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“A common mistake that people make when trying to design something completely

foolproof is to underestimate the ingenuity of complete fools.”

Douglas Adams



Abstract

In the past decade, deep learning has been ubiquitous across diverse fields like

natural language processing (NLP), computer vision, speech processing, etc. De-

spite achieving state-of-the-art performance, there are ongoing concerns regarding

robustness and explainability of deep-learning systems. These concerns have fur-

ther gained traction due to the presence of adversarial examples which make such

systems behave in an undesirable fashion. To this end, this thesis explores several

adversarial attacks and defenses for deep-learning based vision and NLP systems.

For vision/vision-and-language systems, the following two problems are studied in

this thesis: (i) Robustness of visual question answering (VQA) systems: We study

the robustness of VQA systems to adversarial background noise. The results show

that, by adding minimal background noise, such systems can be easily fooled to

predict an answer of the same as well as different category as the original answer.

(ii) Task-agnostic adversarial attack for vision systems: We propose a task-agnostic

adversarial attack named Mimic and Fool and show its effectiveness against vision

systems designed for different tasks like image classification, image captioning and

VQA. While the attack relies on the information loss that occurs in a convolutional

neural network, we show that invertible architectures such as i-RevNet are also

vulnerable to the proposed attack.

For NLP systems, the following three problems are studied in this thesis: (i)

Invariance-based attack against neural machine translation (NMT) systems: We

explore the robustness of NMT systems to non-sensical inputs obtained via an

invariance-based attack. Unlike previous adversarial attacks against NMT sys-

tem which make minimal changes to the source sentence in order to change the

predicted translation, the invariance-based attack makes multiple changes in the

source sentence with the goal of keeping the predicted translation unchanged.

(ii) Defense against invariance-based attack: The non-sensical inputs obtained

via the invariance-based attack do not have a ground truth translation. This

makes standard adversarial training as a defense strategy infeasible. In this con-

text, we explore several defense strategies to counteract the invariance-based at-

tack. (iii) Robustness of multiple choice question-answering (MCQ) systems and

intervention-based study: We explore the robustness of MCQ systems against the

invariance-based attack. Furthermore, we also study the generalizability of MCQ

systems to different types of interventions on the input paragraph.
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Chapter 1

Introduction

You don’t want to cover a subject; You want to

uncover it.
Eleanor Duckworth

Deep learning has led to remarkable advancements in diverse fields such as com-

puter vision, natural language processing (NLP), and speech processing amongst

others. While the foundation for training deep learning systems was laid in 1980’s

[110], these systems gained popularity around 2012 after AlexNet [68], a con-

volutional neural network (CNN), achieved state-of-the-art results on ImageNet

dataset [29]. Apart from AlexNet, another reason behind the popularity of deep

learning in the past decade is the rapid improvement of graphics processing unit

(GPU) which led to drastic reduction in training time. The advent of deep learn-

ing shifted the focus from feature engineering (such as HOG [27] and SIFT [80] in

computer vision) to designing models which are end-to-end. End-to-end signifies

that such models accept input in its raw form (e.g., pixel intensities of an image)

in order to generate the desired output. Presently, deep learning systems have

achieved impressive performance in varied tasks such as object detection [107], vi-

sual question answering [52], image captioning [2], and machine translation [128],

etc.

Despite the impressive performance, deep learning systems are highly suscepti-

ble to adversarial attacks. Adversarial attacks, in the most general sense, can be

defined as the process of fooling a machine learning system to behave in an unde-

sirable fashion either by manipulating the decision boundary during training [91]

or by generating malicious inputs during inference [41].

1
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This thesis studies the adversarial robustness of several deep learning systems

across computer vision and NLP. To do so, we design several adversarial attacks

and defenses across vision and NLP tasks. The rest of this chapter is organized as

follows. Section 1.1 provides a very basic background to deep learning. Section 1.2

discusses the origin and basic terminologies of adversarial attack. Section 1.3

discusses previous works on adversarial attacks against vision systems. Similarly,

Section 1.4 discusses previous works on adversarial attacks against vision systems.

Section 1.5 discusses previous works on adversarial defense. Section 1.6 discusses

the outline and main contributions of the thesis. Finally, Section 1.7 discusses the

organization of the rest of the thesis.

1.1 Deep Learning: Background

In this section, we provide a very brief background to some basic deep learning

architectures. For an in-depth treatment of the subject, we refer the reader to

Goodfellow et al. [40].

1.1.1 Multilayer Perceptron

Perceptron was introduced by Rosenblatt [108] as a binary classification system

which can distinguish between the input signals from two different classes based

on the learned weights of each input signal (i.e., stimuli). Multilayer perceptron

(MLP) combines several perceptron units. A MLP consists of an input layer, L

hidden layers and an output layer. The output of lth layer is given by

ol = f(W lol−1 + bl−1) (1.1)

where W l is the weight matrix, ol−1 is the output of the (l− 1)th layer, bl−1 is the

bias term of the (l − 1)th layer and f is a non-linear activation function. Some

common non-linear activation functions are sigmoid function, hyperbolic tangent

(i.e., tanh) function, and Rectified Linear Unit (ReLU). The parameters of the

MLP (i.e., W l and bl−1) are learned during training using the backpropagation

algorithm [110].
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1.1.2 Recurrent Neural Network

Multilayer perceptrons are ill-suited for tasks where either the input or output or

both are sequential in nature. This is because of their inability to handle variable

sequence length or larger sequences in the input/output. In natural language

processing (NLP), there are several problems where the network needs to handle

variable sequence length such as sentiment analysis, machine translation, part of

speech (POS) tagging etc. To address this drawback, recurrent neural network

(RNN) were designed [135]. A recurrent neural network consists of a feedback

loop which allows it to handle variable sequence length. Mathematically, let xt

denote the input at time t, and ht−1 denote the output of the hidden layer at time

t− 1, then the output of the RNN at time t (i.e., yt) is given by

ht = f(Wxt + V ht−1 + bh)

yt = g(Uht + by)
(1.2)

where U, V, and W are weight matrices; bh, by are biases; and f, g are activation

functions. All the parameters of a recurrent neural network are shared across time

and are learned during training using the backpropagation through time (BPTT)

algorithm [136].

1.1.3 Long Short-Term Memory

The BPTT algorithm in RNN leads to a learning problem. When the gradients

are backpropagated through time, the gradients either explode due to the weight

matrices having higher values or the gradients vanish due to the derivative of the

activation function which typically lies between 0 and 1. The vanishing/exploding

gradient problem leads to the inability of RNN to capture long-term dependencies

[49]. Long-term dependency describes a scenario where the desired output is de-

pendent on an input seen way back in time (e.g., in sentiment analysis, an article

may have a positive sentiment due to a sentence present in the second-last para-

graph). To remedy this issue, long short-term memory (LSTM) [50] was designed.

A long short-term memory cell controls the flow of information at each time step

using several gates. Mathematically, let xt denote the input at time t, ct−1 denote

the cell state at time t− 1, and ht−1 denote the output of the LSTM cell at time

t− 1, then the output of the LSTM cell at time t (i.e., ht) is given by



Chapter 1 4

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t
ot = σ(Woxt + Uoht−1 + bo)

ht = ot � tanh(ct)

(1.3)

where Wf ,Wi,Wc,Wo, Uf , Ui, Uc, and Uo are weight matrices; bf , bi, bc, and bo are

biases; σ, tanh denote the sigmoid and hyperbolic tangent function respectively;

and � denotes the hadamard product. Similar to RNN, all the weight matrices

and biases of LSTM are shared across time. ft, it and ot in Equation 1.3 denote the

forget gate, input gate, and output gate respectively. These gates are responsible

for controlling the flow of information inside the LSTM cell at a particular time

step. Several variants of the LSTM cell have been proposed in the literature [44].

1.1.4 Convolutional Neural Network

Convolutional Neural Network (CNN) was introduced by Le Cun et al. [71]. CNN

are specifically designed for processing images. Images, unlike text, are two-

dimensional where nearby pixels are highly correlated. CNN typically consists

of convolutional layers, pooling layers, and finally some fully connected layers.

The convolutional layer contains several kernels of smaller spatial dimension than

the original image. These kernels are responsible for finding localised pattern

present in the image by making use of the convolution operation. The pooling

layer (also known as subsampling layer) reduces the spatial dimension, thereby

ensuring that the number of parameters in the fully connected layers are limited

and that the kernels of the deeper convolutional layers have larger receptive fields.

Due to this, the kernels of CNN work in a hierarchical fashion. While the kernels

of the earlier convolutional layers are responsible for detecting edges, the kernels

of the deeper convolutional layers detect more abstract patterns present in the

image [149]. In the past decade, CNNs have been ubiquitous across variety of

vision tasks [2, 45, 46, 107].
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Figure 1.1: Fast Gradient Sign Method (FGSM) on GoogLeNet [124] (Photo
Courtesy: Goodfellow et al. [41])

1.2 Adversarial Attack

Adversarial attacks can be broadly classified into two types: poisoning attacks,

and evasion attacks [10]. Poisoning attacks take place during training, whereas

evasion attacks take place during testing. In a poisoning attack, the adversary

adds malignant inputs to the training data of the machine learning system. This

allows the adversary to manipulate the decision boundary of the system. On the

other hand, in an evasion attack, the adversary generates an input which fools a

machine learning system to predict incorrectly or behave in an undesirable fashion.

This input is referred to as an adversarial example and is usually generated by

adding noise to the original/clean input. One such example is shown in Figure 1.1

where GoogLeNet [124] predicts an image of a panda incorrectly as a gibbon af-

ter an imperceptible noise is added to the original image [41]. Nguyen et al. [93]

showed that images which are completely unrecognizable to humans are predicted

as familiar objects with very high confidence by deep neural networks. This is an

example of a machine learning system behaving in an undesirable fashion.

1.2.1 Origin

While the focus of this thesis is on adversarial attacks (evasion attack, to be

more precise) and defenses for deep learning systems, the research in the field

of adversarial machine learning originated long before the deep learning era [10,

59]. Wittel and Wu [137] proposed an evasion attack on statistical spam filters.

Dalvi et al. [28] proposed an adversarial framework for training spam detection

classifiers in light of the adversary. Soon after, Lowd and Meek [79] proposed good
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word attack against statistical spam filters. A good word attack adds legitimate

words (i.e., non-spam words) to spam emails allowing it to get past the statistical

spam filters. Nelson et al. [91] explored poisoning attacks as well as defense for

spam filters. Rubinstein et al. [109] proposed defenses against poisoning attacks

for anomaly detectors. Šrndić and Laskov [127] proposed a practical evasion attack

against an online PDF malware detection service [119]. Biggio et al. [9] proposed

an evasion attack against support vector machine (SVM) [25] and multi-layer

perceptron for handwritten digit recognition [72] and PDF malware detection.

Given the focus of this thesis, we will only discuss evasion attacks and defenses

for deep learning systems from this point onwards.

1.2.2 Terminology

In this section, we introduce some terminologies related to adversarial attacks

which will be used throughout this thesis. Adversarial attacks are typically cate-

gorised into two types: targeted, and non-targeted. In a targeted attack, the noise

is added to the original input in order to ensure that the model makes a specific

prediction. Whereas, in a non-targeted attack (also known as untargeted attack),

the noise is added to the original input in order to ensure that the model makes

an incorrect prediction. Adversarial attacks are also categorised on the basis of

whether or not the adversary has access to the parameters and architecture of the

model under attack. In this regard, in a white-box attack, the adversary has access

to the architecture and the parameters of the model whereas, in a black-box attack,

the adversary doesn’t have access to the architecture and the parameters of the

model. A gray-box attack, as the name suggests, is an adversarial attack where

the adversary has partial knowledge about the architecture and the parameters of

the model.

1.3 Adversarial Attacks against Vision Systems

In the initial years of research on this topic, the major focus was on designing at-

tacks against image classifiers. Later, adversarial attacks were generalized against

other vision systems as well as vision-and-language systems. Presently, there

has been a plethora of work on this topic. In this section, we discuss some of

these works. Section 1.3.1 discusses adversarial attacks against image classifiers.
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Section 1.3.2 discusses adversarial attacks against other vision and vision-and-

language systems.

1.3.1 Attacks against Image Classification systems

Adversarial attacks against deep learning based image classifiers was first intro-

duced by Szegedy et al. [125]. Szegedy et al. [125] proposed a targeted attack

where the adversarial examples were generated using box-constrained L-BFGS

[75]. These examples have imperceptible noise and are also transferable across

different models (i.e., the same adversarial example was able to fool multiple im-

age classifiers). Soon after, Goodfellow et al. [41] proposed the first non-iterative

(i.e., single-step) adversarial attack known as Fast Gradient Sign Method (FGSM).

FGSM is a non-targeted attack which adds to the original image, a very small frac-

tion of the sign of the gradient of the loss function (also known as cost function)

with respect to the original image, in order to generate adversarial example. Sim-

ilar to Szegedy et al. [125], the adversarial examples generated using FGSM have

imperceptible noise. Figure 1.1 shows an example to FGSM attack. Kurakin et al.

[70] and Madry et al. [82] proposed an iterative variant of the FGSM attack, known

as projected gradient descent (PGD) attack.

Papernot et al. [99] proposed a targeted adversarial attack based on saliency maps

known as Jacobian-based Saliency Map Attack (JSMA). In JSMA, the saliency

maps consider the gradient of the models’ output with respect to the original im-

age. This allows the adversary to only modify the relevant pixels of the image

in order to force the model to predict a target class. Papernot et al. [99] demon-

strated the efficiency of their attack on the MNIST dataset [72]. Moosavi-Dezfooli

et al. [89] proposed an iterative non-targeted attack known as DeepFool. At each

iteration of DeepFool, the decision boundary of the non-linear classifier is ap-

proximated with a convex polyhedron and accordingly, the optimum perturbation

required for misclassification is applied. Using this technique, DeepFool achieves

a smaller perturbation than Szegedy et al. [125] and FGSM. Carlini and Wagner

[16] proposed a targeted attack which further reduces the perturbation in com-

parison to DeepFool. The loss function for this attack includes the perturbation

along with the difference between the maximum logit and the logit for the targeted

class. Karmon et al. [63] proposed a targeted adversarial attack where the noise

is only added to a very small region of the image. Moosavi-Dezfooli et al. [88]
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proposed an image agnostic perturbation known as universal adversarial pertur-

bation. This perturbation when added to any image leads to an adversarial image

which is misclassified by the image classifier. Furthermore, Moosavi-Dezfooli et al.

[88] also showed that the universal adversarial perturbation generalizes to other

image classifiers as well.

The adversarial attacks, discussed so far, are white-box attacks. Adversarial at-

tacks against image classifiers have also been studied in a more constrained set-

ting. Su et al. [123] proposed one-pixel attack. The attack is based on differential

evolution [122] and only needs access to the class probability scores and not the

models’ architecture and parameters. The attack succeeds in fooling image clas-

sifiers by modifying just a single pixel of the image. Similarly, Chen et al. [18]

proposed a zeroth-order optimization based adversarial attack which only needs

access to the class probability scores. Liu et al. [77] showed that while the non-

targeted attacks are transferable to other image classifiers, the targeted attacks

have low transferability across different architectures. They further proposed a tar-

geted attack on ensemble of classifiers and showed that the adversarial examples,

so obtained, have better transferability to the image classifier which is not part

of the ensemble. Papernot et al. [98] proposed a black-box attack which is based

on training a substitute classifier on a synthetic dataset. The synthetic dataset

is created by passing images to the original classifier and using its predictions as

ground truth. Then, a substitute classifier is trained on the synthetic data. This

is followed by applying a white-box attack on the substitute classifier. Papernot

et al. [98] showed that the adversarial examples, so obtained, are also successful

in fooling the original classifier. Later, Papernot et al. [97] generalized this idea to

support vector machines and decision trees. Brendel et al. [12] propose a black-box

attack which does not rely on the idea of training a substitute classifier. Rather,

the attack starts with an adversarial image with a large noise and tries to itera-

tively reduce the noise. Ilyas et al. [53] proposed an adversarial attack which only

needs access to the value of the loss function of the classifier. The attack uses

gradient priors for gradient estimation.

Apart from black box attacks, there also has been significant research on robust-

ness of adversarial examples to image transformations. Kurakin et al. [69] printed

adversarial images and then took its photo using mobile camera. This photo was

then passed to the classifier to study whether the resultant photo is also adversar-

ial. Kurakin et al. [69] showed that adversarial images obtained from non-iterated
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attack are more robust to the above transformation. Eykholt et al. [34] proposed

robust physical perturbation (RP2) to generate adversarial examples in the physi-

cal world which are robust to change in distance and angle of the camera. Athalye

et al. [6] showed the existence of 3D adversarial objects which were obtained from

3D printing.

In this section, we see that there is a consistent effort in designing adversarial

examples with imperceptible noise. While imperceptible noise does showcase the

extent to which deep learning based image classifiers are fragile, from a robustness

standpoint, the adversarial examples do not need to have imperceptible noise [7,

10, 38]. This point has also been argued by Biggio and Roli [10] and Gilmer et al.

[38]. In fact, Gilmer et al. [38] designed semantics-preserving adversarial examples

where the noise has a very large `p-norm.

1.3.2 Attacks against Other Vision Systems

Xie et al. [140] proposed a white-box adversarial attack for semantic segmentation

and object detection. The proposed adversarial attack is non-targeted, i.e., the

attack tries to induce as many misclassifications as possible for both the tasks.

While Xie et al. [140] designed adversarial examples in a digital setting, there has

been a significant focus on designing adversarial attacks against object detectors

in real-world setting. Chen et al. [19] proposed physical adversarial attack against

Faster R-CNN, a state-of-the-art object detector. They studied both targeted

and non-targeted variants of their attack on stop-sign images. The attack adds

perceptible noise to the entire image and is able to generalize across multiple

camera distances and angles. Soon after, Eykholt et al. [33] generalized the RP2

algorithm [34] to design adversarial attacks against object detectors. They studied

two different attack scenarios on stop-sign images, (i) disappearance attack and

(ii) creation attack. Disappearence attack attempts to prevent the object detector

to detect a particular object whereas the creation attack tries to make the object

detector detect a non-existent object. They also proposed sticker perturbation

where the noise is only added to the two rectangular strips placed above and

below the stop sign. Zhao et al. [153] also proposed a white-box physical adversarial

attack against object detectors which generalizes to wider camera angles than Chen

et al. [19]. Adversarial attacks against object detectors have also been generalized

to more challenging settings. Wei et al. [132] proposed adversarial attack for video



Chapter 1 10

object detection and Jia et al. [56] studied adversarial attack against multiple

object tracking.

Apart from adversarial attacks against vision systems, there also has been sig-

nificant amount of research against vision-and-language systems. Xu et al. [144]

proposed targeted adversarial attack against DenseCap [58] and visual question

answering (VQA) systems. The goal of the adversarial attack against DenseCap

is to keep the proposed regions unchanged while changing the caption of these

regions to a target caption. For VQA, the goal of the attack is to change the

prediction of the VQA system to a target prediction while limiting the amount of

noise added to the image. Chen et al. [17] proposed a targeted adversarial attack,

known as Show-and-Fool, for image captioning. They attacked Show and Tell, a

neural image caption generator. They proposed two variants of the attack (i) tar-

geted caption, and (ii) targeted keyword. In targeted caption method, the goal is

to add noise to the image in order to generate a target caption, whereas in targeted

keyword, the goal is to add noise in order to insert a target keyword in the pre-

dicted caption. Later, Xu et al. [145] also proposed a structural SVM-based [147]

targeted adversarial attack for image captioning.

1.4 Adversarial Attacks against NLP Systems

In this section, we discuss adversarial attacks against natural language processing

(NLP) systems. Section 1.4.1 discusses the challenges in designing attacks against

NLP systems. In Section 1.4.2, we discuss some of the adversarial attacks against

NLP systems in brief.

1.4.1 Challenges

Designing adversarial attacks against NLP systems is more challenging in compar-

ison to adversarial attacks against vision systems. This is because textual inputs,

unlike images, are discrete. Hence, the gradient of the loss function with respect

to the input can not be used in a straightforward manner to generate adversarial

text. Due to this reason, adversarial attacks against NLP systems are usually less

potent than attacks against vision system. This was also observed by Cheng et al.

[20] where the authors showed that sequence-to-sequence models used for machine
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translation and text summarization are more robust to adversarial attack than

image classifiers.

1.4.2 Previous Works

One of the earlier works on adversarial attack against NLP systems was by Pa-

pernot et al. [100] where the authors designed a white-box adversarial attack for

sentiment classification. Similar to FGSM [41], the attack uses the sign of the gra-

dient of the loss function to make multiple changes in the input sentence in order

to flip the predicted sentiment. The attack chooses a new word for a particular

position in the input sentence so that the sign of the difference of the embeddings

of the new and the original word is closest to the sign of the gradient of the loss

function with respect to the original word embedding. Liang et al. [74] proposed

an adversarial attack against both character-level and word-level text classification

systems. Ebrahimi et al. [32] proposed a non-iterative white box attack, known as

HotFlip, against text classifiers. HotFlip uses the gradient of the loss with respect

to one-hot encoded input to choose the optimum replacement.

Jia and Liang [55] proposed an adversarial attack, known as AddSent, against

reading comprehension systems. The task of a reading comprehension system is

to answer a question based on an input paragraph. Jia and Liang [55] showed

that the prediction of the system changes when an adversarial sentence is added

at the end of the input paragraph. This adversarial sentence is similar to the

question but does not actually change the original answer. Wang and Bansal [131]

improved AddSent by randomizing the placement of the adversarial sentence

in the paragraph and dynamically generating fake answer options. Blohm et al.

[11] studied several black-box and white-box attacks against both CNN-based and

RNN-based reading comprehension systems. Feng et al. [36] showed that reading

comprehension systems predict the same answer with high confidence even after

multiple words have been removed from the question. They performed human

evaluation to show that the reduced question is unanswerable.

Apart from reading comprehension systems, there has been significant amount

of work on adversarial attacks against neural machine translation (NMT) sys-

tems. Belinkov and Bisk [8] showed that character-level NMT systems are vul-

nerable to synthetic and natural noises. Zhao et al. [154] generated adversarial
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examples for NMT systems. These adversarial examples are similar to the orig-

inal sentences and are generated with the goal of either dropping or introducing

a keyword in the predicted translation. Ebrahimi et al. [31] showed the efficiency

of the aforementioned HotFlip against NMT systems. Cheng et al. [22] showed

that replacing words in the original source sentence by their synonyms leads to

erroneous predicted translation by the NMT system. Cheng et al. [21] showed that

the NMT systems predict different translations for semantically similar source sen-

tences. Liu et al. [76] showed that the NMT systems are extremely sensitive to

homophone noises. Cheng et al. [20] studied the robustness of NMT systems when

only few words in the source sentence are changed. Zou et al. [156] showed that

the predicted translation of the character-level NMT system can be significantly

affected by perturbing few characters.

