2.12. Hence ω(0) belongs to 0E and we are allowed to write

∇0(ω(0)a(1)) = Q−1(−d(ω(0)))a(1) + ω(0)⊗Cd(a(1)).

Thus, we obtain

(∇0⊗Cid)E∆(ωa) = (∇0⊗Cid)(ω(0)a(1)⊗Cω(1)a(2))

=∇0(ω(0)a(1))⊗Cω(1)a(2) = (Q−1(−d(ω(0)))a(1) + ω(0) ⊗A d(a(1)))⊗Cω(1)a(2)

=(Q−1⊗Cid)
(
((−d)⊗Cid)(ω(0)⊗Cω(1))

)
(a(1)⊗Ca(2)) + ω(0) ⊗A d(a(1))⊗Cω(1)a(2)

=(Q−1⊗Cid)
(
((−d)⊗Cid)(ω(0)⊗Cω(1))

)
(a(1)⊗Ca(2)) + ω(0) ⊗A (da)(0)⊗Cω(1)(da)(1)(

by part (ii) of Lemma 1.3.16
)

=(Q−1⊗Cid)
(
((−d)⊗Cid)(E⊗AE∆(ω))

)
(∆(a)) + E⊗AE∆(ω ⊗A da)

=(Q−1⊗Cid)
(

Ω2(A)∆(−d(ω))
)
∆(a) + E⊗AE∆(ω ⊗A da)(

since d is a bicovariant map from E to Ω2(A) by Proposition 1.3.20
)

=E⊗AE∆(Q−1(−d(ω)))∆(a) + E⊗AE∆(ω ⊗A da)(
since Q is right covariant by Corollary 4.2.10

)
=E⊗AE∆(∇0(ω))∆(a) + E⊗AE∆(ω ⊗A da)

=E⊗AE∆(∇0(ω)a+ ω ⊗A da)

=E⊗AE∆(∇0(ωa)).

This finishes the proof.
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4.4.2 Metric Compatibility of a bicovariant connection

In this subsection, we define the notion of metric-compatibility of a left-covariant connection

with a left-invariant pseudo-Riemannian metric. We will need the map 0(Psym) introduced in

Definition 4.2.6. Our definition coincides with that in the classical case (Proposition 4.4.8) and

also with that in [51] for cocycle deformations of classical Lie groups. The latter statement is

derived in Chapter 5.

Definition 4.4.5. Let ∇ be a left-covariant connection on a bicovariant calculus (E , d) and g

a left-invariant pseudo-Riemannian metric. Then we define

Π̃0
g(∇) : 0E⊗C0E → 0E by the following formula :

Π̃0
g(∇)(ωi⊗Cωj) = 2(id⊗Cg)(σ⊗Cid)(∇⊗Cid)0(Psym)(ωi⊗Cωj). (4.4.1)

Next, for all ω1, ω2 in 0E and a in A, we define Π̃g(∇) : E ⊗A E → E by

Π̃g(∇) ◦ ũE⊗AE(ω1⊗Cω2⊗Ca) = Π̃0
g(∇)(ω1⊗Cω2)a+ g(ω1 ⊗A ω2)da.

It is easy to see that Π̃0
g(∇) indeed maps 0E⊗C0E inside 0E . Indeed, let ω1, ω2 be elements

of 0E . Since 0(Psym) is a map from 0E⊗C0E to itself, 0(Psym)(ω1⊗Cω2) is in 0E⊗C0E . Then,

by Lemma 4.4.2, (∇⊗Cid)(0(Psym))(ω1⊗Cω2) is in 0E⊗C0E⊗C0E . Since σ is left-covariant and

g is left-invariant, Proposition 4.1.17 and the second assertion of Lemma 4.3.4 imply that the

element

(id⊗Cg)(σ⊗Cid)(∇⊗Cid)(0(Psym))(ω1⊗Cω2) belongs to 0E .

Finally, by Proposition 4.1.7 and the notation adopted in Proposition 4.1.12, the map ũE⊗AE

from 0E⊗C0E⊗CA to E ⊗A E is an isomorphism, hence Π̃g(∇) is well-defined.

Remark 4.4.6. If ∇ is left-covariant and g is left-invariant, the above argument shows that

Π̃g(∇)(0E⊗C0E) ⊆ 0E

and thus by Proposition 4.1.17, the map Π̃g(∇) is left-covariant.

For the rest of the chapter, dg will denote the map

dg : E ⊗A E → E , dg(e⊗A f) = d(g(e⊗A f)).
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Now we define the notion of metric compatibility of a bicovariant connection.

Definition 4.4.7. Suppose (E , d) is a left-covariant differential calculus over A and g is a

left-invariant pseudo-Riemannian metric. We say that a left-covariant connection ∇ on E is

compatible with g if, as maps from E ⊗A E to E,

Π̃g(∇) = dg.

We now show that our formulation of metric-compatibility of a connection coincides with

that in the classical case of commutative Hopf algebras.

Proposition 4.4.8. The above definition of metric compatibility coincides with that in the

classical case.

Proof. Let G be a linear algebraic group, A be its (commutative) Hopf algebra of regular

functions and g be a left-invariant pseudo-Riemannian metric on the classical space of forms.

In this case, the canonical braiding map σ is equal to the flip map, i.e., for all e, f in Ω1(A),

σ(e⊗A f) = flip(e⊗A f) = f ⊗A e.

Since g ◦ σ = g, we have g(e⊗A f) = g(f ⊗A e). Moreover, the map Psym is equal to 1
2(1 + σ).

Let us recall (Proposition 1.4.8) that a connection ∇ on Ω1(A) is compatible with g if and only

if

(g ⊗A id)[flip23(∇(e)⊗A e′) + e⊗A ∇(e′)] = dg(e⊗A e′),

for all e, e′ in Ω1(A). The left hand side of the above equation can be written as

g13

(
∇(e)⊗A e′ +∇(e′)⊗A e

)
,

where g13 = (id⊗A g)(flip⊗A id).

Let {ei}i be a basis of left-invariant one-forms of Ω1(A). If e, e′ belong to Ω1(A), then there

exist elements ai, bj in A such that e =
∑

i eiai and e′ =
∑

j ejbj . If ∇ is metric compatible in

the sense of Definition 4.4.7, i.e, Π̃g(∇)− dg = 0, then using the Leibniz properties of ∇ and d
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and the equation g(ei ⊗A ej) = g(ej ⊗A ei), we get

g13(∇(e)⊗A e′ +∇(e′)⊗A e)

=g13(∇(
∑
i

eiai)⊗A
∑
j

ejbj +∇(
∑
j

ejbj)⊗A
∑
i

eiai)

=(id⊗A g)(flip⊗A id)(∇(
∑
i

ei)ai ⊗A
∑
j

ejbj +∇(
∑
j

ej)bj ⊗A
∑
i

eiai)

+(id⊗A g)(flip⊗A id)(
∑
i

ei ⊗A dai ⊗A
∑
j

ejbj +
∑
j

ej ⊗A dbj ⊗A
∑
i

eiai))

=
∑
ij

(
(id⊗C g)(flip⊗C id)(∇⊗Cid)(ei⊗Cej + ej⊗Cei)

)
aibj

+
∑
ij

(
daig(ei ⊗A ej)bj + dbjg(ej ⊗A ei)ai

)
=
∑
ij

(
(id⊗C g)(flip⊗C id)(∇⊗Cid)((1 + flip)(ei⊗Cej))

)
aibj +

∑
ij

(
g(ei ⊗A ej)d(aibj)

)
=
∑
ij

(
Π̃0
g(∇)(ei⊗Cej)aibj + g(ei ⊗A ej)d(aibj)

)
=Π̃g(∇)(

∑
ij

ei ⊗A ejaibj) = dg(
∑
ij

ei ⊗A ejaibj) = dg(e⊗A e′).

This argument is reversible and thus, our definition of metric compatibility coincides with that

in the classical case.

It is also true that our definition of metric compatibility coincides with that of [51] for cocycle

deformations of classical Lie groups. We state this result at the end of this section (Proposition

4.4.13) but the proof is postponed till Chapter 5.

4.4.3 Covariance properties of the map Π̃g(∇)

Let us now derive some covariance properties of the maps Π̃0
g(∇) and Π̃g(∇)− dg which will be

used in Section 4.5.

Lemma 4.4.9. If ∇ is a bicovariant connection on E and g is a bi-invariant pseudo-Riemannian

metric, then Π̃0
g(∇) is a right-covariant map.

Proof. The maps σ and 0(Psym) are bicovariant (Proposition 4.2.7). Therefore, if ∇ is also right-

covariant, and g is bi-invariant (and hence by the first assertion of Lemma 4.3.4 also bicovariant),

then Π̃0
g(∇) is a composition of right-covariant maps and therefore, right-covariant.
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Proposition 4.4.10. If the connection ∇ is left-covariant and the pseudo-Riemannian metric

g is left-invariant, then the map Π̃g(∇) − dg : E ⊗A E → E is a left-covariant right A-linear

map. Moreover, if ∇ is bicovariant and the pseudo-Riemannian metric g is bi-invariant, then

Π̃g(∇)− dg is also a bicovariant map.

Proof. We start by proving that Π̃g(∇)− dg is a right A-linear. Since {ω ⊗A ω′ : ω, ω′ ∈ 0E} is

right A-total in E ⊗A E , it suffices to show that for all ω1, ω2 ∈ 0E and a, b ∈ A, we have:

(Π̃g(∇)− dg)((ω1 ⊗A ω2a)b) =
(
(Π̃g(∇)− dg)(ω1 ⊗A ω2a)

)
b.

This follows from the following computation:

(Π̃g(∇)− dg)((ω1 ⊗A ω2a)b)

=Π̃g(∇)(ω1⊗Cω2ab+ g(ω1 ⊗A ω2)d(ab)− dg(ω1 ⊗A ω2ab)

=Π̃g(∇)(ω1⊗Cω2)ab+ g(ω1 ⊗A ω2)(da.b+ adb)− dg(ω1 ⊗A ω2a)b− g(ω1 ⊗A ω2a)db

=(Π̃g(∇)(ω1⊗Cω2)a+ g(ω1 ⊗A ω2)d(a)− dg(ω1 ⊗A ω2a))b

=
(
(Π̃g(∇)− dg)(ω1 ⊗A ω2a)

)
b.

Now, we prove that Π̃g(∇)−dg is a left-covariant map. Since g is left-invariant, for any ω1, ω2 in

0E , g(ω1 ⊗A ω2) ∈ C by the second assertion of Lemma 4.3.4, and so dg(ω1 ⊗A ω2) = 0. Hence,

(Π̃g(∇)− dg)(ω1 ⊗A ω2) = Π̃0
g(ω1⊗Cω2),

which is in 0E . Therefore, by Proposition 4.1.17 , the map Π̃g(∇)− dg is a left-covariant map.

Finally, if ∇ is bicovariant and g is bi-invariant, then by Lemma 4.4.9, Π̃0
g(∇) is a right-covariant

map. Moreover, g and d are bicovariant (first assertion of Lemma 4.3.4 and Proposition 1.3.15).

Hence Π̃g(∇)− dg is also a bicovariant map.

Corollary 4.4.11. Suppose ∇ is a bicovariant connection and g is a bi-invariant pseudo-

Riemannian metric on (E , d). Then the map Π̃g(∇) − dg is a right-covariant C-linear map

from 0E ⊗sym
C 0E to 0E .
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Proof. Since 0E ⊗sym
C 0E ⊆ 0E⊗C0E and g(0E⊗C0E) ∈ C.1 (second assertion of Lemma 4.3.4),

the map dg is equal to zero on 0E ⊗sym
C 0E . Hence,

Π̃g(∇)− dg = Π̃g(∇) = Π̃0
g(∇) on 0E ⊗sym

C 0E ⊆ 0E⊗C0E .

However, as noted before, Π̃g(∇)(0E⊗C0E) ⊆ 0E . The right-covariance follows from Proposition

4.4.10.

The following result is an immediate corollary of the proof of Proposition 4.4.10 and Defini-

tion 4.4.7.

Corollary 4.4.12. A connection ∇ on a bicovariant calculus (E , d) is compatible with a bi-

invariant pseudo-Riemannian metric g if and only if Π̃0
g(∇) = 0 as a map on 0E⊗C0E.

Comparison with literature

Let us remark that in Lemma 3.4 of [51], Heckenberger and Schmüdgen prove an exact analogue

of Corollary 4.4.12 for their formulation of metric compatibility.

We end this subsection by comparing our notion of metric-compatibility with that of Heck-

enberger and Schmüdgen ([51]). Before we state our result, let us recall that a left connection

on E is a C-linear map ∇ : E → E ⊗A E such that ∇(ae) = a∇(e) + da ⊗A e. Similarly, a

left A-linear pseudo-Riemannian metric on E is a left A-linear map g : E ⊗A E → A such that

g ◦ σ = g satisfying the condition that if g(e⊗A f) = 0 for all e in E , then f = 0.

Suppose (E , d) is a bicovariant differential calculus and g a left A-linear bi-invariant pseudo-

Riemannian metric on E . The authors of [51] call a left connection ∇ on E to be compatible

with g if

(id⊗Cg)(∇⊗Cid) + (g⊗Cid)(id⊗Cσ)(id⊗C∇) = 0 on 0E⊗C0E .

Therefore, we need to define the analogue of our compatibility for a bicovariant left connection

∇ with respect to a left A-linear bi-invariant pseudo-Riemannian metric g in order to compare

our definition with that in [51]. To this end, we define a map

L̃Π0
g(∇) := 2(g⊗Cid)(id⊗Cσ)(id⊗C∇)0(Psym) : 0E⊗C0E → 0E .
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Then as before, we define an extension L̃Πg(∇) : E ⊗A E → E by

L̃Πg(∇)ṽE⊗AE(a⊗Cω1⊗Cω2) = aL̃Π0
g(∇)(ω1⊗Cω2) + (da)g(ω1⊗Cω2),

where ṽE⊗AE : A⊗C0E⊗C0E → E ⊗A E is the multiplication map which we know is an isomor-

phism from Proposition 4.1.7 and Corollary 4.1.8. We say that the bicovariant left connection

∇ is compatible with the left A-linear bi-invariant pseudo-Riemannian metric g if

L̃Πg(∇) = dg. (4.4.2)

It is easy to check that this definition coincides with the definition of metric-compatibility in the

classical case, and the proof goes along the lines of Proposition 4.4.8. Then a result analogous

to Corollary 4.4.12 can be derived to deduce that

L̃Πg(∇) = dg if and only if L̃Π0
g(∇) = 0. (4.4.3)

The next result compares the above two definitions of metric-compatibility. However, since this

result needs the definitions and some results on cocycle deformations, we have proved this at

the end of Section 5.4.

Proposition 4.4.13. Let A be the Hopf algebra of regular functions on a linear algebraic group,

(E , d) be the classical bicovariant differential calculus on A and γ a normalised 2-cocycle on A.

Consider the bicovariant differential calculus (Eγ , dγ) over the Hopf algebra Aγ (see Proposition

5.3.1) and let g′ be a left A-linear bi-invariant pseudo-Riemannian metric on Eγ .

A bicovariant left connection ∇′ on Eγ is compatible with g′ in the sense of (4.4.2) if and

only if ∇ is compatible with g′ in the sense of [51].

4.5 Existence and uniqueness of Levi-Civita connections

In this section, we will derive some sufficient conditions for the existence of Levi-Civita con-

nections for bicovariant differential calculus on quantum groups. As before, unless otherwise

mentioned, (E , d) will denote a bicovariant differential calculus on A such that the restricted

braiding map 0σ is diagonalisable, and g a bi-invariant pseudo-Riemannian metric on E .



4.5. Existence and uniqueness of Levi-Civita connections 151

Definition 4.5.1. Let (E , d) be a bicovariant differential calculus such that the map 0σ is diag-

onalisable and g a pseudo-Riemannian bi-invariant metric on E . A left-covariant connection ∇

on E is called a Levi-Civita connection for the triple (E , d, g) if it is torsionless and compatible

with g.

The strategy to derive our results are the same as in Chapter 2. However, since we are not

working with a centered bimodule and the pseudo-Riemannian metric is only right A-linear,

the arguments become more delicate. Given a bicovariant differential calculus (E , d) and a

bi-invariant pseudo-Riemannian metric g, we start by defining a map

Φ̃g : HomC(0E , 0E⊗C
sym

0E)→ HomC(0E⊗C
sym

0E , 0E)

and show (Proposition 4.5.3) that the isomorphism of Φ̃g guarantees the existence of a unique

left-covariant Levi-Civita connection for the triple (E , d, g).

However, since our metric is bi-invariant, it is to be expected that our Levi-Civita connection

should be bicovariant. This is the second main result of this section (Theorem 4.5.8) which

requires the Hopf algebra A to be cosemisimple. We remark that the bicovariance of the Levi-

Civita connection (with respect to a different metric-compatibility condition) for SLq(n), Spq(n)

and Oq(n) were derived in [51].

Finally, our third result is Theorem 4.5.9 where we prove that the map

Φ̃g : HomC(0E , 0E⊗C
sym

0E)→ HomC(0E⊗C
sym

0E , 0E) is an isomorphism if and only if the map

(0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E)

is an isomorphism. The proofs of Theorem 4.5.8 and Theorem 4.5.9 need some preparations

which are made in Subsection 4.5.1.

