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Abstract 
Modeling brightness perception has always been a challenging issue in computer vision 
for performing real-life, complex visual tasks like object detection, recognition and image 
analysis under widely varying lighting conditions. Brightness constancy, brightness-
contrast, brightness assimilation, transparency etc. are some of the crucial aspects in 
perceiving brightness that need to be dealt with in order to develop meaningful 
computational models in machine vision. The fascinating world of brightness illusions 
provides an important gateway to this study and research. The present thesis attempts to 
make some humble contributions to this end through both experimental psychophysics 
as well as from the perspective of computational neuroscience. In this work, we have, 
first of all, been able to design and establish four new illusory stimuli that expose the 
limitations of traditional spatial filtering models of vision in general and that of the well-
established Oriented Difference of Gaussian (ODOG) filter, in particular. These four new 
stimuli are all modifications of some of the classical brightness perception illusions. The 
first is the Mach Band illusion where in our new design, the region of intensity gradient 
in the image increases linearly in size from zero at the top to its widest at the bottom, so 
that the bright Mach band is perceived thinner at the top and wider at the bottom 
diverging outwards like rays of light emanating from the top. Next, is the Hermann grid 
illusion where we introduced tiny perturbing squares overlapping with each grid square 
corner, resulting in complete wiping out of the illusory spots in Hermann grid. The 
third, deals with the sine and square grating stimuli that induce brightness to a 
foreground uniform test strip.  Our design comprises a set of stimuli demonstrating sine 
to square grating transition unfurling new intriguing problems regarding the mechanism 
of brightness-contrast phenomenon in the parallel visual pathway and suggest that these 
two apparently similar effects of brightness induction may occur due to distinctly 
different mechanisms. The last one is the White’s illusion where a simple longitudinal 
extension of the test patch in our modification demonstrates interesting effects in 
brightness assimilation and the failure of the ODOG model. We have shown that this 



 

limitation of ODOG can be overcome by a new parsimonious spatial filtering model 
(Difference of Difference of Gaussian or DDOG) that can provide a unified explanation 
to both brightness contrast and brightness assimilation phenomena, and can also predict 
many such subtle brightness effects. Two versions of this model viz. the Varying 
Contrastive Context Filter (VCCF), and the Adaptive Contrastive Context Filter (ACCF) 
have been proposed, both of which attempt to approximate the Magno (M) and Parvo 
(P) channels in the central visual pathway. Next, some image processing applications of 
this new computational model in the domain of denoising with edge preservation are 
demonstrated especially in comparison to the powerful Bilateral filter. Finally, the 
limitations of our model and spatial filtering based approaches, in general, have been 
elucidated and the possible directions of future research in computational theories of 
brightness perception have been indicated.  
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Chapter 1 
Brightness illusions and brightness perception 
1.1 Motivation 
 Millions of years of evolution has equipped us with our five senses 
which we use to perceive the world around us. We usually trust our 
senses completely and we believe that whatever we perceive through the 
senses is reality itself. This belief is so strong that we even entrust our lives 
to it. For example, while crossing a road we rely on our senses to report 
the presence of an approaching vehicle. Reality however is far too vast 
and far too detailed to be perceived by our limited senses. Our eyes 
cannot sense any radiation beyond the visible wavelengths, which is only 
a thin slice of the electromagnetic spectrum. We also cannot perceive the 
fine details of the microscopic world which our unassisted eyes do not 
have the resolution to observe. We are therefore unable to perceive a 
majority of the signals that are impinging upon us because our sensory 
organs are ill equipped to sense them. Evolution has only equipped us 
with barely enough for our species to survive. From an evolutionary 
perspective dedicating excessive amounts of energy and nutrients 
towards maintaining sensory organs of excessively high power and acuity 
would be a waste of resources. Evolution has however equipped us with a 
brain whose job is to integrate all the incoming sensory information, draw 
inferences about the outside world from them, and decide upon the 
appropriate action depending on targeted goals. These inferences are 
nothing but estimates about the real world “out there” with whatever 
limited data we may be receiving from our senses. These estimates are 
what constitute our perception. 
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 In most circumstances, our perceptual experiences are completely 
determined by the state of the external world that the brain intends to 
know about. Therefore, if we were to somehow record a person’s 
perceptual experiences, then studying that record would only reveal 
information about the state of the external world and it will not reveal 
anything about that person’s perceptual apparatus viz. the brain. 
Sometimes however, under certain circumstances, it has been found that 
the inferences drawn by the brain can be incorrect or inaccurate. These 
inaccuracies are anomalies in our perceptual experiences. Recording these 
anomalies would therefore reveal interesting information about the 
perceptual apparatus, instead of merely reflecting the state of reality. 
Sometimes these inferential errors are only temporary, but at other times 
they are persistent over time and consistent from person to person. These 
errors of estimation are termed as illusions. When they pertain to the 
sense of vision they are called visual illusions. These anomalies, i.e. 
illusions, offer us a window into the inner workings of the brain without 
having to physically probe it using instruments. Sometimes these 
perceptual anomalies also show a degree of variation from person to 
person. This variation too, may occasionally reveal information about the 
state of the perceptual apparatus of a person (e.g. detecting conditions 
such as colour-blindness, or even some diseases like diabetes [Davies and 
Morland, 2002]). By performing simple psychophysical experiments, we 
can gain insights into some of the underlying mechanisms of the brain. 
Psychophysical experimentation involves subjecting volunteers to a 
variety of external stimuli and recording their responses describing their 
subjective experiences of those stimuli. Insights into the human visual 
system and its underlying mechanism can also help in the development of 
new computational models of perception which can be important tools in 
solving various problems of computer vision and image processing. These 



Chapter 1: Brightness Illusions and Brightness Perception 

 

3

computational models can also assist us in mimicking the high robustness 
and sensitivity characteristics (such as ‘identification’, ‘discrimination’, 
etc.) of human vision. 
 Visual illusions have also found practical applications in various 
technologies. For example the appearance of motion in cinema is nothing 
but a visual illusion, because cinema is nothing but a sequence of still 
pictures shown in rapid succession. Visual illusions in the form of motion 
blurring also find application in the world of modern videogames. Motion 
blurring is used to reduce the discomfort level of the viewer when the 
frame-rate of a videogame becomes very low, which can occur because of 
heavy computational load. At low frame-rates a videogame appears 
“choppy” or “jerky” which causes discomfort to the player. Motion 
blurring artificially introduces a blurring effect depending upon the 
motion in the scene. This enhances the appearance of continuity in the 
video. The frame-rate of 24 frames per second used in traditional cinema 
is considered very low by experienced videogame players, who prefer a 
minimum frame-rate of 60 frames per second. In fact traditional cinema 
appears to be smooth precisely because it already incorporates the motion 
blurring effect from its very start in history. Any experienced still 
photographer will attest that an exposure time of 1/24th of a second is too 
long a duration for producing sharp still images because objects in 
everyday life move significantly within that time. Still photographers 
prefer to stay below 1/60th of a second. However a motion picture made 
out of a sequence of very sharp images played back at 24 frames per 
second will have the aforementioned appearance of choppiness or 
jerkiness and cause discomfort to the viewer. 
 Another area of application of visual illusions is in the area of lossy 
image and video compression, i.e. the efficient representation of visual 



 

 

4

data for efficient transmission and storage. Lossy compression techniques 
reduce data size by encoding the data in such a way that discarding some 
parts of the data will be imperceptible to the viewer. For example, the 
higher frequency components of an image can be represented using lower 
precision numbers than the low frequency components. The introduction 
of additional noise as a result of this reduction of precision goes unnoticed 
as it gets lost amid the already high intensity variations at high 
frequencies. But there do exist frequently occurring situations in which 
this scheme fails noticeably by introducing conspicuous artifacts into the 
image. This highlights another practical use of computational models of 
perception. Models of visual perception can help us in building efficient 
video and image compression techniques by avoiding such artifacts. 
Perceptual models of hearing have already been very successfully applied 
to achieve huge efficiencies in audio data compression. Perceptual models 
are also useful in image processing where they can be used to reduce 
perceived noise as opposed to real noise. Other applications exist in 
watermarking and visual information camouflaging. 
1.2 Brightness illusions 
 Brightness illusions are visual illusions in which different surfaces at 
different locations of the stimulus presented before a person, having equal 
physical luminance, are perceived to be of different brightness. This 
difference in perceived brightness depends on the structure of the 
stimulus presented. When the areas surrounding the surfaces are covered 
up, the surfaces appear equally bright again. Note that this difference is 
not because of the surfaces being projected at different locations of the 
retina. The nature of the illusion does not change upon sideways shifting 
of the stimulus. Usually such stimuli are viewed on a display device 
which have their own light source, but if the illusion is viewed under 
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reflected light, such as a paper printout, it must be ascertained that all 
parts are uniformly illuminated in order to ensure that all equiluminant 
surfaces on screen are also equiluminant on paper, i.e. brightness 
variations must not be a result of differential illumination. A very famous 
example of this type of illusion is the Checkershadow Illusion created by 
Edward H. Adelson, shown in Figure 1.1.  
 The existence of such illusions implies that the perceived luminance of 
a region is not determined only by the actual luminance of that particular 
region. Instead the perceived luminance can be modulated by the 
observer’s brain depending on the area surrounding the region concerned. 
This illusion is so surprising because most people believe that the 
perceived luminance of an area depends exclusively on the properties of 
that area without being affected by the mere presence of any pattern in its 
surroundings. Henceforth in this work the term intensity shall be used to 
refer to the actual luminance of a region and the term brightness shall be 
used to refer to the perceived luminance of that region (though in the field 
of brightness perception this is also sometimes termed as lightness). In the 
next section several other brightness illusions are discussed in greater 
detail. 
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Figure  1.1:  The  Checkershadow  illusion  by  Edward  H.  Adelson.   In  the  figure  on  
the left the squares marked A and B  are  of  equal  luminance,  yet  square A  clearly  
appears  darker than square B. The figure on the right proves that the two squares are 
equiluminant by connecting them with solid bars of uniform luminance. (Copyright 
Information: Edward H. Adelson has allowed free reproduction and distribution of this 
image as mentioned in http://persci.mit.edu/gallery/checkershadow/download) 

1.3 Examples of brightness illusions 
 The Checkershadow illusion introduced in the previous section, 
although strikingly surprising to look at, is too complex to even begun to 
be analyzed and modeled, due to it being a 2D representation of a 3D 
scene that consists of lighting-shading effects, shadows, occlusion etc, that 
increase its complexity. Fortunately brightness illusions can also be seen in 
far simpler contexts with fewer description parameters which must be 
modeled and explained before even attempting an explanation of the 
Checkershadow illusion. 
 Figure 1.2 and 1.3 show several examples of brightness illusions. The 
stimuli shown in Figure 1.2 contain two distinct grey patches, usually 
termed as test patches, similar to the two squares A & B in the 
Checkershadow illusion of Figure 1.1. These two grey patches have been 
designed to be equiluminant (by assigning them the same RGB values), 
yet just like in the Checkershadow illusion the two grey patches appear 
differently luminant as a result of the surrounding context of those two 
grey patches. Examples of this include the Simultaneous Brightness 
Contrast (SBC) (Figure 1.2a), the White’s effect (Figure 1.2b), the Shifted-
White’s effect (Figure 1.2c) and the Checkerboard illusion (Figure 1.2d). 
 The stimuli in Figure 1.3 show a few other types of brightness 
illusions which do not provide for any comparative study of two 
equiluminant test patch perceptions, unlike the stimuli in Figure 1.2. 
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Instead, these stimuli are characterized by a spatially continuous intensity 
field whose perceived brightness field does not agree with its designed 
intensity field. 

 (a) Simultaneous Brightness Contrast. 

 (b) White Effect. 
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1.3.1 Simultaneous brightness contrast (SBC) 
 Figure 1.2a shows a SBC stimulus [Heinemann, 1955]. Two grey 
squares of equal intensity are drawn over a background such that one 
grey square is completely surrounded by a uniformly black region and the 
other grey square is surrounded by uniformly white region. The two grey 
squares, although having equal intensity, appear unequally bright. From 
Figure 1.2a, it can be seen that the grey square which is surrounded by 
white appears darker than the grey square surrounded by black. This 
means that the direction of brightness change of the grey squares is 
opposite to that   of the respective surrounding regions. In other words the 
brightness shifts occur in a direction so as to enhance the contrast of the 
grey squares relative to their surroundings. In the next chapter we shall 
discuss in detail this phenomenon of brightness-contrast as one of the 
typical variants of brightness perception complexities. 
1.3.2 White’s illusion 
 Figure 1.2b shows White’s stimulus [White, 1979]. Two grey patches 
of equal intensity are drawn over vertically oriented strips of alternating 
black and white colors. One grey patch is placed over a black strip while 
the other is placed over a white strip. The two grey patches have equal 
intensity but appear unequally bright. It can be seen that the brightness of 
the grey patch sandwiched between two white strips is higher than the 
brightness of the grey patch sandwiched between the black strips. It 
should also be noted that the grey patches share a longer border with the 
strips on their left and right than with the strip they were placed upon and 
yet the brightness shift of the grey patches occur in a direction so as to 
enhance the contrast with respect to the strip they share a shorter border 
with. This shows that the White’s illusion is of a completely different 
nature compared to the SBC illusion. The discovery of White’s effect 
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[White, 1979] was a paradigm shift in the field of Brightness perception 
because it contradicted the predominant theories of brightness perception 
that existed up to that time and which were able to provide explanations 
(qualitative as well as quantitative) for Simultaneous Brightness Contrast. 
1.3.3 Shifted-White’s illusion 
 Figure 1.2c shows the Shifted-White’s stimulus [White, 1981]. This is 
similar to White’s illusion, except that the central region between two 
imaginary horizontal lines above and below the grey patches is 
horizontally shifted by a distance equal to the strip width. After shifting, 
the grey patches are now bordered by either white on all four sides or 
black on all four sides. The two grey patches have equal intensity but 
appear unequally bright. It can be seen that the brightness of the grey 
patch bordered by white regions is higher than the brightness of the grey 
patch bordered by black regions, i.e. contrast gets reduced as in White’s 
effect. But in the following chapters we shall see that the Shifted-White 
effect is an even more complex phenomenon compared to the White 
effect, since depending upon the length scale of the stimulus the 
brightness shift illusion may even get reversed. 
1.3.4 Checkerboard illusion 
 The checkerboard illusion [De Valois and De Valois, 1988] consists of 
a chessboard like array of alternating black and white squares as shown in 
Figure 1.2d. Two squares out of this array, one black and one white, are 
painted over with the same grey color of uniform intensity. The grey 
square which was originally black is now bordered on all four sides by 
white squares and the grey square that was originally white is now 
bordered by black squares on all 4 sides. It can be observed that the grey 
square which is surrounded by white squares appears brighter than the 
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grey square which is surrounded by black squares. The remarkable thing 
to note here is that the direction of brightness change in this illusion is in a 
direction so as to reduce the contrast with respect to the bordering 
squares. This is exactly opposite of what was occurring in the 
Simultaneous Brightness Contrast (SBC) illusion of Figure 1.2a, where the 
brightness of the grey squares changed in a direction opposite to the 
surrounding brightness. The further complexities associated with this 
illusion will be discussed subsequently in the following chapters. 