1.5 Adversarial Defense

In this section, we discuss some of the works on adversarial defense. For vision

systems, similar to adversarial attack, the majority of the work has been on build-

ing robust image classifiers. Section 1.5.1 discusses adversarial training, which has

been one of the most successful adversarial defense strategy in recent years [26]. In

Section 1.5.2, we take a look at some of the challenges associated with adversarial

training. Section 1.5.3 discusses some of the other adversarial defense strategies.

Finally, in Section 1.5.4, we show that several adversarial defense strategies have

been compromised by new and improved adversarial attacks leading to a constant

arms race between the design of adversarial defense and attack.

1.5.1 Adversarial Training

Adversarial training signifies the use of adversarial examples for training a learn-

ing system. Adversarial training was formally introduced by Goodfellow et al. [41]

where the authors modified the loss function to a linear combination of the stan-

dard loss and FGSM adversarial loss. They showed that minimizing the modified

loss function leads to image classifiers which are more robust to FGSM attack.

Later, Madry et al. [82] proposed adversarial training for image classifiers using

a much stronger PGD adversary. They argued that PGD attack is the universal

first-order adversary, i.e., PGD attack is the strongest adversarial attack which
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solely relies on the information of the gradient. Hence, the usage of adversarial

examples obtained via PGD attack is ideal for adversarial training. Unlike Good-

fellow et al. [41] where linear combination of standard loss and adversarial loss was

considered, Madry et al. [82] simply minimized the PGD adversarial loss. Zhang

et al. [152] proposed an alternative framework of adversarial training, known as

TRADES. The loss function in TRADES consists of two terms. The first term

minimizes the standard loss whereas the second term minimizes the difference be-

tween the predictions of the original and adversarial examples. Madry et al. [82]

and Zhang et al. [152] studied adversarial training for smaller datasets. Adversar-

ial training was later scaled to ImageNet dataset as well [141]. Zhang and Wang

[151] proposed an adversarial training framework for object detection.

Adversarial training has also been studied for NLP systems. Jia and Liang [55]

and Wang and Bansal [131] studied adversarial training for reading comprehension

systems. Belinkov and Bisk [8] and Ebrahimi et al. [31] studied black-box adver-

sarial training for NMT systems. They showed that adversarial training leads to

NMT systems which are more robust to character-level noises in the source sen-

tence. Cheng et al. [21] studied adversarial training in order to make NMT systems

robust to minor changes in the source sentence.

1.5.2 Challenges of Adversarial Training

Kurakin et al. [70] found that non-iterative adversarial training (such as training

with FGSM adversarial examples) leads to label leaking effect. In label leaking

effect, the image classifier learns to map the adversarial noise to the true label.

In other words, the adversarial noise leaks the true label. Due to this, the image

classifier overfits on the adversarial noise and achieves higher adversarial accuracy

and lower natural accuracy. To remedy this effect, Kurakin et al. [70] suggests

to perform non-iterative adversarial training where the true label is not used for

generating adversarial examples. This effect is not found in iterative adversarial

training.

Another main challenge of adversarial training is that it makes the system robust

only to the specific type of noise used during training. This has been a common

effect across vision and NLP systems. For example, Kurakin et al. [70] showed that

image classifiers trained with non-iterative adversarial training are not robust to

iterative adversarial attacks. Jia and Liang [55] showed that adversarial training of
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reading comprehension systems makes the system robust to AddSent. However,

a variant of AddSent is still able to fool the system. Similar observations were

made by Ebrahimi et al. [31] for NMT systems trained for different character-level

noises.

Lastly, a major challenge of adversarial training is that it is computationally ex-

pensive. For example, Xie et al. [141] used 128 Nvidia V100 GPUs for PGD

adversarial training on ImageNet dataset. There have been some works which

attempt to make adversarial training less expensive [115, 139, 150]. However, An-

driushchenko and Flammarion [3] showed that these methods do not scale well to

large `∞ noises. They proposed FGSM adversarial training with gradient align-

ment to bridge the gap between FGSM adversarial training and PGD adversarial

training. The gradient alignment tries to align the the gradient of loss with respect

to the original input with the gradient of the loss with respect to randomly per-

turbed input. The gradient alignment step requires double backpropagation which

increases the runtime in comparison to standard FGSM adversarial training.

1.5.3 Other Approaches

Papernot et al. [101] proposed defensive distillation for designing robust image

classifiers. In defensive distillation, the classifier is retrained using softmax prob-

abilities instead of the ground truth. The authors argue that training using these

soft labels allows the classifier to generalize better around the neighborhood of the

original data. While defensive distillation attempts to design robust classifiers,

there also have been works which focus mainly on detecting adversarial exam-

ples [35, 84, 120, 143]. Metzen et al. [84] proposed augmenting the classifier with

an adversarial detection subnetwork. However, they showed that it is possible

to design adversarial attack which can fool both the classifier and detector. To

remedy this issue, they proposed joint adversarial training of detector and clas-

sifier. Feinman et al. [35] sampled multiple model architectures obtained using

dropout technique [121]. They showed that adversarial examples have higher un-

certainty in the model output in comparison to original examples. Based on this

insight, they used uncertainty estimates to detect adversarial examples. Xu et al.

[143] proposed feature squeezing for detecting adversarial examples. They explore

several feature squeezing methods such as bit depth reduction, median filtering,

and image denoising. The main idea of their approach is that model’s prediction
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on adverarial example differs significantly before and after feature squeezing. Song

et al. [120] proposed PixelDefend where log-likelihoods from PixelCNN [94, 112] is

used for detecting adversarial examples. Furthermore, PixelDefend uses a greedy

technique to purify the adversarial examples. The purified image is then fed to the

image classifier. Akhtar et al. [1] proposed perturbation rectifying network (PRN)

to defend against universal adversarial perturbation [88].

Apart from detecting adversarial examples, there also has been significant amount

of work on certified defenses which provide theoretical guarantee regarding adver-

sarial robustness for image classifiers [42, 73, 106, 118, 138]. Raghunathan et al.

[106] used semidefinite programming to provide an upper bound on the worst-case

loss for two-layer networks. They further minimize this upper bound to build

robust image classifiers. Wong and Kolter [138] used outer approximation to pro-

vide an upper bound on the worst-case loss. Unlike Raghunathan et al. [106],

their approach can be generalized to convolutional layers as well. Sinha et al. [118]

proposed a robust surrogate loss obtained via Lagrangian relaxation and showed

that, for imperceptible adversarial perturbation, the robust loss is easy to optimize.

Lécuyer et al. [73] proposed PixelDP, which uses differential privacy to provides ro-

bustness guarantee for image classifiers. Gowal et al. [42] proposed interval bound

propagation (IBP) which uses interval arithmetic to provide an upper bound on

the maximum possible difference between pair of logits. The authors showed that

IBP is computationally cheap and can be used to train robust classifiers on large

datasets.

1.5.4 Defense and Attack: An Endless Cycle?

Carlini and Wagner [16] proposed a targeted adversarial attack which is able to

circumvent defensive distillation. The proposed attack achieved 100% success rate

against image classifiers trained with defensive distillation. Carlini and Wagner

[15] investigated the efficiency of 10 defense techniques which rely on detecting

adversarial examples. They showed that, in a white-box setting, where the adver-

sary has perfect knowledge of the defence and model’s parameters, it is possible to

design new loss functions to break all the 10 defense techniques. He et al. [48] pro-

posed an adversarial attack to break defenses relying on feature squeezing. Athalye

et al. [5] showed that multiple defense techniques such as PixelDefend rely on gra-

dient masking [102]. Since majority of the adversarial attacks rely on the gradient
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for designing adversarial examples, gradient masking allows these defense tech-

niques to circumvent the attack. Hence, these defense techniques do not really

result in robust image classifiers. To show this, Athalye et al. [5] proposed new

adversarial attacks which succeed in circumventing these defenses. Along similar

lines, Uesato et al. [126] showed that gradient-free adversarial attacks are able to

bypass defenses which rely on gradient masking. Mosbach et al. [90] showed that

adversarial logit pairing [62] provide apparent robustness by making the surface

of the loss function harder to navigate. Furthermore, they also showed that it

is possible to circumvent adversarial logit pairing by performing multiple random

restarts of PGD attack. Croce and Hein [26] proposed a variant of PGD, known as

Auto-PGD along with a new loss function which is invariant to shift and rescaling

of logits. Furthermore, they showed that multiple defenses which were robust to

PGD attack are vulnerable to Auto-PGD based attacks. So far, as a robust adver-

sarial defense strategy, adversarial training has stood the test of time [26, 126]. As

an example, Croce and Hein [26] showed that adversarially trained classifiers are

robust to Auto-PGD based attack as well. In lieu of seemingly robust defenses be-

ing circumvented by new and improved attacks, Carlini et al. [14] proposed several

guidelines for evaluating adversarial defenses in future.

1.6 Thesis Outline and Contributions

The goal of this thesis is to study the adversarial robustness of state-of-the-art

deep learning systems. In this regard, this thesis explores evasion attacks across

various vision and NLP tasks. For vision systems, as we have seen, there has been a

plethora of work on studying adversarial robustness of image classifiers. However,

this thesis mainly explores evasion attacks for other vision systems, specifically

vision-and-language systems such as visual question answering (VQA), and image

captioning. For NLP systems, this thesis mainly explores invariance-based evasion

attacks against neural machine translation (NMT) systems and multiple-choice

question answering systems. For NMT systems, the proposed invariance-based

evasion attacks generate adversarial examples for which the ground truth is not

available. This makes standard adversarial training infeasible. This thesis explores

adversarial defense strategies in such a scenario. Finally, this thesis studies the

generalizability of invariance-based attack to multiple choice QA systems and the
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ability of such systems to handle different types of interventions on the input

paragraph.

The main contributions of this thesis are as follows:

1. We explore the robustness of state-of-the-art VQA systems against an ad-

versarial attack which only adds noise to the background of the image. We

show that VQA systems can be fooled by adding minimal adversarial back-

ground noise. This holds true even for toy datasets where the VQA systems

have very high accuracy and good-quality attention maps.

2. While the adversarial attacks designed so far are task specific, we propose

a task agnostic adversarial attack, named Mimic and Fool. The proposed

attack is designed for vision systems and only requires the knowledge of

feature extractor in order to attack the system. We study the efficacy of

this attack against VQA and image captioning systems. Furthermore, we

propose a variant of this attack, named One Image Many Outputs (OIMO),

which generates natural looking adversarial examples. We show that the

proposed attack is able to attack invertible architectures as well.

3. Previous adversarial attacks against NMT systems make small changes to

the source sentence in order to change the predicted translation. We take a

different approach and propose an invariance-based adversarial attack which

makes as many changes to the source sentence as possible with the goal

of keeping the predicted translation unchanged. We also explore several

evaluation metrics suitable to evaluate the proposed attack.

4. The proposed invariance-based adversarial attack generates adversarial ex-

amples for which there is no ground truth available. This makes the task

of designing an adversarial defense harder in comparison to previous adver-

sarial attacks against NMT systems where standard adversarial training was

shown to be effective. In this regard, we explore several adversarial defense

strategies for NMT systems to counteract such an attack.

5. We study the generalizability of the invariance-based adversarial attack to

text-based multiple choice question answering systems. In this regard, we

compare the adversarial robustness of CNN and LSTM-based multiple choice

question answering systems. Furthermore, we also study the generalizabil-

ity of these systems to two types of interventions on the input paragraph,
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namely, mask intervention and option-specific intervention. The option-

specific intervention ensures that the chosen option is the correct answer.

The results show that CNN-based MCQ systems generalize better to such

option-specific interventions in comparison to their LSTM counterpart.

1.7 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 studies the robustness

of state-of-the-art VQA systems against adversarial background noise. Chap-

ter 3 studies the task agnostic attack against vision systems. Chapter 4 studies

invariance-based adversarial attack against state-of-the-art NMT systems. This

chapter also discusses relevant metrics to evaluate the efficiency of the attack.

Chapter 5 explores defense strategies to enhance robustness of NMT systems

against invariance-based attacks. Chapter 6 studies the generalizability of such

invariance-based attacks to text-based multiple choice question answering systems.

This chapter also analyses the generalizability of such systems to interventions on

the input paragraph. Finally, Chapter 7 discusses the findings of this thesis and

scope of future works.
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Attacking VQA systems via

Adversarial Background Noise

Rarely do more than three or four variables really

count. Everything else is noise.

Martin J. Whitman

Given an image and a question about an image, the goal of a VQA system is to an-

swer the question using the relevant information contained in the image. Previous

adversarial attacks on VQA systems show that, for real-world datasets, minimal

adversarial noise added to the entire image suffices to fool such systems [144].

In this chapter, we study whether VQA systems can be fooled by adding noise

only to the background of the image, keeping the main image content unchanged.

We study the vulnerability of VQA systems to adversarial background noise on

real-world as well as toy datasets.

The rest of this chapter is organized as follows. Section 2.1 discusses about VQA

datasets and systems which are used for experimentation. This section also dis-

cusses the adversarial attack proposed by Xu et al. [144] in detail. In light of Xu

et al. [144], Section 2.2 discusses the motivation for the proposed adversarial attack.

Section 2.3 describes the adversarial attack methodology. Section 2.4 provides the

implementation details. Section 2.5 describes the datasets used for the proposed

adversarial attack. Section 2.6 analyzes the results of the proposed adversarial

attack. Section 2.7 shows several adversarial examples across VQA systems and

datasets. Finally, Section 2.8 summarizes the chapter.

19
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2.1 Background

In this section, we provide a background for the proposed adversarial attack. Sec-

tion 2.1.1 discusses the two toy datasets and one real-world dataset used in this

work. Section 2.1.2 describes the two state-of-the-art VQA systems. Section 2.1.3

discusses the adversarial attack by Xu et al. [144] in detail.

2.1.1 VQA datasets

In this chapter, we study the proposed adversarial attack on two toy VQA datasets,

namely, SHAPES [51], and CLEVR [57]; and a real-world VQA dataset, i.e., VQA

v2.0 [43]. The SHAPES dataset consists of yes/no questions. The images in

SHAPES consist of several 2D objects (such as circle, triangle and squares) of

different colors and sizes placed in a 3× 3 grid. CLEVR dataset contains images

of 3D rendered objects (i.e. cubes, spheres, and cylinders) of different sizes and

material. The question in CLEVR dataset belong to 6 different categories, namely,

yes-no, color, shape, number, size, and material. VQA dataset [4] was the first

large-scale real-world dataset containing ∼200K real-world images and ∼600K

questions. Despite the wide diversity of questions and images, Kafle and Kanan

[61] showed that a system which only takes question as input achieves ∼50%

accuracy on VQA dataset. This is primarily due to the biases present in the

dataset, such as, tennis being the most common answer for a question starting

with “What sport is”. To remedy this issue, Goyal et al. [43] proposed VQA v2.0

dataset. This dataset attempts to reduce the bias present in VQA dataset by

using complementary images. Concretely, given an image-question-answer triplet

(I,Q,A), VQA v2.0 dataset adds an additional triplet (I ′, Q,A′) such that A′ is

different from A. In this case, I ′ is the complementary image to I. Figure 2.1

shows 4 complementary images along with the respective question and answer.

2.1.2 VQA systems

End-to-End Module Network (N2NMN): N2NMN [51] is based on the idea

of differentiable modules where each module performs a specific task. N2NMN

breaks down a question into a layout of modules (known as module layout) using a

natural language parser. Since different module layout leads to different network
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Figure 2.1: Complementary images from VQA v2.0 (Photo Courtesy: Goyal
et al. [43])

architecture, N2NMN allows for an architectural design catered to a question. For

example, for the question “How many hats are in the image?”, the module layout

will look like count(find()) where the find module will attend on the hats present

in the image and the count module will count the hats using the attention output

of find module. A possible drawback of N2NMN is that the set of modules might

vary depending on the complexity of the dataset and thus, they need to be defined

beforehand.

MAC network: MAC network [52] is a recurrent architecture based on the

Memory, Attention and Composition (MAC) cell. Each MAC cell consists of two

hidden states: memory and control. Memory stores the intermediate results and

the control has the information about the reasoning step. Similar to an LSTM cell,

MAC cell also consists of several units such as input unit, control unit, read unit,

write unit and output unit. Each unit has its set of predefined operations either

to attend on a relevant part of image/question or for aggregating information.

Design of a general purpose reasoning cell allows MAC network to overcome the

aforementioned drawback of N2NMN.
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2.1.3 Adversarial Attack Against VQA systems

Xu et al. [144] proposed a targeted adversarial attack for VQA and image cap-

tioning. For VQA, their adversarial loss function is given as

L = −log ptarget + λ11(ycurr 6= ytarget)(τ + log pcurr) + λ2ReLU(d(I, Iorg)−B + ε)

(2.1)

where ptarget denotes probability of target class, 1(ycurr 6= ytarget) is an indicator

function to check if the current predicted class, ycurr, is different from the target

class, ytarget; pcurr denotes the probability of the current predicted class, d(I, Iorg)

denotes the distance between the current image, I, and the original image, Iorg;

and λ1, τ, λ2, B, ε are hyperparameters. Thus, their loss function consists of three

parts. The first part tries to maximize the probability of the target class, the sec-

ond part tries to minimize the probability of current predicted class if the current

predicted class is different from target class and the third part ensures that the

adversarial image lies within a fixed neighborhood of the original image. Their

attack achieved 100% success rate for N2NMN and Multimodal Compact Bilin-

ear pooling (MCB) [37] on Gold dataset (created using VQA validation set [4]).

Furthermore, they showed that the success of an attack is more dependent on the

target question-answer pair than the image.

2.2 Motivation

Since Xu et al. [144] already achieved 100% success rate, the fact that VQA systems

are vulnerable to adversarial attack is established. The goal of the present work

is to study the extent of vulnerability of current VQA systems. This motivates

the idea of limiting the freedom of the adversary by only adding noise to the

background of the image. Furthermore, unlike Xu et al. [144] who studied VQA

systems trained on VQA dataset, we perform experiments on VQA v2.0 dataset

which is a more balanced dataset, as discussed earlier. Apart from VQA v2.0, we

also perform experiments on toy datasets: SHAPES, and CLEVR. The rationale

behind this is that, unlike real-world dataset, the state-of-the-art VQA systems

are already able to achieve impressive accuracy on the two toy datasets (N2NMN

achieves 100% accuracy on SHAPES and MAC network achieves > 98% accuracy

on CLEVR) and have very good attention maps for a given image-question pair.
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Figure 2.2: Example of the proposed attack. For the above question, both
N2NMN and MAC network give the correct answer (“no”) when original
image is given as input but incorrect answer (“yes”) when respective
adversarial image is given as input. The noise is added only to the outside
background of the image.

Figure 2.3: Images from SHAPES dataset.

As a result, such toy datasets offer a nice way of understanding how adversarial

examples work. For CLEVR images, we find a rectangular mask which segregates

the main image content from the outside background and the adversary is only

allowed to modify the outside background. Figure 2.2 shows an example of the

proposed attack.

2.3 Methodology

In this section, we explain our proposed method for generating adversarial ex-

amples. The method consists of two stages. In the first stage, we detect the

background for an image, and in the second stage, we perform targeted adversar-

ial attack on the given image-question pair by modifying just the background. In

the following subsections, we describe the two stages in detail.

2.3.1 Background Detection

For SHAPES, the background is the set of black pixels present in an image (as

evident from Figure 2.3). For CLEVR, we use canny edge detector [13] to detect

edges of the objects present in the image. Then, we find the smallest rectangle

such that all the detected edges lie inside it. Figure 2.4 gives an example of

an image along with the rectangle. As we can see from Figure 2.4, the blue
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Figure 2.4: Background Detection for CLEVR. Only the pixels outside the
blue rectangle are modified in the proposed attack.

Figure 2.5: Background Detection for VQA v2.0. The pixels which are not
inside any of the boxes are modified in the proposed attack.

rectangle segregates the main content of the image from the outside background.

The proposed attack only modifies the pixel belonging to the outside background.

Although in none of the cases did the rectangle cover the entire image, if such

a case were to arise, one can always pad the image. For VQA v2.0, we detect

the objects present in the image using Faster R-CNN, a state-of-the-art object

detector [107]. The pixels which are not inside any of the detected boxes are

considered as background. Figure 2.5 shows one such example.
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2.3.2 Targeted Adversarial Attack

Let (Iorg, Q,A) denote the original image-question-answer triplet where the image

Iorg ∈ [0, 255]h×w×3. Let Atarget be the adversarial target for the image-question

pair (Iorg, Q). Let A denote the set of unique answers present in the dataset.

Then, any VQA system can be considered as a function fθ : I × Q −→ P where

P is the space of probability distributions over A and θ denotes the parameters of

the model.

Given an image-question pair (Iorg, Q), our goal is to find an adversarial image

Iadv ∈ [0, 255]h×w×3 such that

argmax(fθ(I
adv, Q)) = Atarget (2.2)

and δijk = 0 if Mijk = 0 (2.3)

where δ denotes the difference image Iadv − Iorg and M ∈ {0, 1}h×w×3 is a binary

mask which is 1 for background pixels of Iorg and 0 otherwise. Equation 2.3

ensures the background constraint, i.e., the adversarial noise is only added to the

background pixels, detected in Section 2.3.1, of Iorg.

For an image-question-answer triplet (I,Q,Atarget), we use the standard cross-

entropy loss function given by

L = −log(fθ(I,Q)T etarget) (2.4)

where etarget is the one-hot encoded vector with value 1 for Atarget and 0 otherwise.

Thus, fθ(I,Q)T etarget denotes the probability assigned by the model to Atarget.

Before updating the image I, we mask the gradient ∇IL as follows

∇mask
I L = c · (M �∇IL) (2.5)

where ∇mask
I L is the masked gradient of loss function L with respect to image I,

� denotes element wise multiplication, and c ∈ R is a hyperparameter. We use

the masked gradient ∇mask
I L for updating the image I. We also use the truncating
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Algorithm 2.1: Targeted Adversarial Attack

Input:Iorg, Q,Atarget, fθ, cinit
Output:Iadv

clist ← [cinit]
lasttrue, lastfalse, success← 0
Ilist, normlist ← [ ]
for i← 1 to maxtrials do

I ← Iorg

c← clist[i]
for j ← 1 to maxiters do

Compute loss L for (I,Q,Atarget)
Compute ∇mask

I L
Update I using ∇mask

I L and truncate
if I satisfies Equations 2.2 and 2.3 then

success← 1
δ ← I − Iorg
append I to Ilist and ‖δ‖2 to normlist

lasttrue ← i
if lastfalse = 0 then

append 0.5c to clist
else

append 0.5(c+ clist[lastfalse]) to clist
break

else if j = maxiters then
lastfalse ← i
if lasttrue = 0 then

append 2c to clist
else

append 0.5(c+ clist[lasttrue]) to clist

end for

end for
if success = 1 then

Iadv ← Ilist[argmin(normlist)]
else

Iadv ← I
return Iadv

function to ensure that I ∈ [0, 255]h×w×3. Note that the term M�∇IL in Equation

2.5 ensures that only the background pixels of Iorg are modified.

