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Chapter 0

Introduction

A fundamental result of Riemannian geometry states that if (M, g) is a Riemannian manifold,
then there exists a unique connection V on the space of one-forms Q!(M) of M which is tor-
sionless and compatible with g. The connection V is called the Levi-Civita connection for the
pair (M, g). The goal of this thesis is to study analogues of this theorem in the context of non-
commutative geometry. The noncommutative geometry of a unital (possibly noncommutative)
algebra A is dictated by the choice of a differential calculus on A. Thus, given a differential
calculus on A, the task of making sense of the question of existence of a Levi-Civita connection
includes the following steps: Firstly, one needs to define a notion of pseudo-Riemannian metrics
on a differential calculus. Second, one needs to make sense of the torsion of connections and
that of the compatibility of a connection with a pseudo-Riemannian metric. Then, we need to
verify whether there indeed exists any connection on the space of one-forms of the differential
calculus which is both torsionless and compatible with the given pseudo-Riemannian metric.
Finally, there is the question of uniqueness of such a connection. As we will shortly discuss,
there are already a number of articles available in literature which have addressed the question
of existence of Levi-Civita connections on some particular noncommutative manifolds. In many
of these articles, the technique to prove the existence of Levi-Civita connections is example
specific. Moreover, the definitions of metric as well as the metric compatibility conditions vary
from example to example. There are also some works (see [22], as well as Appendix B of [51])

where the existence or uniqueness of a Levi-Civita connection fails.

Our goal in this thesis is to derive some sufficient conditions on the differential calculus

which will guarantee the existence and uniqueness of Levi-Civita connections for some class
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of noncommutative manifolds. We have focussed our attention to a class of differential calculi
constructed via spectral triples and a class of bicovariant differential calculi on Hopf algebras.
The notion of spectral triples was introduced by Connes ([25]). A spectral triple on an algebra
A is the data (A, H, D) where A is a *-subalgebra of the bounded linear operators on a Hilbert
space H and D is a (typically unbounded) self-adjoint operator on H satisfying some conditions.
Starting from a spectral triple, there is a canonical construction of the space of forms. Other
than Connes’ seminal text [25], some of the books which provide introductory as well as extensive
overview of spectral triple-based noncommutative geometry are [28], [64], [60] and [89]. On the
other hand, bicovariant differential calculi are a class of differential calculi on Hopf algebras
and were introduced by Woronowicz ([93]). For generalities on Hopf algebras and bicovariant

differential calculi, we refer to [1], [23], [71], [78] and references therein.

Now we explain the set-up under which we will work. If (Q°*(A), d) is a differential calculus on
an algebra A, our connections will be maps V : Q!(A) — Q1 (A) @4 Q!(A) satisfying a Leibniz
rule. Thus, unlike the articles [83], [3], [4], [5] and [80], we will not be working with covariant
derivatives on the level of vector fields of a differential calculus. Our pseudo-Riemannian metric
are right A-linear maps g : Q'(A) @4 Q1(A) — A satisfying a symmetry condition and a
nondegeneracy condition. Since in most occasions, we will not be using the *-structure on the
algebra and the space of forms, we do not assume g to be sesquilinear or positive definite. In the
case of spectral triples (Chapters 2 and 3), we will in addition assume g to be left A-linear while
in the case of bicovariant differential calculi, we concentrate on those pseudo-Riemannian metric
which are left-invariant with respect to the coaction of the Hopf algebra A. For making sense of
the symmetry in g, we need a braiding-like operator o : Q' (A) @4 Q1(A) — Q1 (A) @4 QL (A).
For spectral triples, we postulate the existence of this map o while for bicovariant differential

calculi, o is the canonical braiding map discovered by Woronowicz.

In order to formulate the metric-compatibility conditions, we need some assumptions. For
spectral triples, these are conditions which appear in the definition of tame spectral triples.
Moreover, our proof of existence and uniqueness of Levi-Civita connections works for pseudo-
Riemannian bilinear metrics, i.e. those which are both left and right A-linear. In the case
of bicovariant differential calculi, we assume that the braiding map ¢ as discussed above is
diagonalisable in a certain sense. Moreover, we restrict our attention to left-invariant pseudo-

Riemannian metrics.

Let us mention a few relevant topics and questions which have appeared in literature but
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which will not be addressed in this thesis. Firstly, in the last decade, there has been a lot
of research around the scalar curvature coming from the asymptotic expansion of a Laplace-
type operator associated to a spectral triple. This approach was pioneered by the landmark
paper of Connes and Tretkoff ([30]) which proves a noncommutative analogue of the Gauss-
Bonnet theorem. We refer to the papers [38], [39], [29], [65], [67] and references therein for the
subsequent developments around this topic. For a different treatment of curvature on Hilbert
modules, we refer to [77]. For computation of curvature of a noncommutative manifold via
the Levi-Civita connection, we refer to [70], [72], [73] and references therein. A comprehensive

account of the work of Beggs, Majid and their collaborators in this regard can be found in [11].

Many interesting examples of differential calculi on *-algebras are equipped with *-structures
in the sense of [9]. The *-compatibility of a connection was also studied in the same paper. For
examples of *-compatible Levi-Civita connections, we refer to [9] and [19]. A weaker notion of
metric compatibility called cotorsion free has been studied by Beggs, Majid and their collabo-
rators (see [73]). In [46], spin geometry on quantum groups have been studied. Very recently,
the author of [76] proved the existence of a torsion and cotorsion free connection for the Fubini-
Study metric on quantum projective spaces. For existence of Chern connections on quantum
complex manifolds, we refer to [10]. The article [44] deals with a notion of strong connections to
introduce a definition of a global curvature form. The article [34] considers metric compatibility

of pairs of left and right connections.
Let us give a brief overview of the contents of this thesis.

In Chapter 1, we collect some initial notions and results needed in later chapters, to make
the text reasonably self-contained. In Sections 1.1 and 1.2, we recall the concepts of algebras, in
particular C*-algebras and Hopf algebras, and modules and comodules over them. Section 1.3
will introduce the notion of noncommutative calculi on noncommutative spaces. This section
contains two subsections. The first one is on spectral triples due to Connes ([25]) and the second
on bicovariant differential calculi due to Woronowicz [93]. The contents of the rest of the thesis
also fall under these two broad headings. Indeed, whereas Chapters 2 and 3 are devoted to
spectral triples, Chapters 4, 5 and 6 are devoted to bicovariant differential calculi. In Section
1.4 of Chapter 1, we briefly discuss the Levi-Civita connection problem on classical (pseudo-
JRiemannian geometry and some equivalent formulations. The section ends with some basic

definitions regarding connections in noncommutative differential calculi.
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Chapter 2 deals with the existence and uniqueness of Levi-Civita connections on the class of
tame spectral triples as given in [15,16]. The chapter begins with a brief discussion on centered
bimodules over algebras, on which the space of one-forms will be modelled. In Section 2.2,
a more general class called quasi-tame spectral triples is introduced. In Section 2.3 pseudo-
Riemannian metrics are defined on quasi-tame spectral triples. Following [41], we introduce a
canonical candidate for a pseudo-Riemannian bilinear metric on a spectral triple and discuss
some regularity conditions. From Section 2.4 onwards, we restrict our focus to the class of tame
spectral triples. A definition of compatibility of connections on the space of one-forms on tame
spectral triples with pseudo-Riemannian metrics is discussed. This, in particular, provides the
definition of Levi-Civita connections on tame spectral triples. In Section 2.5, we prove that given
a bilinear pseudo-Riemannian metric on a tame spectral triple, there exists a unique Levi-Civita

connection on the space of one-forms.

Chapter 3 continues the discussion on tame spectral triples, and provides some concrete
examples. In Section 3.1, the example of fuzzy 3-sphere as given in [41] is recalled and is shown
to be a tame spectral triple. In Section 3.2, we discuss the spectral triple on the quantum
Heisenberg manifold as defined in [22] and show that it is an example of a tame spectral
triple. Spectral triples on Rieffel deformations ([82], [26]) of compact Riemannian manifolds
were defined in [27]. In Section 3.3, we show that under some technical assumptions, these turn
out to be tame spectral triples. In particular, the last section shows that our formulation of Levi-
Civita connections is well-behaved with respect to Rieffel deformations of compact Riemannian

manifolds.

In Chapter 4, we concentrate on the existence and uniqueness of Levi-Civita connections
on bicovariant differential calculi over Hopf algebras. We begin by collecting some preliminary
material on bicovariant bimodules over Hopf algebras and their relationship with Yetter-Drinfeld
modules. In Section 4.2, we discuss a mild constraint on Woronowicz’s braiding map given in
[93], for bicovariant bimodules. In Section 4.3, we define and discuss the notion of invariant
pseudo-Riemannian metrics on bicovariant differential calculi. In Section 4.4, we define the
compatibility of left-covariant connections with left-invariant pseudo-Riemannian metrics as per
[17]. In Section 4.5, we discuss a metric-independent sufficient condition for the existence of a
unique left-covariant Levi-Civita connection compatible with a bi-invariant pseudo-Riemannian
metric. In this section, we also show that subject to the Hopf algebra being cosemisimple, the

unique left-covariant connection is also right covariant.
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Chapters 5 and 6 are devoted to providing examples of bicovariant differential calculi which
satisfy the criterion of existence and uniqueness of Levi-Civita connections as derived in Chapter
4. In Chapter 5, the concrete example is that of cocycle deformations, as given in [74], of dif-
ferential calculi over Hopf algebras of regular functions on linear algebraic groups. On the way
we discuss the cocycle deformation of bicovariant differential calculi and bi-invariant pseudo-
Riemannian metrics on the differential calculi of (not necessarily commutative) Hopf algebras.
We show that our formulation of bicovariant Levi-Civita connections is well-behaved with co-
cycle deformations, i.e., Levi-Civita connections associated to bicovariant differential calculi
are in one-to-one correspondence with those on their cocycle deformations. This in particular
proves the existence of a unique bicovariant Levi-Civita connection for every bi-invariant pseudo-
Riemannian metric on the Hopf algebra of regular functions of a linear algebraic group. Chapter
6 deals with the example of example of 4Dy calculi on the Hopf algebra SU,(2) as introduced
in [93]. We recall results in [73] and [20] to show that the corresponding Woronowicz braiding
maps satisfy the requisite assumptions made in Chapter 4. Regarding the metric-independent
sufficient condition for the existence of a unique bi-covariant Levi-Civita connection, the com-
plexity of the 4Dy calculi required us to use brute-force to verify this, rather than as part of

any axiomatic framework.






Chapter 1

Preliminaries

In this chapter, we collect preparatory material for this thesis. In Sections 1.1 and 1.2, we recall
the notions of algebras, modules and comodules. As examples of interest, we introduce various
noncommutative spaces. In Section 1.3, we introduce noncommutative differential calculi on
noncommutative spaces, which are one of the basic objects of study for our purpose. By way
of examples, we give a couple of constructions of differential calculi. Section 1.4 is devoted to
a brief discussion of the Levi-Civita connection problem in classical Riemannian geometry, and
then to some inital notions for investigating the problem in the noncommutative set-up.

Throughout this thesis, we will work over the field of complex numbers. Thus, unless mentioned

otherwise, all vector spaces, algebras and modules will be over C.

1.1 Algebras and Modules

Definition 1.1.1. An algebra is a triple (A, p,u) with A a vector space, p : AQcA — A a

linear map called the multiplication map and u : C = A a linear map called the unit, such that
plidecp) = p(pecid),  plu®@aid) = p(id®cu) = id.

Let (A, pa,uq) and (B, ug,up) be two algebras. A linear map T : A — B is called an algebra
map if Topus = pugo (T'@cT) and T o uyg = up.
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We will for the most part replace pu(a®cb) with the usual ab to imply multiplication of
elements a and b of an algebra. Next we introduce the definition of left and right modules over

an algebra.

Definition 1.1.2. Given an algebra A, a left A-module is a pair (M,>) with a vector space M
and a linear map > : AQcM — M such that

>(u®cid) = id, >(pu®cid) = >(idRck).

Similarly, a right A-module is a pair (M,<) with a vector space M and a linear map < :

M®cA — M such that

Aidocu) =id,  <(id®cp) = <(<@cid).

Lastly, an A-bimodule is a triple (M,1>,<) such that (M,r) is a left A-module, (M,<) is a right
A-module and
>(id®c<) = 4(>®cid).

From now on, we are going to dispense of the symbols < and > whenever the implied algebra

actions are unambiguous.

Definition 1.1.3. Given two left A-modules M and N, a linear map T : M — N 1is called a
left A-linear map if for all a in A and m in M, T'(am) = aT'(m).

If M and N are two right A-modules, a linear map T : M — N is called a right A-linear map
if T(ma) =T (m)a.

If M and N are A-bimodules, then a map T : M — N is called an A-bimodule map or A-bilinear
map if it is both left and right A-linear.

The set of all right A-linear maps from M to N will be denoted by Hom (M, N), the set of all
left A-linear maps from M to N will be denoted by sHom(M, N) and the set of all A-bilinear
maps from M to N will be denoted by sHom4(M,N).

Definition 1.1.4. Given two A-bimodules M and N, one can give an A-bimodule structure
on Homy (M, N). If T is a map in Hom4(M, N), the left and right module actions are defined
respectively by

(aT)(m) = a(T'(m)) and (Ta)(m)=T(am),

for all a in A and m in M.
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Now we recall the notion of a right (respectively, left) A-total set in a right (respectively,
left) A-module.

Definition 1.1.5. A subset S of a right A-module M is called right A-total in M if
M = Spanc{sa:s € S,ae A}.

Similarly, a subset S of a left A-module M 1is called left A-total in M if M = Spanc{as : s €
S,a € A}.

Then we have the following lemma which will be used repeatedly in the thesis.

Lemma 1.1.6. Let S be a right A-total subset of a right A-module M. If Ty and T are two
right A-linear maps from M to another right A-module N such that they agree on S, then they

agree everywhere on M.

Proof. If m is an element of M, there exist elements s; in S and a; in A such that m = )", s;a;.

Then,
Tl(m) = ZTl(SZ‘)ai = ZTQ(Si)ai = Tg(m).

We record the following lemma for future use.

Lemma 1.1.7. Let M be an A-bimodule and h : M @ 4 M — A be a right A-linear map such
that the map
Vit M — M* := Homyu (M, A), Vi(m)(m') =h(m @4 m')

for all m,m’ in M is a right A-linear isomorphism.
Then for all T in sHomy (M, M), there exists a unique element T* in Hom4(M, M) such that
for all m,m' in M,

WT™(m) ®@am') = h(m @4 T(m)).
Proof. Suppose m is an element in M. We define an element z(m) in M by the equation

Vi, (z(m))(m') = h(m @4 T(m")) for all m' in M.
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The above definition is well-defined since V}, : M — M™ is an isomorphism. Clearly, the element
z(m) is the unique choice for T*(m).

For proving that the map m +— T*(m) := z(m) is right A-linear, we compute

Vi(T™ (ma))(m') = Vi (ma)(T(m)) = h(ma @4 T (m))
= h(m®qaTl(m')) =h(m @4 T(am')) (since T is left A-linear)

= Vi(T"(m))(am') = Vi (T"(m)a)(m).
Since V}, is an isomorphism, we have T (ma) = T (m)a. O

The following well-known fact is known to experts (see [55]), but we provide a proof for the

sake of completeness.

Proposition 1.1.8. Let M and N be A-bimodules which are finitely generated and projective
as right A-modules. Then for elements m; in M, n in N and ¢; in N* := Homy(N, A), the
map

(it M @4 N* = Homua(N, M), Cun(d_mi®ad)(f) =Y midi(n)

defines an isomorphism of A-bimodules.

Proof. Since M is finitely generated projective, there exists an integer d and an idempotent
P in Hom 4(A% A%) such that M = P(A%). Let {a1,as,...,aq} be a basis of A? so that M is
generated by {P(a;)};. If T be an element of Hom 4(NN, M), then there exists elements ¢; in
N* such that

T(n) = Z P(a;)¢j(n), for all n.

Clearly, T = CM,N(Zj P(aj) ®4 ¢;), proving that (a7, n is onto. For proving that (as,n is one-
to-one, we observe that it can be easily verified that the map (s n is a restriction of (44 n and

therefore also one-to-one. This completes the proof. O

We will be using the notions of left and right duals in certain monoidal categories and so we

recall the relevant definitions and results here.

Definition 1.1.9. ([37]) Suppose (C,®,1) is a (strict) monoidal category. An object X in C is

said to have a left dual if there exists an object X inC and morphisms

evX:)?®X—>1andcoevX:1—>X®)?
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such that the following two equations hold:
(idx ®evx)(coevy ®idx) = idy, (evy ®idg)(idg ® coevy) = id .
X is said to have a Tight dual if there exists an object *X in C and morphisms
evy : X ®*X - 1land coevly : 1 = "X @ X
such that

(ev'y ® idy)(idx ® coevly) =idx and (id«x @ ev’y)(coevy ®id«x) = id«x.

We collect some well-known facts about left duals in a monoidal category in the next propo-

sition.

Proposition 1.1.10. (Subsection 2.10 of [37]) Suppose (C,®,1) is a monoidal category and X

be an object in C. We have the following:

(i) If X admits a left dual, then it is unique upto isomorphism. In fact, if (evy,coevy, )?) and
(evg, coeve,Y) are two left duals of the object X, then the morphism

(evi ®idy)(idg ® coevy) : X — Y

is actually an isomorphism.

(ii) Now suppose D is another monoidal category and F a monoidal functor from C to D. If

X is a left dual of the object X, then F()N() is a left dual of the object F(X) in D.
Proof. We refer to Proposition 2.10.5 and Exercise 2.10.6 of [37] for the proofs. O]

We recall that an object V in an abelian category C is said to be a direct sum of objects V;,
i=1,2,---n, if there exist morphisms «;, i = 1,2,---n, in Hom(V;,V) and §;, i =1,2,---n, in

Hom(V, V) such that

n
Bioi =1y, Vi=1,2n, > ai=1y. (1.1.1)
=1

The following result is well-known to the experts. Nevertheless, we prove it for the sake of

completeness.
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Proposition 1.1.11. IfV and W are two objects in a semisimple monoidal category C, then
dim(Hom(V, W)) = dim(Hom (W, V)).

Proof. We consider the decomposition V = @I (Z;)®% and W = @I ,(Z;)®% into mutually
non-isomorphic simple objects Z;, where some of the k;’s and [;’s could be zero. Thus, there
exist morphisms «;5, s = 1,2,---k;, i = 1,2,---n, in Hom(Z;, V) and B;s, s = 1,2,---k;,
i=1,2,---n, in Hom(V, Z;) such that

Bisttis =1z, and Y isfis = lv. (1.1.2)

1,8

Similarly, from the decomposition W = @7 ,(Z;)®%  we have morphisms o4, t = 1,2,---1;,

i=1,2,---n, in Hom(Z;, W) and morphisms p; ¢, t =1,2,---1;, i =1,2,---n, in Hom(W, Z;).

The morphism f; sa;+ belongs to Hom(Z;+, Z; s) and so by Schur’s Lemma, 3; 0 = ci’t
for some scalars c;t. Let ¢; denote the matrix whose (s,t)-th element is c;t. We claim that the

matrix ¢; is the identity matrix. Indeed,

) o
(Ci)(s,t) = Zd@,kdﬁ,t
k
= Bis(D_ irBix)ais
K
= Bis(Q_ ajubip)ai

3k
(as Schur’s Lemma implies §; sovj . € Hom(Z;, Z;) equals 0 if i # )

= Bisaiz (by (1.1.2))
s,t*
Moreover, (1.1.2) implies that ¢} , =1 for all s.

Thus, ¢; is an idempotent matrix such that its trace is equal to n. Hence, ¢; is equal to the

identity matrix. This proves our claim.

We note that for all i,t, j, s, it foy s is in Hom(Z;, Z;) and since Z;, Z; are simple objects,

Schur’s Lemma implies that

Wit foys = (52-]-)\25121. for some scalar )\;5. (1.1.3)
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Now suppose f is an element in Hom(V, W). Then we can write

= lwfly

= D oiehiefaisBis

1;7t7j7s

= > 0N 12,855 (by (1.1.3))

i,t,,8

7
= E At sTitBi,s-

1,8,t

Thus, any element f in Hom(V, W) is a linear combination of elements in the set S = {0; ;s :
i=1,---n,s=1,---kj,t=1,---1;}. If we can prove that S is a linearly independent set, then

it follows that dim(Hom(V,W)) = >"" | [{k : ki # 0} . [{l : I; # 0}].

Similarly, dim(Hom(W,V')) = > | {1 : l; # 0}| . [{k : k; # 0}|. Hence, the proof is complete

once we can deduce that S is a linearly independent set.

To that end, let di’ < be scalars so that

> di oiafBis = 0. (1.1.4)

i,t,s
We fix indices ig, sg, tg. Then we have

Hig,to (Z di,sai,tﬁi,s)aimso =0.

i,t,s

However,

:U'io,to(E dt,sgi,tﬁi,s)aio,so - dt,sﬂzo,togl,tﬂl,salo,so

i,t,s i,t,s
_ 10
= E :dt,suio715001'071551'0,8&@'0,80 (as Bisuig,so € Hom(Z;y, Z;))
t,s
_ § (. . A0
- dt,sulovtoo—loics,so

t,s
_ ) . .
= E dt,Soll’L7407t00-ZO7t
t

)

. . . . . - io S
since ¢;, is the identity matrix. Due to similar reasons, >, di’ tig toTio,t = diy s, -

Therefore, (1.1.4) reduces to the equation di&so = 0. Since g, Sg, tg are arbitrary, this proves

that S is a linearly independent set completing the proof of the proposition. O
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For more details on monoidal categories and duality therein, we refer to the books [37] and

[59].

We will be using the notions of duality in monoidal categories for the category of A-bimodules

in this section and categories of covariant bimodules (see Section 1.2) later.

Definition 1.1.12. We will denote the category of all A-bimodules by the symbol 4 M 4. Thus,
the objects of AM 4 are A-bimodules. If F and G are objects of 4 M 4, then a morphism from
F to G is nothing but an A-bimodule map from F to G.

The category 4 M 4 is a monoidal category, i.e., if F, G are objects of 4M 4, then the balanced
tensor product F ® 4 G is an object in 4 M 4. The following proposition gives a necessary and

sufficient condition for the existence of a left dual in the monoidal category 4 M 4.

Proposition 1.1.13. (Ezercise 2.10.16 of [37]) Suppose M is an object in 4M 4. Then M has

a left dual if and only if M is finitely generated and projective as a right A-module.

If £ is an A-bimodule, we will continue to denote Hom 4(&,.A) by the symbol £*. It is well-
known (see, for example, [7]) that £ is finitely generated and projective as a right A-module

if and only if there exists a natural number n and elements ej,---e, in £ and ej,---¢e} in

E* = Homy(&,.A) such that for all e in £ and for all ¢ in £*, the following equations hold:

e= Zeief(e), ¢ = Z(ﬁ(ei)ef.

The pair {e;, e} } is called a pair of dual bases for &.

If £ is an A-bimodule, then from Definition 1.1.4, we know that £* = Hom 4 (&, .A) is also an

A-bimodule. The following proposition holds.
Proposition 1.1.14. ([7]) If £ and F are A-bimodules such that they are finitely generated and
projective as right A-modules, then the following statements hold:

(i) The left dual € of € (in the category 4M.4) is isomorphic to £ = Homu(&, A).

(ii) The left dual of the object € @ 4o F (in the category 4M 4) is isomorphic to F* @4 E*. In
particular, (€ @4 F)* 2 F* @4 E* as right A-modules.
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Proof. Since both the assertions have been proved in [7], we provide the sketch of the proof.
We will let {e;,e; : i =1,---n} and {f;, f7 : j = 1,2,---m} denote pairs of dual bases for &

and F respectively.

For the first assertion, consider the A-bimodule maps
eve : EYRUE = A, pR e d(e), coeve : A— E R4 E", coeve(a) = aZei ®a €.
i
Then it can be easily checked that
(ide ® 4 eve)(coeve ® 4ide) = ide, (eve ®41de+)(idgs ® 4 coeve) = idgx.

Since the left dual of £ is unique upto isomorphism, this proves that £ is isomorphic to £*.

Now, for the second assertion, the evaluation and the coevaluation maps can be defined as:
evepF  (FTRAE) @A (E@AF) = A (VW ®a0)@a(e®a f) = Y(d(e)f),

coeveg 7t A= (E®ATF) @4 (F*@aE); coeveg r(a) =ay (e @4 fi) ®a(ff @ae)).
1,J
Thus, 5@\;}" is isomorphic to F* ® 4 £*. However, by the first assertion, 5?@:1/]: is isomorphic

to (E ®4 F)* and so (£ ® 4 F)* is isomorphic to F* @4 £*. O

1.1.1 (C*-algebras and Hilbert C*-modules

In this subsection, we briefly recall the notion of C*-algebras. The discussion that follows

illustrates why C*-algebras are good analogues for classical topological spaces.

Definition 1.1.15. Let A be an algebra over C. A norm ||-|| on A is said to be submultiplicative
if
[lab|| < lall[|]

for all a,b in A. If || - || is a submultiplicative norm on an algebra A, then the pair (A, | -||) is
called a normed algebra. If the algebra is unital and ||1|| = 1 then A is a unital normed algebra.
A complete normed algebra is called a Banach algebra. Unital Banach algebras are defined in

the obvious way.
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Definition 1.1.16. A Banach *-algebra is a triplet (A,|| - ||,*) where (A, | -||) is a Banach

algebra and * : A — A is an involution such that for all a,b in A and for all A in C,
(Aa+b)* = Aa* + b, [|a*|| = ||a]|.
A C*-algebra is a Banach x-algebra such that the “C*-identity” holds:
la*a]| = [a]|?
for all a in A

The Gelfand-Naimark theorem states that any unital commutative C*-algebra is isomet-
rically isomorphic to C'(X) for some compact Hausdorff space X. On the other hand, any
C*-algebra is isometrically isomorphic to a norm closed *-subalgebra of B(#) for some Hilbert

space H.

Definition 1.1.17. Given a C*-algebra A, a representation (H,m) on it consists of a Hilbert
space H and a *-homomorphism m : A — B(H). The representation is called faithful if 7 is

one-to-one.
Let us give some examples of some noncommutative C*-algebras that we are going to use in
this thesis.

Example 1.1.18. The noncommutative 2-torus C(T%), defined for 6 in [0,1] is the universal
C*-algebra generated by two unitary elements U and V satisfying the relation UV = e*™VU.
The C*-algebra C(T3) has a representation (L*(S1), ), with © defined on the generators U and
V by

where f is an elements in L*(S*) and z is in S

Now we come to the examples of reduced and twisted group C*-algebras.

Example 1.1.19. Suppose I' is a discrete group and for g in T, let X be the left-regular repre-
sentation of T on [?(T'). Thus, A : [>(I') — [*(T') will denote the operator defined by

M&(h) = &(gth) for all € in [*(T) and h in T.
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The reduced reduced C*-algebra of the group T', denoted by C}(T') is defined to be the C*-
subalgebra of B(1*(T") generated by {\,: g € T'}.

A slight variation of the above example produces twisted group C*-algebras associated to
cocycles. In this thesis, we will only need the f-twisted reduced group C*-algebra for I' = Z".

Example 1.1.20. Consider the group 2. We will denote an element (myq, - --my,) by the symbol

m. Fiz an n X n real skew-symmetric matriz 6.

Forn in Z™, we define a bounded operator )\g on I2(Z™) by the formula

Mg (m) = e mOE (m — ).

The 0-twisted reduced C*-algebra of the group Z", denoted by C}(Z™,0) is defined to be the
C*-subalgebra of B(I1*(T') generated by {)\z tn €L},

For n = 2, this construction gives us back the noncommutative 2-torus defined above. So, in

general, this C*-algebra is called the noncommutative n-torus and denoted by C(Tj)

The following recipe produces interesting examples of noncommutative C*-algebras from

commutative ones.

Example 1.1.21. (Rieffel deformation, [82]) We will continue to use the notations introduced
i Example 1.1.20. Suppose the group T™ has a strongly continuous action o on a unital C*-

algebra A. The spectral subspaces are parametrized by the dual group Z" and are defined by
A i={a e A:oy(a) = xnlg)a},

where Xm (g1, ,gn) = g1 " -+ g Consider the set
Azlg = Spanc{a ® )\Z ta€ Ay, }

Then Aglg is a x-closed subalgebra of A® C(Ty).

The norm-closure of Azlg in A® C(Ty) is a unital C*-algebra called the Rieffel deformation
of A under the action o and denoted by Ay.
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Rieffel deformation for actions of the groups R™ and T" were introduced by Rieffel in [82].
Our reference is the paper [95]. For the generalization of this construction to the case of actions

of locally compact abelian groups, we refer to [58].

Before we can define what is called a GNS triple on C*-algebra, we need the following

definition.

Definition 1.1.22. An element x in a C*-algebra A is said to be positive if there exists some
y in A such that x = y*y. The set of positive elements on A is denoted by A

A linear functional ¢ : A — C is said to be positive if ¢p(x) > 0 for all x in A.. A positive
linear functional ¢ that satisfies ¢(1) = 1 is called a state.

We have the following:

Definition 1.1.23. (G.N.S construction) Given a C*-algebra A equipped with a state ¢, one
can construct a Gelfand-Naimark-Segal (GNS) triple (L*(A, §), 7, &s), where L*(A, $) is the
Hilbert space completion of A with respect to the semi-inner product ({a,b)) = ¢(a*b) on A,
7y A — B(L*(A,$)) is a x-representation and &y is a cyclic vector in L*(A, ), i.e., the set
Span{my(x)és : x € A} is dense in L*(A, ¢). This GNS triple satisfies the relation

P(x) = (§pr Tp(7)E0)-

For a Hilbert space H, the weak operator topology (WOT) is a locally convex topology on

B(H) given by a family of seminorms

F1 = {pen : & n € H} where pe(X) = [(z€, n)]-

This places us in a position to define von Neumann algebras.

Definition 1.1.24. A unital x-subalgebra A of the space of bounded operators B(H) of a Hilbert

space H which is closed under WOT is said to be a von Neumann algebra.

We need to recall the following two notions before we can give the statement of von Neu-
mann’s Double Commutant Theorem. Firstly, the strong operator topology (SOT) on the space

of bounded operator B(H) of a Hilbert space H is given by a family of seminorms

Fo = {pe : £ € H} where pe(z) = ||z€]].
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Also, for any subset B of B(H), the commutant 5’ is defined by
B :={x € B(H):xzb=bx Vbe B}.

Moreover, we use the symbol B” to denote the set (B'). Then we can state the following:

Theorem 1.1.25. (von Neumann) Given a Hilbert space H and a unital x-subalgebra A of
B(H), the closures of A under WOT and SOT are equal, and they are further equal to the

double commutant A" of A.

Note that, as a consequence of the above theorem, a C*-algebra which is equal to its double

commutant is a von Neumann algebra.

Definition 1.1.26. A linear functional ¢ on a von Neumann algebra A is said to be normal if

whenever a net of positive elements x,, in A increases to an element x, ¢(xy) goes to ¢(x).

For more details on C* and von Neumann algebras, we refer to the books [31,88].

Now we come to the definition and examples of Hilbert C*-modules.

Definition 1.1.27. Let A be a C*-algebra with norm || - ||. A pre-Hilbert A-module is a right
A-module M together with a map (-,-) : M x M — A which is linear in the second variable and

satisfies the following conditions:
(i) (x,ya) = (z,y)a;

(it) (z,y)* = (y,z);

(1ii) (z,x) > 0;

(iv) x # 0 implies (x,z) # 0;

for all x,y in M and a in A.

A pre-Hilbert module (M, (-,-)) is called a Hilbert C*-module (or simply, a Hilbert module)

if M is complete under the norm defined by ||x| := H(x,xﬂ]%

We have the following analogue of Cauchy-Schwarz inequality for Hilbert modules:

Lemma 1.1.28. Let M be a Hilbert A-module. Then for all x,y in M, the following inequality
holds: |[(z,y)ll < llz[[[y]-
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A Hilbert A-module M is said to be countably generated if there exists a set S = {z,, : n €

N, z, € M} such that the set {z,a: x, € S,a € A} is dense in M.

Given a C*-algebra A, let H 4 denote the set of all A-valued sequences (ay)nen such that

> n llayan|| < co. Then the A-valued inner product

(a,0) = ajbn

turns H 4 into a Hilbert module. We have the following theorem by Kasparov.

Theorem 1.1.29. (Kasparov’s stabilization theorem) A countably generated Hilbert A-module

E is isomorphic to a complemented Hilbert submodule of H 4. Moreover,

E=FEdH,.

For more details on Hilbert C*-modules, we refer to the book [63].

1.2 Hopf algebras and covariant bimodules

In this section, we introduce the notion of Hopf algebras. We start by recalling the definitions

of coalgebras and bialgebras.

A coalgebra over C is a triple (C,A,¢€) with C a vector space, A a linear map called the

comultiplication map and € : C — C a linear map called the counit, such that

(A®cid)A = (Id®cA)A, (id®4€)A = (e ®41d)A = id.
Here, we have identified C®¢cC and CRcC with C.

Sweedler notation

Let (C,A,€) be a coalgebra. Let ¢ be in C' with A(c) = >, c1;®cc2;, where ¢j; are in C. We

indicate such an expression by the form

A(e) = ¢(1y®ccq),
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suppressing the summation ) and the index i. Thus coassociativity of A yields

cay®c(c@)) y@c(c@)) @) = (ca))1)@clen)) (2)@cc2)-

So we write (A®cid)A(c) = (id®cA)A(c) in the form

¢(1)OcC(2)®CC(3)-

Using the coassociativity on the higher order tensor products, we can similarly define, without
ambiguity, a map C — C®(™):

C C(l)®(c s ®C6(n).

Definition 1.2.1. Let (C,Ac,€ec) and (D, Ap,ep) be coalgebras. A linear map T : C — D is
called a coalgebra map if (T@cT)Ac = ApT and epT = ec. In Sweedler notation, the first

equation can be written as

T(c)y®cT(c)2)y = T(cy)@cT (c(2))-

Definition 1.2.2. Given a coalgebra C, a left C-comodule is a pair (N, Ay) where N is a vector

space N and An : N = CRcN is a C-linear map such that
(6®Cid)AN =id, (id@CAN)AN = (A@(Cid)AN.

Similarly, a right C-module is a pair (N, yA) with a vector space N and a linear map yA :

N — N®cC such that
(id®ce)NA = id, (NARcid)yA = (IdRcA)NA.

Lastly, a C-bicomodule is a triple (N, An, NA) such that (N, Ap) is a left C-comodule, (N, NA)
is a right C-comodule and

(idocnA)Ax = (An®cid) v A
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Sweedler notation

The Sweedler notation for coalgebras can be extended to the setting of comodules. For n in N,

we write

An(n) = n)@cnhy,  NA(R) = nE)@cn()-

Note that the index (0) indicates the comodule tensorand and non-zero indices indicate the

coalgebra tensorand.

Let C and D be coalgebras. We define A¢g.p : C®cD — (C®cD)@c(C®cD) by

Acgep = (ld@cflip®cid)(Ac®cAp),

where flip : C®cD — D®cC is the permutation of the two factors. Then (C®cD, Acg.p) is a

coalgebra called the tensor product of C and D. Explicitly,

A(C@Cd) = C(l)®cd(1)®cc(2)®cd(2) and €(C®(Cd) = e(c)e(d).

Now suppose that (A, m,u) is an algebra and (A, A ¢€) is a coalgebra. Thus A®cA is an

algebra as well as a coalgebra. One has the following proposition.

Proposition 1.2.3. The following are equivalent:

(i) m and u are coalgebra maps;
(ii) A and e are algebra maps.

Definition 1.2.4. A pentuple (A, m,u, A, €) satisfying any of the equivalent conditions of the

above proposition is called a bialgebra.

Let us recall the convolution product. Let (C, A) be a coalgebra and (A, m) an algebra. We

put an algebra structure on Hom¢(C, .A), called the convolution algebra as follows:
Ty % Ty = m(T1®CT2)A

Explicitly, (T1 * T2)(c) = T1(c(1))T2(c(2))-
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Now suppose (A, m,u, A, ¢€) is a bialgebra. We write A€ for the underlying coalgebra and
for the algebra, again A. Then Hom@(.AC, A) is an algebra under the convolution product. We
note that the identity operator id : A — A is an element of Home (A€, A).

A convolution inverse S in Homg (A€, A) of id : A — A is called an antipode of the bialgebra
A. Explicitly, S(aqn))a@) = a@)S(a@) = €(a)l for all a in A. Note that by definition, an

antipode if exists, is unique.
Definition 1.2.5. A bialgebra with an antipode is called a Hopf algebra.

Definition 1.2.6. ([61]) A (left) 2-cocycle v on a Hopf algebra (A, A) is a C-linear map - :

A®cA — C such that it is convolution invertible, unital, i.e,

Y(a®cl) = €(a) = y(1®ca)

and for all a,b,c in A,

Y(amy@cba))v(a@)be)®ce) = v(ba)@cen))v(a@cb)c))- (1.2.1)

The convolution inverse 7 of v is a right 2-cocyle on the Hopf algebra (A, A), i.e. a C-linear
map from ARcA to C which is convolution invertible with convolution inverse v, unital and

satsifies, for all a,b,c in A,

F(a)bay@ce)F(a@)®@cbe)) = F(a®cbayca))T(be)y@cc))-

Given a Hopf algebra (A, A) and such a 2-cocycle v as above, we have a new Hopf algebra
(A, Ay) as given by the following definition.

Definition 1.2.7. ([32]) If (A, A) is a Hopf algebra and v is a 2-cocycle as above, the cocycle
deformed Hopf algebra is given by the pair (A, A,) where A, is equal to A as a vector space
and the coproduct A, = A. The algebra structure ., on A, is defined by the following equation:

a xy b= y(an)®cb))a)be)¥(aE) @chs)). (1.2.2)

12

Remark 1.2.8. The deformation of A, by 7 gives back A, i.e. (A,)y = A.

As an example of Hopf algberas, we introduce the Hopf algebra SU,(2).
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Definition 1.2.9. For ¢ € [-1,1]\0, SU,(2) is the x-algebra generated by the two elements

«, 7, and their adjoints, satisfying the following relations:

aFa+yty=1, ad*+@yyF =1,

V=7 ay=qra, oy =g¢7'a
The comultiplication map A is given on the generators by

A(a) = a®ca — ¢v"'@cy, A(y) =7&ca + a*R¢y.

For more details on Hopf algebras, we refer to the books [1,23,59,61,78,87]. In this thesis,
we will only deal with the algebraic aspects of Hopf algebras. For the analytic aspects, we refer

to [62,68,75,90,91,94].

Now we recall the notion of covariant bimodules over a Hopf algebra A. Covariant bimodules
have been studied (under the name Hopf-bimodules) by many algebraists including Abe ([1])
and Sweedler ([87]). They were introduced independently by Woronowicz ([93]) for studying

differential calculi over Hopf algebras.

Definition 1.2.10. Suppose M is an A-bimodule such that (M,Ayr) is a left A-comodule.
Then (M, Anr) is called a left-covariant bimodule if for all a in A and m in M, the following
equations hold:

Apr(am) = A(a)Ap(m), Apr(ma) = Apyr(m)A(a).

Similarly, if ;A is a right comodule coaction on M, then (M, pA) is called a right covariant

bimodule if for any a in A and m in M,

MmMA(am) = Aa)yA(m), MmMA(ma) = pyrA(m)A(a).

Finally, let M be a bimodule over A and Ay : M — AQcM and A - M — M®cA be C-linear
maps. Then we say that (M, Ay, mA) is a bicovariant A-bimodule if the following conditions

are satisfied:

(i) (M,Apr) is left-covariant bimodule,
(11) (M, pA) is a right-covariant bimodule,

(’iii) (id@(CMA)AM = (AM®Cid)MA.
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Note that, by definition, a bicovariant A-bimodule is in particular an A-bicomodule.

The vector space of left (respectively, right) invariant elements of a left (respectively, right)
covariant bimodules will play a crucial role in Chapter 4, and we introduce notations for them

here.

Definition 1.2.11. Let (M, Apr) be a left-covariant bimodule over A. The subspace of left-

invariant elements of M is defined to be the vector space
oM :={m e M : Ap(m) = 1®cm}.

Similarly, if (M, A) is a right-covariant bimodule over A , the subspace of right-invariant

elements of M is the vector space
My :={me M : yyA(m) =m®cl}.
Let us note the immediate consequences of the above definitions.
Lemma 1.2.12. (Theorem 2.4 of [93]) Suppose M is a bicovariant A-bimodule. Then
MA(OM) C ¢M®cA, A (Mo) € ARc M. (1.2.3)
Explicitly, if {m;}; is a (finite) basis of oM, then there exist elements {aj;}ij in A such that

MA(mZ) = ij@)(caﬁ. (1.2.4)
J
Proof. This is a simple consequence of the fact that ;A intertwines with Ajy. O

Let (M, An, mA) and (N, Ay, yA) be bicovariant A-bimodules. Then
(M ®A N, Ape N, Mo NA) forms a bicovariant A-bimodule, called the tensor product of M
and N where the coactions Ayg v : M @4 N — AQcM ®4 N and yo NA : M @4 N —
M ® 4 N®cA are defined by

Ay N(m@an) =mynn@cmg) ®Ano)

M ANA(M @A) = m@g) @4 n0)Dcmyn)-
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We recall now the definition of covariant maps between bimodules.

Definition 1.2.13. Let (M,Apr) and (N,Apn) be left-covariant A-bimodules and T be a C-

linear map from M to N.

T is called left-covariant if for allm in M, n in N, a in A,
(id@cT)(An(m)) = An(T(m)).

T is called a right-covariant map between right-covariant A-bimodules (M, pyA) and (N, NA) if

for allm in M, n in N, a in A,
(Tecid)(mA(m)) = NA(T (m)).
Finally, a map which is both left and right covariant A-bilinear map will be called a bicovariant

map.

1.3 Noncommutative differential calculus

In this section, we shall recall the notion of differential calculi on algebras. In Subsections 1.3.1
and 1.3.2, we shall give two examples of constructions of differential calculi, given by Connes

and Woronowicz respectively. These will be used extensively in the thesis.

Definition 1.3.1. A differential calculus on an algebra A is a triple (2(A), A, d), where

(i) QA) == B0 P (A) is a graded A-bimodule, i.e., each QF(A) is an A-bimodule, with
QO(A) = A,

(113) A QA)@4QA) — Q(A) is a graded A-bilinear map, i.e., it restricts to A-bilinear maps
Aok (aye 40t a) : Q7 (A) @4 Q(A) — QFF(A),

(i17) d: Q(A) — Q(A) is a graded exterior derivative with degree one, i.e. d restricts to maps

dlgr : QF(A) — QFTL(A)
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and for any w,w’ in Q(A),

dwAw') =d(w) Aw' + (—1)%8w A d(w'),

(iv) QF(A) = Spanc{>_d(ap) Ad(a1) A...d(ax_1)ay : a; € A}.

The above definition is the noncommutative analogue of the following example:

Example 1.3.2. Let M be a smooth manifold of dimension n and A be the algebra C*°(M)
of smooth functions on M. Let QF(M) denote the A-bimodule of k-forms on M and QM) =

n_,QF(M). We have the de-Rham differential d : Q¥(M) — QFT1(M) and the classical wedge
map A : QF(M) @4 QL M) — QFFL(M). The triplet (M), A,d) is a differential calculus over

the algebra A. We will call this calculus the classical differential calculus on M.

Definition 1.3.3. A first order differential calculus on A is a pair (Q(A),d) where Q'(A) is
an A-bimodule and d : A — QY(A) is a derivation such that Q'(A) = Spanc{d(a)b: a,b € A}.

1.3.1 Spectral triples

In this subsection, we recall the notion of spectral triples due to Connes ([25]) and the con-
struction of a differential calculus out of it. Spectral triples will be the basic objects of study

in Chapters 2 and 3. Our references for this subsection are [25], [64].

Definition 1.3.4. A spectral triple on a unital *-algebra A is a triple (A, H, D) where H is a
separable Hilbert space and D is a (possibly unbounded) self-adjoint operator on H such that the

following conditions are satisfied:

(i) there exists a faithful representation © of A on H,

(i) for all a in A, the operator [D,n(a)] has a bounded extension.
In addition, if the operator (1 + D2)7% is compact, we say that the spectral triple (A, H, D)
is of compact type. A spectral triple of compact type is called finitely summable if there exists

some p' > 0 such that Tr(|D|_p/) < oo. The infimum p of all such admissible p' is called the

dimension of the spectral triple and the spectral triple is called p-summable.
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Note that in the above definition, the functional Tr denotes the usual trace on B(H).

All the examples of spectral triples in this thesis will be of compact type. It is clear from the
definition that the algebra A sits inside B() as a *-closed subalgebra {m(a) : a € A}. However,
in order to simplify notations, we will often omit the representation w. Thus, we will simply

write [D, a]b to denote the bounded operator [D, 7 (a)]m(b).

There is a canonical spectral triple of compact type associated to any compact Riemannian

manifold. We explain this in the next example.

Example 1.3.5. Let (M, g) be a compact Riemannian manifold of dimension m and QF(M)
be the space of smooth k-forms on M. The space of all differential forms Q(M) = @), Q*(M)

can be made into a pre-Hilbert space via the pre-inner product given by

(w,m)) = /M*w)mdvol,

where x denotes the Hodge x-map and dvol denotes the volume form. Let ‘H denote the Hilbert
space completion of Q(M). The C=(M) left-module structure on QF(M) extends to define a
representation m of C*°(M) on H.

If d denotes the de-Rham differential and d* its adjoint, then the Hodge-Dirac operator d+ d*
is a self-adjoint (densely defined) operator on H. The triplet (C*°(M), H,d+d*) forms a spectral

triple of compact type which is m-summable.

Next we give an example of a compact spectral triple over a genuinely noncommutative

algebra.

Example 1.3.6. Recall the example (Example 1.1.18) of the noncommutative 2-torus C(T%)
generated by two unitary elements U and V. Consider the dense x-algebra C°°(T3) of C(T%)
defined as:

C>(T%) := { Z U™ V™ supmn|mnlamn| < oo Vk,1 € N}.

m,ne’l

We define two derivations di and da on C"O(Tg) defined on the generators U and V' by

dl(U) =U, dl(v) =0,
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A faithful trace T can be defined on C*°(T3) by:

T(Z amnU™V"™) = agp.

m,n

Define H := L*(7) & L*() where L*(t) denotes the GNS Hilbert space of C(T%) with respect to
a 0

0 a

the state 7. The representation of C’(Tg) on H is given by the diagonal embedding a —
into B(H). Finally, define
0 di + ido
dy — ido 0

D=

Then, (C*=(T%),H, D) gives a spectral triple of compact type on C(T3).

For examples of spectral triples on SU,(2), we refer to [21] and [35]. We refer to [33] for an
examples of a spectral triple on the Podles’ spheres 53,6- For spectral triples on g-deformations

of compact semisimple Lie groups, we refer to [79].

Now we spell out the construction of the first order differential calculus (Definition 1.3.3)

arising out of a spectral triple (A, H, D).
Definition 1.3.7. The first order differential calculus on the spectral triple (A, H,D) is the
pair (5 (A),dp), where
(i) dp == v=1[D,-] : A — B(H),
(i) QL(A) = Spanc(dp(a)b: a,b € A).
Remark 1.3.8. By the above definition, Q},(A) is a subset of B(H), and its A-bimodule struc-

ture is inherited from B(H).

For the rest of this subsection, we are going to dispense of the notation dp and denote the

derivative by d.