 
(a) Sine Grating Induction. 

(b) Square Grating Induction. 

(c) Hermann Grid. 
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(d) Mach Bands. 

 
Figure 1.3: Further examples of brightness induction illusions (a) 
Sinusoidal Grating induction: the grey strip has uniform intensity but 
when placed over a sinusoidally undulating intensity field, appears to 
have undulating brightness. Here the grey-patch brightness changes in a 
direction opposite to most of its surroundings considering each of the 
black or white columns on which it lies. (b) Square Grating induction: the 
grey strip has uniform intensity but when placed over a square 
waveform intensity field, appears to have undulating brightness. Similar 
to the Sinusoidal grating illusion above the grey-patch brightness 
changes in a direction opposite to most of its surroundings considering 
each of the black or white columns on which it lies. As described later, we 
have found through experimental studies that the sinusoidal grating 
illusion is much stronger in effect than the square grating illusion. (c) 
Hermann grid illusion: A number of black squares are placed in a grid 
formation. Splodges of grey are perceivable on the white intersection 
points, even though the background is purely uniform intensity. (d) 
Mach Band Illusion: This consists of steps of intensity-plateaus separated 
by intensity-gradients. Bright and dark bands can be observed along the 
lines where the gradients meet the plateaus. These bright and dark bands 
are illusory brightness-peaks and brightness-troughs, respectively, in the 
brightness profile, as the input stimulus has a monotonic intensity profile 
devoid of any peaks or troughs. 

1.3.5 Grating induction illusion 
 The grating induction illusion [McCourt, 1982] (Figure 1.3a and 1.3b) 
consists of a grating of alternating black and white wave-like pattern, 
upon which a grey colored strip of uniform intensity is drawn over. This 
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grey strip appears to have undulating brightness so as to enhance the 
contrast with respect to its local neighbourhood. There exist two separate 
versions of this illusion as described below. Although the two types may 
seem to be only slight variants, the illusory effect of one is much stronger 
than the other. 
1.3.6 Sinusoidal grating induction 
 Figure 1.3a shows a sinusoidal grating induction stimulus. A single 
grey strip of uniform intensity runs horizontally across a sinusoidally 
varying background intensity field. The grey strip appears to have an 
undulating brightness. Careful examination will reveal that the grey strip 
appears bright at background intensity minima and it appears dark at 
background intensity maxima. Hence the perceived brightness change is 
enhancing contrast. 
1.3.7 Square grating induction 
 Figure 1.3b shows a square grating induction stimulus. A single grey 
strip of uniform intensity runs horizontally across a background intensity 
field varying as a square waveform. The grey strip appears to have an 
undulating brightness. Careful examination will reveal that the grey strip 
appears bright where the background is dark and appears dark where the 
background is bright. Hence the perceived brightness change is enhancing 
contrast. This illusion might superficially seem to be same as the 
sinusoidal grating induction illusion, but we have been able to show 
through our experiments in the subsequent chapters that the sinusoidal 
grating induction is a much stronger effect than the square grating 
induction. 
1.3.8 Hermann grid illusion 
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 Figure 1.3c shows the Hermann grid stimulus, consisting of a 
uniformly spaced grid of black squares separated by white lanes as in the 
case of evenly spaced city blocks. Grey blobs are visible at the lane 
intersections although the lanes themselves are of uniform white intensity. 
Compared to all the previous illusions the Hermann grid illusion has one 
remarkable difference, which is that when one looks carefully at one lane 
intersection one can easily verify that it has uniform intensity, but when 
one ceases to concentrate on a single intersection, the grey blobs reappear. 
In contrast, in all of the previous illusions the illusory effect remains the 
same no matter whether the observer is concentrating or not. In fact an 
observer will not even notice that the intensities of the grey patches were 
the same and that any apparent difference was only illusory, if he is not 
specifically told so by another person. In the Hermann grid illusion any 
alert observer would immediately notice that the grey blobs are illusory. 
In a later chapter we shall discuss several variations of the Hermann grid 
illusion and some of its properties. 
1.3.9 Mach band illusion 
 Figure 1.3d shows an example of the Mach band illusion. The Mach 
band illusion occurs at the boundary between two regions of differing 
intensity gradients. The border along which these two regions meet shows 
either a brightness-peak or a brightness-trough. These peaks (bright Mach 
bands) and troughs (dark Mach bands) are of illusory nature. A bright 
Mach band can be seen where the gradient is decreasing and a dark Mach 
band can be seen where the gradient is decreasing. Figure 1.4b shows the 
horizontal intensity profile of the Mach band stimulus shown in Figure 
1.4a. The term intensity profile refers to a graphical plot of intensity versus 
distance of an image when one moves along a straight line through the 
image. The horizontal intensity profile is the intensity profile along a 
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horizontal line through the image. Similarly the vertical intensity profile is 
the intensity profile along a vertical line through the image. In the case of 
both Figure 1.3d and Figure 1.4a the horizontal intensity profile is t
same along all horizontal lines through the image. This may not be true in 
other contexts, as for example Figure 1.2, and in such cases it shall be 
specified which horizontal line is used to plot the horizontal intensity 
profile. In most cases (but not 
through the center of the image.

Figure 1.4: (a) Mach band stimulus image. (b) Horizontal brightness profile for 
the Mach Band stimulus.

 Figure 1.4b shows the intensity profile of a Mach band stimulus 
juxtaposed alongside the stimulus itself. It is clear that the intensity profile 
is a non-decreasing function of position. Yet when looking at Figure 1.4a 
one can clearly see brightness
decreases abruptly. One can also see br
where the gradient increases abruptly. But there can exist no peak or 
trough in a non-decreasing function. The bright peaks and dark troughs 
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horizontal line through the image. Similarly the vertical intensity profile is 
the intensity profile along a vertical line through the image. In the case of 
both Figure 1.3d and Figure 1.4a the horizontal intensity profile is t
same along all horizontal lines through the image. This may not be true in 
other contexts, as for example Figure 1.2, and in such cases it shall be 
specified which horizontal line is used to plot the horizontal intensity 
profile. In most cases (but not always) it is a horizontal line passing 
through the center of the image. 

(a) Mach band stimulus image. (b) Horizontal brightness profile for 
the Mach Band stimulus. 

Figure 1.4b shows the intensity profile of a Mach band stimulus 
alongside the stimulus itself. It is clear that the intensity profile 

decreasing function of position. Yet when looking at Figure 1.4a 
one can clearly see brightness-peaks at the positions where the gradient 
decreases abruptly. One can also see brightness-troughs at the positions 
where the gradient increases abruptly. But there can exist no peak or 

decreasing function. The bright peaks and dark troughs 
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horizontal line through the image. Similarly the vertical intensity profile is 
the intensity profile along a vertical line through the image. In the case of 
both Figure 1.3d and Figure 1.4a the horizontal intensity profile is the 
same along all horizontal lines through the image. This may not be true in 
other contexts, as for example Figure 1.2, and in such cases it shall be 
specified which horizontal line is used to plot the horizontal intensity 

always) it is a horizontal line passing 

 
(a) Mach band stimulus image. (b) Horizontal brightness profile for 
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must therefore be of illusory origin. These peaks and troughs appear all 
along the borderline wherever the gradient changes abruptly, giving them 
the look of elongated bands. Hence the name Mach bands, in the honour 
of Ernst Mach who first observed them. We shall explore several other 
properties of the Mach band illusion in some of the subsequent chapters. 
 In the following chapter we shall review various models and scientific 
theories of brightness perception based on experimental research 
involving many of the illusions discussed in this chapter. 



Chapter 2 
History, existing models and theories 
 
2.1 Introduction 
The first formal studies of perceptual phenomena were made by Gustav 
Theodor Fechner (1801-1887), who is now known as the founder of the 
field of Psychophysics. He demonstrated that perception could be 
systematically measured and modeled. 
In his publication Elemente der Psychophysik [Fechner, 1860], Gustav 
Theodor Fechner first introduced a class of techniques and psychophysical 
methods in order to correlate stimulus and sensation [Gescheider, 1997] 
[Ehrenstein and Ehrenstein, 1999]. Fechner realized that psychophysics 
requires the objectification of subjective response. This task can involve 
'detection', 'identification' or 'discrimination' of various stimuli. He 
proposed methods for psychophysical experimentations which involve 
measurement, quantification and characterization of the perceptual 
experience using some psychophysical quantities. One of the important 
measurable quantities to judge any stimulus and objectify its perception in 
brain is the Absolute threshold of a stimulus sensation. The term 
'Absolute threshold' is defined as the minimum intensity level of stimulus 
that can be detected reliably by any subject. Fechner continued the earlier 
work of E.H. Weber, one of whose important findings were, if a stimulus 
of intensity I is applied on one of the senses, then the minimum amount ∆I 
that the applied intensity must be increased in order for the change to be 
perceptible, is proportional to the applied intensity I. The ratio ∆I/I is 
called the Weber fraction. Fechner added on to Weber’s work which led to 
the Weber-Fechner Law which states that, "In order that the intensity of a 
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sensation may increase in arithmetical progression, the stimulus must 
increase in geometrical progression". This implies that the perceived 
strength of a given sensation is a logarithmic function of the intensity of 
the stimulus which generated that sensation. This probably is the earliest 
example of an attempt to mathematically model perceptual experience. In 
the field of visual perceptual experience, the Mach Band illusion 
demonstrated in the previous chapter can be said to be the first brightness 
illusion to be scientifically studied. It was the Austrian Physicist [Ratliff, 
1965] Ernst Mach (1838-1916) in 1865 who used rapidly rotating drums 
with varying amounts of black and white regions painted over it for 
producing any shade of grey in reproducible and measurable amounts 
with any desired intensity gradients. As the drums rotate rapidly regions 
with more white than black would have more intensity in direct 
proportion to the amount of white. This led Mach to identify those bright 
and dark bands, now known as Mach bands, as a means to learn about the 
internal mechanisms of the visual processing system. Mach bands are not 
only present in laboratory or artificial situations, they may easily be 
observed at the edge of practically all shadows where light or dark lines 
will surround the penumbra. Fomm’s striae [Fomm, 1896], seen while 
determining the wavelength of X-ray from diffraction experiments, turned 
out to be nothing but results of Mach band illusions and a serious mistake 
in experimental physics [Wind, 1899] was thus identified and corrected. 
This brightness perception illusion was also found to be the culprit in the 
well-known discrepancy in determination of Earth’s radius from its 
shadow during lunar eclipse and the correct explanation was finally 
provided by physiological/perceptual optics rather than by physical or 
geometrical optics. Despite having such a long historical presence in the 
field of visual perception, even to this day Mach bands still remain an 
excellent subject of study in linking perception with the underlying neural 
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mechanisms and are continuing to raise intriguing research problems as 
we shall see in Chapter 7 of this thesis. 
Mach himself proposed a spatial filtering model for explaining Mach 
bands using the Laplacian operator. When the Laplacian operator is 
applied to an edge, it produces a very strong positive response on the 
higher side of the edge and a very strong negative response on the lower 
side. It also produces zero response for uniform regions and for uniform 
gradients. When the Laplacian image is subtracted from the original 
stimulus it produces an effect similar to the Mach bands, generating a 
brightness-peak where the gradient abruptly decreases and a brightness-
trough where the gradient abruptly increases. If the functions u(x, y) and 
v(x, y) denote the input stimulus and the perceived brightness fields 
respectively, then Mach’s model can be written as, 
,ݔ)ݒ (ݕ = ,ݔ)ݑ (ݕ − ݉ ∗ ∇ଶݔ)ݑ,  (2.1)     (ݕ
where m is a positive constant which determines the strength of the Mach 
bands. 
The response curve of this equation for a typical Mach band image is 
shown in Figure 2.1b. 
Mach’s model turned out to have various shortcomings, which shall be 
discussed later, but it was the first attempt of what are called spatial 
filtering models of brightness perception. 
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(a) Input profile 

 
(b) Output profile 

 

Figure 2.1: (a) Input brightness profile for a typical Mach Band stimulus. (b) Output profile produced by Mach’s model in Equation 1.1. The thin peak and trough on the right and left respectively represent the light and dark Mach bands. 