The hyperparameter c controls the amount of adversarial noise added at each

iteration. Larger values of c allow for more noise to be added which can lead to

faster convergence. To find an adversarial image with minimal adversarial noise,
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we use a binary search strategy similar to Chen et al. [17]. For a particular c, if

the attack is unsuccessful, we either increase the value of c by a factor of 2 if no

previous c led to successful attack or take the average of the current c and the last c

for which the attack was successful. Similarly, if the attack is successful, we either

decrease the value of c by a factor of 2 if no previous c led to an unsuccessful

attack or take the average of the current c and the last c for which the attack

was unsuccessful. This process is repeated maxtrials times. For each c, we run

the proposed attack until either we find an adversarial image Iadv which satisfies

Equations 2.2 and 2.3 or maxiter iterations are reached. Finally, amongst all the

successful adversarial images, we choose the one whose difference image δ has the

smallest `2−norm. If the attack is unsuccessful for all the maxtrials c
′s, we return

the last image (the image obtained using the largest value of c) as the final image.

Algorithm 2.1 summarizes the proposed attack. From the algorithm, one can see

that the attack can be generalized for any number of categories.

2.4 Implementation Details

For SHAPES dataset, we train the N2NMN for 10, 000 iterations using the original

source code1. The trained model achieves 100% accuracy on train, validation and

test set of SHAPES. For CLEVR dataset, we use the trained N2NMN provided

with the source code and train the MAC network of length 4 for 25 epochs using the

original source code2. N2NMN and MAC network achieve accuracy of 83.6% and

98.0% respectively on CLEVR validation set. For VQA v2.0 dataset, we use the

trained N2NMN provided with the source code. To detect objects using the object

detector, we use Faster R-CNN [2] trained on Visual Genome dataset [67]. For the

proposed attack, in order to make the comparison across models and datasets fair,

we use the same hyperparameters throughout. The value of the hyperparameters

are as follows: cinit = 100, maxtrials = 5, maxiters = 1, 500. We implement the

proposed attack in Tensorflow and the code is publicly available3. To implement

the attack proposed by Xu et al. [144], we use the same value of hyperparameters

as mentioned in their paper.

1https://github.com/ronghanghu/n2nmn
2https://github.com/stanfordnlp/mac-network
3https://github.com/akshay107/vqa-adv-background

https://github.com/ronghanghu/n2nmn
https://github.com/stanfordnlp/mac-network
https://github.com/akshay107/vqa-adv-background
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2.5 Datasets

The proposed attack is studied on five datasets:

1. SHAPES: We combine the validation and test sets of SHAPES to get 2048

image-question pairs. Since SHAPES is a yes/no dataset, we set Atarget to

yes when original answer is no and set Atarget to no when original answer is

yes.

2. CLEVRsame: We choose 1000 image-question pairs from CLEVR validation

set which were answered correctly by both MAC network and N2NMN. In

CLEVR dataset, the answer can belong to six different categories: yes-no,

color, shape, number, size and material. For CLEVRsame, we randomly

choose Atarget (different from original answer) from same category as the

original answer.

3. CLEVRdiff : For this dataset, we use the same 1000 image-question pairs

as CLEVRsame but in this case, we randomly choose Atarget from a different

category than the original answer.

4. VQAsame: We choose 500 image-question pairs from VQA v2.0 validation

set which were correctly answered by N2NMN and only had one unique an-

swer (since each image-question pair was answered by multiple annotators).

In VQA v2.0 dataset, the answer can belong to four categories: yes-no,

number, color and other. For VQAsame, we randomly choose Atarget (differ-

ent from original answer) from same category as the original answer. We also

ensure that the original answer and Atarget are not similar since VQA v2.0

contains similar answers such as “black and white” and “black and gray”.

5. VQAdiff : For this dataset, we use the same 500 image-question pairs as

VQAsame but in this case, we randomly choose Atarget from a different cate-

gory than the original answer.

2.6 Results

Table 2.1 summarizes the result of the proposed attack. In Table 2.1, ‖δ‖2 is

normalized by the total number of pixels. This is done because the size of the
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Dataset Model SR ‖δ‖2 (mean± std) bg-size

SHAPES N2NMN 68.9% 0.37± 0.33 65.0± 7.6

CLEVRsame
N2NMN

MAC network

100.0%

100.0%

1.9× 10−4 ± 2.2× 10−4

1.2× 10−3 ± 6.1× 10−4

66.8± 13.7
CLEVRdiff

N2NMN

MAC network

22.3%

73.9%

1.3× 10−3 ± 1.8× 10−3

8.6× 10−3 ± 6.4× 10−3

VQAsame N2NMN 88.8% 1.9× 10−3 ± 1.9× 10−3

2.3± 2.5
VQAdiff N2NMN 56.4% 4.4× 10−3 ± 3.0× 10−3

Table 2.1: Success rate (SR) of the proposed attack. For ‖δ‖2, the mean and
standard deviation is calculated over the successful cases. bg-size denotes the
mean± std of the percentage of an image detected as background using
Section 2.3.1.

Dataset Model Success-rate ‖δ‖2 (mean± std)

SHAPES N2NMN 74.2% 0.32± 0.06

CLEVRsame
N2NMN

MAC network

100.0%

100.0%

1.2× 10−3 ± 1.2× 10−3

1.5× 10−2 ± 8.8× 10−3

CLEVRdiff
N2NMN

MAC network

21.7%

100.0%

2.2× 10−2 ± 5.3× 10−3

1.8× 10−2 ± 5.1× 10−3

VQAsame N2NMN 100.0% 7.0× 10−3 ± 3.8× 10−3

VQAdiff N2NMN 100.0% 8.2× 10−3 ± 2.8× 10−3

Table 2.2: Success rate of Xu et al. [144]. For ‖δ‖2, the mean and standard
deviation is calculated over the successful cases.

difference image depends on the dataset as well as the model. For example, images

in SHAPES dataset are 30×30×3 and for CLEVR, N2NMN takes input image of

size 320× 480× 3 whereas MAC network takes input image of size 224× 224× 3.

For VQA v2.0, N2NMN takes input image of size 448 × 448 × 3. The bg-size in

Table 2.1 denotes the background size relative to the original image, detected using

the method described in Section 2.3.1. Table 2.2 summarizes the result of Xu et

al. [144] on the five datasets. From Tables 2.1 and Table 2.2, we can see that, apart

from SHAPES, the proposed attack adds significantly less noise than the attack

in [144]. This is due to the binary search strategy employed in the proposed attack

as opposed to the fixed learning rate used in [144]. In the following subsections,

we analyze the result of the proposed attack on the five datasets in detail. We also

visualize the attention maps for the original and adversarial images of N2NMN

and MAC network. Furthermore, we study the transferability of the adversarial

images for the two models.
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Figure 2.6: Answer changes to yes for the adversarial image. For the
adversarial image, a light silhouette of a triangle can be seen in top left and
middle left. Such cases were considered unsuccessful.

Figure 2.7: Attention visualization for SHAPES. Note that the textual
attention map remains same for the two images.

2.6.1 Success Rate

For SHAPES dataset, we test the proposed attack for N2NMN. Out of 2048 image-

question pairs, the proposed attack is successful for 1431 pairs. However, for

SHAPES dataset, the original answer might change for the adversarial image when

the background is modified by the attack. In such a case, we can’t consider the

attack successful. To address this issue, we request 3 human annotators to answer

1431 adversarial image-question pairs as yes/no and discard those pairs where at

least 2 annotators give a different answer than the original. There were 19 such

pairs. Figure 2.6 shows one such pair. The final success rate, after discarding

these cases, is 68.9%. Similary, for Xu et al. [144], there were 27 such pairs which

were discarded. As a matter of convenience, all the difference images are given in

the supplementary material4.

It can be seen from Table 2.1 that ‖δ‖2 for SHAPES dataset is higher in comparison

with the other two datasets. This can be because the SHAPES dataset has very

little variability since it consists of only three shapes (circle, triangle and squares)

which makes it easier for N2NMN to distinguish between these three shapes and

4https://www.isical.ac.in/~utpal/resources.php

https://www.isical.ac.in/~utpal/resources.php
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a random shape. The low success rate of Xu et al. [144], as shown in Table 2.2,

further supports this rationale.

Figure 2.7 shows the attention maps for original and adversarial image-question

pair. As we can see from the textual attention map, Find[0] is attending on

“circle” and Find[1] is attending on “blue shape”. For the original image, both

the find modules give the correct attention map. However for the adversarial

image, Find[0] recognizes an extra shape in the bottom-middle as a circle which

results in incorrect prediction by the network. The extra shape has four corners

due to which the find module identifies it as a circle. This demonstrates the bias

learned by the module during the training stage. Figure 2.7 is a typical example

which demonstrates that studying adversarial attack in toy datasets offers better

understanding than real world datasets.

The proposed attack achieves 100% success rate for both the models on CLEVRsame

dataset. In the ideal scenario, a model with attention mechanism shouldn’t be

fooled by background noise. The 100% success rate shows that the attention

mechanisms used in the current state-of-the-art systems can be fooled even when

the main content of the image is left untouched. Hence, one does not need to mod-

ify the entire image, as in Xu et al. [144], to fool state-of-the-art VQA systems.

Furthermore, the amount of noise required to fool the system is impercetible, as

is evident from Table 2.1. From Table 2.1, we also see that ‖δ‖2 is an order of

magnitude higher for MAC network than N2NMN which shows that the MAC

network is more resilient to background noise than N2NMN. As expected, Xu et

al. [144] also achieves 100% success rate for both the models.

The proposed attack achieves success rate of 22.3% and 73.9% for N2NMN and

MAC network respectively on CLEVRdiff dataset. Note that Xu et al. [144] also

achieves low success rate (21.7%) for N2NMN and 100.0% for MAC network.

From Table 2.1, we can see that, for both the models, ‖δ‖2 is higher for CLEVRdiff

dataset in comparison with CLEVRsame dataset. This is intuitive since one expects

that more background noise will be needed for the model to predict an answer

from different category than the same category. Since in CLEVRdiff dataset, the

target answer doesn’t semantically match the question, the low success rate of

N2NMN suggests that N2NMN is able to better capture the language-bias than

MAC network. However, similar to CLEVRsame dataset, we see from Table 2.1 that

the ‖δ‖2 is almost an order of magnitude higher for MAC network than N2NMN.

This finding suggests that MAC network can better capture the language bias than
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Figure 2.8: N2NMN predicts same category as the target answer.

N2NMN since more background noise is needed to make the MAC network predict

an answer from a different category. In the following paragraph, we resolve this

dilemma and state the explicit criterion under which a different targeted attack

can be successful for N2NMN.

For CLEVR dataset, N2NMN has 15 modules. Out of these 15 modules, 7 are

answer modules. By answer modules, we refer to those modules which occur at

the end of the layout. These 7 modules are as follows: Exist, Count, EqualNum,

MoreNum, LessNum, SameProperty and Describe. As mentioned before, CLEVR

consists of answers from 6 different categories. However, apart from Describe

module, all the other answer modules can only predict an answer belonging to a

single category because during training they are only exposed to their respective

category (e.g. Count module is only exposed to number category). On the other

hand, Describe module can predict an answer belonging to one of four categories

(color, shape, size and material). Hence, for N2NMN, a different category attack

is possible if and only if both the original and the target answer belong to one of

the four aforementioned categories. We find that out of 1000 image-question pairs

in CLEVRdiff, 235 image-question pairs satisfy this criteria. Hence, effectively our

proposed attack is successful for 223 out of 235 pairs (94.9%). In fact, our attack

got the target category correct for the remaining 12 pairs as well. Figure 2.8 gives

one such example. We find that the 217 successful cases of Xu et al. [144] also

belong to the aforementioned 235 image-question pairs. For MAC network, we

find that out of 261 unsuccessful pairs, our attack got the target category correct

for only 1 pair.
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For VQA v2.0 datasets, as mentioned earlier, we detect the background using

Faster-RCNN. As can be seen from Table 2.1, bg-size for VQA is very low. This

is because the bounding boxes detected by Faster R-CNN often cover a very large

portion of the image. Despite this fact, the proposed attack achieves a success rate

of 88.8% on VQAsame dataset. This shows that it is possible to fool state-of-the-art

VQA systems by modifying very few pixels in the image. Xu et al. [144], which

modifies the entire image, achieves a success rate of 100.0% on this dataset.

For VQAdiff dataset, the proposed attack achieves a success rate of 56.4%. On the

other hand, Xu et al. [144] achieve a success rate of 100.0%. This is different from

the finding in CLEVRdiff dataset where both the methods achieve a low success

rate. The reason behind the high success rate of Xu et al. [144] on this dataset

is that N2NMN uses only four modules for VQA v2.0 dataset, namely, Find,

Transform, And, and Describe. Out of the four modules, only Describe module

is an answer module. Because of this, it is possible to force N2NMN to predict

from any desired category, which was not the case in CLEVRdiff. This clearly

shows that in order to make N2NMN robust to different category attack, multiple

answer modules pertaining to separate categories are required. Note that Xu et

al. [144] observed low success rate for N2NMN on Non-sense dataset. However, in

their dataset, the question was not relevant to the image. In all the five datasets

studied in this chapter, the question is always relevant to the image.

2.6.2 Visualizing attention

Figure 2.9 and 2.10 show the attention maps for N2NMN and MAC network respec-

tively for CLEVR . Similarly, Figure 2.11 shows the attention maps for N2NMN

for VQA v2.0. In all the figures, we show the original image and successful adver-

sarial images from same and different category attack along with their respective

attention maps. In Figure 2.9, the find module is able to locate the red sphere

for the original image. For the adversarial image for same category attack, while

the find module is able to locate the red sphere, it also attends to the region at

the top of the purple cylinder. Whereas, for the adversarial image from different

category attack, the find module mostly attends at the bottom left corner of the

image. Similarly in Figure 2.10, MAC cell is able to locate the metal cylinder and

the metal block (time-step 3 and 4 respectively) for the original image. However,

for the adversarial image from different category attack, it is unable to locate the
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Figure 2.9: Attention visualization for N2NMN on CLEVR. For both the
adversarial images, the attack was successful i.e. the predicted answer was
Atarget.

Figure 2.10: Attention visualization for MAC network on CLEVR. Note that
the textual attention map remains same for all the images. For both the
adversarial images, the attack was successful i.e. the predicted answer was
Atarget.

metal block. For the adversarial image from same category attack, while it is able

to locate the two objects, the attention map is mostly outside the main content of

the image for all the timesteps.

In Figure 2.11, for all the three images, the attention of Find module is not lo-

calised. For the original image, the attention of the Transform module is localised

on the main object present in the image. For the adversarial image correspond-

ing to the VQAsame dataset (i.e. the middle row), the attention of the Transform

module is less localised and is also spread on the bottom-left of the image. Finally,

the attention of the Transform module is least localised for the adversarial image
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Figure 2.11: Attention visualization for N2NMN on VQA v2.0. Note that
the textual attention map remains same for all the images. For both the
adversarial images, the attack was successful i.e. the predicted answer was
Atarget.

corresponding to the VQAdiff dataset. The three attention maps corresponding to

the Transform module do have significant attention on the main object present

in the image. The same is true for the Find module in Figure 2.9. This gives an

idea about how little does one need to misguide the attention in order to generate

adversarial outputs.

2.6.3 Transferability Results

In this section, we study the transferability of adversarial examples between the

two models. For this purpose, we use the final 1000 adversarial images returned

by our proposed attack for both the CLEVR datasets and both the models. As

mentioned earlier, the two models accept input images of different sizes, so we

resize the adversarial images accordingly. We use two evaluation metrics: (i)
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Success-rate: Percentage of image-question pairs for which the target model gave

Atarget as the answer. (ii) Non-targeted Success-rate: Percentage of image-

question pairs for which the target model gave incorrect answer.

For CLEVRsame dataset, the success-rate and non-targeted success-rate for N2NMN

are 4.3% and 6.5% respectively. Whereas for MAC network, the non-targeted

success-rate is only 0.1% . For CLEVRdiff dataset, Atarget was never predicted as

the answer by the two models. The non-targeted success rate for N2NMN and

MAC network on CLEVRdiff dataset is 10.5% and 34.4% respectively. The high

non-targeted success-rate for MAC network can be due to the low success rate of

our proposed attack for N2NMN on CLEVRdiff dataset because of which most of

the adversarial image-question pairs have larger background noise (since they are

unsuccessful image-question pairs). This hypothesis is supported by the fact that

for MAC network, out of 344 successful image-question pairs, only 1 was success-

ful image-question pairs for N2NMN. Whereas, for N2NMN, out of 105 image-

question pairs, 72 were successful image-question pairs for MAC network. One

possible explanation for the low transferability of adversarial examples amongst

the two models could be that N2NMN uses VGG-16 features [117] whereas MAC

network uses ResNet-101 features [46].

2.6.4 Mean/Median Filtering as Defense?

In this section, we study whether simple pixel smoothing techniques like mean

filtering, median filtering can act as a defense against the proposed attack. We

observe that, for SHAPES and VQA v2.0 dataset, when such filters are added as a

preprocessor, the accuracy of the trained N2NMN model on clean images reduces

significantly (∼ 8% for SHAPES and ∼ 6% for VQA v2.0). The significant drop in

accuracy for SHAPES is primarily due to the small spatial size of the images. As

a result, adding mean/median filter (3× 3) results in hazy images. On the other

hand, the drop in accuracy of the two VQA systems is significantly less (∼ 1%)

for CLEVR. For CLEVRsame and CLEVRdiff datasets, when the adversarial images

corresponding to Table 2.1 are fed to the integrated VQA pipeline (mean/median-

filter + VQA system), the success rate reduces significantly by a factor of over 2.

At this point, it is crucial to note that adding a mean/median filter to the VQA

pipeline does not inherently make the entire VQA pipeline robust to adversarial

attacks. Rather, the drop in success rate is due to low transferability and not
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enhanced robustness. Athalye et al. [5] showed that the defense techniques which

are based on image denoising give a false sense of security by obfuscating the

gradients. For image classifiers which rely on image denoising, they further showed

that if the adversary is aware of the preprocessing module (this is not a strong

assumption given the fact that the adversary already knows the model architecture

and its parameters) then the attack can be slightly modified in order to achieve

very high success rate. To further establish this claim, we rerun our proposed

attack, for CLEVRsame and CLEVRdiff, by backpropogating the gradient through

the preprocessor (mean/median filter in this case) as well. The new attack achieves

similar success rates as reported in Table 2.1 (100.0% for both the VQA systems on

CLEVRsame and ∼ 22.0% for N2NMN, ∼ 72.0% for MAC network on CLEVRdiff).

2.7 Examples of the Attack

Figure 2.12: Examples for N2NMN on SHAPES.
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Figure 2.13: Examples for N2NMN on CLEVRsame.
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Figure 2.14: Examples for N2NMN on CLEVRdiff.



Chapter 2 40

Figure 2.15: Examples for MAC network on CLEVRsame.
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Figure 2.16: Examples for MAC network on CLEVRdiff.



Chapter 2 42

Figure 2.17: Examples for N2NMN on VQAsame.
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Figure 2.18: Examples for N2NMN on VQAdiff.
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2.8 Summary

This chapter proposed a targeted adversarial attack for VQA systems by only

modifying the background pixels. We tested our method on two state-of-the-

art models: MAC network and N2NMN and three datasets: SHAPES, CLEVR

and VQA v2.0. Our proposed attack achieved impressive success rate for both

the models. For CLEVR dataset, we showed that the current state-of-the-art

models can be fooled simply by adding imperceptible noise to the background. The

visualizations of the attention maps demonstrated how the attention mechanism

can be distracted by such noise. Furthermore, we showed that, for successful

adversarial examples, the norm of the difference image, i.e. ‖δ‖2, is higher for

MAC network than N2NMN for both the datasets, CLEVRsame and CLEVRdiff.

We also explicitly stated the criterion under which a different category attack can

be successful for N2NMN. The high success rate of Xu et al. [144] for N2NMN on

VQAdiff further shows the importance of category-specific answer module. Keeping

this criterion in mind, a naive solution to secure N2NMN against different category

attack is to replace Describe module with four separate modules (one for each

category). However, this will not be a feasible solution for datasets with large

number of categories.
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Mimic and Fool: A Task-Agnostic

Adversarial Attack

...mirages are things that aren’t really there that you

can see very clearly. “How do you see something

that isn’t there?”...“sometimes it’s much simpler

than seeing things that are”...

Norton Juster

The adversarial attacks, proposed in the literature, are designed in a task-specific

fashion. Such attacks use a task-specific adversarial loss function to generate

adversarial examples. In this chapter, we propose a task-agnostic attack, named

Mimic and Fool, for vision systems. The proposed attack is based on the fact that,

for downstream computer vision tasks (e.g. image captioning, image segmenta-

tion etc.) the current deep learning systems use an image classifier (e.g. VGG16,

ResNet50, Inception-v3 etc.) as a feature extractor. Thus, given a feature extrac-

tor, the proposed attack tries to find an adversarial image which can mimic the

image feature of the original image; thereby ensuring that the two images give the

same (or similar) output regardless of the task. This makes the proposed attack an

invariance-based attack. Furthermore, since the proposed attack only requires in-

formation about the feature extractor of the model, it is a gray-box attack. In this

chapter, we also propose a slight modification to the proposed attack to generate

natural-looking adversarial images. Additionally, we also show the applicability of

the proposed attack for invertible architecture.

45
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The rest of this chapter is organized as follows. Section 3.1 discusses the two image

captioning systems used for experimentation. This section also highlights the main

idea and key advantages of Mimic and Fool over task-specific attacks. Section 3.2

describes the attack methodology. Section 3.3 provides the implementation de-

tails. Section 3.4 discusses the results of Mimic and Fool with regards to success

rate, time, and applicability to invertible architecture . Section 3.5 provides some

examples of the proposed attack. Finally, Section 3.6 summarizes the chapter.

3.1 Background

In this section, we discuss the architecture of two image captioning systems,

namely, Show and Tell [129], and Show Attend and Tell [142] in Sections 3.1.1

and 3.1.2 respectively. In Section 3.1.3, we highlight the main idea of Mimic and

Fool and its key advantages over task-specific attacks.

3.1.1 Show and Tell

Show and Tell [129] was the first deep neural network for image captioning. The

captioning system uses a CNN in conjunction with LSTM. The image is embed-

ded as a 2048-dimensional vector obtained via the global average pooling layer of

Inception-v3. Hence, Inception-v3 acts as a feature extractor. The image embed-

ding is then passed as input to LSTM in order to generate captions.

3.1.2 Show, Attend and Tell

Show, Attend and Tell [142] uses the idea of attention in order to attend on

relevant portions of images while generating captions. The captioning system

uses VGG-16 as a feature extractor. More precisely, the image is embedded as

a 14 × 14 × 512 feature map. Hence, unlike Show and Tell, this image feature

has spatial information about the image, i.e., each 512-dimensional vector in the

feature map corresponds to a specific image portion. During decoding, at each

time step, the attention layer predicts a probability distribution over the 512-

dimensional vectors and outputs a weighted vector. The weighted vector is fed as

input to the LSTM.
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Figure 3.1: Examples of Mimic and Fool. The first two rows show the
original and adversarial images along with the predicted captions by Show and
Tell and Show Attend and Tell respectively. The last row shows original and
adversarial image for N2NMN (Q, P denote the question and the predicted
answer respectively).