The space of two forms

The definition of the space of the higher order forms on (A, H, D) requires a little more work.

Even though B() comes with a natural multiplication map, which let us for the moment denote
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by my, this is not a good candidate for the A map of Qp(A). This is because there can possibly
be a finite set a;,,ai,, ..., a;, such that Y a;,d(a;,)...d(a;,) = 0 in B(H) (multiplication un-
derstood to be as between elements of B(#)), but Y d(a;,)d(as,) ... d(a;,) # 0. This would in
turn mean that d is not a well-defined exterior derivative. Since for the purpose of this thesis,
we require only one-forms and two-forms of a calculus, we need only define the A and d maps

onto the space of two-forms 2,(A). For this reason, we introduce the following definition.

Definition 1.3.9. We denote by mq : Q5 (A) @4 Q5 (A) — B(H) the natural multiplication on
the space of one-forms as a subspace of B(H). Moreover, we define J, called the space of junk

forms, to be the right A-submodule of the range of mg, to be denoted by Ran(myg), spanned by
elements of the set {>, d(a;)d(b;) : a;,b; € A, )", a;d(b;) = 0}.

Lemma 1.3.10. The space of junk forms J is closed under left and right A-action. Thus,
the quotient Ran(mg)/J is a well-defined A-bimodule, and the composition of the quotient map

with the multiplication map mqg given by
QO (A) @4 Q5(A) = Ran(mg) — Ran(mg)/J
is a well-defined A-bilinear map.

Proof. J is by definition a right A-submodule of Ran(mg), so we have to verify that it is also
closed under left A-action. To this end, let }, a;d(b;) = 0 be a finite sum, where a;, b; are in

A. For an arbitrary elements ¢ in A,

c Z d(a;)d(b;) = Z d(ca;)d(b;) — d(c) Z aid(b;) = > d(ca;)d(b;),

I
as »_,a;d(b;) = 0.

But since ), ca;d(b;) = 0, we have that ), d(ca;)d(b;) is in J, which implies that J is closed
under left A-action.
Since we have proved that J is an .A-sub-bimodule of Ran(my), the quotient Ran(mg)/J is a
well-defined A-bimodule and the quotient map is an A-bilinear map. Since myg is the multipli-
cation in B(H) and A is contained in B(H), mg is an A-bilinear map, thus the composition of

the quotient map and myg is also an A-bilinear map. Thus we have our results. ]

Now we can satisfactorily make the following definition.
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Definition 1.3.11. Given a spectral triple (A, H,D), we define the space of two-forms as
Q%(A) := Ran(mg)/J as in Lemma 1.3.10. The map A : QL(A) @4 QL(A) — Q% (A) is

defined as the composition of the quotient map and the map mqg as in the same lemma.

For a compact Riemannian manifold M, consider the spectral triple (C*°(M),H, D) of Ex-
ample 1.3.5. The operator

d:Ho:=Q(M) = L*(M,dvol) — H; := QY (M), d=+/—1[D,]
is a densely defined operator which is closable. The operator
L= —dd: 7‘[0 — 7’[0

is a self-adjoint (unbounded) operator whose domain contains C°°(M ). The operator L is called

the Hodge-Laplacian and contains a lot of geometric information on the manifold.

In Chapter 2, we will need a noncommutative analogue of the Hodge Laplacian introduced
by Goswami in [43]. So we record it here for later use. First we need to introduce an analogue
of the volume form dvol for p-summable spectral triples. Here, and elsewhere, the domain of an

unbounded operator will be denoted by Dom(T).

Definition 1.3.12. For a p-summable spectral triple (A, H, D), the Dizmier trace on B(H) is

given by the positive linear functional T,

Tr(X|D|?)

7(X) = Lim,, Tr (D7)

where Lim,, is as in Chapter 4 of [25].

For the spectral triple (C*°(M),H, D) of Example 1.3.5, the functional 7 of the above defi-

nition gives back the volume form dvol. Then we have the following.

Proposition 1.3.13. (Lemma 3.1, Lemma 3.2 and Lemma 5.1 of [43]) Let (A, H, D) be a p-
summable spectral triple of compact type and T be as in Definition 1.53.12. We assume that the
formula (n,n') = 7(n*n’) is a semi-inner product on the vector space Q4 (A). We will denote

the Hilbert space completion of Q}D(A) under this semi-inner product by the symbol ”H}).
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We further assume that for all X in the %-algebra generated by A and [D, A], the map
R — B(H), t— etP xe D

is differentiable at t = 0 in the norm topology of B(H).

Consider the densely defined operator d := +/—1[D, "] : L*(A,7) — HL5. We have the follow-

mg:
(i) d is closable. If L is defined to be the operator —d*d, then A C Dom(L) and L(A) C A" C
B(H).
(it) If moreover, L(A) C A, then

(i) For all x in A, we have
L(z*) = (L(x))*. (1.3.1)

(ii) For all b,c in A, the following equation holds:

d*(d(b)c) = —%(b/&(c) — L(b)e — L(be)). (1.3.2)

1.3.2 Bicovariant differential calculi

In Section 1.2, we had recalled the notions of Hopf algebras and covariant bimodules. In this

subsection, we recall bicovariant differential calculi on Hopf algebras.

Definition 1.3.14. (Definitions 1.2, 1.3 of [93]) Let (€,d) be a first order differential calculus
on a Hopf algebra A.

We say that (€,d) is left-covariant if for any ag, by in A, k=1,..., K,

() ardby, = 0) implies that (> A(ax)(id®cd)A(bg) = 0).
k k

We say that (€,d) is right-covariant if for any ax, by in A, k=1,..., K,

() ardby, = 0) implies that (> A(a)(d®cid)A(bg) = 0).
k k

We say (€,d) is bicovariant if it is both left-covariant and right-covariant.
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Bicovariant differential calculi on Hopf algebras have been studied by many mathematicians
(including [20,42, 45, 52,53, 69,92, 93] and references therein). Majid and Oeckl ([74]) proved
that if (€,d) is a bicovariant differential calculus on a Hopf algebra A and + is a 2-cocycle (in
the sense of Definition 1.2.6), then (€,d) can be twisted to a bicovariant differential calculus
(&5, dy) over the twisted Hopf algebra A, (as in Definition 1.2.7). This particular example will
be studied in Chapter 5. The bicovariant 4D calculi on the Hopf algebra SU,(2) will be studied
in Chapter 6. For more details on bicovariant differential calculi and their classifications, we
refer to the books [61], [71] and references therein. For examples of covariant differential calculi

on quantum homogeneous spaces, we refer to [47-50] and references therein.

Woronowicz ([93]) proved that a bicovariant differential calculus is automatically endowed

with a left as well as a right comodule coaction.

Proposition 1.3.15. (Propositions 1.2, 1.8 and 1.4 of [93]) Let (€,d) be a bicovariant first

order differential calculus on A. Then there exists linear mappings

Ag : £ = ARcE, eA: € — EQcA

such that

(i) (E,Ag,cA) is a bicovariant A-bimodule, i.e. (£,Ag) is a left A-comodule, (E,¢A) is a
right A-comodule and the following equations hold for all e in € and a in A:

Ag(ae) = Ala)Ag(e), Ag(ea) = Ag(e)A(a) (1.3.3)
cA(ae) = A(a)gAle), gA(ea) = ¢Ale)A(a) (1.3.4)
(id®(ch)Ag = (Ag@@id)gA (1.3.5)
(ii) d is bicovariant, i.e.
Agod = (idocd)A  ¢Aod= (docid)A. (1.3.6)

We note the following consequence of Proposition 1.3.15.

Lemma 1.3.16. For any a € A, the following equations holds:

(i) aqy®cd(ag)) = (da)—H®c(da)
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(ii) d(a))®ca@) = (da)y@c(da) )

(ii3) a(1)®@d(a(2))®@a(3) = (da)(_1)®<c(da)(0)®<c(da)(1)
Proof. Part (i) and part (ii) follow from (1.3.6). For Part (iii), we have

a(1)®cd(a(2))®ca(3) = (id@@d@@id)(id@cA)A(a)
—  ([d@ceA)(idocd)Aa) (by(1.3.6)) = (idoceA)Ag(da) (by(1.3.6))
= (idd®cel)((da)—®c(da)(g)) = (da)—1)®ceA((da)))

= (da)1)®c(da)y®@c(da))-

This proves the lemma. O

The space of two-forms

Following Woronowicz ([93]), let us define the space of two forms associated to a bicovariant
different calculus. For this we need to recall the following fundamental result concerning bico-

variant bimodules.

Proposition 1.3.17. (Proposition 3.1 of [93]) Given two bicovariant A-bimodules € and F,
there exists a unique bimodule homomorphism o : EQ 4 F — FRAE such that o(w®.4n) = N s4w
for any left-invariant element w in £ and right-invariant element n in F.

In particular, taking F = &, there exists a unique bimodule homomorphism
0:ER4E - E®4 E such that

o(w®an) =n®aw (1.3.7)

for any left-invariant element w and right-invariant element n in £. o is invertible and is a

bicovariant A-bimodule map from & @ 4 £ to itself, i.e
(ida ®a 0)Asg e = Asge 00, (0@aida)eg, e = e e 00, (1.3.8)
Moreover, o satisfies the following braid equation on € @4 E @4 E :

(id®yo)(oc@41d)(id @4 0) = (0 ®41d)(id ® 4 0)(0 @4 1d).
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Then, the space of two-forms is defined as follows:

Definition 1.3.18. Let (€,d) be a bicovariant first order differential calculus and o be the map
as in Proposition 1.3.17. We define

Q*(A) = (E®4E)/Ker(o —1).
The symbol N\ will denote the quotient map
AN:E@4E — Q2(A).
Finally, we will denote Ker(A) by the symbol € @™ E. Thus,

Ker(A) =Ker(o —1) =EQF" € (1.3.9)

From now on, we will use the notation p A p’ := A(p ®.4 p'), for elements p, p’ in E.

Proposition 1.3.19. The subspace ER%™ E := Ker(A) is a bicovariant sub-bimodule of EQAE.
Moreover, the space Q2(A) is a bicovariant bimodule, and the quotient map A is a bicovariant

bimodule map.

Proof. Since the map o is a bicovariant bimodule map, £ ®3™" & = Ker(c — 1) is a sub-
bimodule of £ ® 4 £ invariant under the left and right coactions of A. The quotient Q?(A) =
(E®4&)/Ker(o —1) is the cokernel of the inclusion map € @™ € < £ @4 €. Hence, Q*(A) is

a bicovariant A-bimodule, and the quotient map A is a bicovariant bimodule map. ]

The other order forms are defined similarly. We refer to [93] for the details. In particular,

we have Q°(A) = A and Q!(A) = £. Then A extends to a map
A QF(A) @4 QHA) = QFFL(A).

Collecting all the notations and results, we have the following proposition.

Proposition 1.3.20. ([93]) Suppose (€,d) is a first order bicovariant differential calculus on
A and Q*(A) is the space of two-forms. The left and right comodule coactions Agg & and
coael of A on E®4E descend to comodule coactions of A on Q2(A) as Ker(o — 1) is left and
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right-invariant. This makes Q2(A) a bicovariant A-bimodule. The same is true for QF(A) for
all k> 0.

Moreover, the map d extends uniquely to a bicovariant map from @kZOQk(A) to itself and
satisfies d> = 0 and
dONO)=do NG + (—1)*0 A db’

if 0 is in QF(A).

Our definition of two-forms is in general different than that considered in [51].

Remark 1.3.21. Suppose A is a q-deformation of a classical compact semisimple Lie group and
& be a bicovariant bimodule over A. Then typically, the (¢-dependent) eigenvalues of o consist
of real numbers other than +1. Let I be the set of eigenvalues of o which tend (in limit) to 1 as

q tends to 1.

The authors of [20] define

ERQE
D(A) = ——2— .
“) Mer(oc =X )

It is this definition of Q2(A) which was taken in [51]. Thus, the definition of two-forms

considered in this chapter are different than that in [51] unless the only eigenvalues of o are £1.

1.4 Connections in classical and noncommutative geometry

Connections on noncommutative differential calculi are the main focus of study in this thesis.
The rest of the thesis will then be devoted to giving a coherent definition of Levi-Civita connec-
tions on some classes of noncommutative differential calculi, and investigating their existence

and uniqueness.

1.4.1 Levi-Civita connections in Riemannian geometry

Throughout this subsection, M will denote a smooth manifold and A will stand for the unital
algebra C°°(M) of smooth functions on a smooth manifold M. The symbols X(.A) and QF (M)
will denote the Lie algebra of smooth vector fields and the set of all smooth k-forms on M
respectively. In particular, Q' (M) = Homy(X(A), A). Since A is commutative, the right A-
modules X(A) and Q¥(M) are A-bimodules in a natural way.
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Vector fields on M are in one to one correspondence with derivations of the algebra A =

C°°(M). This correspondence maps X in X(A) to the map dx : A — A defined by
dx(a) =da(X).
Since dx is a derivation, it satisfies the identity
dx(ab) = 6x(a)b+ adx(b)
for all a,b in A.
We have an A-bilinear map

A QN M) @4 QN (M) = Q* (M), w@an—wA1.

The space of k-forms QF(M) are spanned (as right .A-modules) by elements of the form daj A
---Aday where a1, - - - , aj, are elements in A. The next proposition collects some well-known facts
about the spaces of one and two-forms on a manifold. We will see that any tame differential
calculi on a (possibly) noncommutative algebra (Chapter 2) and certain bicovariant differential

calculi on a Hopf algebra (Chapter 4) satisfy some of these properties.

Proposition 1.4.1. The following short-exact sequence of right A-modules splits:
0 — Ker(A) = QY M) @4 QYM) — Q*(M) — 0.

We have
QY (M) @4 QY (M) = Ker(A) @ F (1.4.1)

where F is isomorphic to Q?(M) as right A-modules. Concretely, we have
Ker(A) ={w@an+n®@aw:w,neQ (M)}, F={w@an—nQaw:w,nec Q" (M)}

et Psym : XA — XA e the idempotent with range Ker(A) an
Let Py QY (M QY (M QY (M QY (M) be the id h K d

kernel equal to F. Then the map Psyy, is A-bilinear and given by the formula:
1
Pym(w®am) = 5(w@an+104w)

for all w,n in QL(M).



38 Chapter 1. Preliminaries

Definition 1.4.2. A connection on a manifold M is a C-linear map V : QY (M) — QY (M) @4
QY (M) such that
V(wa) = V(w)a+w ®4 da

for all w in QY (M) and for all a in A.

A covariant derivative on M is a map

X(A) x X(A) = X(A), (X,Y) = Vy X

such that for all a in A and for all X,Y, X", Y’ in X(A), the following equations hold:

Vy(X +X')=VyX +VyX', Vyiy/(X)=VyX + Vy/ X,

Vy.X = (VyX)a, Vy(Xa) = (VyX)a + X5y(a).

The notions of connections and covariant derivatives are equivalent. Indeed, given a connection
V on Q'(M), a covariant derivative on the level of vector fields is uniquely defined by the

following equation for all w in Q!(A) :

W(Vy X) = 0y (w(X)) — (V(w))(X @4 Y). (1.4.2)

Conversely, given a covariant derivative, a connection V can be recovered from (1.4.2).
Now we recall the notion of torsionless-ness of a connection.
Definition 1.4.3. A connection V on M is called torsionless if the covariant derivative defined

by (1.4.2) satisfies the following equation for all X,Y in X(A) :

VxY - VyX - [X,Y]=0.
Let us state the definition of a pseudo-Riemannian metric on a manifold. In this section, the

symbol flip : QY (M) @4 QY (M) — QY (M) 24 Q1 (M) will denote the flip map, i.e, flip(w®4n) =

nR4w.
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Definition 1.4.4. A pseudo-Riemannian metric on a manifold M is a right A-linear map
g: QY (M) @4 Q" (M) — A such that

(i) goflip=g,

(ii) the map
Vg : Q1(M) — Homa (' (M), A), Vy(w)(n) = g(w ®an)

is an isomorphism of right A-modules.

Remark 1.4.5. Since A = C*°(M) is commutative and aw = wa for all a in A and w in
QY (M), a pseudo-Riemannian metric g is automatically left A-linear. Thus, g is A-bilinear.

The same is true for the map V.

Throughout this thesis, we will not postulate the condition of positive definiteness in the def-
inition of a metric. The next proposition shows that pseudo-Riemannian metrics as in Definition
1.4.4 are in one to one correspondence with the usual notion of pseudo Riemannian metrics on

the level of vector fields.

Proposition 1.4.6. Let flip : X(A) ®.4 X(A) — X(A) ®4X(A) denote the flip map on the level

of vector fields and g be a pseudo-Riemannian metric on M as in Definition 1.4.4. Then
J:X(A)@AX(A) = A, (X ©aY) =g(V7H(X)@aV,H(Y))

coincides with the usual notion of a smooth pseudo-Riemannian metric in differential geometry,
i.e, Goflip = § and on a co-ordinate neighborhood (U, x) of M, the matriz ((9i5))ij = ((5(3%2 ®A

8%])))1] is an invertible matriz with entries in C*°(U).

Proof. We begin by observing that as g maps Q'(M) ® 4 Q'(M) to A, the range of g also lies
in A. If X,Y belong to X(A), we have

JHP(X ®4Y)) = GV @aX) =gV, (V) @4V, 1(X)) = g(flip(V; (X) @4V, H(Y)))

= gV " (X) @4V, (V) =g(X ®@4Y).

Next, if (U, ) is a co-ordinate of M, then by an usual partition of unity argument, we can extend
the local vector fields 8%2_ smoothly to the whole of M. Then since g(X(A)®4X(A)) C A, gi; € A

and in particular, the map U — C, m — g;j(m) belongs to C*>°(U).
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Finally, we need to check the invertibility of the matrix (g;;). We view the local vector fields
aw as elements of Hom4 (' (M), A). Since g is a pseudo-Riemannian metric, the condition (ii)
of Definition 1.4.4 implies that the matrix ((gi;));; is invertible, where g;; = g(dz; ®4 dx;).
Denote the inverse of the matrix by the notation ((g%));;. Then the following computation
shows that the matrix g = (((gs5))ij)! is the inverse to the matrix ((g;;))i; and in particular,

((9ij))sj is an invertible matrix.

~ ~ 0
> Gk =D Giigny = Zg [ @AGkiG, )
J J
-, 0
=9(5 - g(dzg)) (since Vg(dwy) ng] 0;1:

ox;
= Zg”V dxy))

=5(D_ 9" Vy(dz)) @ 4 Vy(day)) (
l

= Zgilglk (by the definition of g)
!

=0ik-

The following definition is regarding the compatibility of a connection with respect to a

pseudo-Riemannian metric in terms of the associated covariant derivative.

Definition 1.4.7. Suppose g is a pseudo-Riemannian metric on a manifold M. A connection

V on M is said to be compatible with g if

Oy (9(ZoaX)=9(VyZ o4 X)+9(VyX ®4 2)

for all X,Y, Z in X(A).

Now we state some equivalent criteria for a connection to be torsionless and compatiblity
with a pseudo-Riemannian metric. These criteria are well-known but since we were unable to
find a reference which states these criteria exactly as we need them, let us refer to Proposition

5.1 and Proposition 5.4 of [14] for the proofs.
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Proposition 1.4.8. A connection V on a manifold M is torsionless if and only if

Ao V(w) = —dw for all w in Q'(M).

If g is a pseudo-Riemannian metric on M, then a connection V is compatible with g if and
only if
(9 ®41d)[flipy(V(w) ®4n) + (w ©4 V(0))] = d(g(w ©an))

for all w,n in Q*(M).

If g is a pseudo-Riemannian metric on a manifold M and V is a connection on M which is
torsionless and compatible with g, then V is called a Levi-Civita connection. The fundamental

theorem of differential geometry states that such a connection exists uniquely.

Theorem 1.4.9. (Lewvi-Civita’s theorem) If g is a pseudo-Riemannian metric on a manifold

M, there exists a unique connection on M which is torsionless and compatible with g.

The goal of this thesis is to prove this theorem for some bimodules over a (possibly) non-

commutative algebra.

1.4.2 Connections on a noncommutative differential calculus

In Subsection 1.4.1, we discussed connections on the module of one-forms of manifolds (Defini-

tion 1.4.2), and their torsion (Proposition 1.4.8). This motivates the following definitions.

Definition 1.4.10. Given a first order differential calculus (Q2*(A),d) on an algebra A, a (right)
connection V on the space of one-forms Q(A) is a C-linear map V : Q1 (A) — QY (A) @4 QH(A)
such that, for any w in Q*(A) and a in A,

V(wa) =V(w)a+w ®4d(a).

Definition 1.4.11. Given a differential calculus (2(A), A, d) on an algebra A, the torsion Ty
of a connection V is a right A-linear map Ty : AoV +d : QL(A) — Q%(A). A connection V is

said to be torsionless if Ty = 0.

Remark 1.4.12. There are articles in literature which work with left connections (for example

[41], [51]). A left connection is a C-linear map V : QY(A) — QYA) @4 Q'(A) such that
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V(aw) = aV(w)+d(a) ® gw. In this case, the torsion is defined to be the map AoV —d. In this

thesis, we will only work with right connections.



Chapter 2

Levi-Civita connections on tame

spectral triples

In this chapter, we deal with the question of existence of Levi-Civita connections for a class
of spectral triples which we call tame spectral triples. As explained before, the formulation
of the question of existence and uniqueness of Levi-Civita connection for a bimodule £ over
a (possibly) noncommutative algebra A needs two ingredients: firstly, an analogue of the flip
map and a metric compatibility condition. We start with a class of spectral triples called quasi-
tame spectral triples (see Section 2.2) with the bimodule of one-forms & which postulates a
decomposition of the A-bimodule £ ® 4 £ analogous to Proposition 1.4.1. This gives rise to a
canonical A-bilinear map o : £ @4 & — £ ® 4 € (satisfying 02 = id) which plays the role of the
flip map in this chapter. As a bonus, we also demonstrate that if £ is the bimodule of one-forms
on a quasi-tame spectral triple, then £ always admits a torsionless connection. In Section 2.3
we define and study the notion of pseudo-Riemannian metrics on a quasi-tame spectral triple.
We also give a candidate of a canonical Riemannian bilinear metric for a spectral triple. This

solves the first problem.

Next, in order to formulate the metric-compatibility condition, we will work with a smaller
class of spectral triples which are the tame spectral triples introduced in Section 2.4. In the
same section, we also introduce the notion of compatibility of connections associated to tame
spectral triple with pseudo-Riemannian metrics. In Theorem 2.5.1, we prove that if g is a pseudo-
Riemannian bilinear metric on the space of one-forms of a tame spectral triple, then there exists

a unique connection on the space of one-forms of the spectral triple which is torsionless and

43
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compatible with g. Examples of tame spectral triples will be given in the next chapter. At the
end of this chapter, we have compared our approach with some of the existing works in the

literature.

All algebras discussed here will be unital and all spectral triples will be of compact type.

The contents of this chapter are from [16].

2.1 Centered Bimodules

As mentioned above, the existence and uniqueness theorem for Levi-Civita connections that we
are going to prove works for tame spectral triples. We will soon see (Remark 2.4.2) that the
space of one-forms of a tame spectral triple is a centered bimodule. In this section, we recall
the definition of centered bimodules and discuss some of their properties which will be useful

for us.

Definition 2.1.1. The center of a bimodule € over an algebra A is defined to be the set
Z(€)={ecf:ea=aeVa € A}

The bimodule £ is called centered if Z(E) is right A-total in &, i.e, the right A-linear span of
Z(€) is equal to E.

From the above definition, it is easy to see that Z(€) is a Z(A)-bimodule. Indeed, if e is an
element of Z(£), a belongs to Z(A) and b belongs to A, then

b(ea) = eba = (ea)b.

Remark 2.1.2. In [36], a related notion called central bimodules is defined. An A-bimodule €
is called central if every element e in € commutes with every element of Z(A).

If £ is a centered module in the sense of Definition 2.1.1, then it is also central. Indeed, if e is
an element of the centered bimodule £, then there exists some elements e; in Z(E) and a; in A,

for a finite number i, such that e =", e;a;. Then, for an arbitrary element o’ in Z(A),

! E : ! ! E : /
ea = c;,a;a = a e;a; = a e.
% %
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The converse however, does not hold in general as the notion of centered bimodules is more

stringent.

The following example motivates our interest in centered bimodules.

Example 2.1.3. If A = C*°(M) for some compact manifold M, and T'(E) is the A-bimodule
of sections of some smooth vector bundle E on M, then since A is commutative, the right A-
action on € can be defined to be the left A-action and so I'(E) is centered. In particular, the
A-bimodule Q¥ (M) of k-forms on M is centered.

The following is an example of a centered bimodule over a noncommutative algebra.

Example 2.1.4. Suppose A is a (possibly) noncommutative unital algebra. Then & = A @
- @A, i.e. the direct sum of finitely many copies of A, is a centered A-bimodule. The center
Z(E) is given by Z(A) @ --- @ Z(A). It is easy to see that Z(E) is right A-total in E.

As an immediate corollary to the definition of centered bimodules, we have the following

lemma:

Lemma 2.1.5. Suppose £ is a centered bimodule over A. Then the following statements hold:

(i) Z(E) is also left A-total in E.
(ii) The set {w @4 n:w,n € Z(E)} is both left and right A-total in € @4 E.

(iii) If X is an element of € @4 E, there exist w; in &, n; in Z(E) and a; in A such that
i

(i) If in addition, & is a free right A-module with a basis {e1,ea, - ,en} C Z(E), then any
element X in £ ®4 E can be written as a unique linear combination Zij e; @A eja;; for

some elements a;j in A.

Proof. Let e be an element of £. Since Z(&) is right A-total in &, there exist w; € Z(€) and q;

in A such that e = ), w;a;. But since w; belongs to Z(€), we have w;a; = a;w; for all i. Thus,

€= E Wi,
i
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proving that Z(&) is left A-total in £.

Now we prove part (ii). Let e and f belong to £. It is enough to prove that e ® 4 f belongs
to the complex linear span of the set {w ® 4 na : w,n € Z(£),a € A}. Indeed, if there exist
wi,n; € Z(€) and a; in A such that

6®Afzzwi ®A Nias, (2.1.1)

(2

then
COAf =) wi®Aan =Y witi ®AN = Y _ aiwi @AM
proving that {w ®4n:w,n € Z(&)} is left A-total in E® 4 £.

The fact that e ® 4 f is of the form (2.1.1) is also easily proved. Since Z(€) is right A-total
in &, there exist wi, n; in Z(€) and ag, b in A such that

e=Y wiar, f =Y mb
K z

and so

e@af = (O wrar) @a (D mb) =) wr @ axmb
K i

kil
= ) wp @4 mab.
kil

This finishes the proof of part (ii).

The third assertion directly follows from the second.
Finally, we prove the last assertion. By part (iii), X = ), wi ®4 nray where wy are in &, n
are in Z(€) and ay are in A. Since £ is a free right A-module with a basis {ej,---e,}, there

exist elements c;y, d; in A such that

wy = E €iCik, M = E ejdj.
i J
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Hence,

X = Z(Z eicz-k) XA (Z ejdjk)ak = Z e; @A cz-kejdjkak

ko 7 ik
= > ei®acjcpdipar =Y e Daei(d cindjrar)
1,5,k i,J k

where we have used the fact that ae; = e;a for all i since e; belongs to Z(€). Finally, uniqueness

of the expression follows from the fact that £ ® 4 £ is a free right A-module with a basis
{61‘ XA ej}ij. O

We will use the lemma above repeatedly in the chapter, sometimes, without mentioning.
For the purposes of this chapter, we will be dealing with a specific class of centered bimodules.

The next proposition is motivated towards the same.

Proposition 2.1.6. Suppose £ is an A-bimodule such that the map ué : Z() ®zuy A — &€
given by

uf(ze; ®Z(A) ai) = Zegai

is an isomorphism of vector spaces. Then we have the following isomorphism of A-bimodules:
EZ ARz Z(E) =2 Z2(8) @z A
The A-bimodule structure of Z(€) ®z(a) A is given by
ble ®z(4) a)c = e @z (4 bac,

where e is in Z(£), a,b,c are in A. The A-bimodule structure of A @z4) Z(E) is similarly
given. In particular, the set Z(E) is right A-total in £, i.e, £ is centered.

Proof. Since uf

is an isomorphism, any element e can be written as ), e;a;, where e; are in
Z(€) and a; in A. Let us make a small observation at this point. We claim that if b is in Z(A),
be =eb for allein €. Let e = ), e;a; as above. Then be =b) . e;a; = >, e;ba; = >, e;a;b = eb
as e; are in Z(€) and b is in Z(A). This proves the claim. It is clear from the definitions that the

map u® is left Z(A)-linear and right A-linear. Let us define a left A-linear, right Z(.A)-linear
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map v& : A®z4) Z(E) = € by

Ug(Zai X z(A) eg) = Zaie;.

Consider the map p : Z(€) x A = A®z4) Z(€) given by (e,a) = (a®z(4) e). Using the claim

made above, it is clear that p(ed’,a) = p(e,a’a), so that we get a well-defined map
P:2(€) @z A= ARz Z(E), given by (e ®z(4) a) — (a Rza) €).

It is in fact an isomorphism, with the inverse map, say ¢, given by

a®zae) = (e®zw) a).

£

Observe that v& = u€ o g, hence v¢ is an isomorphism as well. Thus, the map v is also a vector

space isomorphism as well.

Next, we endow Z(&) ®z(4) A with an A-bimodule structure defined by
be ®z(u4) a)c = e ®z(4) bac,

where e is in Z(&), a,b,c are in A. Then it is easy to see that u defines an A-bimodule

isomorphism. The other isomorphism follows by using the map v¢. ]

The following theorem is crucial for this chapter.

Theorem 2.1.7. (Theorem 6.10 of [85]) Let £ be an A-bimodule which is centered. Then there

erists a unique A-bimodule isomorphism o : £E @4 E — £ @4 & such that
oM w@an) =nQaw

for all w,n in Z(E). Moreover, (0°*)? = id so that PS50 = £(1+0°™) : EQUE = ERAE is

sym

an A-bilinear idempotent map.

Proof. We only need to remark that the equation (¢°*")? = id is derived in the proof of Theorem

6.10 of [85]. Indeed, since £ is centered, € ® 4 £ = Spanc{e®4 fa: e, f € Z(£),a € A}, by part
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(iii) of Lemma 2.1.5, it is enough to observe that

()2 (e ®a fa) = (0 (e ®a fa)) = 0 (f @A ca) = e @4 fa.

Let us make the following observation:

can (

Lemma 2.1.8. For a centered A-bimodule £, we have o can(

wRge) =eRaw and oM (e@ qw) =

w®ae for allw in Z(€) and e in £.

Proof. Since & is centered and o is right A-linear, it is enough to prove the lemma for elements

e of the form nb where 7 is in Z(&) and b is in A.

We compute 0" (w®41nb) = 0 (w@amb=NRAwW)b=NRawb=1nRAbw=nbR 4w =

e w.

The other equality follows similarly. ]

We will end this subsection with Lemma 2.1.10. But before that, we want to state and
prove Proposition 2.1.9 whose proof is basically a reformulation of the proof of the existence

and uniqueness of Levi-Civita connections for pseudo-Riemannian manifolds.

Let V be a complex vector space and flip denotes the map from V®cV — V®cV de-
fined on simple tensors by the formula flip(v®@cw) = w@cv. We will use the maps flip;y :=

Then the map PC := % is an idempotent. We will denote Ran(P®) by V @g™ V. We will
need the maps Pg := PC®cidy and P§C3 := idy ®c PC. Thus, for elements vy, v2, vz in V,

1
PS5 (v1®cv2®@cv3) = 5 (018cv2 + v2@cv1)@cvs

1
and Pé%(m@(cvg@@vg) = U1®c§(v2®<cvg + v3@¢v2).

Proposition 2.1.9. If V is a vector space, then each of the following maps is an isomorphism

of vector spaces.

PS!Ran(p§3) : Ran(Pg) = Vec(V @™ V) — Ran(P) = (V @™ V)ocV
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P33 lRan(ps) : Ran(Pf3) = (VRc™™V) @c V = Ran(Pg) = Vac(V @™ V)

Proof. We prove the statement about the first of the two maps since the proof for the other
map is similar. Let us begin by proving that the first map is one-to-one. Let X be in Ran(Pé%)
such that PG(X) = 0. That is, flipy3(X) = X and flip;5(X) = —X. Now, it is easy to verify

the following braid relations:
flipoflipgsflip;s = flipgzflip;oflips. (2.1.2)
But we have flip;5flipysflip;o(X) = —flip;5flipes (X) = —flip;5(X) = X. On the other hand,
flipysflip;oflipas (X) = flipysflipio(X) = —flipys(X) = —X.

This implies, X = —X, i.e. X = 0. Thus, the map Pg|Ran(P§3) is injective.

Now we come to surjectivity. If V is finite dimensional, surjectivity follows since Ran(Ps3)
and Ran(Pg) are of the same dimension and PS|Ran(P§3) is injective. In the general case,
given any £ in (V @™ V)®cV such that flipys(£) = &, there exists a natural number n and
linearly independent elements ey, eg, ..., e, of V such that £ belongs to (K ®Eym K)®c K, where
K := span{ej,ea,...,e,}. If P}ng denotes the map PS\K@)CK@CK, then by the surjectivity of
P{CQ|RM( pg,) for finite dimensional vector spaces, there exists 7 in K@c (K ®¢ ™ K) such that

P}%m(n) = £. Since € is arbitrary, the proof of surjectivity is complete. O

Lemma 2.1.10. Let £ be a centered A-bimodule and 0 : ER4E — E R4 E be as in Theorem
2.1.7. Define P := 3(1405") : EQUERQAE = EQAEQAE, (i,5) = (12),(13),(23). Then

the following maps are bimodule isomorphisms:
Pf§n|Ran(P5§") : Ran(P35") — Ran(P3"), P2C§m|Ran(Pf§m) : Ran(P5") — Ran(Ps3").

Proof. We begin by noting that since ¢“*" is a bimodule map, the maps o{3", 055", 073" : £ ® 4
ERAE = ERAE R E defined as 0" ® 4idg, idg ® 4 0, 075 055" (3" respectively are well

defined bimodule morphisms. The proof of injectivity follows by a verbatim adaptation of the

can

arguments of Proposition 2.1.9, as the braid relations (2.1.2) do hold for the maps o as well.



2.1. Centered Bimodules 51

For surjectivity, we also use Proposition 2.1.9. Consider the vector space Z(€)®cZ(€)RcZ(E).
By Proposition 2.1.9, taking V = Z(&), we have that

P Pi(Z(E)®cZ(€)@cZ(€)) = PR(Z(£)®cZ(£)cZ(E)). (2.1.3)

Let g : Z(£)@cZ(E)®cZ(E) = Z2(€) @z(a) Z(€) ®za) Z(€) be the canonical quotient map.
Let us also define a map P : Z(&) ®z4) Z2(E) = Z(E) @z(a) Z(€) given by

1
Pean(w @z4) 1) = g(w Rz(4) N+ 1 Oz(4) W)

To see that this map is well defined it is enough to note that Z(€) is a centered Z(.A)-bimodule
with Z(Z(€)) = Z(€). Hence, by Theorem 2.1.7, there exists a well defined Z(.A)-bilinear
idempotent map Pan = (Pgm)ze) : 2(E) ®za) Z2(E) = Z(8) ®za) Z(€). Tt is easy to check

sym

that for all w,n,§ in Z(€),
¢P5(wecn®ct) = PE q(wRcn®ck), (2.1.4)

qPG PS(wecn@ct) = PGPS q(w®cn®ct), (2.1.5)
where ]31%“/“ = pean ®z(a) ldz(g) and Po3" = idzg) ®z 4 Pcan . This implies that
PEPENZ(E) @2y Z(E) @z Z(E)) = PP q(2(6)@cZ (€)@ Z(E))
=P Py3(2(8)RcZ(E)@cZ(€)) (by (2.1.5))

=qP3(Z(£)@cZ(£)®cZ(€)) (by (2.1.3))

=PE"q(2(£)@cZ(E)®cZ(£)) (by (2.1.4) = PENZ(E) ®z(a) Z(€) ®z(a) Z(E)).
Now, let us define the map
p:2(E) @z Z(E) ®z4) Z2(E) @zu) A= ERAERAE
given by p(w ®@z4) 1 ®z(4) § Dz(4) @) = w 4N Q4 &a. Since {wOaN®4E:w,n, & € Z(E)}

is right A-total in £ ® 4 £ ® 4 £, p is an onto map. Moreover, by simple computation, it follows

that P{3" oyt = po (PE" @z(4) ida) and PE PS5™ o p = po (P PS;™ @z(4) ida). Since
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Ran(]%‘?i:n]aggn) = Ran(]/%gn), we can thus compute

Ran(P3" Py3™) = Ran(P3" P33™ o 1) (since p is onto)
—Ran(p o (PF" " © 204 id)) = Ran(juo (PE" (4 id )

=Ran(P3" o u) = Ran(P3") (since p is onto).

Thus, we have that Pi3"[Ran(pgzn) : Ran(P53") — Ran(Py3") is an onto map.

The surjectivity of the other map follows in a similar way. O

2.2 Quasi-tame spectral triples

Recall that in Subsection 1.3.1 we defined Connes’ space of forms for a spectral triple and
in Subsection 1.4.2, the notion of torsionless connections on the space of one-forms. In this
section, we define a certain class of spectral triples which we call quasi-tame spectral triples
and prove that the bimodule of one-forms Q}D(A) of any quasi-tame spectral triple admits a
canonical torsionless connection. Moreover, in the next subsection, we will use the canonical
A-bilinear map o of a quasi-tame spectral triple (see Definition 2.2.1) to define the notion of a

pseudo-Riemannian metric.

From Proposition 1.4.1, we know that if M is a manifold with Q'(M) as the space of one-

forms, we have the following decomposition of C'* (M )-bimodules:
QY (M) ®coo(ary 21 (M) = Ker(A) & F.

Here, Ker(A) is the space of all symmetric two-tensors and F is the space of all anti-symmetric

2-tensors which is isomorphic to Q22(M). This motivates the following definition.

Definition 2.2.1. We say that a spectral triple (A, H, D) is quasi-tame if the following condi-
tions hold:

(i) The bimodule Q%,(A) is finitely generated and projective as a right A-module.

(ii) There ezists a right A-module F such that the following equality holds as right A-modules:

Qp(A) @4 Qp(A) = Ker(A) @ F. (2.2.1)
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(iii) The idempotent Py € Hom4(QL(A) @405 (A), QL (A) @404 (A)) mapping onto Ker(A)

and with kernel F is an A-bimodule map.

Then we will denote Ker(A) by the symbol Q,(A) @™ Qp(A).
Moreover, o will denote the map 2Psym — 1.
The following lemma collects some consequences of the above definition.

Lemma 2.2.2. Let (A, H,D) be a quasi-tame spectral triple. Then we have the following

(i) Qp(A) @F™ QL (A) :=Ker(A) and Ran(A) are A-bimodules.
(ii) o is an A-bimodule map.

(i) Pfym = Psym and 0? = id.

Proof. By Lemma 1.3.10 and Definition 1.3.11, the map A is A-bilinear, hence Ker(A) and
Ran(A) are A-bimodules. This gives us the first claim. The second claim, i.e the .A-bilinearity
of o follows from the A-bilinearity of Psyy. The third claim follows from the fact that Psyy, is

an idempotent. O

Let us recall (Definition 1.4.11) that a connection V on Q5(A) is said to be torsionless if
Ty = AoV +d = 0. We have the following result as a consequence of the assumptions made in

Definition 2.2.1.
Theorem 2.2.3. If (A, H, D) is a quasi-tame spectral triple, there exists a torsionless connec-

tion on QL (A).

Proof. We have a sub-bimodule F = Ran(l — Psym) of Qh(A) @4 Q}(A) and a bimodule
isomorphism, say Q, from F to Ran(A) = Q% (A), satisfying

Q((1 = Py (8)) = A(B) for all B € 2 (A) ©4 2 (A). (2.2.2)

Moreover, as Q5(A) is finitely generated and projective, we can find a free rank n right A-
module ARcC" containing Q}:,(A) as a complemented right submodule. Let p be an idempotent

in M, (A) = Hom 4(A®cC", A®cC™) such that Q1 (A) = p(A®cC™). Let ¢;,i = 1,...n, be the
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standard basis of C" (viewed as 14®cC"™, where 14 is the identity element in A) and define
Vo : A®cC™ — QL (A) @4 Q5 (A) by

Voleia) := —Q ' (d(p(e;)))a + ple;) @ada, i=1,...,n,a¢c A (2.2.3)
Then Vo = Voloy 4 (2.2.4)
defines a connection on QL (A).
Since Ran(Pym) = Qp(A) @5™ Qf(A) = Ker(A), we observe that
Ao Peym = 0.
Hence,
Ao QTHAB)) = Ao QHQ(L — Pym)B) = M(1 — Pym)B) = AN(B) ¥ B € Qp(A) ®4Qp(A)

by using (2.2.2).

Thus, Ao Q™! : Ran(A) — Ran(A) is the identity map. Since d(p(e;)a) belongs to the image

of the map A, we can write

NoVo(plea) = —A(Q ' (d(p(ei))a)) + ples) Ada (by (2.2.3))
= —d(p(ei))a+plei) Ada
= —d(p(ei)a).
Therefore, Vy is a torsionless connection on Q},(A). O

2.3 Pseudo-Riemannian metrics on quasi-tame spectral triples

In this section, we want to introduce a noncommutative analogue of pseudo-Riemannian metrics.
Recall that in Definition 1.4.4, we had defined pseudo-Riemannian metrics on manifolds. In the
classical case there is no difference between right module maps or bimodule maps, as the left
and right C°°(M)-actions on the module of forms coincide. This is no longer true in the

noncommutative framework. In fact, as we will see, requiring a pseudo-metric to be a bimodule
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map restricts the choice of metrics. It is reasonable to require one-sided (right/left) A-linearity

only. For this reason, we give the following definition:

Definition 2.3.1. Let & := Q},(A) be the A-bimodule of one-forms of a quasi-tame spectral
triple (A, H, D) and o be the A-bilinear map of Definition 2.2.1. A pseudo-Riemannian metric
g on € is an element of Homy (€ ®4 &, A) such that

(i) g is symmetric, i.e. goo = g,

(it) g is non-degenerate, i.e, the right A-linear map V, : € — £* defined by Vy(w)(n) =

g(w ®4n) is an isomorphism of right A modules.

We will say that a pseudo-Riemannian metric g is a pseudo-Riemannian bilinear metric if g is
an A-bimodule map. It is called a Riemannian metric if for all wy,ws,...,wy in £, the matrix
((g(wf ®awj)))ij is a positive element of My (A) for all n.

As an immediate consequence of the definition, we have the following important proposition.
Proposition 2.3.2. Suppose g is a pseudo-Riemannian bilinear metric on the space of one-
forms € == QL (A) of a quasi-tame spectral triple. Then

gw®an) € Z(A) if both w and 7 belong to Z(E). (2.3.1)

In particular, if € is a free right A-module of rank n admitting a central basis {w;}; C Z(E),

then the components of the metric g;; := g(w; ® 4 w;) belong to Z(A).

Proof. The proof is a trivial consequence of the fact that ¢ is an A-bimodule map. Indeed, since

w,n are in Z(&),

gw®an)a=glwana) =glw®aan) = glwa®@an) = ag(w @41).

We record a remark at this point as clarification to the above result.

Remark 2.3.3. If A is noncommutative, the metric need not take values in the center on the
whole of E @4 E. For example, if w,n is in Z(E) and a in A, then g(w ® 4 na) typically does not
belong to Z(A) unless a is in Z(A).
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Moreover, our definition of nondegeneracy of g is stronger than the definition given by most
authors who require only the injectivity of V. However, in the classical situation, i.e, when A =
C>°(M), these two definitions are equivalent as Vy is a bundle map from T*M to (T*M)* =2 TM

in that case and the fibers are finite dimensional.

To compare our definition of a pseudo-Riemannian metric with that of [41], [83] and [6], let us
consider the case when & is free (of rank n) as a right .A-module, i.e, £ is isomorphic to C"®c.A
as a right A-module. Let e;,7 = 1,...,n be the standard basis of C". A pseudo-Riemannian

metric in our sense is determined by an invertible element A := ((gs5))i; of M, (A), where
9ij = 9((ei®c1) ®a (e;®cl)) and g((ei®ca) ®.4 (€;@cb)) = gijab

for all a,b in A. On the other hand, a pseudo-metric in the sense of [6] will be given by the
sesquilinear pairing

((ei ®c a, €5 @c b)) = a’gi;b.

Thus, there is a one-to-one correspondence between these two notions of pseudo-metric at least
for the case when £ is free as a right A module. In fact, they do agree in a sense on the basis

elements. But their extensions are quite different as maps.

Throughout this section, we will assume that (A, H, D) is a quasi-tame spectral triple, so
that we can freely use the notation ¢ introduced in Definition 2.2.1 and the results in Lemma

2.2.2.

Definition 2.3.4. Suppose g is a pseudo-Riemannian bilinear metric on £. We define
9P (ERAE) DA(E®AE) = A, by
9P (e@af)@a (¢ @af)) =gle@ag(f ©ae)f)

We spell out the relationship between g(2) and the inner product on the internal tensor
product of Hilbert modules. Suppose (A, H, D) is a spectral triple, £ the bimodule of one-
forms. We will need to make explicit use of the x-structure on A and & := QL (A) inherited
from B(H). Let us recall the conjugate bimodule £ (see [55], [9] and references therein) which

is equal to £ as a set but with the A-bimodule structures defined by the following equations:
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Here, € is an element of £ viewed in £.

We have a well-defined map S : E®4 & — £ ®4 &, defined by

S(e®af)=f®a€

Now suppose ¢ is a pseudo-Riemannian bilinear metric on £. Then the following map makes £

into a right A-pre-Hilbert module:

({e, g = g(€e®af).

On the right hand side of this equation, we have used the obvious identification between £ and

.
Consequently, the A-valued inner product on the internal tensor product £ ® 4 £ is given by
((e@a fre' @A)y = (f, {{e;€))gf )y

We refer to [55] for the details.
We claim that ((e @4 f,€/ @4 f) g2 = 9P (S(e®a f) @4 (¢ @4 f')). Indeed,

((e@afe@af )y = {fgE0ae)f))y
= g(foage@ae)f)=g?(Foae)@a(c @af))

= gB(S(e@af)@al( @af)).

We end this subsection by showing that the map ¢(®) is nondegenerate in a suitable sense.

Proposition 2.3.5. Suppose £ is the bimodule of one-forms of a quasi-tame spectral triple. We
assume that £ is centered as an A-bimodule and also that &€ is finitely generated and projective
as a right A-module. Let g be a pseudo-Riemannian bilinear metric on £. Then the map Voo

ERAE = (E®AE)* defined by

Vi (e@a )€ @af)=gP((e@af)@ale®af))

is an isomorphism of right A-modules. Moreover, the maps ¢ and V2 are both left A-bilinear.

Proof. Throughout the proof, we will repeatedly use Lemma 2.1.5.
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Let us start by proving that the map V) is onto. Since £ is a finitely generated projective
module over A, we can use the isomorphism of (£ ® 4 £)* with £* ® 4 £* (Proposition 1.1.14).
Thus, it is enough to show that V(e)® 4V, (f) belongs to the range of V(2 for arbitrary elements
e, [ of Z(€). Indeed, if x;; in E®4E is such that Vi) (ij) = Vy(ei) ®a Vy(f;) for some elements
ei, [ in Z(&), then for elements a;,b; in A and w = )" e;a;, n =Y f;b;, we have

Vy(w) @4 Vy(n Zv (ei)a; @4 Vy(fi)b; _ZV (e) @4 Vyg(aifi)b;

= ZV 61 ®.AV f] azb —Z e)) .’L’Z] azb —Z fe) 1'74@1

where we have used the fact that Vj is A-bilinear as g is a bilinear pseudo-Riemannian metric.