2.2 Spatial filtering models 
A spatial filtering model takes the 2D intensity field of the stimulus as 
input and performs a single or a series of spatial filtering operations on it, 
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such as 2D convolution with a kernel function, and produces an output 
field, which is interpreted as perceived brightness values. The spatial filter 
need not necessarily be a linear filter. For example, after performing a 
sequence of linear operations, the individual outputs may be combined 
later using a non-linear operation, which would make the whole operation 
non-linear. This includes the so far most successful spatial filtering model 
in brightness modeling, namely the ODOG filter (ODOG stands for 
Oriented Difference of Gaussians) of Blakeslee and McCourt [Blakeslee 
and McCourt, 1999] [Blakeslee and McCourt, 2004] [Blakeslee et al., 2016] 
[McCourt et al., 2016]. 
2.2.1 Lateral inhibition 
Spatial filtering models have been supported by the experimental 
observation of lateral inhibition in the retina of the eye as well as the 
primary visual cortex [Rodieck and Stone, 1965] [Hubel and Wiesel, 1959]. 
Lateral inhibition is the phenomenon in which the response of a neuron 
receiving a stimulus is inhibited by the activity of a neighbouring neuron 
which is also receiving a stimulus. Lateral inhibition has been 
experimentally observed in the retina and the LGN of organisms. Lateral 
inhibition makes neurons more sensitive to spatially varying stimuli than 
to spatially uniform stimuli. This is because a neuron getting stimulated 
by a spatially uniform stimulus is also inhibited by its surrounding 
neurons, thus suppressing its response. On the other hand a neuron 
subjected to a spatially varying stimulus is less inhibited by its neighbours 
that are not excited, thus producing stronger response. Therefore in the 
case of visual neurons, lateral inhibition makes them more sensitive to 
edges in the scene. Although usually described for visual neurons, lateral 
inhibition is also found in other sensory systems, such as auditory and 
olfactory neurons. The region on the retina to which a ganglion cell 
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responds is called its receptive field. A typical receptive field, termed as 
an on-centered receptive field, consists of a central excitatory region 
surrounded by an inhibitory region. When light falls on the excitatory 
region it causes an increase in the output response of the ganglion cell, 
hence the term excitatory. On the other hand when light falls on the 
inhibitory region it decreases the output response of the ganglion cell, 
hence the term inhibitory. There also exist off-centered receptive fields in 
which the inhibitory region lies at the center which the excitatory region 
surrounds. Next we shall see how to mathematically model such 
excitatory/inhibitory behaviour. 

 
Figure 2.2: Typical shape of the DOG function. The horizontal axis represents the spatial distance r from the center of the receptive field. The y-axis is the response produced at the origin by a spot of light falling at a distance r from the origin.  
2.2.2 DOG model 
A very well known spatial filtering function that has been frequently 
applied to model this phenomenon of lateral inhibition is the DOG 
(Difference of Gaussian) function defined as: 

;ݎ)ܩܱܦ ,ଵܣ ,ଶܣ ,ଵߪ (ଶߪ = ଵ݁ቆܣ ೝమ
మ഑భమቇ − ଶ݁ቆܣ ೝమ

మ഑మమቇ    (2.2) 
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where, r is the radial distance from the center of the receptive field. The 
parameters σ1 and σ2 signify the widths of the two Gaussian functions. In 
order to mimic lateral inhibition we must have an on-centered receptive 
field, i.e. on whose excitatory region is at the center and an inhibitory 
region in the surround, i.e. the filtering function must be positive for small 
values of r and negative for larger values of r, and finally converging to 
zero for very large values of r. This can be achieved when we choose σ2 > 
σ1 and A1 > A2 > 0. Under such conditions the DOG function cross-section 
looks as shown in Figure 2.2. The first Gaussian, having a narrower width 
contributes more to the central positive region whereas the second wider 
Gaussian contributes more to the surrounding negative region. The DOG 
function therefore qualitatively mimics a typical receptive field. 
Apart from an on-centered receptive field one can also have an off-
centered receptive field, i.e. one with inhibitory center and excitatory 
surround. Both on-centered and off-centered neurons are known to be 
present in the retina and the LGN, which is a structure in the thalamus of 
the brain. 
Although the DOG filter can account for the Simultaneous Brightness 
Contrast illusion (SBC), it cannot explain the White's effect along with the 
Shifted-White and Checkerboard illusions, which were demonstrated in 
the previous chapter. The visual perception community is still in search of 
a single linear filtering algorithm that can simultaneously account for the 
various types of brightness illusions demonstrated in Figures 1.2 & 1.3 of 
Chapter 1. 
2.2.3 The challenge in modeling brightness induction 
As mentioned in section 1.3.2 the nature of White's effect is very different 
to that of Simultaneous Brightness Contrast. A careful look at Figure 1.2 
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will reveal that they can be broadly categorized into two contrary types of 
brightness illusions which may be termed as the brightness-contrast and 
brightness-assimilation types of illusions. In the brightness-contrast type, 
the apparent brightness of a region shifts in a direction so as to enhance 
the contrast with respect to its surrounding regions. In other words the 
perceived luminance gets modulated opposite to the direction of the 
surrounding regions. An example of this is the Simultaneous Brightness 
Contrast (SBC) illusion (Figure 1.2a). It may also be noted from the figures 
1.3a & 1.3b that the Grating induction illusions are also of brightness-
contrast type. In the brightness-assimilation type of illusions, the apparent 
brightness shifts in the same direction as its surroundings, as if it were 
assimilating the intensity of its surroundings. Examples of this include the 
White’s effect (Figure 1.2b), the Shifted-White’s effect (Figure 1.2c) and the 
Checkerboard illusion (Figure 1.2d). This process of a given surface’s 
brightness either shifting towards or shifting away from its neighbouring 
surfaces’ brightness is called brightness-induction, as if the brightness shift 
of the grey patch is being induced by the surrounding regions. This is why 
the visual perception community is looking for a universal model that can 
simultaneously explain this bi-directional induction of brightness. 
2.2.4 ODOG, LODOG, FLODOG models 
The Oriented Difference of Gaussians (ODOG) model by Blakeslee and 
McCourt [Blakeslee and McCourt, 1999] [Blakeslee and McCourt, 2004] 
[Blakeslee et al., 2016] [McCourt et al., 2016] was proposed as an extension 
of their previous DOG model [Blakeslee and McCourt, 1997]. This spatial 
filtering model was capable of explaining a large number of illusions. This 
model was very successful in being able to explain both brightness-
contrast and brightness-assimilation illusions using the same spatial 
filtering algorithm. Usage of anisotropic filters and nonlinear 
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normalization are two key features which make the ODOG model 
different in nature from its predecessors. This model utilizes 42 different 
ODOG filters in total. A single ODOG filter can be expressed as: 

,ݔ൫ܩܱܦܱ ;ݕ ௙൯ߪ = ଵ
ଶగఙ೑మ

݁
షೣమ
మ഑೑మ ቎݁

ష೤మ
మ഑೑మ − ଵ

ଶ ݁
ష೤మ
ఴ഑೑మ ቏    (2.3) 

Along the major axis of any single ODOG filter, the surround Gaussian of 
the filter has twice as much spread as the central Gaussian. But in the 
orthogonal direction to the major axis (minor axis), both the centre and 
surround extend by same magnitude (Figure 2.3). 

 
Figure 2.3: Typical shape of the ODOG function at a particular scale and orientation. 

Seven ODOG filters, whose standard deviations σf form a geometric series 
ranging from 1.5/√2 to 96/√2 with common ratio 2, as defined by 
equation 2.4, are then added to form the Multiscale ODOG filter function 
as defined in equation 1.5: 
௙ߪ = ଷ

ଶ√ଶ 2௙; ݂ = {0,1,2,3,4,5,6}      (2.4) 

,ݔ)ܩܱܦܱ_݈݁ܽܿݏ݅ݐ݈ݑܯ (ݕ = ∑ ௙ܣ × ,ݔ൫ܩܱܦܱ ;ݕ ௙൯଺௙ୀ଴ߪ    (2.5) 



 

 

26

26

where, 
௙ܣ = ܥ × ௙ߪ ି଴.ଵ; ݂ = {0,1,2,3,4,5,6}     (2.6) 

Next we rotate the Multiscale_ODOG filter function as in Equation 2.5 
above through an angle θi, using equation 2.7, where θi are assigned six 
equally spaced values in the interval [0, π]. For all six θi we obtain six 
Rotated_Multiscale_ODOG filter functions; one filter per orientation (see 
Figure 2.3). 
,ݔ)ܩܱܦܱ_݈݁ܽܿݏ݅ݐ݈ݑܯ_݀݁ݐܽݐ݋ܴ ,ݕ (௜ߠ = ܩܱܦܱ_݈݁ܽܿݏ݅ݐ݈ݑܯ ൬൤ cos ௜ߠ sin ௜−sinߠ ௜ߠ cos ௜൨ߠ ቂݕݔቃ൰    (2.7) 

with 
௜ߠ = గ

଺ × ݅; ݅ = {0,1,2,3,4,5}      (2.8) 
Each of the 6 rotated multiscale ODOG functions are then individually 
convolved with the input stimulus image I(x,y) to produce 6 intermediate 
oriented responses R(x, y; θi), defined by: 
,ݔ)ܴ ,ݕ (௜ߠ = ,ݔ)ܫ (ݕ ∗ ,ݔ)ܩܱܦܱ_݈݁ܽܿݏ݅ݐ݈ݑܯ_݀݁ݐܽݐ݋ܴ ,ݕ  ௜)   (2.9)ߠ

where ∗ represents the 2D convolution operation. 
The final output is then generated by a non-linear combination of these 6 
inter mediate directional responses by normalizing each oriented response 
by its RMS value: 
ܧܱܵܰܲܵܧܴ_ܩܱܦܱ_ܮܣܰܫܨ = ∑ ோ(௫,௬,ఏ೔)

ோெௌ[ோ(௫,௬,ఏ೔)]
଺௜ୀଵ      (2.10) 

In the ODOG model implementation by Robinson et al. [Robinson et al., 
2007a], which we have used in this thesis for comparing various spatial 
filtering models including the models proposed in this thesis, the values 
of the centre frequencies (in cycles/degree) of the ODOG filters and their 
corresponding weights, as used by Robinson, are tabulated in Table 2.1. 
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Table 2.1: Weights used for each of the 7 center frequency values in Alan Robinson’s 
[Robinson et al., 2007a] implementation of ODOG 

Center frequency (σf ) 0.1 0.2 0.4 0.8 1.6 3.2 6.4 Weight (Af ) 0.79 0.85 0.91 0.98 1.05 1.12 1.20 
 
Alan Robinson has further extended the ODOG model in two ways, 
referred to as LODOG and FLODOG [Robinson et al., 2007b]. LODOG, 
which stands for Locally normalized ODOG, modifies the final RMS 
normalization step (equation 2.10) of ODOG by performing a localized 
RMS normalization at each point using a small window of fixed size. 
FLODOG, which stands for Frequency-specific Locally normalized ODOG, 
extends this even further by doing a localized RMS normalization at each 
point for each frequency and uses a window size which is appropriate for 
that frequency. The high frequency, i.e. small σf ODOG responses use 
small windows, whereas low frequency ODOG responses use large 
windows for their RMS normalization steps. 
In this thesis we shall mostly not concern ourselves with LODOG and 
FLODOG. While LODOG is a bit more computationally intensive than 
ODOG, the FLODOG is much more so. A major part of this thesis is about 
explaining brightness illusions using models of low complexity. Besides, 
there exist certain other limitations of this class of spatial filtering models 
which we shall elaborate in Chapter 3 of this thesis. Apart from spatial 
filtering models there exist several other approaches to modeling of 
brightness perception. The important ones among them are the Gestalt-
anchoring models and Edge integration models which are described next. 
2.2.5 Gestalt-anchoring models 
The Gestalt school of thought in psychology proposes that perception can 
only be understood holistically and not as a sum of its parts, i.e. 
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perception cannot be explained by analyzing it into small parts, studying 
the behavior of each part and then reconstructing the behavior of the 
whole by joining together these parts. Although this reductionist 
approach has been very successful in other branches of science, such as 
physics and chemistry, Gestalt psychologists do not believe this approach 
would work for understanding perception or even the workings of the 
brain in general. 
The term anchoring refers to the approach in which certain intensity levels 
in the input stimulus are assigned (anchored) to particular perceived 
brightness levels and the other brightness levels are determined by these 
anchored levels. 
In gestalt anchoring models the anchors are determined by gestalt 
grouping principles, i.e. the anchor levels are determined from the 
stimulus as a whole and not determined locally for every point and its 
local surroundings. In other words the brightness levels are determined 
not by the local context alone but by the global context (which includes 
the local context). The most well known anchoring model is that of 
Gilchrist [Gilchrist et al., 1999] [Gilchrist, 2006]. According to this model, 
at every context level the highest intensity value is anchored to the 
perceived brightness level of ‘white’ (i.e. maximum perceivable 
brightness) and the rest of the intensity levels are assigned brightness 
values in proportion to the highest intensity level (which was anchored to 
white). But this assigned brightness level is only for one context level and 
is not the final perceived brightness. The final perceived brightness is 
computed by taking the mean of the perceived brightness at every context 
level. Note that this theory does not specify what those context levels are 
and how to find them. 
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Figure 2.4: SBC stimulus for demonstrating failure of Gilchrist’s Gestalt anchoring theory 
which predicts that the two square grey patches should have equal perceived brightness. 
We can clearly see that the two grey patches appear differently bright. Both of the grey
patches are equiluminant but possess higher intensity than either of their surroundings.