3.1.3 Proposed Attack: Overview and Advantages

Mimic and Fool exploits the non-invertibility of CNN-based feature extractors

to attack the downstream model. Given a model and its feature extractor, the

proposed attack is based on the simple hypothesis that if two images are indis-

tinguishable for the feature extractor then they will be indistinguishable for the

model as well. Thus to attack any model, attacking its feature extractor suffices.

Based on this insight, Mimic and Fool finds an adversarial image which can mimic
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the feature of the original image thereby fooling the model. Figure 3.1 shows ex-

amples of Mimic and Fool on two captioning models: Show and Tell [129], Show

Attend and Tell [142] and one VQA model: end-to-end neural module network

(N2NMN) [51]. It is crucial to note that the goal of Mimic and Fool differs from

traditional adversarial attacks [17, 41, 69, 144]. In traditional adversarial attacks,

small amount of noise is added to the image in order to fool the model to gen-

erate a different output. Whereas, in Mimic and Fool, the goal is to generate

an adversarial image which can fool the model to predict the same output as the

original image. Hence, Mimic and Fool is an invariance-based attack. As we can

see from Figure 3.1, the adversarial images obtained via Mimic and Fool are noisy

images. In order to generate natural-looking adversarial images, we also propose

a modified version of our attack, namely One Image Many Outputs (OIMO). In

OIMO, we start with a fixed natural image and restrict the amount of noise that

can be added to the image. Apart from task-agnosticity, Mimic and Fool offers

other significant advantages: (i) Mimic and Fool is extremely fast and requires

less computing resources since only the feature extractor needs to be loaded in

the memory instead of the entire model. (ii) Due to the task-agnostic nature, we

need to run the attack only at image-level which is a huge advantage in terms of

time saved for tasks involving multiple modalities as input such as visual ques-

tion answering. An adversarial attack designed specifically for VQA will run at

image-question pair level.

3.2 Methodology

In this section, we describe the proposed attack, Mimic and Fool, and One Image

Many Outputs (OIMO) which is able to generate natural looking adversarial im-

ages. Since both the attacks are task agnostic, we describe the attack in terms of

the feature extractor instead of the model.

3.2.1 Mimic and Fool

Let f : Rm×n×3 −→ Rd denote the feature extractor of the model. Hence, d will

be 14× 14× 1024 if we extract conv4 features from ResNet101 and d will be 2048

if we use output of average pooling layer of Inception-v3 as image feature. Let

Iorg ∈ [0, 255]m×n×3 denote the original image. Given Iorg and a feature extractor
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f , our goal is to find an adversarial image Iadv ∈ [0, 255]m×n×3 which can mimic

the image features of Iorg. We model this task as a simple optimization problem

given by

min
I

‖f(trunc(I))− f(Iorg)‖2
2

d
(3.1)

where ‖.‖2 denotes `2−norm and trunc is truncating function which ensures that

the intensity values lie in the range [0, 255]. Although I = Iorg is a solution to the

above optimization problem, it is highly unlikely that the algorithm will converge

to this solution. This is because convolutional neural networks discard significant

amount of spatial information as we go from lower to higher layers. Mahendran

and Vedaldi [83] showed that the amount of invariance increases from lower to

higher layer of AlexNet [68] and regularizers like total variation (TV) are needed

to reconstruct the original image from higher layer features of AlexNet. We start

with a zero-image and run the proposed attack for maxiter iterations and return

the final truncated image trunc(I) as Iadv.

Some feature extractors such as Inception-v3 require the intensity values of the

input image to be in the range [−1, 1]. In such a case, let I ′org ∈ [−1, 1]m×n×3 be

the scaled original image i.e.

I ′org = 2(Iorg/255)− 1 (3.2)

For this case, we modify the optimization problem defined in Equation 3.1 as

follows

min
I

∥∥f(tanh(I))− f(I ′org)
∥∥2

2

d
(3.3)

where tanh ensures that the input to feature extractor lies within the required

range. We run the attack for maxiter iterations and rescale the final image tanh(I)

to get Iadv i.e.

Iadv = 255

(
tanh(I) + 1

2

)
(3.4)

3.2.2 One Image Many Outputs

In One Image Many Outputs (OIMO), we start with an image Istart ∈ [0, 255]m×n×3

instead of starting with zero-image. The image Istart is kept fixed throughout the
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experiment. In OIMO, our goal is to modify Istart so as to mimic the feature of

Iorg. Equation 3.1 is modified as follows

min
δ

‖f(trunc(Istart + δ))− f(Iorg)‖2
2

d
(3.5)

Similar to Chen et al. [17], we modify the Equation 3.3 as follows

min
δ

∥∥f(tanh(I ′′start + δ))− f(I ′org)
∥∥2

2

d
(3.6)

where I ′′start = arctanh(λI ′start), I
′
start ∈ [−1, 1]m×n×3 is the scaled starting image,

λ is set to 0.9999 to ensure invertibility of tanh, δ ∈ Rm×n×3 is the learnable

parameter. For this attack, we reduce the value of maxiter and initial learning

rate to ensure that Iadv looks very similar to Istart.

Similar to Mimic and Fool, after running the attack for maxiter iterations, Iadv for

Equation 3.5 is trunc(Istart + δ). For Equation 3.6, Iadv is given by the following

equation

Iadv = 255

(
tanh(I ′′start + δ) + 1

2

)
(3.7)

We name the proposed attack One Image Many Outputs since all the adversarial

images look very similar to Istart.

3.3 Implementation Details

As stated earlier, we study the proposed attack for two image captioning models;

Show and Tell, Show Attend and Tell and one VQA model, namely, N2NMN.

We train the N2NMN model on VQA v2.0 dataset for 95K iterations with expert

policy followed by 65K iterations in policy search after cloning stage using the

original source code1. The trained N2NMN has 61.72% accuracy on VQAv2 test-

dev set. For Show and Tell and Show Attend and Tell, we use already available

trained models2,3.

1https://github.com/ronghanghu/n2nmn
2https://github.com/KranthiGV/Pretrained-Show-and-Tell-model
3https://github.com/DeepRNN/image_captioning

https://github.com/ronghanghu/n2nmn
https://github.com/KranthiGV/Pretrained-Show-and-Tell-model
https://github.com/DeepRNN/image_captioning
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Show and Tell uses 2048-dimensional feature from Inception-v3, Show Attend and

Tell uses 14 × 14 × 512 feature map from VGG16, N2NMN uses output of res5c

layer from ResNet-152 as image feature. The input images are of size 299×299×3,

224×224×3, 448×448×3 for Inception-v3, VGG16 and ResNet-152 respectively.

The trained Show and Tell, Show Attend and Tell fine-tune their respective feature

extractors whereas N2NMN does not use fine-tuning.

For Mimic and Fool, we set maxiter to 1000, 1000 and 2000 for Inception-v3,

VGG16 and ResNet-152 respectively. The initial learning rate is set to 0.025, 0.025

and 0.0125 for Inception-v3, VGG16 and ResNet-152 respectively. For One Image

Many Outputs, we set maxiter to 300, 500, 500 and set the initial learning rate

to 0.0125, 0.0125, 0.00625 for Inception-v3, VGG16 and ResNet-152 respectively.

We use Adam [65] as the optimizer and Keras [24] for implementing the proposed

attacks. All experiments are done on a single 11 GB GeForce GTX 1080 Ti GPU.

The code for Mimic and Fool is publicly available.4

3.4 Results

For studying the two proposed attacks, 1000 MSCOCO validation images are

randomly selected. For the 1000 selected images, there are 5208 image-question

pairs in VQA v2.0 dataset. For visual question answering, we discard those image-

question pairs where the VQA model predicts the same answer for Istart and Iorg

(For Mimic and Fool, Istart is a zero-image). This is done to ensure that the VQA

model predicts the same answer for Istart and Iorg due to adversarial noise rather

than language bias. The proposed attack is considered to be successful if the

model gives the same output for the original and the adversarial image. Hence

for image captioning, the two captions need to be exactly the same for the attack

to be successful. In the following subsections, we analyze the behavior of the two

proposed attacks on the three models: N2NMN, Show and Tell and Show Attend

and Tell. We also study the effectiveness of the proposed method for an invertible

architecture.

4https://github.com/akshay107/mimic-and-fool

https://github.com/akshay107/mimic-and-fool
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Task Model Feature Success Average
Extractor Rate Time

Image Show and Tell Inception-v3 74.0 % 25.35 sec
Captioning Show, Attend and Tell VGG16 81.0 % 15.56 sec

VQA N2NMN ResNet-152 87.1 % 72.98 sec

Table 3.1: Success rate of Mimic and Fool

3.4.1 Results for Mimic and Fool

Table 3.1 shows the success rate of Mimic and Fool for the three models. Out of

5208 image question pairs, N2NMN predicts the same answer for Iorg and zero-

image for 1707 pairs. Out of the remaining 3501 pairs, Mimic and Fool is successful

for 3049 image question pairs. This yields success rate of 87.1%. The high success

rate shows that it is possible to mimic features extracted from a very deep network

like ResNet-152 as well. Since Mimic and Fool is task-agnostic, we need to run

the proposed attack at image level instead of image-question pair level. This is

a huge advantage since it results in a drastic reduction in time. The advantage

will be even more pronounced for any future tasks which have multiple modalities

as input with image (or video) being one of the modalities. Figure 3.2 shows the

predicted answer by N2NMN for different image-question pairs. From Figure 3.2,

we can see that a single adversarial image suffices for three image-question pairs.

Q: How many hands are in the picture?
P: 4

Pzero: 1

Original
Q: What type of place is this?

P: school
Pzero: kitchen

Q: Is this a recent photo?
P: no

Pzero: yes

Adversarial

Figure 3.2: Example of Mimic and Fool for N2NMN. Single adversarial
image suffices for three image-question pairs. Q and P denote the question
and the predicted answer respectively. Pzero denotes the predicted answer for
zero image.
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Model Attack B-1 B-2 B-3 B-4 M

Show and Tell

Show-and-Fool [17]

Mimic and Fool

OIMO

0.560

0.597

0.593

0.394

0.464

0.459

0.266

0.348

0.350

0.205

0.264

0.270

0.301

0.320

0.322

Show, Attend and

Tell

EM [145]

SSVM [145]

Mimic and Fool

OIMO

0.765

0.635

0.639

0.594

0.650

0.501

0.530

0.468

0.529

0.409

0.421

0.359

0.423

0.300

0.333

0.284

0.425

0.337

0.368

0.336

Table 3.2: BLEU and METEOR scores for unsuccessful cases. OIMO
refers to One Image Many Outputs. B-1, B-2, B-3, B-4, and M represents
BLEU-1, BLEU-2, BLEU-3, BLEU-4 and METEOR respectively. ST, and
SAT represents Show and Tell, and Show Attend and Tell respectively.

As we can see from Table 3.1, Mimic and Fool is very fast. The attack only takes

around 25 seconds for generating adversarial images for Show and Tell. The time

taken for Show, Attend and Tell is even less since VGG16 is a shallower network.

The proposed attack achieves success rate of 74.0% and 81.0% for Show and Tell

and Show Attend and Tell respectively. This is especially encouraging result since

generating exactly the same caption for an adversarial image is a very challenging

task. This is because, as observed by Chen et al. [17], the number of possible

captions are infinite which makes a captioning system harder to attack than an

image classifier. Our results show that in order to generate the same caption,

it suffices to attack just the encoder of the captioning model. This validates

our initial hypothesis that in order to attack any model, attacking its feature

extractor suffices. For the unsuccessful cases, the predicted captions for original

and adversarial images are very similar. Figure 3.3 shows two successful and one

unsuccessful examples of Mimic and Fool for Show and Tell and Show Attend and

Tell. As we can see from Figure 3.3 that for the unsuccessful cases, the predicted

captions for the original and adversarial images have a large amount of overlap.

We also calculate the BLEU and METEOR score, using the pipeline provided

by Sharma et al. [116], for unsuccessful adversarial cases as shown in Table 3.2.

We use the predicted caption for the original image as reference while calculating

these metrics.
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Show and Tell

a female tennis player
in action on the court.

a female tennis player
in action on the court.

a pizza sitting in top
of a white plate.

a pizza sitting in top
of a white plate.

a man in a suit and tie
standing in the room.

a man in a suit and tie
is smiling.

Show, Attend and Tell

a man is riding skis
down a snow covered

slope.

a man is riding skis
down a snow covered

slope.

a man riding a
motorcycle down a

street.

a man riding a
motorcycle down a

street.

a man swinging a
tennis racquet on
a tennis court.

a man is playing
tennis on a
tennis court.

Figure 3.3: Examples of Mimic and Fool. For both the captioning models,
the figure shows two successful and one unsuccessful original and adversarial
images along with the predicted captions. Unsuccessful cases are shown in
italics.

3.4.2 Results for One Image Many Outputs

The main idea behind One Image Many Outputs is to generate natural-looking

adversarial images. We randomly choose an image from MSCOCO training set

as the starting image. Figure 3.4 shows the starting image (Istart) for One Image

Many Outputs along with the predicted captions of Show And Tell and Show

Attend and Tell. We use the same Istart for N2NMN. Similar to Mimic and Fool,

we discard 1713 image-question pairs for which N2NMN predicts the same answer

for Iorg and Istart.

Show and Tell: a plastic container
filled with lots of food.

Show, Attend and Tell: a tray filled
with different types of food.

Figure 3.4: Istart for One Image Many Outputs and the predicted captions.

In One Image Many Outputs, we reduce the value of maxiter and the initial learning

rate to ensure that the adversarial image Iadv looks very similar to Istart. Reduction

in maxiter results in even faster running time than Mimic and Fool. Table 3.3

shows the success rate of One Image Many Outputs for Show and Tell, Show

Attend and Tell and N2NMN. As we can see from Table 3.1 and Table 3.3, the
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Model Success Rate Time (in sec.)

Show and Tell 56.9 % 7.61

Show, Attend and Tell 50.3 % 7.78

N2NMN 72.8 % 36.50

Table 3.3: Success rate of One Image Many Outputs

Q: Is there a thriller playing on the screen?
P: no

PIstart: yes

Original
Q: Is this person sick?

P: no
PIstart: yes

Q: Is any one of these a TV?
P: yes

PIstart: no

Adversarial

Figure 3.5: Example of One Image Many Outputs for N2NMN. Single
adversarial image suffices for three image-question pairs. Q and P denote the
question and the predicted answer respectively. PIstart denotes the predicted
answer for Istart.

success rate reduces for One Image Many Outputs in comparison to Mimic and

Fool. This is intuitive since in One Image Many Outputs, the reduced value of

maxiter and initial learning rate allows for less adversarial noise. Figure 3.5 shows

an example of OIMO for N2NMN. Similar to Mimic and Fool, a single adversarial

image suffices for multiple image-question pairs.

From Table 3.3, we can see that One Image Many Outputs takes under 8 seconds

per image for both the captioning models. Considering this reduction and the fact

that the attack is successful only when there is an exact match of captions, the

success rate of One Image Many Outputs is impressive. Similar to Mimic and Fool,

we find that for the unsuccessful cases of One Image Many Outputs, the captions

predicted by the model for the adversarial and original images are very similar to

each other. This shows that even when Iadv is very similar to Istart, it can still

mimic features of an arbitrary image. This is further emphasized by the results in

Table 3.2 which shows the BLEU and METEOR score for the unsuccessful cases
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of One Image Many Outputs.

Show and Tell

a woman standing in
front of a

refrigerator.

ST: a woman standing
in front of a
refrigerator.

SAT: a close up of
a tray of food.

a brown horse
standing on top of
a lush green field.

ST: a brown horse
standing on top of
a lush green field.
SAT: a close up of

a tray of food.

a row of motorcycles
parked next to each

other.

ST: a row of parked
motorcycles sitting
next to each other.
SAT: a close up of

a tray of food.

Show, Attend and Tell

a man holding a hot
dog in his hand.

SAT: a man holding a
hot dog in his hand.

ST: a bunch of
different types of
food on a table.

a man holding a
tennis racquet on a

tennis court.

SAT: a man holding a
tennis racquet on a

tennis court.
ST: a table topped

with lots of different
types of vegetables.

a cat laying on top of
a wooden desk.

SAT: a cat laying on
top of a desk.

ST: a lunch box
with a variety of

vegetables.

Figure 3.6: Examples of One Image Many Outputs. For both the captioning
models, the figure shows two successful and one unsuccessful original and
adversarial images along with the predicted captions. Unsuccessful cases are
shown in italics. For adversarial images, ST and SAT denote Show and Tell
and Show Attend and Tell respectively.

Figure 3.6 shows two successful and one unsuccessful examples (shown in italics)

of One Image Many Outputs for Show and Tell and Show Attend and Tell. For

the adversarial images in Figure 3.6, ST and SAT denote Show and Tell and

Show Attend and Tell respectively. As we can see from Figure 3.6, all the six

adversarial images are very similar to the starting image, Istart. Also for the

unsuccessful cases, the original and adversarial captions have a large amount of

overlap and are semantically similar. In Figure 3.6, we see that for Show and Tell,

the captions predicted by Show, Attend and Tell for the three adversarial images

are the same. Similarly for Show, Attend and Tell, although the captions predicted

by Show and Tell are different, they are semantically similar. Moreover, for both

the captioning models, the predicted captions by the other captioning model are

relevant captions for the starting image, Istart. In fact, we find that when the 1000

adversarial images for Show And Tell are given as input to Show, Attend and Tell,

there are only 15 unique captions. All these 15 captions are relevant captions for

Istart. Similarly, when the 1000 adversarial images for Show, Attend and Tell are

given as input to Show and Tell, there are only 82 unique captions, most of which

are relevant to Istart. We find that Show and Tell generates irrelevant captions for
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Task Model Method Success Time

Rate (in sec)

Image
Captioning

Show and Tell Show-and-Fool [17] 95.1 % 177.93

Show, Attend and Tell
EM [145] 77.1 % 20.69

SSVM [145] 82.1 % 18.73

VQA N2NMN Xu et al. [144] 100.0 % 8.77× nq

Table 3.4: Success rate and Time for task-specific methods. nq signifies the
average number of questions per image.

Istart only for 32 out of 1000 adversarial images. Since the two captioning models

use different feature extractors, this result shows that the proposed attack is very

dependent on the feature extractor. In other words, ensuring that the two images

are indistinguishable for one feature extractor does not ensure that they will be

indistinguishable for another feature extractor.

3.4.3 Comparison with task specific attack

In this section, we compare our proposed attack, OIMO with other task-specific

attacks. For Show and Tell, we use Show-and-Fool [17]. For Show, Attend and

Tell, we use EM and SSVM methods of Xu et al. [145]. For N2NMN, we use the

VQA attack of Xu et al. [144]. For Show-and-Fool and EM and SSVM methods, we

use the official implementation.56 We implement the attack proposed by Xu et al.

[144] using the default parameters mentioned in the paper. Similar to OIMO, we

start with Istart and run the task specific attacks in order to generate adversarial

outputs. Table 3.4 shows the success rate and time for different task-specific

methods. Show-and-Fool achieves a success rate of 95.1% and takes 177.93 seconds

per image. The EM and SSVM take less time for Show, Attend and Tell but have

lower success rates. In contrast, OIMO takes around 8 seconds per image for both

the captioning models. For unsuccessful cases, like OIMO, Show-and-Fool and

EM and SSVM generate similar captions for original and adversarial images as

evident from high BLEU and METEOR scores in Table 3.2. We find that for the

adversarial images generated by Show-and-Fool, Show Attend and Tell generates

only 11 unique captions, all of which are relevant captions for Istart. Chen et al. [17]

study the transferability of Show-and-Fool between the captioning models, however

5https://github.com/IBM/Image-Captioning-Attack
6https://github.com/wubaoyuan/adversarial-attack-to-caption

https://github.com/IBM/Image-Captioning-Attack
https://github.com/wubaoyuan/adversarial-attack-to-caption


Chapter 3 58

in their study, the two captioning models use the same feature extractor. Similarly,

we obtain only 3 and 5 unique captions from Show and Tell for adversarial images

of EM and SSVM respectively. All these captions are relevant for Istart. Xu et al.

[144] achieve 100.0% success rate. The attack takes 8.77 seconds for each image-

question pair. The factor nq in the time for Xu et al. [144] in Table 3.4 signifies

the average number of questions per image, which can be arbitrarily large.

3.4.4 OIMO for invertible architecture

Recently, Jacobsen et al. [54] propose a deep invertible architecture, i-RevNet

which learns a one-to-one mapping between image and its feature. These networks

achieve impressive accuracy on ILSVRC-2012 [29]. For experimentation, we choose

bijective i-RevNet which takes images of size 224 × 224 × 3 as input and the

corresponding feature is of size 3072 × 7 × 7. We use the pretrained i-RevNet

provided in the official implementation7 to test our proposed attack, One Image

Many Outputs. We randomly choose 100 correctly classified images belonging to

41 different classes from the validation set of ILSVRC-2012. Furthermore, we

choose a starting image, Istart, belonging to a different class. We also restrict the

search space for adversarial images using the clipping function ClipIstart,ε (i.e. the

adversarial noise is clipped to ensure that the adversarial image Iadv will lie in

an ε `∞-neighborhood of Istart). Starting with Istart ∈ [0, 255]224×224×3, we run

the proposed attack, OIMO, in order to mimic the feature for 100 images. Table

3.5 shows the success rate for different values of ε. The high success rate shows

that the proposed attack can be applied for invertible architecture like i-RevNet

as well. This is because i-RevNet, despite being invertible, assigns similar features

to dissimilar images. Figure 3.7 shows one such successful adversarial example.

ε Success Rate

2 86.0 %

5 99.0 %

10 100.0 %

Table 3.5: Success rate of One Image Many Outputs for i-RevNet

7https://github.com/jhjacobsen/pytorch-i-revnet

https://github.com/jhjacobsen/pytorch-i-revnet
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Figure 3.7: Both the images are classified as ice bear by bijective i-RevNet.

3.4.5 Quantitative study of Adversarial Noise

Model Attack PSNR (mean ± std)

Show and Tell
Show-and-Fool [17] 52.5 ± 6.7

OIMO 23.8 ± 0.6

Show, Attend and Tell
SSVM [145] 42.1 ± 1.2

EM [145] 40.4 ± 0.9
OIMO 26.1 ± 1.1

N2NMN
Xu et al. [144] 33.8 ± 3.7

OIMO 27.6 ± 0.5

Table 3.6: PSNR between Iadv and Istart for One Image Many Outputs
(OIMO) and task-specific methods.