The main steps involved in the proof are as follows:

Step 1: We prove that the isomorphism of

Φ̃g : HomC(0E , 0E⊗C
sym

0E)→ HomC(0E⊗C
sym

0E , 0E)

guarantees the existence of a unique left-covariant Levi-Civita connection.
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Step 2: We prove that the following diagram commutes:

HomC(0E , 0E⊗C
sym

0E) (0E⊗C
sym

0E)⊗C(0E)∗ (0E⊗C
sym

0E)⊗C0E

HomC(0E⊗C0E , 0E) 0E⊗C(0E⊗C
sym

0E)∗ 0E⊗C(0E⊗C
sym

0E)

ζ−1

0E⊗C0E,0E

Φ̃g

id⊗CV
−1
g

(0(Psym))23
ζ−1

0E,0E⊗C0E
id⊗CVg(2)

We note that by virute of Lemma 4.2.11 and Proposition 4.3.14, all the arrows in the diagram

except possibly (0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E) have already been proved

to be isomorphisms. Thus, the isomorphism of (0(Psym))23 implies the isomorphism of Φ̃g so

that by Step 1, we have the existence of a unique left-covariant Levi-Civita connection.

For Step 2 and the right-covariance of the Levi-Civita connection, we need to introduce an

auxiliary map Ψ̃g and obtain certain isomorphisms. This is done in Subsection 4.5.1. In Sub-

section 4.5.2, we prove that that this connection is actually right-covariant if A is cosemisimple.

Moreover, a metric-independent sufficient condition for the existence and uniqueness of Levi-

Civita connections is derived in Subsection 4.5.3.

Definition 4.5.2. The map Φ̃g : HomC(0E , 0E⊗C
sym

0E)→ HomC(0E⊗C
sym

0E , 0E) is defined by

the following formula:

Φ̃g(L) = 2(id⊗Cg)σ12(L⊗Cid)0(Psym).

We start with the following proposition for which we will need a bicovariant torsionless

connection whose existence was proved in Theorem 4.4.4.

Proposition 4.5.3. Suppose (E , d) is a bicovariant differential calculus such that 0σ is diago-

nalisable, and g is a bi-invariant pseudo-Riemannian metric. If the map Φ̃g is a vector space

isomorphism from HomC(0E , 0E⊗C
sym

0E) to HomC(0E⊗C
sym

0E , 0E), then there exists a unique

left-covariant connection on E which is torsionless and compatible with g.

Proof. Recall the torsionless bicovariant connection ∇0 constructed in Theorem 4.4.4. Then

Corollary 4.4.11 allows us to view dg − Π̃g(∇0) as an element of HomC(0E⊗C
sym

0E , 0E). Since

Φ̃g is an isomorphism, there exists a unique pre-image of the element dg − Π̃g(∇0) under the

map Φ̃g. Define the C-linear map

∇1 := ∇0 + Φ̃g
−1

(dg − Π̃g(∇0)) : 0E → 0E⊗C0E .
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Then, by Proposition 4.4.3,∇1−∇0 is an element of HomC(0E , 0E⊗C
sym

0E) ⊆ HomC(0E , 0E⊗C0E).

By the proof of Proposition 4.1.16, ∇1 − ∇0 extends to an element L in AHomA(E , E ⊗A E).

Define a C-linear map

∇ = L+∇0 : E → E ⊗A E .

Since L and ∇0 are both left-covariant maps, ∇ is a left-covariant map. Moreover, since ∇0 is

a connection and L is right A-linear, it follows that ∇ is a also a connection, since

∇(ea) = L(ea) +∇0(ea) = L(e)a+∇0(e)a+ e⊗A da

=(L(e) +∇0(e))a+ e⊗A da = ∇(e)a+ e⊗A da.

Now we prove that ∇ is torsionless. Since (∇1 − ∇0) is an element of HomC(0E , 0E⊗C
sym

0E),

L(ω) is in 0E⊗C
sym

0E for all ω in 0E . Since L is right A-linear and the right A-linear span of

0E⊗C
sym

0E = Ran(0(Psym)) is equal to E ⊗sym
A E = Ran(Psym) (see (4.2.5)), L(ω) is in E ⊗sym

A E

for all ρ in E . Hence, ∧ ◦ L(ρ) = 0 for all ρ in E . Therefore, for all ρ in E , we have

∧ ◦ ∇(ρ) = ∧ ◦ (L+∇0)(ρ) = ∧ ◦ ∇0(ρ) = −d(ρ).

Therefore, ∇ is torsionless.

Now we prove that ∇ is compatible with g. The fact that ∇ is torsionless means in particular

that (∇ − ∇0)(ω) is in Ker(∧) = E ⊗sym
A E . Thus, ∇ − ∇0 is in HomA(E , E ⊗sym

A E) and so

Φ̃g(∇−∇0) is well-defined. From the definitions of Φ̃g and Π̃g, it is immediate that

Π̃g(∇)− Π̃g(∇0) = Φ̃g(∇−∇0) (4.5.1)

as maps on 0E⊗C0E .

By the definition of ∇,

Φ̃g(∇−∇0) = dg − Π̃g(∇0) on 0E⊗C0E . (4.5.2)

Combining (4.5.1) and (4.5.2), we conclude that

Π̃g(∇)− Π̃g(∇0) = dg − Π̃g(∇0) on 0E⊗C0E .
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Since Π̃g(∇) − dg is right A-linear by Proposition 4.4.10 and {ω1 ⊗A ω2 : ω1, ω2 ∈ 0E} is right

A-total in E ⊗A E ,

Π̃g(∇)− dg = 0 as maps on E ⊗A E .

Hence, ∇ is compatible with g.

To show uniqueness, suppose ∇′ is another torsionless left-covariant connection compatible

with the metric g. Then, by Lemma 4.4.3, ∇−∇′ is in HomC(0E , 0E⊗C
sym

0E) and

Φ̃g(∇−∇′) = Π̃g(∇)− Π̃g(∇′) = dg − dg = 0,

where we have used the fact that ∇ and ∇′ are compatible with g. As Φ̃g is an isomorphism,

∇−∇′ = 0 as an element of HomC(0E , 0E⊗C0E). Since ∇−∇′ is a right A-linear map, ∇ = ∇′

on E .

Proposition 4.5.3 gives us a metric-dependent sufficient condition for the existence of a unique

left-covariant Levi-Civita connection. Moreover, it also follows (by Theorem 4.5.8) that if A is

cosemisimple and (E , d, g) satisfies the hypotheses of Proposition 4.5.3, then the left-covariant

Levi-Civita connection is also bicovariant. However, we would like to have a metric independent

sufficient condition. This is derived in Theorem 4.5.9. Before we prove either of these results,

we will need some preparatory lemmas which are derived in the next subsection.

4.5.1 Some preparatory results

In order to derive the right-covariance of the Levi-Civita connection, we need to define an

auxiliary map Ψ̃g : HomC(0E , 0E⊗C0E) → HomC(0E⊗C0E , 0E). In Proposition 4.5.6, we will

prove that the map Ψ̃g restricts to the map Φ̃g. The goal of this subsection is to prove Proposition

4.5.7 which states that Ψ̃g preserves right-covariance.

We start with an elementary lemma for which we recall that for finite dimensional vector

spaces V,W, ζV,W will be the isomorphism from W⊗CV
∗ to HomC(V,W ) as introduced in

Proposition 1.1.8. Moreover, Vg(2) will be the map defined in Definition 4.3.11.

Lemma 4.5.4. For ω1, ω2, ω3 ∈ 0E, we have that

ζ0E,0E⊗C0E
(
(id⊗CVg(2))(ω1⊗Cω2⊗Cω3)

)
◦ 0(Psym)

=ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗C0(Psym))(ω1⊗Cω2⊗Cω3)

)
.

(4.5.3)
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Proof. Let ω4, ω5 be elements of 0E . Then, by the definition of ζ0E,0E⊗C0E ,

ζ0E,0E⊗C0E
(
(id⊗CVg(2))(ω1⊗Cω2⊗Cω3)

)
◦ 0(Psym)(ω4⊗Cω5)

=ζ0E,0E⊗C0E
(
ω1⊗CVg(2)(ω2⊗Cω3)

)
◦ 0(Psym)(ω4⊗Cω5)

=ω1Vg(2)(ω2⊗Cω3)(0(Psym)(ω4⊗Cω5))

=ω1Vg(2)((0(Psym)(ω2⊗Cω3)))(ω4⊗Cω5) (by 4.3.9)

=ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗C0(Psym))(ω1⊗Cω2⊗Cω3)

)
(ω4⊗Cω5)

This proves the lemma.

Now we define the map Ψ̃g and discuss its properties.

Definition 4.5.5. We define a map Ψ̃g : HomC(0E , 0E⊗C0E) → HomC(0E⊗C0E , 0E) by the

following formula:

Ψ̃g(L) = 2(id⊗Cg) ◦ (L⊗Cid).

Lemma 4.5.6. If T is an element of HomC(0E , 0E⊗C0E), then we have that

Ψ̃g(T ) = 2ζ0E,0E⊗C0E((id⊗CVg(2))(id⊗C(Vg)
−1)(ζ−1

0E⊗C0E,0E(T ))). (4.5.4)

Moreover, if T is an element of HomC(0E , 0E⊗C
sym

0E), then the following two equations hold:

Ψ̃g(T )|0E⊗Csym
0E = Φ̃g(T ), (4.5.5)

Φ̃g(L) = 2ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗C0(Psym))(id⊗C(Vg)

−1)(ζ−1
0E⊗C0E,0E(L))

)
. (4.5.6)

Proof. Let {ωi}i be a vector space basis of 0E . We will use the facts (Lemma 4.3.4 and Propo-

sition 4.3.6) that the elements gij = g(ωi⊗Cωj) are scalars and moreover, there exist scalars gij

such that ∑
j

gijgjk = δik.1 =
∑
j

gijg
jk. (4.5.7)

Suppose T is an element of HomC(0E , 0E⊗C0E). Then there exist scalars Tmij such that

T (ωm) =
∑
ij

ωi⊗CωjT
m
ij
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for all m. Hence, by using the definition of ζ0E⊗C0E,0E and (4.5.7), we get

ζ−1
0E⊗C0E,0E(T ) =

∑
ijkl

ωi⊗Cωj⊗CVg(ωk)g
lkT lij . (4.5.8)

We claim that

1

2
Ψ̃g(T ) = ζ0E,0E⊗C0E

(
(id⊗CVg(2))(id⊗CV

−1
g )(ζ−1

0E⊗C0E,0E(T ))
)
. (4.5.9)

Indeed, for all m,n, we have

1

2
Ψ̃g(T )(ωm⊗Cωn)

=(id⊗Cg)(T⊗Cid)(ωm⊗Cωn)

=
∑
ij

(id⊗Cg)(ωi⊗Cωj⊗CωnT
m
ij )

=
∑
ij

ωig(ωj⊗Cωn)Tmij

=
∑
ijkl

ωig(ωj⊗Cg
lkg(ωk⊗Cωm)T lijωn)

=
∑
ijkl

ωig
(2)((ωj⊗Cωkg

lkT lij)⊗C(ωm⊗Cωn))

=ζ0E,0E⊗C0E
(∑
ijkl

ωi⊗CVg(2)(ωj⊗Cωkg
lkT lij)

)
(ωm⊗Cωn)

=ζ0E,0E⊗C0E
(
(id⊗CVg(2))(

∑
ijkl

ωi⊗Cωj⊗Cωkg
lkT lij)

)
(ωm⊗Cωn)

=ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗CV

−1
g )(

∑
ijkl

ωi⊗Cωj⊗CVg(ωk)g
lkT lij)

)
(ωm⊗Cωn)

=ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗CV

−1
g )(ζ−1

0E⊗C0E,0E(T ))
)
(ωm⊗Cωn),

where, in the last step, we have used (4.5.8) and also the fact (Proposition 4.3.6) that Vg is a

vector space isomorphism from 0E to (0E)∗. This proves (4.5.9).

Next, if T is an element of HomC(0E , 0E⊗C
sym

0E), then T (ωm) ∈ 0E ⊗sym
C 0E ⊆ E ⊗sym

A E .

Since σ(X) = X for all X in E ⊗sym
A E = Ker(σ − id), we get that

(σT )(ωm) = σ(T (ωm)) = T (ωm).
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Hence,

Φ̃g(T ) = 2(id⊗Cg)(σ⊗Cid)(T⊗Cid)(0(Psym))

=2(id⊗Cg)(T⊗Cid)(0(Psym)) = Ψ̃g(T )(0(Psym)),

which proves (4.5.5). Finally, for proving (4.5.6), we use (4.5.9) and (4.5.5) to deduce that

Φ̃g(T ) = Ψ̃g(T )(0(Psym))

= 2ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗CV

−1
g )(ζ−1

0E⊗C0E,0E(T ))
)
◦ 0(Psym)

= 2ζ0E,0E⊗C0E
(
(id⊗CVg(2))(id⊗C0(Psym))(id⊗CV

−1
g )(ζ−1

0E⊗C0E,0E(T ))
)

and we have used (4.5.3) in the last step. This completes the proof of the lemma.

For the rest of the subsection, we will be using the following notations:

The set of all right A-linear left covariant maps from M to N will be denoted by the symbol

AHomA(M,N), the set of all right A-linear right covariant maps from M to N will be denoted

by HomAA(M,N) and finally, the set of all right A-linear bicovariant maps will be denoted by

AHomAA(M,N).

Proposition 4.5.7. If T is an element of HomAC (0E , 0E⊗C0E), then Ψ̃g(T ) is an element of

HomAC (0E⊗C0E , 0E). Moreover, Φ̃g restricts to map from HomAC (0E , 0E⊗C
sym

0E)

to HomAC (0E⊗C
sym

0E , 0E).

Proof. Let us first observe that 0E , 0E⊗C0E , 0E⊗C
sym

0E are indeed right A-comodules under the

coactions E∆ and E⊗AE∆. Indeed, by (1.2.4), there exist elements Rij in A such that

E∆(ωi) =
∑
j

ωj⊗CRji so that E⊗AE∆(ωi⊗Cωj) =
∑
k,l

ωk⊗Cωl⊗CRkiRlj . (4.5.10)

Now, let us recall that in the proof of Theorem 4.2.5, we have proved that E ⊗sym
A E is a

bicovariant bimodule. Since 0(E ⊗sym
A E) = 0E⊗C

sym
0E by (4.2.5), we can again apply (1.2.4) to

deduce that 0E⊗C
sym

0E is invariant under E⊗AE∆.
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Now, we come to the proof of the result. Let T be an element of HomAC (0E , 0E⊗C0E). Then

in the notations of Lemma 4.5.6, there exist scalars Tmij such that

T (ωm) =
∑
ij

ωi⊗CωjT
m
ij .

Since T is right-covariant, applying Lemma 4.1.20 to the second equation of (4.5.10) yields

∑
ij,n

ωi⊗Cωj⊗CT
n
ijRnm =

∑
ij,kl

ωk⊗Cωl⊗CRkiRljT
m
ij . (4.5.11)

We note that ζ−1
0E⊗C0E,0E(T ) =

∑
ijkl ωi⊗Cωj⊗CT

l
ijg

lkVg(ωk).

Then, by (4.5.4) in Lemma 4.5.6,

1

2
ζ−1
0E,0E⊗C0E(Ψ̃g(T )) =

∑
ijkl

ωi⊗CT
l
ijg

lkV (2)
g (ωj⊗Cωk).

Hence,

Ψ̃g(T )(ωm⊗Cωn) = 2
∑
ijkl

ωiT
l
ijg

lkg(2)((ωj⊗Cωk)⊗C(ωm⊗Cωn)). (4.5.12)

Applying Lemma 4.1.20 to the map Ψ̃g(T ) and using (4.5.12), we can conclude that Ψ̃g(T ) is

an element of HomAC (0E⊗C0E , 0E) if and only if, for all m,n, the following equation holds:

∑
ii′jkl

ωi′⊗CRi′iT
l
ijg

lkg(2)((ωj⊗Cωk)⊗C(ωm⊗Cωn))

=
∑
ijkl,pq

ωi⊗CT
l
ijg

lkg(2)((ωj⊗Cωk)⊗C(ωp⊗Cωq))RpmRqn.
(4.5.13)

Hence if we prove (4.5.13), we are done with the first part of the theorem.