Now, for e, f in Z(€) and w,n in £, we compute

Vo (f@ae)woan) =g?(foae) @a(w@an) =g(f @agle@aw)n)
= glgle@aw)f ®an) =gle®@aw)g(f @an) = (Vg(e) ®a Vy(f))(w @A)
Hence, we have Vy(e) @4 Vy(f) =V o (f @a€).
For proving that Vg(z) is one-to-one, let us suppose that for ¢ = 1,2, ---n, there exist w;,n; in €

such that for all ', 7' in &,

9(2)((2 Wi @AN;) DA (w’ XA 77’)) =0.

%

Then by the definition of ¢, we see that

Vo) wig(ni @aw')) = 0.

i

By nondegeneracy of g, we conclude that

> wig(n @aw') =0.

%

Thus, if (¢ ¢ is the map introduced in Proposition 1.1.8, then we have:
Cee()wi®am)(w) =0forall ' €&,
i

implying that ) w; ®41; = 0.
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The left A-linearity of V (2 comes from the left A-linearity of g. The right A-linearity of V()
comes from the fact that g(?) is a well-defined map on (£ ®4 &) @4 (€ @4 E). O

2.3.1 The canonical Riemannian (bilinear) metric for a spectral triple

Let (A, H, D) be a p-summable spectral triple (Definition 1.3.4) of compact type. Before we end
this section, we want to derive some sufficient regularity conditions for obtaining a canonical
bilinear form (candidate of a pseudo-Riemannian bilinear metric) on the module &£ := QL (A)

of one-forms.
Consider the positive linear functional 7 on B(H) given by

Tr(X|D[™?)

7(X) = Lim,, (D] )

)

where Lim,, is as in Chapter 4 of [25]. We will denote the x-subalgebra generated by A and
[D, A] in B(H) by Sp. We will assume that 7 is a faithful normal trace on the von Neumann

algebra generated by Sy.

Let us recall from [41] the construction of an A”-valued inner product ((- , -)) on & = Q4 (A)

defined by the following equation:
7(((w,n)) a) = T(w'na) Va € A” and w,n € € C B(H).

Here, w* denotes the usual adjoint of w in B(H).
As seen in Theorem 2.9 of [41], it can be proved that ({w,n)) takes values in A” C L?(A", 7).
Now define a natural A”-valued bilinear form g as follows:

Lemma 2.3.6. Let g: EQcE — A’ be given by

g(w®en) = (W' n))-

Then for all w,n in € and a in A, we have:

g(wa®cn) = g(w®can), glawdcn) = ag(w®cn), g(wcna) = g(wcn)a.
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Proof. The proof of the above statements are straightforward consequences of the properties of

an inner product and the fact that (Xa)* = a*X* for all a, X in B(H). O

Thus, g descends to an A-bilinear, A”-valued map, to be denoted by g again. The restriction
of g to Q5 (A)®.40},(A) is the candidate of a Riemannian bilinear metric in our sense, provided

g(w®an)isin A for all w,n in QL (A).

Let us recall the definition of a quasi-tame spectral triple as well as the notation o from

Definition 2.2.1. Then we have the following definition:

Definition 2.3.7. Let (A, H, D) be a quasi-tame spectral triple. Suppose the A-bilinear map
g as in Lemma 2.5.6 is A-valued, Vg : € — £ is nondegenerate and go o = g, i.e., it gives a
bilinear metric. Then we call g a canonical Riemannian bilinear metric for the spectral triple

(A,H,D).

When A = C*°(M) for a compact Riemannian manifold M, then this construction recovers
the usual Riemannian metric (see page 128-129 of [41] and Subsection 2.1.3 of [40]). However,
in the general noncommutative set-up, one usually needs additional regularity assumptions to
ensure that g takes values in A (as opposed to A”). This is the content of the next proposition
for which we will make use of the noncommutative Laplacian introduced in Proposition 1.3.13

and its properties.

Proposition 2.3.8. Let (A, H, D) be a p-summable spectral triple and T is faithful on the von-
Neumann algebra generated by Sy. Let ’H}D be the Hilbert space of one-forms and L = —d*d as
in Proposition 1.5.185.

Suppose that for all X in the x-algebra generated by A and [D, A], the map
R — B(H) defined by t — P Xe~iP

is differentiable at t = 0 in the norm topology of B(H). If we moreover assume that L(A) C A,
then
glw@an) €A for all w,n € QhH(A).

Proof. In this proof, we will denote the domain of the unbounded operator 7' by Dom(7"). We

begin by noting that since 7 is faithful on the von-Neumann algebra generated by Sy, the vector
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space QB(A) can be equipped with a semi-inner product defined by the equation:
(n,n') = 7(n™n).

Moreover, as L(A) C A, all the hypotheses of Proposition 1.3.13 are satisfied.

We claim that
1
g(da ® db) = —§(£(b*a*) —L(b")a* —b*L(a")) YV a,be A,

where d(a) = +/—1[D, a] as in Subsection 1.3.1.

Indeed, for all ¢ in A, by using the self-adjointness of £, £(z*) = (L(z))* (Lemma 3.2, [43]
and Lemma 5.1 of [43]), we have

r(((da),db)) &) = (({(da),db.c))
— (d(a®), dbc) (as (da)* = d(a®))
— (o, d(dbc))
_ —% (a*, (bL(c) — L(B)e — L(be))) (by (1.3.2))

1
= -3 (L(b*a™) — L(b")a" —b*L(a™),c) (as L is self-adjoint and by (1.3.1))

= o ((L0%a") — L)a® ~ b L(a"), )

Thus, by the normality and faithfulness of 7 on A”, we conclude that

g(da ®.4 db) = {{(da)*,db)) = ({da*, db)) = —(%L’(b*a*) — L(b)a* — b*L(a”)).

This proves the claim. Since £(A) C A, the proof of the proposition is complete. O

Remark 2.3.9. Our 7-[}) and d are the same as the bimodule and derivation respectively con-

structed by Cipriani and Sauvagoet ([24]) from the Dirichlet form

[N

(a,b) = —(L(a),b), a,b € Dom((—L)2).

It also follows from the definition of inner product that the map Vj is one-to-one. However,

the invertibility of V,, which is the nondegeneracy in our sense, has to be verified case by case.
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2.4 Tame spectral triples and metric compatibility of connec-

tions

In this section we finally define the notion of ‘tame spectral triples’, the class of spectral triples
for which our main result, Theorem 2.5.1 holds. In Subsection 1.4.1, we had recalled the notion
of metric-compatibility of connections in pseudo-Riemannian geometry. We use the tameness
of the differential calculus to define a suitable notion of metric-compatibility of connections.
In Subsection 2.4.1, we define and study tame spectral triples. We observe that the bimodule
of one-forms of a tame spectral triple is a centered bimodule in the sense of Section 2.1. In
Subsection 2.4.2, we prove a technical result which will be used in the next chapter. Subsection
2.4.3 is devoted mainly to defining compatibility of a connection on the space of one-forms of
a tame spectral triple with a pseudo-Riemannian bilinear metric. In that subsection, we also

show why our definition is compatible with the usual notion in the classical case.

2.4.1 Tame spectral triples

Let us recall the maps Piym and o from Definition 2.2.1 and the map o°*" from Theorem 2.1.7.

Definition 2.4.1. Suppose (A, H, D) is a spectral triple such that the following conditions hold:

(i) € := QL (A) is a finitely generated projective right A-module,

(ii) The map u® : Z(£) @z(a) A — & defined by

uE() e ®za @) =) da;

is an isomorphism of vector spaces,

(11i) Suppose that there exists a right A-module F such that € ® 4 E = Ker(N) & F as right

A-modules,

(iv) o = o,
Then, we say that (A, H, D) is a tame spectral triple.

Here, the existence of the map o follows from the decomposition £ ® 4 £ = Ker(A) & F as in

Definition 2.2.1. Moreover, the map ¢“" is as in Theorem 2.1.7.
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Remark 2.4.2. By virtue of Proposition 2.1.6, the condition (ii) of Definition 2.4.1 implies that
the bimodule £ of one-forms of a tame spectral triple is centered. So the statement o = "
makes sense. Secondly, we are allowed to use all the results of Subsection 2.1 on centered

bimodules for tame spectral triples.

It is worthwhile to explain the significance of the equality o = ¢®®". This is what we record

in the following two propositions:

Proposition 2.4.3. If (A, H, D) is a tame spectral triple and g is a pseudo-Riemannian metric

on & = QL (A), then we have

gwean) =g(n®@aw)

if either w or n belongs to Z(E).

Proof. Let w be in Z(€) and n be in €. As 0 = 0", Lemma 2.1.8 implies that

can (

gw®an) =goo(w®an) =glc™(wean) =gn@aw).

The next proposition should be compared with the classical results in Proposition 1.4.1.

Proposition 2.4.4. Suppose (A, H, D) is a tame spectral triple

(i) Let € = QL(A). Then the decomposition € 4 E = Ker(A) @ F on simple tensors is

explicitly given by
1 1
wRAna= §(w®Ana+n®Awa) + §(w®,417a—77®,4wa),

for all w, n in Z(E) and for all a in A.

(i) If € is a free right A-module with a central basis {e1,e2,...,en} and g is a pseudo-
Riemannian metric on &, then the components g;; = g(e; ®4 €j) of g are symmetric

m i and j.

Proof. The second assertion of Lemma 2.1.5 implies that any element of £ ® 4 £ is a C-linear

sum of elements of the form w ® 4 na, where w, n are in Z(€) and for a in A. Since o = o,

1 1
Poym(w ®@ana) = 5(1+ 0" (w @ana) = 5w @ana+n@awa)
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1 1
and (1 — Pym)(w ®4na) = 5(1 — 0" (w®ana) = g(w @Ana—1nQ4wa).

Since Py is an idempotent, this implies that %(w ®4na +1®4 wa) is in Ran(Psym) = Ker(A)
and 3(w ®4 na — N ®4 wa) is in Ker(Poym) = F.
Now we prove the second assertion. Since g is a pseudo-Riemannian metric, and o = o“®" we

have

gij = gle;®aej) =goo(e;®ae;) =glej ®aer) = gji

This finished the proof. O

Let us make the following observation at this point:

Lemma 2.4.5. Suppose that (A, H, D) is a tame spectral triple. Then Py is an A-bimodule

map. In particular, a tame spectral triple is a quasi-tame spectral triple.

Proof. Since equation (2.2.1) is satisfied, Psym is a right A-linear map by definition. But as
o = 0" and 0°" is A bilinear by Theorem 2.1.7, ¢ is A bilinear. Therefore Psyy, = HT” is also

A bilinear. O

2.4.2 A remark on the isomorphism of the map u®

In this subsection, we derive a sufficient condition which ensures the isomorphism of the map
u®. The following result will be crucially used in Section 3.3, where we prove the existence
of the Levi-Civita connection on a class of Connes-Landi isospectral deformations of classical

spectral triples.

Proposition 2.4.6. Suppose (A, H, D) is a spectral triple. Suppose that there exists a unital
subalgebra A" of Z(A) and an A’-submodule &' of Z(E) such that £ is projective and finitely

generated as a right A'-module. If the map
ub &' o A= E,

defined by

ugl(Ze; X ai) = Zeéai
i i
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is an isomorphism of vector spaces, then u¢ : Z(&) ®z4) A — &€ is an isomorphism. Moreover,

£

if Z(€) is a finitely generated projective module over Z(A), then u® is an isomorphism if and

only if there exists £’ and A’ such that ug, is an isomorphism.

Proof. If u&, is an isomorphism, we claim that Z(£) = & ®@ 4 Z(A). If our claim is true, then
we have

Z(€) ®Z(A)A§5/ @ Z(A) ®Z(A)A:5' QupAZE,

so that u® is an isomorphism. Thus, it is enough to prove our claim.

By a verbatim adaptation of the proof of Proposition 2.1.6, we have that & @4 A = £ as
bimodules where the bimodule structure of &' ® 4+ A is defined by by (€’ @ 4 a)be = €’ ® 4 byabs.
Since £ is a centered A-bimodule, this implies that & ® 4 A is also a centered A-bimodule
and Z(&' @ A) = Z(€). Since Z(A) C A, we have that &' @ 4 Z(A) C & @4 A. Now, let
>, €i @4 a; be an arbitrary element of &' ® 47 Z(A). For any element b in A, since a; are all in
Z(A), we have that b(>_, e; @ a;) =, e @a ba; =), e; @ ab = (>, €; ® 4 a;)b. Thus, we
have that ). e; ® 4 a; is in Z(' ® 40 A) and that &' @4 Z(A) C Z(&' @4 A) = Z(E).

For the reverse inclusion, we use the fact that £’ is finitely generated and projective as a
right A’-module. Thus, there exists a free A’-module G and an idempotent P on G such that
P(G) = &'. Let my, mg,---my, be a basis of G. Therefore,

Ex2E N A=P(G) @4 A= (P @4 ida)(G @4 A).

Clearly, P ® 4 id4 is an idempotent on G ® 4/ A and thus for all y in &’ @ 4+ A C G @4 A, we

have

(P ®aida)(y) =y (2.4.1)

On the other hand, Z(£ ®4 A) is also a submodule of G ® 4+ A and if z is an element of
Z(& @u A) = Z(E), there exist unique elements a; in A such that z = )", m; ® 4 a;. Since
xb = bx for all b in A, we see that a; in Z(.A) for all i. Hence,

(P @ ida)(z) = Z(P @ ida)(m; @ u a;) = Z P(m;) @ a; € E' @ Z(A).

But by (2.4.1), (P ® 4 id4)(x) = « so that z is in &' ® 4 Z(.A). Since z is an arbitrary element
of Z(&' @ u A) =2 Z(E), this completes the proof. O
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2.4.3 The metric compatibility of a connection on QL(A)

In this subsection, we formulate a notion of metric compatibility of a connection on the space of
one-forms of a tame spectral triple. Recall that in Proposition 1.4.8, we had given an equivalent
definition for the compatibility of a connection with a pseudo-Riemannian metric on a manifold.
The definition of metric compatibility (Definition 2.4.11) in this section is motivated by that
equivalent formulation. However, since our algebra A is in general not commutative, and the

left and right-actions of A on Q},(A) do not coincide, we require some preparation.

Throughout the rest of this section, we will work with tame spectral triples and continue to
denote QE (A) by the symbol £. By Lemma 2.4.5, we are allowed to use all results concerning a
quasi-tame spectral triple proved before and also the A-bilinearity of the map Fsyn,. Moreover,
g will denote any pseudo-Riemannian bilinear metric (not necessarily the canonical one) on the

bimodule & of one-forms.

Definition 2.4.7. Let V be a connection on £. Then we define HS(V)  Z(E)®cZ(E) — & by

the map given by

I(V) (w&en) = (9 ®.41d)o23(V(w) @40+ V(1) @4 w).

Then, we have the following:

Lemma 2.4.8. HS(V) descends to a map from Z(E) @za) Z(E) to €, to be denoted by the

same notation. Moreover, for all a’ in Z(A) and w,n in Z(&)
I (V) (w @z (4) na’) = My (w @z 4y 1)a’ + g(w @4 1)da’. (24.2)

Proof. We write V(n) =, 771(1) ®A 17(2), where 17(1), 772(2) are in £ and the sum has finitely many

) (]
terms. Since w,n are in Z(€), Lemma 2.1.8 implies that
®
(2

23(w ®add' ®an) =w@an®add and o33(V(n)a' @aw) = M waweanPd.
7
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Using these equations and the Leibniz rule for the connection V, we get

I1) (V) (wd'®¢n)
= (g®aid)os(V(w)d ®an+w®add @4n+V(n) @4wad)

= (9®4id)o2s(V(w) @4nd) + glw @amdd + > g @aw)nd

= (9®4id)oes(V(w) ®4na") + g(n ®4 w)da’ +Zg ®Aw) @) " (by Proposition 2.4.3)

i

= (g®4id)o(V(w)@and +n®4dd @ 4w+ V(n)d @4 w)
= (9®aid)ox(V(w) @ana + V(nd') @4 w)
= Ty(V)(w&cna)

)-

= I(V)(w®ca'n

This proves the first assertion. To prove the second assertion we make the following compu-

tation: for @’ in Z(A) and w,n in Z(£), we have:

IP(V)(w ®z(4) 1) = (9 ©.41d)023(V(w) @4 na’ + V(na') @4 w)
= (9 ®4id)o2(V(w) @ana’ +V(n)d @4w+n®4dd @4w)
(since V is a connection)
= (9 ®aid)o23(V(w) ®an+ V(n) @aw)a’ + (g ®4id)(n ®aw @4 da’)
(using Lemma 2.1.8)

=Ty (w @z N)a’ + g(w @ n)dd,
where we have used Proposition 2.4.3. O

For the next definition, recall that uf is left Z(A)-linear so that the map id 2(€) ®z(A) uf is
well-defined.

Definition 2.4.9. We define a map from Z(E)®@z(4) Z(E)@z(a) A to = ER4E by the formula:

uFEAE = (1 ®41de) o (idz(e) @z(a) u°).

£

We note that u¢®A€ is an isomorphism since u is so.
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For allw,n in Z(€) and a in A, define I14(V) : E @4 E — € by

Iy(V) 0 u*®48 (w @ z(4) N ®z(4) @) = T)(V)(w @ z(4) n)a + g(w @4 n)da

Therefore, for w,n in Z(€) and a in A, we have
My (V) (w ©@4 na) = Mg (V)(w @z Ma + g(w @4 n)da. (2.4.3)
Proposition 2.4.10. Let dg: E @4 E — £ be the map defined by

dg(e ®a f) =d(g(e ®a f)).

The map 114(V) defined in Definition 2.4.9 is a well defined map from € @4 E to E. Moreover,
II,(V) —dg: E®a E — & is right A-linear.

Proof. Since the map u¢®A€ is an isomorphism, it is enough to check that the map
HQ(V) o uE®AE . Z(€) X z(A) Z(€E) X z(A) A—E
is well defined. For w,n in Z(£), a in Z(A), b in A, the equalities
I1,(V) 0 ut®4¢ (wa@cn@cb) = 11, (V) o ué @48 (w@can@ch) and

I1,(9) 0 w4 (Wi cnasch) = I, (V) o w4 (wscn@cab)
follow from Lemma 2.4.8 and Equation (2.4.2) respectively.

Lemma 2.1.5 implies that {w ®4n: w,n € Z(€)} is right A-total in € ® 4 £. Therefore, for

proving the right A-linearity of the map II4(V) — dg it is sufficient to evaluate it on w ® 4 nab,



2.4. Tame spectral triples and metric compatibility of connections 69

where w,n € Z(€), a,b € A, since uf®4¢ is an isomorphism.

(Iy(V) — dg)(w ©.4mab) =Ig(V)(w @z (a) M)ab + g(w ©.41)d(ab)
— d(g(w ®4 nab)) (by (2.4.3))
( )(w ®@z(4)n)ab + g(w @4 n)(da.b+ a.db)
— d(g(w ®4na))b— g(w @ na)db
=(Iy(V)(w @z () Ma + g(w ®an)d(a) — dg(w @4 na))b
=(I14(V) = dg)(w ®4 na)b

by another application of (2.4.3). O

Now we are in a position to suitably define compatibility of a connection with a pseudo-

Riemannian bilinear metric.

Definition 2.4.11. Let dg : £ @4 & — & be as defined in Proposition 2.4.10. We say that a

connection V on &£ is compatible with a pseudo-Riemannian metric g if for all e, f in &,

My (V)(e®a f) = dgle @4 f).

Proposition 2.4.12. The above definition of metric compatibility coincides with that in the

classical case.

Proof. Let (M, g) be a pseudo-Riemannian manifold and A be the algebra C*°(M) of smooth
functions on M. Thus, in this case, we have A = Z(A) = C®(M), &€ = Z(€) = Q1 (M) and

o = flip.

By Proposition 1.4.8, a connection V on Q'(M) is compatible in the classical sense with g if

and only if for all w,n in &,

(9 ©41d)[flipy3(V(w) @4 n) + (w ®4 V()] = dg(w ®.47).
As o =flip and gle ®4 f) = g(f ®4 ) for all e, f in &, it can be easily checked that
(9®.41d)[flipgz(V (w)®.4n) +(w2.4V ()] = (9©.41d)023(V(w)@An+V ()@ 4w) = 1o (V) (W& 7).

Thus, our definition of metric compatibility coincides with that in the classical case. ]
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2.5 Existence and uniqueness of Levi-Civita connections for tame

spectral triples

The goal of this section is to prove the following theorem:

Theorem 2.5.1. Suppose (A, H, D) is a tame spectral triple and & is the space of one-forms on
it. If g is any pseudo-Riemannian bilinear metric on £, then there exists a unique connection on
E which is torsionless and compatible with g (in the sense of Definition 2.4.11). In particular,

this applies to the candidate of a Riemannian bilinear map in Definition 2.5.7.

The theorem will be proved in two steps. In the first step, we construct a right A-linear map
P, : Homy(E,€ @™ €) — Homy (€ @™ E,E) (see Definition 2.5.3) and prove that (Theorem
2.5.5) the isomorphism of @ is a sufficient condition for the existence and uniqueness of Levi-
Civita connections for tame spectral triples. Then we show that for tame spectral triples, ®, is

indeed an isomorphism.

Since we will be working with tame spectral triples, the isomorphism of the map uf implies
that £ is centered. Therefore, we will freely use the fact that £ is centered throughout this

section, sometimes without mentioning.
We collect some results in a preparatory lemma.

Lemma 2.5.2. (i) The map I1,(V) —dg € Hom4(E ® 4 &,E) is determined by its restriction

on & ®i}{m E for any connection V and can be viewed as an element of Hom 4 (€ ®i{'m5, €)

(ii) For any two torsionless connections V1 and Va, V1 — Vo € Homy(€, € ®i}(m )

Proof. By the definition of IT)(V) and the equality go o = g, it follows that IT)(V) oo = II)(V)
on Z(€) ®z(4) Z(£). Now for w,n € Z(£) and a € A, we have

(II4(V) —dg) o o(w @4 na) = (Iy(V) — dg)(o(w ®an)a) = (IIy(V) —dg) o o(w ®41n)a

= (y(V) = dg)(w @an)a = (1,(V) — dg)(w @4 na),

since I14(V)—dg is right A-linear by Proposition 2.4.10. Therefore, I1,(V)—dg = (I14(V)—dg)oo
on the whole of £ ®4 €. Since £ ®°}™ € = Ran(Psym) = Ran(14%), this proves (i).

Now we prove (i7). If Vi and Vy are two torsionless connections, A o Vi = —d = A o Va.
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Therefore, Ran(V1 — V3) C Ker(A) = £ @™ €. Moreover (Vi — Va)(wa) = Vi(w)a — Va(w)a
for w in £ and for a in A. Hence, Vi — V3 € Homy(&, € @%™ €). O

Definition 2.5.3. We define a map
Dy : Homy (€, @™ €) — Homy(E @7 E,E) by

Py(L) = (g ®aid)ogs(L ®aid)(1+ o).

Proposition 2.5.4. ®, is a right A-linear map.

Proof. Let w,nbein Z(€), and a,bin A and L in Hom 4(&,E®%™E). Then by using Proposition

2.4.3, the A-bilinearity of ¢ (Lemma 2.4.5) and the equality o = 0°*", we obtain

Py(La)(w®@4mb) = (9 ®4id)oa3(La®41d)(1 + 0)(w @4 nb)

Joas(
g @4 id)oeg(La @ 41d)(w @4 nb + 1 @4 wb)
9 @4 id)og3(L(aw) ®.4 nb+ Lan) ®4 wb)
Joas(
9 ®aid)or3(L ©4id)(1+ o)(a(w ®4nb))
)

(
= (
= (
= (g ®4id)o93(L ® 4 id)(aw @4 nb + an @ 4 wb)
= (
= (@

g(L)a)(w @4 mb).

Hence we have that ®,(La) = ®4(L)a. O

Now we are in a position to prove the following result which gives a sufficient condition for

the existence and uniqueness of Levi-Civita connections.

Theorem 2.5.5. If &, : Hom4(£,€ @™ €) — Homyu(E @3™ &,E) is an isomorphism of right
A-modules, then there exists a unique connection on £ which is torsionless and compatible with

g.

Proof. We recall the torsionless connection V( constructed in Lemma 2.2.3. By (i) of Lemma
2.5.2, dg —I14(Vo) € Homy (€ @™ E,€). Since P, is an isomorphism from Homy (€,€ @%™ €)
to Hom4 (€ @™ £, &) there exists a unique element <I>g_ (dg —g(Vo)) € Homy(E,€ @™ E).
Define the C-linear map

V = Vo + @, (dg — Ty(Vp)).
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We claim that V is a torsionless connection on £ which is compatible with g. Indeed, if w is in

€ and a in A, we have

V(wa) = Vo(w)a+w @4 da + <I>;1(dg —114(Vo))(w)a

=V(w)a+w ®4 da.
so that V is a connection. That V is a torsionless connection is verified from the following:

NoV =NAoVo+Aod, (dg—TI,(Vo))
= AoV (since Ran(@;l)(dg —1IIy(Vo) C E@F™ € = Ker(A))

= —d.

By virtue of (ii) of Lemma 2.5.2, this in particular implies that V — Vo in Hom4(&,€ @™ €)
so that ®4(V — V) is well-defined. Moreover, for w,n in Z(€) and a in A, we have

(y (V) = Iy (Vo)) (w ©.4 na)
=II)(V)(w ®z(4) Ma — I (Vo) (w @z(4) n)a (by (2.4.3))
=(9 ®.aid)oss (( w)@an+V(n) @aw) — (Vo(w) ®an+ Vo(n) ®a w))éb
=(g9 ®4id)o2s((V = Vo) ®41d)(1 + 0)(w ®.4 10)
Dy(V = Vo)(w ®a na).

Therefore, ®,(V — Vy) =I14(V) — I1,(Vy). Since ®4(V — V) = dg —II4(Vo) by the definition
of V, we have II,(V) = dg. Therefore, V is compatible with g.
To show uniqueness, suppose V' is another torsionless connection compatible with the metric

g. Then exactly as above, V — V' € Homy(€, € @™ €) and
Py (V —V')=1,(V) - (V') =dg — dg =0,

where we have used the fact that V and V' are compatible with g. Hence, V = V', as @, is an

isomorphism. O
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The rest of this section will be devoted to proving that for tame spectral triples, ®, is indeed

an isomorphism, which will then prove Theorem 2.5.1. We will make use of the isomorphism
<5®Ag7g ER@YE ®A5* — HomA(c‘:,E XA 5)

as introduced in Proposition 1.1.8.

Lemma 2.5.6. Let g be a pseudo-Riemannian bilinear metric on £ and L be an element of

Homy (€, ®4 E) such that Cg_éA&g(L) =£@AnN R4 Vy(w) for some &,n,w in €.
(i) Then for all e in £, we have
L(e) = £ @ang(w®ace).
(ii) Let us define then an element L' in Hom4(E,E ® 4 E) by the equation

CgéAg,g(L,) =N @484 Vy(w).

IfL inHom4(E,E@7"E) and &, n,w are in Z(E), then L = L' as elements of Hom 4(€,E® 4
E). Moreover,
£Ran®aVy(w) =n®ag®aVy(w).

(1it) The set {(gx e.6(ERAN®@AVg(w) 1 &, nw e Z(E)} is right A-total in Homy(E,€ ®4 E).

Proof. Throughout the proof, we will repeatedly use Lemma 2.1.8 and the equation o = g®".

Let e denote an element of £. By the definition of (gg 4¢ ¢, it follows that
L(e) = E @anVg(w)(e) = £ @ang(w @ae).
Now we prove part (ii). By part (i), we have
1
Poym(L(e)) = 5 (€ @an+1©48)g(w @ae).

Since L(e) is in € ®™ &, we have Py L(e) = L(e). Therefore, 1(E @an+n®4&)g(w®ae) =
€ ®4ng(w ®4 e) which implies that £ ® 4 ng(w @4 €) = n @4 {g(w @4 €). This proves that
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L(e) = L'(e). Hence,
§RaN DA Ve(w) = Cogee(l) = Cegee(L) =n0AE D4 Vg(w).

Finally, for part (iii), we note that since g is bilinear, the set S = {£ @4 n®4 Vy(w) : §,n,w €
Z(€)} is right A-total in E@4E®4E* and therefore (gg ,¢,£(S) is right A-total in Hom 4(&,E® 4
). O

Now we are going to make an use of Lemma 1.1.7. In the notation of Lemma 1.1.7, we define
F=EQRQE, h= g(2)and T = Pisym. Since Py, is A-bilinear (Lemma 2.4.5) and Proposition
2.3.5 implies that Vi) : E®@4 € — (E ®4 E)* is an isomorphism, Lemma 1.1.7 implies that the

adjoint P, of Peym exists.

Lemma 2.5.7. For allw,n in &, Vyyo(w®an) = Ve (w®an)o. In particular, Psym = Py

sym

in the notation of Lemma 1.1.7.

Proof. As V) is right A-linear by Proposition 2.3.5, ¢ = 2Fym — 1 is A-bilinear and {w@an:
w,n € Z(€)} isright A-total in E& 4€ (Lemma 2.1.5), it is enough to prove that for all w, n, w’, 7’
in Z(&),

Vo (o(wean)(w @an) = Ve (weano(w @an).

But this follows from the following computation:

Voo (o(wean)w ean) = ¢P((noiw)@a (W @an))
= g @an)glweaw)
= glweaw)gn®@an’) (by Proposition 2.3.2 )

= Vyo(wean)o(w @an).

This finishes the proof. O

Lemma 2.5.8. Let L be in Hom4(E,E ®4 E) be such that Cg_éAg,g(L) =E{Ran®a Vy(w) for
some &, n,w in Z(E). Then

Py(L) = Ceepc(n ®a V:q(z)(f RAw+w®4gE)). (2.5.1)
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Proof. The set {w®4n:w,n e Z(€)} is right A-total in € ® 4 £ by Lemma 2.1.5 and the map

®,4(L) is right A-linear. Therefore, it is enough to prove that for all ', 7" in Z(€),

D (L)W' ®@an) =0V (E@aw+wesE) (W @am).

By using part (i) of Lemma 2.5.6, we compute

Py(L)(w' @an) = (9®@aid)oas(L(w) @an + L(n') @4 w)
= (g®aid)os(( @angw@sw) @an +ERang(w@an) @A)
= (9@41d)(E@an @Dang(w@aw)+ERaw @ang(wan))
= g @an)ng(w@aw) + g @aw)nglwan’)
= ng(€®@an)g(w@sw) +n9(9(§ 4w )w®an') (since g is bilinear)

= W0 @aw+weaf) W oan).

We have assumed that our pseudo-Riemannian metric g is bilinear and so in particular, left
A-linear. This implies that the map V, (and hence Vg_l) is left A-linear. Hence, the map

id @4 V.71 in the following proposition makes sense.
g g

Proposition 2.5.9. Let L be in Homy(E, € @™ E). Then
1 . . e
5@9@) = (o046 (ld @4 Vo)) (Paym)23(id @4 Vg )Ces g (L) (2.5.2)

Proof. Let L be in Hom4(€,€ ®73™ €) be such that CE_Q}MS,E(L) =4 n @4 Vy(w) for some
&,m,win Z(€). Then by part 2. of Lemma 2.5.6, we have £ @41 @4 Vy(w) =n @4 & @4 Vg(w).

Therefore,

Ceeoae (@A Vy@) (Poym)23(id @4 Vg e (L)
= Ceeoas((id @4 Ve ) (Poym)oa(id @4 V) (€ @an @4 Vy(w)))
= (eenae((id ®a V@) (Poym)23(n ©af ®aw))
= %C&smf(n A V2 (®aw+w®al)) (since {,w € Z(E))

1
= 5(IDg(L) (by Lemma 2.5.8).
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Thus, we have proved (2.5.2) for all L of the above form. But since the maps (gg 6., Py, Vi@
and Py, are all right A-linear, we can conclude that (2.5.2) holds for all L in Hom4(€,E®%™E)

by appealing to part (iii) of Lemma 2.5.6. O

Lemma 2.5.10. V() is an isomorphism from & @7 E onto (€™ E)*.

Proof. Let us start by claiming that (£ @™ £)* can be identified with the bimodule {¢ €
(E®AE)* : po (1 — Peym) = 0}. Indeed, if ) is in (€ @™ €)*, then 1 can be uniquely extended
to an element ¢ in (€ ®4€)* by using the decomposition £ ® 4 £ = Ran(Pesym) © Ran(1l — Psym).
Clearly, ¥ = ¢ o Pyym. Conversely, if ¢ is in (€ ®4 £)* then ¢ o Py defines an element of

(€ @™ £)*. This proves our claim.

Now we use our claim to prove that V(2 is one-to-one and onto as a map from & ®f}(m £ to
(E@FME)". Let ¢ in (E@4E)* be such that ¢po (1~ Peym) = 0. Since Vi) : EQAE = (ERAE)*
is an isomorphism by Proposition 2.3.5, there exists ¢ in £ ® 4 € such that V o) (¢) = ¢. We
claim that Psymv = 9. Indeed,

Vg(z) (Poym¥) = Vg(z) (1) © Psym = ¢ © Psym (since, by Lemma 2.5.7 Pg;,m = Psym)
= gboPSym—i—Qﬁo(l—Psym):d)

By using Proposition 2.3.5, we conclude that Fymt = . This proves that Ve maps onto
(EWE)*.

To prove that V() is one-to-one as a map from & R E to (E@NTE)*, let i in EQRY™E

be such that V) (1) 0 Psym = 0. Therefore, by Lemma 2.5.7, we have

‘/;](2) (¢) = Vg(2) Psym(d)) = Vg(2) (d)) © Psym =0, (2.5.3)

so that by Proposition 2.3.5, we have ¢ = 0. O

Finally, we give a proof of our main theorem for this chapter using the results just proved.
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Proof of Theorem 2.5.1. We need to prove that the map ®, is an isomorphism from

Homy(€,€ @™ €) to Homy (€ @%™ £,€). By Lemma 2.1.10, the map
(Paym)23 : (E@JTE)QUE - E@A(ERYTE)

is an isomorphism of right .4 modules. Since (id ® 4 Vg_l)CgéAag is an isomorphism from
Hom (€, E@%™E) to (ER@F™E)®4E and V() is an isomorphism from £ &%™ € to (£ @7 E)*
by Lemma 2.5.10, we see that (¢ g ,(id® 4 ‘/g(z))(Psym)23(id@AVg_l)CgéA&g is an isomorphism
from Hom4(€, & @%™ €) to Homy (€ @™ €) ®4 €). Finally, the equation (2.5.2) implies that

®, is an isomorphism. O

We end this chapter by comparing some of the related results in the literature. We will
need the terminology of tame differential calculus whose definition is a verbatim adaptation of
the definition of tame spectral triples in the context of differential calculi. Thus, a differential
calculus is called tame if the bimodule of one-forms of the differential calculus satisfies conditions
(i)-(iv) of Definition 2.4.1. For a precise definition of a tame differential calculus, we refer to
Definition 2.2 of [14]. We continue to have an A-bilinear map o : £ ®4 & — £ ®4 € as in
Definition 2.2.1.

In [15] and [14], Theorem 2.5.1 was proved for an arbitrary tame differential calculus by
adapting the classical Koszul-formula proof of existence and uniqueness of Levi-Civita connec-

tions. Indeed, Proposition 5.6 of [14] deduces a Koszul-formula for the Levi-Civita connection.
Now, we discuss the relevance of bimodule connections for tame spectral triples.

Definition 2.5.11. Suppose £ be the bimodule of one-forms of a differential calculus and o’ :
ERAE = E®E be a bimodule map. A right connection V1 on £ is said to be a bimodule

connection for the pair (€,0") if for all a in A and for all e in &, the following equation holds:

Vi(ae) = aVi(e) + o'(da @4 €).

The following theorem was proved in [15].

Theorem 2.5.12. (Theorem 7.3, [15]) If g is a pseudo-Riemannian bilinear metric on a tame
differential calculus (€,d), then the unique Levi-Civita connection for (€,g) is a bimodule con-

nection for the pair (€,0).
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Now we come to the issue of existence and uniqueness of Levi-Civita connections for pseudo-

Riemannian metrics which are not necessarily .A-bilinear. Let us make the following definition:
Definition 2.5.13. A pseudo-Riemannian metric (not necessarily A-bilinear) g on a tame

spectral triple is called strongly o-compatible if for all e, f, €, f' in &,

g (ole@af)®a(d @af))=9gP((e®af) @ac(e @al)).

Our Lemma 2.5.7 implies that any pseudo-Riemannian bilinear metric on a tame spectral

triple is automatically strongly o-compatible.

The main result of [13] states that if ¢ is a strongly o-compatible pseudo-Riemannian metric
on any tame differential calculus (€,d) (see Definition 2.2 of [14]), then there exists a unique

Levi-Civita connection for the triplet (£,d, g).

Since tame spectral triples are examples of tame differential calculus, the two results men-

tioned above also hold for tame spectral triples.



Chapter 3

Examples of Tame Spectral Triples

This chapter illustrates examples of tame spectral triples. By Theorem 2.5.1 these admit a

unique torsionless connection compatible with a pseudo-Riemannian bilinear metric.

In Section 3.1, we discuss the example of the fuzzy 3-spheres. The question of existence and
uniqueness of Levi-Civita connections on fuzzy 3-spheres was addressed in [41], albeit with a
different formulation of metric compatibility. We will see (Proposition 3.1.4) that the candidate
of a pseudo-Riemannian bilinear metric proposed in Lemma 2.3.6 is actually a Riemannian
bilinear metric. Let us denote this by g. The authors of [41] proved that a family of Levi-Civita
connections in the sense of that paper exist for the triple (£,d,g). However, if in addition,
one demands the Levi-Civita connection to be real, then there exists a unique connection. In
Theorem 3.1.5, we show that the spectral triple in [41] are tame. Thus, by Theorem 2.5.1,
for each pseudo-Riemannian bilinear metric, there exists a unique Levi-Civita connection. In
particular, if we take the Riemannian bilinear metric g as above, then the Levi-Civita connection
from Theorem 2.5.1 coincides with the unique real Levi-Civita connection obtained in [41]. In
[15], a spectral triple is defined on the fuzzy 3-spheres which is a truncated version of the spectral
triple discussed here and in [41]. That spectral triple was also shown to be a tame spectral triple
(Theorem 8.5 of [15]). In particular, after obtaining the unique Levi-Civita connection, that
article also computes the Ricci and scalar curvatures associated to the spectral triple. We will

not be addressing the issue of curvature in this thesis.

In Section 3.2, we discuss the example of the quantum Heisenberg manifolds introduced in
[81]. In [22], a family of spectral triples and the corresponding space of forms were studied.

However, it turned out that with a particular choice of a metric and the definition of the metric

79
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compatibility of the connection in the sense of [41], there exists no connection on the space of
one-forms which is both torsionless and compatible with the metric. In Theorem 3.2.6, we show
that the spectral triples of [22] are tame spectral triples, and hence each pseudo-Riemannian
bilinear metric admits a unique Levi-Civita connection. We would like to mention that in [56]
and [57] compatible connections for Hermitian metrics and Yang-Mills theory on the quantum

Heisenberg manifolds have been studied.

In Section 3.3, we discuss the example of Connes Dubois-Violette Rieffel deformations
C>®(M)g (]26,82]) of a compact Riemannian manifold M and a spectral triples on it given
in [27]. In Theorem 3.3.1, we show that this spectral triple is a tame spectral triple under
some technical assumptions, thus admitting a unique Levi-Civita connection (as per our for-
mulation) for each pseudo-Riemannian bilinear metric. In Corollary 3.3.38, we show that this
unique Levi-Civita connection is the #-deformation of the classical Levi-Civita connection on
a compact Riemannian manifold. This also demonstrates that our formulation of Levi-Civita

connections respects 6-deformations.

We would like to mention that in the recent paper [54], a spectral triple on the Cuntz
algebra with three generators was given. In Theorem 3.4 of the same paper, it was shown that
this spectral triple is a tame spectral triple, and thus admits a unique Levi-Civita connection

for each pseudo-Riemannian bilinear metric.

The contents of this chapter are from [16]. As in the previous chapter, if (A, H,D) is a
spectral triple, we will often denote the space of one-forms QlD (A) of this spectral triple by the
symbol £.

3.1 Levi-Civita connection for fuzzy 3-spheres

We start by giving a brief description of the spectral triple on the fuzzy 3-sphere. Let G denote
the compact Lie group SU(2) and V}, j € %NO, denote the (25 + 1) dimensional irreducible
representation of SU(2). Let k be a positive integer and Hg := @jzo,%,..,,g Vi@cV; and A :=
B(Hp). Let W be the carrier vector space of the irreducible representation of the Clifford algebra
generated by the vector space T.G with respect to the Killing form on G as defined by equations
(3.4) and (3.5) of [41]. There exists a spectral triple (A, H, D), where H := Ho®cW, called the
“fuzzy” or non-commutative 3-sphere. We refer to [41] for the details.

In what follows, we will denote the elements 1®c; in the center of £ := QL (A) as in [41] by
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the symbol e;, so that

ej Nep = —erNe;j
and {e; Ae; 1 i < j} is linearly independent. Let £ := Q},(A). One has the following result.
Theorem 3.1.1. (Equation (3.19) and Theorem 3.2 of [41]) The space of forms for the spectral
triple (A, H, D) has the following description:
(i) The module £ is isomorphic to Spanc{e;a; : i = 1,2,3} and thus is a free right A module
of rank three.
(i) The bimodule Q3,(A) of two-forms is isomorphic to Spanc{e; A eja;j = aij = —aj;} is a

free right A module of rank three.

Moreover, it was also proven in [41] that the space of three-forms is a free rank one module
and all the higher forms are zero. The bimodule structure for £ := Q},(A) (and similarly, for

the higher forms) is given by
a(b®cvi)c = abe®c; = e;abe.

We note that this implies that £ is centered. In fact, Z(€) is a complex linear span of {ej, e2, e3}.

We also note that we can identify £ ® 4 € with Spanc{e; ®4 eja :i,j =1,2,3}.

Lemma 3.1.2. The space Ker(A) is generated (as a right A module) by the set
{ei@aei, e;®aej+e;@aei i, j=1,2,3,i#j}

Proof. Throughout this proof, we will be using the fact that the elements e; are in Z(&). Let

w = Zj eja;,n =Y. exbr be elements of . If ;5 denotes the Levi-Civita tensor, i.e,

0, if any two indices are repeated
€ijk = 4 1, if (ijk) is an even permutation

—1, if (ijk) is an odd permutation,
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then by equation (3.29) of [41], we have

wiAn = ) (ew)ejaj Aerbi = ) (€ie)ej A epasbi
ijk ijk

= Z (e1k)%ej A epajby + Z (e2;1)%ej A epajby + Z (e3j1)%ej A exajby
jk—=2,3 k=13 k=12

= Z ej A ega;by
J#k
= Zej A eg(ajby, — agbj).
j<k
Therefore, we have

ei/\ei:OZei/\ej—l—ej/\ei.
Hence, {e; ® 1 €;,e; @a€ej+e; @€ 11 <1< j <3} CKer(A).

Conversely, if a;; in A is such that /\(Ei,j e; ®4 e;a;;) = 0, then by the above computation,
we can conclude that Zi<j ei Nej(a;j —aj;) = 0. Since {e; Aej : i < j} is linearly independent,

we have a;; = aj;. Therefore,
Ker(A) € Span 4{e; ®4 €i,e; ®a€e;+€j @a€; 14,5 =1,2,3}.

This finishes the proof. O

Proposition 3.1.3. Let F denote the right A-linear span of the set {e; @4ej —e; @q€;:1 <
i < j <3}. Then, the bimodule € ® 4 £ admits a decomposition € ® 4 € = Ker(A) & F as right

n

A-modules. Moreover, the map 0 = 2Py — 1 is equal to the map o as in Theorem 2.1.7,

i.e. for allw, nin Z(E), and a in A,
ow®ana) =nR4wa.

Proof. From the description of Ker(A) in Lemma 3.1.2 and the isomorphism Q% (.A) & Spanc{e;A
ejaij © a;j = —aj;} ((ii) of Theorem 3.1.1), it is clear that we have a right A-linear splitting:
E @4 & = Ker(N) @ F where F = Spanc{e; ®4 eja;j : a;j = —aj;} is satisfied. Moreover, it is

easy to verify that for all w,n in Z(&), the map

1
w®A77'_>§(W®A77+77®AW)
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extends to a bilinear idempotent map on £ ® 4 £ with range equal to Ker(A) and kernel equal

to F. Thus, for all w,n in Z(&), we have

1
Pym(w®am) = §(w RAN+N R4 w),

where Py, is as in Definition 2.2.1. Therefore, 0 = 2Py, — 1 = 0", ]

The following result concerns the canonical Riemannian bilinear metric of spectral triples

discussed in Lemma 2.3.6.

Proposition 3.1.4. The bilinear form g constructed in Lemma 2.3.6, given by g(e; ® 4 €j) =

0i;14 in the case of the fuzzy 3-spheres, is a Riemannian bilinear metric.
Proof. From equation (3.49) of [41], we see that g : £ ® 4 £ — A is defined by

gwean) = Y ab;
i=1,2,3

where w =371 9 3€iai, 1= )1 93 €ibi-
We need to check the conditions of Definition 2.3.7. From the definition of g, it is clear that g
is an A-valued map. Next, we check that the map Vj is nondegenerate. Let w in £ be such that
Vg(w)(n) =0 for all n in £. In particular, g(w ®4ej) =0 forall j =1,2,3. Ifw = 22:17273 €;0;,
we conclude that a; = 0 for all 7. Therefore, w = 0, proving that Vj is one-to-one.
Now we prove that Vj is onto. Suppose w € € is of the form ), e;a;. Then we define ¢, in £*
by

dw(eib) = a;b.

It is clear that any ¢ in £ is of the form ¢,, for some w in &. Since V4(D ;| 5 5€iwi) = ¢, Vy
is onto.

Now we prove that g satisfies the equation g o 0 = g. We have
goo(e;@aej) =glej®ae;) =dijla=gle;®@ae;).

Since Z(€) = Span{e; : i =1,2,3} and £ ®4 € = Spang = {w @471 : w,n € Z(£)} by Lemma
2.1.5,go0(e®@a f) =gle®a f) for all e, f in £. O

Finally, we have first of the two main results of this section.



84 Chapter 3. Examples of Tame Spectral Iriples

Theorem 3.1.5. The spectral triple (A, H, D) is a tame spectral triple. Hence, for each pseudo-
Riemannian bilinear metric g on € := Q})(A), there exists a unique torsionless connection which

18 compatible with g.

Proof. We need to show that the spectral triple satisfies the hypotheses of Definition 2.4.1. By
virtue of Theorem 3.1.1 and Proposition 3.1.3, we are left to verify that u® : Z(€) QzaA—E
is an isomorphism. But this is clear, since Z(A) = C.1 and Z(&) is the C-linear span of ey, €3, e3.
Therefore, by Theorem 2.5.1, for each pseudo-Riemannian bilinear metric g on £ there exists a

unique torsionless connection which is compatible with g. O

The authors of [41] investigated the existence of torsionless and unitary connections on &.
While the definition of torsion of a connection discussed in their paper is the same as that in
ours, the definitions of “metric compatibility” of a connection are different, since the paper
[41] views a Riemannian metric as a sesquilinear form as opposed to a bilinear form as in this
thesis. In Proposition 3.7 of [41], it is proven that there exists a nontrivial family of torsionless
connections which are also unitary. However, once the additional condition of the connection to
be real is imposed, then Corollary 3.8 of [41] proves that such a connection is unique. We have

the following result:

Theorem 3.1.6. Consider the Riemannian bilinear metric g of Proposition 3.1.4. Then the
Levi-Civita connection of Theorem 3.1.5 for the triple (£,d,g) coincides with the unique real

unitary torsionless connection in Corollary 3.8 of [41].