Table 3.6 shows the peak signal-to-noise ratio (PSNR) for OIMO and task-specific

methods. The PSNR is calculated as follows

PSNR = 20 log10

(
255.0√
MSE

)
where MSE =

‖Iadv − Istart‖2
2

m× n× 3

(3.8)

where Iadv, Istart ∈ [0, 255]m×n×3. From Table 3.6, it is evident that the PSNR is low

for OIMO in comparison with other task-specific methods. This is mainly because

task-specific methods can exploit the deficiencies of encoder as well as the decoder

and such attack methods can be stopped at the exact instant when an adversarial

image leads to the desired output. Agnosticity, in any form, generally leads to

more noise. As an example, image-agnostic universal adversarial perturabations

(UAP) [88] are quasi-perceptible instead of being imperceptible. Table 3.7 shows
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Model Attack SSIM (mean ± std)

Show and Tell
MAF 1.8× 10−4 ± 1.3× 10−3

OIMO 6.1× 10−4 ± 2.9× 10−3

Show, Attend and Tell
MAF 7.5× 10−4 ± 2.7× 10−3

OIMO 6.8× 10−4 ± 4.2× 10−3

N2NMN
MAF 5.6× 10−4 ± 1.5× 10−3

OIMO 4.5× 10−4 ± 2.2× 10−3

Table 3.7: SSIM between Iadv and Iorg for Mimic and Fool (MAF) and One
Image Many Outputs (OIMO).

the SSIM [155] values between Iadv and Iorg for the proposed methods. The near-

zero values of SSIM clearly show that there is no resemblance between the original

and adversarial image.
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3.5 Examples of the Attack

3.5.1 Examples of Mimic and Fool

Image What is the brand of drink? What does the phone say? Is this a smartphone?

pepsi nokia no

pepsi nokia no

Image What is the big red thing? Are there clouds visible? What city is this?

fire truck yes london

fire truck yes london

Table 3.8: Examples of Mimic and Fool for N2NMN. Single adversarial
image suffices for three image-question pairs.



Chapter 3 62

Image What room is this? Image What is the man doing?

living room sitting

living room sitting

bathroom skateboarding

bathroom skateboarding

bedroom surfing

bedroom surfing

Table 3.9: Examples of Mimic and Fool for N2NMN. N2NMN predicts varied
answers for the same question.
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Image Caption Image Caption

a group of people on
surfboards in the water.

a man riding a wave
on top of a surfboard.

1. a group of people on
surfboards in the water.
2. a group of people on
surfboards in the ocean.

3. a group of people riding
on top of surfboards.

1. a man riding a wave
on top of a surfboard.

2. a man riding a surfboard
on top of a wave.

3. a man on a surfboard
riding a wave.

Image Caption Image Caption

a man riding a skateboard
up the side of a ramp.

a laptop computer sitting
on top of a desk.

1. a man riding a skateboard
up the side of a ramp.

2. a man riding a skateboard
down the side of a ramp.

3. a man riding a skateboard
up the side of a cement ramp.

1. a laptop computer sitting
on top of a desk.

2. a laptop computer sitting
on top of a wooden desk.
3. a desk with a laptop

and a lamp.

Image Caption Image Caption

a bus that is sitting
in the street.

a woman sitting at a
table with a laptop.

1. a bus that is driving
down the street.

2. a bus that is sitting
on the side of the road.
3. a bus that is parked
on the side of the road.

1. a woman sitting in
front of a laptop computer.

2. a woman sitting at
a table with a laptop.
3. a woman sitting at

a table with a laptop computer.

Table 3.10: Examples for Show and Tell. The first two rows contain
successful cases and the last row contains unsuccessful cases.
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Image Caption Image Caption

a red double decker bus
driving down a street.

a group of people sitting
in a room.

1. a red double decker bus
driving down a street.

2. a red double decker bus
driving down the street.

3. a red double decker bus
traveling down a street.

1. a group of people sitting
in a room.

2. a group of people sitting
on a couch.

3. a group of people sitting
on a bed.

Image Caption Image Caption

a group of cows standing
in a field.

a person on a beach
with a surfboard.

1. a group of cows standing
in a field.

2. a group of cows standing
next to each other.

3. a group of cows standing
next to each other in a field.

1. a person on a beach
with a surfboard.

2. a person on a beach
holding a surfboard.

3. a person walking on a beach
with a surfboard.

Image Caption Image Caption

a train traveling down the
tracks near a forest.

a boat floating in a
body of water.

1. a train traveling down the
tracks near to a forest.

2. a train traveling down the
tracks near a forest.

3. a train traveling down a
train track next to a forest.

1. a boat floating in the
water next to a lake.

2. a boat floating in the
water near a lake.

3. a boat floating in the
water next to a body of water.

Table 3.11: Examples for Show Attend and Tell. The first two rows contain
successful cases and the last row contains unsuccessful cases.
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3.5.2 Examples of One Image Many Outputs

Image What number is on the bus? How many busses are there? What color is bus bumper?

22 1 yellow

22 1 yellow

Image Is this a hotel room? Which room is this? What is on the nightstand?

yes bedroom lamp

yes bedroom lamp

Image What are the people holding? What are the people looking at? How many headbands are pictured?

tennis rackets camera 2

tennis rackets camera 2

Table 3.12: Examples of One Image Many Outputs for N2NMN. Single
adversarial image suffices for three image-question pairs.
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Image What kind of animal is this? Image What sport is being played?

elephant soccer

elephant soccer

giraffe skateboarding

giraffe skateboarding

cat tennis

cat tennis

Table 3.13: Examples of One Image Many Outputs for N2NMN. N2NMN
predicts varied answers for the same question.
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Image Caption Image Caption

a group of people standing
next to each other.

a man riding a wave on
top of a surfboard.

1. a group of people standing
next to each other.

2. a group of people standing
next to each other eating food.

3. a group of people standing next
to each other eating pizza.

1. a man riding a wave on
top of a surfboard.

2. a person riding a surfboard
on a wave.

3. a man riding a surfboard
on top of a river.

Image Caption Image Caption

a herd of zebra standing on
top of a lush green field.

a pile of luggage sitting
next to each other.

1. a herd of zebra standing on
top of a lush green field.

2. a herd of zebra standing on
top of a grass covered field.
3. a herd of zebra standing

next to each other on a field.

1. a pile of luggage sitting
next to each other.

2. a pile of luggage sitting
on top of a wooden floor.
3. a pile of luggage sitting

on top of a floor.

Image Caption Image Caption

a car driving down a road
with a herd of cattle.

a man in a suit and tie
standing on a street.

1. a car driving down a road
next to a herd of cattle.

2. a car driving down a road
next to a herd of sheep.

3. a car driving down a road
next to a herd of animals.

1. a man in a suit and tie
standing in front of a building.

2. a man in a suit and tie
standing in a street.

3. man in a suit and tie
with a hat on.

Table 3.14: Examples for Show and Tell. The first two rows contain
successful cases and the last row contains unsuccessful cases.
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Image Caption Image Caption

a couple of street signs
on a pole.

a close up of a sandwich
on a plate.

1. a couple of street signs
on a pole.

2. a couple of street signs
on a street.

3. a couple of street signs
hanging from a pole.

1. a close up of a sandwich
on a plate.

2. a close up of a plate
of food.

3. a close up of a plate
of food on a table.

Image Caption Image Caption

a group of people standing
on a beach.

a group of zebras standing
next to each other.

1. a group of people standing
on a beach.

2. a group of people standing
on top of a sandy beach.

3. a group of people standing
in the sand.

1. a group of zebras standing
next to each other.

2. three zebras standing
next to each other in a zoo.

3. three zebras standing
next to each other in a zoo enclosure.

Image Caption Image Caption

a person on a surfboard
riding a wave.

a close up of a person
holding a doughnut.

1. a person riding a surfboard
on top of a wave.

2. a person on a surfboard
riding a wave.

3. a person riding a surfboard
on a wave.

1. a close up of a person
holding a hot dog.

2. a close up of a person
holding a piece of food.
3. a close up of a person
holding a piece of cake.

Table 3.15: Examples for Show Attend and Tell. The first two rows contain
successful cases and the last row contains unsuccessful cases.

3.6 Summary

In this chapter, we proposed a task agnostic adversarial attack, Mimic and Fool.

The proposed attack exploits the non-invertibility of CNN-based feature extractors

and is based on the hypothesis that if two images are indistinguishable for the

feature extractor then they will be indistinguishable for the model as well. The

high success rate of Mimic and Fool for three models across two tasks validates

this hypothesis. We also showed that the proposed attack works regardless of the

depth of the feature extractor. Due to the task-agnostic nature, we need to run
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the attack only at image-level which is a huge advantage in terms of time saved

for tasks involving multiple modalities as input. We further proposed a variant

of Mimic and Fool, named One Image Many Outputs, which generates natural-

looking adversarial images. The results for this variant of the attack show that it

is possible to mimic features of an arbitrary image by making minimal changes to

a fixed image. This is an important insight into the nature of CNN-based feature

extractors. We also demonstrated the applicability of the proposed attack for

invertible architectures like i-RevNet.
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Exploring the Robustness of

NMT systems to Non-sensical

Inputs

To do is to be.

Plato

To be is to do.

Socrates

Do be do be do.

Frank Sinatra

Neural machine translation (NMT) systems have made remarkable gains leading

to the state-of-the-art performance in the past few years [81, 128]. In this chapter,

we explore the robustness of such systems by asking the following question “Is

it possible for an NMT system to predict same translation even when multiple

words in the source sentence have been replaced completely changing the meaning

of the source?”. To this end, we propose an adversarial attack which uses a soft-

attention based technique to make the aforementioned word replacements. Such

an attack allows us to explore the ability of NMT systems to capture semantics

of the source sentence. Similar to Mimic and Fool, the proposed attack is an

invariance-based attack. However, unlike Mimic and Fool, the proposed attack

is a white-box attack. In this chapter, we also propose an alternate BLEU-based

metric and argue its benefits in comparison to standard metrics like success rate for

70
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evaluating invariance-based attack against NMT systems. We study the robustness

of NMT systems both in low-resource as well as high-resource setting. The results

demonstrate that the NMT systems in high-resource setting are more robust to

the proposed attack than in low-resource setting, despite achieving similar BLEU

scores.

The rest of this chapter is organized as follows. Section 4.1 briefly discusses the

two NMT systems considered in this chapter. Section 4.2 describes the motivation

behind the proposed attack. Section 4.3 describes the proposed attack in detail.

Section 4.4 provides the implementation details. Section 4.5 discusses several

metrics for evaluating the efficiency of the proposed attack. Section 4.6 presents

the results of the proposed attack in terms of these metrics. In this section, we

present the result of the proposed attack both in low-resource and high-resource

setting. Finally, Section 4.7 summarizes the chapter.

4.1 Background

In this section, we discuss the architecture of the two state-of-the-art NMT sys-

tems considered in this chapter, namely, BLSTM-based encoder decoder with at-

tention [81] and Transformer [128].

4.1.1 BLSTM-based encoder decoder with attention

BLSTM-based encoder decoder with attention comprises of a bidirectional encoder

LSTM and a unidirectional decoder LSTM. Let qt denote the hidden state of

the decoder LSTM at time t and ht′ denote the hidden state of bidirectional

encoder LSTM at time t′. At each decoder time-step t, an attention mechanism

constructs a context vector, denoted by ct, to attend on particular words in the

source sentence [81]. The context vector is constructed as follows

stt′ = qTt W
attnht′ (4.1)

αtt′ =
exp(stt′)

Σt′exp(stt′)
(4.2)

ct = Σt′α
t
t′ht′ (4.3)
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where W attn is a trainable parameter. Both ct and qt are then used to predict the

target word at time-step t.

4.1.2 Transformer

A major drawback with LSTM-based architectures is that they are difficult to

parallelize since such architectures require the output at previous time steps in

order to compute the output at current time step (i.e., recurrence operation).

This difficulty essentially leads to longer training time. To remedy this issue,

Transformer [128] completely gets rid of recurrence and relies solely on attention.

While recurrence operation in LSTM intrinsically captures position of a word

in a sequence, Transformer makes use of sinusoidal-based positional embeddings

for the same. Apart from positional embeddings, Transformer also makes use

of multi-head attention. Multi-head attention comprises of several self-attention

layers. The goal of self-attention layer is to incorporate context into individual

word embeddings (i.e., context-aware embedding). To do so, self-attention layer

associates three vectors (i.e., namely query, key and value) for each word in the

sequence. Let Q,K, V denote the query, key and value matrices respectively.

These matrices are of size lseq × d where lseq denotes the sequence length and d is

the dimension of the embeddings. Given the three matrices, self attention is given

by

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (4.4)

For decoder, the multi-head attention is masked in order to ensure that Trans-

former only relies on previous target words in order to predict the next word.

Furthermore, decoder also incorporates information from the encoder via another

multi-head attention where the value and key comes from the encoder and the

query comes from the decoder.

4.2 Motivation

Given a source sentence s = (s1, s2, ..., sn), our goal is to replace multiple words

si’s with new words s′i’s while ensuring that the predicted translation remains un-

changed. To achieve this, we propose a white-box soft-attention based adversarial
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src Not a single body should remain
undiscovered or unidentified .

adv-src unaware topic single body should remain
undsubmitted covered Within uniunclear
fied surely

pred Kein einziger Körper sollte unbehandelt
oder geklärt bleiben .

Table 4.1: Example of the proposed attack. The English-German
Transformer predicts the same translation for the two sentences even though
multiple replacements are made.

attack. Table 4.1 shows an example of the proposed attack. This example shows

an instance where the NMT system is invariant to multiple word replacements.

Such word-level invariances captured by the model are undesirable. Ideally, we

want the NMT system to be sensitive (i.e. not invariant) to multiple word replace-

ments, especially when it leads to the change in semantics of the source sentence.

Such examples showcase the inability of NMT system to capture semantics of the

source sentence. From Table 4.1, it is also clear that the adversarial source sen-

tence (i.e., adv-src) is non-sensical. In this regard, a question may arise “Are there

any practical implications if the NMT system behaves in an undesirable fashion to

such non-sensical inputs?”. We argue that there are two major practical implica-

tions. Firstly, it may lead to lack of trust of the end user on the NMT system if two

semantically different sentences are assigned the same translation. This is in line

with the work done by He and Glass [47] where a dialogue generator is expected

to never output egregious sentences regardless of the semantic correctness of the

input sentence. Secondly, such a behavior also poses real-world threats. Consider

a scenario where an adversary, who is targeting an audience of the target language,

publishes an article of non-sensical sentences in the source language. This article

when accessed by the target language audience gets auto-translated to hate speech

(or fake news). Such articles will be very difficult to prune out via automatic hate

speech (or fake news) detector since they are non-sensical in the source language

and are only translated to hate speech (or fake news) via the specific NMT system.

4.3 Methodology

In this section, we describe the proposed method in detail. In Section 4.3.1,

we outline the vocabulary pruning method which is a pre-processing step of the
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proposed method. Section 4.3.2 describes the proposed technique for position

indices traversal. In Section 4.3.3, we describe the proposed technique for word

replacement. Finally in Section 4.3.4, we combine the two techniques for doing

multiple replacements over the source sentence.

4.3.1 Vocabulary Pruning

The NMT systems in the present work are subword-level and use a shared vocab-

ulary for source and target languages. Let Vshared denote the shared vocabulary

set. We use the training corpus in the source language pre byte-pair encoding to

find the set of unique words in the source language. Let Vunique denote this set.

We consider the set intersection V = Vshared ∩ Vunique. Hence V denotes the set

of proper words in the source language present in the vocabulary of NMT system.

By proper words, we refer to those source words which are not further broken

down into subwords after byte-pair encoding [113]. Let sorg = (sorg1 , sorg2 , ..., sorgn )

denote the original sentence in the source language. Given sorg, we remove the

words present in the original sentence from the set V , i.e., Vprune = V \ sorg. We

use Vprune to select new words for replacement.

4.3.2 Position Indices Traversal

Let s = (s1, s2, ..., sn) denote a sentence in the source language and x denote the

one-hot representation of the sentence s i.e. x = ((x11, ..., x1|Vshared|), ..., (xn1, ...,

xn|Vshared|)) where xij is 1 if jth word is present in ith position and 0 otherwise.

Let e = (e1, e2, ..., en) denote the embedded version of input x where ei’s are d-

dimensional and torg = (torg1 , torg2 , ..., torgm ) denote the predicted translation of the

NMT system for the original source sentence sorg. We consider the standard

negative log likelihood loss Lnll given by

Lnll = −
m∑
i=1

log(q(torgi |t
org
<i , x)) (4.5)

where q(torgi |t
org
<i , x) denotes the probability assigned to the word torgi by the NMT

system and x is one-hot representation of the source sentence s. Let indvis ⊆
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{1, 2, ..., n} denote the set of position indices which have already been traversed.

We choose the position for replacement, r, using the following equation

r = argmin
i/∈indvis

‖∇eiLnll‖2 (4.6)

where ‖.‖2 is the `2-norm, ei is the ith embedding and ∇eiLnll is the gradient of the

loss function with respect to ei. The rationale behind choosing the replacement

position in this way is that the term ‖∇eiLnll‖2 tells us about the sensitivity of

loss function with respect to the ith embedding ei and hence changing a word at a

position which has the minimum `2-norm should not have a large impact on the

predicted translation. We refer to this technique as Min-Grad. We summarize

the method in Algorithm 4.1.

Algorithm 4.1: Min-Grad

Input: s, torg, indvis
Output: r
Get e, x from s
Compute loss Lnll for (x, torg)
r = argmini/∈indvis ‖∇eiLnll‖2

return r

4.3.3 Word Replacement

Let r denote the position for word replacement. We replace (xr1, xr2, ..., xr|Vshared|)

with a probability distribution p i.e. p = (p1, p2, ..., p|Vshared|) where pi is set to 0 if

the ith word does not belong to Vprune. We set all the other pi’s to be equal initially.

Let x′ denote the modified input. We modify the non-zero pi’s using gradient

descent in order to minimize Lnll. Note that only the non-zero pi’s are modified.

To modify the non-zero pi’s, we update the underlying logits using gradient descent

via Adam optimizer [65]. Hence, the modified pi’s is obtained by applying the

softmax function to the updated logits. In this way, we modify pi’s until either

maxiter iterations is reached or a particular word is assigned a probability greater

than maxprob for niter consecutive iterations. The criteria of niter consecutive

iterations is essential to ensure that the algorithm has found a stable solution.

Finally, for the position r, we choose the jth word where j = argmax(p). Since

this technique picks a word using soft-attention over the vocabulary set Vprune, we

refer to it as Soft-Att. We summarize the method in Algorithm 4.2.
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Algorithm 4.2: Soft-Att

Input: s, torg, r
Output: indword, loss
Initialize p, x′ using s, r
count = {}
Initialize count to 0 for all word indices
for j ← 1 to maxiter do

loss← Lnll for (x′, torg)
Update pi’s using gradient descent
Get x′ from p
pmax, indword ← max(p), argmax(p)
for ind in word indices do

if ind 6= indword then
count[ind] = 0

end for
if pmax > maxprob then

count[indword] += 1
if count[indword] == niter then

break

else
count[indword] = 0

end for
return indword, loss

4.3.4 Proposed method

In order to make multiple replacements over the original source sentence, sorg, we

use the two methods (Min-Grad and Soft-Att) iteratively. We name the proposed

method Min-Grad + Soft-Att.

The proposed method makes at most maxsweep sweeps over the source sentence.

Within a particular sweep, we choose the position of replacement using Min-Grad

method. This is followed by Soft-Att method to identify the new word to replace

with, at the particular position. Note that Soft-Att always picks a word from the

pruned vocabulary set, Vprune. Whether the replacement does take place depends

on the min loss criteria. We initially set the min loss, lmin, to a very high value

(i.e. 100). This ensures that at least one replacement always takes place. If in

a previous sweep, a replacement has taken place at the position identified by the

Min-Grad, then we compare the loss obtained from the Soft-Att method with the

loss of the current sentence. If the loss obtained from the Soft-Att method is less

than the loss of the current sentence, then the replacement is done and lmin is
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Algorithm 4.3: Min-Grad + Soft-Att

Input: sorg, torg

Output: sadv

Get x from sorg

lorg ← Lnll for (x, torg)
n← len(sorg)
s← sorg

lmin ← 100
indrep ← [ ]
for j ← 1 to maxsweep do

flag ← False
indvis ← [ ]
while len(indvis) 6= n do

Get x from s
l← Lnll for (x, torg)
r ← Min-Grad(s, torg, indvis)
append r to indvis
indword, loss← Soft-Att(s, torg, r)
if r ∈ indrep and loss < l then

lmin ← max(loss, lorg)
s[r]← Vshared[indword]
flag ← True

if r /∈ indrep and loss < lmin
then

append r to indrep
lmin ← max(loss, lorg)
s[r]← Vshared[indword]
flag ← True

end if

end while
if not flag then

break
end if

end for
sadv ← s
return sadv

updated accordingly. The logic behind this step is to ensure that the new source

sentence is better than the old one in terms of Lnll. Whereas, if no replacement

has taken place so far at the position identified by the Min-Grad, then we compare

the loss obtained from the Soft-Att method with lmin. If the loss obtained from the

Soft-Att method is less than lmin, then the replacement is done and lmin is updated

accordingly. We update lmin as lmin = max(loss, lorg) where loss, lorg are the loss

obtained from the Soft-Att method and the original loss respectively. Capping
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the min loss at original loss allows us to do more replacements while ensuring

an optimal solution at the same time. We stop the algorithm if no replacement

takes place in a particular sweep. For ease of understanding, we summarize the

proposed method in Algorithm 4.3.

Apart from the proposed method, we also consider HotFlip-related baselines [32].

Overall, there are three baseline methods, namely, random + Soft-Att, Min-Grad

+ HotFlip and random + HotFlip. The random baselines refer to the method

where traversal of position indices is done randomly instead of via Min-Grad and

HotFlip baselines refer to the method where word replacement is done via Hot-

Flip instead of Soft-Att. Given a position of replacement r, the HotFlip method

computes ∇xrLnll where xr is a one-hot encoded vector. Finally, it chooses the jth

word for replacement where j is given by

j = argmin
i|wi∈Vprune

∇xriLnll (4.7)

where wi denotes the ith word. As before, whether this replacement does take

place depends on min loss criteria.

Note that the other methods like [21, 22, 76] study robustness of NMT systems in

a different framework and hence, these methods are not applicable for comparison

with the method presented here. HotFlip being a general method for word/char-

acter replacement is relevant to our setting and hence, comparable to the proposed

method.

4.4 Implementation Details

We perform experiments on three language pairs from TED talks dataset [105].

The two language pairs are (i) English-German (en-de), (ii) English-French (en-fr)

and (iii) German-English (de-en). The dataset statistics for the language pairs

are given in Table 4.2. We train BLSTM-based encoder-decoder with attention

translation model using OpenNMT-py for the two language pairs. We use the

standard implementation provided in the repository1 for training. The model uses

attention mechanism proposed by Luong et al. [81].

1https://github.com/OpenNMT/OpenNMT-py

https://github.com/OpenNMT/OpenNMT-py
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Language Pair Training Dev Test
en-de 167,888 4,148 4,491
en-fr 192,304 4,320 4,866

Table 4.2: Dataset Statistics

Model en-de en-fr de-en
BLSTM 26.33 39.32 33.97

Transformer 29.27 43.15 37.37

Table 4.3: BLEU score on the test set

We use the Transformer base model configuration [128] for both the language pairs.

The model consists of 6 encoder-decoder layers. We closely follow the implemen-

tation provided by Sachan and Neubig [111] for training the Transformer models.