Let us note that

∑
ii′jkl

ωi′⊗CRi′iT
l
ijg

lkg(2)((ωj⊗Cωk)⊗C(ωm⊗Cωn))

=
∑
ii′jkl

ωi′⊗CRi′iT
l
ijg

lkg(ωk⊗Cωm)g(ωj⊗Cωn) (as g(ωk⊗Cωm) ∈ C)

=
∑

ii′jklqs

ωi′⊗CRi′iT
l
ijg

lkg(ωk⊗Cωm)g(ωs⊗Cωq)RsjRqn,
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where, in the last step, we have used Proposition 4.3.10 by which we have

g(ωj⊗Cωn) =
∑
q,s

g(ωs⊗Cωq)RsjRqn. (4.5.14)

Let L : A → HomC(A,A) denote the left multiplication map. Since 0E⊗C(0E)∗⊗CHomC(A,A)

is isomorphic to HomC(0E , 0E)⊗CHomC(A,A), we can write

∑
ii′jkl

ωi′⊗CRi′iT
l
ijg

lkg(2)((ωj⊗Cωk)⊗C(ωm⊗Cωn))

=
∑

ii′jklqs

[ωi′⊗CVg(ωs)⊗CT
l
ijg

lkg(ωk⊗Cωm)L(Ri′iRsj)
](ωq⊗CRqn)

( by (4.5.14) and since T lij , g
lk, glm are scalars )

=
∑
ii′jlqs

[(id⊗CVg⊗CL)(ωi′⊗Cωs⊗CT
l
ij

∑
k

(glkg(ωk⊗Cωm))Ri′iRsj)](ωq⊗CRqn)

=
∑
ii′jlqs

[(id⊗CVg⊗CL)(ωi′⊗Cωs⊗CT
l
ijδlmRi′iRsj)](ωq⊗CRqn)

=
∑
ii′jqs

[(id⊗CVg⊗CL)(ωi′⊗Cωs⊗CRi′iRsjT
m
ij )](ωq⊗CRqn)

=
∑
ijpq

[(id⊗CVg⊗CL)(ωi⊗Cωj⊗CT
p
ijRpm)](ωq⊗CRqn)

(
by (4.5.11)

)
=
∑
ijpql

[(id⊗CVg⊗CL)(ωi⊗Cωj⊗CT
l
ijδlpRpm)](ωq⊗CRqn)

=
∑
ijlpq

[(id⊗CVg⊗CL)(ωi⊗Cωj⊗CT
l
ij(
∑
k

glkg(ωk⊗Cωp))Rpm)](ωq⊗CRqn)

=
∑
ijklpq

(ωi⊗CVg(ωj)⊗CT
l
ijg

lkg(ωk⊗Cωp)LRpm)(ωq⊗CRqn)

=
∑
ijklpq

ωi⊗CT
l
ijg

lkg(ωj⊗Cωq)g(ωk⊗Cωp)RpmRqn

=
∑
ijkl,pq

ωi⊗CT
l
ijg

lkg(2)((ωj⊗Cωk)⊗C(ωp⊗Cωq))RpmRqn.

This proves (4.5.13) and therefore, Ψ̃g(T ) is right-covariant.

Now we prove the second assertion of the proposition. Let T be an element of

HomAC (0E , 0E⊗C
sym

0E). Then the first assertion of the proposition implies that Ψ̃g(T ) belongs to

HomAC (0E⊗C0E , 0E). However, by (4.5.5), Ψ̃g(T )|0E⊗Csym
0E = Φ̃g(T ) and by the definition of Φ̃g,

we know that Φ̃g(T ) belongs to HomC(0E⊗C
sym

0E , 0E). Hence, we conclude that Φ̃g(T ) belongs

to HomAC (0E⊗C
sym

0E , 0E). This finishes the proof of the proposition.
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4.5.2 Right-covariance of the unique left-covariant connection

In this subsection, we prove that the unique torsion-less left-covariant connection compatible

with a bi-invariant pseudo-Riemannian metric, obtained under the hypothesis of Proposition

4.5.3, is actually a bicovariant connection if the Hopf algebra A is cosemisimple, i.e, if the

category of finite dimensional comodules of A is semisimple. For right A-comodules V and W,

the symbol HomAC (V,W ) will continue to denote the set of all right-covariant complex linear

maps from V to W.

If A is a cosemisimple Hopf algebra and V,W be finite dimensional comodules as above, then

Proposition 1.1.11 implies that

dim(HomAC (V,W )) = dim(HomAC (W,V )).

Now, if A is a cosemisimple Hopf algebra and (E , d) be a differential calculus such that 0σ is

diagonalisable, then in the proof of Proposition 4.5.7, we have noted that 0E and 0E⊗C
sym

0E

are right A-comodules. Hence, we can conclude that

dim(HomAC (0E , 0E⊗C
sym

0E)) = dim(HomAC (0E⊗C
sym

0E , 0E)). (4.5.15)

Then we have the following theorem.

Theorem 4.5.8. Suppose (E , d) is a bicovariant differential calculus over a cosemisimple Hopf

algebra A such that the map 0σ is diagonalisable, and g is a bi-invariant pseudo-Riemannian

metric. If the map Φ̃g is an isomorphism, then the unique left-covariant connection guaranteed

by Proposition 4.5.3 is in fact a bicovariant connection.

Proof. The proof follows from the claim that under the hypothesis of the theorem, the map

Φ̃g is an isomorphism from HomAC (0E , 0E⊗C
sym

0E) onto HomAC (0E⊗C
sym

0E , 0E). Indeed, let us

recall that in Proposition 4.5.3, under the assumption that the map Φ̃g is an isomorphism, we

explicitly constructed a torsionless left-covariant connection ∇ compatible with g by the formula

∇ := L+∇0.
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Here ∇0 is the torsionless bicovariant connection constructed in Theorem 4.4.4 and L : E →

E ⊗A E is the left-covariant right A-linear extension (via Proposition 4.1.14) of the map

Φ̃g
−1

(dg − Π̃g(∇0)) : 0E → 0E⊗C0E .

By Corollary 4.4.11, dg − Π̃g(∇0) is a right A-covariant C-linear map from 0E⊗C
sym

0E to 0E .

Hence, our claim implies that 0L = Φ̃g
−1

(dg − Π̃g(∇0)) belongs to HomAC (0E , 0E⊗C
sym

0E).

Since L is left-covariant right A-linear and 0L = Φ̃g
−1

(dg − Π̃g(∇0)) is right-covariant,

Proposition 4.1.19 implies that the extension L is a bicovariant right A-linear map from E to

E ⊗A E . Again by the right-covariance of ∇0, ∇ = L+∇0 is a right-covariant map as well.

So we are left with proving that the map Φ̃g : HomAC (0E , 0E⊗C
sym

0E)→ HomAC (0E⊗C
sym

0E , 0E)

is an isomorphism. To this end, we observe that since Φ̃g is an isomorphism from

HomC(0E , 0E⊗C
sym

0E) to HomC(0E⊗C
sym

0E , 0E), Proposition 4.5.7 implies that Φ̃g is a one-to-

one map from HomAC (0E , 0E⊗C
sym

0E) into HomAC (0E⊗C
sym

0E , 0E). However, by (4.5.15),

dim(HomAC (0E⊗C
sym

0E , 0E)) = dim(HomAC (0E , 0E⊗C
sym

0E)).

Therefore, Φ̃g is a one-to-one and onto map from HomAC (0E , 0E⊗C
sym

0E) to HomAC (0E⊗C
sym

0E , 0E).

4.5.3 Sufficient conditions for the isomorphism of Φ̃g

In this subsection, we prove a metric-independent sufficient condition for the map Φ̃g to be an

isomorphism. We will continue to use the notation ζE,F introduced in Proposition 1.1.8.

Theorem 4.5.9. Suppose (E , d) is a bicovariant differential calculus over a cosemisimple Hopf

algebra A such that the map 0σ is diagonalisable and g be a bi-invariant pseudo-Riemannian

metric.

The map Φ̃g : HomC(0E , 0E⊗C
sym

0E) → HomC(0E⊗C
sym

0E , 0E) is an isomorphism if and

only if (0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E) is an isomorphism. In particular,

Theorem 4.5.8 implies that under either of these assumptions, the triple (E , d, g) admits a unique

bicovariant Levi-Civita connection.
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Proof. Suppose (0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E) is an isomorphism. Since

g is left-invariant, part (i) of Proposition 4.3.6 implies that V −1
g ((0E)∗) = 0E . By the first

assertion of Lemma 4.2.11 and our hypothesis, we can conclude that the following map is an

isomorphism:

(0(Psym))23(id⊗CV
−1
g )ζ−1

0E⊗C0E,0E : HomC(0E , 0E⊗C
sym

0E)→ 0E⊗C(0E⊗C
sym

0E).

Now, by Proposition 4.3.14, Vg(2) is an isomorphism from 0E⊗C
sym

0E to (0E⊗C
sym

0E)∗. Finally,

by the second assertion of Lemma 4.2.11, ζ0E,0E⊗C0E is an isomorphism from 0E⊗C(0E⊗C
sym

0E)∗

to HomC(0E⊗C
sym

0E , 0E). Therefore, by (4.5.6), is a composition of isomorphisms and hence

an isomorphism itself.

Conversely, suppose Φ̃g : HomC(0E , 0E⊗C
sym

0E) → HomC(0E⊗C
sym

0E , 0E) is an isomor-

phism. If (0(Psym))23 is not an isomorphism from (0E⊗C
sym

0E)⊗C0E to 0E⊗C(0E⊗C
sym

0E), then

it is not one-to-one. Hence by (4.5.6), Φ̃g is not an isomorphism, which is a contradiction.

Remark 4.5.10. In Chapter 6, the isomorphism (0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E)

for the Hopf algebra SUq(2) is verified by an explicit computation. We refer to Theorem 5.4.4

for a cocycle-twisted version of the above isomorphism.

Our next proposition states that if σ2 = 1, then the hypothesis of Theorem 4.5.9 is satisfied.

Proposition 4.5.11. If σ2 = 1, then the map (0(Psym))23 is an isomorphism from (0E⊗C
sym

0E)⊗C0E

to 0E⊗C(0E⊗C
sym

0E).

Proof. Since σ2 = 1, ±1 are the only eigenvalues of 0σ in this case and so by (4.2.7), 0(Psym) =

1
2(1 + 0σ). Now, let X be an element of (0E⊗C

sym
0E)⊗C0E such that (0(Psym))23(X) = 0. Then

(Psym)(12)(X) = X so that (0σ)12(X) = X.

Moreover, (0σ)23(X) = (2(0(Psym))23 − 1)(X) = −X. We further obtain that

(0σ)12(0σ)23(0σ)12(X) = −X and (0σ)23(0σ)12(0σ)23(X) = X.

Since 0σ is a braiding, this implies that X = 0. Hence (0(Psym))23 is a one-to-one map from

(0E⊗C
sym

0E)⊗C0E to 0E⊗C(0E⊗C
sym

0E) and therefore, by a dimension count, (0(Psym))23 is

also onto 0E⊗C(0E⊗C
sym

0E). Hence (0(Psym))23 is an isomorphism from (0E⊗C
sym

0E)⊗C0E to

0E⊗C(0E⊗C
sym

0E).
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Remark 4.5.12. In Corollary 5.1.9, we show that the hypothesis of Proposition 4.5.11 holds

for the space of one-forms for cocycle deformations of a linear algebraic group G whose category

of finite dimensional representations is semisimple. Thus, for these examples, we indeed have a

unique bicovariant Levi-Civita connection by Proposition 4.5.11 (see Proposition 5.4.5).





Chapter 5

Levi-Civita connections on cocycle

deformation of Hopf algebras

Suppose (E , d) is a bicovariant differential calculus over a Hopf algebra A such that 0σ is diag-

onalisable in the sense of Chapter 4. In Theorem 4.5.9, we have proved a sufficient condition

for the existence of a unique bicovariant Levi-Civita connection for every bi-invariant pseudo-

Riemannian metric. This chapter discusses a class of examples of bicovariant differential calculi

for which this sufficient condition is satisfied. Indeed, if (E , d) is a bicovariant differential cal-

culus and γ is a 2-cocycle on A as in Definition 1.2.6, then Majid and Oeckl proved ([74]) that

(E , d) deforms to a bicovariant differential calculus (Eγ , dγ) on the deformed Hopf algebra Aγ

(see Definition 1.2.7). The goal of this chapter is to show that if (E , d) satisfies the hypotheses

of Theorem 4.5.9, then (Eγ , dγ) also satisfies its hypotheses. Thus, we have a unique bicovariant

Levi-Civita connection for every bi-invariant pseudo-Riemannian metric on Eγ .

In Section 5.1, we recall the generalities on cocycle deformation of bicovariant bimodules

from [74]. We have also borrowed some formulas from [8], where necessary. As a result, we

observe that in the presence of a cocycle, the braiding map σ of (E , d) deforms to the braiding

map of (Eγ , dγ). In Section 5.2, we study cocycle deformations of pseudo-Riemannian metrics

on bicovariant bimodules. The main result of this section is Theorem 5.2.5 where we prove

that for a Hopf algebra A, cocycle deformations of a bi-invariant pseudo-Riemannian metric

g on a bicovariant A-bimodule E is a bi-invariant pseudo-Riemannian metric on the deformed

bicovariant Aγ-bimodule Eγ . The contents of Section 5.1 and Section 5.2 are from [18].
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In Section 5.3, we recall the cocycle deformation of bicovariant differential calculi from [74]

and also discuss the deformation of the space of two-forms. Finally, in Section 5.4, we prove

the main result of this chapter. We begin by discussing cocycle deformations of bicovariant

connections on bicovariant differential calculi. Theorem 5.4.3 is the main result of this section

which demonstrates that the sufficient condition of Theorem 4.5.9 holds for a cocycle deformed

differential calculus provided it holds for the undeformed one. Theorem 5.4.5 discusses the con-

crete example of cocycle deformation of Hopf algebras of regular functions on a linear algebraic

group and the existence and uniqueness of Levi-Civita connections therein. We end the section

with the proof of a comparison of our notion of bicovariant Levi-Civita connections with that

of [51] in the context of cocycle deformations. The contents of these two sections are from [17].

5.1 Cocycle deformation of bicovariant bimodules

If (A,∆) is a Hopf algebra and γ is a 2-cocycle as in Definition 1.2.6, then Definition 1.2.7 shows

that (A,∆) can be twisted to a new Hopf algebra (Aγ ,∆γ), where Aγ is equal to A as a vector

space, the coproduct ∆γ is equal to ∆, and the algebra structure ∗γ on Aγ is defined by the

following equation:

a ∗γ b = γ(a(1)⊗Cb(1))a(2)b(2)γ(a(3)⊗Cb(3)). (5.1.1)

Here, γ is the convolution inverse to γ as in Definition 1.2.6.

In this section, we will discuss the cocycle deformation of bicovariant bimodules over Hopf

algebras and the deformation of covariant bimodule maps. Throughout this section, we will

make heavy use of the Sweedler notations as spelt out Subsection 1.2. In particular, using coas-

sociativity of ∆, we will use the notation, (∆⊗Cid)∆(a) = (id⊗C∆)∆(a) = a(1)⊗Ca(2)⊗Ca(3).

Also, when m denotes an element of a bicovariant bimodule M , we will use the notation

(id⊗CM∆)∆M (m) = (∆M⊗Cid)M∆(m) = m(−1)⊗Cm(0)⊗Cm(1). (5.1.2)

Note that the index (0) in the above equation denote the comodule tensorand and non-zero

indices indicate the coalgebra tensorand.

Then we have the following:

Proposition 5.1.1. (Theorem 2.5 of [74]) Suppose M is a bicovariant A-bimodule and γ is a

2-cocycle on A. Then we have a bicovariant Aγ-bimodule Mγ which is equal to M as a vector



5.1. Cocycle deformation of bicovariant bimodules 167

space but the left and right Aγ-module structures are defined by the following formulas:

a ∗γ m = γ(a(1)⊗Cm(−1))a(2).m(0)γ(a(3)⊗Cm(1)) (5.1.3)

m ∗γ a = γ(m(−1)⊗Ca(1))m(0).a(2)γ(m(1)⊗Ca(3)), (5.1.4)

for all elements m of M and for all elements a of A. Here, ∗γ denotes the right and left

Aγ-module actions and . denotes the right and left A-module actions.

The Aγ-bicovariant structures are given by

∆Mγ := M∆ : Mγ → Aγ⊗CMγ and Mγ∆ := M∆ : Mγ →Mγ⊗CAγ . (5.1.5)

Now, we are in a position to state the following proposition regarding cocycle deformations

of bicovariant maps between bicovariant bimodules.

Proposition 5.1.2. (Theorem 2.5 of [74]) Let (M,∆M ,M∆) and (N,∆N ,N∆) be bicovariant

A-bimodules, T : M → N be a C-linear bicovariant map and γ be a cocycle as above. Then

there exists a map Tγ : Mγ → Nγ defined by Tγ(m) = T (m) for all m in M . Thus, Tγ = T as

C-linear maps. Moreover, we have the following:

(i) the deformed map Tγ : Mγ → Nγ is an Aγ bicovariant map,

(ii) if T is a bicovariant right (respectively left) A-linear map, then Tγ is a bicovariant right

(respectively left) Aγ-linear map,

(iii) if (P,∆P , P∆) is another bicovariant A-bimodule, and S : N → P is a bicovariant map,

then (S ◦ T )γ : Mγ → Pγ is a bicovariant map and Sγ ◦ Tγ = (S ◦ T )γ.

Remark 5.1.3. From Proposition 5.1.2, it is clear that if M is a finite bicovariant bimodule

(see Definition 4.1.3), then Mγ is also a finite bicovariant bimodule. We will only be dealing

with deformations of finite bicovariant bimodules in this chapter.

Recall that in Proposition 4.1.14, for a bicovariant right A-linear map T : M → N between

bicovariant A-bimodules, we adopted the notation 0T = T |0M , where 0M is the space of left-

invariant elements of M . As a corollary to Proposition 5.1.2, we obtain:

Proposition 5.1.4. Let (M,∆M ,M∆) and (N,∆N ,N∆) be bicovariant bimodules over a Hopf

algebra A, T be a bicovariant right A-linear map from M to N and γ be a cocycle as above.
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Then

Tγ = ũNγ ◦ (0T⊗Cid) ◦ (ũMγ )−1, (5.1.6)

where ũMγ : 0(Mγ)⊗CAγ → Mγ and ũNγ : 0(Mγ)⊗CAγ → Nγ are the usual multiplication

maps as in Proposition 4.1.7. In particular, the C-linear map 0(Tγ) from 0(Mγ) = 0M to itself

coincides with 0T . Moreover, Tγ is an invertible map if and only if T is invertible, and more

generally, λ is an eigenvalue of Tγ if and only if it is an eigenvalue of T .