Proof. We take basis elements e; in € and use the fact that e; are elements of Z(€). We denote
by I‘;k the Christoffel symbols given by V(e;) = 3.1 e; ® ekl“;'.k. Then, we explicitly compute

the metric compatibility criterion for the fuzzy 3-sphere by our definition:

0 =d(d;5) = d(g(e; ®a¢€;))
= (g ®@aid)(id @4 0)(V(e)) ®aej + V(ej) ®acei)

= (g@aid)(id@40)) er®ae@aeiThy+ > e Dae®ael,)
k,l kil

= (g@aid)(Y_er@ae;@aelly+ > ex @aei @aely)
k,l k.l

= Z €I(F§'z + I‘gl), for all I and for all ¢ # j.
l
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Hence, the metric compatibility criterion gives us that F;l = —Fgl. In [41], combining the
necessary and sufficient condition for a connection to be unitary (Equation (3.51) of [41]) and
to be a real connection, i.e. the connection coefficients must be anti-Hermitian, we get that the
connection coeflicients must satisfy Fék = —sz. We see that this is the same condition that we

arrive at for a metric compatible connection in our sense.

The torsionless criterion gives us that for all basis elements e; in &£,
0= (/\ oV + d)(ez) = Zej A 6kF§-k —v-1 Zeijkej N eg,
ik ik

where we obtain the expression for d(e;) from Equation (3.31) of [41]. From Proposition 6.6
and Proposition 3.7 of [41], we know that this is equivalent to the criterion F;'-k — }ﬁ =V —1¢k
We see that the solution F;k = @eijk satisfies both the metric compatibility as well as the

torsionless criteria. Hence these are the Christoffel symbols of our unique Levi-Civita connection.

Hence, the unique real unitary torsionless connection in Corollary 3.8 of [41] and the unique

Levi-Civita connection for the fuzzy 3-sphere obtained by Theorem 3.1.5 coincide. O

3.2 Levi-Civita connection for quantum Heisenberg manifold

In this section, we consider the spectral triple on the quantum Heisenberg manifold as defined
and studied in [22]. The definition of the Dirac operator and the space of one-forms require
the Pauli spin matrices denoted by o1, 09, 03 in [22]. In particular, the o;’s satisfy the following

relations:
0]2- =1, ojo, = —o,0j, 0102 =V —103, 0203 = V=101, 0103 =V —103. (3.2.1)
Moreover, we are going to work with right connections instead of left connections as had been

done in [22].

The description of the algebra of quantum Heisenberg manifold in [81] is as follows.

Definition 3.2.1. For any positive integer c, let S¢ denote the space of infinitely differentiable
functions ® : R x T x Z — C that satisfy the following two conditions:
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(i) ®(z + k,y,p) = 2™ YO (x, y, p) for all k € Z,

am+n

(ii) for every partial differential operator X = DaggT 0T R x T and every polynomial p on 7Z,

the function P(p)(X®)(z,y,p) is bounded on K x 7 for any compact set K of R x T.

For each h,ju,v € R with p? + v? # 0, let Ap° denote the space S¢ equipped with product and

involution defined, respectively, by

(@ * V)(2,y,p) = >, ®(x — hlg — p)p,y — Ilg — p)v, ) ¥ (2 — hgp,y — hg,v,p — q),

(I)*(CL‘, yap) = q)(l', Y, *P)
Let 7 be the representation of AS° on L?*(R x T x Z) given by

(m(@)€)(z,y.p) = > _ (x — h(g — 2p)p,y — hlg — 2p)v, Q)& (2, y,p — q).
q
Then m gives a faithful representation of the x-algebra A2°. The norm closure of 1(A°), denoted

by Aff,", 1s called the quantum Heisenberg manifold.

For the rest of this section, we will denote the *-algebra A$° by A. The algebra A admits an
action of the Heisenberg group. The symbol 7 will denote a certain state on A invariant under
the action of the Heisenberg group. Let X7, Xo, X3 denote the canonical basis of the Lie algebra
of the Heisenberg group so that we have associated self-adjoint operators dx, on L%(A,7) in
the natural way. Then the triple (A, L?(A, 7)®cC?, D) defines a spectral triple on A where A

is represented on L%(A, 7)®cC? diagonally and the Dirac operator D is defined as

D = dej@)(caj,
J

where 0j, j = 1,2, 3 are the self-adjoint Pauli spin matrices satisfying (3.2.1).

Let us denote the operator 1®co; by the symbol e;. Then, the following lemma is a direct

consequence of the proof of Proposition 9 of [22].

Lemma 3.2.2. For all a in A,

3
d(a) = e;0;(a),
j=1

%, Oa(a) = —2mv/ —1epra + %, 03(a) = —2mv/—1epaa

where 01(a) = oy
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for some « greater than 1. The derivations 01,02, 03 satisfy the following relation:

(01, 03] = 02, 03] = 0, [01,0,] = 0s. (3.2.2)

The space of one-forms and two-forms for the spectral triple (A, L?(A, 7)®cC?, D) are as

follows:

Proposition 3.2.3. Fori=1,2,3, let e; denote the element 1®co;. The module of one-forms
£ = Q})(A) is a free module generated by ey, eq,e3. Moreover, ey, eq,e3 are central elements.

As a subset of B(L*(A, 7)®@cC?), € can be described as follows:
E= {Z a;Qco; : a; € A} = {Z a;e; : a; € .A}

The set of junk forms (see Subsection 1.3.1) is equal to {a®cl : a € A}, and therefore is
isomorphic to A. Finally, the space of two forms Q% (A) is isomorphic to A® A®A. Eaxplicitly,

0% (A) = {a1®c0102 + a2@c0203 + a3@co103 : a1, a2, a3 € A} C B(L*(A, 7)@cC?).

Proof. The space of one-forms is described in Proposition 21 of [22]. The fact that ej, ea, e3 are
central can be easily seen from the definition of the representation of A on L?(A, 7)®@cC?. The

statement about the two forms follow from Proposition 22 of the same paper. O

Proposition 3.2.4. The bilinear form g constructed in Lemma 2.3.6 satisfies the conditions of

Definition 2.3.7, i.e, it is the canonical Riemannian bilinear metric for the spectral triple.

Proof. We need to check the conditions of Definition 2.3.7. This essentially follows from the
results of [22]. We will use Proposition 3.2.3 to identify £ with A®@cC3, the bimodule structure
being defined as:

a(e;b)c = e;abe.

We will let 7 denote the functional on B(#H) as in Subsection 2.3.1. Let ¢ : A — C be the
faithful normal tracial state on A" as in Section 2 of [22] (denoted by 7 in [22]). By Proposition
14 of [22],

7(X) = (%¢®cTr)(X) forall X € &.
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since v is faithful on A”, we can conclude that 7 is faithful on the *-algebra generated by A
and {[D,a] : a € A}. Moreover, by identifying A C £ = A®¢cC3 via a — a ® Iz, 7(a) = 1(a)
for all a in A.

If w= Z?Zl e;a; and n = Zg’zl e;b; are two one-forms, then

(I®CTr wn) Z a;b;.
Therefore, for all ¢ in A, the formula g(w ®4n) = ((w*, 7)) (Lemma 2.3.6) implies that

T(g(w®an)c) = T({{w", m)c) = (wnC)
(%¢®CT1“ ) (wne) Z’l/) a;bic) = 7( Za, i)

Therefore, g(w ®4 1) = 2?21 a;b; is in A. The nondegeneracy of the map V, follows just as in
Proposition 3.1.4. O

Proposition 3.2.5. Let F denote the right A-linear span of the set {e;®4ej —e; ®a€;:1 <
i < j < 3}. Then, the bimodule £ @4 E admits a decomposition € R4 E = Ker(A) @ F as right

an

A-modules. Moreover, the map 0 = 2Py — 1 is equal to the map o as in Theorem 2.1.7,

i.e. foralle, f in Z(€), and a in A,
ole®a fa) = f @4 ea.

Proof. We will use the fact that e; are central elements throughout the proof. Moreover, let
A, mo, J, be as in Subsection 1.3.1 while Psyy, will be as in Definition 2.2.1. By the description
of J and that of Q%(A) in Proposition 3.2.3, it is easy to see that Ker(A) is spanned by
{ei®aej+ej@ae;:1<i<j<3}as aright A-module and F = Span 4{e; ®4¢e; —e; ®a€; :

1<i<j<3}. Clearly, £ ®4 & = Ker(A) @ F as right A modules.

Since ey, e, e3 € Z(£), it can be easily checked that u¢ is an isomorphism. In particular, £

is centered. Moreover, by the description of Ker(A) as above, we have
Pym(ei®aej—ej®@ae) =0, Pym(ei ®aej+ej®@ae)=e;®aej+eQae

and thus 2Psym(ei XA €j) =e; Qqej t+e Q4 e;.
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Therefore, o(e; ®4 €j) = (2Psym — 1)(ei @4 €j) =€ @4 €;.

Therefore, o = o, O

Finally, we have the main result of this section.

Theorem 3.2.6. The spectral triple (A, L?(A, 7)®cC?, D) is a tame spectral triple. Hence, for
any pseudo-Riemannian bilinear metric g on &, there exists a unique Levi-Civita connection on

the module £ compatible with g.

Proof. In Proposition 3.2.3 and Proposition 3.2.5, we have verified that the conditions of Def-
inition 2.4.1, so the spectral triple is a tame spectral triple. By Theorem 2.5.1, we have the

second part of our result. O

3.3 Levi-Civita connection for Connes-Landi deformed spectral

triples

Suppose M is a compact Riemannian manifold such that the maximal torus of the isometry
group of M has rank greater than or equal to 2. Then the action of the maximal torus on C*°(M)
allows us to define a deformed algebra C*°(M)y ([82], [26]). Moreover, the torus equivariant
spectral triple (C*° (M), H,d+d*) on M (as in Example 1.3.5) can be deformed to a new spectral
triple on C*°(M)q([27]).

The goal of this section is to prove the following theorem:

Theorem 3.3.1. Suppose M is a compact Riemannian manifold equipped with a free isometric
action of T". Let £ := QY (M) denote the space of one-forms of the spectral triple (C™ (M), H, d+
d*) discussed in Example 1.3.5. Then the deformed spectral triple (C*(M)g,H,d + d*) as in
Theorem 3.3.25 is a tame spectral triple and the metric g deforms to a Riemannian metric gg
on the bimodule of one-forms &y of the spectral triple (C°°(M)g, H,d + d*). Hence, there exists

a unique Levi-Civita connection on &y for go.

In the first subsection, we prove some preparatory results on the fixed point algebra under the
action of a compact abelian Lie group. In Subsection 3.3.2 we prove some results on generalities

of Rieffel deformations. In Subsection 3.3.3 we prove that there exists a Riemannian bilinear
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metric on & and that it is the deformation of the canonical metric on £. In Subsection 3.3.4, we
prove that under our assumptions, the deformed module of one-forms on the Rieffel deformed

manifold satisfies the conditions of Definition 2.4.1.

Now we recall the concepts of spectral subspaces and spectral subalgebras (or spectral sub-

modules) for actions of the group T" on algebras and modules.

Definition 3.3.2. Suppose  is an action of T on a module G (or an algebra D). Then the
spectral subspace corresponding to a character m = (my,...,my) in Tn =~ 7", denoted by G
(respectively Dy, ), consists of all & such that (&) = xm(t)€ for allt = (t1,...,t,) in T™, where

Xm(t) == 7,

It is easily seen that D,, D), C Dyytn.

Suppose that G is a D-bimodule. Moreover, let us assume that both D and G are equipped
with actions of T™ in such a way that G becomes a T"-equivariant D-bimodule. This means

that for all e in G and for all a,b in D, we have:

Bi(aeb) = ar(a)Bi(e)au(b).

In this case, we have

GmDn C Gmtn and DpGpm C Gintn- (3.3.1)

The subspace Spanc{D,, : m € Z"} comprises the so-called ‘spectral subalgebra’ for the action.

Similarly, Spanc{Gy, : m € Z"} is called the spectral submodule of the action.

Let G be a group. Let us recall that a spectral triple (A, H, D) is called G-equivariant if
there exists a unitary representation 8 of G' on H such that 3,D = Dj3,. Moreover, we recall

the following well known fact (see [26] for the details).

Proposition 3.3.3. Suppose that M is a compact Riemannian manifold with an isometric
action of the n-torus T™ on M. Consider the spectral triple (C*°(M),H, D) of Example 1.3.5,
i.e, H 1is the Hilbert space of all forms, d is the de-Rham differential on H and D = d+d*. The
T"action on smooth forms extends to a unitary representation 8 on H and the spectral triple
is equivariant w.r.t this representation of T™. In particular, if a denotes the action of T™ on

C>*®(M) and 6(-) = /—1[D, -], then for all t in T™ and for all f,g in C>°(M),

Bi(fo(g)) = ar(f)Be(6(g)) = e (f)d (e (g))-
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In this set-up, it is easy to see the following result:

Lemma 3.3.4. If D is a subalgebra of C°(M) kept invariant by the action of a compact
group G acting by isometries on M and Q'(D) := Spanc{fdg : f,g € D}, then the map
A QYD) @p QYD) — Q2(D) is G-equivariant.

As an immediate corollary, we have

Corollary 3.3.5. With the notations of Lemma 3.3.4, we have a decomposition
QYD) ®p QYD) = Ker(A) @ G,

where Ker(A\) = Spanc{e®@p f+ f@pe:e, f € Q1 (D)} and G = Spang{e®@p f — f@pe e, f €
Qi(D)}.

Moreover, Ker(A) and G are also kept invariant by G.

Proof. The decomposition Q'(D) @p QY(D) = Ker(A) @ G follows exactly as in the classical

case.

The G-invariance of Ker(A) follows from the G-equivariance of A. Moreover, we have G =

Ker(1 — flip). Since flip is G-equivariant, G is G-invariant. O

3.3.1 Some results on the fixed point algebra

Let us consider a compact Riemannian manifold M with the T"-equivariant spectral triple
(C®(M), H,d+d*) as in Proposition 3.3.3. Throughout this section, we will follow the notations

introduced in the following definition.

Definition 3.3.6. Let £ = QY (M) and A := C®°(M). F will denote the T"-equivariant
spectral submodule of €. The symbol Fj, will denote the k-th spectral subspace of F. Thus, F =
Spanc{Fi : k € Z"}. Similarly, we define C to be the spectral subalgebra Spanc{Cy : k € Z"} of
A where Cy, is the k-th spectral subspace of C. In particular, Cy and Fy denote the T"-invariant

spectral subalgebra and the T"-invariant spectral submodule respectively.

Remark 3.3.7. It is clear from the definition of spectral subspaces of algebras and modules that
if A and &, denote the spectral subspaces of A and € respectively, then Ay = Cy and &, = Fy,.

We will from now on use this fact, often without mentioning.
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Remark 3.3.8. Since the representation B as in Proposition 3.3.3 commutes with d 4+ d*, it is
easy to see that By (F) C F for allt in T™. Moreover, it is easy to see that the space of one-forms
for the spectral triple (C,H,d + d*) is precisely F.

Recall that one of the conditions of Definition 2.4.1 requires the map
ub Z(E) @z A—=E

to be an isomorphism for the underlying spectral triple to be a tame one. In the example of
Connes-Landi deformed spectral triples of compact Riemannian manifolds, it proves difficult to

show this directly. In Subsection 2.4.2, we discussed an auxiliary map
E .ol
Ug 8 Ru A—E,

where A’ is a unital subalgebra of Z(.A) and &’ is an A’-submodule of Z(&).

In particular, Proposition 2.4.6 shows that if Z(€) is a finitely generated projective module
over Z(A), then uf is an isomorphism if and only if ug, is one. We will employ that proposition
in this section to obtain our desired result. The aim of this subsection is to prove that if the
action of T" on M is free, then the spectral subalgebra Cy and the spectral submodule Fy satisfy

the hypotheses of Proposition 2.4.6.

Lemma 3.3.9. Suppose that the T™ action on M is free. Then Fy is a finitely generated

projective right module over Cy.

Proof. For a module G equipped with an action of T”, let us denote the T™-invariant submodule
of G by the symbol GT". Since the T"-action on M is free, M/T" is a smooth compact manifold
and M is a principal T"-bundle over M /T™. Let 7 denote the projection map from M onto
M/T™. Given any point in M, we can find a T"-invariant open neighborhood U which is T"-
equivariantly diffeomorphic with U/T™ x T". Moreover, we can choose U in such a way that
U/T" is the domain of a local coordinate chart for the manifold M /T". Thus, without loss in
generality, we can assume that U = 7~ !(V), where V is the domain of some local chart for

M/T".
This gives the following isomorphism:

n

QM ™ = oY (U/T™) @c QHT™T = QL (U/T) @¢ £,
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£ being the complexified Lie algebra of T™ which is nothing but C". As U/T" is the do-
main of a local coordinate chart, the module of one-forms is a free C°°(U/T") module, say
C>®(U/T™)®cCF, hence Ql(U)Tn is isomorphic with C°(U/T™)®cC"*, i.e. QYU/T") is free.
By covering M with finitely many such neighbourhoods, one proves that Q'(M)T" is finitely
generated projective over C°°(M/T"). O

We observe that Cy is a unital subalgebra of Z(C) = C and Fy is a Cp-submodule of Z(F) = F.

So we can make use of the notation
ufg:]:g@ch—)]:

introduced in Subsection 2.4.2.

Lemma 3.3.10. If for each m in Z", we can find ai,...,ax in Cp, and by,..., b in C_p (k

depends on m) such that ), bija; = 1, then the map uj;o 18 an isomorphism.

Proof. We need to prove that under the above assumption, the map uﬁ) has a right C-linear

inverse. However, since ufo is right C-linear to start with, it suffices to prove that ufo defines

an isomorphism of vector spaces. Hence, it is sufficient to prove that for all m, the restriction

pl of uﬁo to Fo ®¢, Cm 1s a vector space isomorphism onto its image F,.

To this end, consider the map

qﬁ : Fm — Fo ®cy Cp defined by qﬁ(e) = Z eb; Rc, a;.-

i
Then pﬁ o q£ =id.

On the other hand, as ab; is in Cy if a is in C,,, we have
qﬁopﬁ(e ®c, a) = Zeabi ®cy @i = € D¢y Zabiai = e ®c¢, a.
i i
This finishes the proof of the lemma. O

Now we shall identify C,, with the bimodule of sections of a certain vector bundle over M /T".

Lemma 3.3.11. Let M be a smooth compact Riemannian manifold equipped with a smooth and
free right action of a compact connected abelian Lie group K. Let M x,_, C — M/K denote
the associated vector bundle (of M — M/K ) corresponding to the character x_,.
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Then the elements in Cp, = {f € A : f(x.t) = xm(t)f(x)} is in one to one correspondence
with the set of all smooth sections of the vector bundle M x,_, C— M/K.

Proof. The elements of the total space of the associated vector bundle M x,_  C are given by
the equivalence class [y, A] of (y,\) in M x C such that (y,\) ~ (y.t, x—m(t"1)A) for all t € K.

Now, for f in Cy,, we can define a section of the above vector bundle sy by

where [x] denotes the class of the point x in M/K. We need to show that this is well defined.

But for any t in K,

sp(led]) = [ot, f(z.0)] = [1.t, xw () f ()] = [2.4,x-m () f(@)] = [z, f(2)]-

This proves that sy is well defined.

Conversely, given a section s of the above vector bundle we can define a function f; on M
by fs(x) = Ay where \; € C is such that s([z]) = [z, \;]. Clearly, A\, is uniquely determined,

because the K action is free. Moreover,

[, ] = s([2]) = s([2.1]) = [2.8, At] = [2:8, X (T )X (D Aat] = [2, X (8) Awt]-

Therefore, Ay = X—m () Az.ts 1€, Apt = Xm(t) Az
Thus, fs belongs to Cp,.

Finally, it is easy to verify that the maps f — sy and s — fs are inverses of one another,

completing the proof. O

The following lemma is well-known. However, we give a proof for it since we could not find

any appropriate references.

Lemma 3.3.12. For a complex smooth Hermitian vector bundle over a compact manifold M,
there are finitely many smooth sections s;’s such that ), ((si, si)) = 1 where ((-,-)) denotes the

C>°(M)-valued inner product coming from the Hermitian structure.

Proof. Corresponding to a finite open cover {U;, i = 1,...,l} choose finitely many smooth

sections 7; which are non zero on U;. Then choosing a smooth partition of unity ¢;,i =1,...,1,
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we can construct t; = 1;y;’s so that ¢t = > . ((¢;,t;)) is nowhere zero. The sections s; = Y satisfy
2

~

the conditions of the lemma. O

This gives us the following;:

Lemma 3.3.13. Suppose M is a compact Riemannian manifold equipped with a free and iso-

metric action of T™. Then the map uj;o : Fo ®c, C — F is an isomorphism.

Moreover, the map ugo 1 &0 @ay Am — Em is one-to-one.

Proof. Without loss of generality, we can assume M to be connected. In general, if M has k
connected components My, My, - - - M}, the module F decomposes as F1 @ - - - Fi, where F; is
the linear span of spectral subspaces of Q!(M;), and it is suffices to prove that for all i, ufo is

an isomorphism from (F;)g ®(c;), Ci onto F;.

Since the action of T™ on M is free, M — M/T™ is a principal T"-bundle. Consider the
associated vector bundle M x,_  C — M/K as in Lemma 3.3.11. Then Lemma 3.3.12 gives
us finitely many smooth sections {s;}; of this vector bundle such that ). ((s;,s;)) = 1. From
Lemma 3.3.11, for each i, we have an element f,, (belonging to C,,) corresponding to the section

Si.

The relation > ((s;, s;)) = 1 implies that

Zf;fsi =1.

Since fs, belongs to Cy,, the function fs, belongs to C_,,. Thus, we can apply Lemma 3.3.10 to

deduce the first assertion of the theorem.

Now we prove the second assertion. The fact that uﬁo : Fo ®cy C — F is an isomorphism

implies that for all m, the restriction
uig : F0®¢y Cmn = Cr

is a one-to-one map. Since & = Fy and A, = Cpp,, this means that ugo 18 @ug Am — Em 18 a

one-to-one map. ]

Next we prove that with the hypothesis of Lemma 3.3.13, the map ufo is also an isomorphism.
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Lemma 3.3.14. The map ugo 1 & ®u, A — & is an isomorphism.

Proof. Let us start by proving that the map is one-to-one. Let €; € & and f; € A be elements

such that

u}g;g(z €; ®a, fi) =0, ie, Z e;fi = 0.
i i

Then each spectral projection Pp, (>, €;fi) = 01i.e, Y. eiPm(fi) = 0. So for all m, we obtain
ug, (Y € ® 4, Pm(fi)) = 0.

But from Lemma 3.3.13, we know that the map ugo 1 & @Ay Am — Em is one-to-one. Hence,

for all m,

Z & ®49 Pm(fi) =0

which implies that
Zeg XA fi= hj{fn( Z 62 XA Pm(fz)) =0,

i,|m|<N

where lim denotes the limit in the Frec¢het topology. Therefore, the map is one-to-one.

Now we show that the map is onto. Since the map ugo is right A-linear, it suffices to check
that for all f in A, df has a pre-image in & ®4, A. Consider the principal 7" = T" bundle
m: M — M/T. Since M/T is compact, we can take a finite atlas (U;, ¢;) on it such that the
bundle 771 (U;) — U; is T-equivariantly diffeomorphic with the canonical bundle U; x T — U;.
Let {t;}; be a partition of unity on M subordinate to (Uj, ¢;). Then f = >, fio; and df =
>, d(f1;). Thus in particular we can assume that f is supported in 7~ 1(U;) or equivalently in

UxT.

Let {dx;} be a basis for differential forms along the direction of U i.e. the horizontal direction
of the bundle U x T' — U and {w;} be a basis of right invariant 1-forms in the vertical direction

corresponding to the basis {x;} of right invariant vector fields along the direction of T". Then

0
df = ;dxi-awi (f) + ;Wj-Xj(f)'

The right action of 7" on U x T" acts trivially in the direction of U, hence dx; is in &. Since w;

is invariant under the action induced by the right action of T"on U x T', so wj is in &. Hence
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df has a pre-image Y, dx; ® 4, %(f) + 2w ®a, X;(f) in & ® 4, A. Therefore, we have that

ugg is an onto map. This completes the proof. O

3.3.2 Some generalities on Rieffel-deformation

Our main reference for Rieffel deformation of a C*-algebra endowed with a strongly continuous
action by T" is [82]. However, we will also need to use equivalent descriptions of this deforma-

tion given in [26], [27], [66] and [67].

We begin with the definitions of T" smooth modules and T" smooth algebras from [67] for
which we recall that the action a of a locally compact group G on a Fréchet space V is said to

be strongly continuous if the map
G =V, g— ay(v)

is continuous for all v in V.

Definition 3.3.15. A Fréchet space V', whose topology is defined by a family of semi-norms is
said to be a T™ smooth module if V' admits a strongly continuous T™ action oy :' V. — V such

that the function t — ox(v) belongs to C°(T™, V') for all v in V.

An algebra D is said to be a T™ smooth algebra if it is a T™ smooth module and the multipli-

cation map m : DRcD — D is T"-equivariant and jointly continuous.

A D-bimodule G is said to be a T™ smooth D-bimodule if it is a T smooth module such that

the left and right D-module structures are T™-equivariant and are jointly continuous.

The following is our motivating example of T" smooth modules and algebras for this section.

Example 3.3.16. Let M be a Riemannian manifold equipped with a smooth action of T™. Then
the natural action of T™ on C°°(M) makes the latter a T™ smooth algebra.
Moreover, the space of one-forms QY (M) which is a C°°(M)-bimodule admits an induced smooth

action of T" and forms a T" smooth C*°(M)-bimodule.

We next define the deformation of a T" smooth algebra D. We refer to [67] for details.
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Definition 3.3.17 (Definition 2.4 of [67]). Let D be a T™ smooth algebra as in Definition 3.5.15.

For a skew symmetric n X n matriz 0, consider the bicharacter xg defined by
Xo(k,0) = BN ke 27

where the pairing (.,.) is the usual inner product in R™. The deformation of D is the algebra Dy

whose underlying vector space is equal to D while the multiplication xg is deformed as follows:

axgb= Y xo(kDagb, ¥ a,be D, (3.3.2)
klez™

where a = ZE ag, b= ZL by, are the isotypical decompositions.
The bicharacter xg satisfies the following cocycle identity:
Xo(m, k)xo(m + k1) = xo(m, k + U)xo(k, 1). (3.3.3)

Remark 3.3.18. By Proposition 2.2 of [67], the isotypical decompositions converge absolutely
to the element.
Dy turns out to be a T" smooth algebra and the deformed product is associative.

One can similarly deform T" smooth D-bimodules (see Definition 3.3.15) as follows:

Definition 3.3.19. Let G be a T™ smooth D-bimodule. Then the deformed bimodule Gy is a
Dy-bimodule whose underlying vector space is equal to G while the deformed left and right module

actions are as follows:

exXgpa= Z Xo(k,l)ega;, a xge= Z xo(k,Dage, VeeG, VaeD, (3.3.4)
kleZn klezn

where e = ZE e and a = ZL a; are the isotypical decompositions.
If G is a T™ smooth D-bimodule, the equations (3.3.2) and (3.3.4) imply that
axgb=ab, axgexypb=aebfor all e € Gy and a,b € Dy. (3.3.5)

Remark 3.3.20. Using the fact that Gy is isomorphic as a vector space to G, for e in G, we

will denote its image under this isomorphism in Gy by eg from now on.
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As in the case of deformed algebras, Gy turns out to be a T" smooth bimodule. In fact, if
8 is the T™-action on the T"-smooth bimodule G, then we have a deformed T"™-action 8% on Gy

defined by the following formula:

Blled) = xu(thex ¥t € T™. (3.3.6)
k

Thus, if D and G are as above, the spectral subspaces Dj, and G, make sense. In fact, by

virtue of (3.3.5), we have the following remark:

Remark 3.3.21. (Dy)g is isomorphic to Dy as algebras. Moreover, (Gp)o = Go as Dy-bimodules.
We also note that by (3.3.4), when the right and left D-module actions of G are symmetric,
(Go)o € Z(Gp) and in particular (Dy)o C Z(Dy).

We have the following easy consequence of the definitions above:

Lemma 3.3.22. Let D be a T" smooth algebra and Gy,Go be T™ smooth D-bimodules, in the
sense discussed above. Let L : G — Go be a T"-equivariant continuous D-bimodule map.
Then the underlying vector space map L from Gy to Gy becomes a T™-equivariant continuous

Dg-bimodule map, denoted by
Lo : (G1)o — (G2)g

defined by the equation
Lg(eg) = (L(e))g VeeG (3.3.7)

If L is a D-bimodule isomorphism, then Lg will be a Dy-bimodule isomorphism. If G1 and Ga

are algebras in particular, then Lg is an algebra homomorphism.
Now suppose that Ker(L) is complemented as a D-bimodule in Gy, i.e, there ezists a D-
bimodule M C Gy such that Gy = Ker(L) ® M. Then
(i) Ker(L) is invariant under the action of T™.
(i) M = Ran(L).
(i) If M is T"-invariant, then (G1), = Ker(Lg) @ My and My = Ran(Ly).

(i) If Go = G1 and L is an idempotent, then Ly is also idempotent.
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Proof. By 3.3.7, Ly is equal to L as a vector space map, hence the T"-equivariance of L implies
the I'T™-equivariance of Ly. To check that Ly is a Dy-bimodule map, we first note that since
Ly is T"-equivariant, for all eg in ((G1)g)x, Lo(ep) is in ((G2)g)r. Then, for ey in (G1)p and ag in

Dy, we compute the following:

Lo(eg xg ag) = Lo((D>_ x(k, Dexar)s) = (L0 x(k, Dexar))

kil k,l

=D x(k,D)L(ex)ar)s = (L(¢))g o ag = Lo(eq) X ap.
ki

This proves that Ly is a right Dg-module map. That Ly is a left Dg-module map can be proved
similarly. Since L and Ly are equal as vector space maps, if L is an isomorphism, then Ly is also
a Dyp-bimodule isomorphism. Similarly, if L happens to be an algebra homomorphism, then Ly

is also an algebra homomorphism.

Suppose e is an elements in Ker(L). Since L is T"-equivariant, L(e) = >, L(eg) = 0.
Projecting onto (G2);, we see that L(e;) = 0 for all . Suppose (3 is the T™ action on G;. Then,
L(Bt(e)) = >_p xx(t)L(ex) = 0. Hence, B(e) is also in Ker(L) and Ker(L) is invariant under the
action of T™. This proves assertion (i).

Since G = Ker(L) & M, Ran(L) = (Ker(L) ® M) /Ker(L) = M which gives us assertion (ii).
Since L and Ly are equal as vector space maps and Ker(L) is T"-equivariant, Ker(L) can
be deformed and Ker(L) = (Ker(L))g = Ker(Ly). By assertion (ii), M is a T"-invariant D-
bimodule, hence M can also be deformed. Therefore, (G1)y = (Ker(L) ® M)y = (Ker(L))y &
My = Ker(Ly) ® My. The proof of the fact that My = Ran(Ly) follows along the lines of the
proof of assertion (ii). Hence, assertion (iii) is proved.

Assertion (iv) again follows from the fact that L and Ly are equal as vector space maps. O

The following lemma will also be of use to us.

Lemma 3.3.23. Let D be an algebra equipped with T™-action and Gi,Gs be equivariant D-
bimodules. Then (G1)p®p,(G2)0 = (G1®@pG2)s as Dg-bimodules, with the canonical isomorphism
given by

€0 @, for= (Y xo(k,Der ©p fi)o, (3.3.8)
klezn

where e = Y, ey and f =Y, fi are isospectral deformations of elements in G and Go respec-

tively.



3.3. Levi-Civita connection for Connes-Landi deformed spectral triples 101

Proof. Using the notation adopted in Remark 3.3.20, define a map from (G1 ®pG2)s to (G1)s@p,
(G2)o given by
(e@p fo > x-o(k,1)(eo)r @D, (fo)1-

kil
It can be easily checked that this map is an inverse of the map defined in (3.3.8) and that the
map defined in (3.3.8) is a Dy-bimodule map. O

Now we recall the Connes-Landi deformation ([27]) of a spectral triple and its associated
space of forms. We will work in the set-up of Proposition 3.3.3. In particular, 4 = C*°(M)
and € = Q},(A) where D = d + d*. As we recalled in Example 3.3.16, A is a T" smooth algebra
and & is a T" smooth A-bimodule. Hence by Definition 3.3.17 and Definition 3.3.19, A and &£
can be deformed to the algebra Ay and the Ay-bimodule & respectively. In fact, the following

lemma shows that the space of two-forms Q% (A) can also be deformed.

Lemma 3.3.24. In the set-up of Proposition 3.3.3 and with A = C*°(M) and D = d + d*,
the bimodules of one-form € := QL (A) and two-forms Q% (A) can be deformed into T™ smooth

Ag-bimodules Ey and (23,(A))g respectively.

Proof. The lemma easily follows by verifying that Q],(A) and Q% (.A) are T"-smooth bimodules.
The case of 2},(A) follows from Example 3.3.16.

Now we come to the case of 0% (A). By Lemma 3.3.4, the quotient map A : E@4E — Q% (A)
is a T"-equivariant A-bimodule map, and the T™ action on QQD(A) descends from the diagonal
T™ action 8 x B on € ®4 £. Moreover, the A-bimodule structure of QQD (A) also descends from
that of £ @4 €. Hence, Q2,(A) is a T" smooth A-bimodule. Then by Definition 3.3.19, Q% (A)
deforms to a T™ smooth Ap-bimodule (2%,(A))g. O

Moreover, we have the following:

Theorem 3.3.25. With the algebra structure of Ag as in (3.3.2), (Ag,H,d + d*) defines a

spectral triple.

If § : A — & denotes the map which sends a to [d + d*,a], then we have a deformed map
8o from Ag to Eg. Moreover, Q5 (Ag) and 0% (Ay) are canonically isomorphic as Ag-bimodules

with E and (% (A))g respectively.
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Proof. For the proof that (Ag, H,d + d*) is a spectral triple, we refer to [26].

Since the map § : A — QL(A) given by a — [d + d*,a] is a T"-equivariant map, it can be
deformed to the map &g, which gives us the second assertion.

The isomorphism of O} (Ag) and (24(A))g is an easy consequence of Proposition 2.12 of [67].
Indeed, this result implies that the map mp : Q1 (Ag) — (2},(A))g defined by

mo(we)(f) = xo(k,1)(wo)r(f1)
kl

defines an isomorphism from Q1 (Ag) to (2},(A))s. Here, we have viewed wy in Q},(A4p) as an

operator acting on H. Then it can be easily checked that

mo(ag <0 39(bg)) = > (xo(k, Dard(by))o,
k1l

for all a,b in A. To prove the isomorphism of 0% (Ay) and (922,(A))s requires some work. We
start by adopting some notations.
The maps (mo)ax,p) : 2p(A) @4 Qp(A) = B(H) and (mo)a,,2,0) * Pp(Ag) @4, Qp(Ag) —
(B(H))p will denote the appropriate multiplication maps.
The spaces J(4x,p) and J(4,,%,p) Will denote the junk-forms associated to the respective spec-
tral triples.
The maps q(4,3,p) : Ran((mo)(a,2,p)) = Ran((mo)(a,,0))/T(an,p) and
q( Ay 1,0y * Ran((mo)4,4,0)) — Ran((mo)4,,24,0))/ T(4y4,p) Will denote the respective quo-
tient maps.
Finally, A(a,p) = @an,p) © (M0) (a3,0) and A, 3,0) = d(Ae,3,D) © (M0) (45,2, 0) denotes the
wedge maps associated to each spectral triple. By abuse of notation we will often use A in both

cases, when the context is unambiguous. Then we look at the composition of maps

Te® Ay o

Qp(Ag) @4, Qp(Ag) — (Qp(A))o ®4, (Qp(A))o

|r |=
(QB(A))a (Qp(A) ®4 Qp(A))g

(Aca,1,D))o

where the second map is the isomorphism as in Lemma 3.3.23. We denote this composition of

maps by T. Explicitly, for wy and 7y in QL,(A4p), we have that

T(wp @4, m9) = (O x0(k: D))k A (m)1)o-
Kl
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We claim that Ker(A(4,.2,p)) € Ker(T'). If our claim is true, then we have a map T : Q2 (Ag) —
(£22,(A))g. So, suppose that there exist (w;)g, (7:)g in 2k (Ap) such that >, (wi)g ®4, (17:)g is in

Ker(A(4,.2,0))- Hence, (mo)(4,.2,0)(D_i(wi)o @4, (ni)e) is in Ker(qqa, 1,0)) = T(ay.2,0)- Since

(mO)(Ae,H,D)(Zi(Wi)e ®.A4, (Mi)p) is in J(As,1,D), there exist elements aj, b; in A such that

> (a;)0 x0 86((b;)a) = 0. (3.3.9)

J

and

> (m0) (ap71.0) (6((a)8) @4, 69((b))8)) = (m0) (4y,2,0)D_(wi)o @4, (1:)s) (3.3.10)

i %

Applying the isomorphism 7y : Q1 (Ag) — (25(A))g on (3.3.9), we get

> > xo(m.n)(a;)md((bj)n) = 0. (3.3.11)

Jj mn

This implies that

(mO)(A,H,D)(Z Z xo(m,n)6((a5)m) @4 6((b)n)) € Tam,p) = Ker(qan,p)  (3.3.12)

j mn

The multiplication (1m0)(4,,3,p) is the deformed multiplication x4 as given in (3.3.2). Hence

(3.3.10) implies that

(mo) (az,0) O Y xo(m, n)8((a5)m) @4 6((bj)n)) = (mo)age,py(O D Xxolk D) (wi)k @4 (n:)1)

j mn ikl

(3.3.13)

Using all of the above, we compute

S5 X0k, D(widi) A ()

i kil

= Aoy O xo(k,D)(wi)k ®a (n:))

ikl

=qa,0) © (o) (43,00 D Y xo(k, D) (wi)e @4 (n:)1)
ikl

=q(AH,D) © (mO)(A,H,D)(Z Z xo(m, 1)0((a;)m) ®a 6((bj)n)) (applying (3.3.13))

j mn

=0 (using (3.3.12)).
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This proves that the map T : 0% (Ag) — (9% (A))g given by

T(wp A 1) Z Xo(k, D)(w)k A (1)1
is well defined. The inverse of T is given by the map

(w Ao x—0(k, 1) (wo)i A (10):-
kL

The proof of the fact that this map is well defined is the same as before. It is easy to check that

T and this map are inverses of each other and that T is an Ay-bimodule map. O

Henceforth we will make the identifications & = QL (A4p), Q%,(Ag) = (2% (A))s without

explicitly mentioning.

3.3.3 The canonical Riemannian bilinear metric on &

In this subsection, we prove that the prescription of Subsection 2.3.1 is indeed a Riemannian
bilinear metric on &. We prove this in two steps. In the first step, we deform a Riemannian
A-bilinear metric g to an Ag-bilinear map gy and show that gy is a pseudo-Riemannian bilinear
metric. In the second step, we show that the A-bilinear map obtained from Lemma 2.3.6 (for

the spectral triple (Ag, H, D)) coincides with the deformation gg of g.

Let us recall the following definition:

Definition 3.3.26. Let G and Go be two D-bimodules admitting actions by T™ and denoted by

B1 and By respectively. Then Homa(G1,G2) admits a natural T™ action v defined by

(- T)(e) = (B2)e-(T((Br)e " (¢)))-

Here, t, T and e belong to T™, Homp(G1,Ga) and G respectively.

Lemma 3.3.27. In the set-up of Definition 3.3.26, assume furthermore that D admits an action
a of T™ and By, B2 are both a-equivariant. Then Homp(Gi,Ga) is an T™ smooth D-bimodule,

i.e, for a in D, w in G and T in Homp(G1,G2), we have

1(Ta)(w) = (ve(T)a(a))(w) and v (aT)(w) = ar(a)(1(T)(w))-
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Proof. By using the right D-module structure on Homp (G, G2) from Definition 1.1.4, we com-

pute
w(Ta)(w) = (B2)((Ta)((B1); ' (@) = (B2)T(a(Br); ()
= (B2) T ((B1) i1 ((a)w)) = %(T) (e (a)w)
= (n(T)au(a))(w).
The other equality follows similarly. ]

As a consequence of the fact that Homp(Gy1,Gs2) is an T™ smooth D-bimodule, we have the

following remark.
Remark 3.3.28. If D, G, Go are as in Lemma 3.3.27, T an element in the k-th spectral
subspace of Homp(Gi,Ga) and e belongs to (Gi)1, then T'(e) belongs to (Ga)k+i-

Now we are in a position to prove the following proposition:

Proposition 3.3.29. Suppose M is a compact Riemannian manifold as in Proposition 3.3.3.
If A= C>®(M) and & is the bimodule of one-forms as before, then the A-bimodule £* admits a
deformation (£*)g.

Moreover, there exists a T"-equivariant Ag-bimodule isomorphism from (E*)g to (Eg)*.
Proof. The bimodule £* is isomorphic to the cotangent bundle of M and hence the left and right

A-module structures are jointly continuous. Moreover, by Lemma 3.3.27, £* is a T™ smooth

module. Thus, the bimodule £* can be deformed.

Next, in order to prove the isomorphism, we define a map T : (£%)g — (Ep)* b

(T3 (¢0))(e0) = > _ xo(k, Dg(ey),

kil

where ¢ = ) k@k and e = ZL e; are the isospectral decompositions in £* and & respectively. In

particular, if e belongs to &, then

(T3 (¢6)) Zm (k, )i (e (3.3.14)
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Let a = ), a; be the isospectral decomposition in A. Then we have that

(T§ (¢6)) (o X ag) = (Ty (¢0)) ZX@ (k, Dexar)o
(D xo(m, k+Dxo(k, D bm(exar)),
k,lm

(since ega; € Ek+qy by (3.3.1) and applying (3.3.14))

=( Z xo(m, k)xo(m + k, 1) ¢m(eray)), (by virtue of (3.3.3))
klm

=D xo(m, k)pm(er)), xo ag
km

(since by Remark 3.3.28, ¢ (ex) € Ag+1)

=(T5 (¢9))(eq) xq ay.

Hence, (T} (¢g)) is in (£)*. That T} is right Ap-linear can be seen from the following.

(T3 (d6 %0 ag))(eo) = (TE (D xo(k, ) drar)e)(es)

kil

= Z Xo(k, 1) xo(k + 1, m)prai(em) (since by (3.3.1), éra; € &)
k,lm

=3 Xo(k, L+ m)xo(l, m)pr(aren) (by (3.3.3))
klm

:(Tg(¢g))(a9 Xp €p) (since by (3.3.1), ag Xg ep is in (Ep)i4m)-

Let v denote the action of T" on £* := Hom4(&, . A) defined by Definition 3.3.26. The T™
actions on & and (£*)y will be denoted by 3? and +? respectively as in (3.3.6). Moreover, the
T™ action on (&)* := Hom 4, (Ey, Ag) as obtained from Definition 3.3.26 will be denoted by ~'.

We claim that the map T is equivariant w.r.t the T" actions on (£*) and (&)*, i.e,

T5 (v (¢9)) = 74 (T§ (d6))- (3.3.15)
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Indeed, using the fact that T™ actions preserves spectral subspaces, we have:

Ty (77 (¢0))(e0) = T5 () (ve(9x))0) (o)

k
=0 xo(k D (velo)(e))o = (D xo(k Dew(r(Bi-1(er)))),
k,l k,l
=af(D " xo(k, Dér(Bi-1(e1)))o = af (T3 (¢9)(B7-1(ea)))
k1l
=(%(T§ (¢0))) (eq)-

This proves (3.3.15).

Thus, we have a well defined equivariant morphism
T : ((€9)") -0 — ((€9)-0)" = €7,
and subsequently, a morphism

(T9)0 = (E0)* = (((E*)0)-0)0 — (£")o-

Finally, it is easy to check that the maps T95 and (T f%)g are inverses of one another. This finishes

the proof.

O

Recall that the action of T™ on C*°(M) and Q'(M) = £ are given by a and j3 respectively.

Since T" acts on M by isometries, the Riemannian metric g is equivariant under the T" action

i.e, for all w,n in £, we have

9(Bi(w) ®a Bi(n) = ar(g(w @4 m)).

(3.3.16)

Let 7 denote the T™-action on £ = Hom4(&,.A). Then by the T"-equivariance of g, it is easy

to see that Vj is a T"-equivariant map from & to £*. Indeed,

V() (f) = ae(Vy(e)(B; ()
=ai(g(e ®a B (f))) = g(Bile) ®a BBy (f)) (by (3.3.16))
=Vy(Bi(e))(f)-
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Hence, the map Vj is equivariant. Thus, by virtue of Lemma 3.3.22, we have a Ag-bimodule

isomorphism (V) from & to (£*)e.

Now we come to the deformation of the map g which is an element of Hom4(€ ®4 &, .A).
The bimodule £ ® 4 £ is equipped with the natural diagonal action 8 x [ of T". Therefore,
by Definition 3.3.26, we have an action of T™ on Hom4 (£ ®4 &,.A). Since by (3.3.16) g is
T"-equivariant, by Lemma 3.3.22 we have a deformed map gy in Hom 4, ((£ ®4 &)y, Ag) by yet
another application of Lemma 3.3.22. However, by Lemma 3.3.23, (€ ®4 &)y = E®.4,E. Thus,
we have a map in Hom 4, (& ® 4, £, Ag) to be denoted again by gy which is the candidate for

the Riemannian metric on & = Q},(A4p).
Our next result connects (Vg)y with V,.

Proposition 3.3.30. If Teg 2 (E%)g — (Ep)* is the isomorphism appearing in the proof of
Proposition 3.3.29. Then
T§ o (Vy)g = Vg (3.3.17)

and hence the map Vg, : &g — (Eg)* is an isomorphism.

Proof. Since the map V is T"-equivariant, by Lemma 3.3.22 it can be deformed, and the map
(V4)e is an element of Hom 4,(&, (€*)p). Moreover, the T"-equivariance of V; implies that
(Vy(e))r = Vgy(eg) for all e in €. Using the notation adopted in Remark 3.3.20, by Proposition
3.3.29, for all ey, fp in &y,

(T§ o (Vg)alea))(fo) = Ty (Vg(e))o)(fa)

=> X0k, D(Vy(e)rfr =Y xolk,Dgler @ f1) (as (Vg(e))x = Vy(ex))
kil kil
:g(z xo(k, e @4 f1) = go(eg ®4, fo) (by Lemma 3.3.23 and Proposition 3.3.29)
kil
=Vy,(e0)(fo).