In a complex real world image it would not be clear what the context 
levels should be. Thus appears the gestalt nature of the theory. The 
context levels are assumed t
processes which have to consider the image as a whole. Gilchrist’s theory 
can nicely explain the Simultaneous Brightness Contrast (SBC) stimulus of 
Figure 1.2a, but fails in the case shown in Figure 2.4 where both the 
equiluminant patches have higher luminance values than their respective 
surroundings. 
2.2.6 Edge integration models
Edge integration models [Land and McCann, 1971] combine intensity 
contrasts across the local edges present in an input stimulus, with 
anchored brightness values (as described in previous Gestalt
models section). This implies that sharp luminance jumps across edges 
play a bigger role in determining the final perceived brightness than 
gradual changes of luminance. The final perceived br
by spatially integrating the local edge contrasts from all directions
[Grossberg and Todorovic, 1988]
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SBC stimulus for demonstrating failure of Gilchrist’s Gestalt anchoring theory 

which predicts that the two square grey patches should have equal perceived brightness. 
We can clearly see that the two grey patches appear differently bright. Both of the grey
patches are equiluminant but possess higher intensity than either of their surroundings.

In a complex real world image it would not be clear what the context 
levels should be. Thus appears the gestalt nature of the theory. The 
context levels are assumed to have been recognized by some other 
processes which have to consider the image as a whole. Gilchrist’s theory 
can nicely explain the Simultaneous Brightness Contrast (SBC) stimulus of 
Figure 1.2a, but fails in the case shown in Figure 2.4 where both the 
quiluminant patches have higher luminance values than their respective 
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[Grossberg and Todorovic, 1988] [Grossberg et al., 1997]. 
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2.2.7 Thesis contribution
In this thesis we shall investigate brightness perception from the 
perspective of spatial filtering. In the beginning we shall describe new 
psychophysical experiments using modified variants of the White and 
Shifted-White stimuli which demonstrate some weaknesses of the ODOG 
model, which is till date the pre
(Chapter 3). Then we shall introduce a new model of brightness 
perception which is inspired from the visual pathways of the human 
visual system, apart from being much simpler than the ODOG model 
(Chapter 4, 5). Next we shall present an 
perception models in noise reduction (Chapter 6). We shall argue that the 
use of perceptual models increases the effectiveness of noise reduction via 
image smoothing while preserving edges at the same time. In the last part 
(Chapter 7) we shall explore the spatial scaling behaviour of brightness 
illusions using novel variations of Mach Band, Sine Grating, Square 
Grating and Herman Grid illusions. The experiments in this chapter 
demonstrate the various complexities of brightness per
mostly untouched in the earlier spatial filtering approaches, as well as  in 
the previous chapters of the present thesis and in fact go on to expose 
some limitations of spatial filtering models of brightness perception. The 
contributions of the present thesis are schematically represented in the 
diagram below. 
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Chapter 3 
Modeling brightness induction: challenges 
facing existing models 
3.1 Introduction 
As late as the year 1999 there was no single spatial filtering model which 
could simultaneously explain both brightness-contrast and brightness-
assimilation (see section 2.2.3), so much so that after the introduction of 
White’s effect in 1980 some researchers started believing that this goal was 
impossible to achieve by any spatial filtering approach. In 1999 Blakeslee 
and McCourt proposed the Oriented Difference of Gaussian (ODOG) 
[Blakeslee and McCourt, 1999] spatial filtering model (see section 2.2.4) 
which could simultaneously predict the brightness shifts in the 
Simultaneous Brightness Contrast (SBC), White’s effect and Grating 
Induction illusions. It could also explain some cases of the Todorovic 
illusion [Todorovic, 1997]. In 2004 Blakeslee and McCourt [Blakeslee and 
McCourt, 2004] used ODOG to further explain the Shifted-White and 
Checkerboard illusions. The success of the ODOG model showed that 
brightness induction could be explained without resorting to any high 
level interpretation of the scene such as detecting features like T-junctions 
or detecting objects within the scene [Blakeslee et al., 2016] [McCourt et 
al., 2016]. ODOG manages to account for both brightness-contrast and 
brightness-assimilation by only doing low level pixel operations on the 
image using a combination of several anisotropic spatial filters. The 
existence of directional edge detection neurons within the visual cortex 
was already well known because of which such oriented spatial filters are 
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also biologically justified. However what is not biologically justified is the 
final global contrast normalization step, as noted by Kingdom [Kingdom, 
2011], which requires a global integration of visual signal from all across 
the visual field (although the LODOG [Robinson et al., 2007a] and 
FLODOG models [Robinson et al., 2007b] avoid this difficulty by 
normalizing locally). Notwithstanding these objections Blakeslee and 
McCourt demonstrated the successful application of their model over a 
wide range of spatial frequencies and also a wide range of patch sizes. 
3.2 Limitations of the ODOG model: new experiments 
Even after the aforementioned successes of the ODOG model we have 
been able to find some of its shortcomings [Bakshi et al., 2016] by 
designing some new visual stimuli for which the ODOG model predicts 
the direction of brightness shift which is contrary to experimental 
findings. These experiments concern variants of the White’s and Shifted-
White stimuli. 
 The White and Shifted-White illusions [White, 1979], although both 
being brightness-assimilation illusions, show some complexities with 
respect to change of scale. They behave the same way at small scales but 
switch behaviour at larger scales. We have also found some limitations of 
the ODOG filter by comparing the ODOG output with the experimental 
observations of the White and Shifted-White stimuli at various length 
scales. We compare the ODOG output with experimental observations of 
the same. The ODOG output shows a more intuitive behaviour, which 
unfortunately does not match with reality, as it does not switch behaviour 
with length scales. The experimental details are described below. 
 White and Shifted-White stimuli at various length scales were 
generated by varying two parameters, namely, test patch length and 
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spatial frequency. For the purpose of experimental validation a given 
stimulus was presented to two test subjects who were told to match the 
perceived gray-patch brightness from a separate palette of gray scale 
intensities varying from black to white, that was displayed alongside the 
stimulus on the same display screen. The final brightness value is 
calculated by taking the mean of 5 readings obtained from each of the test 
subjects. The stimuli were displayed as 30.5 degree by 30.5 degree images 
(viewed from a distance of 48.3 cm) on a high resolution LCD monitor. 
The monitor had been linearized with the help of a photometer. Subjects 
were given a rest time between the consecutive illusion readings in order 
to avoid any after-image of the last stimuli displayed in the screen and 
readings were taken after having a constant gaze at the stimulus. 
3.2.1. White’s illusion 
Figure 3.1a shows a White’s illusion with a large patch-height of 9.35 
degrees (scaled down for illustration). Its ODOG output profile, shown in 
Figure 3.1b, however predicts that the left grey patch, i.e. the one which is 
in between the two black strips, should be brighter than its counterpart. 
But in reality the grey patch on the left, as can be readily seen in Figure 
3.1a, appears much darker than the right one and the effect is very 
prominent and unambiguous. Figure 3.1d shows a plot of the 
experimental observations of the apparent brightness of the two grey-
patches as seen by the subjects, with respect to the patch-height. It clearly 
shows that the grey-patch in between two white bars (i.e. the grey-patch 
on the right in Figure 3.1a) always looks brighter than the other grey-
patch at all patch-lengths. This is contradicted by Figure 3.1c which is a 
plot of the ODOG predicted brightness of both the grey-patches with 
respect to patch-height. In Figure 3.1c the two curves intersect, i.e. there is 
a specific patch-height beyond which the ODOG predicted brightness gets 
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The TIP is present in the ODOG output of the White effect for a very 
wide range of spatial frequencies. This is shown in Figure 3.1e, for a patch
height value of 9.35 degrees, i.e. beyond the TIP. In Figure 3.1e the 
brightness curve for the grey-patch on co-axial black bar is below the 
brightness curve for the grey-patch on co-axial white bar. Figure 3.1f 

corresponding experimental curves. It shows that the 
brightness curve for the co-axial black bar should be above the brightness 

patch on co-axial white bar, unlike the results in Figure 
For comparison the LODOG and FLODOG output profiles for the 
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respectively. LODOG, just like ODOG, incorrectly predicts the direction of 
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explaining brightness illusions with low complexity models still remains.
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Figure 3.1: (a) Input stimulus of White’s illusion with patch
at 48.3 cm) and frequency 0.47 cycles/cm (0.40 cycles/degree at 48.3 cm) (scaled down to 
fit in available space) (b) Output intensity graph from ODOG for the stimulus shown in
Figure 3.1a incorrectly predicts that the left grey patch should be brighter than the right 
grey patch. (c) Intensity vs. Patch
constant frequency of 0.40 cycles/degree. It can be seen that there is an inve
intensity characteristic as the patch
is called Threshold Inversion Point (TIP) (7.48 degrees, here). (d) Experimental subject 
observation of intensity vs. patch
(e) ODOG predicted curves of intensity vs. frequency at a fixed patch
degrees. (f) Experimentally observed frequency characteristic at a fixed patch
9.35 degrees. (g) LODOG Output profile for the stimulus
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(c)                (d) 

                   (f) 

                   (h) 
(a) Input stimulus of White’s illusion with patch-height of 7.9cm (9.35 degrees 

at 48.3 cm) and frequency 0.47 cycles/cm (0.40 cycles/degree at 48.3 cm) (scaled down to 
fit in available space) (b) Output intensity graph from ODOG for the stimulus shown in

a incorrectly predicts that the left grey patch should be brighter than the right 
grey patch. (c) Intensity vs. Patch-height characteristic, as predicted by ODOG at a 
constant frequency of 0.40 cycles/degree. It can be seen that there is an inve
intensity characteristic as the patch-height is increased. The point of inversion in intensity 
is called Threshold Inversion Point (TIP) (7.48 degrees, here). (d) Experimental subject 
observation of intensity vs. patch-height at a constant frequency of 0.40 cycles /degree. 
(e) ODOG predicted curves of intensity vs. frequency at a fixed patch-height of 9.35 
degrees. (f) Experimentally observed frequency characteristic at a fixed patch

(g) LODOG Output profile for the stimulus shown in Figure 3.1a incorrectly 
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predicts that the left grey patch should be brighter than the right grey patch. (h) 
FLODOG Output profile for the stimulus shown in Figure 3.1a is able to correctly predict 
that the left grey patch should be darker than the right grey patch. 

3.2.2. The Shifted White effect 
The Shifted White illusion, as shown in Figure 3.2a, is a modified White’s 
illusion where the portion of the grating containing the grey patches are 
shifted horizontally by a distance of one bar width with respect to their 
upper and lower regions. 
 The graph in Figure 3.2g shows the ODOG predicted brightness 
variation of the two grey patches with respect to patch height. Similar to 
the case of White effect above, ODOG incorrectly predicts an inversion in 
the perceived brightness of the two grey patches with increasing patch 
height, whereas the experimental brightness curves shown in Figure 3.2h 
show no such inversion. The inversion occurs as a patch height of 4.8 
degrees, which we call the Threshold Inversion Point (TIP). 
 Figure 3.2i shows the ODOG predicted brightness curve of the two 
grey patches with respect to horizontal spatial frequency. While the 
corresponding experimentally observed graph in Figure 3.2j shows an 
inversion point at 0.57 cycles/degree, the ODOG predicted curves show 
no such inversion. Thus ODOG fails to predict the experimental curves 
both with respect to patch height and with respect to horizontal spatial 
frequency. 
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                                             (g)

                                             (i)
Figure 3.2: (a) Shifted White input stimulus having a patch
at 48.3 cm) and frequency 1.9 cycles/cm (1.6 cycles/degree at 48.3 cm) (scaled down to fit 
within available space). (b) ODOG predicted output intensity profile of Fig
incorrectly predicts that grey patch on the left should appear darker than the grey patch 
on the right. (c) Shifted White input stimulus having a patch
degrees at 48.3 cm) and frequency 0.74 cycles/cm (0.57 cycles/degree at 48.3 
down to fit within available space). At this frequency our experiments show that both 
grey patches should appear equally bright on average, albeit with some variance 
between observers. (d) ODOG predicted output intensity profile of Figure 3.2c
corroborate with our experimental results, in this case. (e) Shifted White input stimulus 

 (f) 

(g)                     (h) 

(i)       (j) 
(a) Shifted White input stimulus having a patch-height of 5.3 cm (6.24 degrees 

at 48.3 cm) and frequency 1.9 cycles/cm (1.6 cycles/degree at 48.3 cm) (scaled down to fit 
within available space). (b) ODOG predicted output intensity profile of Fig
incorrectly predicts that grey patch on the left should appear darker than the grey patch 
on the right. (c) Shifted White input stimulus having a patch-height of 5.3 cm (6.24 
degrees at 48.3 cm) and frequency 0.74 cycles/cm (0.57 cycles/degree at 48.3  cm) (scaled 
down to fit within available space). At this frequency our experiments show that both 
grey patches should appear equally bright on average, albeit with some variance 
between observers. (d) ODOG predicted output intensity profile of Figure 3.2c
corroborate with our experimental results, in this case. (e) Shifted White input stimulus 
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height of 5.3 cm (6.24 degrees 

at 48.3 cm) and frequency 1.9 cycles/cm (1.6 cycles/degree at 48.3 cm) (scaled down to fit 
within available space). (b) ODOG predicted output intensity profile of Figure 3.2a 
incorrectly predicts that grey patch on the left should appear darker than the grey patch 

height of 5.3 cm (6.24 
cm) (scaled 

down to fit within available space). At this frequency our experiments show that both 
grey patches should appear equally bright on average, albeit with some variance 
between observers. (d) ODOG predicted output intensity profile of Figure 3.2c does not 
corroborate with our experimental results, in this case. (e) Shifted White input stimulus 
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having a patch-height of 5.3 cm (6.24 degrees at 48.3 cm) and frequency 0.19 cycles/cm 
(0.16 cycles/degree at 48.3 cm) (scaled down to fit within available space). Observe that 
the illusory effect has been reversed compared to Figure 3.2a. (f) ODOG predicted output 
intensity profile correctly predicts that grey patch on the right should appear brighter 
than the grey patch on the left. (g) Predicted intensity vs. patch-height curves as obtained 
from ODOG filter at a frequency of 1.6 cycles/degree. (h) Experimentally observed 
intensity vs. patch-height curves at a frequency of 1.6 cycles/degree. (i) ODOG predicted 
intensity vs. frequency curves for a constant patch-height of 6.24 degrees. (j) 
Experimentally observed frequency characteristics for a constant patch-height of 6.24 
degrees show an inversion point at 0.57 cycles/degree. 