Proof. Since T is a bicovariant right A-linear map from M to N , by Proposition 5.1.2, Tγ is an

Aγ bicovariant right linear map. Since 0(Mγ) = 0M and 0(Nγ) = 0N as vector spaces, and Tγ

is a left-covariant map, hence for all m in 0(Mγ), the element Tγ(m) belongs to 0(Nγ). Then

we compute, for any m in 0(Mγ) and any element a of Aγ ,

(ũNγ )−1 ◦ Tγ(m ∗γ a) = (ũNγ )−1(Tγ(m) ∗γ a) = Tγ(m)⊗Ca (by the definition of ũNγ )

=T (m)⊗Ca = (0T )(m)⊗Ca = (0T⊗Cid)(ũMγ )−1(m ∗γ a),

as m belongs to 0(Mγ). Thus we have that

(ũNγ )−1 ◦ Tγ = (0T⊗Cid)(ũMγ )−1, i.e., Tγ = ũNγ ◦ (0T⊗Cid) ◦ (ũMγ )−1.

Evaluating this equation on an element of 0(Mγ) = 0M yields 0(Tγ) = 0T .

Finally, applying Proposition 4.1.16 to Tγ and using the fact that 0(Tγ) = 0T , we get that

Tγ is invertible if and only if T is invertible. More generally, λ is an eigenvalue of Tγ if and only

if it is an eigenvalue of T .

The next result studies the monoidal property of cocycle deformations.

Proposition 5.1.5. (Theorem 2.5 of [74]) Let (M,∆M ,M∆) and (N,∆N ,N∆) be bicovariant

bimodules over a Hopf algebra A and γ be a cocycle as above. Then there exists a bicovariant

Aγ- bimodule isomorphism

ξ : Mγ ⊗Aγ Nγ → (M ⊗A N)γ .

The isomorphism ξ and its inverse are respectively given by

ξ(m⊗Aγ n) = γ(m(−1)⊗Cn(−1))m(0) ⊗A n(0)γ(m(1)⊗Cn(1))

ξ−1(m⊗A n) = γ(m(−1)⊗Cn(−1))m(0) ⊗Aγ n(0)γ(m(1)⊗Cn(1))
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As an illustration, we make the following computation.

Lemma 5.1.6. Suppose ω is in 0E and η is in E0. Then the following equation holds:

ξ−1(γ(η(−1)⊗C1)η(0) ⊗A ω(0)γ(1⊗Cω(1))) = η ⊗Aγ ω.

Proof. Let us first clarify that we view γ(η(−1)⊗C1)η(0) ⊗A ω(0)γ(1⊗Cω(1)) as an element in

(E ⊗A E)γ . Then the equation holds because of the following computation:

ξ−1(γ(η(−1)⊗C1)η(0) ⊗A ω(0)γ(1⊗Cω(1)))

=γ(η(−1)⊗C1)ξ−1(η(0) ⊗A ω(0))γ(1⊗Cω(1))

=γ(η(−2)⊗C1)γ(η(−1)⊗C1)η(0) ⊗Aγ ω(0)γ(1⊗Cω(1))γ(1⊗Cω(2))

(since ω ∈ 0E , η ∈ E0)

=ε(η(−2))ε(η(−1))η(0) ⊗Aγ ω(0)ε(ω(1))ε(ω(2)) (since γ and γ are unital)

=η ⊗Aγ ω.

Recall the braiding map σ : E ⊗A E → E ⊗A E for a bicovariant A-bimodule E , as in

Proposition 1.3.17. We next study the deformation of σ. By Proposition 5.1.1, Eγ is a bicovariant

Aγ-bimodule. Then Proposition 1.3.17 guarantees the existence of a canonical braiding from

Eγ ⊗Aγ Eγ to itself. We show that this map is nothing but the deformation σγ of the map σ

associated with the bicovariant A-bimodule E . By the definition of σγ , it is a map from (E⊗AE)γ

to (E ⊗A E)γ . However, by virtue of Proposition 5.1.5, the map ξ defines an isomorphism from

Eγ ⊗Aγ Eγ to (E ⊗A E)γ . By an abuse of notation, we will denote the map

ξ−1σγξ : Eγ ⊗Aγ Eγ → Eγ ⊗Aγ Eγ

by the symbol σγ again.

Theorem 5.1.7. (Theorem 2.5 of [74]) Let E be a bicovariant A-bimodule and γ be a cocycle

as above. Then the deformation σγ of σ is the unique bicovariant Aγ-bimodule braiding map on

Eγ given by Proposition 1.3.17.

Proof. Since σ is a bicovariant A-bimodule map from E ⊗A E to itself, part (ii) of Proposition

5.1.2 implies that σγ is a bicovariant Aγ-bimodule map from (E ⊗A E)γ ∼= Eγ ⊗Aγ Eγ to itself.
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By Proposition 1.3.17, there exists a unique Aγ-bimodule map σ′ from Eγ ⊗Aγ Eγ to itself such

that σ′(ω ⊗Aγ η) = η ⊗Aγ ω for all ω in 0(Eγ), η in (Eγ)0.

Since 0(Eγ) = 0E and (Eγ)0 = E0, it is enough to prove that σγ(ω ⊗Aγ η) = η ⊗Aγ ω for all ω

in 0E , η in E0.

We will need the concrete isomorphism between Eγ ⊗Aγ Eγ and (E ⊗A E)γ defined in Propo-

sition 5.1.5. Since ω is in 0E and η is in E0, this isomorphism maps the element ω ⊗Aγ η to

γ(1⊗Cη(−1))ω(0) ⊗A η(0)γ(ω(1)⊗C1). Then, by the definition of σγ , we compute the following:

σγ(ω ⊗Aγ η) = σ(γ(1⊗Cη(−1))ω(0) ⊗A η(0)γ(ω(1)⊗C1))

=σ(ε(η(−1))ω(0) ⊗A η(0)ε(ω(1))) = ε(η(−1))η(0) ⊗A ω(0)ε(ω(1))

=γ(η(−1)⊗C1)η(0) ⊗A ω(0)γ(1⊗Cω(1)) = η ⊗Aγ ω,

where, in the last step we have used Lemma 5.1.6.

Remark 5.1.8. Proposition 5.1.1, Proposition 5.1.2, Proposition 5.1.5 and Theorem 5.1.7 to-

gether imply that the categories AAMAA and
Aγ
AγM

Aγ
Aγ are isomorphic as braided monoidal cate-

gories. This was the content of Theorem 2.5 of [74].

However, in Theorem 5.1.7, we have emphasized in addition that the braiding on
Aγ
AγM

Aγ
Aγ is

precisely the Woronowicz braiding of Proposition 1.3.17.

We end this section with some consequences of Theorem 5.1.7.

Corollary 5.1.9. If the map 0(σ) is diagonalisable, then the map 0(σγ) is also diagonalisable.

Proof. This is a consequence of Proposition 5.1.4, by which we have that the C-linear maps

0(σγ) and 0σ coincide.

Corollary 5.1.10. If the unique bicovariant A-bimodule braiding map σ for a bicovariant A-

bimodule E satisfies the equation σ2 = 1, then the bicovariant Aγ-bimodule braiding map σγ for

the bicovariant Aγ-bimodule Eγ also satisfies σ2
γ = 1.

In particular, if A is the commutative Hopf algebra of regular functions on a compact

semisimple Lie group G and E is its canonical space of one-forms, then the braiding map σγ for

Eγ satisfies σ2
γ = 1.
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Proof. By Theorem 5.1.7, σγ is the unique braiding map for the bicovariant Aγ-bimodule Eγ .

Since, by our hypothesis, σ2 = 1, the deformed map σγ also satisfies σ2
γ = 1 by part (iii) of

Proposition 5.1.2.

Next, if A is a commutative Hopf algebra as in the statement of the corollary and E is its

canonical space of one-forms, then we know that the braiding map σ is just the flip map, i.e.

for all e, e′ in E ,

σ(e⊗A e′) = e′ ⊗A e,

and hence it satisfies σ2 = 1. Therefore, for every cocycle deformation Eγ of E , the corresponding

braiding map satisfies σ2
γ = 1.

5.2 Cocycle deformation of pseudo-Riemannian metrics

In this section, we will discuss the cocycle deformation of pseudo-Riemannian bi-invariant met-

rics on bicovariant bimodules. By Proposition 4.3.3, a pseudo-Riemannian bi-invariant metric

g on a bicovariant bimodule E is a bicovariant map from E ⊗A E to A. Hence, by Proposition

5.1.2, we have a right Aγ-linear bicovariant map gγ from Eγ ⊗Aγ Eγ to Aγ . We next show that

this map gγ is a pseudo-Riemannian bi-invariant metric on Eγ upto a suitable identification, by

checking the conditions (i) and (ii) of Definition 4.3.1 for the map gγ .

The proof of the equality gγ = gγ ◦ σγ is straightforward. However, checking condition (ii),

i.e, verifying that the map Vgγ is an isomorphism onto its image needs some work. The root of

the problem is that we do not yet know whether E∗ = Vg(E). Our strategy to verify condition

(ii) is the following: we show that the right A-module Vg(E) is a bicovariant right A-module

(see Definition 4.1.1) in a natural way. Let us remark that since the map g (hence Vg) is not left

A-linear, Vg(E) need not be a left A-module. Since bicovariant right A-modules and bicovariant

maps can be deformed (Proposition 5.2.3), the map Vg deforms to a right Aγ-linear isomorphism

(Vg)γ from Eγ to (Vg(E))γ . Then in Theorem 5.2.5, we show that (Vg)γ coincides with the map

Vgγ and the latter is an isomorphism onto its image. This is the only section where we use the

theory of bicovariant right modules (as opposed to bicovariant bimodules).

For the rest of the section, E will denote a bicovariant A-bimodule. Moreover, {ωi}i will

denote a basis of 0E and {ω∗i }i the dual basis, i.e, ω∗i (ωj) = δij . Let us recall that (1.2.4) implies
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the existence of elements Rij in A such that

E∆(ωi) =
∑
ij

ωj⊗CRji. (5.2.1)

We want to show that Vg(E) is a bicovariant right A-module in the sense of Definition 4.1.1.

To this end, we recall that (Lemma 4.3.7) Vg(E) is a free right A-module with basis {ω∗i }i. This

allows us to make the following definition.

Definition 5.2.1. Let {ωi}i and {ω∗i }i be as above and g a bi-invariant pseudo-Riemannian

metric on E. Then we can endow Vg(E) with a left-coaction ∆Vg(E) : Vg(E)→ A⊗CVg(E) and a

right-coaction Vg(E)∆ : Vg(E)→ Vg(E)⊗CA, defined by the formulas

∆Vg(E)(
∑
i

ω∗i ai) =
∑
i

(1⊗Cω
∗
i )∆(ai), Vg(E)∆(

∑
i

ω∗i ai) =
∑
ij

(ω∗j⊗CS(Rij))∆(ai), (5.2.2)

where the elements Rij are as in (5.2.1) and S is the antipode of the Hopf algebra A.

Then we have the following result.

Proposition 5.2.2. The triplet (Vg(E),∆Vg(E), Vg(E)∆) is a bicovariant right A-module. More-

over, the map Vg : E → Vg(E) is bicovariant, i.e, we have

∆Vg(E)(Vg(e)) = (id⊗CVg)∆E(e), Vg(E)∆(Vg(e)) = (Vg⊗Cid)E∆(e). (5.2.3)

Proof. The fact that (Vg(E),∆Vg(E), Vg(E)∆) is a bicovariant right A-module follows immediately

from the definition of the maps ∆Vg(E) and Vg(E)∆. So we are left with proving (5.2.3). Let e be

an element in E . Then there exist elements ai in A such that e =
∑

i ωiai. Hence, by (4.3.1),

we obtain

∆Vg(E)(Vg(e)) = ∆Vg(E)(Vg(
∑
i

ωiai)) = ∆Vg(E)(
∑
ij

gijω
∗
jai) =

∑
ij

(1⊗Cgijω
∗
j )∆(ai)

=
∑
i

((id⊗CVg)(1⊗Cωi))∆(ai) =
∑
i

(id⊗CVg)(∆E(ωi))∆(ai)

=
∑
i

(id⊗CVg)∆E(ωiai) = (id⊗CVg)∆E(e).

This proves the first equation of (5.2.3).
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For the second equation, we begin by making an observation. Since E∆(ωi) =
∑

j ωj⊗CRji

((5.2.1)), we have

δij = ε(Rij) = m(id⊗CS)∆(Rij) =
∑
k

RikS(Rkj).

Therefore, multiplying (4.3.5) by S(Rjm) on the right and summing over j, we obtain

∑
j

gijS(Rjm) =
∑
j

gjmRji. (5.2.4)

Now by using (4.3.1), we compute

Vg(E)∆(Vg(e)) = Vg(E)∆(Vg(
∑
i

ωiai)) = Vg(E)∆(
∑
ij

gijω
∗
jai) =

∑
ij

Vg(E)∆(gijω
∗
j )∆(ai)

=
∑
ijk

(gijω
∗
k⊗CS(Rjk))∆(ai) = (

∑
ik

ω∗k⊗C
∑
j

gijS(Rjk))∆(ai)

=
∑
ik

(ω∗k⊗C
∑
j

gjkRji)∆(ai) ( by (5.2.4) )

=
∑
ijk

(gjkω
∗
k⊗CRji)∆(ai) =

∑
ij

(Vg(ωj)⊗CRji)∆(ai)

=
∑
i

((Vg⊗Cid)(
∑
j

ωj⊗CRji))∆(ai) =
∑
i

(Vg⊗Cid)E∆(ωi)∆(ai) ( by (5.2.1) )

=
∑
i

(Vg⊗Cid)E∆(ωiai) = (Vg⊗Cid)E∆(e).

This finishes the proof.

Now we recall that bicovariant right A-modules (i.e., objects in the category AMAA) can be

deformed too.

Proposition 5.2.3. (Theorem 5.7 of [84]) Let (M,∆M ,M∆) be a bicovariant right A-module

and γ be a 2-cocycle on A. Then

(i) M deforms to a bicovariant right Aγ-module, denoted by Mγ,

(ii) if (N,∆N ,N∆) is another bicovariant right A-module and T : M → N is a bicovariant

right A-linear map, then the deformation Tγ : Mγ → Nγ is a bicovariant right Aγ-linear

map,

(iii) Tγ, as in (ii), is an isomorphism if and only if T is an isomorphism.
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Proof. We refer to Theorem 5.7 of [84] for proofs of (i) and (ii). Part (iii) follows by noting

that since the map T is a bicovariant right A-linear map, its inverse T−1 is also a bicovariant

right A-linear map. Thus, the deformation (T−1)γ of T−1 exists and is the inverse of the map

Tγ .

As an immediate corollary, we make the following observation.

Corollary 5.2.4. Let g be a bi-invariant pseudo-Riemannian metric on a bicovariant A-

bimodule E. Then the following map is a well-defined isomorphism.

(Vg)γ : Eγ → (Vg(E))γ = (Vg)γ(Eγ).

Proof. Since both E and Vg(E) are bicovariant right A-modules, and Vg is a right A-linear

bicovariant map from E to Vg(E) (Proposition 5.2.2), Proposition 5.2.3 guarantees the existence

of the map (Vg)γ from Eγ to (Vg(E))γ . Since g is a pseudo-Riemannian metric, by (ii) of Definition

4.3.1, Vg : E → Vg(E) is an isomorphism. Then, by (iii) of Proposition 5.2.3, (Vg)γ is also an

isomorphism from Eγ to (Vg(E))γ . In particular, this implies that (Vg(E))γ = (Vg)γ(Eγ).

Now we are in a position to state and prove that there is an abundant supply of bi-invariant

pseudo-Riemannian metrics on Eγ . Since g is a map from E⊗AE to A, gγ is a map from (E⊗AE)γ

to Aγ . But we have the isomorphism ξ from Eγ ⊗Aγ Eγ to (E ⊗A E)γ (Proposition 5.1.5). As in

the case of the map σγ in Subsection 4.3, we will make an abuse of notation to denote the map

gγξ
−1 by the symbol gγ .

Theorem 5.2.5. If g is a bi-invariant pseudo-Riemannian metric on a bicovariant A-bimodule

E and γ is a 2-cocycle on A, then g deforms to a right Aγ-linear map gγ from Eγ ⊗Aγ Eγ to

itself. Moreover, gγ is a bi-invariant pseudo-Riemannian metric on Eγ. Finally, any bi-invariant

pseudo-Riemannian metric on Eγ is a deformation (in the above sense) of some bi-invariant

pseudo-Riemannian metric on E.

Proof. Since g is a right A-linear bicovariant map (Proposition 4.3.3), g indeed deforms to a

right Aγ-linear map gγ from (E ⊗A E)γ ∼= Eγ ⊗Aγ Eγ (see Proposition 5.1.5) to Aγ . The second

assertion of Proposition 5.1.2 implies that gγ is bicovariant. Then Proposition 4.3.3 implies that

gγ is bi-invariant. Since g ◦ σ = g, part (iii) of Proposition 5.1.2 implies that

gγ = (g ◦ σ)γ = gγ ◦ σγ .
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This verifies condition (i) of Definition 4.3.1

Next, we prove that gγ satisfies (ii) of Definition 4.3.1. Let ω be an element of 0E = 0(Eγ) and

η be an element of E0 = (Eγ)0. Then we have

(Vg)γ(ω)(η) = (Vg(ω))γ(η) = (Vg(ω)(η))

=g(ω ⊗A η) = gγ(γ(1⊗Cη(−1))ω(0) ⊗Aγ η(0)γ(ω(1)⊗C1))

( by the definition of ξ−1 in Proposition 5.1.5 )

=gγ(ε(η(−1))ω(0) ⊗Aγ η(0)ε(ω(1))) = gγ(ω ⊗Aγ η) = Vgγ (ω)(η).