Both the NMT systems, BLSTM-based encoder-decoder with attention and Trans-

former, use byte-pair encoding with 32, 000 merge operations [113]. Also, both the

NMT systems use beam search with beam width of 5 during prediction. Table 4.3

shows the BLEU score [103] for the trained NMT systems on the test set of TED

dataset. The BLEU scores for Transformer are similar to the results reported by

Sachan and Neubig [111]. As expected, Transformer achieves a higher BLEU score

than BLSTM-based encoder-decoder with attention for the three language pairs.

To study the proposed attack, we randomly select 500 sentences from the test

set of TED dataset. The values of the different hyperparameters are as follows:

nsweep = 5,maxiter = 1000,maxprob = 0.9 and niter = 10. To update the pi’s in

Algorithm 4.2, we use Adam optimizer with learning rate of 1. In our experiments,

we found that using a higher learning rate ensures faster convergence (mostly

within 300 iterations). The size of the vocabulary set V (i.e. the set of proper

words in the source language) for English-German, English-French, and German-

English are 9, 723, 11, 699, and 11, 284 respectively. The code for the proposed

attack is publicly available.2

It is important to note that the final adversarial sentence used for evaluation, de-

noted as adv-src, is actually the decoded version of sadv. Since byte-pair encoding

(BPE) is a preprocessing module of the two NMT systems under consideration,

adv-src will again be encoded using BPE to yield sadvfin which will be passed as an

input to BLSTM/Transformer. It is possible for sadvfin to be different from sadv.

2https://github.com/akshay107/nmt-attack

https://github.com/akshay107/nmt-attack
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src Human contracted itself blind , malignant .

sorg Human contra@@ cted itself blind , mal@@ ign@@ ant .

sadv Human contra@@ cted itself animals , mal@@ ign@@ den Please

adv-src Human contracted itself animals , malignden Please

sadvfin Human contra@@ cted itself animals , mal@@ ig@@ nden Please

Table 4.4: An example to showcase the prediction pipeline. Finally, sadvfin is
given as input to the NMT system.

However, by replacing subwords with proper words, we ensure that the chances of

the two sentences being different are low3. The rationale behind (re)encoding sadv

using BPE is that the goal of this work is to explore robustness of NMT systems

and BPE is a crucial component of such systems, hence it is not judicious to bypass

BPE by directly giving sadv as input to BLSTM/Transformer. For ease of under-

standing, the entire pipeline is explained via an example sentence in Table 4.4. In

this table, we can see that the two sentences, sadv and sadvfin, are different.

4.5 Evaluation Metrics

As discussed earlier, the evaluation of the proposed invariance-based attack is

more challenging than previous attacks mainly due to two distinct goals of the

present attack: (i) To ensure that the predicted translation of the NMT system

remains unchanged and (ii) To ensure the change in semantics of the original source

sentence. In this section, we take a look at different metrics used to evaluate the

efficiency of the attack. Furthermore, we propose a BLEU-based metric and discuss

its advantages over standard metrics like success rate.

4.5.1 Success rate

For a particular NMT system, we define the success rate of a method as the

percentage of adversarial sentences which were assigned the same translation as

the original source sentence (sorg) by the NMT system. This metric encapsulates

the first goal of the adversarial attack while completely ignoring the second. Hence,

along with success rate, we also consider another metric: number of replacements

3For example, for 500 adversarial sentences obtained via the proposed method for English-
German, the two sentences are same in 484 cases.
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(NOR). NOR is defined as the mean and the median of the number of replacements

(normalized by the length of original sentence). It is more likely that the meaning

of the sentence has changed if the NOR is higher. Hence, we can say that for two

attacks with similar success rate, the one with higher NOR is better. However,

higher NOR doesn’t necessarily mean that the replacements are significant because

of the following reason. Consider a scenario where for all the words in the sentence,

very few characters are replaced. In such a case, number of replacements is as high

as possible since all words have been replaced. But a human can easily disregard

such character replacements as typos and can decipher the original sentence. Such

a scenario is unlikely to occur for the proposed attack since it does not rely on

character-level replacements. In order to ensure that this is the case, we consider

another metric: char-F1. For each word w in the original sentence which is replaced

by the word w′ in the adversarial sentence, we calculate the char-F1. In this

chapter, we report the mean of char-F1. Note that it is more judicious to consider

char-F1 as a metric rather than fraction of characters replaced since the number

of characters in the two words w and w′ are different. A very high char-F1 shows

that the two words w and w′ have lots of common characters so a human might

be able to figure out that it’s a spelling mistake and consequently that the word

w′ is supposed to be the word w. However, a low char-F1 doesn’t imply that

the meaning of the original sentence has changed since the two words might be

synonymous.

4.5.2 BLEU-based metric

While success rate is the most straightforward metric to measure the efficiency of

an invariance based attack on an NMT system, it does have some disadvantages.

As mentioned earlier, an attack method can achieve a higher success rate by doing

fewer replacements. Hence, comparing the success rate, NOR and char-F1 simul-

taneously is a better approach. However, there are still few issues that we need

to address (a) Although more number of replacements and lower char-F1 increase

the chances of the meaning of the original sentence being changed, one can think

of pathological examples where many replacements are made without significant

change in the meaning, (b) It is possible that the original and adversarial sentences

are assigned the same translation by the NMT system due to the property of the

target language rather than a deficiency in the NMT system. As an example, if

the target language does not have gender markers and continuous tense, then the
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two sentences “He is playing guitar.” and “She plays guitar.” will have the same

translation.

To address these issues, we propose a BLEU-based metric to evaluate efficiency

of an invariance based attack. Consider 3 NMT systems: en-de Transformer,

en-fr Transformer and en-de BLSTM. Let’s suppose that the proposed attack

Min-Grad+Soft-Att is used to attack en-de Transformer resulting in pair of orig-

inal/adversarial source sentences. To address issue (a), we can translate the origi-

nal/adversarial source sentences to French using en-fr Transformer. If the meaning

has not changed significantly, we can expect the BLEU score for the French trans-

lations to be high. To address issue (b), we can translate the original/adversarial

source sentences to German using en-de BLSTM (since the target language is

German). If the translations of Transformer were similar due to the property of

target language, we can expect the BLEU score for the German translations by

the BLSTM to be high as well.

To summarize, an effective invariance based attack is expected to give pair of orig-

inal/adversarial source sentences whose corresponding translations by the model

under attack have high BLEU scores and whose corresponding translations by the

other NMT systems have low BLEU scores. In a general setting, let there be

n NMT systems denoted by l1,l2,..,ln where l1 is the NMT system under attack.

Using the BLEU-based metric, we propose a composite score, e(M) to evaluate

the efficiency of an attack method M as follows.

e(M) =
bsrc + (100− bl1) + bl2 + ...+ bln

n+ 1
(4.8)

where bsrc, bli denote the BLEU score for src and NMT system li respectively. For

an attack method M to be more effective, e(M) should be lower.

4.6 Results

In this section, we discuss the results of the proposed method in comparison with

the baseline methods. In Section 4.6.1, we look at the success rate and number of

replacements of different methods across NMT systems. In Section 4.6.2, we evalu-

ate the effectiveness of various method based on the proposed BLEU-based metric.

Note that, we use BLSTM as a shorthand for BLSTM-based encoder-decoder with
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attention in this section. We try to analyze the nature of replacements in successful

adversarial examples and Section 4.6.3 presents our observations. In Section 4.6.4,

we perform human evaluation to ensure that the adversarial sentences are seman-

tically different than the original source sentences. Finally, in Section 4.6.5, we

analyze the robustness of NMT systems on WMT dataset, i.e., a high-resource

setting.

4.6.1 Success rate

Table 4.5 shows the success rate and the mean, median of the number of replace-

ments (normalized by the length of original sentence) for different methods.

1: Comparing Min-Grad and random: As we can see from Table 4.5, for both

Hotflip and Soft-Att, Min-Grad method gives significant improvement in success

rate in comparison with random baseline across 5 of the 6 NMT systems. We also

observe that the NOR for Min-Grad is comparable with random. This shows that

the improvement in success rate is significant since otherwise, an attack method

can achieve higher success rate by doing fewer replacements. For German-English

BLSTM, Min-Grad + Soft-Att achieves a slightly lower success rate than random

+ Soft-Att while the NOR for the two methods is almost the same.

2: Comparing Soft-Att and HotFlip: From Table 4.5, across all the NMT systems,

we can see that Soft-Att significantly outperforms HotFlip both in terms of success

rate and NOR. In fact, random + Soft-Att outperforms Min-Grad + Soft-Att in

terms of success rate and NOR across the 6 NMT systems.

3: Comparing BLSTM and Transformer: Table 4.5 shows that Transformer might

be more robust to our proposed method than BLSTM since the proposed method

has lower NOR in case of Transformer than BLSTM for the 3 language pairs.

For English-German (en-de) and English-French (en-fr), the proposed method

has higher success rate for BLSTM in comparison to Transformer. However, for

German-English (de-en), we find that the proposed method has higher success

rate for Transformers in comparison to BLSTM. It is to be noted that HotFlip has

higher success rate and similar NOR in case for Transformer than BLSTM.

Another significant observation is that, for German-English (de-en), the NOR is

significantly higher than English-German (en-de) and English-French (en-fr) for

all the methods. Table 4.6 shows the mean of the char-F1 for different methods.
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Model Method
char-F1

en-de en-fr de-en

BLSTM

random + HotFlip 0.16 0.18 0.16
Min-Grad + HotFlip 0.13 0.14 0.15
random + Soft-Att 0.26 0.29 0.29

Min-Grad + Soft-Att 0.26 0.28 0.28

Transformer

random + HotFlip 0.21 0.22 0.22
Min-Grad + HotFlip 0.19 0.19 0.20
random + Soft-Att 0.23 0.23 0.25

Min-Grad + Soft-Att 0.22 0.22 0.26

Table 4.6: Mean of char-F1 for different methods M.

Here, we can see that all the methods have low value of char-F1. This shows that

the replacements made by all the methods are significant. Overall, as is evident

from Table 4.5, our proposed method (Min-Grad + Soft-Att) achieves the highest

success rate across 5 of the 6 NMT systems. For English-German BLSTM, the

proposed method achieves slightly lower success rate than random+Soft-Att while

having similar NOR. The difference in success rate is marginal in comparison with

the other 5 NMT systems where the difference is in the range of 6 to 11 percent.

4.6.2 BLEU-based metric

Table 4.7 shows the BLEU scores for the original/adversarial sentence (src) and

their respective translation by different MT systems. In Table 4.7, l1 denotes the

Transformer model under attack (e.g. en-de), l2 denotes the other Transformer

model (e.g. en-fr), and lblstm1 , lblstm2 are the BLSTM counterparts of l1 and l2 and

lmoses1 , lmoses2 are the Moses [66] counterparts of l1 and l2. Similarly, Table 4.8 shows

the BLEU scores for the original/adversarial sentence (src) and their respective

translation by different MT systems. In Table 4.8, l1 denotes the BLSTM model

under attack, l2 denotes the other BLSTM model, ltrans1 , ltrans2 are the Transformer

counterparts of l1 and l2 and lmoses1 , lmoses2 are the Moses counterparts of l1 and

l2. Note that for the language pair German-English (de-en), l2 denotes German-

French (de-fr). For an attack to be effective, BLEU score for l1 should be high

and the other six BLEU scores should be low. Note that the BLEU score for src

is related with the number of replacements reported in Table 4.5. The two metrics

are inversely related; more number of replacement implies lower BLEU score for

src.
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Model Method(M)
e(M)

en-de en-fr de-en

BLSTM

random + HotFlip 47.05 47.29 38.35
Min-Grad + HotFlip 48.46 49.04 38.70
random + Soft-Att 17.19 15.18 12.54

Min-Grad + Soft-Att 17.30 14.73 12.45

Transformer

random + HotFlip 41.34 43.13 32.50
Min-Grad + HotFlip 42.06 44.32 32.70
random + Soft-Att 26.11 25.82 17.87

Min-Grad + Soft-Att 25.54 26.73 16.70

Table 4.9: e(M) for different methods M (lower values of e(M) imply better
attack efficiency).

en-de

src And because God loves her , I did get married .
adv-src plus because God loves them kilograms me been abused married .
pred Und weil Gott sie sie liebt , wurde ich verheiratet .
src I want to know the people behind my dinner choices .
adv-src I want ordinarily know the humans behind my dinner

flog arguments
pred Ich möchte die Menschen hinter meinen Abendessen kennen .

en-fr

src I was clearly more nervous than he was .
adv-src adaptations was clearly more nervous label he was .
pred J’étais clairement plus nerveux qu’il était .
src A dome , one of these ten-foot domes .
adv-src An dome pale an of Those exes 3 foot domEvelyn tat
pred Un dôme , un de ces dômes de 3 mètres .

Table 4.10: Examples of Min-Grad + Soft-Att for BLSTM-based
Encoder-Decoder with Attention. The NMT system predicts the same
translation for src and adv-src.

From Tables 4.7 and 4.8, we can see that Soft-Att achieves a higher BLEU score

for l1 in comparison with HotFlip for all the experimental settings. Moreover, the

other four BLEU score are lower for Soft-Att than HotFlip. This result showcases

the efficiency of the proposed method since it outperforms HotFlip in terms of

success rate, number of replacements and BLEU scores. The fact that, for the

proposed method, BLEU scores is low for other NMT systems also shows that the

adversarial sentences are not transferable in nature. In other words, the pair of

original/adversarial sentences are specific to the NMT system.

Table 4.9 shows e(M) values for different methods and across NMT systems. This

table nicely summarizes the results presented in Tables 4.7 and 4.8. The e(M)

values suggest that the state-of-the-art NMT systems are unable to capture the
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en-de

src Is it something about the light ?
adv-src Is Bald passage about the light ?
pred Geht es um das Licht ?
src So the whole is literally more than the sum of its parts .
adv-src Small the whole is bucks more than number sum Von His

parts rank
pred Das Ganze ist mehr als die Summe seiner Teile .

en-fr

src They look like the stuff we walk around with .
adv-src Hudson look like the ping we walk fishes with .
pred Ils ressemblent à ce que nous marchons avec .
src There are many , many problems out there .
adv-src look numerous supported stays behold problems hundred there .
pred Il y a de nombreux problèmes .

Table 4.11: Examples of Min-Grad + Soft-Att for Transformer. The NMT
system predicts the same translation for src and adv-src.

semantics of the adversarial examples generated by the the proposed method,

Min-Grad+Soft-Att, in a low-resource setting. To further investigate whether the

semantics of the original source sentences have changed via the proposed attack,

we perform human evaluation, which is explained in Section 4.6.4.

4.6.3 A Comment on Types of Words Replaced

In order to understand what types of words are replaced to generate successful

adversarial examples, we observe that there is no clear trend about the types of

words replaced. Both highly frequent (stop words) and thematic words are getting

replaced. The model under attack remains invariant to replacement of highly

thematic words as well as frequent words by semantically very different words.

Invariance is observed even in case of introduction of named-entities (NEs). While

trying to understand if specific parts-of-speech (POS) are vulnerable, no clear

tendency is noted. These observations are highlighted through the examples given

in Tables 4.10 (for BLSTM-based encoder-decoder with attention model) and 4.11

(for Transformer based translation model) which are generated by Min-Grad+Soft-

Att method.
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Model Score

en-de BLSTM 1.83, 1.0
en-fr BLSTM 1.86, 1.0

en-de Transformer 2.14, 1.0
en-fr Transformer 2.55, 2.0

Table 4.12: Human evaluation: Mean and median of semantic similarity
score for different NMT systems.

4.6.4 Human evaluation

To further ensure that the adversarial sentence (i.e., sadv) is semantically differ-

ent than the original sentence (i.e., sorg), we perform human evaluation. This

experiment is done for 4 NMT systems, i.e., English-German BLSTM, English-

French BLSTM, English-German Transformer, and English-French Transformer.

For each NMT system, we randomly select 50 different pairs of original source sen-

tence and adversarial sentence obtained via the proposed method, i.e., Min-Grad

+ Soft-Att. We select 4 participants for this task. All the 4 participants are NLP

researchers. The task is carried out in two phases. In the first phase, the ith par-

ticipant is asked to make the adversarial sentences corresponding to the ith NMT

system grammatically correct, if possible. The participant is not provided with

the original sentences in order to ensure fairness. In case an adversarial sentence

is too noisy to make any sense, we ask the participant to leave the sentence as

is. In the second phase, the other 3 participants are provided with the original

sentences and the corresponding manually cleaned version of the adversarial sen-

tences obtained from the ith participant. For each pair of the original sentence and

the corresponding cleaned version of the adversarial sentence, the participants are

asked to quantify the semantic similarity by assigning an integral score ranging

from 1 to 5. The score of 1 signifies that the two sentences are completely different

semantically, while the score of 5 signifies that the two sentences are paraphrases

of each other. In this way, each pair of (sorg, sadv) is assigned a semantic similarity

score by three participants.

Out of the total 200 pairs, we find that the maximum and the minimum scores

differ by more than 2 in 28 pairs. Out of these 28 pairs, we find that in 16 pairs,

the scores of the two participants exactly match. This shows that the overall

level of agreement between the participants is high. Table 4.12 shows the mean

and the median of the semantic similarity score for the 4 NMT systems. From
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Table 4.12, we can see that the mean and the median of the semantic similarity

score are very low for all the 4 NMT systems. In fact, 3 NMT systems achieve the

lowest median score possible. This shows that the adversarial sentences obtained

via the proposed method are indeed semantically very different from the original

sentences.

4.6.5 Results on WMT Dataset

In this section, we test our proposed attack against state-of-the-art NMT system

trained on WMT dataset, i.e., a high resource setting. We use the Transformer

model which is publicly available under the fairseq framework for experimenta-

tion [95, 96]. The model was trained on WMT 16 English-German dataset con-

taining roughly 4.5 million sentences (i.e., one order of magnitude higher than

TED dataset). It achieves a BLEU score of 29.30 on newstest2014. To study the

proposed attack, we select 50 sentences from newstest2014. Table 4.13 shows the

success rate, number of replacements and the mean of char-F1 for different attack

methods. Similar to TED dataset, all the methods achieve low mean value of

char-F1 for WMT dataset as well. Furthermore, as we can see from Table 4.13,

Min-Grad+Soft-Att method achieves the best success rate and number of replace-

ments. However, across all the methods, there is a significant drop in both the

success rate and number of replacement in comparison to results obtained for TED

dataset. Table 4.14 shows the BLEU scores for the original/adversarial sentence

(src) and their respective translation by the three NMT systems. All the three

NMT systems are publicly available under the fairseq framework. In Table 4.14,

l1 denotes Transformer trained on WMT 16 English-German dataset (i.e., the

model under attack), l2 denotes Transformer trained on WMT 14 English-French

dataset [96], lwmt19
1 denotes Transformer trained on WMT 19 English-German

dataset [92]. As we can see from Table 4.14, the BLEU scores for l1 are lower

compared to the ones for TED dataset (i.e. Table 4.7). Furthermore, we observe

that BLEU score for lwmt19
1 is on the higher side. This shows that replacements

made during the attack are relying more on the properties of the target language.

This further demonstrates the advantages of BLEU-based metric in comparison to

success rate. Hence, we can conclude that NMT systems trained on larger dataset

are significantly more robust to the proposed invariance-based attack in compar-

ison to low-resource setting. From Table 4.3, we can see that the Transformer

model achieves a similar BLEU score on en-de TED dataset (i.e., 29.27) as on the
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Method Success Rate NOR char-F1

random + HotFlip 16.0 % 0.19, 0.19 0.21
Min-Grad + HotFlip 14.0 % 0.21, 0.19 0.21
random + Soft-Att 24.0 % 0.43, 0.44 0.29

Min-Grad + Soft-Att 34.0 % 0.46, 0.48 0.27

Table 4.13: Success Rate (in %), number of replacements, and mean of
char-F1 for different methods against Transformer trained on WMT 16
English-German. NOR represents the mean/median of the normalized
Number Of Replacements across all the sentences. The highest success rate is
marked in bold.

Method src l1 l2 lwmt19
1

random + HotFlip 54.61 64.11 48.42 70.03
Min-Grad + HotFlip 52.54 73.08 52.92 65.53
random + Soft-Att 21.09 63.32 25.88 42.34

Min-Grad + Soft-Att 18.47 64.79 22.66 44.74

Table 4.14: BLEU scores for the original/adversarial sentence (src) and their
respective translation by the three NMT systems. l1 denotes the Transformer
trained on WMT 16 English-German, l2 denotes the Transformer trained on
WMT 14 English-French and lwmt19

1 denotes the Transformer trained on WMT
19 English-German.

larger WMT dataset (i.e., 29.30). Despite this, the NMT system in low-resource

setting is significantly less robust to the proposed attack. This shows that high

BLEU score on the clean test set does not imply high robustness to adversarial

attacks. This warrants the need of robustness analysis in conjunction with the

BLEU score.

4.7 Summary

In this chapter, we showcased undesirable invariances captured by an NMT sys-

tem. We define undesirable invariances as the scenario in which the predicted

translation remains unchanged when multiple words in the source sentence are

replaced changing the semantic of the input sentence. Three language pairs,

namely, English-German (en-de), English-French (en-fr), and German-English (de-

en) are considered to investigate the behaviour of two state-of-the-art NMT sys-

tems: BLSTM-based encoder-decoder with attention and Transformer. We break

down the problem of replacing a word into two sub-problems: traversing posi-

tion indices and replacing a word given a position. Two techniques, Min-Grad
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and Soft-Att are proposed for the two sub-problems. The results show that the

proposed techniques significantly outperform HotFlip and random related base-

lines. We also propose an alternate BLEU-based metric to evaluate an invariance

based attack and argue the effectiveness of the proposed metric in comparison to

success rate. Furthermore, we also perform human evaluation to show that the

semantics of the original source sentence is drastically changed by the proposed

method. This study is motivated to explore the robustness of NMT systems to

nonsensical inputs. We study the robustness in low-resource setting (< 0.2 million

training samples) as well as high-resource setting (∼ 4.5 million training samples).

Our results demonstrate that the state-of-the-art NMT systems are significantly

more robust in high-resource setting than low-resource setting. However, since

most of the language pairs do not have a huge amount of training data, the lack

of robustness of NMT systems to nonsensical inputs in low-resource setting is a

concern.
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Ignorance is Bliss: Exploring

Defenses Against Invariance

based Attacks on NMT systems

Where ignorance is bliss, ’tis folly to be wise.

Thomas Gray

This chapter explores defense strategies against invariance-based attack on NMT

systems. In the presence of gold translation for adversarial examples, standard

adversarial training has been shown to improve robustness of NMT systems to

the particular type of noise in consideration [21, 22, 31, 76]. However, as seen in

Chapter 4, the adversarial examples obtained via invariance-based attack are non-

sensical and do not have a gold-translation. The lack of gold translation makes

tackling invariance-based attacks a challenging task. In this chapter, we propose

two contrasting defense strategies for the same, namely, learn to deal and learn to

ignore. Since the goal of this chapter is adversarial defense, we evaluate the defense

strategies against bruteforce attack which is a stronger (although considerably

slower) invariance-based attack than Min-Grad+Soft-Att.