Moreover, since Vj is an isomorphism from & to £, Lemma 3.3.22 implies that (Vj)s is an
isomorphism from & to (£%)p. As T is an isomorphism from (£*)g to (£p)*, the isomorphism

of V,, follows from (3.3.17). O

Proposition 3.3.31. gy is a Riemannian bilinear metric on &y.
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Proof. Clearly, 0 (= 2Psym — 1) is T"-equivariant, and as g o 0 = g, we have gg o0 0y = gy too,
i.e. gg is symmetric. It is also clear that gy is a bilinear map. Finally, by Proposition 3.3.30,

Vye is nondegenerate. O

Proposition 3.3.32. Let gj : £ ® 4, E9 — Ay be the Ag-bilinear map from Lemma 2.5.6. Then

gp = go and hence gy is a Riemannian bilinear metric on &.

Proof. Let w = [D, a1]az and n = [D,b;1]ba be elements in £ to be viewed as elements of B(H).
Let us denote the images of w and 7 in & by wy and 1y respectively. Similarly, the representation

of Ag in B(H) will be denoted by my. Finally, recall from Subsection 2.3.1 that 7 denotes the

state Limw% on B(H) for the spectral triple (A, H, D) and so 7y will denote the state

on B(H) for the deformed spectral triple (Ag, H, D). Then, if p is the dimension of the manifold

M, we compute

Tr([D, mg(a1)|mg(az)[D, mo(b1)]me(b2)mo(a)| D] P)
Te(|D]7P)
TI‘([D, al]ag[D, bl]bga\D]*p)
Tr(|D]7P)

To(weme X gag) = Limy,

= Lim,, (by Proposition 4.4.2 of [12])

= 7(wna)
= 7(9(w@an)a)

= 19(g9(w @4 n)emp(a)) (by Proposition 4.4.2 of [12])

= 79(g0(wo @4, M) X 9ag)

This proves that the bilinear form of Lemma 2.3.6 for the spectral triple (Ag, H, D) is equal to

gp and hence it satisfies all the conditions of Definition 2.3.7. 0

3.3.4 Existence and uniqueness of Levi-Civita connections

We will continue to use the notations introduced in Definition 3.3.6. The goal of this subsection

is to apply the results deduced in the last two subsections for proving Theorem 3.3.1.

Lemma 3.3.33. & is a finitely generated projective right module over Ay.

Proof. By Lemma 3.3.9, & is a finitely generated projective right Ag module. Then & ® 4, A

is a finitely generated projective right A module. Since the isomorphism ugo & ®ug A — € as
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given by Lemma 3.3.14 is T"-equivariant,
Ep = (Eo®a, Ao = (£0)g @y Ag = E ®a, Ag

is finitely generated as a right Ay module. Here, we have used the facts that (Ag)p = Ap and

(&0)o = & as right Ag modules since & is the fixed point submodule for the action of T™.

The projectivity of & = & @4, Ay follows easily from the fact that & is finitely generated

and projective as a right Ay module. O

Lemma 3.3.34. The map ug‘)’ = (ugo)g 1 & ®a, Ag — Ep is an isomorphism. Moreover, the

map u : Z(E) ®z(4g) Ao — &g is an isomorphism.

Proof. By Lemma 3.3.14, the T"-equivariant map ugo 1 Eg® 49 A — € is an isomorphism. Hence,

by Lemma 3.3.22 and Lemma 3.3.23 the map (ugo)g 1 & ®a, Ag — E is an isomorphism.

For the second assertion, we note that by Lemma 3.3.9, Fy = & = (&p)o is finitely generated
projective over Cyp = Ag = (Ap)g. But by Remark 3.3.7, & = Fy and Cy = Ag while by Remark
3.3.21, & = (&p)o and Ag = (Ap)o. Hence, (Ep)o is finitely generated and projective as a right
(Ag)p module.

By Remark 3.3.21, (Ag)o C Z(Ag) and (&) € Z(Ey). Therefore, by Proposition 2.4.6, we

conclude that the map u : Z(&) @ 2(A4y) Ap — Ep is an isomorphism. O

Lemma 3.3.35. The bimodule Eg ® 4, g admits a decomposition Ey ® 4, Eg = Ker(Ag) & My
of right Ag modules, where My = Q?(Ay) is satisfied.

Proof. This follows by applying Lemma 3.3.22, Lemma 3.3.23 and Corollary 3.3.5 applied to

the T"-equivariant map A. ]

Lemma 3.3.36. The map 0 : ERAE — E R4 E deforms to a map o9 : Eg D, Eo — Eg @4, Ep-
Moreover,

oo(w @, n) =1 R4, w
for allw,n in Z(&).
Proof. The map o is a T"-equivariant map and so by Lemma 3.3.22 can be deformed to a map

from (E®4 E)p to Ay. Using the isomorphism from (€ ®4 )y to & ® 4, E as in Lemma 3.3.23,

we can view o as a map from & ®4, £ to &y @4, Es-



3.3. Levi-Civita connection for Connes-Landi deformed spectral triples 111

Let us observe that by Lemma 3.3.34, the map u%? is an isomorphism, hence & is a centered
Ag-bimodule. Thus, by Theorem 2.1.7, there indeed exists a unique Ay-bimodule map from
Ep @4, Ep to itself which maps w ® .4, 7 to 1 ® 4, w for all w and n in Z(&). We need to show
that this map is equal to op. For this, let us take eg, fy in (€p)o. Then, using Lemma 3.3.22, we

get that

oo(eg ®a4, fo) = 0o((x0(0,0)e ®4 f)p) (by Lemma 3.3.23)
=(c(e®4 f))o = (f ®4€)p (since o is the classical flip map)

=fo @A €p.

Now, by Lemma 3.3.34, (&)o is right Ap-total in & and hence {eg® 4, fo : €g, fo € (Ep)o} is right
Apg-total in & ®4, E. Thus, by Lemma 1.1.6 the map oy is equal to the unique Ag-bimodule

map on & ®4, & as in Theorem 2.1.7.

Collecting the above results, we get the following:

Proof of Theorem 3.5.1. We start by recalling that we have already proved (Lemma 3.3.33)
that & is a finitely generated projective right module over Ay. By Lemma 3.3.34, the map
u : Z(Ey) @ z(a,) Ao — Ep is an isomorphism.

Next, Ker(Ag) is complemented in & ® 4, & by Lemma 3.3.35.

Lastly, the equality og(w @4, 1) =1 @4, w for all w,n € Z(&y) follows from Lemma 3.3.36.

Thus we have shown that the spectral triple (Ag, H, D) is a tame spectral triple. Moreover,
Proposition 3.3.32 asserts that gy is a Riemannian metric on &. By Theorem 2.5.1, the space
of one-forms & admits a unique Levi-Civita connection for the Riemannian bilinear metric g.

This completes the proof. ]

Remark 3.3.37. Let F be the spectral submodule of £ as in Definition 3.3.6. Then for the
deformed spectral submodule Fy of &, analogues of the results Lemma 3.3.33, Lemma 3.3.34,
Lemma 3.3.35 and Lemma 3.3.36 are proved the same way. Hence the analogous result of

Theorem 3.3.1 also holds for the deformed submodule.

Corollary 3.3.38. Under the assumptions of Theorem 3.5.1, the Levi-Civita connection V on

the bimodule £ deforms to the Levi-Civita connection Vg on the bimodule &y.
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Proof. Since the spectral triple (A, H, D) is T"-equivariant, it can be easily checked that the
maps d: A — & and d : £ — Q?(A) are T"-equivariant. It is easy to see that the map Ay — &
given by ag — [D,mg(ag)] is nothing but the deformation of the map d : A — £. By Lemma
3.3.22, the maps dp : Ag — & and dp : Eg — 02)(Ap) are T"-equivariant.

Since the map V is the Levi-Civita connection, V is T"-equivariant. Thus, we have a C-linear
map Vy: & — (E®aE)p = E @4, E and it can be easily checked that Vg is a connection.
By Lemma 3.3.4, A : £ ®4 & — Q?(A) is a T"-equivariant A-bimodule map. Hence, Ay :
Ep D4, Eo — Q2D(.A9) is defined, and Ay o Vg = (Ao V)g = —dy. Therefore, Vg is a torsionless
connection.

Lastly we show that Vg is compatible with the metric gg. We need to show that I, (Vg) = dygs.
However, by Lemma 2.4.10, the map II,, (V) —dggp is right Ag-linear. Since {wy® 4,70 : wp, M9 €
Z(&p)} is right Ag-total in Eg ® 4, £, it is enough to show that for all wy,ny in Z(&), we have
(I1g, (Vo) — doge)(we ®.4, 1) = 0 for all wy,ng in Z(&). Let wg,np in Z(Ep). Then,

(Hge (V) (wo @4, m0) = (96 @4, ide, ) (00)23(Va(we) ®a, 16 + V(1) @4, wo)

(9 ®aidg) 0 023)g(V(w) ®an+ V(n) ®aw)e

Iy (V)(w @.4m))o

(
(((9®@aide) 0 023)(V(w) ®an +V(n) ®aw)),
(
(—dg(w®.am))e

= —dgge(ws @4, N6)-

Therefore, Vg is compatible with the metric gy.

Since the Levi-Civita connection of Theorem 3.3.1 is unique, this completes the proof of the

Corollary. n



Chapter 4

Covariant connections on bicovariant

differential calculi

In this chapter, we study the problem of Levi-Civita connections on bicovariant differential cal-
culi over Hopf algebras. As explained in Section 1.4 and as seen in Chapter 2, the formulation
of the question of existence and uniqueness of Levi-Civita connection for a differential calculus
over a (possibly) noncommutative algebra .4 needs two ingredients: an analogue of the flip map
and a metric compatibility condition. Let us recall that by virtue of Proposition 1.3.15, we know
that if (€, d) is a bicovariant differential calculus on a Hopf algebra A, then £ is in fact a bico-
variant 4-bimodule. Hence, Proposition 1.3.17 establishes the existence of a unique bicovariant
A-bimodule map 0 : £ ®4 E — £ ®4 & satisfying some properties. This map o will play the
role of the flip map. In order to make sense of the metric-compatibility condition, we restrict
our attention to left-covariant connections and left-invariant pseudo-Riemannian metrics. In
Proposition 4.5.3, we prove a sufficient condition for the existence of a unique left-covariant
Levi-Civita connection for any bi-invariant pseudo-Riemannian metric on a bicovariant differ-
ential calculus satisfying a mild condition. In Theorem 4.5.8, we prove that if the Hopf-algebra
is cosemisimple, then the left-covariant Levi-Civita connection obtained in Proposition 4.5.3 is
actually bicovariant. Our assumptions for these theorems are satisfied for cocycle deformations
of bicovariant differential calculi over algebraic groups as well as the 4D calculi on SU,(2).
These examples will be discussed in the next two chapters. For alternative approaches to the
proof of existence of Levi-Civita connections on some quantum groups and their homogeneous

spaces, we refer to [2], [7] and [76].

113



114 Chapter 4. Covariant connections on bicovariant differential calculi

We will discuss bicovariant bimodules and associated notions in Section 4.1. In Section 4.2,
we will impose a mild condition on the braiding map ¢ as in Proposition 1.3.17 which will lead to
a decomposition of the bicovariant A-bimodule £€® 4& analogous to Proposition 1.4.1. In Section
4.3, we will define and study the notion of invariant pseudo-Riemannian metrics on bicovariant
differential calculi. In Section 4.4, as a direct consequence of the assumptions on the braiding
map o, Theorem 4.4.4 will give us the construction of a canonical torsionless connection on £.
In the same section, we also introduce the notion of compatibility of left-covariant connections
on £ with left-invariant pseudo-Riemannian metrics. A comparison with existing notions of

metric compatibility in literature will also be given.

In Section 4.5, we will discuss a metric-independent sufficient condition for the existence of a
unique left-covariant connection on the space of one-forms of a Hopf algebra, which is torsionless
and compatible with a bi-invariant pseudo-Riemannian metric. For the Hopf algebras of classical
Lie groups, Levi-Civita connections compatible with a bi-invariant metric are automatically
bicovariant. As an analogous result, in this section we will also show that if the Hopf algebra
is cosemisimple, the unique left-covariant connection is also right-covariant. The contents of

Section 4.3 are from [18] and that of the rest of this chapter are from [17].

Throughout this chapter, A will stand for a Hopf algebra. Moreover, the bicovariant differ-

ential calculus over A will always be assumed to be finite in the sense of Definition 4.1.3.

4.1 Bicovariant bimodules and Yetter-Drinfeld modules

We begin by recalling the definitions of certain categories which we will deal with in this chapter
for which we will need the definitions and notations developed in Section 1.2 and Subsection

1.3.2.

Definition 4.1.1. The category “M of left comodules over a Hopf algebra A consists of objects
(V, Ay) which are left A-comodules as in Definition 1.2.2, and morphisms T : Vi — Va which
are C-linear maps satisfying

AVQ ol = (id®(cT) o Avl.

The category M of right comodules over a Hopf algebra A consists of objects (V,vA) which

are right A-comodules as in Definition 1.2.2, and morphisms T : Vi — Vo which are C-linear
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maps satisfying

VQA O T = <T®(Cld) [0} V1A'

The category ﬁMA of left covariant bimodules over a Hopf algebra A consists of objects
(M, Apr) which are left covariant A-bimodules as in Definition 1.2.10, and for all m in M and
a in A, satisfy

Ap(am) = A(a)Ap(m),  Anp(ma) = Ay (m)A(a).

Morphisms in this category are C-linear maps T : M1 — My satisfying

AMQ ol = (id®(cT) o AMl,

The category AMﬁ of right covariant bimodules over a Hopf algebra A consists of objects
(M, pA) which are right covariant A-bimodules as in Definition 1.2.10, and for all m in M

and a in A, satisfy
mA(am) = Ala)yrA(m),  pA(ma) = pA(m)A(a).
Morphisms in the category are C-linear maps T : My — My satisfying

MQA ol = (T®C1d) (¢] M1A7

The category AMﬁ of bicovariant right modules over a Hopf algebra A consists of objects
(M, Apgy D) which are A-bicomodules as in Definition 1.2.2 as well as right A-modules, sat-
isfying for all m in M and a in A

Ap(ma) = Ay (m)A(a),  mA(ma) = yA(m)A(a),
Morphisms in this category are C-linear maps T : M1 — Mo satisfying

App, oT = (id@@T) oAny, MAoT = (T®(cid) o A

The category ﬁ./\/lﬁ of bicovariant bimodules over a Hopf algebra A consists of objects

(M, Apgy D) which are bicovariant A-bimodules as in Definition 1.2.10, and for all m in
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M and a in A satisfy

Apr(am) = A(a)Ap(m), MmA(am) = Aa)yrA(m),
Apr(ma) = Apyr(m)A(a), MmMA(ma) = pyrA(m)A(a).

Morphisms in this category are C-linear maps T : M1 — Mo satisfying

AM20T= (id@(cT)OAMl, M2AOT: (T®@id)OM1A

We refer to [78] for more details.

Thus, comparing with Definition 1.2.10 and Definition 1.2.13 with Definition 4.1.1, we have

the following:

Proposition 4.1.2. Suppose M is an A-bimodule.

(i) A left A-comodule (M, Apr) is a left-covariant bimodule if and only if it is an object of
the category ﬁMA. A left-covariant A-bimodule map between two left-covariant bimodules

over A is nothing but a morphism of the category ﬁMA.

(i) A right A-comodule (M, pA) is a right-covariant bimodule if and only if it is an ob-
ject of the category A/\/lj. A right-covariant A-bimodule map between two right-covariant

bimodules over A is nothing but a morphism of the category A./\/lj.

(iii) A bicomodule (M, Apr, pA) is a bicovariant bimodule if and only if it is an object of
the category ﬁ./\/lﬁ A bicovariant A-bimodule map between two bicovariant bimodules is

nothing but a morphism in the category ﬁ./\/lﬁ.

We will be using the notations introduced in Definition 1.2.11. Thus, for a left A-comodule
M, the symbol ¢M will denote the set of all left-invariant elements in M. Similarly, if M is

right A-comodule, then My will denote the set of all right-invariant elements in M.

Definition 4.1.3. We will say that a bicovariant bimodule (M, Apr, pA) is finite if oM is a

finite dimensional vector space.

Remark 4.1.4. Throughout this thesis, we will work only with bicovariant bimodules which are
finite. Thus, if M is a bicovariant bimodule under consideration in this thesis, the vector space

oM s finite dimensional.
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We also need the following notation.

Definition 4.1.5. Let M and N be left-covariant A-bimodules. The set of all right A-linear
left covariant maps from M to N will be denoted by the symbol AHomA(M, N).

The category 4M 4 has a natural monoidal structure. Indeed, if (M, Ay) and (N, Ay) are
left-covariant bimodules over A, then we have a left coaction Aprg ,n of A on M ® 4 N defined

by the following formula:
AM®AN(m XA n) = m(_l)n(_l)@)cm(o) XA n(0)- (4.1.1)

Here we have made use of the Sweedler notation introduced in Subsection 1.2. This makes
M® 4N into a left covariant A-bimodule. Similarly, AMﬁ also has a natural monoidal structure.

In particular, the category j‘/\/lf‘ is monoidal. Moreover, we have the following:

Theorem 4.1.6. ([93], Theorem 6.3 of [84]) For any two objects M, N in the category 4 M4,
the unique bicovariant bimodule morphism o : M@ 4N — N oM satisfying c(m®4n) = n®4m
whenever m is in oM and n is in Ny (as in Proposition 1.3.17) is a braiding. Along with the
monoidal structure ® 4 as defined in (4.1.1), this makes (4M%, ®4,0) into a braided monoidal

category.

The fundamental theorem of Hopf modules (Theorem 1.9.4 of [78]) states that if M is a
left-covariant bimodule over A, then M is free as a left (as well as a right) .A-module This was
reproved by Woronowicz in [93]. The following statement rephrases the same in our notational

formalism:

Proposition 4.1.7 (Theorem 2.1 and Theorem 2.3 of [93]). Let (M, Apr) be a left-covariant

bimodule over A. Then the following multiplication maps are isomorphisms:
M o M@cA — M, ™M AQcoM — M. (4.1.2)
Similarly, if (M, pA) is a right-covariant bimodule over A, then the multiplication maps
My®cA — M, A®cMy — M, (4.1.3)
are also isomorphisms.

Then, the following is an immediate corollary.
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Corollary 4.1.8. Let (M, Ayr) and (N, Apn) be left-covariant bimodules over A and {m;}; and
{n;}; be vector space bases of (M and oN respectively. Then each element of M ® 4 N can be
written as Zij a;;m; @4 n; and Zij m; @4 njbi;, where a;j and b;j are uniquely determined.

A similar result holds for right-covariant bimodules (M, prA) and (N, NA) over A. Finally, if
(M, Apr) is a left-covariant bimodule over A with basis {m;}; of oM, and (N, NA) is a right-
covariant bimodule over A with basis {n;}; of Ny, then any element of M ® 4 N can be written

uniquely as Zij a;jm; @4 n; as well as Zij m; ® .4 n;bij.
Proof. The proof of this result is an adaptation of Lemma 3.2 of [93] and we omit it. O

Now we recall the notion of right Yetter-Drinfeld modules and Schauenburg’s result which
showed that the category of bicovariant bimodules is braided monoidally equivalent to the

category of right Yetter-Drinfeld modules.

Definition 4.1.9. (Definition 4.1 of [84]) Suppose that A is a Hopf algebra. A right Yetter-
Drinfeld module over A is a triplet (M,+,d) where (M,+) is a right A-module, (M,?d) is
a right A-comodule such that for all a in A and for all m in M, the following compatibility

condition holds:

m() = a)@cm)ace) = (M — ag))0)@ca)(m = a)))-

We will let yDj denote the category of all right Yetter-Drinfeld modules. Here, the mor-
phisms between two objects M and N in yl)j are C-linear maps T : M — N which are right

A-linear and right A-comodule maps.

Theorem 4.1.10. ([84]) Suppose A is a Hopf algebra with a bijective antipode. Then the
category nyl has a braided monoidal structure. Indeed, if M and N are objects of yDj, the
following right A-module and right A-comodule structure makes M®@cN an object of yDﬁ :

(m®cn)a = maq)@cna(g), MeNA(MRCN) = m)Qcno)@cmp)n()-
The braiding oyp 1s given by:

oyp - M@cN — N®cM, pr(m®(cn) = n(0)®@m = n(1).
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The bijectivity of the antipode is needed only to guarantee that oyp is a braiding on yDﬁ.

In general, it is only a pre-braiding. Now we are in a position to state Schauenburg’s results:

Theorem 4.1.11. (Theorem 5.7 of [84]) The following statements hold:
(i) The functor ﬁMA — My, M — oM defines a monoidal equivalence of categories. The
inverse functor is given by V — AQcV.

(i) The functor AJ\/I:Zl — AM, M — My defines a monoidal equivalence of categories. The

inverse functor is given by V — V@cA.
(iii) The functor AMﬁ —AM, M — My defines an equivalence of categories.

(iv) Suppose A is a Hopf algebra with a bijective antipode and consider the braided monoidal
categories (ij,@A,U) and (yDﬁ,@),ayD) as in Theorem 4.1.6 and Theorem 4.1.10

respectively. The functor
(AMA, @4, 0) = (YDU, ®,0yp), M — oM
defines a braided monoidal equivalence of categories.

For more details on Yetter-Drinfeld modules, we refer to [96] and [84].

Proposition 4.1.12. (Theorem 5.7 of [84]) Let (M, Apr) and (N, An) be left-covariant bimod-
ules over A. Following Definition 1.2.11, we denote the left-invariant elements (with respect to
the coaction Ay ~N) of M @4 N by o(M ®4 N). Similarly, the right-invariant elements of
M ®4 N (with respect to the coaction pg NA) will be denoted by (M ®4 N)o. Then we have
that

o(M ®4 N)=Spanc{m ®@an:m e oM,n e N}. (4.1.4)

Similarly, if (M, pA) and (N, yA) are right-covariant bimodules over A, then we have that
(M ®4 N)o=Spanc{m ®an:m e My,n € No}.
Thus, O(M XA N) = oM&coN and (M & A N)o = My®cNp.

Proof. This follows directly from the first two monoidal equivalences in Theorem 4.1.11. O

Remark 4.1.13. In the light of Proposition 4.1.12, we are allowed to use the notations oM &coN
and o(M ® 4 N) interchangeably.
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4.1.1 A characterisation of left covariant maps and some consequences

In this subsection, we collect some results on left covariant maps which we will exploit through-
out the chapter. For the rest of this subsection, we will use the notations introduced in Propo-

sition 4.1.7 freely.

Proposition 4.1.14. Let (M, Ap) and (N, Ay) be left-covariant bimodules over A and T be
a left-covariant right A-linear map from M to N. Then T'(oM) C oN. Moreover, there exists a

unique C-linear map oT" in Homc (oM, oN) such that
@)™ o T = (oT®cid) (@) ™. (4.1.5)

In particular, a left covariant right A-linear map T from M to N is determined by its action

on oM.

Proof. Let {m;}; be a vector space basis for oM and {n;}; be a vector space basis for ¢/N. Since

T is a left-covariant right A-linear map from M to N, we have that
An(T(m;)) = (idRcT)An (mi) = (idRcT)(1®cm;) = 18 (T (m;)).

Therefore, T'(m;) is in o/N. This proves the first assertion.
Define ¢7T" to be the restriction of T on oM. Let m = ﬁM(ZZ m;®ca;), where @M is as defined

in Proposition 4.1.7. Then

-1 -1

(oT®cid) (@)™ (m) = ZOT(mi)Q@@ai = (ﬂN)_1 o T(Z mia;) = (@) o T(m)

2

and thus (4.1.5) follows. The uniqueness follows from the fact that the equation (4.1.5) implies
that ¢T'(m;) = T'(m;) for all i. O

Corollary 4.1.15. Let (M, Ayy) be a left-covariant bimodule over A and T be a left-covariant
right A-linear map from M to A. Then there ezists a unique C-linear map oT in Homc (oM, C)
such that

T = (oT&cid) (@)~

Proof. The proof follows by taking (N, Ay) = (A, A) in Proposition 4.1.14. O
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Proposition 4.1.16. Let (M,Apr) and (N,An) be left-covariant bimodules over A. Then
AHom (M, N) is isomorphic to Homc (oM, oN) as complex vector spaces. Moreover a left-
covariant right A-linear map T from M to N 1is invertible if and only if o1 is invertible. More

generally, X is an eigenvalue of T if and only if \ is an eigenvalue of ¢T'.

Proof. Let us recall (Definition 4.1.5) that ““Hom 4 (M, N) denotes the set of all right A-linear

left-covariant maps from M to N. We define a map
AHom (M, N) — Homg (oM, oN); T — T

as in Proposition 4.1.14. As T is left-covariant, by Proposition 4.1.14, T'((M) C ¢N. Since
T is determined by its action on (M), this map is one-to-one. Given an element (7" in
Homc (oM, oN), the map @'Y (¢T®cid4)(@™)~! defines an element, say T, in Hom_4(M, N) which
can be easily checked to be left-covariant and whose image under the above map is ¢7. Thus,

the map is a bijection.

The equation (4.1.5) implies that 7" is invertible if and only if (7" is invertible. Finally, A
is an eigenvalue of ¢7" if and only if o(T" — \.1) = (7" — A.1 is not invertible and o(7" — A.1) is
not invertible if and only if 7' — A.1 is not invertible by the above argument. Hence, A is an

eigenvalue of T if and only if it is an eigenvalue of ¢7T'. O

Proposition 4.1.17. Let (M,Aps) and (N,An) be left-covariant A-bimodules. Then a right
A-linear map T : M — N is left-covariant if and only if T(¢M) C oN.

In particular, if S : M @4 N — M ®4 N is a right A-linear map, then Proposition 4.1.12
implies that S is left-covariant if and only if S(oM®coN) C oM ®coN.

Proof. If the map T is left-covariant, then by Proposition 4.1.14, T'(¢M) C ¢N. Conversely,
suppose T is a right A-linear map and T (oM ) C ¢N. Let {m;}; be a vector space basis of ¢ M

and ), m;a; be an element of M. Then we have that

AN(T(Z: mia;)) = Z An(T(m;)a;) = Z AN (T (m;))A(ai)

:Z(1®CT(mi))(ai(1)®Cai(2)) = (aiy®cT(mi)aiz))

7 A

:(id®<cT)(Z ai(1)@cmiai(z)) = (id®<CT)(AM(Z m;iag)).
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Hence T is a left-covariant map. O

Remark 4.1.18. Analogues of Proposition 4.1.14, Corollary 4.1.15, Proposition 4.1.16 and
Proposition 4.1.17 also hold for right-covariant right A-linear maps from (M, pA) to (N, NA).

We end this subsection by proving two results related to bicovariant right A-linear maps.
We need to recall (Lemma 1.2.12) that if M is a bicovariant .A-bimodule, then oM is a right

A-comodule.

Proposition 4.1.19. Let (M, Ay, yA) and (N, An, NA) be bicovariant A-bimodules and T
be a left-covariant right A-linear map from M to N. If the map oT = T|,pr : oM — oN as
in Proposition 4.1.14 is right-covariant, i.e, NA o oT = (oT®cid)p A, then the map T is also

right-covariant.

Proof. Let m be an element of ¢M and a an element of A. Then by right A-linearity of T" and

right-covariance of o7, we get

NA(T(ma)) = NA(T(m)a) = NA(T(m))A(a)
= ~NA(T(m))A(a) = (1T®cid)(asrA(m))A(a)
= ((0T®cid)(m@gy@cm)))(am)@ca))
= (1) (m(o))a@y@cmyace) = T(m)aa))Qcma)ae)

= (Tecid)((m@ey@cma))(an)®cap))) = (TRcid) yA(ma).
Since oM is right A-total in M, this proves that T is a right covariant map. ]

Before stating the next result, let us note that if M and N are bicovariant A-bimodules and
{m;}; and {n;}; are vector space bases for oM and o respectively, then by Lemma 1.2.12, we
get

oMA(m;) = ka®(caki and (NA(n;) = an&cblj,
% I

for some elements {ag; }x; and {b;;};; in A.

Lemma 4.1.20. If an element T' of Homc(oM,oN) is such that for all m, T(m;) =, nJTJZ

for some elements T; in C, then T is a right-covariant map from oM to oN if and only if

Z nl®(cble; = Z nj®<chaki. (4.1.6)
il ik
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Proof. 1f T'is a right-covariant complex linear map from oM to o N, then ,yAoT = (T'®cid),pmA.

Now:

AT () = WA T = Y mwe 3 by Ty (4.1.7)
7 l )

On the other hand,

(Tocid)ynA(mg) = (Tocid)(Y mi®car) =Y _nj@c Y Tfak (4.1.8)
k j k

Comparing equations (4.1.7) and (4.1.8), we get that T'is an element of Hom# (oM, oN) if and
only if (4.1.6) holds. O

4.2 The diagonalisability of (o

Recall that in Subsection 1.3.2, we defined bicovariant differential calculi and the space of one-
forms and two-forms for Hopf algebras. The aim of this section is to prove a noncommutative
analogue of the decomposition (1.4.1) under a mild assumption (Theorem 4.2.5) on the bico-
variant differential calculi of a Hopf algebra A. This decomposition will help us to construct a
canonical bicovariant torsionless connection on a bicovariant differential calculus (see Theorem
4.4.4). The Woronowicz braiding map o (see Proposition 1.3.17) will play the role of the classi-
cal flip map. By Proposition 1.3.15, the space of one-forms of a bicovariant differential calculus
over A is a bicovariant bimodule. Hence all the results on bicovariant bimodules derived in
Section 4.1 can be applied. In the sequel, the symbol £ will always stand for the bimodule of

one-forms of a bicovariant differential calculus (€, d).

Let (£,d) be a bicovariant differential calculus on a Hopf algebra A. Proposition 4.1.7

guarantees the isomorphism of the multiplication map
uEE4E : (0ERCE)RCA = (€ DA E)RcA = ERAE (4.2.1)

Moreover, by Proposition 1.3.17, we have a canonical bicovariant A-bimodule map o from E® 4&
to £ ®4 £. Then Proposition 4.1.14 and Proposition 4.1.12 imply that there exists a unique
map

00 : 0€@co€ = o(E ®AE) — 0(E @A E) = 0ERc0oE (4.2.2)
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such that

(U248 "l = (goRcid) (@A)~ (4.2.3)

For the rest of this chapter, we will make the assumption that the map ¢o : 0€Rco€ — 0ERcoé
is diagonalisable. This assumption holds for a large class of Hopf algebras as indicated in the

next proposition.

Proposition 4.2.1. Let £ be the space of one-forms of a first order differential calculus over a

Hopf algebra and oo : 0ERco€ — 0ERco€ be the map as in (4.2.2). Then

(i) For the classical bicovariant differential calculus on a Lie group, the map oo is diagonal-

1sable.

(ii) Let (€,d) be the bicovariant differential calculus on the algebra A of regular functions on a
linear algebraic group G such that the category of finite dimensional representations of G is
semisimple. Suppose A, is the cocycle deformation of A with respect to a 2-cocycle y (see
Definition 1.2.7). Then we have a canonical bicovariant differential calculus (€,,dy) on
A, obtained by deforming the usual bicovariant differential calculus on A (see Proposition
5.8.1). Let o be the braiding map of Proposition 1.3.17 applied to the calculus (€,,d,).
Then o(0y) : 0(Ey ®a, E) = 0(Ey ®a, &) is diagonalisable.

(111) The assumption holds for the bicovariant differential calculi on SLy(N), Og(N), Spe(N)
studied in [51]. More generally, if the map o satisfies a Hecke-type relation II;(c — A;) =0

for distinct scalars \;, then go is diagonalisable.

Proof. Suppose the map o satisfies a relation II;(c — \;) = 0 for distinct scalars \;. Since
00 (0E®co€) C 0E€Rco€, we have the equality II;(oo — A;) = 0 as maps from (ERco€ to itself.
Therefore, the minimal polynomial of the map go is a product of distinct linear factors and so
oo is diagonalisable. Since the bicovariant differential calculi on SLy(N), Og(N) and Spy(N)
studied in [51] satisfy Hecke-type relations as above, this completes the proof of part (iii). The
classical case follows similarly, since here o(e® 4 f) = f®4e for all e, f in £, so that 0>—1 = 0 and
therefore, the above reasoning applies. Finally, cocycle deformations of bicovariant differential

calculi are dealt with in Chapter 5 and we refer to Theorem 5.3.1 for the proof of part (ii). O

The sub-bimodule
E@F" E :=Ker(A) = Ker(o — 1)
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was introduced in (1.3.9). This bimodule is going to play an important role in this chapter.

Moreover, let us introduce the following notations.

Definition 4.2.2. Suppose the map oo is diagonalisable. The eigenspace decomposition of
0€@co€ will be denoted by oERcof = @ycp Vi, where A is the set of distinct eigenvalues of
oo and Vy is the eigenspace of go corresponding to the eigenvalue X. Thus, Vi will denote the

eigenspace of go for the eigenvalue A = 1.

Moreover, we define oEQRc™™oE to be the set of all left-invariant elements of £ ®i}(m E, i.e,

0ERCTME = {Z;%(&M € E0AE : Nswue(D | @A) = 180C Y pr@avi, Y Pk NV = 0}-
k k k k

We also define oF := ®A6A\{1} V.

The assumption that go is diagonalisable is enough to prove Theorem 4.2.5 As a first step

to prove that theorem, we make the following observation:

Lemma 4.2.3. Let go be the map in (4.2.2). Then we have
We have o€ @™ o€ = Ker(po — 1).

Proof. The result follows by a simple computation. Indeed,

o ®?Cym o
= {Zpk Qg €ERAE: A5®A£(Zpk RAVE) = 1®c2pk A l/k,zpk/\Vk =0}
k k k k
= D e @avk €EQAE  Agae(D | pr®avi)
k k
= 1®<CZPk @AV, (0 — 1)(2/% ®avg) =0}
k k

(since Ker(A) = Ker(o —1) by (1.3.9))
= Do ®avk € 0E®co€ : (00 — 1)(D_ pr®cri) = 0}
k k
(as 0(E®a &) =0E®co€ by Proposition 4.1.12")

= Ker(po —1).

O

Remark 4.2.4. Let (& ®?Cym of and oF be as in Definition 4.2.2. We have already noted that

o€ ®fcym05 = Vi1, where Vy is as in Definition 4.2.2. Further note that since oo is diagonalisable,



126 Chapter 4. Covariant connections on bicovariant differential calculi

we have the following decomposition:
0€@co€ = o€ RF™ 0€ @ o F. (4.2.4)

In the sequel, Q?(A) will denote the space of two-forms as defined in Definition 1.5.18.

Theorem 4.2.5. Suppose that the map oo is diagonalisable. Let uE®AE be the isomorphism of
(4.2.1). We define F := u*®A¢ (o FRcA), where oF is as in Definition 4.2.2. Then Nz : F —

O2(A) defines an isomorphism of right A-modules. Moreover,
E@a€=Ker(N)@F=E" E@ F.
Proof. The proof easily follows by a computation and the following observation:
0(E @™ E) = oERcY™E and so uEPAE ((ERCTMERCA) = £ @ E. (4.2.5)

The equation ¢(€ @™ &) = 0€Qc™™€ follows directly from the definitions of (ERc™ ™€ and
E @3™ € = Ker(A). Then the second equation of (4.2.5) follows from Proposition 4.1.7, since

sym

by Proposition 1.3.19, £ @7 £ is a bicovariant bimodule.

Now we can compute:

E @& =AU L(E @4 E)
=91 ((1E@c0E)DcA) = UEHAE(((0€Rc™™0E) ® o F)@cA) (by(4.2.4))
=utP4E (0@ ™0E)RcA) @ (1 FRcA) =ERFY EDF
(by (4.2.5) and the definition of F)

=Ker(A) @ F (by the definition of £ ®3™ &).

Finally, since £ ® 4 € = Ker(A) & F, we have that
F=(E@4E)/Ker(A) = (E@4E)/Ker(o — 1) = Q*(A),

by (1.3.9) and the definition of Q?(.A) as in Definition 1.3.18. Hence, Alx : F — Q2(A) is an

isomorphism of right A-modules. O
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4.2.1 The idempotent P, and its properties

In this subsection, we study the idempotent element of Hom4(€ ®4 &€,€ ®4 £) with range
£ @™ € and kernel F.

Definition 4.2.6. We will denote by o(Psym) the idempotent element in Homc (0€®co€, 0E@cof)
with range 0o€Qc*¥™oE and kernel o F. By Proposition 4.1.16, o(Psym) extends to a right A-linear
left-covariant map from € R4 E to E R4 E. We are going to denote the extension by the symbol

Pyyr. More concretely,
Psym = a&g)AS (O(Psym)®(cid) (a&@Ag)_l‘

Proposition 4.2.7. The map Py is the idempotent map from £ @ 4 € to itself, with range
onto € ®i¥m E and with kernel F. In fact, Py, is also a left A-linear and bicovariant map.

Thus Py, s a bicovariant A-bimodule map from £ ® 4 € to itself.

Proof. By Definition 4.2.6, Psyy is a left-covariant right A-linear map from £ ® 4 € to itself.
Since o(Psym) is an idempotent, Pyym = uf®4E (o( Paym)®cid)(@€®4€)~1 is also idempotent. We

have that

Ran(Pym) = %A% (o Paym)@cid) (a°F4°) "HE @4 )
= @48 ((Pogm)@cid) ((0€ @c0€) R A) = U5HAE (((ERc™ ™€) @A)
(by the definition of ¢(Psym))

=E @Y™ E (by (4.2.5)).

Now we prove that Ker(Psym) = F. We note that Py, is an idempotent from the complex vector
space E®4E to itself with range £ ®°™ € and kernel containing the subspace WEPAE ((FRcA) =
F. Since E@4E =E @ " E D F (Theorem 4.2.5), this proves that Ker(Pym) = F.

Finally, we prove that Psy, is a bicovariant A-bimodule map. this follows from the observation
that o(Psym) is a polynomial in go. Indeed, in the notation of Definition 4.2.2, o(Psym) is the
idempotent with range V1 and kernel @)cp\(13V and so

00 — A
1—X7

O(Psym) = H)\EA\{I} (4'26)
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Therefore,
Psym _ ﬂg®A5 (O (Psym)®(cid) (ﬂé‘@Ag)fl

~ 1
=ut0A% ((HAGA\{l} Y

- 1 N _
:HAEA\{1}<U€®A5((ﬁ(OU — \))®cid) (aF€4%) 1) = Mea\q13 (

(0 — X)) @cid ) (@94€) 7!
1
-

(o0 — )\))

by (4.2.3). Hence,

1
Poym = H,\GA\{l}(l — /\(a - ). (4.2.7)

Now o is a bicovariant A-bimodule map from £ ® 4 € to itself and so Py, being a composition
of bicovariant A-bimodule maps from £ ® 4 £ to £ ® 4 £ is itself a bicovariant A-bimodule map

from E R4 E to ER4E. O

In the classical case, we have A = £1 and so in this case, we recover the formula Py, =

3(1+4 o) from (4.2.7). Let us collect two facts in the following remark which will be used later.

Remark 4.2.8. Since Psym is a bicovarant A-bimodule map, the right A-module F = Ran(1 —

Pyym) is actually a bicovariant sub-bimodule of € ® 4 E.

Definition 4.2.9. Let F be the sub-bimodule of EQE as in Theorem 4.2.5. By Theorem /.2.5,

we have a right A-linear isomorphism Az : F — Q2(A) which we will denote by Q.
The following result is a corollary to Proposition 4.2.7.

Corollary 4.2.10. If (£,d) is a bicovariant first order differential calculus, then dw is in
0(Q2(A)) for all w in o€ = o(Q*(A)). Moreover, Q is a bicovariant A-bimodule map.

Proof. From Proposition 1.3.20, we know that d : & — Q2(A) is bicovariant. Therefore, if w is
in &, we have

AQQ(A) (dw) = (idA(X)(Cd)Ag(w) = l®cdw.

For the second statement, we note that by Remark 4.2.8, F a bicovariant sub-bimodule of
E ®4 . By Proposition 1.3.19, the quotient map A is a bicovariant bimodule map. Hence,
the restriction @ := A|r is also a bicovariant bimodule map from F to Ran(Q) = Q%(A4). In

particular, this implies that

Q_l(o(QQ(A))) C oF ( Proposition 4.1.17 ). (4.2.8)



4.2. The diagonalisability of go 129

We end this section with one more lemma which will be needed in the proofs of Lemma 4.2.11
and Theorem 4.5.9. In what follows, the set of all linear functionals on a finite dimensional

complex vector space W will be denoted by the symbol W*.

Lemma 4.2.11. The following maps, defined in Proposition 1.1.8, are vector space isomor-
phisms:

<05®¢:05705 : (0£®Csym08)®c(08)* — HomC(Ogmg@(CsymOg)a

Co0E@c0€ : 0€RC(0€Rc™ ™M 0E)* — Home (0€Rc™™0E, 0E).

Proof. By the definition of the map (,ewco,0¢,
Goe@co o€ ((0€QC™0E)®c(0€)") € Home (o€, 0€&@c™™ o).

Since (ye@eoe, o 18 an isomorphism from (o€®co€)®c(0€)* onto Home (o€, 0€®co€) and
dim((o€@c™™0€)@c(0€)") = dim(Home (o€, 0ERc™™0E)),

we have proved the first assertion.

Now we prove the second assertion. By the definition of o(Psym) (Definition 4.2.6),

0E®@co€ = Ran(o(Psym)) ® Ran(1 — o(Psym))

and hence an element ¢ of ((€Rc™™oE)* = (Ran(o(Psym)))” extends to an element ¢ of

(0€®co€)* by the formula
PY(X) = Y(0(Psym) (X)) VX € oE@cof.
More generally,

Home (0€R¢c™™ &, C) = {1 € Home (0€@c0E, C) : (1 — o(Paym))(X)) = 0 VX € oERcoE}.

(4.2.9)
This allows us to view ¢ € ((€Rc¥™E)* as an element ¥ in ((EXcoE)* such that (1 —
0(Psym)) (X)) = 0.
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Thus, for e in (&, @Z as above and for all X in ¢(E®Rco€, we have

(Gotroeeoe) (€@ct) (1 = 0(Poym)) (X)) = et (1 = o(Poym)) (X)) = 0.

This implies that
Go&08@c08 (0€@(0ERC™™0E)™) € Home (o€Rc™ ™0, 0€).

As (e pe@coe 18 an isomorphism from (E®c(0€Rco€)* onto Home (0€®cof, o€) and
dim(oER¢(0ERCY™E)*) = dim(Home (0€Rc¥™0E, o)),

Co& 0000 Maps 0€Rc(0E€Rc™™pE)* isomorphically onto Home (0€@c* ™0, 0€). This finishes

the proof of the lemma. O

4.3 Pseudo-Riemannian metrics on bicovariant bimodules

In this section, we study pseudo-Riemannian metrics on bicovariant differential calculi over
Hopf algebras. After defining pseudo-Riemannian metrics, we recall the definitions of left and
right invariance of a pseudo-Riemannian metrics from [51]. We prove that a pseudo-Riemannian
metric is left (respectively, right) invariant if and only if it is left (respectively, right) covariant.
We will see that the coefficients of a left-invariant pseudo-Riemannian metric with respect to
a left-invariant basis of £ are scalars. We use this fact to clarify some properties of pseudo-
Riemannian invariant metrics. We end the section by comparing our definition with those by

Heckenberger and Schmiidgen ([51]) as well as by Beggs and Majid.

Definition 4.3.1. ([51]) Suppose & is a bicovariant A-bimodule € and 0 : E QR E — E®@4E
be the map as in Proposition 1.3.17. A pseudo-Riemannian metric for the pair (€,0) is a right

A-linear map g : £ ®4 € — A such that the following conditions hold:

(i) goo =g.

(ii) If g(p @4 v) =0 for all v in &, then p = 0.

For other notions of metrics on covariant differential calculus, we refer to [11] and references

therein.
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Definition 4.3.2. ([51]) A pseudo-Riemannian metric g on a bicovariant A-bimodule £ is said

to be left-invariant if for all p,v in &,

(id®ceg)(Aeg 6)(p@av)) = glp@av).

Similarly, a pseudo-Riemannian metric g on a bicovariant A-bimodule £ is said to be right-

invariant if for all p,v in &,

(eg@cid) (g e)Ap @av)) = glp@a V).

Finally, a pseudo-Riemannian metric g on a bicovariant A-bimodule £ is said to be bi-invariant

if it is both left-invariant as well as right-invariant.

We observe that a pseudo-Riemannian metric is invariant if and only if it is covariant.

Proposition 4.3.3. Let g be a pseudo-Riemannian metric on the bicovariant bimodule £. Then
g is left-invariant if and only if g : E @4 E — A is a left-covariant map. Similarly, g is right-

invariant if and only if g : E @4 E — A is a right-covariant map.

Proof. Let g be a left-invariant metric on &£, and p, v be elements of £. Then the following

computation shows that g is a left-covariant map.

Alg(p®av)) = A((id®ceg) (A 46)(p ®aV)))
=A((id®ceg) (p(—1)V(—1)®cp(0) @A V(o))
=A(p-1y¥(-1))e(9(p0) ®A V(0)))
=(p(=1)) 1) V(=1)) (1)®c(p(=1)) 2) V(1)) 2)€(9(P(0) @A V()
=(p(=1)) 1) (V(=1)) (1)y®c((id®ceg) ((p—1)) 2) (V(=1)) (2)@cP0) B A V(0)))
=p(—1)V(-1)@c(({d®ceg) (A 1) (P(0) ®4 V(0))))

(where we have used coassociativity of comodule coactions)

=p(—1)Y(-1)®cg(P(0) @A V(0))

=(1d®cg) (AEg.qe) (P @A V).
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On the other hand, suppose g : £ ® 4 &€ — A is a left-covariant map. Then we have

(id®ceg) Ao 4)(p ®a v) = (idRce) (IdDcg) A g 6) (P @A V)

=(id®ce)A(g(p @av)) = glp®av).

The proof of the right-covariant case is similar. O

The following key result will be used throughout the article.

Lemma 4.3.4. ([51]) If g is a pseudo-Riemannian metric which is left-invariant on a left-
covariant A-bimodule &, then g(w1 ®4 we) € C.1 for all wy,ws in o&. Similarly, if g is a right-
invariant pseudo-Riemannian metric on a right-covariant A-bimodule, then g(m ®412) € C.1

for all my,ma in &.

Let us clarify some of the properties of a left-invariant and right-invariant pseudo-Riemannian
metrics. To that end, we make the next definition which makes sense as we always work with
finite bicovariant bimodules (see Definition 4.1.3). The notations used in the next definition

will be used throughout the chapter.

Definition 4.3.5. Let £ and g be as above. For a fized basis {w1,- - ,wn} of o€, we define
gij = g(wi ® 4wj). Moreover, we define Vy : £ — £* = Hom4(€, A) to be the map defined by the
formula

Vo(e)(f) = gle ®a f)-
Proposition 4.3.6. Let g be a left-invariant pseudo-Riemannian metric for € as in Definition
4.3.1. Then the following statements hold:
(i) The map Vy is a one-to-one right A-linear map from £ to £*.

(i1) If e € € is such that g(e®. f) = 0 for all f € &, then e = 0. In particular, the map Vy|,e

is one-to-one and hence an isomorphism from o€ to (o€)*.
(111) The matriz ((gi;))i; is invertible.

(iv) Let g denote the (i,7)-th entry of the inverse of the matriz ((gi;))i;. Then g is an
element of C.1 for all i, j.

(v) If gle @4 f) =0 for all e in (&, then f = 0.
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Proof. The right A-linearity of V; follows from the fact that g is a well-defined map from £ ® 4 &
to A. The condition (2) of Definition 4.3.1 forces V; to be one-to-one. This proves (i).