Then, by the right-Aγ linearity of (Vg)γ(ω) and V(gγ)(ω), we get, for all a in A,

Vgγ (ω)(η ∗γ a) = Vgγ (ω)(η) ∗γ a = (Vg)γ(ω)(η) ∗γ a = (Vg)γ(ω)(η ∗γ a).

Therefore, by the right A-totality of (Eγ)0 = E0 in Eγ , we conclude that the maps (Vg)γ and

Vgγ agree on 0(Eγ). But since 0(Eγ) = 0E is right Aγ-total in Eγ and both Vgγ and (Vg)γ are

right-Aγ linear, (Vg)γ = Vgγ on the whole of Eγ .

Next, since Vg is a right A-linear isomorphism from E to Vg(E), hence by Corollary 5.2.4, (Vg)γ

is an isomorphism onto (Vg(E))γ = (Vg)γ(Eγ) = Vgγ (Eγ). Therefore Vgγ is an isomorphism from

Eγ to Vgγ (Eγ). Hence gγ satisfies (ii) of Definition 4.3.1.

To show that every pseudo-Riemannian metric on Eγ is obtained as a deformation of a pseudo-

Riemannian metric on E , we view E as a cocycle deformation of Eγ under the cocycle γ. Then

given a pseudo-Riemannian metric g′ on Eγ , by the first part of this proof, (g′)γ is a bi-invariant

pseudo-Riemannian metric on E . Hence, g′ = ((g′)γ)γ is indeed a deformation of the bi-invariant

pseudo-Riemannian metric (g′)γ on E .

Remark 5.2.6. We have actually used the fact that E is finite in order to prove Theorem 5.2.5.

Indeed, since E is finite, we can use the results of Section 4.3 to derive Proposition 5.2.2 which

is then used to prove Corollary 5.2.4. Finally, Corollary 5.2.4 is used to prove Theorem 5.2.5.

Also note that the proof of Theorem 5.2.5 also implies that the maps (Vg)γ and Vgγ are equal.

When g is a pseudo-Riemannian bicovariant bilinear metric on E , then we have a much

shorter proof of the fact that gγ is a pseudo-Riemannian metric on Eγ which avoids the theory

of bicovariant right A-modules. We end this section with a brief discussion of the proof which

is as follows:

We will work in the categories AAMAA and
Aγ
AγM

Aγ
Aγ . Firstly, as g is bilinear, Vg is a morphism of
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the category AAMAA. and can be deformed to a bicovariant Aγ-bilinear map (Vg)γ from Eγ to

(E∗)γ . Similarly, g deforms to a Aγ-bilinear map from Eγ ⊗Aγ Eγ to Aγ . Then as in the proof of

Theorem 5.2.5, we can easily check that (Vg)γ = Vgγ .

On the other hand, from Proposition 4.3.9, we know that the left dual Ẽ of E (in the category

A
AMAA) is isomorphic to E∗. Since g is bilinear, Proposition 4.3.9 implies that the morphism Vg

(in the category AAMAA) is an isomorphism from E to E∗.

Therefore, we have an isomorphism (Vg)γ is an isomorphism from Eγ to (E∗)γ . Since the

functor from A
AMAA to

Aγ
AγM

Aγ
Aγ sending M to Mγ is monoidal by Proposition 5.1.5, we can apply

the second assertion of Proposition 1.1.10 to deduce that (E∗)γ ∼= (Eγ)∗. Thus (Vg)γ is an

isomorphism from Eγ to (Eγ)∗. As (Vg)γ = Vgγ , we deduce that Vgγ is an isomorphism from Eγ

to (Eγ)∗. Since the equation gγ ◦ σγ = gγ , this completes the proof.

5.3 Cocycle deformation of bicovariant differential calculi

In this section, we deform a first order bicovariant differential calculus (Eγ , dγ) over A and see

that (Eγ , dγ) is a first order bicovariant differential calculus on Aγ .

Since d : A → E is a bicovariant map between bicovariant bimodules, by Proposition 5.1.2,

we have the map

dγ := d : Aγ → Eγ .

Proposition 5.3.1. ([74]) The tuple (Eγ , dγ) is a first-order bicovariant differential calculus on

AΩ.

Proof. Though the proof of this result is already available in Proposition 3.2 and Corollary 3.4

of [74], we provide the proof here in our notations for the sake of completeness. We start by

proving that dγ : AΩ → Eγ is a derivation. For a, b in AΩ, we compute

dγ(a ∗γ b)

= γ(a(1)⊗Cb(1))d(a(2)b(2))γ(a(3)⊗Cb(3)) (by 1.2.2)

= γ(a(1)⊗Cb(1))d(a(2))b(2)γ(a(3)⊗Cb(3)) + γ(a(1)⊗Cb(1))a(2)d(b(2))γ(a(3)⊗Cb(3))
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= γ((da)(−1)⊗Cb(1))((da)(0)b(2)γ((da)(1)⊗Cb(3)))

+γ(a(1)⊗C(db)(−1))a(2)(db)(0)γ(a(3)⊗C(db)(1))

(by part(iii) of Lemma 1.3.16)

= da ∗γ b+ a ∗γ db,

where in the last step we have used (5.1.3) and (5.1.4). This proves that dγ is a derivation on

Aγ .

Next, we observe that since Eγ = E , dγ = d, and (E , d) is a first order differential calculus

on A, (Eγ , dγ) is a first order differential calculus on Aγ (see Definition 1.3.14). To prove that

(Eγ , dγ) is a left-covariant differential calculus, let ai, i = 1, . . . , k be elements in A such that∑
k ak ∗γ dbk = 0.

Now, since dγ = d and ∆γ = ∆ as maps, we have

(dγ⊗Cid)∆γ(a) = Eγ∆ ◦ dγ and (id⊗Cdγ)∆γ = ∆Eγ ◦ dγ .

Moreover, by Proposition 5.1.1, Eγ is a bicovariant Aγ-bimodule. Thus, if
∑

k ak ∗γ d(bk) = 0,

we get

∑
k

∆γ(ak) ∗γ (id⊗Cdγ)∆γ(bk) =
∑
k

∆γ(ak) ∗γ ∆Eγ (dγ(bk))

= ∆γ(
∑
k

ak ∗γ d(bk)) = 0.

Therefore, (Eγ , dγ) is a left-covariant first order differential calculus. Similarly, it can be proved

that (Eγ , dγ) is a right-covariant first order differential calculus. This completes the proof.

If (E , d) is a bicovariant differential calculus such that 0σ is diagonalisable, then we have

proved (Theorem 4.2.5) that E ⊗A E = Ker(∧) ⊕ F , where F = ũE⊗AE(0F⊗CA). Here, 0F is

the direct sum of eigenspaces of 0σ corresponding to the eigenvalues which are not equal to 1

and ũE⊗AE is the isomorphism defined in (4.2.1). Moreover, we have a bicovariant A-bilinear

idempotent map Psym on E ⊗A E with range Ker(∧) and kernel F , defined by the equation (see

Definition 4.2.6)

Psym = ũE⊗AE(0(Psym)⊗Cid)(ũE⊗AE)−1.
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Since Psym : E ⊗A E → E ⊗A E is bicovariant, we have a deformed map (Psym)γ : (E ⊗A E)γ →

(E ⊗A E)γ . With an abuse of notation, we will denote the map ξ−1(Psym)γξ : Eγ ⊗Aγ Eγ →

Eγ ⊗Aγ Eγ by the symbol (Psym)γ again.

Now, let us consider the bicovariant differential calculus (Eγ , dγ). By Proposition 5.3.1, we

can apply Theorem 4.2.5 (to (Eγ , dγ)) to get a bicovariant Aγ-bilinear idempotent (Psym)Eγ on

Eγ⊗Aγ Eγ . It is worthwhile to note that the map (Psym)Eγ coincides with the cocycle deformation

(Psym)γ of the map Psym. Indeed, since 0(σγ) = 0σ on 0(Eγ)⊗C0(Eγ) = 0E⊗C0E , the kernel of

(Psym)Eγ is equal to ũEγ⊗Aγ Eγ (0F⊗CAγ). However, using the isomorphism (E⊗AE)γ ∼= Eγ⊗AγEγ ,

it is easy to check that

ũEγ⊗Aγ Eγ (0F⊗CAγ) = (ũE⊗AE)γ((0F⊗CA)γ)

=((ũE⊗AE)(0F⊗CA))γ = Fγ = Ker((Psym)γ).

On the other hand, by the definition of (Psym)Eγ ,

Ran((Psym)Eγ ) = Ker(σγ − 1) = (Ker(σ − 1))γ

=(Ran(Psym))γ = Ran((Psym)γ)

Since (Psym)Eγ and (Psym)γ are both idempotents on Eγ ⊗Aγ Eγ with the same kernel and the

same range, we can conclude that (Psym)γ = (Psym)Eγ . We collect the observations made above

in the following proposition.

Proposition 5.3.2. Let (E , d) be a bicovariant differential calculus over A such that 0σ is

diagonalisable and γ be a 2-cocycle. Then the maps (Psym)Eγ and (Psym)γ coincide. Moreover,

we have

Eγ ⊗Aγ Eγ = Ker(∧γ)⊕Fγ = Ker(σγ − 1)⊕Fγ .

Cocycle deformation of two-forms

In order to introduce the deformation of the space of two-forms, we need the deformation of the

braiding map σ of the space of one-forms E , which was discussed in Theorem 5.1.7. Utilising

the map σγ we have the following result.

Proposition 5.3.3. Let E be a bicovariant A-bimodule and γ be a cocyle as above. Then

the space of two-forms Ω2(Aγ) of the cocycle deformed algebra Aγ is the deformed bimodule



5.4. Existence and uniqueness of Levi-Civita connections 179

(Ω2(A))γ. Moreover, the deformation dγ of the map d : E → Ω2(A) is the bicovariant derivative

map from the space of one-forms to the space of two-forms.

Proof. By Theorem, 5.1.7, σγ is the canonical braiding map on Eγ . Hence, the space of two-

forms Ω2(Aγ) = (Eγ ⊗Aγ Eγ)
/

Ker(σγ − 1). Since σγ = σ as vector space maps, Ker(σγ − 1) =

Ker(σ− 1) as vector spaces. Therefore, using the isomorphism Eγ ⊗Aγ Eγ ∼= (E ⊗A E)γ , we have

that Ω2(Aγ) = ((E ⊗A E)
/

Ker(σ − 1))γ . Thus, we have the first part of the statement.

By Proposition 1.3.20, the map d : E → Ω2(A) is a bicovariant map. Therefore, by Proposition

5.1.2, it deforms to the map

dγ : Eγ → (Ω2(A))γ ,

which satisfies the properties of Proposition 1.3.20. By the first part of this proof, (Ω2(A))γ =

Ω2(Aγ). Hence, dγ is the derivative map from the space of one-forms to the space of two-forms,

and we are done with our proof.

5.4 Existence and uniqueness of Levi-Civita connections

This section concerns the Levi-Civita connections on bicovariant differential calculus on cocycle

deformations of Hopf algebras. We discuss the effect of cocycle deformations on the map Psym

as well as bicovariant connections. Finally, we prove the main theorem which states that if (E , d)

is a bicovariant differential calculus such that 0σ is diagonalisable and g is a pseudo-Riemannian

bi-invariant metric on E such that (E , d, g) admits a bicovariant Levi-Civita connection ∇, then

∇ deforms to a bicovariant Levi-Civita connection for the deformed triple (Eγ , dγ , gγ).

We start by discussing bicovariant connections on Eγ . Suppose that ∇ is a bicovariant con-

nection on E . Then Proposition 5.1.2 yields a C-linear map ∇γ from Eγ to (E ⊗A E)γ . However,

we would like to have the deformed map to take value in Eγ ⊗Aγ Eγ . For this, we will need to

use the isomorphism ξ : Eγ ⊗Aγ Eγ → (E ⊗A E)γ introduced in Proposition 5.1.5.

The following lemma will be needed to prove that ∇γ is actually a connection.

Lemma 5.4.1. If ∇ is a bicovariant connection on a bicovariant differential calculus (E , d) and

we write

E⊗AE∆(∇(e)) = (∇(e))(0)⊗C(∇(e))(1),
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then for all ω in 0E and a in A, we have

ξ−1((∇(ω))(0)a(1)γ((∇(ω))(1)⊗Ca(2))) = ξ−1(∇γ(ω)) ∗γ a,

where ∇γ : Eγ → (E ⊗A E)γ is the deformation of the C-linear bicovariant map ∇ : E → E ⊗A E .

Proof. We will use the right Aγ-module structure of (E ⊗A E)γ and the bicovariance of the map

∇γ (Proposition 5.1.2). In particular, this implies that if ω is in 0E , then ∇γ(ω) is an element

of 0((E ⊗ E)γ). Hence, we get:

∇γ(ω) ∗ a = (∇γ(ω))(0).a(1)γ((∇γ(ω))(1)⊗Ca(2))

=(∇(ω))(0).a(1)γ((∇(ω))(1)⊗Ca(2)),

where the equality is of elements in (E ⊗A E)γ . Then, using Lemma 5.1.6, by the right Aγ-

linearity of ξ, we have

ξ−1((∇(ω))(0)a(1)γ((∇(ω))(1)⊗Ca(2))) = ξ−1(∇γ(ω)) ∗γ a,

where the equality is of elements in Eγ ⊗Aγ Eγ . This completes the proof of the lemma.

By an abuse of notation, we will denote the map ξ−1∇γ by the symbol ∇γ again. Thus, ∇γ

takes value in Eγ ⊗Aγ Eγ as desired. Then we have the following theorem.

Theorem 5.4.2. Suppose (E , d) is a bicovariant differential calculus. Then a bicovariant con-

nection ∇ deforms to a bicovariant connection ∇γ on Eγ . In fact, bicovariant connections on E

and Eγ are in bijective correspondence.

Proof. For ω in 0E and a in A, we have

∇γ(ω ∗γ a) = ∇γ(ω(0)a(1)γ(ω(1)⊗Ca(2)))

=∇γ(ω(0)a(1))γ(ω(1)⊗Ca(2)) = ∇(ω(0)a(1))γ(ω(1)⊗Ca(2))

=(∇(ω(0))a(1) + ω(0) ⊗A d(a(1)))γ(ω(1)⊗Ca(2))

=∇(ω(0))a(1)γ(ω(1)⊗Ca(2)) + ω(0) ⊗A d(a(1))γ(ω(1)⊗Ca(2)).

Now, by the right covariance of the maps ∇ and d (see (1.3.6)), the following equations hold:

∇(ω(0))⊗Cω(1) = (∇(ω))(0)⊗C(∇(ω))(1), d(a(1))⊗Ca(2) = (da)(0)⊗C(da)(1),
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and therefore, the above expression is equal to

(∇(ω))(0)a(1)γ((∇(ω))(1)⊗Ca(2)) + ω(0) ⊗A (da)(0)γ(ω(1)⊗C(da)(1))

=∇γ(ω) ∗γ a+ ω ⊗Aγ dγa

where we have used the two equations of Lemma 5.4.1. This proves that for all ω in 0E and a

in A,

∇γ(ω ∗γ a) = ∇γ(ω) ∗γ a+ ω ⊗Aγ da. (5.4.1)

Since 0E = 0(Eγ) is right Aγ-total in Eγ , we are left to prove that for all a, b in A and ω in 0E ,

∇γ((ω ∗γ a) ∗γ b) = ∇γ(ω ∗γ a) ∗γ b+ ω ∗γ a⊗Aγ dγb.

But this follows easily from (5.4.1). Since the right and left comodule structure of the calculus

and its deformation are the same, hence ∇γ is also bicovariant.

To show that the bicovariant connections of E and Eγ are in a bijective correspondence, we

consider the bicovariant calculus (E , d) as a cocycle deformation of the calculus (Eγ , dγ) under

the cocycle γ. If ∇′ is a bicovariant connection on (Eγ , dγ), then by the above argument, (∇′)γ

is a bicovariant connection on ((Eγ)γ , (dγ)γ) = (E , d). Moreover, ∇′ = ((∇′)γ)γ and hence is a

cocycle deformation of a bicovariant connection on (E , d) under the cocycle γ.

Next we prove the main result of this section, namely that, if (E , d) is a bicovariant differ-

ential calculus on A satisfying the conditions of Theorem 4.5.9 and g′ is a pseudo-Riemannian

bi-invariant metric on the deformed bimodule Eγ , then there exists a unique left-invariant con-

nection which is torsionless and compatible with g′. This is an analogue of Theorem 3.3.1

proved in Section 3 for Connes-Landi deformations of bimodules. We will continue to use the

notations σγ , gγ introduced in Theorem 5.3.1 and ∇γ from Theorem 5.4.2. In particular, if g

be a pseudo-Riemannian bi-invariant metric on E , then gγ is a pseudo-Riemannian bi-invariant

metric on Eγ by Theorem 5.2.5.