The rest of this chapter is organized as follows. Section 5.1 discusses the main idea

behind the two defense strategies. This section also describes the bruteforce attack

in detail and evaluate its efficiency against Transformer. Section 5.2 describes the

proposed defense strategies in detail. Section 5.3 describes the implementation

details. Section 5.4 introduces some metrics for evaluating the efficiency of the

94
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proposed defense. Section 5.5 analyzes the results of the two defense strategies.

Finally, Section 5.6 summarizes the chapter.

5.1 Background

This section is organized as follows. Section 5.1.1 discusses the main idea behind

the two proposed defense strategies. Section 5.1.2 describes the bruteforce attack

in detail. Finally, Section 5.1.3 presents the results of bruteforce attack against

Transformer on TED dataset [105].

5.1.1 Overview of the Proposed Method

Table 5.1 shows an adversarial example obtained via bruteforce attack. From this

example, it is clear that not only do we not have gold translation for such noisy ad-

versarial sentences (i.e., adv-src), but generating gold translation for such sentences

is a tedious task as well. In order to design a defense strategy for invariance-based

attacks in such a scenario, it is crucial to decide how an NMT system should be-

have for adversarial examples like the one shown in Table 5.1. In other words,

a desirable behaviour for NMT system in such a scenario needs to be explicitly

stated. In this chapter, we consider the following two behaviours of NMT system

desirable, (i) NMT system predicts a different translation for such adversarial ex-

amples, and (ii) NMT system predicts a dummy sentence (such as “This sentence

is not correct.” in the target language) whenever it is fed an invariance-based ad-

versarial example. This leads to two contrasting defense strategies, namely learn

to deal and learn to ignore. In learn to deal, NMT system learns not to predict

the same translation. This essentially teaches the translation system what not to

do. In learn to ignore, NMT system learns to output a dummy sentence for any

invariance-based adversarial example. This teaches the translation system what

to do. The motivation behind learn to ignore strategy is aligned with the on-

going effort in the machine learning community where along with improving the

classification accuracy, one effort is to teach a machine to learn to say “I don’t

know” for an input completely unknown to it (i.e., out-of-distribution detection)

since it is better to show ignorance rather than giving a wrong prediction for an

out-of-distribution input [39, 87, 130]. Table 5.2 shows example of the two defense

strategies.
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src Well right now , as you can see , the results can be somewhat comical .

adv-src mortality 2030 present prior like yourself able sees agents lay outcomes
could rowed fairly weird An .

pred Nun , im Moment , wie Sie sehen können , können die Ergebnisse
ziemlich komisch sein .

Table 5.1: Example of bruteforce attack on English-German Transformer.
The NMT system predicts the same translation (pred) for the clean source
sentence (src) and the noisy sentence (adv-src).

Learn to Deal

src Keyloggers silently sit on your computer , hidden from view , and
they record everything you type .

adv-src Keyvoyage es ships don sitting ’ yours computational , hidden by
standpoint ; plus them playground everything yours manner coin

pred Keyschiffe sitzen auf Ihrem Computer , versteckt von Sicht , und sie
zeichnen alles auf , was Sie tippen .

adv-pred Keyschiffe sitzen auf Ihrem Computer , versteckt von Sicht ; und sie
zeichnen alles auf , was Ihre Münze angeht .

Learn to Ignore

src For community though , we start at the very beginning .

adv-src To community Yet ; us begin in dark total starting ’

pred Pour la communauté pourtant , nous commençons au tout début .

adv-pred Cette phrase n’est pas correcte .

Table 5.2: Example of the two defense strategies. Learn to Deal strategy
predicts a different translation for src and adv-src (the difference is shown in
italics). Learn to Ignore strategy predicts “This sentence is not correct” in the
target language (i.e., French in this case) for adv-src.

5.1.2 Bruteforce Attack

Similar to Chapter 4, we perform vocabulary pruning to obtain the set Vprune. Let

tpred denote the predicted translation for the source sentence, sorg, by the NMT

system. Bruteforce attack changes multiple words in sorg with words in Vprune

with the goal of keeping the predicted translation unchanged. To achieve this, the

attack uses the standard negative log-likelihood loss function, Lnll, for the tuple

(s, tpred) given by

Lnll = − 1

m

m∑
i=1

log(p(tpredi |tpred<i , s)) (5.1)

where p(tpredi |tpred<i , x) denotes the probability assigned to the word tpredi by the

NMT system and m is the length of tpred and s is a source sentence. Algorithm 5.1
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Algorithm 5.1: Bruteforce Attack

Input: sorg, tpred

Output: sadv

lorg ← Lnll for (sorg, tpred)
n← len(sorg)
s← sorg

lglobal ← 100
for j ← 1 to maxsweep do

flag ← False
Sample π(n) from Sym(n)
for r in π(n) do

stemp ← s
lr ← [ ]
for w in Vprune do

stemp[r]← w
lrw ← Lnll for (stemp, tpred)
append lrw to lr

end for
lrmin ← min(lr)
indword ← argmin(lr)
wr ← Vprune[indword]
if s[r] 6= wr and lrmin < lglobal
then
lglobal ← max(lrmin, lorg)
s[r]← wr
flag ← True

end if

end for
if not flag then

break
end if

end for
sadv ← s
return sadv

summarizes the bruteforce attack. In the algorithm, π(n) denotes a permutation

over n positions in sorg. In other words, π(n) ∈ Sym(n) where Sym(n) denotes

the symmetric group on the set {1, 2, ..., n}. The attack makes at most maxsweep

sweeps over the source sentence. Within a sweep, the attack traverses all the

positions in a random order. For a particular position r, it looks for a word

wr ∈ Vprune which will result in the minimum negative log-likelihood loss, lrmin,

assuming that wr has been inserted at position r. Replacement is actually done if

lrmin is also less than the current global loss, lglobal. At the start of the attack, lglobal
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Success rate NOR BLEU

en-de 84.0% 0.81, 0.84 29.22

en-fr 84.6% 0.82, 0.86 42.59

Table 5.3: Success rate and mean, median of number of replacements (NOR)
for bruteforce attack, and BLEU score on the test set.

is set to a very high value to ensure that at least one replacement always takes

place. If a replacement does take place, lglobal is updated as max(lrmin, lorg) where

lorg is the original loss, i.e., Lnll for the tuple (sorg, tpred). Clipping lglobal at lorg

allows for more number of replacements. The attack is stopped if no replacement

takes place within a sweep since continuing the attack will not result in any more

replacements.

5.1.3 Efficiency of Bruteforce Attack

We evaluate the efficiency of bruteforce attack on 500 randomly chosen sentences

from the test set of TED talks dataset [105]. The experiments are conducted for

two language pairs, English-German (en-de) and English-French (en-fr). The av-

erage lengths of the 500 chosen sentences are 18.45, 18.40 for English-German and

English-French respectively. The Transformer base model configuration consisting

of 6 encoder-decoder layers is used for both the language pairs. The implemen-

tation provided by Sachan and Neubig [111] is followed. Byte pair encoding with

32, 000 merge operations is used. During prediction, beam width is set to 5. For

bruteforce attack, maxsweep is set to 5 for all the experiments. Note that |V | is

9, 723 and 11, 699 for en-de and en-fr respectively.

Table 5.3 shows the success rate and the mean, median of the number of replace-

ments of bruteforce attack, and BLEU score for the two NMT systems.1 The

success rate is defined as the percentage of adversarial sentences, i.e., sadv ob-

tained from bruteforce attack, which are assigned the same translation as sorg by

the NMT system. We also report the BLEU score for the two systems on the test

set. As we can see from Table 5.3, bruteforce attack achieves a high success rate

for both the systems and replaces a large fraction of words (> 80%) per sentence

1Note that BLEU score for en-de and en-fr in Table 5.3 differs from Table 4.3 due to the
difference in computing infrastructure.
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Figure 5.1: Histogram of rank(wadv | worg) for en-de Transformer. worg and
wadv denote the original word and the replaced word during bruteforce
respectively.

on an average. In contrast, for larger datasets like WMT dataset, we observe that

the bruteforce attack achieves a relatively low success rate (∼ 36%).

To study the nature of replacements made by bruteforce attack, we take a look

at the embedding layer of the NMT system. This layer embeds each word2 to a

vector. Let e(w) denote the embedding of a word w and worg denote the original

word. Consider the set, simV
worg

, given by

simV
worg

= [sim(e(worg), e(w)) | w ∈ V ] (5.2)

where sim(., .) denotes cosine similarity. Let wadv denote the word which replaced

worg during bruteforce attack. We analyse the rank of sim(e(worg), e(wadv)) in the

set simV
worg

. Lower the rank, higher the cosine similarity. We denote this rank

by rank(wadv | worg). Figure 5.1 shows the histogram of rank(wadv | worg) for

en-de Transformer. We observe a similar pattern for en-fr Transformer as well.

From the figure, it is evident that the bruteforce attack heavily relies on low-rank

replacements.

Since most of the replacements that occur during the bruteforce attack are low-

rank, a natural question arises: “Is bruteforce attack really an attack in the true

sense? In other words, are the translations of sorg and sadv supposed to be same?”.

We argue that this is not the case. This is mainly due to two reasons: (i) The

2In reality, embedding layer embeds each subword to a vector since the NMT system is
subword-level. We use the term word for sake of simplicity.
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l1 l2 lblstm1 lblstm2

en-de 95.10 12.90 11.15 7.88

en-fr 96.97 4.47 15.27 4.52

Table 5.4: BLEU scores for predicted translations of sorg and sadv across
NMT systems. l1 denotes the Transformer under attack, l2 denotes the
Transformer for the other language pair, and lblstm1 , lblstm2 denote respective
BLSTM-based NMT systems.

bruteforce attack replaces a large fraction of words as shown in Table 5.3. More

the number of replacement, lesser the chance that the semantics of the original

sentence is preserved. (ii) Since the Transformer used in the present study is

subword-level, anytime a subword is replaced, it gets replaced by a proper word in

V . Such replacements definitely change the semantics of the sentence.

To further quantify the argument, similar to Chapter 4, we also report the BLEU

score between the predicted translations of sorg and sadv by the two Transformer

models as well as their BLSTM-based encoder-decoder with attention counter-

parts [81]. Table 5.4 shows these results. In Table 5.4, l1 denotes the Trans-

former under attack, l2 denotes the Transformer for the other language pair (e.g.,

if en-de Transformer is under attack then l2 denotes en-fr Transformer), and

lblstm1 , lblstm2 denote respective BLSTM-based encoder-decoder with attention sys-

tems. In Table 5.4, the low BLEU scores for the NMT systems not under attack

(i.e., l2, l
blstm
1 , lblstm2 ) shows that the two sentences, sorg and sadv are not semanti-

cally similar.

5.2 Defense Methodology

Since bruteforce attack is extremely slow (the time statistics are given in §5.3),

it is not feasible to incorporate the adversarial examples from the attack during

training stage. Hence, the insight that bruteforce attack relies heavily on low-rank

replacements is crucial to design NMT systems which can withstand the attack.

Since the search space of noisy sentences is exponentially large, this insight allows

us to efficiently generate noisy samples which have a commonality with adversarial

examples obtained from bruteforce attack. Essentially, the aforementioned insight

makes the task of generating good-quality noisy samples tractable.
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5.2.1 Generating noisy samples

Let w be a word in the original (i.e., clean) source sentence, sorg. We define top-k

neighbors of word w, denoted as Nk(w), as the following set

Nk(w) = [rank(w′ | w) ≤ k | w′ ∈ Vprune] (5.3)

It is crucial to note that Nk(w) is not a fixed set and is dependent on the weights of

the embedding layer. As the weight of the embedding layer changes during train-

ing, Nk(w) will also change. To overcome this obstacle, we train the NMT system

only on the clean data for epfreeze epochs (a hyperparameter). Training exclusively

on the clean data allows the NMT system to learn good-quality embeddings. After

epfreeze epochs, we freeze the embedding layer and train the NMT system on both

clean and noisy data. The noisy samples are generated by replacing w’s by w′’s

where w′ ∈ Nk(w). We refer to the tuple (w,w′) as a pair.

Let sorg = (w1, w2, ..., wn) be a clean source sentence. To generate a noisy sen-

tence, snoisy, from sorg, we explore two different methods as follows.

Random: We randomly select dfrac× ne positions where d.e is the ceiling func-

tion. For a selected position r, we randomly choose a word w′r where w′r ∈ Nk(wr)

to replace wr.

Tackle-Bias: Selecting positions randomly is intrinsically biased towards words

with high unigram count, i.e., the words that occur frequently in the training cor-

pus are more likely to get selected. To tackle this bias, we assign a probability, pr,

to each position r in sorg as follows

c(wr) =
∑
w∈V

count(wr, w)

pr =
exp(−µc(wr))∑n
i=1 exp(−µc(wi))

(5.4)

where c(wr) denotes the running count of the number of times the word wr has

been replaced so far. Note that the probability pr is inversely proportional to

c(wr). We sample dfrac× ne positions without replacement from the probability

distribution. For a selected position r, we again define a similar probability distri-

bution where probability of a pair p(wr, w) is inversely proportional to its running

count. Finally, we sample a pair (wr, w
′
r) where w′r ∈ Nk(wr) from the probability

distribution and replace wr with w′r.
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5.2.2 Training Loss Function

In this section, we describe the two strategies, learn to deal and learn to ignore, in

detail. For both the strategies, as mentioned earlier, the NMT system is trained

exclusively on clean data for epfreeze epochs. After this point, the embedding layer

is frozen and the system is trained on both clean and noisy data. Note that the

noisy data is generated for every training iteration using the method described

in §5.2.1. Hence, for a particular sorg, multiple noisy sentences, i.e., snoisy are

generated.

a) Learn to Deal: In learn to deal, our goal is to teach NMT system not to

predict the same translation for clean source sentence and its noisy counterpart.

To this end, after epfreeze epochs, the loss function, Ltot, for this strategy is given

as

Ltot = Lnll(s
org, ytgt)− λLnll(snoisy, ypred) (5.5)

where sorg, snoisy is the original and noisy sentences respectively, ytgt denotes the

ground truth translation for sorg, ypred is the predicted translation of sorg by the

NMT system with its current set of parameters, and λ is a hyperparameter. In

order to efficiently train the NMT system, we use greedy sampling instead of beam

search to obtain ypred. Note that ypred is a dynamic ground truth in the sense that

it will change continuously as the parameters of NMT system are updated. In this

strategy, we truncate the noisy loss, Lnll(s
noisy, ypred), if its value exceeds a certain

value, denoted as clip. In such a case, the second term of equation 5.5 does not

contribute to the back-propagation computation. During training, we minimize

the loss function, Ltot. This essentially minimizes the clean loss and maximizes

the noisy loss simultaneously.

b) Learn to Ignore: In learn to ignore, our goal is to teach NMT system to

predict a dummy sentence in the target language for a noisy source sentence. To

this end, after epfreeze epochs, the loss function, Ltot, for this strategy is given as

Ltot = Lnll(s
org, ytgt) + λLnll(s

noisy, ydmy) (5.6)

where ydmy denotes the dummy sentence. For this work, ydmy is set to “Cette

phrase n’est pas correct.” for English-French and “Dieser Satz ist nicht korrekt.”

for English-German. Both the dummy sentences translate to “This sentence is not
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correct.” in English. During training, we minimize the loss function, Ltot. This

essentially minimizes both the clean and noisy losses simultaneously.

5.3 Implementation Details

To evaluate the effectiveness of the proposed defense strategies, we use the same

set of 500 sentences as mentioned in §5.1.3. The values of the hyperparameters,

pertaining to §5.2, are as follows: epfreeze = 7, µ = 0.01, λ = 0.01, clip = 15, and

k = 20. We set k to be 20 since a significantly large percentage of replacements

that occur during the bruteforce attack on the two NMT systems are within top-

20 (40.0% for en-de Transformer and 42.1% for en-fr Transformer). We observe

that lowering the value of epfreeze leads to drop in BLEU score whereas increasing

it further reduces the effectiveness of the defense. We set clip to 15 since a high

value of noisy loss signifies bad-quality noisy samples. Training is done using single

GPU and bruteforce attack is done using 8 GPUs.

The GPU specification is 32 GB Tesla V100-SXM2. We train the NMT systems

for a total of 40 epochs. After epfreeze epochs, BLEU score is calculated on a

small subset of validation data every 1, 000 training iterations. Finally, the NMT

system having the best BLEU score is chosen. Training the NMT system ex-

clusively on the clean data takes approximately 8 hours whereas training using

the proposed defense strategies takes around 12 hours. The bruteforce attack on

500 sentences takes approximately 52 hours. The code for the proposed attack is

publicly available.3

5.4 Evaluation Metrics

This section describes two additional metrics used to evaluate the effectiveness of

defense strategies.

Coverage: We defined the notion of a pair in § 5.2.1. During training, a pair

is sampled according to the sampling strategy (Random/Tackle-bias). Coverage

signifies the percentage of pairs that were covered during training. We hypothesize

3https://github.com/akshay107/nmt-defense

https://github.com/akshay107/nmt-defense
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that higher the coverage, more effective the defense strategy.

Targeted Translation (TT): This metric is for learn to ignore strategy. It

signifies the percentage of cases for which the NMT system predicts the dummy

sentence, ydmy, for adversarial sentences obtained from bruteforce attack. Higher

the TT, more effective the learn to ignore strategy.

5.5 Results

Tables 5.5 and 5.6 show the success rate, BLEU score on the TED test set, the

mean and the median of the number of replacements (NOR) and the other metrics

discussed in §5.4 for English-German (en-de) and English-French (en-fr) respec-

tively. The term Original in the two tables refer to the Transformer model trained

only on clean data (i.e., same as Table 5.3). Overall, it is evident from both the

tables that the two strategies are successful in reducing the success rate and num-

ber of replacements of the bruteforce attack. In the following subsections, we draw

comparison between the two defense strategies and analyse BLEU scores for the

NMT systems trained with the two defense strategies. We also compare the two

noise sampling approaches.

5.5.1 Learn to Deal vs. Learn to Ignore

From Tables 5.5 and 5.6, it can be seen that both the strategies, learn to deal and

learn to ignore, are successful in reducing the success rate and number of replace-

ments for bruteforce attack for both the language pairs. In terms of comparison

between the two strategies, learn to ignore strategy comfortably outperforms learn

to deal strategy. Learn to deal strategy, under optimum settings, reduces the suc-

cess rate from 84.0% to 62.2% for English-German and from 84.6% to 73.8% for

English-French. On the other hand, Learn to ignore strategy, under optimum

settings, reduces the success rate from 84.0% to 27.2% for English-German and

from 84.6% to 37.0% for English-French. Hence, it is indeed easier to teach NMT

systems what to do rather than what not to do. The targeted translation (TT) for

learn to ignore strategy is also significantly high. This shows that NMT systems

have the ability to predict the dummy sentence, ydmy, for noisy sentences obtained
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from bruteforce attack. Based on this finding, we can conclude that learn to ignore

is a better strategy than learn to deal.

5.5.2 BLEU score

From Tables 5.5 and 5.6, we can see that both the defense strategies also improve

the BLEU score on the TED test set in comparison with the original Transformer

model. Learn to deal strategy improves the BLEU score from 29.22 to 29.69 for

English-German and from 42.59 to 43.45 for English-French. Similarly, learn to

ignore strategy improves the BLEU score from 29.22 to 30.23 for English-German

and from 42.59 to 43.64 for English-French. With regards to BLEU score also, we

can see that learn to ignore performs better than learn to deal. The high BLEU

score along with significantly high TT for learn to ignore shows that the NMT

systems under this strategy can distinguish between clean and noisy sentences.

5.5.3 Random vs. Tackle-Bias

From Tables 5.5 and 5.6, we can see that Tackle-Bias has significantly larger

coverage than random for different values of frac and across defense strategies.

Contrary to our hypothesis mentioned in §5.4, larger coverage achieved by Tackle-

Bias approach does not result in more robust NMT systems. To further analyse

the importance of coverage with regards to success rate, we modify the bruteforce

attack to ensure that rank(wadv | worg) > k. This constraint ensures that the

pair (worg, wadv) was not encountered while training the NMT systems using the

proposed defense strategies. We refer to such pairs as unseen pairs. Table 5.7

shows the performance of the modified bruteforce attack for the different English-

German and English-French NMT systems. As expected, the results clearly show

that the modified bruteforce attack is less potent than the original bruteforce

attack as reflected by the lower values of NOR.

Furthermore, from Table 5.7, we observe a drop in the success rate and number

of replacements (NOR) for the models trained with the two defense strategies in

comparison with the original models. This shows that the NMT systems trained

with the two defense strategies are able to generalize to unseen pairs as well. The

high values of targeted translation (TT) for learn to ignore strategy further attest

to this generalization ability. The ability to generalize is crucial since it shows
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that even if the adversary is aware of the value of k, circumventing the proposed

defense strategy is not trivial.

5.6 Summary

In this chapter, we proposed two defense strategies, namely learn to deal and

learn to ignore, to enhance the robustness of the state-of-the-art NMT systems to

invariance-based attack. We choose bruteforce attack for experimentation owing

to its high success rate and number of replacements. The results demonstrate that

the NMT systems trained under the two strategies are significantly more robust

to invariance-based attack. The results also show that the learn to ignore strategy

drastically reduces the potency of bruteforce attack. This suggests that it is easier

to teach deep learning systems what to do rather than what not to do. The NMT

systems trained under the two strategies also achieve a higher BLEU score than

the original system. This shows that the noisy loss acts as a regularizer for the

NMT system.
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Generalizability of Bruteforce

Attack: A case-study on TQA

and SciQ dataset

An idea is always a generalization, and

generalization is a property of thinking.

To generalize means to think.

Georg Wilhelm Friedrich Hegel

This chapter explores the generalizability of bruteforce attack, introduced in Chap-

ter 5, by presenting a case study on two multiple choice QA datasets, namely,

Textbook Question Answering (TQA) [64] and SciQ [133]. The case study evalu-

ates the robustness of proposed multiple choice QA systems to bruteforce attack.

The goal of these systems is to answer a multiple choice question based on a given

article. To this end, the QA system firstly chooses the most relevant paragraph

in the article for a particular question. The sentences in the selected paragraph,

and the question-option tuple are then embedded using either convolutional neural

network (CNN) or gated recurrent unit (GRU). Apart from bruteforce attack, we

also study whether these systems generalize to different types of interventions on

the input paragraph.

The rest of this chapter is organized as follows. Section 6.1 describes the proposed

multiple choice QA systems in detail and presents its results on the two datasets.

Section 6.2 explains the bruteforce attack algorithm as well as different types

110
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of interventions which are considered to study the robustness of QA systems.

Section 6.3 presents the results of the bruteforce attack and the intervention-based

study. Finally, Section 6.4 summarizes the chapter.