For proving (ii), note that Vg| ¢ is the restriction of a one-to-one map to a subspace. Hence,
it is a one-to-one C-linear map. Since g is left-invariant, by Lemma 4.3.4, for any e in &,
V4(e)(0€) is contained in C. Therefore, V, maps ¢& into (o€)*. Since, o€ and (o€)* have the

same finite dimension as vector spaces, Vg|,e : o€ — (0€)* is an isomorphism. This proves (ii).

Now we prove (iii). Let {w;}; be a basis of ¢£ and {w]}; be a dual basis, i.e, w;(w;) = d;;.
Since Vj|,e is a vector space isomorphism from (& to (o€)* by part (ii), there exist complex

numbers a;; such that

(Vo) M (wy) = Zaijwj

. This yields

Sk = wi(wi) = 90 aijw; ®awk) = >_ aijgj-
J J

Therefore, ((ai;))i; is the left-inverse and hence the inverse of the matrix ((gi;))i;. This proves
(ii).

For proving (iv), we use the fact that g;; is an element of C.1 for all ¢, j. Since

Y g(wi ®awr)g? =8;.1=)  g* gl ®aw)) = by,
k k

we have

> glwi @awn)e(g) =i = e(g™)g(wr @4 w;).
K k

So, the matrix ((e(¢g%))); is also an inverse to the matrix ((g(w;®4w;))):; and hence g% = ¢(g)

and g% is in C.1.

Finally, we prove (v) using (iv). Suppose f be an element in £ such that g(e ® 4 f) = 0 for

all e in o&. Let f =), wyay, for some elements ay, in A. Then for any fixed index g, we obtain

0=90)_gw;j@a > wrar) =Y Y g gimar = Sikak = ai,.

Hence, we have that f = 0. This finishes the proof. O
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We apply the results in Proposition 4.3.6 to exhibit a basis of the free right A-module V(&).
This will be used in the next chapter to make Definition 5.2.1 which will be needed to prove
Theorem 5.2.5.

Lemma 4.3.7. Suppose {w;}; is a basis of o€ and {w}}; be the dual basis as in the proof of
Proposition 4.3.6. If g is a pseudo-Riemannian left-invariant metric on £, then V4(E) is a free

right A-module with basis {w]};.

Proof. We will use the notations (g;;);; and ¢g* from Proposition 4.3.6. Since V; is a right

A-linear map, V,(€) is a right A-module. Since
D)= gijw] (4.3.1)
J
and the inverse matrix (g*);; has scalar entries (Proposition 4.3.6), we get

WZ - ngivg(wz)

and so wj, belongs to V(&) for all k. By the right A-linearity of the map V,, we conclude that
the set {w;}; is right A-total in V().

Finally, if a; are elements in A such that ), wjar = 0, then by (4.3.1), we have

0= 2 Vit = V(S (e )

i,k

As Vj is one-to-one and {w;}; is a basis of the free module £, we get

ngiak =0Va.
k

Multiplying by g;; and summing over ¢ yields a; = 0. This proves that {w}}; is a basis of V(&)
and finishes the proof. O

Remark 4.3.8. Let us note that for all e € £, the following equation holds:

e= Zwiw;‘(e ). (4.3.2)
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For the next proposition, we will need the notion of a left dual of an object in a monoidal
category as defined in Definition 1.1.9. We observe that if g is a pseudo-Riemannian metric

billinear metric on a bicovariant A-bimodule £, then & is self-dual.

Proposition 4.3.9. Suppose g is a pseudo-Riemannian A-bilinear pseudo-Riemannian metric
on a finite bicovariant A-bimodule. Let & denote the left dual of the object £ in the category

ﬁ./\/lj Then € is isomorphic to € as objects in the category ﬁ./\/lj via the morphism V.

Proof. Let {w;}; be a basis of ¢£. It is well-known that £ and £* are isomorphic objects in the

category ﬁ/\/lﬁ This follows by using the bicovariant A-bilinear maps
ev:E RQUE A pRae> Ple), coev: A= ERLET; 1 Zwi®Awf
i
We define evy : E®4E — A and coevy : A = £ ®4 E by the following formulas:
evgle®a f) =gle®@a f), coevy(l) = Zwi R4 Vg_l(w;‘).
i

Then since g is both left and right A-linear, ev, and coev, are A-bimodule maps. The bicovari-
ance of g implies the bicovariance of ev, while the bicovariance of coevy, = (id ® 4 Vg_l) o coev

follows from the bicovariance of V; and coev.

Since the left dual of an object is unique upto isomorphism, we need to check the following

identities for all e in &:
(evg ®41d)(id ® 4 coevg)(e) = e, (id ® 4 evy)(coevy ® 41d)(e) = e.

But these follow by a simple computation using the fact that (& is right A-total in £ and the
identity (4.3.2).

From the above discussion, we have that £ and £* are two left duals of the object £ in the
category %4 M. Then by Proposition 1.1.10, we know that (evy, ®4 idg-)(ide ®.4 coev) is an
isomorphism from € to £*. But it can be easily checked that (ev, ® 4 idg«)(ide ® 4 coev) = V.

This completes the proof. O

Now we state a result on bi-invariant pseudo-Riemannian metric.
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Proposition 4.3.10. Let g be a pseudo-Riemannian metric on € and the symbols {w;}i, {gi;}ij

be as above. If

sA(w;) = ij(X)(cRﬁ (4.3.3)
J

(see (1.2.4)), then g is bi-invariant if and only if the elements g;; are scalar and

9ij = ngleile- (4.3.4)
Kl
Proof. Since g is left-invariant, the elements g;; are in C.1. Moreover, the right-invariance of g

implies that g is right-covariant (Proposition 4.3.3), i.e.

1®cgi; = A(gij) = (9 ®aid)eg e A(wi®cw))

=(g®a id)(z Wi ® A w®cRriRyj) = 1®¢ Z g R Ry,
il il

so that

95 = Y _ g R R (4.3.5)
ki

Conversely, if g;j = g(w; ® 4 wj) are scalars and (4.3.4) is satisfied, then g is left-invariant and

right-covariant. By Proposition 4.3.3, g is right-invariant. O

Next we compare our definition of pseudo-Riemannian metrics with some of the other defi-

nitions available in the literature.

Proposition 4.3.6 shows that our notion of pseudo-Riemannian metric coincides with the
right A-linear version of a “symmetric metric” introduced in Definition 2.1 of [51] if we impose

the condition of left-invariance.

Next, we compare our definition with the one used by Beggs and Majid in Proposition 4.2
of [70] (also see [11] and references therein). To that end, we briefly recall the construction of

the two forms as in Subsection 1.3.2.

If £ is a bicovariant A-bimodule and ¢ be the map as in Proposition 1.3.17, Woronowicz

defined the space of two forms as:

Q*(A) = (E®4E)/Ker(o —1).
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The symbol A will denote the quotient map
AN:ERLE = D(A).

Thus,
Ker(A) = Ker(o — 1).

In Proposition 4.2 of [70], the authors define a metric on a bimodule € over a (possibly) noncom-
mutative algebra A as an element h of £ ® 4 € such that A(h) = 0. We claim that metrics in the
sense of Beggs and Majid are in one to one correspondence with elements g in Hom4(E®4 &, A)
(not necessarily left-invariant) such that g o 0 = g. Thus, modulo the nondegeneracy condition
(ii) of Definition 4.3.1, our notion of pseudo-Riemannian metric matches with the definition of

metric by Beggs and Majid.

Indeed, if g is in Hom4(€ ® 4 €, A) as above and {w; }, is a basis of (£, then the equation
g oo = g implies that

goo(w ®awj) = g(wi ®4wj).

Moreover, since o is a bicovariant bimodule map, by Proposition 4.1.14, 0(0€®co€) is contained

in ¢€®co€. Hence, by Proposition 4.1.12 we know that

o(wi ®4wj) = Zafjlwk XA Wi
kil

for some scalars Ufjl. Therefore, we have

Y otfglwr ®aw) = glwi ®.4w))- (4.3.6)
k,l

We claim that the element h = ), . g(w; ®4 wj)w; ® 4 wj satisfies A(h) = 0. Indeed, by virtue

1,J
of (1.3.9), it is enough to prove that (¢ — 1)(h) = 0. But this directly follows from (4.3.6) using

the left A-linearity of o.

This argument is reversible and hence starting from h in £ ® 4 € satisfying A(h) = 0, we get

an element g in Hom4(€ ®4 &, .A) such that for all 4, j,

goo(w ®4wj) = g(w; ®4wj).
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Since {w; ® 4 wj}i; is right A-total in € ® 4 £ (Corollary 4.1.8) and the maps g,o are right
A-linear, we get that goo = g. This proves our claim. Let us note that since we did not assume
g to be left invariant, the quantities g(w; ® 4 wj) need not be scalars. However, the proof goes

through since the elements o} are scalars.

4.3.1 The ¢@-adjoint of a left-covariant map

Suppose £ is a bicovariant bimodule and g a pseudo-Riemannian metric. Then following the
lines of Definition 2.3.4, it is straightforward to define (Definition 4.3.11) a complex valued
map ¢@ on (ERco€. The goal of this subsection is to show that any complex linear map from
0ERc0E to itself admits an adjoint with respect to ¢'). Moreover, in Lemma 4.3.13 and Propo-
sition 4.3.14, we show that the maps oo and (Psym) are actually self-adjoint. These results will
be used in Lemma 4.5.4 and Theorem 4.5.9 for deriving a sufficient condition for the existence

of a Levi-Civita connection.

Let £ be a bicovariant bimodule over A and {w;}; a basis of (€. Then the set {w;Rcw;}ij
is a basis for the finite dimensional vector space (ERco€. Thus, we are allowed to make the

following definition.

Definition 4.3.11. Suppose g is a left-covariant pseudo-Riemannian metric on €. We define
a map

g(Z) : (0€Rc0€)Rc(0ERcoE) — C by the formula
9P (w1®cw2)@c(ws®cws)) = g(wr @4 9w @4 ws) @4 wy)
for all wi,ws,ws,wyq € €.

We also define a map Vi) : (0E€®c0€) = (0€Rc0E)* := Home (0ERco&, C) by the formula

Vo) (w1®cws) (ws®cws) = 92 (w1 ®cws) D¢ (ws®cws)).-

Since, by the second assertion of Lemma 4.3.4, g(w1 ® 4 w2) belongs to C, it is clear that the

element ¢ ((w) ®4 w2) @4 (W3Rcws)) indeed belongs to C.

Let us note that the maps g(2) and qu@ are both right A-linear. The following non-

degeneracy property is going to be crucial in the sequel.
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Proposition 4.3.12. Let Y be an element of o€Rco€. If g2 (X@¢cY) = 0 for all X in ¢ERcok,
then Y = 0. Similarly, if ¢ (Y®cX) =0 for all X in ¢E®co€, then' Y = 0. In particular, the

map Vi) defined in Definition 4.3.11 is a vector space isomorphism from ¢ERco€ to (0€Rco€)*.

Proof. Let {w;}; be a basis for o€ so that {w;®cw;}i; is a basis for (€®@co€. By Proposition
4.3.6, the matrix whose 7, j-th element is g;; = g(w;®cw;) is invertible in M,,(C). We will denote
by g% the i, j-th entry of the inverse of the matrix ((g;;))s;

Suppose {b;;}i; are complex numbers such that
Y = Zwi@)(cwjb,-j.
(]
Let us fix the indices 4g, jo and define
X =Y golgruecw.
kl
Then we get

0=g?(XacYy)=g® ngl Tk (wr@cw) ®c (wi®cw;)bij)
ijkl

=g g g(wr ® 4 guwi)bi; = D> 9 qug™ gribis = D SigiGjnibis = bigjo-
ijkl ijkl i

Hence, if ¢ (X®cY) = 0 for all X, then Y = 0.
To prove the second statement, fix indices ig, jo and define X =5, g"" g*0w@cw;. Then, we

compute the following.

9P (YecX) =P () (widcw;by)@c(wr@cwig ™))

ijkl
= 909" g589"bij = 6i0ibjo;bij = bigjo-
ijkl ij
Hence, if ¢ (Y®cX) = 0 for all X, then Y = 0. O

Before stating the next lemma, we note that the g(®-adjoint of the maps oo and 0(Psym)
make sense. Indeed, oo and o(Psym) are linear maps from the complex vector space (€®co€ to
itself. By virtue of Proposition 4.3.12, we can apply Lemma 1.1.7 to h = ¢® and T = o or
0(Psym). Thus, (9o)* and (o(Psym))* exist.
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Lemma 4.3.13. Let £ be a bicovariant A-bimodule, o the braiding map of Proposition 1.3.17

and g be a bi-invariant pseudo-Riemannian metric on &, then (9o)* = go.

Proof. We will actually prove a stronger statement. Since ¢(?) is a map from (0€®c0€)Rc(0€Rco)
to C, it extends uniquely to a right A-linear left-covariant map (to be denoted by ¢(? again,
by an abuse of notation) from (£ ®4 &) ®4 (£ ®4 E) to A by Proposition 4.1.16. We will prove

that for e, f, e/, f/ in &,

g?(o(e@a f) @ale @af)) = 9" (e®af) @ao(e @af)). (4.3.7)
To this end, we claim that it is enough to prove that for all w,w’ in (& and 7,7’ in &,

9P (0w @an) ®a W @a1) = 9P (Woan) @0 Da1)). (4.3.8)

Indeed, by Corollary 4.1.8, for every element a in A, there exist elements z; in ¢&, y; in & and
a; in A such that

a(w' @an') = Z T ®A Yili-
i

Hence, if (4.3.8) is true, the right A-linearity of the map ¢(® implies that

gD (o(w@ana) @4 (W @a1'b) = gD (o(w@an) @4 a(w @a1))b

= Z 9P (0(w@an) ®a (2 ®4yi))aib = Z g (w@an) ®a0(z;®ay;))ab

(2

= 9P ((w@an) ®a0(z; @ayia))b =g (w@an) ®aa0 @an')b

(2

= ¢ ((w®ana) @40wW @40'b)).

Here we have used the bilinearity of the map o. Since (€ ®4 & is right A-total in € @ 4 € (by
Corollary 4.1.8), this proves (4.3.7) provided we prove (4.3.8). This proves our claim.

Thus, we are left with proving (4.3.8) which follows from the following computation:
9P (o(woan) ©a (@ @ar)) =g®((n0aw) 04 ©a1))

=g @an)gw@aw) = g?(wRAn) @4 (0 ©AW))

=g (wean) @a0W @47)),
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where we have used o(w®4 1) =1 ®4w (see (1.3.7)) twice and the facts that g(w ® 4 w’) and
g(n @4 1n') take values in C.1 (second assertion of Lemma 4.3.4). This completes the proof of

the lemma. O
Proposition 4.3.14. We have (o(FPsym))” = 0(Psym). Moreover, if Vo) 1 0€®co€ — (0€@co€)*
is the map defined in Definition 4.3.11, then

Vg(2) (0(Poym)(X))(Y) = Vg<2> (X) 0 0(Peym)(Y) VX, Y € 0ERco€. (4.3.9)

In particular, Vi) ts a vector space isomorphism from oERc™oE onto (oERCY™E)*.

Proof. Since (g0)* = 9o by Lemma 4.3.13 and (Psym) is a polynomial in go by (4.2.6), we have
(0(Psym))*™ = 0(Psym). Then (4.3.9) follows from the definition of V). Finally, for the last

assertion, let us recall the identification
(0€Rc™ME)" = {d € (L€®coE)™ : P(X) = D(0(Peym) (X)) VX € ¢€Rcof} (4.3.10)
from (4.2.9). Now, if X is in ¢€®c*™o€ = Ran(o(Psym)), then for all Y in ¢(E®co€, we have

Vo (X)(Y) = Vi@ (0(Peym ) (X)) (Y) = Vo) (X) (0(Peym) (Y))-

by (4.3.9). Therefore, V2 (0€®c™™0€) is a subspace of (o(€@c™™0€)* by (4.3.10). Now by
Proposition 4.3.12, the map V|2 is one-to-one and so we reach our our desired conclusion by a

dimension argument. O

4.4 Bicovariant connections and metric compatibility

Recall that in Definition 1.4.10 and Definition 1.4.11, we had already defined connections on a
first order differential calculus and their torsion. In this section, we define covariant connections
on bicovariant differential calculi. As a consequence of the assumption of diagonalisability of
oo made in Section 4.2, in Subsection 4.4.1 we construct a canonical torsionless connection on
a bicovariant differential calculus. In Subsection 4.4.2, we introduce the notion of compatibility
of a left covariant connection with a bi-invariant pseudo-Riemannian metric. In that section
we also make a comparison of our notion of metric compatibility with that of [51] in a limited

setting.
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Definition 4.4.1. ([51]) Let (€,d) be a bicovariant differential calculus on A. A (right) con-
nection on & is a C-linear map V : € — € @4 € such that, for all a in A and p in &, the
following equation holds:

V(pa) = V(p)a+ p @4 da.

The connection V is said to be left (right) covariant if it is a left (right) covariant linear map

from & to E R4 E. It is called a bicovariant connection if it is bicovariant as a linear map.

Lemma 4.4.2. ([51]) If V is a left-covariant connection on a bicovariant differential calculus

(€,d), then V(o€) C oE€Rcof.
Proof. This follows by combining Proposition 4.1.17 and Proposition 4.1.12. 0

Our notion of torsion 7y (see Definition 1.4.11) of a connection is the same as that of [51],

with the only difference being that they work with left connections.
The following result which will be needed in the proof of Proposition 4.5.3.

Lemma 4.4.3. If V1 and V3 are two left-covariant torsionless connections on a bicovariant

differential calculus (€,d) on A, then Vi — V3 is an element of Homc (o€, 0ERc™™E).

Proof. If V1 and V4 are two torsionless connections, we have that Ao Vy; = —d = A o V.
Therefore,

Ran(V; — V3) C Ker(A) = £ @%™ €.

Moreover, by Lemma 4.4.2, if w is an element of ¢&, then (V; — V3)(w) is in ¢ERcof, i.e,
(Vi — V3)(w) is invariant under Agg ,¢. Hence, by (4.2.5), (Vi — V2)(w) is an element of
0(E &F™ ) = 0ERcY™E. -

4.4.1 A canonical bicovariant torsionless connection

In this subsection, we prove, by construction, the existence of a bicovariant torsionless connection
on any bicovariant differential calculus which satisfies the condition that go is diagonalisable.
Indeed, we will be using the map Q = Alr : F — Q?(A) (Definition 4.2.9) which makes sense
due to the splitting € ®4 € = (£ @™ £) & F (Theorem 4.2.5) which in turn follows from the
assumption of diagonalisability of the map go. Let us recall that () is a bimodule isomorphism

from F to Q%(A).
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Theorem 4.4.4. Suppose (£,d) is a bicovariant differential calculus on A such that go is

diagonalisable. Then £ admits a bicovariant torsionless connection.

Proof. The proof of existence of a torsionless connection Vg follows exactly along the lines of
Theorem 2.2.3 of Chapter 2. The only difference here is that we need to define Vg in such a

way that it remains bicovariant.

We define 60 1 0€ = 0€®cof by
Vo(w) = Q! (—d(w)).

Indeed, by Corollary 4.2.10 and (4.2.8), %O(w) is an element of (E®Rco€ for all w in ¢&. Let
{w; }; be a vector space basis of (€. By the right A-totality of (£ in £, we extend Vo to a map
Vo: € = E®y E by the formula

VO(Z wiai) = Z %{)(wz‘)ai + Zwi ® .4 da;.

Since & is a free module with basis {w; };, the above formula is well-defined. It follows that for

all w in o€ and for all a in A,
Vo(wa) = Vo(w)a + w @4 da.
Then, to verify that Vg is a connection we compute the following for w in (£ and a,b in A.

Vo(wab) =Vo(w)ab 4 w @4 d(ab) = V(w)ab + w @4 da.b + w @ 4 adb

=(V(w)a+w®4da)b+wa®4db=Vo(wa)b+ wa ®4 db

Now we prove that V is torsionless. Indeed, since by Definition 4.2.9, we have AoQ ™! = idgz 4y

we can deduce that

Ao Vo(wa) = A o(Vo(w)a 4w @4 da) = Ao QH(—d(w))a +w A da

— — d(w)a +w A da = —d(wa).

Before proceeding further, let us note that since V coincides with 60 on o€ and %o(w) belongs
to 0€Rco€ if wis in o€, Vo(w) is in 0E®co€. We will use this fact in the rest of the proof where

w and a will stand for arbitrary elements of (£ and A respectively.
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To show that Vj is left-covariant, we observe that since Vo(w) is in o€®cof, Agg 16 (Vo(w)) =

1®cVo(w). Using this, we get

(id®cVo)(Ag(wa)) = (1d®c Vo) (Ag(w)A(a))
=(1d®@cVo)((1®cw)(ay®ca())) = ay@cVolwa)
=a(1)®c(Vo(w)ag) +w ®a daz)) = (10cVo(w))(an)®ca()) + aq)@cw @4 daga)

=(1®cVo(w))(an)®ca)) + (da)(—1)@cw ®.4 (da) (g (by part (i) of Lemma 1.3.16)
—Ag®A5(V0(w))A( ) + A5®Ag (w QA da) A5®A5(Vo(w)a +w @ da)
=Ase4¢(Vo(wa)).

Finally, we show that Vg is also right-covariant. Let w and a continue to denote elements of (&
and A respectively. Since £ is a bicovariant bimodule, ¢ A(w) = w(g)®cw(1) belongs to (E@c.A

by Lemma 1.2.12. Hence w(g) belongs to (& and we are allowed to write

Vo(woyam) = @ (=d(w)))aq) + wo)@cd(ag))-
Thus, we obtain

(Vo®cid)eA(wa) = (Vo®cid) (w(o)a() @cwi)a(2))

=Vo(w(o)a))®cwmyae) = (@ (—d(w)))an) + wo) ®.a d(am)))@cwya)

)
Q™ '@cid) (((—d)@cid)(w) @cway)) (an) Bcag) + wo) @4 d(aq))Bcwayag
(((=

Q' @cid) (((—d)®cid)(wey®cwy)) (aq)@ca)) + wo) @ (da) ) @cw()(da) )

by part (i) of Lemma 1.3.16)

(
(
(
(Q ' ®cid) (~d)@cid) (e e Aw))) (A@) + 6 e Alw ©.4 da)
(
(

Q™ '@cid)(n2(4 )A(—d(w)))A(a) + eoeA(w @4 da)
since d is a bicovariant map from £ to Q%(.A) by Proposition 1.3.20 )
=04 AQ7 (~d()A(a) + g 4 Alw ®.4 da)
(since Q is right covariant by Corollary 4.2.10 )
=£0.4eA(Vo(w))A(a) + eo e Alw ®.4 da)
=eo4eA(Vo(w)a +w ® 4 da)

=e9.46A(Vo(wa)).

This finishes the proof. O
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4.4.2 Metric Compatibility of a bicovariant connection

In this subsection, we define the notion of metric-compatibility of a left-covariant connection
with a left-invariant pseudo-Riemannian metric. We will need the map ¢(Psym) introduced in
Definition 4.2.6. Our definition coincides with that in the classical case (Proposition 4.4.8) and
also with that in [51] for cocycle deformations of classical Lie groups. The latter statement is

derived in Chapter 5.

Definition 4.4.5. Let V be a left-covariant connection on a bicovariant calculus (€,d) and g

a left-invariant pseudo-Riemannian metric. Then we define
0(V) : 0®c0€ — o€ by the following formula :

l:Ivg(V)(wZ-@(cwj) = 2(id®cg) (c®@cid)(VRcid)o(Psym ) (wi®cwj ). (4.4.1)
Next, for all wy,ws in o€ and a in A, we define I'Tg(V) :ERAE = E by

II,(V) o ﬂ€®A€(W1®CWQ®(Ca) = fg(V)(w1®cw2)a + g(w1 ®4 ws2)da.

It is easy to see that l:Ivg(V) indeed maps (ERcof inside €. Indeed, let wy,ws be elements
of €. Since ¢(Psym) is a map from ¢ERco€ to itself, o(Psym)(w1®cwse) is in ¢E@co€. Then,
by Lemma 4.4.2, (V®cid)(o(Psym))(w1®cw2) is in ¢ERcoE@co€. Since o is left-covariant and
g is left-invariant, Proposition 4.1.17 and the second assertion of Lemma 4.3.4 imply that the
element

(id®cg)(o@cid)(Vecid) (o(Psym)) (w1 ®cwz) belongs to of.

Finally, by Proposition 4.1.7 and the notation adopted in Proposition 4.1.12, the map u¢®4¢
from ¢ERcoERcA to £ ® 4 € is an isomorphism, hence ng(V) is well-defined.

Remark 4.4.6. If V is left-covariant and g is left-invariant, the above argument shows that
I, (V) (o€ ®0f) € of
and thus by Proposition 4.1.17, the map ﬁ;(V) is left-covariant.

For the rest of the chapter, dg will denote the map

dg:E@aE—E, dgle®@a f) =d(gle®@a f)).
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Now we define the notion of metric compatibility of a bicovariant connection.

Definition 4.4.7. Suppose (£,d) is a left-covariant differential calculus over A and g is a
left-invariant pseudo-Riemannian metric. We say that a left-covariant connection V on £ is

compatible with g if, as maps from £ @4 E to &,

We now show that our formulation of metric-compatibility of a connection coincides with

that in the classical case of commutative Hopf algebras.

Proposition 4.4.8. The above definition of metric compatibility coincides with that in the

classical case.

Proof. Let G be a linear algebraic group, A be its (commutative) Hopf algebra of regular
functions and g be a left-invariant pseudo-Riemannian metric on the classical space of forms.

In this case, the canonical braiding map o is equal to the flip map, i.e., for all e, f in QI(A),

ole®y f) =fliple®@a f) = fRuae.

Since g oo = g, we have g(e ® 4 f) = g(f ®.4 e). Moreover, the map Py is equal to %(1 + o).
Let us recall (Proposition 1.4.8) that a connection V on Q*(A) is compatible with g if and only
if

(9 ®.1d)[flipgs(V(e) ®a€’) + e @a V(e')] = dgle @ €'),

for all e, e’ in Q!(A). The left hand side of the above equation can be written as
g13(V(e) @€ + V() @ace),

where g13 = (id ® 4 g)(flip ® 4 id).
Let {e;}; be a basis of left-invariant one-forms of Q!(A). If e, e’ belong to Q'(A), then there
exist elements a;,b; in A such that e =), e;a; and ' = ) j ejb;. If V is metric compatible in

the sense of Definition 4.4.7, i.e, I_TQ(V) —dg = 0, then using the Leibniz properties of V and d
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and the equation g(e; ®4 ej) = g(e; @4 €;), we get

913(V(e) @a e + V() @4€)
2913(V(Z €ia;) ®A Z ejb; + V(Z e;bj) ®a Z eia;)

=(id @4 9)(fip @4 1d) (V) e)ai @4 > e + V(O e))bj @4 > eia)
i j i

%

+(id @4 g)(flip @4 id) (D i @ada; ®a Y ejbj+ > e;@adb; @4 €ias))

7 J J

=> " ((id @c g)(flip ©¢ id)(VRcid) (e;@ce; + e;@ce;)) ad;

]
+ Z (daig(ei ®A4€5)bj + dbjg(e; @4 ei)ai)

tj
=> " ((id @c g)(flip ©¢ id)(VRcid) (1 + flip) (ei@ce;)) Jaiby + Y (9(e: @4 €5)d(aib;))

ij ij
= (I(V)(ei@ce;)ab; + gles @4 €5)d(aib;))

]
:TAI;(V)(Z e; ®4 ejaibj) = dg(z e; @4 ejab;) =dgle®ac¢€).
ij ij

This argument is reversible and thus, our definition of metric compatibility coincides with that

in the classical case. O

It is also true that our definition of metric compatibility coincides with that of [51] for cocycle
deformations of classical Lie groups. We state this result at the end of this section (Proposition

4.4.13) but the proof is postponed till Chapter 5.

4.4.3 Covariance properties of the map ﬁvg(V)

Let us now derive some covariance properties of the maps l:Iv‘g)(V) and I_TQ(V) — dg which will be

used in Section 4.5.

Lemma 4.4.9. IfV is a bicovariant connection on £ and g is a bi-invariant pseudo-Riemannian

metric, then ﬁg(V) 18 a right-covariant map.

Proof. The maps o and o(Psym) are bicovariant (Proposition 4.2.7). Therefore, if V is also right-
covariant, and ¢ is bi-invariant (and hence by the first assertion of Lemma 4.3.4 also bicovariant),

then ﬁ/g(V) is a composition of right-covariant maps and therefore, right-covariant. O
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Proposition 4.4.10. If the connection V is left-covariant and the pseudo-Riemannian metric
g 1is left-invariant, then the map l:Ivg(V) —dg : E®4qE — &£ is a left-covariant right A-linear
map. Moreover, if V is bicovariant and the pseudo-Riemannian metric g is bi-invariant, then

ICIVQ(V) —dg is also a bicovariant map.

Proof. We start by proving that ﬁ;(V) —dg is a right A-linear. Since {w @4 w' : w,w’ € (£} is

right A-total in £ ® 4 £, it suffices to show that for all wy,ws € o€ and a,b € A, we have:

(Ig(V) — dg)((w1 ®a w2a)b) = ((ITg(V) — dg)(w1 ®.4 w2a))b.
This follows from the following computation:

(ILy(V) — dg) (w1 ©.4 waa)D)
=I1,(V)(w1®cw2ab + g(w1 ® 4 w2)d(ab) — dg(w1 ® 4 waab)
(V) (wi1®cw2)ab + g(wi ®4 w2)(da.b+ adb) — dg(wi ® 4 waa)b — g(wi @4 woa)db

(ILy(V)(w1®cw2)a + g(wr ®4 w)d(a) — dg(wi ®4 wea))b

0,
I,

((Ty(V) — dg) (w1 ® 4 wsa))b.

Now, we prove that ﬁ;(V) —dg is a left-covariant map. Since g is left-invariant, for any w, w9 in

0&, g(w1 ® 4 w2) € C by the second assertion of Lemma 4.3.4, and so dg(w; ® 4 we) = 0. Hence,

(Iy(V) — dg) (w1 ®.a wz) = I0(w1@cws),

which is in ¢&. Therefore, by Proposition 4.1.17 , the map ﬁvg(V) — dg is a left-covariant map.
Finally, if V is bicovariant and g is bi-invariant, then by Lemma 4.4.9, ﬁg(V) is a right-covariant
map. Moreover, g and d are bicovariant (first assertion of Lemma 4.3.4 and Proposition 1.3.15).

Hence l:Ivg(V) — dg is also a bicovariant map. O

Corollary 4.4.11. Suppose V 1is a bicovariant connection and g is a bi-invariant pseudo-
Riemannian metric on (€,d). Then the map ng(V) — dg is a right-covariant C-linear map

from o& ®§Q'Cym o to o&.
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Proof. Since o€ ®f(’:ym 0€ C 0€Rco€ and g(p€®co€) € C.1 (second assertion of Lemma 4.3.4),

the map dg is equal to zero on (& ®?C}'m of. Hence,

[1,(V) — dg = I,(V) = II0(V) on o€ ®2™ o€ C oE®cof.

However, as noted before, I/I\;(V)(gé’ ®co€) C o€. The right-covariance follows from Proposition

4.4.10. O

The following result is an immediate corollary of the proof of Proposition 4.4.10 and Defini-

tion 4.4.7.

Corollary 4.4.12. A connection V on a bicovariant calculus (£,d) is compatible with a bi-

wvariant pseudo-Riemannian metric g if and only if f[vg(V) =0 as a map on gERcof.

Comparison with literature

Let us remark that in Lemma 3.4 of [51], Heckenberger and Schmiidgen prove an exact analogue

of Corollary 4.4.12 for their formulation of metric compatibility.

We end this subsection by comparing our notion of metric-compatibility with that of Heck-
enberger and Schmiidgen ([51]). Before we state our result, let us recall that a left connection
on £ is a C-linear map V : £ — £ ®4 € such that V(ae) = aV(e) + da ® 4 e. Similarly, a
left A-linear pseudo-Riemannian metric on £ is a left A-linear map g : £ ® 4 £ — A such that

g o o = g satisfying the condition that if g(e ® 4 f) = 0 for all e in &, then f = 0.

Suppose (£, d) is a bicovariant differential calculus and g a left A-linear bi-invariant pseudo-
Riemannian metric on €. The authors of [51] call a left connection V on £ to be compatible
with g if

(id®cg)(Vecid) + (g@cid)(idoco)(id®cV) = 0 on ¢ERcof.

Therefore, we need to define the analogue of our compatibility for a bicovariant left connection
V with respect to a left A-linear bi-invariant pseudo-Riemannian metric ¢ in order to compare

our definition with that in [51]. To this end, we define a map

LT0(V) = 2(g®cid) (id®co) ([dReV)o(Pam) 1 0€@c0€ — o
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Then as before, we define an extension LAH/g(V) ERAE = E by
LI, (V)74 (a@cwn @cws) = arI(V) (w1 ®cws) + (da)g(wi @cws),

where 7€®A€ : ARcoERc0E — € @4 € is the multiplication map which we know is an isomor-
phism from Proposition 4.1.7 and Corollary 4.1.8. We say that the bicovariant left connection

V is compatible with the left A-linear bi-invariant pseudo-Riemannian metric g if
LIL,(V) = dg. (4.4.2)

It is easy to check that this definition coincides with the definition of metric-compatibility in the
classical case, and the proof goes along the lines of Proposition 4.4.8. Then a result analogous

to Corollary 4.4.12 can be derived to deduce that
L/I:IJQ(V) = dg if and only if ;/Hg(V) =0. (4.4.3)

The next result compares the above two definitions of metric-compatibility. However, since this
result needs the definitions and some results on cocycle deformations, we have proved this at

the end of Section 5.4.

Proposition 4.4.13. Let A be the Hopf algebra of regular functions on a linear algebraic group,
(€,d) be the classical bicovariant differential calculus on A and v a normalised 2-cocycle on A.
Consider the bicovariant differential calculus (€, d.,) over the Hopf algebra A (see Proposition

5.8.1) and let ¢’ be a left A-linear bi-invariant pseudo-Riemannian metric on .

A bicovariant left connection V' on &, is compatible with ¢' in the sense of (4.4.2) if and

only if V is compatible with g' in the sense of [51].

4.5 Existence and uniqueness of Levi-Civita connections

In this section, we will derive some sufficient conditions for the existence of Levi-Civita con-
nections for bicovariant differential calculus on quantum groups. As before, unless otherwise
mentioned, (£,d) will denote a bicovariant differential calculus on A such that the restricted

braiding map oo is diagonalisable, and ¢ a bi-invariant pseudo-Riemannian metric on £.
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Definition 4.5.1. Let (£,d) be a bicovariant differential calculus such that the map oo is diag-
onalisable and g a pseudo-Riemannian bi-invariant metric on €. A left-covariant connection V
on & is called a Levi-Civita connection for the triple (€,d,g) if it is torsionless and compatible

with g.

The strategy to derive our results are the same as in Chapter 2. However, since we are not
working with a centered bimodule and the pseudo-Riemannian metric is only right A-linear,
the arguments become more delicate. Given a bicovariant differential calculus (£,d) and a

bi-invariant pseudo-Riemannian metric g, we start by defining a map

5; : Hom(c(og,og@(csymog) — Hom(c(og@(csymog,og)
and show (Proposition 4.5.3) that the isomorphism of &E guarantees the existence of a unique
left-covariant Levi-Civita connection for the triple (£,d, g).

However, since our metric is bi-invariant, it is to be expected that our Levi-Civita connection
should be bicovariant. This is the second main result of this section (Theorem 4.5.8) which
requires the Hopf algebra A to be cosemisimple. We remark that the bicovariance of the Levi-
Civita connection (with respect to a different metric-compatibility condition) for SLy(n), Spy(n)

and Ogy(n) were derived in [51].

Finally, our third result is Theorem 4.5.9 where we prove that the map

5; : Home (o€, 0™ ™€) — Home (6EQcY™0E, o€) is an isomorphism if and only if the map
(0(Psym))23 : (0£@c™™0E)Rco€ = 0€Rc(0ERC™™0E)

is an isomorphism. The proofs of Theorem 4.5.8 and Theorem 4.5.9 need some preparations

which are made in Subsection 4.5.1.
The main steps involved in the proof are as follows:

Step 1: We prove that the isomorphism of
(/}5; : Hom(c(og,og@(csymog) — Hom(c(()g@(csymog,og)

guarantees the existence of a unique left-covariant Levi-Civita connection.
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Step 2: We prove that the following diagram commutes:

(oot id@cV; !
Home (o€, 0€@c™™oE) L2070 (o0 i €)00(0€)* oty (0ERCY™0E) D0l

(,5.; \L(O(Psym))QS

g(;flvog@cog svm *id®cvg(2) sym
Hom(c(og@(cog,og) — 05®C(05®C Y 05) — 05@(@(05@@ Y 05)

We note that by virute of Lemma 4.2.11 and Proposition 4.3.14, all the arrows in the diagram
except possibly (0(Psym))23 : (0£@c™™0E)Rco€ — 0€Rc(0E€Xc™ ™€) have already been proved
to be isomorphisms. Thus, the isomorphism of (o(Psym))23 implies the isomorphism of CIAD; SO

that by Step 1, we have the existence of a unique left-covariant Levi-Civita connection.

For Step 2 and the right-covariance of the Levi-Civita connection, we need to introduce an
auxiliary map \ITg and obtain certain isomorphisms. This is done in Subsection 4.5.1. In Sub-
section 4.5.2, we prove that that this connection is actually right-covariant if A is cosemisimple.
Moreover, a metric-independent sufficient condition for the existence and uniqueness of Levi-

Civita connections is derived in Subsection 4.5.3.

Definition 4.5.2. The map (iz : Home (o€, 0€@¢c™™0E) — Home ((€Rc™™0E, o€) is defined by
the following formula:

(I)g(L) = 2(id®Cg)012(L®Cid)0(Psym)-

We start with the following proposition for which we will need a bicovariant torsionless

connection whose existence was proved in Theorem 4.4.4.

Proposition 4.5.3. Suppose (£,d) is a bicovariant differential calculus such that oo is diago-
nalisable, and g is a bi-invariant pseudo-Riemannian metric. If the map C,}S; 18 a vector space
isomorphism from Home (o€, 0ERc™™oE) to Home (0€Rc™™0E, o), then there exists a unique

left-covariant connection on £ which is torsionless and compatible with g.

Proof. Recall the torsionless bicovariant connection V constructed in Theorem 4.4.4. Then
Corollary 4.4.11 allows us to view dg — ﬁ;(vo) as an element of Homc (0€Rc*™0&, 0€). Since

®, is an isomorphism, there exists a unique pre-image of the element dg — ng(VO) under the

map 5;. Define the C-linear map

—~_1 —~
Vi:=Vo+®, (dg—1Iy(Vo)) : o€ = 0ERcoE.
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Then, by Proposition 4.4.3, V1 —V is an element of Home (o€, 0€Rc™™0E) € Home (o€, 0€Rcof).
By the proof of Proposition 4.1.16, Vi — Vg extends to an element L in “Hom4(&,€ ®4 &).

Define a C-linear map

V=L+Vyg:&EERAE.

Since L and Vg are both left-covariant maps, V is a left-covariant map. Moreover, since V is

a connection and L is right A-linear, it follows that V is a also a connection, since

V(ea) = L(ea) + Vo(ea) = L(e)a + Vo(e)a + e ® 4 da

=(L(e) + Vo(e))a+e®4da=V(e)a+eRy da.

Now we prove that V is torsionless. Since (V1 — Vy) is an element of Homc (o€, 0€Rc™™oE),
L(w) is in ¢€R¢™™(€ for all w in ¢&. Since L is right A-linear and the right A-linear span of
0ERCcY™E = Ran(o(Psym)) is equal to € @7 € = Ran(Pyym) (see (4.2.5)), L(w) is in E@F ™ E

for all p in £. Hence, A o L(p) = 0 for all p in £. Therefore, for all p in £, we have
Ao V(p) = Ao (L+Vo)(p) =NoVo(p) =—d(p).

Therefore, V is torsionless.

Now we prove that V is compatible with g. The fact that V is torsionless means in particular
that (V — Vo)(w) is in Ker(A) = € 3™ €. Thus, V — Vq is in Homy(€,€ @%™ €) and so
:ISg(V — Vo) is well-defined. From the definitions of 5; and ﬁ;, it is immediate that

TTy(V) — TTy(Vo) = @,4(V — Vo) (4.5.1)

as maps on gERQcof.

By the definition of V,
5g(V - Vo) =dg — ﬁg(vO) on oERcof. (4.5.2)
Combining (4.5.1) and (4.5.2), we conclude that

I, (V) — I1,(Vo) = dg — T1,(Vo) on ¢(EQco€.
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Since ﬁg(V) — dg is right A-linear by Proposition 4.4.10 and {w; ® 4 we : wi,wy € o€} is right
A-total in € ®4 &,

II,(V) —dg =0 as maps on € ® 4 E.
Hence, V is compatible with g.

To show uniqueness, suppose V' is another torsionless left-covariant connection compatible

with the metric g. Then, by Lemma 4.4.3, V — V' is in Hom¢ (o€, 0ERc™™0€) and
By (V = V') = T,(V) = TI,(V') = dg — dg = 0,

where we have used the fact that V and V' are compatible with g. As C,}S; is an isomorphism,
V — V' =0 as an element of Homc (o€, 0€®Rcof). Since V — V' is a right A-linear map, V =V’
on £. O]

Proposition 4.5.3 gives us a metric-dependent sufficient condition for the existence of a unique
left-covariant Levi-Civita connection. Moreover, it also follows (by Theorem 4.5.8) that if A is
cosemisimple and (&, d, g) satisfies the hypotheses of Proposition 4.5.3, then the left-covariant
Levi-Civita connection is also bicovariant. However, we would like to have a metric independent
sufficient condition. This is derived in Theorem 4.5.9. Before we prove either of these results,

we will need some preparatory lemmas which are derived in the next subsection.

4.5.1 Some preparatory results

In order to derive the right-covariance of the Levi-Civita connection, we need to define an
auxiliary map \I/;; : Homc (o€, 0E®@co€) — Home (p€®co€,0€). In Proposition 4.5.6, we will
prove that the map ‘ilvg restricts to the map &)vg. The goal of this subsection is to prove Proposition

4.5.7 which states that \IA/; preserves right-covariance.

We start with an elementary lemma for which we recall that for finite dimensional vector
spaces V., W, (yw will be the isomorphism from W®cV* to Homc(V, W) as introduced in
Proposition 1.1.8. Moreover, V (2 will be the map defined in Definition 4.3.11.

Lemma 4.5.4. For wy,ws,ws € &, we have that

Cog o€ wcoe (1B V@) (W1 @cwo@cws)) © o( Poym) 453)

=Co0E@c0e (1R V@) (1d®co(Peym)) (W1 ©cwa@cws) ) -
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Proof. Let wy, ws be elements of ¢&£. Then, by the definition of ( ¢ jewcoes

Cot wg@coe ((IABCVy@) ) (W1Bcwa®cws)) © o( Peym) (Wa®cws)
=Co£ 0Ec08 (W1OC V2 (Wa®cws3)) © o(Peym) (Wa®cws)
=w1 Vg2 (w2@cw3) (0(Peym) (wa®cws))
=w1Vy(2) ((0(Poym) (w2@cws))) (wa®cws) (by 4.3.9)

=(og 0€0c0¢ (1dBCVy@) (id@co(Paym) ) (w1 ®@cw2@cws) ) (wa®cws)

This proves the lemma. O

Now we define the map \ITQ and discuss its properties.

Definition 4.5.5. We define a map \If/vg : Home (o€, 0E®c0€) — Homge(0€RcoE,0E) by the

following formula:

W,y(L) = 2(id®cg) o (L®cid).
Lemma 4.5.6. If T is an element of Homg (o€, 0E®cof), then we have that

Uy(T) = 2ys peeeos (1dRCVye) (12 (Ve) ™) (e oe (1)) (4.5.4)

Moreover, if T is an element of Homg (o€, 0ERc™™0E), then the following two equations hold:

\Ilg(T)|o€®cSym05 = @g(T)a (4.5.5)
Bg(L) = 2, 08000 (1dDCV,0)) (1d@c0(Paym)) (D (Ve) ™) (Cnene.ne (L)) (4.5.6)

Proof. Let {w;}; be a vector space basis of (€. We will use the facts (Lemma 4.3.4 and Propo-
sition 4.3.6) that the elements g;; = g(w;®cw;) are scalars and moreover, there exist scalars g/

such that
Zgijgjk = di-1 = Zgijgjk- (4.5.7)
j J

Suppose T is an element of Homc (o€, 0€®co€). Then there exist scalars T[J” such that

T(wm) = Y wi®cw;T}}
ij
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for all m. Hence, by using the definition of ( egq.e,,c and (4.5.7), we get

Coemonene(T) =D wicw;QcVy(wi)g™ Ti;. (4.5.8)
ikl
We claim that
1~ . . _ _
5 ¥y(T) = Gotot@cos (IO Vy2) (AR V) (Crpre.ne(T)))- (4.5.9)

Indeed, for all m,n, we have

5\119 (T) (wm®cwn)

=(id®@cg)(T@cid)(wWm@cwn)
- Z(id@cg)(%@cwj QcwnT};')
ij
= Z wig(wj ®Cwn)Tg’L
ij
= wig(w;®cg™ g(wr@cwm)Tjwn)
ijkl
— Z wig® (wj®cwrg* T;) @ (wm@cwn))
ijkl
:Co&og@cog ( Z wi@c%@ (wj®cwkglkﬂj)) (Wm®(cwn)
ijkl
~Ctaocor (42,0 iBcwi@cund ) (oncun)
ijkl
=Cog ozecos (1dBCVya) (V) (Y witcw; @cVy(wi)g “Tij)) (wm@cwn)
ijkl

=Co&,0E@¢0E ((id®((:‘/;;(2) ) (id@@‘/;]_l) (C(;f1®c05,05 (T))) (wWm®cwn),

where, in the last step, we have used (4.5.8) and also the fact (Proposition 4.3.6) that Vj is a

vector space isomorphism from o€ to (o€)*. This proves (4.5.9).

Next, if T is an element of Homc (o€, 0E@c™™0E), then T(wp) € o€ ®F™ o€ C E @Y™ E.

Since o(X) = X for all X in € @™ € = Ker(c —id), we get that

(@0T)(wm) = o(T(wm)) = T(wm)-
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Hence,

B, (T) = 2(id@cg) (o@cid) (T@cid) (o Pym))

=2(id®cg)(T@cid)(0(Poym)) = ¥g(T)(0(Poym)),

which proves (4.5.5). Finally, for proving (4.5.6), we use (4.5.9) and (4.5.5) to deduce that

Dy (T) = Wg(T)(0(Psym))
= 2C£,06@c0E 1d®(cV (2) 1d®(CV )(<05®c05705(T))) ° U(Psym)

((
= 2€05,05®005( 1d®@V(2) 1d®C0( Sym))(1d®CV )(€05®c05,05(T)))

and we have used (4.5.3) in the last step. This completes the proof of the lemma. O

For the rest of the subsection, we will be using the following notations:
The set of all right A-linear left covariant maps from M to N will be denoted by the symbol
AHom A(M, N), the set of all right A-linear right covariant maps from M to N will be denoted
by Homj‘(M ,N) and finally, the set of all right .4-linear bicovariant maps will be denoted by
AHom?% (M, N).

Proposition 4.5.7. If T is an element of Hom¢& (o€, 0E@coE), then \I/;;(T) is an element of
Homé(0€®co€,05). Moreover, <ffg restricts to map from Homé(oé’,oé'@(csymog)

to Homé (05®@Sym05, 05) .