3.3 Scaling properties of Mach bands 
In the previous section we saw that although the vertical length scale does 
not affect the perceived brightness of the grey patch in White’s and 
Shifted-White’s illusion, the horizontal length scale can significantly affect 
the perceived brightness of the grey patch. In this section we will see 
another type of scaling behavior of brightness illusions, namely the effect 
of length scale on the Mach band illusion [Bakshi and Ghosh, 2012a] 
[Bakshi and Ghosh, 2012b], which was introduced in Section 1.3.9. This 
effect is illustrated in Figure 3.3 where a sequence of Mach band stimuli 
are shown in which the size central gradient region increases stepwise 
from zero (Figure 3.3a) to a very large size (Figure 3.3f). So the horizontal 
intensity profile of first stimulus (Figure 3.3a) is a step function as plotted 
in Figure 3.3g (curve a), whereas the horizontal intensity profile of Figure 
3.3f has the lowest slope of all the six figures. One can see that no Mach 
band is visible in Figure 3.3a and one can also see that as the size of the 
central gradient region increases, the width of the Mach Band also 
increases. The detailed method of measuring these changing Mach Band 
widths have been described in Chapter 7 of this thesis. Figure 3.4 shows 
an image in which every horizontal line traces a different slope of the 
intensity profile, depending upon its position in the vertical direction. At 
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the very top the horizontal intensity profile is a step function, whereas at 
the very bottom the horizontal intensity profile has the lowest slope. The 
rate of increase of the gradient region from top to bottom is constant. One 
can see that the width of the Mach band increases continuously from very 
small to very large. The Mach band region appears as if a ray of light 
emanating from a spot on the top and spreading out as it travels 
downward. It also looks as if just like a ray of light the spread of the beam 
is proportional to the distance travelled, which is proportional to the size 
of the gradient region. i.e. the width of the Mach band appears to be 
proportional to the width of the gradient region. This implies that the 
illusory effect scales in proportion to the input stimulus. This scaling 
behaviour implies that whatever the physiological mechanism that is 
generating this illusion, it can generate illusory effect of a very large range 
of spatial scales. This effect also cannot be explained by the ODOG filter 
(see Figure 5.11c in Chapter 5 of this thesis). In fact, this effect is hard to 
explain using traditional models of early vision because they cannot 
generate illusory effects of very large length scales, and will be further 
discussed in the concluding chapter (Chapter 7) of this thesis. 
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Figure 3.3: Mach band stimuli with increasing sizes of the gradient region. The widths of the gradient 
regions of Figures (a) through (f) are in ratio of 2:5:10:20:60:80 respectively, i.e. the horizontal 
gradients have been scaled down in that proportion as shown in 
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                (b) 

                 (d) 

                 (f) 

(g) Mach band stimuli with increasing sizes of the gradient region. The widths of the gradient 
regions of Figures (a) through (f) are in ratio of 2:5:10:20:60:80 respectively, i.e. the horizontal 
gradients have been scaled down in that proportion as shown in (g). 

41

 

 

 

 

 
Mach band stimuli with increasing sizes of the gradient region. The widths of the gradient 

regions of Figures (a) through (f) are in ratio of 2:5:10:20:60:80 respectively, i.e. the horizontal 



 

3.4 Conclusions 
Our experimental results establish the need for new cortical filters which 
not only can simultaneously explain both brightness
brightness-assimilation, but can also account for the above 
variations, especially, 
ODOG filter is unable to predict.
 

Figure 3.4: The region of intensity gradient increases linearly in size from zero at the top to its widest at the bottom. The bright Mach band is perceived thinner at the top and wider at the bottom diverging outwards like rays of light emanating from the top. The plots on the left show the brightness profiles at those corresponding levels.

 
Our experimental results establish the need for new cortical filters which 
not only can simultaneously explain both brightness-contrast and 

assimilation, but can also account for the above mentioned 
 in the White and Shifted-White effects, which the 

ODOG filter is unable to predict. 

The region of intensity gradient increases linearly in size from zero at the top to its widest at the bottom. The bright Mach band is perceived thinner at the top and wider at the rds like rays of light emanating from the top. The plots on the left show the brightness profiles at those corresponding levels.  
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 The region of intensity gradient increases linearly in size from zero at the top to its widest at the bottom. The bright Mach band is perceived thinner at the top and wider at the rds like rays of light emanating from the top. The plots on the left 



Chapter 4 
Spatial filtering based on the multi-
channeled visual pathways: the Varying 
Contrastive Context Filter 
4.1 Introduction 
In this chapter we present a new model of brightness induction, that we 
refer to as the Varying Contrastive Context Filter (VCCF) model that takes 
inspiration from the biological structure of the human visual system in a 
two-fold way. 
First we take inspiration from the multi-channeled structure of the visual 
pathways of the human visual system. Secondly we also take inspiration 
from the multilayered ganglion structures in the retina. Our model yields 
a much simpler alternative to the very well accepted ODOG model which 
is able to explain most brightness illusions of both brightness-contrast and 
brightness-assimilation types. In the next chapter we shall further develop 
the model in order to solve most of the problems mentioned in Chapter 3. 
4.2 The multi-channeled structure of the eye-brain 
system 
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It is well known that the neural pathways that carry visual signals from 
the retina to the brain can be divided into at least three types, viz. 
Parvocellular, Magnocellular and Koniocellular (henceforth  abbreviated as P, 
M, & K respectively), originating from three different types of retinal 
ganglion cells [De Monasterio and Gouras, 1975] [Croner and Kaplan, 
1995] [Solomon et al., 2002] [Xu et al., 2001] which give rise to P, M and K 
channels segregated anatomically, physiologically and behaviourally 
[Shapley and Perry, 1986] [Silveira and Perry, 1991]. At the brain these 
signals arrive at a structure in the midbrain, known as the thalamus 
(which is often called the gateway to the cortex). Especially a substructure 
within the thalamus, known as the Lateral Geniculate Nucleus (LGN), 
receives most of the visual sensory signals. The LGN acts like a relay 
centre to the brain. From the LGN the signals are forwarded into the 
cerebral cortex, where most of the higher level processing, such as object 
recognition, is performed. The main region within the cerebral cortex that 
receives and processes the visual sensory data from the LGN is the Primary 
Visual Cortex (V1), located in the Occipital Lobe at the back of the brain. The 
visual cortex is also divided into two pathways, one of which is 
specialized for motion processing and the other for colour or form 
information processing [Ungerleider and Mishkin, 1982]. Several studies 
[Merigan and Maunsell, 1993] showed indirect evidence that M channel in 
sub-cortical pathways feed input to motion pathway and P channel drives 
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the colour or form pathway of visual cortex. The Parvocellular pathway 
carries much more spatial detail than the Magnocellular pathway. By 
selective blocking of neuronal response of either P or M channels in LGN 
of macaque monkeys (Macaca fascicularis and M. nemstrina), Ferrera et al. 
(1992) came up with results, showing that there is however, an intermixing 
of P and M channel contribution in the visual area V4 and many units of 
V1 also, providing evidence that both M and P channels probably make 
substantial contribution to neuronal response in colour or form pathway. 
It is not unlikely therefore, that all the three (including K) channels may be 
involved in the process of brightness perception. Additionally it has also 
been shown that this flow of visual signals from retina to the cortex is not 
strictly feedforward. It is well known that there exist significant 
corticothalamic feedback lines from the cortex back into the LGN 
[Grossberg et al., 1997] [Hupé et al., 1998]. These feedback lines can in turn 
modify the feedforward signals. The necessity of feedback can be clearly 
understood in the form of an analogy. Imagine one is listening to the radio 
and the volume is not sufficiently high. One then reaches out to the 
volume knob in order to turn up the volume. Thus one has fed a signal 
back into the radio, which modifies the sound coming from the radio that 
we wish to hear clearly, until we are satisfied with the volume level. This 
is a continuous process, i.e. in the next radio programme, the sound levels 
may change again and we may once again adjust the volume knob. This 
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feedback is thus capable of adjusting the relative signal strengths that are 
inflowing from each of the visual channels viz. P, M and K. 
4.3 The ganglion layer structure of the neuronal fibres 
in the retina 
Light rays, after being focused by the lens, fall upon the retina, which is 
embedded with photosensitive receptor cells that convert the light energy 
into electrochemical signals. These electrochemical signals after passing 
through a cascade of Ganglion cells are collected into a bundle of axonal 
fibres, known as the Optic fibre, which carries the signal into the brain. (In 
pure terms the eye could be considered an extension of the brain). 

 
Figure 4.1: Cross section of the Retina showing the Retinal Ganglion Cells. (Public 
domain diagram obtained from the URL https://commons.wikimedia.org/wiki/ 
File:Gray882.png. Original source: Henry Gray (1918) Anatomy of the Human Body.) 

These Ganglion cells are capable of intermixing signals from neighbouring 
photoreceptor cells. By intermixing neighbouring signals they are 
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responsible for a phenomenon known as Lateral Inhibition. Lateral 
inhibition is the phenomenon in which a neuron’s response to a stimulus 
is inhibited by the excitation of a neighboring neuron. Lateral inhibition 
has been experimentally observed in the retina and the LGN of organisms 
(Rodieck and Stone, 1965). Lateral inhibition makes neurons more 
sensitive to a spatially varying stimulus than to a spatially uniform 
stimulus. This is because a neuron getting stimulated by a spatially 
uniform stimulus is also inhibited by its surrounding neurons, thus 
suppressing its response. On the other hand a neuron subjected to a 
spatially varying stimulus is less inhibited by its neighbours that are not 
excited, thus producing stronger response. Therefore in the case of visual 
neurons, lateral inhibition makes them more sensitive to edges in the 
scene. Although usually described for visual neurons, lateral inhibition is 
also found in other sensory systems, such as auditory and olfactory 
neurons. The total region to which a particular neuron is sensitive is called 
the receptive field of the neuron. Therefore the receptive field of an optic 
nerve fiber that exits the retina may span several photosensitive rod or 
cone cells and will produce a distribution of responses when light falls on 
each of the receptor cells in its receptive field. 
 Lateral inhibition has been traditionally modeled using the 
Difference of Gaussian (DOG) function. 

;ݎ)ܩܱܦ ,ଵߪ (ଶߪ = ଵ݁ି൬ܣ ೝమ
మ഑భమ൰ − ଶ݁ି൬ܣ ೝమ

మ഑మమ൰     (4.1) 



 

When a light spot falls directly on the center of the receptive
neuron it produces a large positive response but when it falls on a 
neighbouring neuron it produces a lower response and when light falls 
even further away from the centre it may produce a negative response. So 
the response follows a curve qual
Figure 4.2 above. 
4.4 The DDOG Filter
Since a DOG like response function can be produced by the neural 
processing done within the retina itself, it is quite plausible that another 
layer of Gaussian Differencing may be 
signal, because as shown above, the retina consists of several layers of 
ganglion cells that can significantly transform the input signal. We call this 
additional differencing operation the 
(DDOG). The DDOG equation may be written as:

 
Figure 4.2: DOG response curve. 