Theorem 5.4.3. Suppose (E , d) is a bicovariant differential calculus on a Hopf algebra A, σ

be the corresponding braiding map and γ a 2-cocycle on A. If 0σ is diagonalisable and g is a

pseudo-Riemannian bi-invariant metric on E , then the following statements hold:

(i) If ∇ is a bicovariant Levi-Civita connection for the triple (E , d, g), then ∇ deforms to a

bicovariant Levi-Civita connection ∇γ for (Eγ , dγ , gγ).
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(ii) In the set-up of (i), if we assume that ∇ is the unique Levi-Civita connection for (E , d, g),

then ∇γ is the unique bi-covariant Levi-Civita connection for (Eγ , dγ , gγ).

Proof. We start by proving that ∇γ is torsionless and metric compatible. Since ∧, ∇ and d

are bicovariant, therefore the right A-linear homomorphism T∇ = ∧ ◦∇+ d is also bicovariant.

Therefore its cocycle deformation exists and

(T∇)γ = (∧ ◦ ∇+ d)γ = ∧γ ◦ ∇γ + dγ = T∇γ .

Since ∇ is torsionless, we have that T∇γ = 0.

Now we prove that ∇γ is compatible with the metric gγ . The map dg : E ⊗A E → E is also a

bicovariant map as Proposition 1.3.15 and Proposition 4.3.3 imply that d and g are bicovariant

maps. Therefore, since ∇ is bicovariant and g is bi-invariant, Remark 4.4.6 and Proposition

4.4.10 imply that the map Π̃g(∇) − dg is bicovariant. Therefore, the deformation of the map

Π̃g(∇) − dg exists and is equal to Π̃gγ (∇γ) − dγgγ . Since Π̃g(∇) − dg = 0, therefore we have

that Π̃gγ (∇γ)− dγgγ = 0.

For the second part of the proof, assume that ∇′ is a bicovariant Levi-Civita connection for the

triple (Eγ , dγ , gγ). Viewing (E , d, g) as a cocycle deformation of (Eγ , dγ , gγ) under the cocycle

γ, by the first part of the proof, (∇′)γ is a bicovariant Levi-Civita connection on (Eγ , dγ , gγ).

By our hypothesis, such a connection is unique. Hence (∇′)γ = ∇, and hence ∇′ = ∇γ . Thus

(Eγ , dγ , gγ) admits a unique bicovariant Levi-Civita connection.

In Theorem 4.5.9, we proved that if the map (0(Psym))23 is an isomorphism from (0E ⊗sym
C

0E)⊗C0E to 0E⊗C(0E ⊗sym
C 0E), then there exists a unique left-covariant Levi-Civita connection

for (E , d, g). The next theorem shows that under the same assumption, (Eγ , dγ) admits a unique

left-covariant Levi-Civita connection for any bi-invariant pseudo-Riemannian metric.

Theorem 5.4.4. Suppose (E , d) is a bicovariant differential calculus such that 0σ is diagonal-

isable. If the map

(0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E)

is an isomorphism, then
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(i) considering the map (Psym)γ as in Proposition 5.3.2, the following map is also an isomor-

phism:

(0((Psym)γ))23 : (0(Eγ)⊗C
sym

0(Eγ))⊗C0(Eγ)→ 0(Eγ)⊗C(0(Eγ)⊗C
sym

0(Eγ)),

(ii) for every bi-invariant pseudo-Riemannian metric g′, the corresponding deformed calculus

(Eγ , dγ) admits a unique left-covariant connection which is torsionless and compatible with

g′. Moreover, if A is cosemisimple, this connection is also right-covariant.

Proof. The first part of the theorem follows by recalling that 0(Eγ) = 0E and the fact that by

Proposition 5.1.4, we have 0(Psym) = 0((Psym)γ).

By Proposition 5.3.2, (Psym)γ is the unique idempotent on Eγ ⊗Aγ Eγ with range Eγ ⊗sym
Aγ Eγ

and kernel Fγ . The existence of a unique left-covariant Levi-Civita connection for (Eγ , dγ , g′)

follows by combining the first part and Theorem 4.5.9.

If in addition, if A is cosemisimple, then Aγ is also cosemisimple and the right-covariance of

the Levi-Civita connection follows from Theorem 4.5.9.

As a direct corollary to Theorem 5.4.4 and the existence-uniqueness theorem for Levi-Civita

connection on a classical manifold, we have:

Proposition 5.4.5. Let A be the Hopf algebra of regular functions on a linear algebraic group G

whose category of finite dimensional representations is semisimple. Suppose (E , d) is the classical

bicovariant differential calculus on A and γ a 2-cocycle on A. If g′ is a pseudo-Riemannian bi-

invariant metric on the bicovariant differential calculus (Eγ , dγ) over the Hopf algebra Aγ , then

there exists a unique bicovariant Levi-Civita connection for the triple (Eγ , dγ , g′).

Proof. The map g′ is a bi-invariant pseudo-Riemannian metric on Eγ and so by Theorem 5.2.5,

there exists a bi-invariant pseudo-Riemannian metric g on E such that gγ = g′. The Levi-Civita

connection for the triple (E , d, g) is bicovariant. This is well-known and can also be seen using

Proposition 4.5.11 and Theorem 4.5.9. Therefore, we can apply Theorem 5.4.3 to reach the

desired conclusion.

We conclude this section by proving Proposition 4.4.13 stated in the previous chapter, which

shows that our definition of metric-compatibility coincides with that in [51] in the case of cocycle
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deformation of the Hopf algebra of regular functions on a linear algebraic group. The proof will

use the notations and discussions preceding the statement of Theorem 4.4.13.

Proof of Proposition 4.4.13: By our assumption, ∇′ and g′ are bicovariant. It can be easily

checked that analogues of Theorem 5.4.2 for left connections and the third assertion of The-

orem 5.2.5 for left A-linear pseudo-Riemannian metrics hold. This implies that there exist a

bicovariant left-connection ∇ on E and a left A-linear bi-invariant pseudo-Riemannian metric g

on E such that ∇′ = ∇γ and g′ = gγ .

Now suppose that ∇′ = ∇γ is such that (4.4.2) holds for the left A-linear bi-invariant pseudo-

Riemannian metric g′ = gγ . Then by (4.4.3), L̃Π0
gγ (∇γ) = 0, i.e,

2(gγ⊗Cid)(id⊗Cσγ)(id⊗C∇γ)0((Psym)γ) = 0

as maps on 0(Eγ)⊗C0(Eγ) = 0E⊗C0E . Since the maps gγ , σγ , 0(Psym)γ coincide with g, σ, 0(Psym)

respectively on 0E⊗C0E , we can conclude that

2(g⊗Cid)(id⊗Cσ)(id⊗C∇)0(Psym) = 0

as maps on 0E⊗C0E . But E is the classical space of forms on the group G and therefore, our

definition of metric-compatibility coincides with that in [51]. Hence we have

(id⊗Cg)(∇⊗Cid) + (g⊗Cid)(id⊗Cσ)(id⊗C∇) = 0

Applying the same argument as above, we deduce that

(id⊗Cgγ)(∇γ⊗Cid) + (gγ⊗Cid)(id⊗Cσγ)(id⊗C∇γ) = 0,

i.e, ∇′ = ∇γ is compatible with g′ = gγ in the sense of [51].

The converse part follows similarly and this completes the proof.
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Levi-Civita connection on SUq(2)

In this chapter, we will investigate the theory of Chapter 4, in particular Theorem 4.5.9, in

the context of the 4D± calculi of the Hopf algebra SUq(2) discussed in Example 1.2.9. The

4D± calculi of SUq(2) were explicitly described in [93] and then [86], and we briefly recall the

same in Section 6.1. In the same section, we verify that the diagonalisability condition of the

map 0σ (see (4.2.2)) is satisfied by the 4D± calculi. Theorem 4.4.4 states that if the map 0σ

of a bicovariant differential calculus is diagonalisable, then it admits a canonical bicovariant

torsionless connection. In Section 6.2, we provide an explicit construction of this torsionless

connection for each of the 4D± calculi. In Section 6.3, we will show that the metric-independent

sufficiency condition of Theorem 4.5.9 is satisfied by both calculi, except for at most finitely

many values of q, and hence we can conclude the existence of a unique bicovariant Levi-Civita

connection, corresponding to each bi-invariant pseudo-Riemannian metric. Throughout the

chapter, the symbol A will stand for the Hopf algebra SUq(2) and E for the bimodule of one-

forms for the 4D± calculi.

6.1 The 4D± calculi on SUq(2) and the braiding map

Our main reference for the details of this section is [86].

185
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Recall from Example 1.2.9 that for q ∈ [−1, 1]\0, SUq(2) is the ∗-algebra generated by the

two elements α, γ, and their adjoints, satisfying the following relations:

α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1,

γ∗γ = γγ∗, αγ = qγα, αγ∗ = qγ∗α.

The comultiplication map ∆ is given by

∆(α) = α⊗Cα− qγ∗⊗Cγ, ∆(γ) = γ⊗Cα+ α∗⊗Cγ.

In this chapter, we will denote this Hopf algebra by the symbol A.

In [86], it is explicitly proven that there does not exists any three-dimensional bicovariant

differential calculi and exactly two inequivalent four-dimensional calculi for SUq(2). We use the

description of the two bicovariant calculi, 4D+ and 4D−, as given in [86]. We will rephrase some

of the notations to fit our formalism.

For q ∈ (−1, 1)\{0}, the first order differential calculi E of each of the 4D+ and 4D− calculi

are bicovariantA-bimodules such that the space 0E of one-forms invariant under the left coaction

of A is a 4-dimensional vector space. We will denote a preferred basis of 0E by {ωi}i=1,2,3,4.

Here we have replaced the notation Ωi in [86] with the symbol ωi.

The following is the explicit description of the exterior derivative d on 0E for the preferred

basis {ωi}4i=1 mentioned above.

Proposition 6.1.1. (Equation (5.2) of [86]) Let d : E → Ω2(A) be the exterior derivative of

the 4D± calculus.

d(ω1) = ±
√
rω1 ∧ ω3, d(ω2) =∓

√
r

q2
ω2 ∧ ω3,

d(ω3) = ±
√
r

q
ω1 ∧ ω2, d(ω4) =0,

where the upper sign stand for 4D+ and the lower for 4D−, and r = 1 + q2.

Next we will show that the map 0σ for SUq(2) satisfies the diagonalisability condition by

giving explicit bases for eigenspaces of 0σ. First we recall from [86], the explicit action of σ on

elements ωi ⊗A ωj , i, j = 1, 2, 3, 4.
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Lemma 6.1.2. (Equation (4.1) of [86]) The action of σ on the preferred basis of the 4D± calculi

is given by

σ(ω1 ⊗A ω1) = ω1 ⊗A ω1, σ(ω2 ⊗A ω2) = ω2 ⊗A ω2, σ(ω4 ⊗A ω4) = ω4 ⊗A ω4,

σ(ω1 ⊗A ω4) = ω4 ⊗A ω1, σ(ω2 ⊗A ω4) = ω4 ⊗A ω2, σ(ω3 ⊗A ω4) = ω4 ⊗A ω3,

σ(ω1 ⊗A ω2) = ω2 ⊗A ω1 + tω3 ⊗A ω3 −
q
√
r

k
ω3 ⊗A ω4,

σ(ω2 ⊗A ω1) = ω1 ⊗A ω2 − tω3 ⊗A ω3 +
q
√
r

k
ω3 ⊗A ω4,

σ(ω1 ⊗A ω3) =
t

q
ω1 ⊗A ω3 −

√
r

k
ω1 ⊗A ω4 + ω3 ⊗A ω1,

σ(ω3 ⊗A ω1) = ω1 ⊗A ω3 +
q2√r
k

ω1 ⊗A ω4 − qtω3 ⊗A ω1,

σ(ω2 ⊗A ω3) = −qtω2 ⊗A ω3 +
q2√r
k

ω2 ⊗A ω4 + ω3 ⊗A ω2,

σ(ω3 ⊗A ω2) = ω2 ⊗A ω3 −
√
r

k
ω2 ⊗A ω4 +

t

q
ω3 ⊗A ω2,

σ(ω3 ⊗A ω3) = tω1 ⊗A ω2 − tω2 ⊗A ω1 + (1− t2)ω3 ⊗A ω3 +
tq
√
r

k
ω3 ⊗A ω4,

σ(ω4 ⊗A ω1) =
t2k

q2
√
r
ω1 ⊗A ω3 + (1 + t2)ω1 ⊗A ω4 −

t2k√
r
ω3 ⊗A ω1,

σ(ω4 ⊗A ω2) = − t
2k√
r
ω2 ⊗A ω3 + (1 + t2)ω2 ⊗A ω4 +

t2k

q2
√
r
,

σ(σ4 ⊗A ω3) =
t2k

q
√
r
ω1 ⊗A ω2 −

t2k

q
√
r
ω2 ⊗A ω1 −

t3k

q
√
r
ω3 ⊗A ω3 + (1 + t2)ω3 ⊗A ω4,

where r = 1 + q2, t = q − 1
q , s = 1+q4

q , k = r+q4

r±s for 4D± respectively.

This lead us to the next result which states the minimal polynomial equation of the map 0σ

and its eigenspace decomposition. The minimal polynomial equation of the map σ appeared

in Equation (6.13) of [20] and the eigenspace decomposition can be found in Chapter 8 of [11].

Hence, the following proposition merely collects these results in the notational formality required

for this chapter.

Proposition 6.1.3. For SUq(2), the map 0σ : 0E⊗C0E → 0E⊗C0E is diagonalisable and has

the minimal polynomial equation

(0σ − 1)(0σ + q2)(0σ + q−2) = 0.
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Proof. The proof of this result is by explicit listing of eigenvectors of 0σ for eigenvalues 1,−q2,−q−2

and by a dimension argument. Throughout we make use of the canonical equivalence ωi⊗Aωj 7→

ωi⊗Cωj as stated in (i) of Theorem 4.1.11. Moreover, r, t, k will be as in Lemma 6.1.2.

By explicit computation (also derived in Equation (4.2) of [86]), we get that the following ten

two-tensors are in the eigenspace of 0σ corresponding to eigenvalue 1:

ω1⊗Cω1, ω2⊗Cω2, ω3⊗Cω3 + tω1⊗Cω2, ω4⊗Cω4,

ω1⊗Cω2 + ω2⊗Cω1, ω2⊗Cω3 + q2ω3⊗Cω2,

q2ω1⊗Cω3 + ω3⊗Cω1,
t2k
q2
√
r
ω2⊗Cω3 − ω2⊗Cω4 − ω4⊗Cω2,

t2k√
r
ω1⊗Cω3 + ω1⊗Cω4 + ω4⊗Cω1,

t2k
q
√
r
ω1⊗Cω2 + ω3⊗Cω4 + ω4⊗Cω3.

Similarly, by explicit computation, the following three linearly independent two-tensors are in

the eigenspace corresponding to the eigenvalue −q2:

tqk√
r
ω2⊗Cω3 − q2ω2⊗Cω4 − tk

q
√
r
ω3⊗Cω2 + ω4⊗Cω2,

− tk
q
√
r
ω1⊗Cω3 − q2ω1⊗Cω4 + tqk√

r
ω3⊗Cω1 + ω4⊗Cω1,

− tk√
r
ω1⊗Cω2 + tk√

r
ω2⊗Cω1 + t2k√

r
ω3⊗Cω3 − q2ω3⊗Cω4 + ω4⊗Cω3.

Finally, the following three linearly independent two-tensors are in the eigenspace corresponding

to the eigenvalue −q−2:

tqk√
r
ω2⊗Cω3 + ω2⊗Cω4 − tk

q
√
r
ω3⊗Cω2 − q2ω4⊗Cω2,

− tk
q
√
r
ω1⊗Cω3 + ω1⊗Cω4 + tqk√

r
ω3⊗Cω1 − q2ω4⊗Cω1,

− tk√
r
ω1⊗Cω2 + tk√

r
ω2⊗Cω1 + t2k√

r
ω3⊗Cω3 + ω3⊗Cω4 − q2ω4⊗Cω3.

We have thus accounted for sixteen linearly independent elements of 0E⊗C0E . Since 0E has

dimension 4, 0E⊗C0E has dimension 16. Hence we have a basis, and in particular bases for the

eigenspace decomposition, of 0E⊗C0E . Moreover, 0σ satisfies the minimal polynomial

(0σ − 1)(0σ + q2)(0σ + q−2) = 0.
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6.2 A bicovariant torsionless connection

In this section, using the eigenspace decomposition of 0E⊗C0E , we construct a bicovariant

torsionless connection on the 4D± calculus.

By Proposition 6.1.3, we have the eigenspace decomposition

0E⊗C0E = Ker(0σ − id)⊕Ker(0σ + q2)⊕Ker(0σ + q−2). (6.2.1)

Since Ker(∧) = Ker(0σ − id), we have that

Ker(0σ + q2)⊕Ker(0σ + q−2) ∼= Ω2(A),

with the isomorphism being given by ∧|Ker(0σ+q2)⊕Ker(0σ+q−2). Let us denote Ker(0σ + q2) ⊕

Ker(0σ + q−2) by 0F from now on. This is consistent with the notation adopted in Definition

4.2.2.

Before we state the main result of this section, let us make the following remark.

Remark 6.2.1. Note that since any element ρ in the bicovariant bimodule E can be uniquely

expressed as ρ =
∑

i ωiai for some ai in A (Proposition 4.1.7), a connection on E is determined

by its action on the basis {ωi}i.