Proof. Let us first observe that &, 0ERco€, 0ERc™ ™€ are indeed right A-comodules under the

coactions ¢A and gg ,¢A. Indeed, by (1.2.4), there exist elements R;; in A such that

sAw;) = ij®(CRji so that g®A5A(wi®ij) = Zwk®cwl®CRkile- (4.5.10)
7 k,l

g s a

Now, let us recall that in the proof of Theorem 4.2.5, we have proved that & &7
bicovariant bimodule. Since ¢(€ @™ &) = 0€R¢™™o€ by (4.2.5), we can again apply (1.2.4) to

deduce that ¢(ERc*™o€ is invariant under gg ¢ A.
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Now, we come to the proof of the result. Let T be an element of Homé(oé’, 0E®co€). Then

in the notations of Lemma 4.5.6, there exist scalars TZJ” such that
W) = Zwi®cwﬂ}?
4]

Since T is right-covariant, applying Lemma 4.1.20 to the second equation of (4.5.10) yields

> wicw;RcT)Rum = > _ wp@cwi®cRii Ry Tij (4.5.11)

ij,n ij,kl
~1
We note that Co£®co£,o€(T) = Zijkl wi®cwj®<CTiljglng(wk)~

Then, by (4.5.4) in Lemma 4.5.6,

L. lk
ngc‘:l,og@cog Zwl cT; V(z)(w]@)cwk)
ijkl
Hence,
Uy(T) (wm®cwn) =2 Y wiThg" g (w;®cwi) D (Wm@cwn)).- (4.5.12)
ijkl

Applying Lemma 4.1.20 to the map \I/;;(T) and using (4.5.12), we can conclude that l/Il\;(T) is

an element of Homé(oé’ ®cof, o€) if and only if, for all m,n, the following equation holds:

> wircRyiT};9% g (wj@cwi) Oc (wm@cwn )
i’ jkl

Z wi®cT9"* 9 (wi®cwr)Dc(wp@cwy)) Rom Rn-
ijkl,pq

(4.5.13)

Hence if we prove (4.5.13), we are done with the first part of the theorem.

Let us note that

Y wiBcRiiT9™ 9@ (wi®cwr) Oc(wn®cwn))
i jkl

= > wr®c R T};9" g(wr@cwm)g(wi@cwn) (as g(wk@cwm) € C)
i ikl

= Y wi®cRuiT};9" g(wr@cwm)g(ws@cwq) Rej Rgn,
it jklgs
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where, in the last step, we have used Proposition 4.3.10 by which we have

g(wj®cwn) = Zg(w8®Cwq)stan- (4514)
q,s

Let L : A — Homg (A, A) denote the left multiplication map. Since ¢E®¢(0€)*@cHome (A, A)

is isomorphic to Home (o€, o€)@cHome (A, A), we can write

Z wz’®(CRz g nglkg(Q) ((wj(g)(cwk)@@ (wm®Cwn))
i’ jkl

= Y [wir®cVy(ws)®cThg™ g(wi®cwm) L(r,, k) (Wg@c Rgn)
i’ jklgs

( by (4.5.14) and since nga g%, gim are scalars )

= Z [(id®(CVg®(CL)(wi’®(Cws®C ij Z g g Wk®(CWm))Ri’ist)](wq®(Can)

it/ jlgs
= Z [(id®CVg®CL)(wi’®Cws®Cnlj§lmRi’ist)](wq®(Can)
it/ jlgs
= 3 [([d®cV,@c L) (wr ®cws®c Roi Re T (wq@c Ran)
i’ jqs
=) [([d®cVy®c L) (wi®cw;RcTh Rym )| (wg®c Rgn) (by (4.5.11))
1jpgq
= > [([d@cVy®cL) (wi®cw;@cT)dip Rom)] (W@ Ryn)
ijpgl
= Z [(id®<CVq®<CL)(Wi®CWj®CEZj(Z glkg(wk®cwp))RPM)] (wg®@cRgn)
ijlpq k
= Z (Wi®c‘/;;(wj)®<CTl glkg(wk(@pr)LRpm)(Wq®(Can)
ijklpq
Z w;®cT; ]g *g (wj Rcwq) g (Wi @cwp) Bpm Ran
1jklpq
Z wi®cT; ]g kg )((Wj®<cwk)®<€(wp®Cwq>)Rmeqn-
ijkl,pq

This proves (4.5.13) and therefore, \ITg(T ) is right-covariant.

Now we prove the second assertion of the proposition. Let T be an element of
Hom# (o€, 0£R¢™™0E). Then the first assertion of the proposition implies that \I/;;(T) belongs to
Hom# (0€®@co€, 0€). However, by (4.5.5), \I/ (1)) pe@esymoe = E}T( T) and by the definition of CITg,
we know that @(T) belongs to Home (o€Rc¢™™oE, o€). Hence, we conclude that EIZ(T) belongs
to Homé(oé’@@symoé’, 0€). This finishes the proof of the proposition. O
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4.5.2 Right-covariance of the unique left-covariant connection

In this subsection, we prove that the unique torsion-less left-covariant connection compatible
with a bi-invariant pseudo-Riemannian metric, obtained under the hypothesis of Proposition
4.5.3, is actually a bicovariant connection if the Hopf algebra A is cosemisimple, i.e, if the
category of finite dimensional comodules of A is semisimple. For right A-comodules V' and W,
the symbol Homé(V, W) will continue to denote the set of all right-covariant complex linear

maps from V to W.

If A is a cosemisimple Hopf algebra and V, W be finite dimensional comodules as above, then

Proposition 1.1.11 implies that
dim(Hom# (V, W)) = dim(Hom# (W, V).

Now, if A is a cosemisimple Hopf algebra and (&, d) be a differential calculus such that oo is
diagonalisable, then in the proof of Proposition 4.5.7, we have noted that (£ and (EQRc¥™E

are right A-comodules. Hence, we can conclude that

dim(Homg (o€, 0€@c™™0€)) = dim(Hom# (0€R¢¥™0E, oE)). (4.5.15)

Then we have the following theorem.

Theorem 4.5.8. Suppose (€,d) is a bicovariant differential calculus over a cosemisimple Hopf
algebra A such that the map oo is diagonalisable, and g is a bi-invariant pseudo-Riemannian
metric. If the map &; s an isomorphism, then the unique left-covariant connection guaranteed

by Proposition 4.5.3 is in fact a bicovariant connection.

Proof. The proof follows from the claim that under the hypothesis of the theorem, the map
Eﬁ; is an isomorphism from Homé(oé’, 0ERCY™ME) onto Homé(o(f@(csymgg, 0€). Indeed, let us
recall that in Proposition 4.5.3, under the assumption that the map 5; is an isomorphism, we
explicitly constructed a torsionless left-covariant connection V compatible with g by the formula

V:ZL—I—V().
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Here Vg is the torsionless bicovariant connection constructed in Theorem 4.4.4 and L : £ —

E @4 &€ is the left-covariant right A-linear extension (via Proposition 4.1.14) of the map

~—1

O, (dg —T1,(Vo)) : o€ = 0EROE.

By Corollary 4.4.11, dg — ﬁ;(Vo) is a right A-covariant C-linear map from ¢ERc*™o€ to o&.
—~_1 —~
Hence, our claim implies that oL = ®, (dg — I1,(Vy)) belongs to Hom# (o€, 0ERc™™0E).

—~_1 —~
Since L is left-covariant right A-linear and oL = &, (dg — II5(Vy)) is right-covariant,
Proposition 4.1.19 implies that the extension L is a bicovariant right A-linear map from & to

E @4 &. Again by the right-covariance of Vi, V = L + Vj is a right-covariant map as well.

So we are left with proving that the map &)vg : Homé(gg, 0ERCY™HE) — Homé(05®csym08, o)
is an isomorphism. To this end, we observe that since E}Tg is an isomorphism from
Homge (o€, 0€@c™™0€) to Home (0E€Rc™E, o€), Proposition 4.5.7 implies that 5; is a one-to-

one map from Homé(oc‘f, 0ERcV™HE) into Homé(og@)(csymgé’, 0€). However, by (4.5.15),
dim(Homg (0(£@c™ ™0, 0€)) = dim(Hom# (o€, 0£R¢¥™oE)).

Therefore, C/}I] is a one-to-one and onto map from Homé(og, 0ERCY™ME) to Homé(oc‘:@(csymog, o).

O]

4.5.3 Sufficient conditions for the isomorphism of (/59

In this subsection, we prove a metric-independent sufficient condition for the map C,}:] to be an

isomorphism. We will continue to use the notation (¢ r introduced in Proposition 1.1.8.

Theorem 4.5.9. Suppose (€,d) is a bicovariant differential calculus over a cosemisimple Hopf
algebra A such that the map oo is diagonalisable and g be a bi-invariant pseudo-Riemannian

metric.

The map <i>vg : Home (o€, 0€@c™™0E) — Homge (0ERc™™0E, o€) is an isomorphism if and
only if (0(Psym))23 : (0€Rc™™0E)@co€ — 0E€@c (0€RC™™0E) is an isomorphism. In particular,
Theorem 4.5.8 implies that under either of these assumptions, the triple (€,d, g) admits a unique

bicovariant Levi-Civita connection.
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Proof. Suppose (0(Psym))23 : (0£@c™™0E)Rco€ — 0€Rc(0ERc™ ™€) is an isomorphism. Since
g is left-invariant, part (i) of Proposition 4.3.6 implies that ngl((og)*) = o€. By the first
assertion of Lemma 4.2.11 and our hypothesis, we can conclude that the following map is an

isomorphism:
(0(Psym))23(id®C%_1)<0;‘1®C05705 . Homc(og, 05®Csym05) — 05®C(og®(jsym05).

Now, by Proposition 4.3.14, V2 is an isomorphism from ¢£@¢*™o& to (0ERc™™pE)*. Finally,
by the second assertion of Lemma 4.2.11, ( ¢  @c0¢ i an isomorphism from ¢ER¢ (o€ ®c™™oE)*
to Homg (0€@c™™€&, o€). Therefore, by (4.5.6), is a composition of isomorphisms and hence

an isomorphism itself.

Conversely, suppose C/ﬁ; : Home (o€, 0€Rc™ ™€) — Homg (0ERc™™0E, o) is an isomor-
phism. If (o(Psym))23 is not an isomorphism from (o€Rc*Y™(E)Rco€ to 1€Rc(0ERc™™0E), then

it is not one-to-one. Hence by (4.5.6), &); is not an isomorphism, which is a contradiction. [

Remark 4.5.10. In Chapter 6, the isomorphism (o(Psym))23 : (0€Rc™™0E)@co€ = 0E€@c (0E€Rc™0E)
for the Hopf algebra SU,(2) is verified by an explicit computation. We refer to Theorem 5.4.4

for a cocycle-twisted version of the above isomorphism.
Our next proposition states that if o2 = 1, then the hypothesis of Theorem 4.5.9 is satisfied.
Proposition 4.5.11. Ifo? = 1, then the map (o(Psym))23 s an isomorphism from (o€Rc™oE)Rco€

to 0€Rc(0€RC™HE).

Proof. Since 02 = 1, £1 are the only eigenvalues of oo in this case and so by (4.2.7), o(Psym) =
5(1400). Now, let X be an element of ((€R¢c™™E)®co€ such that (o(Psym))23(X) = 0. Then
(Psym)(12) (X) = X so that (00’)12(X) =X.

Moreover, (90)23(X) = (2(0(Psym))23 — 1)(X) = —X. We further obtain that

(00)12(00)23(00)12(X) = =X and  (p0)23(00)12(00)23(X) = X.

Since oo is a braiding, this implies that X = 0. Hence (o(Psym))23 is a one-to-one map from
(0€RC™HE)Rco€ to 0€RC(0ERC™™oE) and therefore, by a dimension count, (o(Psym))23 is
also onto ¢€Rc(pE€@c™™oE). Hence (o(Psym))23 is an isomorphism from (p€@c™™0E)@co€ to

05®C<og®csym05). O
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Remark 4.5.12. In Corollary 5.1.9, we show that the hypothesis of Proposition 4.5.11 holds
for the space of one-forms for cocycle deformations of a linear algebraic group G whose category
of finite dimensional representations is semisimple. Thus, for these examples, we indeed have a

unique bicovariant Levi-Civita connection by Proposition 4.5.11 (see Proposition 5.4.5).






Chapter 5

Levi-Civita connections on cocycle

deformation of Hopf algebras

Suppose (€,d) is a bicovariant differential calculus over a Hopf algebra A such that go is diag-
onalisable in the sense of Chapter 4. In Theorem 4.5.9, we have proved a sufficient condition
for the existence of a unique bicovariant Levi-Civita connection for every bi-invariant pseudo-
Riemannian metric. This chapter discusses a class of examples of bicovariant differential calculi
for which this sufficient condition is satisfied. Indeed, if (£,d) is a bicovariant differential cal-
culus and 7 is a 2-cocycle on A as in Definition 1.2.6, then Majid and Oeckl proved ([74]) that
(€,d) deforms to a bicovariant differential calculus (&, d,) on the deformed Hopf algebra A,
(see Definition 1.2.7). The goal of this chapter is to show that if (£, d) satisfies the hypotheses
of Theorem 4.5.9, then (&,,d,) also satisfies its hypotheses. Thus, we have a unique bicovariant

Levi-Civita connection for every bi-invariant pseudo-Riemannian metric on &, .

In Section 5.1, we recall the generalities on cocycle deformation of bicovariant bimodules
from [74]. We have also borrowed some formulas from [8], where necessary. As a result, we
observe that in the presence of a cocycle, the braiding map o of (€,d) deforms to the braiding
map of (&,,dy). In Section 5.2, we study cocycle deformations of pseudo-Riemannian metrics
on bicovariant bimodules. The main result of this section is Theorem 5.2.5 where we prove
that for a Hopf algebra A, cocycle deformations of a bi-invariant pseudo-Riemannian metric
g on a bicovariant A-bimodule £ is a bi-invariant pseudo-Riemannian metric on the deformed

bicovariant A,-bimodule &,. The contents of Section 5.1 and Section 5.2 are from [18].

165
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In Section 5.3, we recall the cocycle deformation of bicovariant differential calculi from [74]
and also discuss the deformation of the space of two-forms. Finally, in Section 5.4, we prove
the main result of this chapter. We begin by discussing cocycle deformations of bicovariant
connections on bicovariant differential calculi. Theorem 5.4.3 is the main result of this section
which demonstrates that the sufficient condition of Theorem 4.5.9 holds for a cocycle deformed
differential calculus provided it holds for the undeformed one. Theorem 5.4.5 discusses the con-
crete example of cocycle deformation of Hopf algebras of regular functions on a linear algebraic
group and the existence and uniqueness of Levi-Civita connections therein. We end the section
with the proof of a comparison of our notion of bicovariant Levi-Civita connections with that

of [51] in the context of cocycle deformations. The contents of these two sections are from [17].

5.1 Cocycle deformation of bicovariant bimodules

If (A, A) is a Hopf algebra and + is a 2-cocycle as in Definition 1.2.6, then Definition 1.2.7 shows
that (A, A) can be twisted to a new Hopf algebra (A, A), where A, is equal to A as a vector
space, the coproduct A, is equal to A, and the algebra structure *, on A, is defined by the

following equation:

a v b= y(a@)®@cb())a)be)V(aE) @chs)). (5.1.1)
Here, 7 is the convolution inverse to v as in Definition 1.2.6.

In this section, we will discuss the cocycle deformation of bicovariant bimodules over Hopf
algebras and the deformation of covariant bimodule maps. Throughout this section, we will
make heavy use of the Sweedler notations as spelt out Subsection 1.2. In particular, using coas-
sociativity of A, we will use the notation, (A®cid)A(a) = (id®cA)A(a) = ayRca)@cas)-

Also, when m denotes an element of a bicovariant bimodule M, we will use the notation

(ld®cyA)Ay(m) = (Ay@cid)prA(m) = m(—1)@cm(g)@cm(1)- (5.1.2)
Note that the index (0) in the above equation denote the comodule tensorand and non-zero
indices indicate the coalgebra tensorand.

Then we have the following:

Proposition 5.1.1. (Theorem 2.5 of [74]) Suppose M is a bicovariant A-bimodule and 7y is a

2-cocycle on A. Then we have a bicovariant A,-bimodule M., which is equal to M as a vector
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space but the left and right A,-module structures are defined by the following formulas:

axy m = y(a@)@cm(-1))a)-m)7(a@E) @cm)) (5.1.3)

m*~ a = v(m(_1)®ca(1))m(0).a(gﬁ(m(l)®@a(3)), (5.1.4)

for all elements m of M and for all elements a of A. Here, x, denotes the right and left

A -module actions and . denotes the right and left A-module actions.

The A, -bicovariant structures are given by

AM’Y = A My — .,47(59((:]\47 and M’YA = mA M’Y — Mfy®(c.,4,y. (5.1.5)

Now, we are in a position to state the following proposition regarding cocycle deformations

of bicovariant maps between bicovariant bimodules.

Proposition 5.1.2. (Theorem 2.5 of [74]) Let (M, Apr, D) and (N, An, NA) be bicovariant
A-bimodules, T : M — N be a C-linear bicovariant map and v be a cocycle as above. Then
there exists a map T : My — N, defined by T, (m) = T(m) for all m in M. Thus, T, =T as

C-linear maps. Moreover, we have the following:

(i) the deformed map T, : My, — N, is an Ay bicovariant map,

(it) if T is a bicovariant right (respectively left) A-linear map, then T, is a bicovariant right

(respectively left) Ay -linear map,

(iii) if (P, Ap, pA) is another bicovariant A-bimodule, and S : N — P is a bicovariant map,

then (SoT)y : M, — Py is a bicovariant map and Sy o Ty, = (SoT),.

Remark 5.1.3. From Proposition 5.1.2, it is clear that if M is a finite bicovariant bimodule
(see Definition 4.1.3), then M, is also a finite bicovariant bimodule. We will only be dealing

with deformations of finite bicovariant bimodules in this chapter.

Recall that in Proposition 4.1.14, for a bicovariant right A-linear map T : M — N between
bicovariant A-bimodules, we adopted the notation (1" = T'|,as, where ¢M is the space of left-

invariant elements of M. As a corollary to Proposition 5.1.2, we obtain:

Proposition 5.1.4. Let (M, Ay, pA) and (N, An, NA) be bicovariant bimodules over a Hopf

algebra A, T be a bicovariant right A-linear map from M to N and v be a cocycle as above.
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Then
T, = ™ o (¢T&cid) o ()71, (5.1.6)

where uMv 1 o(M,)®cA, — M, and W : o(M,)®cA, — N, are the usual multiplication
maps as in Proposition 4.1.7. In particular, the C-linear map o(T) from o(My) = oM to itself
coincides with oT'. Moreover, T, is an invertible map if and only if T' is invertible, and more

generally, X is an eigenvalue of T if and only if it is an eigenvalue of T

Proof. Since T is a bicovariant right A-linear map from M to IV, by Proposition 5.1.2, T’ is an
A, bicovariant right linear map. Since ¢(M,) = oM and ¢(N,) = oN as vector spaces, and T,
is a left-covariant map, hence for all m in ¢(A,), the element T’ (m) belongs to ¢(N). Then

we compute, for any m in o(M,) and any element a of A,,
@) o T (m #y a) = (@) TN (T (m) %, a) = T, (m)®ca (by the definition of &™)
=T(m)@ca = (oT)(m)®ca = (oT@cid) (@) ™ (m *, a),

as m belongs to o(M,). Thus we have that
@) o T, = (0T®cid) (@)™, ie., Ty = @7 o (¢T®cid) o ()",

Evaluating this equation on an element of o(My) = oM yields o(Ty) = o7

Finally, applying Proposition 4.1.16 to T, and using the fact that o(75) = ¢T', we get that
T, is invertible if and only if T is invertible. More generally, A is an eigenvalue of 7T’ if and only

if it is an eigenvalue of T O

The next result studies the monoidal property of cocycle deformations.

Proposition 5.1.5. (Theorem 2.5 of [74]) Let (M, Apr, D) and (N, An, NA) be bicovariant
bimodules over a Hopf algebra A and v be a cocycle as above. Then there exists a bicovariant
A - bimodule isomorphism

f:]W,Y(XDJLLY N7—>(M®AN),Y.

The isomorphism & and its inverse are respectively given by

E(m®@a, n) = y(m_n@cn—1))me) @4 no)¥(mm@cnq))

¢ (m @4 n) =F(m_1)®cn_1))m) @4, 7o)y (M Scn))
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As an illustration, we make the following computation.

Lemma 5.1.6. Suppose w is in o€ and n is in E. Then the following equation holds:

& (v(n—)y®c L)) ®.4 wo)T(1®cw(1))) =1 @4, w.

Proof. Let us first clarify that we view v(n_1)®c1)n) ®4 w©)7(1®cw(1)) as an element in

(€ ®4 &)~. Then the equation holds because of the following computation:

M (Y1 ®c)ne) @4 weyT(1®cw(1)))
=y(n—1y®c1)E ™ (110) ®.4 w(0))T(1®cw(1))
=y(n(—2)@c1)F(N—1@c 1)) A4, wo)yY(1&cw1))T(1®cw(2))

(since w € o€, 1 € &)
=e(n(—2))e(n-1))M(0) @A, woye(w())e(wz)) (since 7 and 7 are unital)

=n ®A'y w.

Recall the braiding map o : £ ®4 & — £ ®4 £ for a bicovariant A-bimodule £, as in
Proposition 1.3.17. We next study the deformation of o. By Proposition 5.1.1, £, is a bicovariant
A,-bimodule. Then Proposition 1.3.17 guarantees the existence of a canonical braiding from
&y ®a, & to itself. We show that this map is nothing but the deformation o, of the map o
associated with the bicovariant A-bimodule €. By the definition of ¢, it is a map from (E® &)~
to (€ ®4 ). However, by virtue of Proposition 5.1.5, the map & defines an isomorphism from

E,®a, E to (€ ®4E)y. By an abuse of notation, we will denote the map
5_1075 (&, QA Ey = Ey®u, &y

by the symbol o, again.

Theorem 5.1.7. (Theorem 2.5 of [74]) Let € be a bicovariant A-bimodule and v be a cocycle
as above. Then the deformation o., of o is the unique bicovariant A, -bimodule braiding map on

&y given by Proposition 1.3.17.

Proof. Since o is a bicovariant A-bimodule map from € ® 4 € to itself, part (ii) of Proposition

5.1.2 implies that o, is a bicovariant A,-bimodule map from (£ ®4 E)y = &, ® 4, &, to itself.
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By Proposition 1.3.17, there exists a unique A,-bimodule map o’ from &, ® 4, &, to itself such

that o’(w®a, n) =1 ®4, w for all win o(&,),  in (& )o.

Since ¢(&,) = o€ and (&,)o = &o, it is enough to prove that o, (w ®4, ) =7 @4, w for all w
in o&, n in &.

We will need the concrete isomorphism between &, ® 4, &, and (€ @4 £),, defined in Propo-
sition 5.1.5. Since w is in ¢& and 7 is in &, this isomorphism maps the element w ® 4., 7 to

Y(I@cn-1))w(0) @4 N0)¥(w1)®@cl). Then, by the definition of 0., we compute the following:

oy (w®a, n) = o(Y(1Rcn(—1))wo) @4 N0)T(W1)@cl))
=0 (e(n—1))wo) @4 No)e(wy)) = €(M=1))M0) @A wo)e(w))

=y(N—1@c)n) ®a wo)yT(1®cw1)) =1 V4, w,
where, in the last step we have used Lemma 5.1.6. ]

Remark 5.1.8. Proposition 5.1.1, Proposition 5.1.2, Proposition 5.1.5 and Theorem 5.1.7 to-
gether imply that the categories ﬁ./\/lﬁ and jj/\/ljz are isomorphic as braided monoidal cate-

gories. This was the content of Theorem 2.5 of [74].

Howewver, in Theorem 5.1.7, we have emphasized in addition that the braiding on jz./\/ljz 18

precisely the Woronowicz braiding of Proposition 1.53.17.

We end this section with some consequences of Theorem 5.1.7.

Corollary 5.1.9. If the map (o) is diagonalisable, then the map o(o~) is also diagonalisable.

Proof. This is a consequence of Proposition 5.1.4, by which we have that the C-linear maps

0(0) and go coincide. O

Corollary 5.1.10. If the unique bicovariant A-bimodule braiding map o for a bicovariant A-
bimodule & satisfies the equation 02 = 1, then the bicovariant A -bimodule braiding map o~ for

the bicovariant A -bimodule &, also satisfies 03 =1.

In particular, if A is the commutative Hopf algebra of regular functions on a compact
semisimple Lie group G and £ is its canonical space of one-forms, then the braiding map o~ for

&, satisfies 03 =1.
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Proof. By Theorem 5.1.7, o, is the unique braiding map for the bicovariant A,-bimodule &,.
Since, by our hypothesis, 0? = 1, the deformed map o, also satisfies 03 = 1 by part (iii) of
Proposition 5.1.2.

Next, if A is a commutative Hopf algebra as in the statement of the corollary and £ is its
canonical space of one-forms, then we know that the braiding map o is just the flip map, i.e.
for all e, e in &,

ole@yq€)=¢ @ e€,

and hence it satisfies 02 = 1. Therefore, for every cocycle deformation & of £, the corresponding

braiding map satisfies 03 =1. O

5.2 Cocycle deformation of pseudo-Riemannian metrics

In this section, we will discuss the cocycle deformation of pseudo-Riemannian bi-invariant met-
rics on bicovariant bimodules. By Proposition 4.3.3, a pseudo-Riemannian bi-invariant metric
g on a bicovariant bimodule £ is a bicovariant map from £ ® 4 £ to A. Hence, by Proposition
5.1.2, we have a right A,-linear bicovariant map g, from &, ®4, &, to A,. We next show that
this map g, is a pseudo-Riemannian bi-invariant metric on &, upto a suitable identification, by

checking the conditions (i) and (ii) of Definition 4.3.1 for the map g,.

The proof of the equality g, = g, o 0, is straightforward. However, checking condition (ii),
i.e, verifying that the map Vy_ is an isomorphism onto its image needs some work. The root of
the problem is that we do not yet know whether £* = V,(&). Our strategy to verify condition
(ii) is the following: we show that the right A-module V(&) is a bicovariant right A-module
(see Definition 4.1.1) in a natural way. Let us remark that since the map g (hence V) is not left
A-linear, V(€) need not be a left A-module. Since bicovariant right A-modules and bicovariant
maps can be deformed (Proposition 5.2.3), the map V, deforms to a right .A,-linear isomorphism
(Vg)y from &, to (V4(€)). Then in Theorem 5.2.5, we show that (V}), coincides with the map
Vy, and the latter is an isomorphism onto its image. This is the only section where we use the

theory of bicovariant right modules (as opposed to bicovariant bimodules).

For the rest of the section, £ will denote a bicovariant A-bimodule. Moreover, {w;}; will

denote a basis of o€ and {w]}; the dual basis, i.e, w}(w;) = d0;;. Let us recall that (1.2.4) implies
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the existence of elements R;; in A such that
(wi) = ij®(CRji- (5.2.1)

We want to show that V(&) is a bicovariant right A-module in the sense of Definition 4.1.1.
To this end, we recall that (Lemma 4.3.7) V,(€) is a free right A-module with basis {w; };. This

allows us to make the following definition.

Definition 5.2.1. Let {w;}; and {w}}; be as above and g a bi-invariant pseudo-Riemannian
metric on €. Then we can endow Vy4(E) with a left-coaction Ay, gy : V4(E) = A@cVy(E) and a
right-coaction v, (yA : Vg(E) — V4(E)@c A, defined by the formulas

Ay, ) Zw a;) = Z locw; )A(ai), v,e) Zw a;) = Z (wij®cS(Rij)Aai), (5.2.2)
% i
where the elements R;; are as in (5.2.1) and S is the antipode of the Hopf algebra A.

Then we have the following result.

Proposition 5.2.2. The triplet (V4(£), Ay, (g, v,(e)A) is a bicovariant right A-module. More-

over, the map Vy : € — Vy4(€) is bicovariant, i.e, we have
Avg(g)(vg(e)) = (id®@Vg)Ag(€), Vg(g)A(Vg(e)) = (Vg®@id)5A(€). (5.2.3)

Proof. The fact that (V,4(E), Ay, ), v,()A) is a bicovariant right .A-module follows immediately
from the definition of the maps Ay, (¢) and v, (£)A. So we are left with proving (5.2.3). Let e be
an element in £. Then there exist elements a; in A such that e = ), w;a;. Hence, by (4.3.1),

we obtain

Ay,e)(Vg(e)) = Ay, e szaz Avg(s)(zgijwfai)ZZ(1®CQia’w}‘)A(ai)
= Z((id®cvg)(1®cwi))ﬁ(ai) = Z(id®ch)(AS(wi))A(ai)
= ) ([d@cVy)As(wiai) = ([d@cVy)Ag(e).

7

This proves the first equation of (5.2.3).
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For the second equation, we begin by making an observation. Since sA(w;) = 3, w;®cR;;
((5.2.1)), we have
0ij = €(Rij) = m(id@cS)A(Ry) = Y RikS(Rij).
k

Therefore, multiplying (4.3.5) by S(Rjm) on the right and summing over j, we obtain
> 65 S(Rim) =Y gjm Ry (5.2.4)
J J
Now by using (4.3.1), we compute

v©AWV(e) = 1AV, wia) = v, A giwia) =Y v, Algiw))Aa)

= ) (95wi®cS(Rir)Aa) = (O wi®e Y giS(Rr)) Alas)
ik j

ijk

= Z(wZ@cZgijjz‘)A(ai) (by (5.24))

ik 7

= > (gpwi®cRi)Alai) =Y (Vy(w;)@cR;i) A(as)
ijk ij

= > (Va@cid)(Ywj@cR;))A(a) = Y (Vy®cid)eAwi)A(a;) ( by (5.2.1) )
A 7 7

= Z(%@Cid)gA(wiai) = (%@Cid)f)A(e)'

%

This finishes the proof. O

Now we recall that bicovariant right A-modules (i.e., objects in the category AMQ‘) can be

deformed too.
Proposition 5.2.3. (Theorem 5.7 of [84]) Let (M, Ay, mA) be a bicovariant right A-module

and v be a 2-cocycle on A. Then

(i) M deforms to a bicovariant right A,-module, denoted by M.,

(i) if (N,An, NA) is another bicovariant right A-module and T : M — N is a bicovariant
right A-linear map, then the deformation T, : M, — N, is a bicovariant right A, -linear

map,

(iit) Ty, as in (i), is an isomorphism if and only if T is an isomorphism.
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Proof. We refer to Theorem 5.7 of [84] for proofs of (i) and (ii). Part (iii) follows by noting
that since the map 7 is a bicovariant right A-linear map, its inverse 77! is also a bicovariant
right A-linear map. Thus, the deformation (71), of 7! exists and is the inverse of the map

T,. 0

As an immediate corollary, we make the following observation.

Corollary 5.2.4. Let g be a bi-invariant pseudo-Riemannian metric on a bicovariant A-

bimodule £. Then the following map is a well-defined isomorphism.

(Vo) 1 &y = (Vg(E))y = (Vg)y (&)

Proof. Since both £ and V,(€) are bicovariant right A-modules, and V, is a right A-linear
bicovariant map from & to V(£) (Proposition 5.2.2), Proposition 5.2.3 guarantees the existence
of the map (Vy) from &, to (V4(E)),. Since g is a pseudo-Riemannian metric, by (ii) of Definition
4.3.1, Vy : € = Vy(€) is an isomorphism. Then, by (iii) of Proposition 5.2.3, (V;), is also an
isomorphism from &, to (V(£))5. In particular, this implies that (V4(£))y = (V)4 (E5)- O

Now we are in a position to state and prove that there is an abundant supply of bi-invariant
pseudo-Riemannian metrics on &,. Since g is a map from E®4E to A, g, is a map from (E®4E),
to A,. But we have the isomorphism § from &, ® 4, &, to (€ ®4 E), (Proposition 5.1.5). As in
the case of the map o, in Subsection 4.3, we will make an abuse of notation to denote the map

975_1 by the symbol g,.

Theorem 5.2.5. If g is a bi-invariant pseudo-Riemannian metric on a bicovariant A-bimodule
& and vy is a 2-cocycle on A, then g deforms to a right A.-linear map g, from &, @4, & to
itself. Moreover, g is a bi-invariant pseudo-Riemannian metric on E,. Finally, any bi-invariant
pseudo-Riemannian metric on &, is a deformation (in the above sense) of some bi-invariant

pseudo-Riemannian metric on .

Proof. Since g is a right A-linear bicovariant map (Proposition 4.3.3), ¢g indeed deforms to a
right A,-linear map g, from (€ ®4 ), = &, ®a, & (see Proposition 5.1.5) to A,. The second
assertion of Proposition 5.1.2 implies that g, is bicovariant. Then Proposition 4.3.3 implies that

g~ is bi-invariant. Since g o o = g, part (iii) of Proposition 5.1.2 implies that

gy =(900)y =gy 00y
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This verifies condition (i) of Definition 4.3.1
Next, we prove that g, satisfies (ii) of Definition 4.3.1. Let w be an element of (& = ¢(&,) and

n be an element of & = (&,)o. Then we have

=g(w ®an) = gy(F(1®cn(—1))w(0) @A, N0)Y(W1)@cl))

( by the definition of ¢! in Proposition 5.1.5)

=gy (e(N—1))w0) @A, N)E(W(1))) = gy(w @4, n) = Vg (w)(n).

Then, by the right-A, linearity of (V;),(w) and V{4 y(w), we get, for all a in A,

Vo, (W) (155 a) = Vg, (w)(n) £y @ = (Vg)y (@) (0) %y @ = (Vo)1 (w) (1 %5 a).

Therefore, by the right A-totality of (£,)o = & in &,, we conclude that the maps (V;), and
Vy, agree on o(&,). But since (&) = of is right A,-total in &, and both V, and (V,), are
right- A, linear, (V), =V, on the whole of &,.

Next, since Vj is a right A-linear isomorphism from &£ to V, (&), hence by Corollary 5.2.4, (V).
is an isomorphism onto (Vy(&)), = (Vy)4 (&) = Vg, (&;). Therefore V. is an isomorphism from
&, to Vg (&,). Hence g, satisfies (ii) of Definition 4.3.1.

To show that every pseudo-Riemannian metric on &, is obtained as a deformation of a pseudo-
Riemannian metric on &, we view £ as a cocycle deformation of £, under the cocycle 7. Then
given a pseudo-Riemannian metric ¢’ on &, by the first part of this proof, (¢')5 is a bi-invariant
pseudo-Riemannian metric on €. Hence, ¢’ = ((¢’)5), is indeed a deformation of the bi-invariant

pseudo-Riemannian metric (¢’)5 on €. O

Remark 5.2.6. We have actually used the fact that € is finite in order to prove Theorem 5.2.5.
Indeed, since & is finite, we can use the results of Section 4.3 to derive Proposition 5.2.2 which

is then used to prove Corollary 5.2.4. Finally, Corollary 5.2.4 is used to prove Theorem 5.2.5.

Also note that the proof of Theorem 5.2.5 also implies that the maps (Vy), and V. are equal.

When ¢ is a pseudo-Riemannian bicovariant bilinear metric on &, then we have a much
shorter proof of the fact that g, is a pseudo-Riemannian metric on &, which avoids the theory
of bicovariant right A-modules. We end this section with a brief discussion of the proof which
is as follows:

We will work in the categories ﬁ./\/lﬁ and j:/\/lﬁ: Firstly, as g is bilinear, V; is a morphism of
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the category ﬁMﬁ and can be deformed to a bicovariant A,-bilinear map (V) from &, to
(). Similarly, g deforms to a A,-bilinear map from &£, ® 4, &, to A,. Then as in the proof of
Theorem 5.2.5, we can easily check that (V,), =V, .

On the other hand, from Proposition 4.3.9, we know that the left dual Eof € (in the category
j‘/\/lj‘) is isomorphic to £*. Since g is bilinear, Proposition 4.3.9 implies that the morphism V

(in the category M%) is an isomorphism from & to £*.

Therefore, we have an isomorphism (Vy), is an isomorphism from &, to (£*),. Since the
functor from j‘/\/lﬁ to j:/\/lj: sending M to M, is monoidal by Proposition 5.1.5, we can apply
the second assertion of Proposition 1.1.10 to deduce that (£*), = (&,)*. Thus (V,), is an
isomorphism from &, to (&,)*. As (Vy), = Vy,, we deduce that V, is an isomorphism from &,

to (£,)*. Since the equation g, o 0., = g, this completes the proof.

5.3 Cocycle deformation of bicovariant differential calculi

In this section, we deform a first order bicovariant differential calculus (&, d,) over A and see

that (£,,dy) is a first order bicovariant differential calculus on A,.

Since d : A — £ is a bicovariant map between bicovariant bimodules, by Proposition 5.1.2,

we have the map

dy:=d: Ay, =&,

Proposition 5.3.1. ([74]) The tuple (£, d,) is a first-order bicovariant differential calculus on
Aq.

Proof. Though the proof of this result is already available in Proposition 3.2 and Corollary 3.4
of [74], we provide the proof here in our notations for the sake of completeness. We start by

proving that d, : Aq — &, is a derivation. For a,b in Ag, we compute

dry(a *y )
= 7(a@)®cbq))d(a)be))V(a@ ®cbm) (by 1.2.2)

= (aw®cbn))d(ag)be)¥(a@)@ch@s) +v(a@)®cbay)a@ d(be)7(aE)@chs))
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= 7((da)—1y®cb())((da) )by ((da)1y@cb)))
+7(a)y®@c(db)(—1))ae)(db) o) ¥(aE) @c(db) 1))
(by part(iii) of Lemma 1.3.16)

= da*y b+ ax*,db,

where in the last step we have used (5.1.3) and (5.1.4). This proves that d, is a derivation on

A,

Next, we observe that since &, = £,d, = d, and (€, d) is a first order differential calculus
on A, (§,,d,) is a first order differential calculus on A, (see Definition 1.3.14). To prove that
(&y,dy) is a left-covariant differential calculus, let a;,7 = 1,...,k be elements in A such that

> o Ak *+ dby, = 0.

Now, since d, = d and A, = A as maps, we have
(dy®@cid)Ay(a) = ¢, A od, and (id®cd,)A, = Ag, od,.

Moreover, by Proposition 5.1.1, £, is a bicovariant A.-bimodule. Thus, if >, aj * d(by) = 0,

we get

> Ay (ar) #y ([dDedy) Ay (be) = Y Ay(ar) =y Ag, (dy(br))
p p

= A0 ag #y d(br) = 0.
k

Therefore, (€, d,) is a left-covariant first order differential calculus. Similarly, it can be proved

that (£,,dy) is a right-covariant first order differential calculus. This completes the proof. [

If (£,d) is a bicovariant differential calculus such that go is diagonalisable, then we have
proved (Theorem 4.2.5) that £ @4 & = Ker(A) @ F, where F = ut®4¢ (4 FxcA). Here, oF is
the direct sum of eigenspaces of go corresponding to the eigenvalues which are not equal to 1

and 7f®A~€

is the isomorphism defined in (4.2.1). Moreover, we have a bicovariant A-bilinear
idempotent map Psyr, on € ® 4 £ with range Ker(A) and kernel F, defined by the equation (see
Definition 4.2.6)

Py = T94E (o Payn ) @cid) (W 24E)
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Since Psym : € ®4 € — € ®4 € is bicovariant, we have a deformed map (Psym )y : (€ ®4 &)y —
(€ ®4 &),. With an abuse of notation, we will denote the map &~ (Psym)/& : & ®a, Ey —

&, ®a, & by the symbol (Pyym), again.

Now, let us consider the bicovariant differential calculus (&, d,). By Proposition 5.3.1, we
can apply Theorem 4.2.5 (to (£,,d,)) to get a bicovariant A,-bilinear idempotent (Psym)e, on
E,®a, &, It is worthwhile to note that the map (Pyym )¢, coincides with the cocycle deformation
(Psym)~ of the map Puyy. Indeed, since o(0) = 9o on ¢(&,)®Rco(&Ey) = 0E€@cof, the kernel of
(Psym)e, is equal to uE A& (0F®cA,). However, using the isomorphism (E®4€), = E,@ .4, &,

it is easy to check that

o B A E (0 F®cAy) = (ﬁS@AS)v((O}-@CA)V)

:(@g@)Ag)(O}_@CA))W = Fy = Ker((Psym)~)-
On the other hand, by the definition of (Pym)e,,

Ran((Psym)e,) = Ker(o, — 1) = (Ker(o — 1)),

=(Ran(Psym))y = Ran((FPsym))

Since (Psym)e, and (Psym), are both idempotents on £, ® 4, &, with the same kernel and the
same range, we can conclude that (Psym)y = (Psym)e,. We collect the observations made above

in the following proposition.

Proposition 5.3.2. Let (£,d) be a bicovariant differential calculus over A such that oo is
diagonalisable and y be a 2-cocycle. Then the maps (Psym)e, and (Psym), coincide. Moreover,
we have

&, ®a, & = Ker(Ay) & F, = Ker(oy, — 1) & F,.

Cocycle deformation of two-forms

In order to introduce the deformation of the space of two-forms, we need the deformation of the
braiding map o of the space of one-forms &, which was discussed in Theorem 5.1.7. Utilising

the map o, we have the following result.

Proposition 5.3.3. Let £ be a bicovariant A-bimodule and v be a cocyle as above. Then

the space of two-forms Q?(A,) of the cocycle deformed algebra A, is the deformed bimodule
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(Q2(A))~. Moreover, the deformation d., of the map d : € — Q%(A) is the bicovariant derivative

map from the space of one-forms to the space of two-forms.

Proof. By Theorem, 5.1.7, o, is the canonical braiding map on &,. Hence, the space of two-
forms O*(A,) = (£, ®4, &) /Ker(oy —1). Since 0, = o as vector space maps, Ker(o, —1) =
Ker(o — 1) as vector spaces. Therefore, using the isomorphism &, ® 4, &, = (£ ®4 &), we have
that Q?(A,) = ((€ ®4 &) /Ker(c — 1)),. Thus, we have the first part of the statement.
By Proposition 1.3.20, the map d : £ — Q2?(A) is a bicovariant map. Therefore, by Proposition
5.1.2, it deforms to the map

dy 1 € — (3(A))s,

which satisfies the properties of Proposition 1.3.20. By the first part of this proof, (2%(A)), =
QQ(.AW). Hence, d., is the derivative map from the space of one-forms to the space of two-forms,

and we are done with our proof. O

5.4 Existence and uniqueness of Levi-Civita connections

This section concerns the Levi-Civita connections on bicovariant differential calculus on cocycle
deformations of Hopf algebras. We discuss the effect of cocycle deformations on the map Pesym
as well as bicovariant connections. Finally, we prove the main theorem which states that if (£, d)
is a bicovariant differential calculus such that go is diagonalisable and g is a pseudo-Riemannian
bi-invariant metric on £ such that (€, d, g) admits a bicovariant Levi-Civita connection V, then

V deforms to a bicovariant Levi-Civita connection for the deformed triple (&, d,, g).

We start by discussing bicovariant connections on &£,. Suppose that V is a bicovariant con-
nection on €. Then Proposition 5.1.2 yields a C-linear map V., from &, to (£ ® 4 £).. However,
we would like to have the deformed map to take value in &, ®4, &,. For this, we will need to

use the isomorphism & : &, ® 4, & — (€ ®4 &) introduced in Proposition 5.1.5.
The following lemma will be needed to prove that V., is actually a connection.

Lemma 5.4.1. If V is a bicovariant connection on a bicovariant differential calculus (€,d) and

we write

ew4eA(V(€)) = (V(e)(0)®c(V(e)) ),
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then for all w in o€ and a in A, we have

EHVW) amT(Vw)m®cag)) = £ (Vy(w)) % a,
where V., : £, = (E®AE)y is the deformation of the C-linear bicovariant map V : € = EQ@4E.

Proof. We will use the right A,-module structure of (€ ®4 &), and the bicovariance of the map
V. (Proposition 5.1.2). In particular, this implies that if w is in ¢&, then V,(w) is an element

of o((€ ® £),). Hence, we get:
Vo (w) ¥ a = (Vy(w))0)-a0)T((Vy(w))1)@caz))
=(V(w))©0)-ay7((V(w)) 1y®ca(2)),

where the equality is of elements in (£ ® 4 £). Then, using Lemma 5.1.6, by the right A,-

linearity of &, we have

EH(V (W) 0amT(Vw) my®cae)) = £V, (w)) *4 a,

where the equality is of elements in £, ® 4, €. This completes the proof of the lemma. O

By an abuse of notation, we will denote the map & _1V.y by the symbol V, again. Thus, V,

takes value in £, ® 4., £, as desired. Then we have the following theorem.

Theorem 5.4.2. Suppose (£,d) is a bicovariant differential calculus. Then a bicovariant con-
nection V deforms to a bicovariant connection V., on &,. In fact, bicovariant connections on &

and &, are in bijective correspondence.

Proof. For w in o€ and a in A, we have

Vy(w sy a) = Vy(weyamT(wa)®ca))
=V (w)am)T(wm®cae) = V(we e 7w Oca )
=(V(w))an) +wey ®a d(an))) 7w ®@caz))

=V(w))an)T(wa)®ca()) +wo) ®a d(aq))¥(wm@ca))-

Now, by the right covariance of the maps V and d (see (1.3.6)), the following equations hold:

V(w))@cwa) = (V(W)0)@c(V(w))ay, dlaqy)@cam) = (da)py@c(da) ),



5.4. Existence and uniqueness of Levi-Civita connections 181

and therefore, the above expression is equal to

(V(w)©a@mT(V(w))q)®ca(2)) + woy @4 (da)o)¥(wa)@c(da)qy)

=V, (W) ¥y a+w®a4, dya

where we have used the two equations of Lemma 5.4.1. This proves that for all w in (& and a
in A,
Vy(wxya) =Vy(w)*ya+w®a, da. (5.4.1)

Since & = o(&,) is right A,-total in &, we are left to prove that for all a,b in A and w in (&,
Vo ((w sy a) ky b) = V(W ky a) %y b+ w*y a @4, dyb.

But this follows easily from (5.4.1). Since the right and left comodule structure of the calculus
and its deformation are the same, hence V., is also bicovariant.

To show that the bicovariant connections of £ and &, are in a bijective correspondence, we
consider the bicovariant calculus (£, d) as a cocycle deformation of the calculus (&,,d,) under
the cocycle 7. If V' is a bicovariant connection on (&,,d,), then by the above argument, (V)5
is a bicovariant connection on ((&,)7, (dy)5) = (€,d). Moreover, V' = ((V')5), and hence is a

cocycle deformation of a bicovariant connection on (€, d) under the cocycle . O

Next we prove the main result of this section, namely that, if (€,d) is a bicovariant differ-
ential calculus on A satisfying the conditions of Theorem 4.5.9 and ¢’ is a pseudo-Riemannian
bi-invariant metric on the deformed bimodule &,, then there exists a unique left-invariant con-
nection which is torsionless and compatible with ¢’. This is an analogue of Theorem 3.3.1
proved in Section 3 for Connes-Landi deformations of bimodules. We will continue to use the
notations o, g, introduced in Theorem 5.3.1 and V., from Theorem 5.4.2. In particular, if g
be a pseudo-Riemannian bi-invariant metric on &, then g, is a pseudo-Riemannian bi-invariant

metric on &, by Theorem 5.2.5.