When a light spot falls directly on the center of the receptive field of a 
neuron it produces a large positive response but when it falls on a 
neighbouring neuron it produces a lower response and when light falls 
even further away from the centre it may produce a negative response. So 
the response follows a curve qualitatively similar to the DOG curve in 

The DDOG Filter 
Since a DOG like response function can be produced by the neural 
processing done within the retina itself, it is quite plausible that another 
layer of Gaussian Differencing may be performed on the DOG output 
signal, because as shown above, the retina consists of several layers of 
ganglion cells that can significantly transform the input signal. We call this 
additional differencing operation the Difference of Difference of Gaussians
(DDOG). The DDOG equation may be written as: 
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DDOG(࢘; Aଵ, Aଶ, Aଷ, Aସ, σଵ, σଶ, σଷ, σସ) =
DOG(࢘; Aଵ, Aଶ, σଵ, σଶ) − DOG(࢘; Aଷ, Aସ, σଷ, σସ)    (4.2) 
The DDOG is actually a linear superposition of two DOG functions in 
opposite phases, each of which may be looked upon as representing an on-
centered and an off-centered cell respectively. We use two different 
versions of the DDOG function each with a different set of parameter 
values A1, A2, A3, A4 etc. Unlike the ODOG model, our algorithm makes 
use of only isotropic filters so that if the input image is rotated by the 
certain angle then the output is guaranteed to be rotated by the same 
angle. Thus the simplicity of our model compared to ODOG also makes it 
a much more plausible model for the neural networks involved with low-
level vision. 
4.5 Modeling the P and M channels using the DDOG 
filters 
The visual channels all originate in the retina and they all contain 
information about the entire visual field. The only way they can differ is 
that they must have been through different layers of ganglion processing, 
which makes them carry different spatial and temporal aspects of the 
visual signals. It is well known that the M channel has fast temporal 
response and low spatial resolution whereas the P channel has high spatial 
resolution but slow temporal response [Kandel et al., 2000] [Merigan and 
Maunsell, 1993]. 
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 A1 A2 A3 A4 
Sampling 
Interval 

M-filter 10 0.5 0.5 0.08 0.5 
P-filter 10 0.25 0.25 0.01 0.25 

Table 4.1: Coefficient values of DDOG filter 
We use the values σ1=0.7, σ2=3σ1, σ3=3σ1, σ4=9.3σ1 for both filters.  
These widths are based upon the report of Shou et al. [Shou et al., 2000] 
that the diameter of the extended non-classical surround is at least ten 
times that of the classical center. The parasol/magno (M) cells which have 
larger size of dendritic trees, cell bodies and receptive fields, receive 
inputs from a relatively larger number of rods and cones [Kandel et al., 
2000] and possess higher values for A2 , A3 , A4 . Since the coefficients A2 , 
A3 , A4 correspond to  larger spatial scales (thereby lower spatial 
frequency) compared to A1, the M-channel filter is assigned higher values 
for A2 , A3 , A4 compared to the P-channel filter because M-channel is less 
responsive to smaller spatial scales compared to the P-channel. However 
since the sigma values are the same for both M and P-channel filters the 
shape and spatial extent of the filters are roughly the same and their 
biological dissimilarities are not reflected in their plots shown in Figure 
4.3. In order to simulate the varying spatial resolutions of the different 
visual channels we introduce the "Sampling Interval" parameter. This 
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parameter is used in the discretization process of the DDOG filter which is 
a necessary step in the implementation of the DDOG filters. The DDOG 
function itself is a continuous function of the spatial variable r. But in 
order to be digitally implemented this function has to be sampled at a 
finite number of points which are separated spatially by the 
aforementioned Sampling Interval parameter. The M channel, which has a 
lower spatial resolution is assigned a higher sampling interval as specified 
in Table 4.1. The midget/parvo (P) cells, on the other hand, with lower 
spatial sampling interval and consequently higher spatial sampling 
frequencies, have higher spatial resolution as compared to the M cells 
[Merigan and Maunsell, 1993]. It should be noted here that the main goal 
of our model is to demonstrate the possibility of qualitatively explaining 
brightness-contrast and brightness-assimilation illusions simultaneously 
by using multi-channel filtering models. We have not attempted to model 
any quantitative electrophysiological experimental data of any illusory 
effect. Therefore the parameter values used in our model were mostly 
arrived through trial and error and not by using quantitative experimental 
data as obtained by neurophysiologists. 
 The M and P filters are graphically shown and compared in Figure 
4.3. Notice that although the M/P filters in Figure 4.3a-4.3b roughly look 
just like the DOG function (Figure 4.3), there are small but crucial 
differences. The M/P filter-functions cut the x-axis at 4 points whereas 
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DOG cuts the x-axis only at two points. This can be clearly seen in Figure 
4.3c-4.3d, which is a magnified view. From Table 4.1 it can be seen that the 
value of A4 for the P filter is much smaller than the A4 value for the M 
filter. For this reason, compared to the M-filter, the P-filter is very close to 
the DOG filter in its output. The M/P filters have five local extrema unlike 
DOG which has only three local extrema, although the local maxima 
farthest from the origin are so small they are not visible in Figure 4.3a-4.3b. 
Figures 4.3g-4.3i show the frequency response curves of M & P channels. 
Even though the frequency response curves are largely that of a low pass 
filter, but the frequency response of M-channel shows an extra depression 
at very low frequencies. This difference turns out to be important for 
DDOG model to work properly. Figure 4.3f demonstrates that there is a 
clearly visible disinhibition, i.e. surround suppression in the M i.e. parasol 
channel, as compared to the P, i.e. midget channel. This, in fact, is the 
reason why the M channel shows an extra depression in the frequency 
response curve in Figure 4.3i. Solomon et al. [Solomon et al., 2002] have 
experimentally substantiated the fact that extra-classical surround 
suppression which was found in parasol ganglion cells was virtually 
absent in the corresponding midget cells.  
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              (g) 

Figure 4.3: Graphs of P & M channel filter functions. (a) Graph of Mfunction with respect to distance from the filter center. (b) Graph of Pfunction. (c) Magnified view of Mpoints (unlike DOG which only cuts the xchannel filter, which like the M

    (f) 

         (h) 

        (i) 
Graphs of P & M channel filter functions. (a) Graph of M-channel filter function with respect to distance from the filter center. (b) Graph of P-channel filter function. (c) Magnified view of M-channel filter showing that it cuts the x-axpoints (unlike DOG which only cuts the x-axis at two points). (d) Magnified view of Pchannel filter, which like the M-channel filter also crosses the x-axis a four points, but 
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channel filter channel filter axis at four axis at two points). (d) Magnified view of P-axis a four points, but 



Chapter 4: The Varying Contrastive Context Filter 
 

 

55

 

after crossing back into the upper side of the x-axis it rapidly settles to zero. Therefore the P-channel is very close to the DOG filter. 

We propose that Equation (4.2) with different parameter values (A1, A2, 
A3, A4, σ1, σ2, σ3, σ4, and the sampling interval of Table 4.1) can mimic 
the role of both Parvocellular and Magnocellular pathways, thus modeling 
the two major complementary channels in the central visual pathway 
[Merigan and Maunsell, 1993]. Since the M channel has lower spatial 
resolution than the P channel, we have used a lower sampling resolution 
to implement the M channel than that used for the P channel. This is an 
important point of dissimilarity between the response produced by the M 
and P channel filters which are not reflected in Figure 4.3. 
4.6 The VCCF model 
We now propose the Varying Contrastive Context Filter (VCCF) model 
based upon the principle that the final brightness percept is formed in the 
visual cortex through a linear combination of the M and P channels 
[Bakshi et al., 2021]. For the sake of simplicity, we leave out the 
Koniocellular channel, whose role is not so well defined as in the case of 
the other two channels, and we base the proposed VCCF model upon only 
two spatial filters representing the Magnocellular and Parvocellular 
channels. The degree to which the delayed P output is combined with the 
initial M output, depends upon a concept that we term as the contrastive 
context of the incoming stimulus. This we model by introducing a 
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parameter α, which we refer to as the Factor of Contrastive Context (FOCC). 
Qualitatively, the greater the number of sharp edges in a stimulus the 
lower the value of the FOCC, and vice versa. The more the role of such 
contrastive context, the greater will be the component of P alongside the 
initial M output in forming the brightness percept. So in our proposed 
model, the outputs of the M channel and the P channel are finally 
combined through the following equation: 
VCCF(α) = αP + (1 − α)M        (4.3) 
where P and M correspond to their respective DDOG expressions (4.2) and 
α is a weight value representing the Factor of Contrastive Context. We are 
going to show that α, that varies between 0 and 1, is either very high (close 
to 1) or medium (close to 0.5), according as whether the illusion type is 
brightness contrast (in which case understandably, the FOCC is high 
because of a low number of edges) or brightness assimilation (in which 
case the FOCC is low because of high number of edges). This implies 
using Equation (4.3) that in case of brightness contrast, contextual vision 
through P plays a major role along with a smaller contribution from M, 
unlike brightness assimilation when P plays an almost competing role 
with M to produce the final brightness percept. Such a theory corroborates 
with the prevalent view [Blakeslee and McCourt, 2004] that when the 
stimulus mainly loses its low frequency content due to spatial filtering by 
high spatial frequency tuned channels, which is P as per our assumption 
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[Ghosh, 2012], then brightness contrast appears; on the other hand if the 
low spatial frequency tuned channels, i.e. M according to our assumption 
[Ghosh, 2012], mainly filter out the high frequency content of the stimulus, 
when value of α comes down to 0.5 or less, it results in brightness 
assimilation. Of course, in the second case, the major contrast edges cannot 
be wiped out; otherwise the image will lose its key information. This is 
why in this case, P must also have a sufficient share in the computation of 
the final output, rather than coming down to a value close to zero so that 
the brightness percept depends solely upon M. The VCCF filter 
coefficients used to implement the P channel and M channel are shown in 
Table 4.1. 
4.7 Sample VCCF results 
Since there is no neurophysiological data to model/quantify the 
contrastive context (CC) to the best of our knowledge, hence in order to 
experimentally obtain suitable values of alpha (α) in Eqn. (4.3), in this 
section we apply the VCC filter to certain sample illusions and analyse the 
results to arrive at the values of α which are appropriate for brightness 
contrast (i.e. high FOCC) or brightness assimilation (i.e. low FOCC). The 
approach is like that of curve-fitting, where we first pass the stimuli 
through the VCC filter for various values of α. From the resulting output 
we find a minimum possible set of values of α for which the output 
matches human observation. From the resultant alpha ranges for various 
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stimuli we empirically select two values of α, one close to 0.5, which is α = 
0.45 for the low FOCC stimuli, i.e. the brightness assimilation illusions and 
another double of that value, close to unity, which is α = 0.9 for the high 
FOCC stimuli, i.e. the brightness contrast illusions. These are two values at 
which the VCC filter can successfully model the illusory effect, although 
this is true within a range around each of these values. All the subsequent 
stimulus images are scaled down versions of the actual stimuli used in our 
experiments. 
4.7.1 Sinusoidal grating 
The sinusoidal grating illusion, as shown in Figure 4.4a, consists of a 
spatial field of sinusoidally varying background intensity over which a 
thin gray strip of uniform intensity is placed. Despite having a uniform 
intensity, the strip seems to have an undulating brightness variation along 
its length. The perceived brightness of the gray strip changes in a direction 
opposite to that of the background intensity i.e., in places where the 
background is dark, the gray strip looks bright and vice versa. Since the 
background changes smoothly, and the test patch in foreground is of 
uniform luminance, it follows that the number of contrast edges in this 
stimulus is very low. Hence this is a type of brightness contrast illusion 
(see section 2.2.3) with high FOCC. 
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    (b)
Figure 4.4: (a) Sinusoidal grating stimulus with spatial frequency of 0.18 cycles/degree and gray strip width of 0.56 degrees. (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in (a) (c) VCCF predicted output intensity profile for grating stimulus in (a) at alpha = 0.90.

 We have run the VCC filter for various values of alpha and plotted 
the predicted output brightnesses (i.e. the minimum and maximum 
brightness values over the central gray strip) with respect to alpha in 
Figure 4.4b. From Figure 4.4b one can see that for alpha values in the 
range of [0.85, 1], the VCC filter gives the desired response, i.e., the 
predicted brightness of the gray strip over a background maxima is lower 
than the predicted brightness over a background min
shows the VCCF predicted brightness profile of the gray strip at the 
chosen alpha value of 0.9.
4.7.2 Simultaneous b
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 (a) 

(b)        (c) (a) Sinusoidal grating stimulus with spatial frequency of 0.18 cycles/degree and gray strip width of 0.56 degrees. (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in (a) (c) VCCF predicted output intensity profile for rating stimulus in (a) at alpha = 0.90. 

We have run the VCC filter for various values of alpha and plotted 
the predicted output brightnesses (i.e. the minimum and maximum 
brightness values over the central gray strip) with respect to alpha in 

From Figure 4.4b one can see that for alpha values in the 
range of [0.85, 1], the VCC filter gives the desired response, i.e., the 
predicted brightness of the gray strip over a background maxima is lower 
than the predicted brightness over a background minima. Figure 4.4c 
shows the VCCF predicted brightness profile of the gray strip at the 
chosen alpha value of 0.9. 

brightness contrast (SBC) 
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(a) Sinusoidal grating stimulus with spatial frequency of 0.18 cycles/degree and gray strip width of 0.56 degrees. (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in (a) (c) VCCF predicted output intensity profile for 

We have run the VCC filter for various values of alpha and plotted 
the predicted output brightnesses (i.e. the minimum and maximum 
brightness values over the central gray strip) with respect to alpha in 

From Figure 4.4b one can see that for alpha values in the 
range of [0.85, 1], the VCC filter gives the desired response, i.e., the 
predicted brightness of the gray strip over a background maxima is lower 

ima. Figure 4.4c 
shows the VCCF predicted brightness profile of the gray strip at the 



 

 

60

60

The Simultaneous Brightness Contrast (SBC) illusion (Figure 1.2a) consists 
of two identical gray patches surrounded by two different intensity 
backgrounds. One grey patch lies within a bright surrounding while the 
other lies in dark surrounding. The gray patch in the dark surrounding 
seems brighter than its counterpart. Hence this is also a type of brightness 
contrast illusion having mostly uniform luminance values and less 
number of edges and consequently with high FOCC. 
 We have run the VCC filter on the SBC stimulus for different values 
of alpha and plotted the predicted output brightness values of the two 
gray patches with respect to alpha in Figure 4.5b. From Figure 4.5b it can 
be seen that for alpha values in the range of [0.65, 1] the VCC filter gives 
the desired response, i.e., the predicted brightness of the gray patch 
surrounded by white is lower than the predicted brightness of the gray 
patch surrounded by black. So for both the sinusoidal grating as well as 
the SBC, 0.9 is a value within the range of the desired psychophysical 
experience, since 0.65 < 0.85 < 0.9 < 1. Figure 4.5c shows the VCCF 
predicted brightness profile calculated along the horizontal centerline of 
the SBC stimulus at the chosen alpha value of 0.9. 
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   (b) 
Figure 4.5: (a) Simultaneous Brightness Contrast (SBC) stimulus of patch size 1.53 degrees (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in Figure 4.5a (c) VCCF predicted output intensity profile for SBC stimulus in Figure alpha = 0.90. 