6.1 Background

In this section, we explain the proposed CNN-based multiple choice QA system in

detail. The GRU-based QA system, denoted as GRUbl, is considered as a baseline

system. The proposed multiple choice QA system is also able to deal with options

like none of the above, all of the above, both (a) and (b) etc. We refer to such

options as forbidden options. We evaluate the performance of QA systems on

two datasets, namely, Textbook Question Answering (TQA) [64] and SciQ [133].

The rest of this section is organized as follows. Section 6.1.1 explains paragraph

selection for a particular question. Section 6.1.2 describes the architecture of the

proposed system. Section 6.1.3 describes the proposed strategy for dealing with

forbidden options. Section 6.1.4 presents the implementation details regarding the

proposed system. Finally, Section 6.1.5 presents the results of the multiple-choice

QA system on TQA and SciQ dataset.

6.1.1 Choosing the most relevant paragraph

Given a question based on an article, usually a small portion of the article is needed

to answer the concerned question. Hence, it is not fruitful to give the entire article

as input to the neural network. To select the most relevant paragraph in the

article, we take both the question and the options into consideration instead of

taking just the question into account for the same. The rationale behind this

approach is to get the most relevant paragraphs in cases where the question is

very general in nature. For example, consider that the article is about “carbon”

and the question is “Which of the following statements is true about carbon?”. In

such a scenario, it is not possible to choose the most relevant paragraph by just

considering the question. The question along with the options forms the initial

query. The most relevant paragraph is chosen in three stages:

1. Preprocessing the initial query: In this stage, we remove the punctuation

from the initial query string. Then, all the stop words are removed from the query.
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Thereafter, all the words are replaced with their corresponding lemma. Stop word

removal and lemmatization is done using the NLTK toolkit [78] in Python.

2. Query Expansion using word2vec: In this stage, we expand our initial

query using word2vec [85]. More specifically, for each word in the initial query,

its closest neighbours (i.e. words having a cosine similarity greater than 0.6) are

appended to the initial query. This forms our final expanded query.

3. Paragraph Ranking: Using Lucene1 and the final expanded query, we rank

the paragraphs present in the article based on tf-idf scores. The paragraph with

the highest tf-idf score is chosen as the most relevant paragraph for the concerned

question.

6.1.2 Neural Network Architecture

CNN

h1

(q, o1)

CNN

h2

(q, o2)

CNN

hnq

(q, onq)

CNN

d1

(s1)

CNN

dnsents

(snsents)

Attention Layer

Score Calculation Final Probability Distribution

m1 m2 mnq

Figure 6.1: Architecture of the proposed system. Attention layer attends on
sentence embeddings dj ’s using question-option tuple embeddings hi’s. Score
Calculation layer calculates the cosine similarity between mi and hi which is
passed through softmax to get the final probability distribution.

We use word2vec [85] to encode the words present in question, option and the

most relevant paragraph. As a result, each word is assigned a fixed d-dimensional

representation. The proposed system architecture is shown in Figure 6.1. Let q, oi

denote the word embeddings of words present in the question and the ith option

respectively. Thus, q ∈ Rd×lq and oi ∈ Rd×lo where lq and lo represent the number

of words in the question and option respectively. The question-option tuple (q, oi)

is embedded using CNN consisting of a convolutional layer followed by average

1https://lucene.apache.org/core/3_4_0/scoring.html

https://lucene.apache.org/core/3_4_0/scoring.html
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pooling. The convolution layer has three types of filters of sizes fj × d ∀j = 1, 2, 3

with size of output channel of k. Each filter type j produces a feature map of shape

(lq + lo − fj + 1)× k which is average pooled to generate a k-dimensional vector.

The three k-dimensional vectors are concatenated to form 3k-dimensional vector.

We use average pooling to ensure different embedding for different question-option

tuples. Hence,

hi = CNN([q; oi]) ∀i = 1, 2, .., nq (6.1)

where nq is the number of options, hi is the output of CNN and [q; oi] denotes

the concatenation of q and oi i.e. [q; oi] ∈ Rd×(lq+l0). The sentences in the most

relevant paragraph are embedded using the same CNN. Let sj denote the word

embeddings of words present in the jth sentence i.e. sj ∈ Rd×ls where ls is the

number of words in the sentence. Then,

dj = CNN(sj) ∀j = 1, 2, .., nsents (6.2)

where nsents is the number of sentences in the most relevant paragraph and dj

is the output of CNN. The rationale behind using the same CNN for embedding

question-option tuple and sentences in the most relevant paragraph is to ensure

similar embeddings for similar question-option tuple and sentences. Next, we use

hi to attend on the sentence embeddings. Formally,

aij =
hi · dj
||hi||.||dj||

(6.3)

rij =
exp(aij)

nsents∑
j=1

exp(aij)
(6.4)

mi =
nsents∑
j=1

rijdj (6.5)

where ||.|| signifies the `2-norm, exp(x) = ex and hi ·dj is the dot product between

the two vectors. Since aij is the cosine similarity between hi and dj, the attention

weights rij give more weighting to those sentences which are more relevant to the

question. The attended vector mi can be thought of as the evidence in favor of the
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ith option. Hence, to give a score to the ith option, we take the cosine similarity

between hi and mi i.e.

scorei =
hi ·mi

||hi||.||mi||
(6.6)

Finally, the scores are normalized using softmax to get the final probability distri-

bution.

pi =
exp(scorei)

nq∑
i=1

exp(scorei)

(6.7)

where pi denotes the probability for the ith option.

6.1.3 Dealing with forbidden options

As mentioned earlier, we refer to options like none of the above, two of the above,

all of the above, both (a) and (b) as forbidden options. During training, the

questions having a forbidden option as the correct option are not considered. Fur-

thermore, if a question has a forbidden option, that particular question-option

tuple is not taken into consideration. Let S = [scorei ∀i | ith option not in for-

bidden options] and |S| = k. During prediction, the questions having one of the

forbidden options as an option are dealt with as follows:

1. Questions with none of the above/ all of the above option: If the

max(S) − min(S) < threshold then the final option is the concerned forbidden

option. Else, the final option is argmax(pi).

2. Questions with two of the above option: If the S(k) − S(k−1) < threshold

where S(n) denotes the nth order statistic, then the final option is the concerned

forbidden option. Else, the final option is argmax(pi).

3. Questions with both (a) and (b) type option: For these type of questions,

let the corresponding scores for the two options be scorei1 and scorei2 . If the

|scorei1 − scorei2| < threshold then the final option is the concerned forbidden

option. Else, the final option is argmax(pi).

4. Questions with any of the above option: Very few questions had this

option. In this case, we always choose the concerned forbidden option.
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Model True-False Multiple Choice

(Correct/Total) (Correct/Total)

GRUbl 536/994 (53.9%) 529/1530 (34.6%)

CNN3,4,5 531/994 (52.4%) 531/1530 (34.7%)

CNN2,3,4 537/994 (54.0%) 543/1530 (35.5%)

Table 6.1: Accuracy for true-false and multiple choice questions on
validation set of TQA dataset.

We try different threshold values ranging from 0.0 to 1.0. Finally, the threshold

is set to a value which gives the highest accuracy on the training set for these kind

of questions.

6.1.4 Implementation Details

We try two different CNN systems, one having fj’s equal to 3,4,5 and other having

fj’s equal to 2,3,4. We refer to the two systems as CNN3,4,5 and CNN2,3,4 respec-

tively. The values of hyperparameters are as follows: d = 300, k = 100, nsents = 10.

For baseline system, we replace CNN with Gated Recurrent Unit (GRU) [23] to

embed question-option tuples and the sentences. The size of GRU cell is set to 100.

The baseline system is denoted as GRUbl. For TQA dataset, the value of threshold

is 0.3, as per Section 6.1.3. The SciQ dataset does not contain any question with

forbidden option. Every question in SciQ dataset contains 4 options, whereas the

number of options vary from 2 to 7 in TQA dataset. Hence, the multiple-choice

QA system generates the probability distribution over the set of available options.

Similarly, the number of sentences in the most relevant paragraph can vary from

question to question, so we set aij = −∞ whenever dj is a zero vector. The stan-

dard cross-entropy loss function is minimized during training. The code for the

proposed system is publicly available.2

6.1.5 Results

Tables 6.1 and 6.2 show the accuracy of the proposed system on the validation set

of TQA and SciQ dataset respectively. For SciQ dataset, we use the associated

passage provided with the question as the most relevant paragraph. AS Reader [60]

2https://github.com/akshay107/CNN-QA/

https://github.com/akshay107/CNN-QA/
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Model Accuracy

GRUbl 68.2%

CNN3,4,5 87.1%

CNN2,3,4 87.8%

CNN2,3,4 84.7% (test-set)

Table 6.2: Accuracy of the QA systems on SciQ dataset. The first three
accuracies are on validation set. The last accuracy is of CNN2,3,4 on the test
set.

which encodes the question and the paragraph using GRU followed by attention

mechanism achieved 74.1% accuracy on the SciQ test set. However, for a question,

they used a different corpus to extract the text passage. Hence it is not judicious

to compare the two systems. As can be seen from the Tables 6.1 and 6.2, CNN2,3,4

gives the best performance on the validation set of both the datasets. Note that

GRUbl highly overfits on the SciQ dataset which shows that CNN-based systems

work better for datasets where long-term dependency is not a major concern.

This rationale is also supported by the fact that CNN2,3,4 performs better than

CNN3,4,5 on the two datasets.

Baselines for TQA dataset: Three baselines systems are mentioned in Kem-

bhavi et al. [64] . These baseline systems rely on word-level attention and en-

coding question and options separately. The baseline systems are random model,

Text-Only model and BiDAF [114]. Text-Only model is a variant of Memory net-

work [134] where the paragraph, question and options are embedded separately

using LSTM followed by attention mechanism. In BiDAF, character and word

level embedding is used to encode the question and paragraph followed by bidi-

rectional attention mechanism. This system predicts a span within the paragraph

containing the answer. Hence, the predicted span is compared with each of the

options to select the final option.

Note that the result of the baseline systems given in Kembhavi et al. [64] were on

test set but the authors had used a different data split than the publicly released

split. As per the suggestion of the authors, we evaluate CNN2,3,4 by combining

validation and test set. The comparison with the baseline systems is given in Ta-

ble 6.3. As can be seen from Table 6.3, CNN2,3,4 shows significant improvement

over the baseline systems. We argue that our proposed system outperforms the
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Model True-False Multiple Choice

Random∗ 50.0 22.7

Text-Only∗ 50.2 32.9

BiDAF∗ 50.4 32.2

CNN2,3,4 53.7 35.8

Table 6.3: Accuracy of different systems for true-false and multiple choice
questions. Results marked with (∗) are taken from Kembhavi et al. [64] and
are on test set obtained using a different data split. Result of our proposed
system is on publicly released validation and test set combined.

Text-Only model because of three reasons (i) sentence level attention, (ii) question-

option tuple as input, and (iii) ability to tackle forbidden options. Sentence level

attention leads to better attention weights, especially in cases where a single sen-

tence suffices to answer the question. Furthermore, if question is given as input

to the system, then it has to extract the embedding of the answer whereas giving

question-option tuple as input simplifies the task to comparison between the two

embeddings.

As mentioned earlier, SciQ dataset does not have any questions with forbidden

options. The validation set of TQA has 433 questions with forbidden options.

Using the proposed threshold strategy for tackling forbidden options, CNN2,3,4

gets 188 out of 433 questions correct. Without using this strategy and giving every

question-option tuple as input, CNN2,3,4 gets 109 out of 433 questions correct.

6.2 Bruteforce Attack and Types of Intervention

As we can see from Table 6.1, the performance of the three multiple-choice QA

systems is quite low on the TQA dataset. This is because several instances of

TQA dataset require multi-hop reasoning across paragraphs in order to answer a

question correctly. Hence, to evaluate the robustness of these multiple-choice QA

systems, we perform experiments on SciQ dataset. We randomly pick 100 samples

from SciQ validation set where all the three multiple-choice QA systems gave the

correct prediction. For these samples, we manually annotate the portion of the

paragraph responsible for the answer (i.e. rationale). Table 6.4 shows one such

example where the rationale is marked in blue. Note that the second mention of

“barrier island” in the paragraph of Table 6.4 is not responsible for the answer.
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Paragraph A barrier island is a long strip of sand. The sand naturally moves in
the local currents. People try to build on barrier islands.

Question A long strip of sand is referred to as what?

Options (a) a volcano (b) a component island
(c) a composition island (d) a barrier island

Table 6.4: Example from SciQ validation set. We manually annotate the
portion of paragraph responsible for the answer (shown in blue).

After annotating the rationales, we run the bruteforce attack with the goal of

making as many replacements as possible within the rationale, keeping the rest

of the paragraph unchanged. Apart from this constraint, the attack algorithm is

similar to Algorithm 5.1. We also evaluate the robustness of multiple-choice QA

systems by performing interventions on the input paragraph. The intervention-

based study allows us to evaluate the ability of QA systems to deduce logical

consequence. We experiment with the following two types of interventions:

1. Mask intervention: In mask intervention, we remove the rationale from

the input paragraph. For example, in Table 6.4, mask intervention will

change the sentence “A barrier island is a long strip of sand” to “is a long

strip of sand”. Since in this scenario, there is no evidence for any of the

options, we expect the QA system to predict an option randomly. We refer

to this type of intervention as Mask.

2. Option-specific intervention: In option-specific intervention, we replace

the rationale with an incorrect option in the input paragraph. For example,

in Table 6.4, option-specific intervention will change the sentence “A bar-

rier island is a long strip of sand” to “A volcano is a long strip of sand”.

In this scenario, we expect the QA system to change its prediction to the

corresponding option. Note that option (d) is always the correct option for

SciQ dataset. Hence, we refer to this type of intervention as Option A/B/C

depending on which incorrect option is used for replacement.

6.3 Results

Table 6.5 shows the success rate and percentage of replacements of bruteforce at-

tack against the three multiple choice QA systems. From the table, we can see
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Model Success Rate Replacement %

GRUbl 99.0% 133/142 (93.7%)

CNN3,4,5 100.0% 136/142 (95.8%)

CNN2,3,4 99.0% 135/142 (95.1%)

Table 6.5: Success Rate of Bruteforce-Attack

Source

Target
GRUbl CNN3,4,5 CNN2,3,4

GRUbl - 82.0% 76.0%

CNN3,4,5 89.0% - 89.0%

CNN2,3,4 83.0% 94.0% -

Table 6.6: Transferability of Bruteforce-Attack. The adversarial example
obtained for the Source QA system is given as input to the Target QA system.

that bruteforce attack achieves very high success rate for all the three QA sys-

tems. Furthermore, the percentage of replacement is also significantly high. This

clearly showcases that the bruteforce attack is able to generalize to multiple choice

QA systems as well. Furthermore, Table 6.6 shows transferability of bruteforce

attack across QA systems. Unlike NMT systems, we observe that the adversar-

ial examples obtained via bruteforce attack have high transferability across QA

systems.

Table 6.7 shows the prediction count for all the options across QA systems and

types of intervention. For mask intervention, all the three systems still predict the

same option, i.e. option (d), in majority of cases. This shows that when the anno-

tated rational is masked, the QA systems mostly rely on superficial cues (such as

attending on second mention of “barrier island” for Table 6.4) for prediction. This

reliance on superficial cues along with the fact that the three QA systems share

the same embedding matrix also explains the high transferability of bruteforce

attack observed in Table 6.6. For option-specific intervention, we observe that

the prediction count for the desired option is significantly higher in CNN-based

QA systems than GRUbl. Hence, CNN-based QA systems generalize better to

option-specific intervention. This finding can be attributed to the fact that, unlike

GRUbl, the proposed CNN-based QA systems rely on n-gram features and hence

are more sensitive to minor changes in the input paragraph.
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System Intervention Prediction

Type Count

GRUbl

Mask 12, 6, 9, 73

Option A 42, 1, 1, 56

Option B 1, 44, 0, 55

Option C 1, 2, 43, 54

CNN2,3,4

Mask 8, 13, 8, 71

Option A 57, 2, 2, 39

Option B 0, 60, 1, 39

Option C 2, 1, 61, 36

CNN3,4,5

Mask 11, 10, 9, 70

Option A 55, 1, 2, 42

Option B 0, 53, 4, 43

Option C 1, 0, 61, 38

Table 6.7: Results for mask and option-specific interventions. Prediction
count shows the number of times each of the option is predicted by the QA
system. For option-specific intervention, the prediction count of the desired
option is marked in bold.

6.4 Summary

This chapter explored the robustness of multiple-choice QA systems to brute-

force attack and two types of input intervention, namely, mask intervention and

option-specific intervention. These interventions were performed on the annotated

rationale of the input paragraph. The results showed that the bruteforce attack

achieves high success rate along with high percentage of replacements for all the

QA systems. We also observed high transferability of adversarial examples across

the three QA systems. For intervention-based study, we observed that the QA

systems do not generalize well to mask intervention. However, for option-specific

intervention, CNN-based systems generalize better than their GRU counterpart.
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Conclusion

Amplify, clarify, and punctuate, and let the

viewer draw his or her own conclusion.
Keith Jackson

The goal of this thesis was to study the adversarial robustness of deep learning

systems. In this thesis, we analysed the robustness of several state-of-the-art deep

learning systems across various NLP and vision tasks. In Chapter 2, we looked

at the robustness of VQA systems to adversarial background noise. The results

showed that by adding minimal background noise to the image, these systems can

be fooled both in the same-category and different-category setting. This holds true

for toy datasets, where VQA systems have very high accuracy, as well as real-world

dataset, where a very tiny fraction of the image is modified during the attack.

However, as shown in Chapter 2, category-specific answer modules significantly

enhance the robustness of N2NMN against different-category attack. In Chapter 3,

we proposed a task-agnostic attack, named Mimic and Fool, against vision systems.

Mimic and Fool relies on the idea that if two images are indistinguishable for

the feature extractor then they will be indistinguishable for the model as well.

Keeping this in mind, Mimic and Fool solely relies on fooling the feature extractor

to fool the underlying vision system. Both the attacks in Chapters 2 and 3 can be

considered as adversarial attacks in a constrained setting. While the adversarial

attack in Chapter 2 only modifies the image background, Mimic and Fool is a

gray-box attack as it only requires the knowledge of the feature extractor of the

vision system. Even in a constrained setting, these attacks achieve high success

rate against deep learning-based vision systems.

121
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In Chapter 4, we explored the robustness of NMT systems to invariance-based

adversarial attack. In a low-resource setting, we observed that the NMT systems

are unable to capture the semantics as they predict the same translation for two

completely different source sentences. However, in a high-resource setting, NMT

systems are significantly more robust to the invariance-based attack. In Chap-

ter 5, we explored two defense strategies to counter bruteforce attack: learn to

deal and learn to ignore. The results showed that learn to ignore strategy is able

to significantly reduce the effectiveness of bruteforce attack. In Chapter 6, we

explored the generalizability of the bruteforce attack to multiple-choice QA sys-

tems. We observed that the bruteforce attack achieves a very high success rate

for both CNN and GRU-based multiple-choice QA systems. In this chapter, we

also explored the ability ability of QA systems to deduce logical consequence by

performing two types of interventions on the input paragraph, namely, mask inter-

vention and option-specific intervention. The low generalizability of QA systems

to mask intervention showcased that, in absence of evidence, these system rely on

superficial cues for answering a question. However, for option-specific interven-

tion, we observe that CNN-based multiple-choice QA systems generalize better

than their GRU counterpart.

Overall, the findings of this thesis show that state-of-the-art deep learning sys-

tems across NLP and vision lack adversarial robustness. Deep learning-based

vision systems were shown to be vulnerable to adversarial attacks, even in a con-

strained setting. Mimic and Fool showcases the drawbacks of commonly-used fea-

ture extractors in deep learning-based vision systems. For NLP systems, we took

an orthogonal approach from previous works for designing adversarial attacks.

We designed invariance-based adversarial attacks which make multiple changes

to the input sentence with the goal of keeping the prediction unchanged. The

invariance-based adversarial attack was shown to be effective against NMT sys-

tem in a low-resource setting. However, in a high-resource setting, the adversarial

robustness of the NMT system against such attacks is significantly enhanced. This

shows that NMT systems have more adversarial robustness in comparison to deep

learning-based vision systems.

The future scope of this thesis is as follows:

1. As shown in Chapter 2, VQA systems are vulnerable to adversarial back-

ground noise. Recent VQA systems rely on bottom-up features obtained
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from Faster R-CNN [2, 148] to capture information about an image. Ro-

bustness of such systems to adversarial background noise can be explored

in future. However, given previous works on adversarial attacks against ob-

ject detectors, it is highly unlikely that such VQA systems are resilient to

adversarial background noise. Hence, for future work, one can design VQA

systems which can effectively learn to ignore the background noise especially

for toy-datasets where background is easily identifiable.

2. In Chapter 3, the proposed adversarial attack, Mimic and Fool, showcases

the limitation of current feature extractors which are widely used in deep

learning-based vision systems. Hence, a possible future work will be to de-

velop feature extractors which are robust to Mimic and Fool and, at the

same time, lead to vision systems which are at par with current systems in

terms of performance. Another possible scope of future work, from an attack

perspective, is to design task-agnostic adversarial attacks which requires ac-

cess to only the pretrained weights (instead of fine-tuned weights as is the

case with Mimic and Fool) of the feature extractor.

3. Chapter 4, as mentioned earlier, showed that NMT systems are vulnerable

to invariance-based adversarial attacks, especially in a low-resource setting.

We also discussed several metrics to evaluate the efficiency of the proposed

attack. To build trustworthy MT systems, it is important to benchmark

progress of NMT systems not only on BLEU score on test set but also on

such robustness metrics.

4. In Chapter 5, we explored several defense strategies to tackle invariance-

based attack on NMT systems. Different from prior works where minimal

changes are made to the source sentence to change the predicted translation,

invariance-based attack makes multiple changes to the source sentence with

the goal of keeping the predicted translation unchanged. Hence, a possible

future work would be to design NMT systems which are robust to invariance-

based attacks as well as prior attacks.

5. Chapter 6 showed that, on SciQ dataset, CNN-based multiple-choice QA

systems are better at generalizing to option-specific interventions in com-

parison to GRU-based systems. However, in absolute terms, this generaliz-

ability for both CNN and GRU based multiple-choice QA systems is quite

low. The low generalizability showcases the inability of multiple-choice QA
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systems to learn logical consequences. Current QA systems in NLP rely on

finetuning Transformer-based architectures such as BERT [30], XLNet [146]

etc. Robustness of such systems to invariance-based attacks as well as dif-

ferent types of interventions can be explored in future. In the literature,

intervention-based techniques have been extensively studied to learn causal

structures [104]. Keeping this in mind, a possible future work is to explore

training paradigms which use the notion of intervention to teach logical con-

sequences to QA systems. Such a training paradigm can later be extended

to other NLP and vision tasks as well.

6. While the thesis work highlighted the lack of robustness of current deep

learning systems, adversarial attacks can also be used in a positive setting

such as for developing privacy preserving applications [86]. However, the

AI community should be aware of the ethical issues in regard to use of

adversarial attacks. For instance, selective bias (such as racial or gender

bias) can be injected in a system through poisoning attacks.
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Stockholm Sweden. PMLR.
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