Theorem 5.4.3. Suppose (E€,d) is a bicovariant differential calculus on a Hopf algebra A, o
be the corresponding braiding map and v a 2-cocycle on A. If go is diagonalisable and g is a

pseudo-Riemannian bi-invariant metric on &, then the following statements hold:

(i) If V is a bicovariant Levi-Civita connection for the triple (€,d,g), then V deforms to a

bicovariant Levi-Ciwita connection V- for (€,,dy, g).
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(ii) In the set-up of (i), if we assume that V is the unique Levi-Civita connection for (€,d, g),

then V. is the unique bi-covariant Levi-Civita connection for (Ey,dy, g).

Proof. We start by proving that V. is torsionless and metric compatible. Since A, V and d
are bicovariant, therefore the right A-linear homomorphism Ty = A o V + d is also bicovariant.

Therefore its cocycle deformation exists and
(Iv)y = (Ao V+d)y=NyoVy+dy =Ty,.

Since V is torsionless, we have that Ty = 0.

Now we prove that V., is compatible with the metric g,. The map dg: £E ®4 & — & is also a
bicovariant map as Proposition 1.3.15 and Proposition 4.3.3 imply that d and g are bicovariant
maps. Therefore, since V is bicovariant and g is bi-invariant, Remark 4.4.6 and Proposition
4.4.10 imply that the map IAI;(V) — dg is bicovariant. Therefore, the deformation of the map
I_Tg(V) — dg exists and is equal to TT,;(VW) — dyg,. Since ﬁvg(V) — dg = 0, therefore we have
that T, (V) — d, g, = 0.

For the second part of the proof, assume that V' is a bicovariant Levi-Civita connection for the
triple (&y,d,,gy). Viewing (£,d,g) as a cocycle deformation of (£,,d,,g,) under the cocycle
7, by the first part of the proof, (V)5 is a bicovariant Levi-Civita connection on (&, d, g).
By our hypothesis, such a connection is unique. Hence (V')y = V, and hence V' = V. Thus
(&y,dy, gy) admits a unique bicovariant Levi-Civita connection. O

In Theorem 4.5.9, we proved that if the map (o(Psym))23 is an isomorphism from (o€ ®g"

0€)®co€ to o€Rc (o€ ®%ym 0€), then there exists a unique left-covariant Levi-Civita connection
for (£,d, g). The next theorem shows that under the same assumption, (£,,d,) admits a unique

left-covariant Levi-Civita connection for any bi-invariant pseudo-Riemannian metric.

Theorem 5.4.4. Suppose (€,d) is a bicovariant differential calculus such that oo is diagonal-

isable. If the map
(0(Psym))23 : (0€Rc™™0E)@co€ — 0E€Rc(0ERc™™0E)

1 an isomorphism, then
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(i) considering the map (Psym)~ as in Proposition 5.5.2, the following map is also an isomor-

phism:
(0((Psym)ry))23 : (0(E7)@c™0(E5))®c0(Ey) = 0(E5)®c(0(Ey)Rc™ ™ 0(E5)),

(ii) for every bi-invariant pseudo-Riemannian metric ¢', the corresponding deformed calculus
&, d~) admits a unique left-covariant connection which is torsionless and compatible with
vy Gy

g'. Moreover, if A is cosemisimple, this connection is also right-covariant.

Proof. The first part of the theorem follows by recalling that ¢(€,) = o€ and the fact that by

Proposition 5.1.4, we have o(Psym) = 0((Psym)~)-

By Proposition 5.3.2, (Psym) is the unique idempotent on £, ® 4., £, with range &, ®f}(:ﬂ &y
and kernel F,. The existence of a unique left-covariant Levi-Civita connection for (&, d,d’)

follows by combining the first part and Theorem 4.5.9.

If in addition, if A is cosemisimple, then A4, is also cosemisimple and the right-covariance of

the Levi-Civita connection follows from Theorem 4.5.9. O

As a direct corollary to Theorem 5.4.4 and the existence-uniqueness theorem for Levi-Civita

connection on a classical manifold, we have:

Proposition 5.4.5. Let A be the Hopf algebra of reqular functions on a linear algebraic group G
whose category of finite dimensional representations is semisimple. Suppose (€,d) is the classical
bicovariant differential calculus on A and v a 2-cocycle on A. If ¢’ is a pseudo-Riemannian bi-
invariant metric on the bicovariant differential calculus (€, d~) over the Hopf algebra A, then

there ezists a unique bicovariant Levi-Civita connection for the triple (Ey,dy,q’).

Proof. The map ¢’ is a bi-invariant pseudo-Riemannian metric on £, and so by Theorem 5.2.5,
there exists a bi-invariant pseudo-Riemannian metric g on £ such that g, = ¢’. The Levi-Civita
connection for the triple (£,d, g) is bicovariant. This is well-known and can also be seen using
Proposition 4.5.11 and Theorem 4.5.9. Therefore, we can apply Theorem 5.4.3 to reach the

desired conclusion. O

We conclude this section by proving Proposition 4.4.13 stated in the previous chapter, which

shows that our definition of metric-compatibility coincides with that in [51] in the case of cocycle
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deformation of the Hopf algebra of regular functions on a linear algebraic group. The proof will

use the notations and discussions preceding the statement of Theorem 4.4.13.

Proof of Proposition 4.4.13: By our assumption, V' and ¢’ are bicovariant. It can be easily
checked that analogues of Theorem 5.4.2 for left connections and the third assertion of The-
orem 5.2.5 for left A-linear pseudo-Riemannian metrics hold. This implies that there exist a
bicovariant left-connection V on £ and a left A-linear bi-invariant pseudo-Riemannian metric g

on & such that V' =V, and ¢’ = g¢,.

Now suppose that V' = V is such that (4.4.2) holds for the left A-linear bi-invariant pseudo-
Riemannian metric g = g,. Then by (4.4.3), IIJ (V,) =0, i.e,

2(gy®@cid)(id®@coy)(id@cVy)o((Psym)) =0

as maps on o(&,)®co(Ey) = 0E@cof. Since the maps gy, 0y, 0(Psym) coincide with g, o, o(Psym)

respectively on ¢E®cof, we can conclude that
2(g®cid)(id®co)(id®cV)o(Psym) = 0

as maps on oE®cof. But £ is the classical space of forms on the group G and therefore, our

definition of metric-compatibility coincides with that in [51]. Hence we have
(id®cg)(Vecid) + (9@cid)(id@co) (id@cV) = 0
Applying the same argument as above, we deduce that
(i[d®cgy)(V4®cid) + (9,®cid) (id®coy) (id®cV,) = 0,

ie, V' =V, is compatible with ¢’ = g, in the sense of [51].

The converse part follows similarly and this completes the proof. ]



Chapter 6

Levi-Civita connection on SU,(2)

In this chapter, we will investigate the theory of Chapter 4, in particular Theorem 4.5.9, in
the context of the 4D, calculi of the Hopf algebra SU,(2) discussed in Example 1.2.9. The
4D calculi of SU,(2) were explicitly described in [93] and then [86], and we briefly recall the
same in Section 6.1. In the same section, we verify that the diagonalisability condition of the
map oo (see (4.2.2)) is satisfied by the 4Dy calculi. Theorem 4.4.4 states that if the map oo
of a bicovariant differential calculus is diagonalisable, then it admits a canonical bicovariant
torsionless connection. In Section 6.2, we provide an explicit construction of this torsionless
connection for each of the 4D calculi. In Section 6.3, we will show that the metric-independent
sufficiency condition of Theorem 4.5.9 is satisfied by both calculi, except for at most finitely
many values of ¢, and hence we can conclude the existence of a unique bicovariant Levi-Civita
connection, corresponding to each bi-invariant pseudo-Riemannian metric. Throughout the
chapter, the symbol A will stand for the Hopf algebra SU,(2) and £ for the bimodule of one-

forms for the 4D, calculi.

6.1 The 4D, calculi on SU,(2) and the braiding map

Our main reference for the details of this section is [86].

185
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Recall from Example 1.2.9 that for ¢ € [-1,1]\0, SU4(2) is the *-algebra generated by the

two elements «, v, and their adjoints, satisfying the following relations:

da+yy=1, adt+ @y =1,

Yy=97", ay=qra, oy =gy
The comultiplication map A is given by
Aa) = a®ca — ¢Y*'®cy, A(y) = 7v&ca + a*Qcy.

In this chapter, we will denote this Hopf algebra by the symbol A.

In [86], it is explicitly proven that there does not exists any three-dimensional bicovariant
differential calculi and exactly two inequivalent four-dimensional calculi for SU,(2). We use the
description of the two bicovariant calculi, 4Dy and 4D_, as given in [86]. We will rephrase some

of the notations to fit our formalism.

For g € (—1,1)\{0}, the first order differential calculi £ of each of the 4D, and 4D_ calculi
are bicovariant A-bimodules such that the space (& of one-forms invariant under the left coaction
of A is a 4-dimensional vector space. We will denote a preferred basis of (€ by {w;}i=123.4.

Here we have replaced the notation €2; in [86] with the symbol w;.

The following is the explicit description of the exterior derivative d on ¢& for the preferred

basis {w;}}_; mentioned above.

Proposition 6.1.1. (Equation (5.2) of [86]) Let d : £ — Q2(A) be the exterior derivative of
the 4Dy calculus.

T
d(w1) = i\/?wl N w3, d(WQ) =TF \q/;(,UQ N w3,
d(w?,) = i\(/fwl N wa, d(w4) =0,

where the upper sign stand for 4D, and the lower for 4AD_, and r = 1 + ¢>.

Next we will show that the map go for SU,(2) satisfies the diagonalisability condition by
giving explicit bases for eigenspaces of go. First we recall from [86], the explicit action of o on

elements w; ® 4 wj, 1,7 = 1,2,3,4.
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Lemma 6.1.2. (Equation (4.1) of [86]) The action of o on the preferred basis of the 4Dy calculi

s given by

(w1 ®Aw1) = w1 Qqw1, (w2 ®gws) =wr @ wa, 0(wWs®4ws) =Wy @4 Wy,

(w1 ®Aws) =wWs Qqw1, (w2 DAws) =Wy @ wa, (W3 BD4wWs) =Wy @Y w3,

=
U(w1 ®,4w2) = wy Vg w1 +twz Qg w3 — %wg XA Wy,

r
U((,UQ ®,4w1) = w1 ® g w2 — tws ®AW3+Q\I€[W3 &4 Wy,

t T
o(w ®4ws) = gwl XA W3 — 7001 XA wq + w3 X g wi,

VT

k

o(ws ®4qwi) =wr ®AW3+q w1 ® A wy — qtwsg ® 4 wi,

VT

k

o(w2 ®Aw3) = —qtws ® 4 w3 + w2 @A Wq + w3 ¥4 wo,

N t
(w3 ®Awa) = wy ®A w3 — ?wz R4 wq + 5w3 XA w2,

tqy/r
k

o(ws ®aws) = tw) ®gws — tws @ wr + (1 —tH)ws @4 w3 + w3 ® A W,
2k 9 2k
(Wi ®AwW1) = 5w Q4 w3+ (1 +17)w1 ®gwy — —=w3 @4 wi,

T VT

t2k 5 t2k
0(ws @Apwr) = ——F=wr Qw3 + (1 +t)wr @4 wy + 5—F—

VT a*\r’
2k 2k t3 9
0(04®@aw3) = —=w ®QwWr — —=wr A w1 — —=w3 @4 w3 + (1 +t7)ws ®4 wa,

q/r qT q/T

wherer =1+ ¢*, t=q— 1, s = ﬂ, fp =t for 4D respectively.

q’ q T r&s

This lead us to the next result which states the minimal polynomial equation of the map go
and its eigenspace decomposition. The minimal polynomial equation of the map ¢ appeared
in Equation (6.13) of [20] and the eigenspace decomposition can be found in Chapter 8 of [11].
Hence, the following proposition merely collects these results in the notational formality required

for this chapter.

Proposition 6.1.3. For SU,(2), the map 9o : o€Rco€ — 0€Rco€ is diagonalisable and has

the minimal polynomial equation

(00 — 1)(00 + q2)(00 + q*2) =0.
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Proof. The proof of this result is by explicit listing of eigenvectors of o for eigenvalues 1, —g?, —¢ 2

and by a dimension argument. Throughout we make use of the canonical equivalence w; ® g4w; —
w;®cw; as stated in (i) of Theorem 4.1.11. Moreover, 7,t,k will be as in Lemma 6.1.2.
By explicit computation (also derived in Equation (4.2) of [86]), we get that the following ten

two-tensors are in the eigenspace of go corresponding to eigenvalue 1:

w1®cw1, w2@cw2, Ws®cw3 + twi1®cwsz, wicwy,
2
w1 @cw2 + w2cwi, w2®cws + ¢ “w3cws,
2 2k
QW1 ®cw3 + wWs®cw1, Lz 7w2@cws — W2Qcws — Wacwz,

2 2
%Wl @cws + w1@cws + wi®cwi, %wl @cwz + w3Rcws + wiBcws.

Similarly, by explicit computation, the following three linearly independent two-tensors are in

the eigenspace corresponding to the eigenvalue —g?:

t\[W2®CW3 — PPwa®cws — \[W3®(CW2 + wi®cwa,

q\/w1®<cw3 — GPw1®cws + \/w3®cw1 + wi®cwi,

\/w1®cw2 + \[w2®cw1 + fw3®<cw3 — PPws®cws + WiRCwWs.

Finally, the following three linearly independent two-tensors are in the eigenspace corresponding

to the eigenvalue —q=2:

t tk
\q[w2®<cw3 + wa®cwsq — \/w3®<cw2 — QPwsRcws,

q\[w1®<cw3 + w1®cws + \fw3®<cw1 — GPws®cwr,

—7w1®cw2 + fw2®<cw1 + \[w3®<CW3 + w3®cws — ¢q w4®(cw3

We have thus accounted for sixteen linearly independent elements of (E®co€. Since o€ has
dimension 4, (ERco€ has dimension 16. Hence we have a basis, and in particular bases for the

eigenspace decomposition, of (E®RcoE. Moreover, oo satisfies the minimal polynomial

(00 = (00 +¢*) (0o +¢~) = 0.
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6.2 A bicovariant torsionless connection

In this section, using the eigenspace decomposition of (ERco€, we construct a bicovariant

torsionless connection on the 4Dy calculus.

By Proposition 6.1.3, we have the eigenspace decomposition
0E@co€ = Ker(go — id) @ Ker(go + ¢2) @ Ker(oo + ¢2). (6.2.1)
Since Ker(A) = Ker(yo — id), we have that
Ker(oo + ¢*) @ Ker(oo + ¢ %) = Q*(A),

with the isomorphism being given by Alker(go+q2)@Ker(oot+q-2)- Let us denote Ker(go + ) @
Ker(oo + ¢~2) by oF from now on. This is consistent with the notation adopted in Definition

4.2.2.

Before we state the main result of this section, let us make the following remark.

Remark 6.2.1. Note that since any element p in the bicovariant bimodule £ can be uniquely
expressed as p =y . wja; for some a; in A (Proposition 4.1.7), a connection on & is determined

by its action on the basis {w;};.

Theorem 6.2.2. Let {w;}; be the preferred basis for the 4D+ calculus on SU,(2). For i =
1,2,3,4, we define
Vo(wi) = —(/\‘O]:>_1 o d(wi) € 0ERcof.

Then, Vg extends to a bicovariant torsionless connection on €. More explicitly,

Vo(wi) = ar (2tkw®w+tw®w %w(@w—ktw@w)
01_¥tk(q2+1)2q\/771(cg qu19cwy \/77361 qu4dcw1
qr 2tqk 2tk

\% =+ —t _ = ¢
0(w2) tk(q2+1)2( \/;w2®<cw3 quaRcwa q\/;w:a@(cw? quiRcws)
qr 2tk 2tk 2k
v =4 (— - =
0(ws) tk(q2+1)2(\/17w1®cw2 \/;w2®<cw1 \/;w3®<cw3

+ tqwsRcws + tqusBcws)

Vo(ws) =0,

where the upper and lower signs stand for the 4Dy and 4D_ calculi respectively, and r,t, k are

as i Lemma 6.1.2.
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Proof. By the definition of V),
Ao Vo(wi) = — Ao(Alr) o d(w;) = —d(w;).

Therefore, for any element p =, w;a; in &,

AoV Zwiai = Ao Z(Vo(wi)ai + w; @4 az-)

A

- _Z A o(AloF) o (WZ)az+wl/\a1)

= —Z (JJZ az+wl/\al = Zdwlaz

Hence V) is a torsionless connection. The construction of Vi is the same as that in Theorem

4.4.4. Hence, by that theorem, our connection Vg is bicovariant.

Now we derive V( explicitly on each w; using the formulas for d(w;) in Proposition 6.1.1.
We have that d(w;) = £/rw1 A ws. The decomposition of w1 ®cws as a linear combination of

the basis eigenvectors listed in Proposition 6.1.3 is given by

2

P
B TR — ) (¢*w1 ®cws + w3Bcw)

( 2 + 1 2
2 2

t°k

k( 2\_{1) (le(@(cwg + w1 ®cw4 +W4®(cw1)

N q\[(tk tak

tgk
_ _ 2
(P + 1) q\/;W1®<cw3 q"w1®cwy + \/;w3®<cw1 + wi®cwi )

avr tk

tqk 9
th(q? + 1)2( q\/;w1®(cw3 + w1®cws4 + \/;w,@(cm q w4®cw1).

Since the first two terms in the above decomposition are elements of Ker(go — id) = Ker(A),

applying A on both sides, we have

aVr tk
2

tqk
w1 Awg =A (— i - qﬁwl@CwS — Pwi1®cws + \/;w;;@(cwl + wi®cwi )

q2 + 1 2
qVr tk tqk 2
- — W1RCcws + w1 ¥cwy + —=w3®cwi — ¢ wsRcwq );
tk(q® + 1) ( /T Vr )

and since the last two terms in the decomposition are from o.F,

avr ( tk

_ tqk
(Alor) w1 Aws) = - thig® +1)2 - q\/;wl‘g)CWS — Pwi1®cwy + W%@Cwl + W4®<cw1)
ar tk tqk 2
T+ 1)2( q\/;w1®<cw3 + w1®cws + \/;w3®<cw1 ¢ wiBcwi).
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Thus, by the construction of V, we have

qr tk 9 tqk
Vo(wr) = - - wW1®CwW3 — ¢ W1 Rcws + —=w3Rcwi + wiRcw
o(w1) ?( tk(q2+1)2( q\/FI(C3QI<C4\/773(Cl 4@1)
— a (— tkw@w—{—w@w—{—@w@w—qu@w))
th(q® + 1) qﬁlcg 18cwq \/773(:1 4CcwW1

T (2 Sews + tqn® 29K s@ews + tqwiBewr)
== w W, W wqp — —F—Ww w (99} w
$tk(q2+1)2q\/771C3 qw1cws \/;3<c1 qwacwi

Proposition 6.1.1 also gives that d(ws) = :F§w2 Aws,d(ws) = i%wl Awy and d(wg) = 0. So,

similarly, we have

4 2
ootk
k(g2 + 1)2 (QQ\/;W@(C% — w2BCws — WaBcw2)

2 2
waXcws :W (w2®cw3 +4q W3®Cw2) -

3
¢\r o tgk 5 th
tk(q2+1)2(\/77w®cw3 ¢ wa®cws qﬁw3®cw2+w4®cw2)
3
q>\/r tqk tk 9
tk(q2+1)2(\/77w2®(cw3+w2®(cw4 q\/;wi%@(CWz q w4®@w2),
and hence,
qr 2tgk 2tk
Vo(wz) =+ woRcws3 — tquwaRcwy — w3®cwa — tquiRcwa).
o(w2) tk(q2+1)2(\/?2C3 qW2RCw4 q\/;?)cz Q4(C2)
Moreover,
w1Xcw2 :i (W1 Xcw2 + UJ2®(CW1) + % (w3®<cw3 + twq ®<CW2)
(¢* +1)? (g2 +1)2
3 2
q°\/r t°k
- w1 ®cws + w3Rcwq + wicw
k(q2+1)2q\/7j1(:2 3CwW4 4([:3)
qzﬁ(tk@) LU *w3®cws + wiBcws)
- =5 — w1 ®cw WeRcw] + —w3Rcws — ¢ wsRcwy + wiRcw
th(q® + 1)2 \/771<C2 \/772(C1 \/773(:3(13@4 49CW3
q2ﬁ(tk®+tk®+t2k®+® )
— 37 9 o\ =W w w w —Ww w w Wy — g w w
(g + 1)2 \/;1(22 \/772(:1\/;3@3 3Q0CwWs — ¢ wacws ),
and hence,

Vol(ws) = + qr (th © 2tk - 2k “ ¢t o )
w) = £ (TR ®cws — T wr®cwi — —mw3®cws + tqWsRcws + tgWaRcw

Lastly, since d(ws) =0, Vo(ws) =0

Thus, we are done with our proof. ]
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6.3 Existence of a unique bicovariant Levi-Civita connection

In this section, we prove that except for finitely many ¢ € (—1,1)\{0}, the 4D calculi admit a
unique bicovariant Levi-Civita connection for every bi-invariant pseudo-Riemannian metric (as

defined in Definition 4.3.1) on £. We achieve this by verifying the hypotheses of Theorem 4.5.9.

Recall that ( (6.2.1) ) for the 4D calculus, we had the decomposition
0E@cof = KGT(QO' — id) @ oF,

where oF := Ker(go + ¢%) @ Ker(go + ¢72).

Let us now denote Ker(go — id) by ¢€Rc™™E. Moreover, as in Definition 4.2.2, we define
the C-linear map

0(Psym) : 0€®@c0o€ — 0€Rco€

to be the idempotent with range ¢E@c™™o€ and kernel ¢F. Since, ¢(Psym) is the idempotent
onto the eigenspace of go with eigenvalue one, and with kernel the eigenspaces with eigenvalues

—q% and —q~2, it is of the form (see (4.2.6))

00 +q* oo +q 2
P. = . . 6.3.1
Let us introduce the following notations:
V] = w1 ®cwi, Vo =Wa®cws,
V3 = w3®cws + twi1Rcws, V4 =w4@Cwy,
1
Vs = wa@cwi + w1 &cwz, Vg =ws®cwz2 + ?w2®cw3, (6.3.2)
) t2k
V7 = w3®cw1 + ¢ w1 ®cws, Vg =wi®cw2 + wa@cwy — Wﬁfn@cws,
2k 2k

Vg = wi®cwi1 + w1 Rcwy + —=w1R@cws, V1p =wW4Qcws + w3Rcwys + —=w1Qcws.
VT qVT

Then by the proof of Proposition 6.1.3, the set {Vi}}gl forms a basis of (ERc™™ € := Ker(po —
id).
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Thus, an arbitary element of ((ERc™™oE)Rcof is of the form

X =) Ajuiecw;,

(]
where A;; are some complex numbers.

Hence, if we show that (o(FPsym))23(_;; Aijti®cw;) = 0 implies that A;; = 0 for all 4, j, then
(0(Psym))23 is a one-one map from (o€Rc™™0E)Rco€ to 1€Xc(0€Rc™™0E).

However, dim((o€Qc™™0€)Rco€) = dim(p€Rc(0E€Rc™™oE))and 50 (o(Psym))23 will be a

vector space isomorphism from (o€Rc*™0E)®Rco€ to 1€Rc(HERC™HE).

So let us suppose {A;;};; are complex numbers such that

(O(Psym))23<z Aisz‘@(CWj) =0.
ij

Then, by (6.3.1), we have

((@®(00)23 + 1)((00)23 + ¢*)) O Asjvi®cw;) = 0. (6.3.3)
]

We want to show that except for finitely many values of ¢, the above equation implies that all the
A;; are equal to 0. This involves a long computation, including a series of preparatory lemmas.
We will be using the explicit form of go(w;®cw;) as given in Lemma 6.1.2 as well as (6.3.2) to
express the left hand side of (6.3.3) as a linear combination of basis elements w;@cw;®cwy. Then
we compare coefficients to derive relations among the A;;. We do not provide the details of the
computation. However, for the purposes of book-keeping, each equation is indexed by a triplet
(4,7, k) meaning that it is obtained by collecting coefficients of the basis element w;®@cw;@cwy

in the expansion of the term

((@*(00)23 + 1) ((00)23 + ¢°)) O AmnVm@cwn).

mn
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Lemma 6.3.1. We have the following equations:

A1 =0 (1,1,1)
Ara(qt +2) 4 (tA31 + As1 + A 751‘")2%(14 2+ A @)2(2—1)—0 (1,1,2)
129 31 51 10,1q\/; q 734 93\/77 q\q = 1y

k

A13(q4 + 2(]2 — 1) + A14(7(q2 -2+ q72))
vr (1,1,3)

2’k k ”
Ang? + A1 —)2¢% + Ag1 (—q %(¢* — 1)) =
+(A7nq° + 91\/7;) q + 91(\/;61 (q ) =0
T 2k /7
A13(—q2\k[) + Aul(g* + 1) + (Ang* + A91\/77)\k[q4 + Agi(¢* +1) =0 (1,1,4)

Proof. The above equations are derived by comparing the coeffcients of wi Qcw@cwi, w1 Rcwr Rcws,

w1 ®cw1®cws and wi@cwi @cws in ((¢2(00)23 + 1) ((00)23 + ¢2)) (3 yon AmnVm@cwn). O

Lemma 6.3.2. We have the following equations:

2k 2k
A19(2¢% — 1) + (tAz1 + As1 + A1o1——)(¢* + 1) + (A73¢* + Agz—=)(—2q(¢* — 1))
Q\/77 \/77 (1 2 1)
k‘ k‘ 9 )
+Ags( q\/;(q )7) + (A7aq” + Aga)( q\/;(q )°)=0
t2k
tAsp + Asz + Algo—r =0 1,2,2
32 52 10,2q\/77 ( )
(tAsq + A5y + A ﬂ—k)(—i( 2—1)2)+(tA + As3+ A tQ—k)(—( 2—1)2)
34 54 10’4q\/77 \/; q 33 53 10’3q\/77 q (1 ) 3)
2k k "
+(Az2q* + AgQW)QQQ + A92(_W(q2 -1)%) =0
2k ¢t r 2k
(tAss + Asz + Alo,ai)q v + (tAss + Asy + Aroa——)(¢* + 1)
t2k bt
+(Arq® + Agzﬁ)(—qz) + Aga(g* +1) =0

Proof. The above equations are derived by comparing the coeffcients of w1 @cweRcw1, w1 Rcwar@cwa,

w1 @cwe®cws3 and w1®@cwr@cws i ((¢%(00)23 + 1)((00)23 + ¢*)) (O n AmnVm @cwn). O
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Lemma 6.3.3. We have the following equations:

k
A132¢° + Aiu—(—¢*(¢ — ¢ 1)?)

VT (1,3,1)
2k k Y
+(Ang® + Aglﬁ)(—ff +2¢° + 1) + 1491%(—((12 ~1)*) =0
(tAss + Asz + A t2k)2q + (tAzq+ Asa + A r =)—= (q 2¢ +q7?)
33 53 10,3 34 54 104 -
+(Ang® + Agzﬁ)(q4 +2¢° — 1) + A%ﬁq_g(q? —1)>=0

tQk 3 2 k —27 2 3
(tAgl + As1 + AlO,lﬁ)(_Qq + 2(]) + A122q(q — 1) + A93(_Wq (q — 1) )

12k 2k k (1,3,3)
+(Az3q® + Agsﬁ)(—qél +6¢% — 1) + (Araq® + Ay \[)( f g (-1 =0
2k
(tAs1 + As1 + Ao —=)(—2¢" + 2q) + (A73¢* + A93 )\f 4
2 2 2k 9 )
+A95(3(¢* — 1)* + 2¢°) + (A7raq® + Ags \f)(q +1)=0

Proof. The above equations are derived by comparing the coeffcients of wi Rcws@cwi, w1 RcwsRcws,

w1 ®cws®@cws and w1 cwz@cws in ((¢2(00)23 + 1)((00)23 + ¢2)) (X un AmnVm@cwn). O

Lemma 6.3.4. We have the following equations:

2 25
(=) 4+ A + 1) + (Ang® + Ag—=) 4 VT Agi(¢*+1)=0 (1,4,1)
k N
t2k T t2k
(tAss + Asz + Aro3—~)q* \[ + (tAzq + Asy + Arga——)(g* + 1)
avr'" k NG (1.4.2)
tQ = 9Ly
+(Ar2g® + Agg\/;)\k[(—QQ) + Aga(g* +1)=0
r 2k
A12(—%q )+ (tAs1 + As1 + Ao \[)\k[qi)’ + Agz(g* — 1)
(1,4,3)
VT o 2k
A73q® + Ags q A74q® + Aoy g +1)=0
+( \[) (¢ — 1)+ ( \[)( ) =
Ags =0 (1,4,4)

Proof. The above equations are derived by comparing the coeffcients of w1 Rcws1@cw1, w1 RcwsRcws,

w1 ®cws®cws and wi@cws®@cws in ((¢2(00)23 + 1) ((00)23 + ¢2)) (X yon AmnVm@cwn). O
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Lemma 6.3.5. We have the following equations:

As1 =0 (2,1,1)
4 2 —2 t°k 2
As2(q” +2) + A21(2¢7) + (As3q™~ + Ass 2\/77)2(101 —1)
k tgk k (2.12)
A v 1 2_12 A -2 A v 2_2 —2:
+ sg(ﬁq (¢ —1)7) + (Aeaqg " + 847(]2\/;)\/;61@ +q¢ °)=0
k
Ass(q* +2¢* = 1) + Ass—(* =2+ ¢ )
vr (2,1,3)
2k k T
Agsg >+ A 2¢* + Ag1—q (¢ — 1) =
+(Apaq™ " + 84q2\/77) q + 81\/77q (g )=0
r 2k r
A53(—\k[q2) + Asa(q* + 1) + (Aerq > + A81q2\/77)\k[q4 + Asi(¢* +1)=0 (2,1,4)

Proof. The above equations are derived by comparing the coeffcients of wo®cwi1 Rcw1, wo®cwi1@cwa,
wr@cw1®cws and wo®cw1®cws in ((¢%(00)23 + 1)((00)23 + ¢%)) (X un AmnVmcwn). [
Lemma 6.3.6. We have the following equations:

B 2k
As2(2¢° — 1) + Ao (¢* + 1) + (Aesq > + A83W)(—QQ(Q2 —-1))

92,2,1
A 12+ (o + A - Eg? 24 ) =0 o
A22 =0 (27272)
k
Agsz(—q* +2¢> + 1) + Aos(——=(¢* — 2¢° + 1))
vr (2,2,3)
2k k 7
Agq >+ A 2¢° + Asa(——=(q> — 1)*) =
+(Ap2q™ " + 82q2\/77> q° + Asa( \/;(q )7) =0
4 2k
A23q VT + Aoa(g* + 1) + (As2q 2 + Ago \/;(_QQ) + Ago(q* +1) =0 (2,2,4)

i N

Proof. The above equations are derived by comparing the coeffcients of wo®cweRcw1, WaRcwar@cws,

wa®cwa®@cws and wr@cwr@cws in ((¢*(00)23 + 1)((00)23 + ¢2)) (X n AmnVm@cwn). O
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Lemma 6.3.7. We have the following equations:

2

t°k
A53(2q2) + A54(q4 + 1) + (A61q_2 + Agl )(—q4 + 26]2 + 1)

)
. o (2,31)
+A81W(_(q2 -1)*)=0
k 2 2 k4 2
Ag32q? +A24\[(q —2+q 7) + (As2q ° + Aso 2\/77)((] +2¢° —1)
" ! (2.3.2)
Ao 22 g2
+Ag2 \/;q (g )7 =0
2 3 -2 t°k 4 2
As92q(q” — 1) + A21(—2¢" + 2q) + (Ae3q~ + Ass 2\/7:)(—61 +6q” — 1)
P (2,33)
A (—q 7202 = 1) + (Aoag ™ + Asi—) 2 (—qlq - 7)) = 0
VT a*Vr T
2k r
An \k;[q + (Ag3q % + Ass 2\[) vr ¢'+ Ags(3(¢* — 1)* +2¢%)
2k‘ (27374)
+(Apsq > + Asa )g*+1)=0

VT
Proof. The above equations are derived by comparing the coeffcients of wo®@cwsRcw1, woRcws@cwa,

wrRcw3Rcws and we®cws®@cws in ((¢%(00)23 + 1)((00)23 + %)) (X m AmnVm@cwn). O

Lemma 6.3.8. We have the following equations:

22]})\[q + Agi(¢" +1)=0 (2,4,1)

r _ 2k
A23\k[q4 + Aoa(q + 1) + (Ae2q > + A82\[)\[

-
A53\]{(—q2) + Asa(qt +1) + (A61q72 + Agy

(—») + Asa(g* +1) =0 (2,4,2)

VT3 VT o5 2 kT
As2~—(—q°) + A21--¢" + (Ae3q” " + Ass— ) (¢ —1)
" ’ ol (2.43)

)@ +1)=0

2

t°k
Ags(gt —1 Asq 2+ A
+As3(q" — 1) + (Aeaqg " + M

Agg =0 (2,4,4)

Proof. The above equations are derived by comparing the coeffcients of wo®@cwsRcw1, wo®cws@cwa,

wo®cws®cws and we@cws®cws in ((q%(00)23 + 1)((00)23 + ¢%)) (X n AmnVm@cwn). O
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Lemma 6.3.9. We have the following equations:

A =0 (3,1,1)
An(q* +2) + As12¢® + As32q(¢* — 1)
A o 1)+ 4 kool 244¢2)=0 (3.12)
+ IO’BW(I (¢° —1)" + 34WCJ((] —24q°) =
k k
AP +2¢2 = 1) + Ay— (> =24 ¢ 2) + A312¢° + Ao 1—=q %(¢* = 1) =0 3,1,3
73(¢" +2¢° = 1) + 74\/17((1 +q77) + A512¢” + 1017754 (q ) (3,1,3)
T _ T
A73\;{(_q ?) + An(q' +1) + A31\qu4 +Aa(gt +1) =0 (3,1,4)

Proof. The above equations are derived by comparing the coeffcients of ws®@cwi1Rcw1, w3®cw1@cwa,

w3Rcw1 Vcws and ws®cwi®@cws in ((¢%(00)23 + 1)((00)23 + %)) (X an AmnVm@cwn). O

Lemma 6.3.10. We have the following equations:

A72(2¢* — 1) + Ae1(¢* + 1) + As32q(—(¢* — 1))

A k P -1+ 4 K 2_924472 0 (321
+ 10,33W(—q (¢ = 1))+ 34W(—Q(q —-2+q¢7) =
A62 =0 (37272)

k k
W(—((fl —2¢° + 1)) + As22¢* + A10,2W
\/17

r
A63{q4 + A64(q4 + 1) + Az A (—q2) + A1072(q4 + 1) =0 (3,2,4)

Ag3(—q" +2¢° + 1) + Aga (—(*=1)>) =0 (3,2,3)

Proof. The above equations are derived by comparing the coeffcients of ws@cweRcw1, w3Rcwa@cwe,

w3Rcwr@cws and ws®cwa®@cws in ((¢%(00)23 + 1)((00)23 + %)) (X um AmnVm@cwn). O

Lemma 6.3.11. We have the following equations:

k k
A732¢* + Ans—=(—(* = 1)?) + Azi(—¢* + 2> + 1) + A1 —=(—(* = 1)*) =0 (3,3,1)

NG NG
k _ k _
Ag32q* + 1464*74(612 — 24 ¢ ) + Asagt + 24 - 1) + A10,2Wq 2P -1%=0 (332
Ag1(—2¢% 4+ 2q) + Asz(—q* + 6¢°> — 1)
A k ~20,2 _ 1)) 4+ 4 k ~1y3y _ g (3,3.3)
+ 10,3W(—q (¢ —=1)°) + 34W(—Q(q —q 7)) =
T T
A61\k[q3 + A33\k[q4 + A103(3(¢* — 1)* +2¢*) + Aga(¢* +1) =0 (3,3,4)

Proof. The above equations are derived by comparing the coeffcients of w3Rcw3Rcwi, wsRcwsRcws,

w3®cws®cws and w3@cws®@cws in ((¢2(00)23 + 1) ((00)23 + ¢2)) (X yon AmnVm@cwn). O
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Lemma 6.3.12. We have the following equations:

A7g\f(q2) + An(q* + 1) + 14:31\},/:7414 +Ai01(¢" +1) =0 (3:4,1)
Aagf(fl + Aga(gt +1) + Asz{(—(f) + Aso2(¢* +1) =0 (3,4,2)
An\f(—q?’) - Aﬁl\gq?’ =0 (3,4,3)
Ajpa=0 (3:4,4)

Proof. The above equations are derived by comparing the coeffcients of wsRcws1Qcw1, wsRcwsRcws,

w3Rcwi®cws and w3Rcwa®cwy in ((q2(00)23 +1)((p0 )23 + q2))(zmn AV Qcwn,).- O

Lemma 6.3.13. We have the following equations:

Ag1 =0 (4,1,1)

Aga(q* +2) + Ag12¢* + A10329(¢* — 1)
A £*1(2—1)2+A £(2_2+ 2 (4,1,2)

43\/;q q 10,4\/7»}161 q =
k k

Ags (¢t +2¢° = 1) + Agu— (> = 24 ¢ 2) 4+ A1012¢° + Au1—q %(¢* — 1) =0 41,3
03(q” +2¢" — 1) + 94\/17(q +q7%) + A1012¢° + v (q ) (4,1,3)

T T
Agg\k[(—QQ) + A94(q4 + 1) + A1071\k[q4 + A41(q4 + 1) =0 (4,1,4)

Proof. The above equations are derived by comparing the coeffcients of wi®cwi®cwr,

w1 Rcw1 Rcws, wiRcw1 Rcws and wi®cwi ®cwy in ((q2 (00)23+1)((OU)23+Q2)) O AmnVm@cwr,).

O
Lemma 6.3.14. We have the following equations:
k _
Aga(2¢® — 1) + As1(g* + 1) + A1032¢(¢* — 1) + Asz—=(—q ' (¢* — 1)?)
vr (4,2,1)
k 2 2 <
Aips— -2 V=0
+ 10,4\/;(1((1 +q77)
Ago =0 (4,2,2)
k k
Ags(—q* + 2 + 1) 4+ Ass—(—¢* +2¢> — 1) + A1022¢> + Aps—(¢*> — 1)> =0 4,2.3
83(q+q+)+84\/;(q4rq )+ 1o,zq+42\/;(q ) (4,2,3)
T T
A83\k;fq4 + Aga(q* +1) + A1072\k[(—q2) + Ap(q* +1)=0 (4,2,4)

Proof. The above equations are derived by comparing the coeffcients of wyRcwo@cw1, wiRcworRcws,

wi®cwr@cws and wi@cwe®@cws in ((¢(00)23 + 1) ((00)23 + ¢%)) (3 n AmnVm@cwn). O
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Lemma 6.3.15. We have the following equations:

k _
A93(Q4 + 2(]2 — 1) + 14947((]2 —249q 2) + A1071(—q4 -+ 2q2 + 1)

i vr (4,3,1)
+A41W(—(92 —1)*) =0
As32q* + A84\]/C77(q2 — 24 ¢ 2) + Apa(gt +2¢2 - 1) + A42\]/€;q_2(q2 ~-1)2=0  (432)
Aga2q(q” — 1) + As1(—2¢> + 2q) + Ao 3(—q* +6¢° — 1) + x‘lzlz),\];j(—q_Q(q2 -1)%
k (4,3,3)
+A10,4W(—Q(q —q %) =0
A1 \]/qu + A10,3\/]jq4 + Agz(3(¢* = 1)* 4+ 2¢°) + Asoa(¢* +1) =0 (4,3,4)

Proof. The above equations are derived by comparing the coeffcients of ws®cwsRcw1, wiRcws@cwa,

wi®cws®cws and wiRcwz@cws in ((¢*(00)23 + 1)((00)23 + ¢2)) (X n AmnVm@cwn). O

Lemma 6.3.16. We have the following equations:

A93\/k7j(—q2) + Aga(q* +1) + Ao \{j(fl +Au(g* +1) =0 (4:4,1)
Ass\/]jq4 + Ass(q* +1) + Alo,z\/]j(—qz) + Asp(g* +1) =0 (4,4,2)
Ang(—qg) + Asl\;/fqg + A1o,3fq2(q2 — 1)+ Ass(g" = 1) + Aoalg" +1) =0 (44.3)
A4y =0 (4,4,:4)

Proof. The above equations are derived by comparing the coeffcients of ws®cwiRcw1, wiRcwi@cws,

wiRcws®cws and wi®cws®cws in ((¢%(00)23 + 1)((00)23 + ¢%)) (X m AmnVm@cwn). O

Theorem 6.3.17. For the 4D calculi, the map
(0(Psym))23 : (0£Rc™™0E)Rco€ = 0€Rc(0ERC*™0E)

is an isomorphism except for, possibly, finitely many values of ¢ € (—1,1)\{0}. Hence, for
each bi-invariant pseudo-Riemannian metric g, there exists a unique bicovariant Levi-Civita

connection for each calculus.

Proof. By the discussion preceding the above series of preparatory lemmas, we need to show
that the system of equations given above admit only the trivial solution for A;;, i = 1,...,10,

j =1,...,4. We then proceed to solve these equations for all A;;. Note that the following
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variables are all identically zero in the above over-determined system:

A1 (by (1,1,1)), Ags (by (1,4,4)), As1 (by (2,1,1)), Ags (by (2,2,2)), Ags (by (2,4,4)), A71 (by
(3,1.1), Agz (by (3.2,2)), Aioa (by (3,44)), A1 (by (4,1.1)), Asz (by (4,2,2)) and Asy (by
(4,4,4)).

This reduces the equations (1,3,1) and (1,4,1) to the following exact system of linear equations

in the variables A3 and Ay4, with the associated matrix having determinant ¢%(¢? + 1)

A132¢* + A14%(—q2(q —q¢ 1)) =0

2 T
A(—5) + Apg* +1) = 0

Hence the solution for the variables A3 and A4 is zero.

We repeat this process for the rest of the A;;, identifying a subset of equations which has been
reduced to an exact one due to the previously solved A;;, and then concluding that the ele-
ments A;; in the current set are also solved to be 0 except for at most finitely many value of
q € (=1,1)\{0}.

(2,2,3) and (2,2,4) reduce to the following system of linear equations in As3 and Ags with de-

terminant (¢ + 1)2:

Agz(—q* +2¢* +1) + A24(—%(q4 —2¢°+1))=0

AngALT\/F + A24(q4 +1)=0

(4,1,3), (4,1,4) and (4,3,1) reduce to the following system of linear equations in A4y, Ags, Aio1
with determinant 2¢'0 — 2¢* — 2¢% + 2:

Ags(q* +26* — 1) + A1012¢° + A Joa 72 (¢® — 1) = 0
Ags%(—(f) + AlO,l%QZL +Au(¢*+1)=0

Aos(q* +2¢%> — 1)+ A1071(—q4 +2¢% 4+ 1) + 1441%(—((12 -1)?) =0

(4,1,2), (4,2,1), (4,3,3) and (4,4,3) reduce to the following system of linear equations in Ay4g,
Agy, Aga, A1p3 with determinant 4¢'* + 10¢'2 — 10¢'° — 8¢® + 26¢* — 26¢* + 4:
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Aga(g* +2) + Ag12¢® + A1032q(q® — 1) + A43\%q_1(q2 —-1)2=0
Aga(2¢® — 1) + Asi(¢* + 1) + A1032q(¢*> — 1) + A43%(—q_1(q2 -1)?)=0
Ag2q(q? — 1) + As1(—2¢° + 2q) + Aro3(—q* + 64> — 1) + A43%(—q72(q2 -1)*)=0

A (—¢%) + As1 Y @ + A3 > (@® — 1) + Ag(g* —1) =0

(3,4,3), (3,1,2), (3,2,1) and (3,3,3) reduce to the following system of linear equations in Ass,
Azy, Ag1, Ao with determinant —2¢2(q — 1)%(¢ + 1)%(¢® + 1)*:

A ¥ (—¢%) + Aq ¥ q® = 0
Aza(q* +2) + A12¢” + A33(2q(¢* — 1)) + A34%q(q2 —24+4¢7%) =0
Ar2(2¢° = 1) + Aer(¢" +1) + Ass(—2a(¢” — 1)) + Asa J=(—a(¢® =2+ ¢7%)) =0

Ae1(—2¢° + 2q) + Asg(—q* + 64> — 1) + A34%(—Q(q —¢')?’)=0

(2,1,3) and (2,1,4) reduce to the following system of equations in As3 and As4 with determinant

¢*(¢® +1)*

As3(q* +2¢° = 1) + Asa = (¢® =2+ ¢7%) =0

As3(—¥q%) + Asa(q* +1) =0

(1,1,2), (1,2,1), (1,3,3) and (1,3,4) reduce to a system of equations in Ao, A3y, A7s, A74 with

determinant a non-zero polynomial in g:

Ap(g* +2) + tA312¢* + Ar3¢°2¢(¢* — 1) = 0
A12(2¢* = 1) + tAz1(¢" +1) + A3g®(—29(¢* = 1))
tAs1(—24" +2q) + A1224(¢* — 1) + Az3¢* (=" + 6¢° — 1) + Azag*(— a7 (> — 1)°) = 0

tAs1(—2¢% + 2q) + A73q2%q4 + A (¢* +1) =0

(2,1,2), (2,2,1), (2,3,3), (2,3,4) and (2,4,3) reduce to a system of equations in Ag;, Asa, Ags,

Agq, Ags with determinant a non-zero polynomial in ¢:
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B 2k
Asa(g* +2) + A21(2¢%) + (Aezq > + Assm)QQ(QQ —1)

k1,9 12 -2 t’k ko, 2y _
+A83(\/;q (¢ —1)%) + (Aeaq +A84q2\/;)\/;q(q 2+4¢7)=0
2 4 -2 t2k 2
A52(2¢" — 1) + A21(q” + 1) + (A63q +A837q2\/;)(_2qm —-1))
sy (= 1)+ (Aag 2 + A (g =24 472) = 0
83 T q 644 84q2\/77 \/;q q q =
2k
As22q(q” — 1) + A1 (—2¢° + 2q) + (A3q~> + Ass qQ\/F)(—q4 +6¢° — 1)
P 1)) 4 (Aoag ™ + Aty K (Caq— ) =0
VT T
\//F 3 —2 tQk \/; 4 2 2 2
Ao — A Agz——~=)— A —1 2
21kQ+(63q + 83q2\/;)kq4‘ 83(3(q )” +2¢%)
(Aeag=? + Ass gt + 1) = 0
64q 84(]2\/77 q -
\/; 3 \/; 3 -2 tZk \/; 2/ 2
A () + An Y 1 (A Aggr VT 202 g
52k(Q)+ QIkQ+(63q +83q2ﬁ)kQ(q )
4 -2 tQk; 4
+A83(q — 1) + (A64q + Agy )(q + 1) =0

>\

(3,3,2) and (3,4,2) reduce to a system of equations in Asa, A0 with determinant ¢*(¢* + 1)*

Asa(g* +2¢° — 1) + A10,2%q72(q2 —1)2=0

A32%(—q2) + A1o2(¢" +1) =0

Finally, (4,2,3) reduces identically to A4o = 0.

2

Hence we have shown that all A;; are identically equal to zero except for atmost finitely many

values of ¢ € (—1.1). Therefore, (o(Psym))23|(oe0cvmoe)@coe 18 an isomorphism if ¢ does not

belong to this finite subset.

Since SU,(2) is a cosemisimple Hopf algebra, and we have shown that the map o is diagonal-

isable, by Theorem 4.5.9, for each bi-invariant pseudo-Riemannian metric g, each of the 4D

calculi admits a unique bicovariant Levi-Civita connection for all but finitely many g.

O
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