4.7.3 White’s illusion
White’s stimulus consists of a vertical grid of alternating black and white 
bars, upon which two gray patches of identical intensities are placed, one 
over a white bar and the other over a black bar (Figure 4.6a). Fr
4.6a it can be seen that the gray patch lying on the coaxial white bar (on 
the right) seems apparently darker than the gray patch lying over the 
coaxial black bar (on the left). Unlike the case of SBC above, this is a type 
of brightness assimilation illusion (
low FOCC. As described in the previous sample illusions, we have plotted 
the VCCF predicted output brightness values of the two gray patches with 
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         (c) : (a) Simultaneous Brightness Contrast (SBC) stimulus of patch size 1.53 degrees (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in a (c) VCCF predicted output intensity profile for SBC stimulus in Figure 
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White’s stimulus consists of a vertical grid of alternating black and white 
bars, upon which two gray patches of identical intensities are placed, one 

om Figure 
4.6a it can be seen that the gray patch lying on the coaxial white bar (on 
the right) seems apparently darker than the gray patch lying over the 
coaxial black bar (on the left). Unlike the case of SBC above, this is a type 

many edges and 
. As described in the previous sample illusions, we have plotted 

the VCCF predicted output brightness values of the two gray patches with 



 

respect to alpha in Figure 4.6b, from where it can be seen that for alpha 
values in the range of [0, 0.65] the VCC filter yields a response consistent 
with brightness assimilation. Figure 4.6c shows the VCCF predicted 
horizontal brightness profile of White
value of 0.45 which is half the value we 
above. 

    (b)
Figure 4.6: (a) White's illusion with frequency of 0.53 cycles/degree and patch height of 3.12 degrees. (b) Intensity output versus alpha graph from VCCF model for stimulus shown in Figure 4.6

4.7.4 Shifted White’s illusion
The Shifted White’s illusion (Figure 4.7a) is a modification of White
stimulus wherein a horizontal section containing the gray patches is 
shifted sideways by one barwidth. Just like White’s e

respect to alpha in Figure 4.6b, from where it can be seen that for alpha 
values in the range of [0, 0.65] the VCC filter yields a response consistent 
with brightness assimilation. Figure 4.6c shows the VCCF predicted 
horizontal brightness profile of White’s stimulus at our selected alpha 
value of 0.45 which is half the value we used for the high FOCC

 (a) 

(b)        (c) 
s illusion with frequency of 0.53 cycles/degree and patch height of 3.12 degrees. (b) Intensity output versus alpha graph from VCCF model for 4.6a. (c) Intensity profile given by VCCF at alpha value of 0.45.

White’s illusion 
The Shifted White’s illusion (Figure 4.7a) is a modification of White
stimulus wherein a horizontal section containing the gray patches is 
shifted sideways by one barwidth. Just like White’s effect, this illusion also 
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 is a type of brightness assimilation e
FOCC. Figure 4.7b shows a plot of the VCCF predicted brightness values 
of the two gray patches for various alpha values. It can be seen that 
0.65] reproduces the desired brightness assimila
shows the VCCF predicted horizontal brightness profile of the Shifted 
White’s stimulus at our selected alpha value of 0.45.

      (b)
Figure 4.7: (a) The Shifted White’s illusion with frequency of 0.53 cycles/degree having patch height 3.12 degrees. (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in 4a.(c) Intensity profile given by VCCF at alpha value of 0.45.

4.8 Comparison of VCCF results with ODOG in terms of 
extended patch-height in brightness assimilation illusions

The Varying Contrastive Context Filter 

brightness assimilation effect with a lot of edges and 
. Figure 4.7b shows a plot of the VCCF predicted brightness values 

of the two gray patches for various alpha values. It can be seen that 
0.65] reproduces the desired brightness assimilation effect. Figure 4.7c 

he VCCF predicted horizontal brightness profile of the Shifted 
White’s stimulus at our selected alpha value of 0.45. 

 (a) 

(b)                   (c) 
(a) The Shifted White’s illusion with frequency of 0.53 cycles/degree having patch height 3.12 degrees. (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in 4a.(c) Intensity profile given by VCCF at alpha value of 0.45.

Comparison of VCCF results with ODOG in terms of 
height in brightness assimilation illusions
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(a) The Shifted White’s illusion with frequency of 0.53 cycles/degree having patch height 3.12 degrees. (b) Intensity output versus alpha graph from VCCF model for input stimulus as shown in 4a.(c) Intensity profile given by VCCF at alpha value of 0.45. 

Comparison of VCCF results with ODOG in terms of 
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In section 4.7 we presented four visual illusions, two of brightness-contrast 
(i.e. high FOCC) and two of brightness assimilation (i.e. low FOCC) types, 
and in each of those cases the VCCF model was successfully able to 
explain the illusion. However, these cases can also be accounted for by the 
ODOG model [Blakeslee and McCourt, 1999] [Blakeslee and McCourt, 
2004]. The illusions shown in sections 4.7.3 and 4.7.4 contained gray 
patches of relatively moderate height (with respect to the stimulus height). 
As discussed in Section 3.2, when the gray patch height is extended to 
relatively large values the ODOG filter fails to predict the illusory effect. 
However the proposed VCCF based model continues to correctly explain 
the perceived illusion. Below we present a comparison between ODOG 
and VCCF models. We first show the predicted brightness profiles of the 
two models at extended patch lengths. Then we show plots of the Intensity 
versus Patch-height Characteristic Curve (IPCC) of both the models. 
Finally we compare these IPCC curves with the experimentally obtained 
IPCC curve, to verify their validity. 
4.8.1 White’s illusion 
White’s illusion, as shown in Figure 4.8a, belongs to the class of brightness 
assimilation illusions. The gray patches shown in Figure 4.8a have a large 
patch-height of 9.35 degrees. The ODOG predicted brightness profile of 
Figure 4.8b clearly shows the gray patch on the left to be brighter than the 
one on the right, which is incorrect as can be verified by direct 



Chapter 4: The Varying Contrastive Context Filter
 observation. Our proposed model predicts the correct direction of 
brightness change as shown in Figure 4.8c.

             (a) 

   (c) 

              (e) 
Figure 4.8: (a) Input stimulus of Whites illusion with patch height of 9.35 degrees and frequency 0.40 cycles/degree (b) ODOG output intensity profile for stimulus shown in (a) which fails to predict the direction of brightness change of White’s eintensity profile from VCCF model fodirection of brightness change of White eobservation of intensity versus patch height at a constant frequency of 0.40 cycles(e) ODOG predicted intensity versus patch height characteristic graph at a constant frequency of 0.40 cycles/degree. When patch height goes over 7.48 degree, ODOG model shows an inversion in its perceived intensity prediction which clearly contradobservations as shown in (d). (f) VCCF predicted intensity versus patch height 
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observation. Our proposed model predicts the correct direction of 
brightness change as shown in Figure 4.8c. 

                 (b) 

            (d) 

                (f) 
(a) Input stimulus of Whites illusion with patch height of 9.35 degrees and frequency 0.40 cycles/degree (b) ODOG output intensity profile for stimulus shown in (a) which fails to predict the direction of brightness change of White’s effect. (c) Output tensity profile from VCCF model for stimulus shown in (a) which correctly predicts the direction of brightness change of White effect. (d) Experimental results of subject’s observation of intensity versus patch height at a constant frequency of 0.40 cyclesintensity versus patch height characteristic graph at a constant frequency of 0.40 cycles/degree. When patch height goes over 7.48 degree, ODOG model shows an inversion in its perceived intensity prediction which clearly contradicts human observations as shown in (d). (f) VCCF predicted intensity versus patch height 
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characteristic graph at a constant frequency of 0.40 cycles/degree. VCCF model shows no inversion in its prediction and accurately matches the direction of brightness change of White’s effect as indicated by the experimental graph in (d). 

Figures 4.8a-4.8c illustrate one specific instance in which the proposed 
VCCF based model correctly predicts the direction of brightness change 
for which the ODOG filter fails. In order to further investigate the range of 
patch-lengths for which this trend continues, we varied the gray patch 
height over a wide range of values from 0.63 degrees to 9.35 degrees while 
recording the VCCF and ODOG predicted outputs, and compared them 
with experimental observations. The Intensity versus Patch-height 
Characteristic Curves (IPCC) for the experimentally observed, the ODOG 
predicted and the VCCF predicted values are respectively plotted in 
Figures 4.8d-4.8f. The ODOG predicted IPCC shows an intersection point 
at 7.48 degrees patch-height, where a reversal of the direction of 
brightness change occurs. We refer to this particular point of inversion as 
the Threshold Inversion Point (TIP). The VCCF predicted IPCC shows no 
such inversion just like the experimentally observed IPCC. 
4.8.2 Shifted White’s illusion 
Figure 4.9a shows the Shifted White’s illusion which, like White’s effect, 
also belongs to the brightness-assimilation class of illusions. The gray 
patches have a patch-height of 6.24 degrees. The ODOG profile as shown 
in Figure 4.9b predicts the left-hand patch to be darker than the right-hand 
patch, which is incorrect, as can be directly seen from Figure 4.9a. Figure 
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 4.9c shows the corresponding VCCF predicted brightness profile, which 
clearly shows the left-
corresponding IPCC plots for the Shifted White’s illusion (with patch
height ranging from 0.75 degrees to 9.35 degrees) are shown in Figures 
4.9d-4.9f. As for the case of Whites illusion above, the ODOG predicted 
IPCC shows an inversion of brightness values beyond 
Point (TIP); (TIP= 4.8 degrees here). The VCCF predicted IPCC shows no 
inversion, which agrees with the experimental IPCC.

               (a) 

                 (c) 
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4.9c shows the corresponding VCCF predicted brightness profile, which 
-hand patch to be brighter than the right one. The 

ding IPCC plots for the Shifted White’s illusion (with patch
height ranging from 0.75 degrees to 9.35 degrees) are shown in Figures 

4.9f. As for the case of Whites illusion above, the ODOG predicted 
IPCC shows an inversion of brightness values beyond a Threshold Inversion 

(TIP); (TIP= 4.8 degrees here). The VCCF predicted IPCC shows no 
inversion, which agrees with the experimental IPCC. 

                    (b) 

                      (d) 
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4.9c shows the corresponding VCCF predicted brightness profile, which 
hand patch to be brighter than the right one. The 

ding IPCC plots for the Shifted White’s illusion (with patch-
height ranging from 0.75 degrees to 9.35 degrees) are shown in Figures 

4.9f. As for the case of Whites illusion above, the ODOG predicted 
Threshold Inversion 

(TIP); (TIP= 4.8 degrees here). The VCCF predicted IPCC shows no 

 

 



 

               (e) 
Figure 4.9: (a) Shifted White’s stimulus with test patch height of 6.24 degrees and frequency 1.6 cycles/degree. (b) ODOG predicted output intensity profile for stimulus shown in (a) which incorrectly predicts the dirWhite’s effect. (c) Output intensity profile from VCCF model for stimulus shown in (a) which successfully predicts the direction of brightness change in the Shifted White’s effect. (d) Experimental subject observafrequency of 1.6 cycles/degree. (e) ODOG predicted intensity versus patch height characteristic graph at a constant frequency of 1.6 cycles/degree. The ODOG model shows an inversion in the perceived intendegree, which goes against the experimental observations shown in (d). (f) VCCF predicted intensity versus patch height characteristic graph at a constant frequency of 1.6 cycles/degree. The VCCF curve shows nexperimental graph in (d). 

4.9 Conclusion 
We have proposed a Varying Contrastive Context Filter (VCCF) based 
model of brightness perception. Our approach is based on the DDOG 
filter, which is an extension 
(DOG) model by introducing another layer of differencing leading to the 
Difference of Difference of Gaussians (DDOG). Our proposed model is 
further inspired by the fact that the human visual system combines the 
incoming signals arriving via the Parvocellular and Magnocellular 
pathways at the LGN. In similar fashion we too mix the outputs of two 
separate M and P spatial filters distinguished by di

                   (f) 
(a) Shifted White’s stimulus with test patch height of 6.24 degrees and frequency 1.6 cycles/degree. (b) ODOG predicted output intensity profile for stimulus shown in (a) which incorrectly predicts the direction of brightness change of the Shifted ect. (c) Output intensity profile from VCCF model for stimulus shown in (a) which successfully predicts the direction of brightness change in the Shifted White’s ect. (d) Experimental subject observation of intensity versus patch height at a constant frequency of 1.6 cycles/degree. (e) ODOG predicted intensity versus patch height characteristic graph at a constant frequency of 1.6 cycles/degree. The ODOG model shows an inversion in the perceived intensity prediction when patch height is above 4.8 degree, which goes against the experimental observations shown in (d). (f) VCCF predicted intensity versus patch height characteristic graph at a constant frequency of 1.6 cycles/degree. The VCCF curve shows no inversion in its prediction and agrees with the  