Theorem 6.2.2. Let {ωi}i be the preferred basis for the 4D± calculus on SUq(2). For i =

1, 2, 3, 4, we define

∇0(ωi) = −(∧|0F )−1 ◦ d(ωi) ∈ 0E⊗C0E .

Then, ∇0 extends to a bicovariant torsionless connection on E. More explicitly,

∇0(ω1) =∓ qr

tk(q2 + 1)2

( 2tk

q
√
r
ω1⊗Cω3 + tqω1⊗Cω4 −

2tqk√
r
ω3⊗Cω1 + tqω4⊗Cω1

)
∇0(ω2) =± qr

tk(q2 + 1)2

(2tqk√
r
ω2⊗Cω3 − tqω2⊗Cω4 −

2tk

q
√
r
ω3⊗Cω2 − tqω4⊗Cω2

)
∇0(ω3) =± qr

tk(q2 + 1)2

(2tk√
r
ω1⊗Cω2 −

2tk√
r
ω2⊗Cω1 −

t2k√
r
ω3⊗Cω3

+ tqω3⊗Cω4 + tqω4⊗Cω3

)
∇0(ω4) = 0,

where the upper and lower signs stand for the 4D+ and 4D− calculi respectively, and r, t, k are

as in Lemma 6.1.2.
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Proof. By the definition of ∇0,

∧ ◦ ∇0(ωi) = − ∧ ◦(∧|0F )−1 ◦ d(ωi) = −d(ωi).

Therefore, for any element ρ =
∑

i ωiai in E ,

∧ ◦ ∇0(
∑
i

ωiai) = ∧ ◦
∑
i

(∇0(ωi)ai + ωi ⊗A ai)

= −
∑
i

(
∧ ◦(∧|0F )−1 ◦ d(ωi)ai + ωi ∧ ai

)
= −

∑
i

(d(ωi)ai + ωi ∧ ai) = −
∑
i

d(ωiai).

Hence ∇0 is a torsionless connection. The construction of ∇0 is the same as that in Theorem

4.4.4. Hence, by that theorem, our connection ∇0 is bicovariant.

Now we derive ∇0 explicitly on each ωi using the formulas for d(ωi) in Proposition 6.1.1.

We have that d(ω1) = ±
√
rω1 ∧ ω3. The decomposition of ω1⊗Cω3 as a linear combination of

the basis eigenvectors listed in Proposition 6.1.3 is given by

ω1⊗Cω3 =
2q2

(q2 + 1)2

(
q2ω1⊗Cω3 + ω3⊗Cω1

)
− q2√r
k(q2 + 1)2

( t2k√
r
ω1⊗Cω3 + ω1⊗Cω4 + ω4⊗Cω1

)
− q

√
r

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 − q2ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 + ω4⊗Cω1

)
− q

√
r

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 + ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 − q2ω4⊗Cω1

)
.

Since the first two terms in the above decomposition are elements of Ker(0σ − id) = Ker(∧),

applying ∧ on both sides, we have

ω1 ∧ ω3 = ∧
(
− q

√
r

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 − q2ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 + ω4⊗Cω1

)
− q

√
r

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 + ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 − q2ω4⊗Cω1

))
,

and since the last two terms in the decomposition are from 0F ,

(∧|0F )−1(ω1 ∧ ω3) =− q
√
r

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 − q2ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 + ω4⊗Cω1

)
− q

√
r

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 + ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 − q2ω4⊗Cω1

)
.
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Thus, by the construction of ∇0, we have

∇0(ω1) =∓
(
− qr

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 − q2ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 + ω4⊗Cω1

)
− qr

tk(q2 + 1)2

(
− tk

q
√
r
ω1⊗Cω3 + ω1⊗Cω4 +

tqk√
r
ω3⊗Cω1 − q2ω4⊗Cω1

))
=∓ qr

tk(q2 + 1)2

( 2tk

q
√
r
ω1⊗Cω3 + tqω1⊗Cω4 −

2tqk√
r
ω3⊗Cω1 + tqω4⊗Cω1

)
Proposition 6.1.1 also gives that d(ω2) = ∓

√
r

q2
ω2 ∧ ω3, d(ω3) = ±

√
r
q ω1 ∧ ω2 and d(ω4) = 0. So,

similarly, we have

ω2⊗Cω3 =
2

(q2 + 1)2

(
ω2⊗Cω3 + q2ω3⊗Cω2

)
− q4√r
k(q2 + 1)2

( t2k
q2
√
r
ω2⊗Cω3 − ω2⊗Cω4 − ω4⊗Cω2

)
+

q3√r
tk(q2 + 1)2

( tqk√
r
ω2⊗Cω3 − q2ω2⊗Cω4 −

tk

q
√
r
ω3⊗Cω2 + ω4⊗Cω2

)
+

q3√r
tk(q2 + 1)2

( tqk√
r
ω2⊗Cω3 + ω2⊗Cω4 −

tk

q
√
r
ω3⊗Cω2 − q2ω4⊗Cω2

)
,

and hence,

∇0(ω2) = ± qr

tk(q2 + 1)2

(2tqk√
r
ω2⊗Cω3 − tqω2⊗Cω4 −

2tk

q
√
r
ω3⊗Cω2 − tqω4⊗Cω2

)
.

Moreover,

ω1⊗Cω2 =
2q2

(q2 + 1)2

(
ω1⊗Cω2 + ω2⊗Cω1

)
+

2tq2

(q2 + 1)2

(
ω3⊗Cω3 + tω1⊗Cω2

)
− q3√r
k(q2 + 1)2

( t2k
q
√
r
ω1⊗Cω2 + ω3⊗Cω4 + ω4⊗Cω3

)
− q2√r
tk(q2 + 1)2

(
− tk√

r
ω1⊗Cω2 +

tk√
r
ω2⊗Cω1 +

t2k√
r
ω3⊗Cω3 − q2ω3⊗Cω4 + ω4⊗Cω3

)
− q2√r
tk(q2 + 1)2

(
− tk√

r
ω1⊗Cω2 +

tk√
r
ω2⊗Cω1 +

t2k√
r
ω3⊗Cω3 + ω3⊗Cω4 − q2ω4⊗Cω3

)
,

and hence,

∇0(ω3) = ± qr

tk(q2 + 1)2

(2tk√
r
ω1⊗Cω2 −

2tk√
r
ω2⊗Cω1 −

t2k√
r
ω3⊗Cω3 + tqω3⊗Cω4 + tqω4⊗Cω3

)
Lastly, since d(ω4) = 0, ∇0(ω4) = 0

Thus, we are done with our proof.
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6.3 Existence of a unique bicovariant Levi-Civita connection

In this section, we prove that except for finitely many q ∈ (−1, 1)\{0}, the 4D± calculi admit a

unique bicovariant Levi-Civita connection for every bi-invariant pseudo-Riemannian metric (as

defined in Definition 4.3.1) on E . We achieve this by verifying the hypotheses of Theorem 4.5.9.

Recall that ( (6.2.1) ) for the 4D± calculus, we had the decomposition

0E⊗C0E = Ker(0σ − id)⊕ 0F ,

where 0F := Ker(0σ + q2)⊕Ker(0σ + q−2).

Let us now denote Ker(0σ − id) by 0E⊗C
sym

0E . Moreover, as in Definition 4.2.2, we define

the C-linear map

0(Psym) : 0E⊗C0E → 0E⊗C0E

to be the idempotent with range 0E⊗C
sym

0E and kernel 0F . Since, 0(Psym) is the idempotent

onto the eigenspace of 0σ with eigenvalue one, and with kernel the eigenspaces with eigenvalues

−q2 and −q−2, it is of the form (see (4.2.6))

0(Psym) =
0σ + q2

1 + q2
.
0σ + q−2

1 + q−2
. (6.3.1)

.

Let us introduce the following notations:

ν1 = ω1⊗Cω1, ν2 =ω2⊗Cω2,

ν3 = ω3⊗Cω3 + tω1⊗Cω2, ν4 =ω4⊗Cω4,

ν5 = ω2⊗Cω1 + ω1⊗Cω2, ν6 =ω3⊗Cω2 +
1

q2
ω2⊗Cω3,

ν7 = ω3⊗Cω1 + q2ω1⊗Cω3, ν8 =ω4⊗Cω2 + ω2⊗Cω4 −
t2k

q2
√
r
ω2⊗Cω3,

ν9 = ω4⊗Cω1 + ω1⊗Cω4 +
t2k√
r
ω1⊗Cω3, ν10 =ω4⊗Cω3 + ω3⊗Cω4 +

t2k

q
√
r
ω1⊗Cω2.

(6.3.2)

Then by the proof of Proposition 6.1.3, the set {νi}10
i=1 forms a basis of 0E⊗C

sym
0E := Ker(0σ−

id).
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Thus, an arbitary element of (0E⊗C
sym

0E)⊗C0E is of the form

X =
∑
ij

Aijνi⊗Cωj ,

where Aij are some complex numbers.

Hence, if we show that (0(Psym))23(
∑

ij Aijνi⊗Cωj) = 0 implies that Aij = 0 for all i, j, then

(0(Psym))23 is a one-one map from (0E⊗C
sym

0E)⊗C0E to 0E⊗C(0E⊗C
sym

0E).

However, dim((0E⊗C
sym

0E)⊗C0E) = dim(0E⊗C(0E⊗C
sym

0E))and so (0(Psym))23 will be a

vector space isomorphism from (0E⊗C
sym

0E)⊗C0E to 0E⊗C(0E⊗C
sym

0E).

So let us suppose {Aij}ij are complex numbers such that

(0(Psym))23(
∑
ij

Aijνi⊗Cωj) = 0.

Then, by (6.3.1), we have

(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑
ij

Aijνi⊗Cωj) = 0. (6.3.3)

We want to show that except for finitely many values of q, the above equation implies that all the

Aij are equal to 0. This involves a long computation, including a series of preparatory lemmas.

We will be using the explicit form of 0σ(ωi⊗Cωj) as given in Lemma 6.1.2 as well as (6.3.2) to

express the left hand side of (6.3.3) as a linear combination of basis elements ωi⊗Cωj⊗Cωk. Then

we compare coefficients to derive relations among the Aij . We do not provide the details of the

computation. However, for the purposes of book-keeping, each equation is indexed by a triplet

(i, j, k) meaning that it is obtained by collecting coefficients of the basis element ωi⊗Cωj⊗Cωk

in the expansion of the term

(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑
mn

Amnνm⊗Cωn).
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Lemma 6.3.1. We have the following equations:

A11 = 0 (1,1,1)

A12(q4 + 2) + (tA31 +A51 +A10,1
t2k

q
√
r

)2q2 + (A73q
2 +A93

t2k√
r

)2q(q2 − 1) = 0 (1,1,2)

A13(q4 + 2q2 − 1) +A14(
k√
r

(q2 − 2 + q−2))

+(A71q
2 +A91

t2k√
r

)2q2 +A91(
k√
r
q−2(q2 − 1)) = 0

(1,1,3)

A13(−q2

√
r

k
) +A14(q4 + 1) + (A71q

2 +A91
t2k√
r

)

√
r

k
q4 +A91(q4 + 1) = 0 (1,1,4)

Proof. The above equations are derived by comparing the coeffcients of ω1⊗Cω1⊗Cω1, ω1⊗Cω1⊗Cω2,

ω1⊗Cω1⊗Cω3 and ω1⊗Cω1⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.2. We have the following equations:

A12(2q2 − 1) + (tA31 +A51 +A10,1
t2k

q
√
r

)(q4 + 1) + (A73q
2 +A93

t2k√
r

)(−2q(q2 − 1))

+A93(− k

q
√
r

(q2 − 1)2) + (A74q
2 +A94)(− k

q
√
r

(q2 − 1)2) = 0

(1,2,1)

tA32 +A52 +A10,2
t2k

q
√
r

= 0 (1,2,2)

(tA34 +A54 +A10,4
t2k

q
√
r

)(− k√
r

(q2 − 1)2) + (tA33 +A53 +A10,3
t2k

q
√
r

)(−(q2 − 1)2)

+(A72q
2 +A92

t2k√
r

)2q2 +A92(− k√
r

(q2 − 1)2) = 0

(1,2,3)

(tA33 +A53 +A10,3
t2k

q
√
r

)
q4√r
k

+ (tA34 +A54 +A10,4
t2k

q
√
r

)(q4 + 1)

+(A72q
2 +A92

t2k√
r

)(−q2) +A92(q4 + 1) = 0

(1,2,4)

Proof. The above equations are derived by comparing the coeffcients of ω1⊗Cω2⊗Cω1, ω1⊗Cω2⊗Cω2,

ω1⊗Cω2⊗Cω3 and ω1⊗Cω2⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).
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Lemma 6.3.3. We have the following equations:

A132q2 +A14
k√
r

(−q2(q − q−1)2)

+(A71q
2 +A91

t2k√
r

)(−q4 + 2q2 + 1) +A91
k√
r

(−(q2 − 1)2) = 0

(1,3,1)

(tA33 +A53 +A10,3
t2k

q
√
r

)2q2 + (tA34 +A54 +A10,4
t2k

q
√
r

)
k√
r

(q2 − 2q + q−2)

+(A72q
2 +A92

t2k√
r

)(q4 + 2q2 − 1) +A92
k√
r
q−2(q2 − 1)2 = 0

(1,3,2)

(tA31 +A51 +A10,1
t2k

q
√
r

)(−2q3 + 2q) +A122q(q2 − 1) +A93(− k√
r
q−2(q2 − 1)3)

+(A73q
2 +A93

t2k√
r

)(−q4 + 6q2 − 1) + (A74q
2 +A94

t2k√
r

)(− k√
r
q−2(q2 − 1)3) = 0

(1,3,3)

(tA31 +A51 +A10,1
t2k

q
√
r

)(−2q3 + 2q) + (A73q
2 +A93

t2k√
r

)

√
r

k
q4

+A93(3(q2 − 1)2 + 2q2) + (A74q
2 +A94

t2k√
r

)(q4 + 1) = 0

(1,3,4)

Proof. The above equations are derived by comparing the coeffcients of ω1⊗Cω3⊗Cω1, ω1⊗Cω3⊗Cω2,

ω1⊗Cω3⊗Cω3 and ω1⊗Cω3⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.4. We have the following equations:

A13(−q
2√r
k

) +A14(q4 + 1) + (A71q
2 +A91

t2k√
r

)
q4√r
k

+A91(q4 + 1) = 0 (1,4,1)

(tA33 +A53 +A10,3
t2k

q
√
r

)q4

√
r

k
+ (tA34 +A54 +A10,4

t2k

q
√
r

)(q4 + 1)

+(A72q
2 +A92

t2k√
r

)

√
r

k
(−q2) +A92(q4 + 1) = 0

(1,4,2)

A12(− r
k
q3) + (tA31 +A51 +A10,1

t2k

q
√
r

)

√
r

k
q3 +A93(q4 − 1)

+(A73q
2 +A93

t2k√
r

)

√
r

k
q2(q2 − 1) + (A74q

2 +A94
t2k√
r

)(q4 + 1) = 0

(1,4,3)

A94 = 0 (1,4,4)

Proof. The above equations are derived by comparing the coeffcients of ω1⊗Cω4⊗Cω1, ω1⊗Cω4⊗Cω2,

ω1⊗Cω4⊗Cω3 and ω1⊗Cω4⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).
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Lemma 6.3.5. We have the following equations:

A51 = 0 (2,1,1)

A52(q4 + 2) +A21(2q2) + (A63q
−2 +A83

t2k

q2
√
r

)2q(q2 − 1)

+A83(
k√
r
q−1(q2 − 1)2) + (A64q

−2 +A84
t2k

q2
√
r

)
k√
r
q(q2 − 2 + q−2) = 0

(2,1,2)

A53(q4 + 2q2 − 1) +A54
k√
r

(q2 − 2 + q−2)

+(A64q
−2 +A84

t2k

q2
√
r

)2q2 +A81
k√
r
q−2(q2 − 1) = 0

(2,1,3)

A53(−
√
r

k
q2) +A54(q4 + 1) + (A61q

−2 +A81
t2k

q2
√
r

)

√
r

k
q4 +A81(q4 + 1) = 0 (2,1,4)

Proof. The above equations are derived by comparing the coeffcients of ω2⊗Cω1⊗Cω1, ω2⊗Cω1⊗Cω2,

ω2⊗Cω1⊗Cω3 and ω2⊗Cω1⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.6. We have the following equations:

A52(2q2 − 1) +A21(q4 + 1) + (A63q
−2 +A83

t2k

q2
√
r

)(−2q(q2 − 1))

+A83(
k

q
√
r

(q2 − 1)2) + (A64q
−2 +A84

t2k

q2
√
r

)(− k√
r
q(q2 − 2 + q−2)) = 0

(2,2,1)

A22 = 0 (2,2,2)

A23(−q4 + 2q2 + 1) +A24(− k√
r

(q4 − 2q2 + 1))

+(A62q
−2 +A82

t2k

q2
√
r

)2q2 +A82(− k√
r

(q2 − 1)2) = 0

(2,2,3)

A23
q4√r
k

+A24(q4 + 1) + (A62q
−2 +A82

t2k

q2
√
r

)

√
r

k
(−q2) +A82(q4 + 1) = 0 (2,2,4)

Proof. The above equations are derived by comparing the coeffcients of ω2⊗Cω2⊗Cω1, ω2⊗Cω2⊗Cω2,

ω2⊗Cω2⊗Cω3 and ω2⊗Cω2⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).
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Lemma 6.3.7. We have the following equations:

A53(2q2) +A54(q4 + 1) + (A61q
−2 +A81

t2k

q2
√
r

)(−q4 + 2q2 + 1)

+A81
k√
r

(−(q2 − 1)2) = 0

(2,3,1)

A232q2 +A24
k√
r

(q2 − 2 + q−2) + (A62q
−2 +A82

t2k

q2
√
r

)(q4 + 2q2 − 1)

+A82
k√
r
q−2(q2 − 1)2 = 0

(2,3,2)

A522q(q2 − 1) +A21(−2q3 + 2q) + (A63q
−2 +A83

t2k

q2
√
r

)(−q4 + 6q2 − 1)

+A83
k√
r

(−q−2(q2 − 1)3) + (A64q
−2 +A84

t2k

q2
√
r

)
k√
r

(−q(q − q−1)3) = 0

(2,3,3)

A21

√
r

k
q3 + (A63q

−2 +A83
t2k

q2
√
r

)

√
r

k
q4 +A83(3(q2 − 1)2 + 2q2)

+(A64q
−2 +A84

t2k

q2
√
r

)(q4 + 1) = 0

(2,3,4)

Proof. The above equations are derived by comparing the coeffcients of ω2⊗Cω3⊗Cω1, ω2⊗Cω3⊗Cω2,

ω2⊗Cω3⊗Cω3 and ω2⊗Cω3⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.8. We have the following equations:

A53

√
r

k
(−q2) +A54(q4 + 1) + (A61q

−2 +A81
t2k

q2
√
r

)

√
r

k
q4 +A81(q4 + 1) = 0 (2,4,1)

A23

√
r

k
q4 +A24(q4 + 1) + (A62q

−2 +A82
t2k

q2
√
r

)

√
r

k
(−q2) +A82(q4 + 1) = 0 (2,4,2)

A52

√
r

k
(−q3) +A21

√
r

k
q3 + (A63q

−2 +A83
t2k

q2
√
r

)

√
r

k
q2(q2 − 1)

+A83(q4 − 1) + (A64q
−2 +A84

t2k

q2
√
r

)(q4 + 1) = 0

(2,4,3)

A84 = 0 (2,4,4)

Proof. The above equations are derived by comparing the coeffcients of ω2⊗Cω4⊗Cω1, ω2⊗Cω4⊗Cω2,

ω2⊗Cω4⊗Cω3 and ω2⊗Cω4⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).
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Lemma 6.3.9. We have the following equations:

A71 = 0 (3,1,1)

A72(q4 + 2) +A612q2 +A332q(q2 − 1)

+A10,3
k√
r
q−1(q2 − 1)2 +A34

k√
r
q(q2 − 2 + q−2) = 0

(3,1,2)

A73(q4 + 2q2 − 1) +A74
k√
r

(q2 − 2 + q−2) +A312q2 +A10,1
k√
r
q−2(q2 − 1) = 0 (3,1,3)

A73

√
r

k
(−q−2) +A74(q4 + 1) +A31

√
r

k
q4 +A10,1(q4 + 1) = 0 (3,1,4)

Proof. The above equations are derived by comparing the coeffcients of ω3⊗Cω1⊗Cω1, ω3⊗Cω1⊗Cω2,

ω3⊗Cω1⊗Cω3 and ω3⊗Cω1⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.10. We have the following equations:

A72(2q2 − 1) +A61(q4 + 1) +A332q(−(q2 − 1))

+A10,33
k√
r

(−q−1(q2 − 1)2) +A34
k√
r

(−q(q2 − 2 + q−2)) = 0
(3,2,1)

A62 = 0 (3,2,2)

A63(−q4 + 2q2 + 1) +A64
k√
r

(−(q4 − 2q2 + 1)) +A322q2 +A10,2
k√
r

(−(q2 − 1)2) = 0 (3,2,3)

A63

√
r

k
q4 +A64(q4 + 1) +A32

√
r

k
(−q2) +A10,2(q4 + 1) = 0 (3,2,4)

Proof. The above equations are derived by comparing the coeffcients of ω3⊗Cω2⊗Cω1, ω3⊗Cω2⊗Cω2,

ω3⊗Cω2⊗Cω3 and ω3⊗Cω2⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.11. We have the following equations:

A732q2 +A74
k√
r

(−(q2 − 1)2) +A31(−q4 + 2q2 + 1) +A10,1
k√
r

(−(q2 − 1)2) = 0 (3,3,1)

A632q2 +A64
k√
r

(q2 − 2 + q−2) +A32(q4 + 2q2 − 1) +A10,2
k√
r
q−2(q2 − 1)2 = 0 (3,3,2)

A61(−2q3 + 2q) +A33(−q4 + 6q2 − 1)

+A10,3
k√
r

(−q−2(q2 − 1)3) +A34
k√
r

(−q(q − q−1)3) = 0
(3,3,3)

A61

√
r

k
q3 +A33

√
r

k
q4 +A10,3(3(q2 − 1)2 + 2q2) +A34(q4 + 1) = 0 (3,3,4)

Proof. The above equations are derived by comparing the coeffcients of ω3⊗Cω3⊗Cω1, ω3⊗Cω3⊗Cω2,

ω3⊗Cω3⊗Cω3 and ω3⊗Cω3⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).
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Lemma 6.3.12. We have the following equations:

A73

√
r

k
(−q2) +A74(q4 + 1) +A31

√
r

k
q4 +A10,1(q4 + 1) = 0 (3,4,1)

A63

√
r

k
q4 +A64(q4 + 1) +A32

√
r

k
(−q2) +A10,2(q4 + 1) = 0 (3,4,2)

A72

√
r

k
(−q3) +A61

√
r

k
q3 = 0 (3,4,3)

A10,4 = 0 (3,4,4)

Proof. The above equations are derived by comparing the coeffcients of ω3⊗Cω4⊗Cω1, ω3⊗Cω4⊗Cω2,

ω3⊗Cω4⊗Cω3 and ω3⊗Cω4⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.13. We have the following equations:

A91 = 0 (4,1,1)

A92(q4 + 2) +A812q2 +A10,32q(q2 − 1)

+A43
k√
r
q−1(q2 − 1)2 +A10,4

k√
r
q(q2 − 2 + q−2) = 0

(4,1,2)

A93(q4 + 2q2 − 1) +A94
k√
r

(q2 − 2 + q−2) +A10,12q2 +A41
k√
r
q−2(q2 − 1) = 0 (4,1,3)

A93

√
r

k
(−q2) +A94(q4 + 1) +A10,1

√
r

k
q4 +A41(q4 + 1) = 0 (4,1,4)

Proof. The above equations are derived by comparing the coeffcients of ω4⊗Cω1⊗Cω1,

ω4⊗Cω1⊗Cω2, ω4⊗Cω1⊗Cω3 and ω4⊗Cω1⊗Cω4 in
(
(q2(0σ)23+1)((0σ)23+q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.14. We have the following equations:

A92(2q2 − 1) +A81(q4 + 1) +A10,32q(q2 − 1) +A43
k√
r

(−q−1(q2 − 1)2)

+A10,4
k√
r
q(q2 − 2 + q−2) = 0

(4,2,1)

A82 = 0 (4,2,2)

A83(−q4 + 2q2 + 1) +A84
k√
r

(−q4 + 2q2 − 1) +A10,22q2 +A42
k√
r

(q2 − 1)2 = 0 (4,2,3)

A83

√
r

k
q4 +A84(q4 + 1) +A10,2

√
r

k
(−q2) +A42(q4 + 1) = 0 (4,2,4)

Proof. The above equations are derived by comparing the coeffcients of ω4⊗Cω2⊗Cω1, ω4⊗Cω2⊗Cω2,

ω4⊗Cω2⊗Cω3 and ω4⊗Cω2⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).
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Lemma 6.3.15. We have the following equations:

A93(q4 + 2q2 − 1) +A94
k√
r

(q2 − 2 + q−2) +A10,1(−q4 + 2q2 + 1)

+A41
k√
r

(−(q2 − 1)2) = 0

(4,3,1)

A832q2 +A84
k√
r

(q2 − 2 + q−2) +A10,2(q4 + 2q2 − 1) +A42
k√
r
q−2(q2 − 1)2 = 0 (4,3,2)

A922q(q2 − 1) +A81(−2q3 + 2q) +A10,3(−q4 + 6q2 − 1) +A43
k√
r

(−q−2(q2 − 1)3)

+A10,4
k√
r

(−q(q − q−1)3) = 0

(4,3,3)

A81

√
r

k
q3 +A10,3

√
r

k
q4 +A43(3(q2 − 1)2 + 2q2) +A10,4(q4 + 1) = 0 (4,3,4)

Proof. The above equations are derived by comparing the coeffcients of ω4⊗Cω3⊗Cω1, ω4⊗Cω3⊗Cω2,

ω4⊗Cω3⊗Cω3 and ω4⊗Cω3⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Lemma 6.3.16. We have the following equations:

A93

√
r

k
(−q2) +A94(q4 + 1) +A10,1

√
r

k
q4 +A41(q4 + 1) = 0 (4,4,1)

A83

√
r

k
q4 +A83(q4 + 1) +A10,2

√
r

k
(−q2) +A42(q4 + 1) = 0 (4,4,2)

A92

√
r

k
(−q3) +A81

√
r

k
q3 +A10,3

√
r

k
q2(q2 − 1) +A43(q4 − 1) +A10,4(q4 + 1) = 0 (4,4,3)

A44 = 0 (4,4,4)

Proof. The above equations are derived by comparing the coeffcients of ω4⊗Cω4⊗Cω1, ω4⊗Cω4⊗Cω2,

ω4⊗Cω4⊗Cω3 and ω4⊗Cω4⊗Cω4 in
(
(q2(0σ)23 + 1)((0σ)23 + q2)

)
(
∑

mnAmnνm⊗Cωn).

Theorem 6.3.17. For the 4D± calculi, the map

(0(Psym))23 : (0E⊗C
sym

0E)⊗C0E → 0E⊗C(0E⊗C
sym

0E)

is an isomorphism except for, possibly, finitely many values of q ∈ (−1, 1)\{0}. Hence, for

each bi-invariant pseudo-Riemannian metric g, there exists a unique bicovariant Levi-Civita

connection for each calculus.

Proof. By the discussion preceding the above series of preparatory lemmas, we need to show

that the system of equations given above admit only the trivial solution for Aij , i = 1, . . . , 10,

j = 1, . . . , 4. We then proceed to solve these equations for all Aij . Note that the following
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variables are all identically zero in the above over-determined system:

A11 (by (1,1,1)), A94 (by (1,4,4)), A51 (by (2,1,1)), A22 (by (2,2,2)), A84 (by (2,4,4)), A71 (by

(3,1,1)), A62 (by (3,2,2)), A10,4 (by (3,4,4)), A91 (by (4,1,1)), A82 (by (4,2,2)) and A44 (by

(4,4,4)).

This reduces the equations (1,3,1) and (1,4,1) to the following exact system of linear equations

in the variables A13 and A14, with the associated matrix having determinant q2(q2 + 1)2:

A132q2 +A14
k√
r
(−q2(q − q−1)2) = 0

A13(− q2
√
r

k ) +A14(q4 + 1) = 0

Hence the solution for the variables A13 and A14 is zero.

We repeat this process for the rest of the Aij , identifying a subset of equations which has been

reduced to an exact one due to the previously solved Aij , and then concluding that the ele-

ments Aij in the current set are also solved to be 0 except for at most finitely many value of

q ∈ (−1, 1)\{0}.

(2,2,3) and (2,2,4) reduce to the following system of linear equations in A23 and A24 with de-

terminant (q2 + 1)2:

A23(−q4 + 2q2 + 1) +A24(− k√
r
(q4 − 2q2 + 1)) = 0

A23
q4
√
r

k +A24(q4 + 1) = 0

(4,1,3), (4,1,4) and (4,3,1) reduce to the following system of linear equations in A41, A93, A10,1

with determinant 2q10 − 2q4 − 2q2 + 2:

A93(q4 + 2q2 − 1) +A10,12q2 +A41
k√
r
q−2(q2 − 1) = 0

A93

√
r
k (−q2) +A10,1

√
r
k q

4 +A41(q4 + 1) = 0

A93(q4 + 2q2 − 1) +A10,1(−q4 + 2q2 + 1) +A41
k√
r
(−(q2 − 1)2) = 0

(4,1,2), (4,2,1), (4,3,3) and (4,4,3) reduce to the following system of linear equations in A43,

A81, A92, A10,3 with determinant 4q14 + 10q12 − 10q10 − 8q8 + 26q4 − 26q2 + 4:
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A92(q4 + 2) +A812q2 +A10,32q(q2 − 1) +A43
k√
r
q−1(q2 − 1)2 = 0

A92(2q2 − 1) +A81(q4 + 1) +A10,32q(q2 − 1) +A43
k√
r
(−q−1(q2 − 1)2) = 0

A922q(q2 − 1) +A81(−2q3 + 2q) +A10,3(−q4 + 6q2 − 1) +A43
k√
r
(−q−2(q2 − 1)3) = 0

A92

√
r
k (−q3) +A81

√
r
k q

3 +A10,3

√
r
k q

2(q2 − 1) +A43(q4 − 1) = 0

(3,4,3), (3,1,2), (3,2,1) and (3,3,3) reduce to the following system of linear equations in A33,

A34, A61, A72 with determinant −2q2(q − 1)2(q + 1)2(q2 + 1)4:

A72

√
r
k (−q3) +A61

√
r
k q

3 = 0

A72(q4 + 2) +A612q2 +A33(2q(q2 − 1)) +A34
k√
r
q(q2 − 2 + q−2) = 0

A72(2q2 − 1) +A61(q4 + 1) +A33(−2q(q2 − 1)) +A34
k√
r
(−q(q2 − 2 + q−2)) = 0

A61(−2q3 + 2q) +A33(−q4 + 6q2 − 1) +A34
k√
r
(−q(q − q−1)3) = 0

(2,1,3) and (2,1,4) reduce to the following system of equations in A53 and A54 with determinant

q4(q2 + 1)2:

A53(q4 + 2q2 − 1) +A54
k√
r
(q2 − 2 + q−2) = 0

A53(−
√
r
k q

2) +A54(q4 + 1) = 0

(1,1,2), (1,2,1), (1,3,3) and (1,3,4) reduce to a system of equations in A12, A31, A73, A74 with

determinant a non-zero polynomial in q:

A12(q4 + 2) + tA312q2 +A73q
22q(q2 − 1) = 0

A12(2q2 − 1) + tA31(q4 + 1) +A73q
2(−2q(q2 − 1))

tA31(−2q3 + 2q) +A122q(q2 − 1) +A73q
2(−q4 + 6q2 − 1) +A74q

2(− k√
r
q−2(q2 − 1)3) = 0

tA31(−2q3 + 2q) +A73q
2
√
r
k q

4 +A74q
2(q4 + 1) = 0

(2,1,2), (2,2,1), (2,3,3), (2,3,4) and (2,4,3) reduce to a system of equations in A21, A52, A63,

A64, A83 with determinant a non-zero polynomial in q:
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A52(q4 + 2) +A21(2q2) + (A63q
−2 +A83

t2k

q2
√
r

)2q(q2 − 1)

+A83(
k√
r
q−1(q2 − 1)2) + (A64q

−2 +A84
t2k

q2
√
r

)
k√
r
q(q2 − 2 + q−2) = 0

A52(2q2 − 1) +A21(q4 + 1) + (A63q
−2 +A83

t2k

q2
√
r

)(−2q(q2 − 1))

+A83(
k

q
√
r

(q2 − 1)2) + (A64q
−2 +A84

t2k

q2
√
r

)(− k√
r
q(q2 − 2 + q−2)) = 0

A522q(q2 − 1) +A21(−2q3 + 2q) + (A63q
−2 +A83

t2k

q2
√
r

)(−q4 + 6q2 − 1)

+A83
k√
r

(−q−2(q2 − 1)3) + (A64q
−2 +A84

t2k

q2
√
r

)
k√
r

(−q(q − q−1)3) = 0

A21

√
r

k
q3 + (A63q

−2 +A83
t2k

q2
√
r

)

√
r

k
q4 +A83(3(q2 − 1)2 + 2q2)

+(A64q
−2 +A84

t2k

q2
√
r

)(q4 + 1) = 0

A52

√
r

k
(−q3) +A21

√
r

k
q3 + (A63q

−2 +A83
t2k

q2
√
r

)

√
r

k
q2(q2 − 1)

+A83(q4 − 1) + (A64q
−2 +A84

t2k

q2
√
r

)(q4 + 1) = 0

(3,3,2) and (3,4,2) reduce to a system of equations in A32, A10,2 with determinant q4(q2 + 1)2:

A32(q4 + 2q2 − 1) +A10,2
k√
r
q−2(q2 − 1)2 = 0

A32

√
r
k (−q2) +A10,2(q4 + 1) = 0

Finally, (4,2,3) reduces identically to A42 = 0.

Hence we have shown that all Aij are identically equal to zero except for atmost finitely many

values of q ∈ (−1.1). Therefore, (0(Psym))23|(0E⊗Csym
0E)⊗C0E is an isomorphism if q does not

belong to this finite subset.

Since SUq(2) is a cosemisimple Hopf algebra, and we have shown that the map 0σ is diagonal-

isable, by Theorem 4.5.9, for each bi-invariant pseudo-Riemannian metric g, each of the 4D±

calculi admits a unique bicovariant Levi-Civita connection for all but finitely many q.
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