We have proposed a Varying Contrastive Context Filter (VCCF) based 
model of brightness perception. Our approach is based on the DDOG 
filter, which is an extension of the pre-existing Difference of Gaussians 
(DOG) model by introducing another layer of differencing leading to the 
Difference of Difference of Gaussians (DDOG). Our proposed model is 
further inspired by the fact that the human visual system combines the 

ls arriving via the Parvocellular and Magnocellular 
pathways at the LGN. In similar fashion we too mix the outputs of two 
separate M and P spatial filters distinguished by different values of their 
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(a) Shifted White’s stimulus with test patch height of 6.24 degrees and frequency 1.6 cycles/degree. (b) ODOG predicted output intensity profile for stimulus ection of brightness change of the Shifted ect. (c) Output intensity profile from VCCF model for stimulus shown in (a) which successfully predicts the direction of brightness change in the Shifted White’s ght at a constant frequency of 1.6 cycles/degree. (e) ODOG predicted intensity versus patch height characteristic graph at a constant frequency of 1.6 cycles/degree. The ODOG model sity prediction when patch height is above 4.8 degree, which goes against the experimental observations shown in (d). (f) VCCF predicted intensity versus patch height characteristic graph at a constant frequency of 1.6 o inversion in its prediction and agrees with the 
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defining parameters. Although the filters may be combined in numerous 
possible ways, we have chosen the simplest possible strategy, i.e., a linear 
combination of the two filters. The weight factor, alpha (α), used for the 
linear combination is termed as the Factor of Contrastive Context (FOCC) 
in our model. By analyzing various brightness-contrast as well as 
brightness-assimilation illusions we arrive at a minimal set of values of 
alpha, which are able to successfully predict the direction of brightness 
shift in brightness contrast (i.e. high FOCC) as well as the brightness 
assimilation (i.e. low FOCC) perception. We compared the proposed 
model against the already well established ODOG filter. Extensive tests 
and simulations suggest that for most illusions both ODOG and VCCF 
produce correct output, but for certain cases in which the ODOG filter fails 
to predict the illusory effect, our proposed VCCF model continues to be 
effective. We have also experimentally validated our results with 
observations from human test subjects. The fact that the FOCC assumes 
one set of values out of the aforesaid minimal set of values in the case of 
brightness contrast illusions and another distinct set of values in the case 
of brightness assimilation illusions, indicates the important role of 
feedback in the human visual system. This feedback necessarily has to 
arrive from the upper stages of the visual pathway and modulates the 
lower stages of the pathway according to the contrastive context. We 
hypothesize that this feedback likely originates from the cortex and 
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controls the amount of mixing of the P and M channels in the LGN 
through the cortico-geniculate synapses. Thus the VCCF model 
emphasizes the importance of considering contextual feedback as an 
important variable in models of visual perception. Although the VCCF 
model has one free parameter, it is still much simpler than the ODOG 
model. ODOG uses oriented difference of Gaussian filters at 7 different 
length scales and 6 different orientations (i.e. a total 42 ODOGs) and non-
linearly combines them. The length scales and weighting factors, although 
fixed, are far greater in number than the VCCF model. The VCCF model, 
in effect, uses 8 isotropic Gaussians with 4 length parameters and 8 weight 
factors. The free variable alpha, which from the observations made in this 
chapter, seems to depend on the number of edges in the stimulus, ideally 
must be computed from the stimulus itself, and in the next chapter we 
figure out what may determine the contextual factor alpha. However, we 
still observe that a binary choice of one out of two values of alpha can 
explain most of the brightness perceptions. This indicates that just a small 
amount of feedback from the upper stages is enough to determine the 
amount of mixing of the P and M channels.  
 



Chapter 5 
The DDOG based Adaptive Contrastive 
Context Filter 
  
5.1 Introduction 
 In the previous chapter we proposed the DDOG based VCCF model 
in which we observed how several of the complexities of brightness 
perception may be explained by a mixture of the P and M channels which 
mix in a proportion determined by feedback from the upper stages of the 
visual system, which we call the Factor of Contrastive Context (FOCC). 
But we left the mixing parameter (alpha) free, observing only that a 
minimal set of values of the mixing parameter could correctly predict the 
direction of brightness shift in various types of illusions, and the fact that 
its value depends upon the number of edges in the stimulus. In this 
chapter we make an attempt to automate the process of determining the 
Factor of Contrastive Context (FOCC) through a two-pass model of multi-
channeled vision, which we term as the Adaptive Contrastive Context 
Filter. 
5.2 The two-pass model for multi-channeled vision 
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 As mentioned in the previous chapter, the signals from the eyes 
enter the brain via several channels, namely, the Parvocellular, 
Magnocellular and Koniocellular channels, each of which carries 
information about the entire visual field. We also hypothesized how the 
information from all these channels may be fused by the brain to produce 
a single final percept and how brightness illusions could be explained by 
the merging of these independent channels. To explore this idea we 
propose the two-pass model of multi-channeled vision. Our model, as in 
the case of VCCF, uses only the two major channels, i.e. the P-channel and 
the M-channel. This is done for simplicity, since we are only trying to 
explore step-by-step if this way of thinking can explain all the various 
types of brightness illusions. 
 It has been known for a long time that signals are conducted faster 
through the Magnocellular channels compared to the other channels 
[Kaplan and Shapley, 1982] [Schiller and Malpeli, 1978].  Activity 
transferred through the Magnocellular neurons of the LGN reach area V1 
some 20 ms earlier than the activity transferred through the Parvocellular 
neurons of the LGN [Nowak et al., 1995], which shows that despite the 
two channels converging beyond layer 4C, M activity precedes P activity 
in the different layers of V1. Based on latencies of visual responses of 
neurons [Maunsell et al., 1990] in different cortical areas, Bullier [Bullier, 
2001] argues that such characteristics of the M channel like high contrast 
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sensitivity, poor chromatic selectivity, larger receptive fields and lower 
spatial resolution are well suited for a first-pass ‘vision at a glance’. So, 
although the Parvocellular pathway carries much more detail, owing to 
the higher spatial resolution of the midget cells of this channel, compared 
to the Magnocellular pathway, yet the Magnocellular pathway can carry 
an overall holistic information much faster than the Parvocellular pathway 
[Kandel et al., 2000] [Merigan and Maunsell, 1993]. 
 According to our proposed 2-pass model of attentive vision the 
visual process is divided into two stages. In the first stage, called ‘vision at 
a glance’, the brain first interprets the contents of the Magnocellular 
pathway. If it can find sufficient detail in this stage itself, then it almost 
ignores the contents of the Parvocellular pathway. In other words if the 
brain can obtain sufficient information content about its environment from 
this channel alone then it minimally interprets the other channel. If it 
cannot find sufficient detail then it enters the second stage, which is called 
‘vision with scrutiny’, in this stage the brain examines the contents of the 
Parvocellular pathway to find further details in those regions where 
sufficient details were not found. This two stage process can be described 
as follows: 
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The condition of background uniformity under the If condition can be 
implemented in a variety of ways. In the proposed ACCF model described 
below, we, inspired by the observations made in the previous chapter 
pertaining to the dependence of FOCC on the number of edges in the 
stimulus, stick to a very simple method of evaluating background 
uniformity using the Laplacian operator. The Laplacian is the lowest order 
isotropic derivative (two-dimensional in the context of image) suitable for 
detecting edges in all directions in an image. It is also computationally 
simple since it is a sum of two operators along the x-axis and y-axis 
respectively. But it is possible that some other method of judging 
background uniformity may yield even more accurate results in the ACCF 
approach. 
5.3 The ACCF model 
The ACCF model works by adaptively combining the M and P filters, as 
introduced in the VCCF model in the previous chapter, in a proportion 

If  
(the initial M channel output identifies that the background around the test patch is 
uniform) 
Then 
P-channel is invoked and the brightness percept is formed by P. 
Else 
M-channel produces the percept. 
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which itself is a function of the input image. In this way the ACCF 
algorithm is effectively nonlinear in nature. With this model we have been 
able to explain both SBC and White effect and also Howe’s [Howe, 2001] 
smooth transition between the two. In our model we implement the 
Magnocellular and Parvocellular channels using the same M and P filters 
of the VCCF model as summarized in Table 4.1 of the previous chapter. 
The ACCF algorithm therefore also uses isotropic filters, so that if the 
input is rotated by some angle then the output is guaranteed to be rotated 
by the same angle. The simplicity of this model thus makes it a plausible 
model for the neural networks involved in low and mid level vision.  
 The method of combination of the above mentioned two sets of M 
& P filters is inspired by the aforementioned 2-pass model of vision 
according to which the visual process is divided into two stages. In the 
first stage, called vision at a glance, the brain first interprets the contents of 
the Magnocellular pathway. The Magnocellular pathway, although lower 
in resolution, can carry information much faster than the Parvocellular 
pathway and therefore it is processed in the first stage of the process. If it 
can find sufficient detail in this stage then it ignores the contents of the 
Parvocellular pathway. If it cannot find sufficient detail then it enters the 
second stage which is called vision with scrutiny. In this stage the brain 
examines the contents of the Parvocellular pathway to find further details 
in those regions where sufficient details were not found.  



 

So the above mentioned two stage process can be described as follows:

Figure 5.1: Flowchart showing the 2ACCF model. 

In our method, we first calculate the Laplacian (
the Laplacian of Gaussian operator in the light of David Marr [Marr
in this context) at every pixel of the M channel output image and take its 
square value. This gives us a positive number at every pixel. We then 
compute its average value per pixel. This gives us a single positive 
number λ for every image. If this number 
background must be very uniform and therefore the output must be 
determined by the P channel. On the other hand if 
background must be highly non
formed by the M channel. So for some threshold value of 

So the above mentioned two stage process can be described as follows:
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switch from P to M channel. Instead of using such 
choose to have a more gradual transition from P to M by linearly 
combining both the M output and the P output in some proportion 
depending on λ. f(λ) must be such that, if 
small, consequently f(λ)
proportion of M is high, so 
many such functions, we chose the following form for 
f(λ) =  λ / ( λ + λ0 ) 

Therefore the final output is determined by the following equation:
FINAL OUTPUT = f(λ) * (M CHANNEL OUTPUT) + [1 

5.4 Implementation 
The following steps show how the ACCF algorithm has been 
implemented: 

 Step 1: Read input Image 
 Step 2: M=M_filter(I)

The DDOG Based Adaptive Contrastive Context Filter 
switch from P to M channel. Instead of using such a threshold value we 
choose to have a more gradual transition from P to M by linearly 
combining both the M output and the P output in some proportion 

must be such that, if λ is small the proportion of M is 
f(λ) should be close to 0; whereas if λ is high then the 

proportion of M is high, so f(λ) should be close to 1. Although there exist 
many such functions, we chose the following form for f(λ): 

 
Figure 5.2: f(λ) vs. λ 

output is determined by the following equation:
FINAL OUTPUT = f(λ) * (M CHANNEL OUTPUT) + [1 - f(λ)] * (P CHANNEL OUTPUT)

5.4 Implementation specifics of the ACCF algorithm
The following steps show how the ACCF algorithm has been 

Step 1: Read input Image I. 
M=M_filter(I). (Apply M-filter on I) 
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a threshold value we 
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 Step 3: L=(M). (At each pixel of M calculate Laplacian to 
determine level of non-uniformity) 

 Step 4: λ=Mean(L2). (Compute mean square value of L per 
pixel. λ is a measure of the non-uniformity of the entire 
image) 

 Step 5: Compute f(λ) = λ / (λ + λ0). (This step maps λ to 
f(λ)   ) 

 Step 6: P=P_filter(I). (Apply P-filter on I) 
 Step 7: F= f(λ)*M+[1- f(λ)]*P . (Compute final output F) 

Steps 3 & 4 are the analogues for the process of finding sufficient details in 
the input stimulus. These steps determine the level of non-uniformity in 
the image, i.e. the amount of high frequency detail present in the M-
filtered image. The level of image non-uniformity can be determined in a 
variety of ways. Here we stick to a very simple method of evaluating 
image non-uniformity. First we calculate the Laplacian at every pixel of 
the M channel output image. Since the DDOG filter is only a linear 
combination of 4 Gaussians, evaluation of Laplacian from the same 
implies finally applying a filter which closely resembles Marr’s edge 
detector [Marr, 1982] that also supposedly detects nothing but 
discontinuities, i.e. non-uniformities in an image. Marr assumed the 
existence of such filters in the striate cortex also in the form of a 
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combination of two on and off centered cells arranged in an AND gate 
structure.  
Essentially therefore, in our proposed automated algorithm, there is a 
first-pass vision at a glance executed by the faster conducting M channel. 
Detection of non-uniformities in this M channel filtered image (λ) in the 
striate cortex, leads to a more attentive vision with scrutiny combining the 
initial M channel picture with the slower conducting P channel filtered 
image. The extent to which the later picture is combined with the initial 
picture depends upon the value of λ, i.e. the degree of non-uniformity in 
the earlier image. The higher the non-uniformity, lesser will be the 
contribution of the later P filtered picture. On the other hand the more the 
initial picture is uniform, i.e. devoid of details, the more will be the role of 
the P channel that consists of the midget cells with higher spatial 
resolution in the vision with scrutiny. 
Such top-down facilitation through an early detection of details/non-
uniformity by the initial filtering through M channel also finds justification 
with respect to higher level object recognition in the works of Moshe Bar 
and their group [Kveraga et al., 2007] [Bar, 2003]. They used the concept of 
typical M-biased and P-biased stimuli, low-luminance contrast and 
achromatic for M and chromatically defined isoluminant for P to 
demonstrate, by using human neuroimaging techniques, that the stimuli 
biased towards magnocellular processing were recognized further and 
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evoked greater activity in the orbitofrontal cortex, associated with object 
recognition task, compared with the stimuli biased to include primarily 
parvocellular information. Such M bias was also found to increase the 
speed between orbitofrontal and inferior temporal cortex in reverse 
hierarchy. These findings have led them to conclude that fast 
magnocellular projections to the orbitofrontal cortex, combined with a top-
down projection from orbitofrontal to inferior temporal cortex, play a 
determining role in top-down facilitation of visual object recognition.  
Based on these works, we may conclude that top-down facilitation 
possibly follows up the initial M ‘scouting’, in order to  complete the initial 
gist representation through adding such information that was unavailable 
in the M output alone. 
One may argue that object recognition is a high level vision task, whereas 
brightness induction is a low level phenomenon. However, even at low 
level, contemporary anatomical evidences have also been increasingly 
pointing to possible vertical interactions within the cortical columns in V1 
that would provide for a mixture of information originating in parvo and 
magno LGN layers [Ferrera et al., 1992] [De Valois  et al., 2000]. 
5.5 ACCF model results for various visual stimuli 
Below we show some input stimuli and the corresponding brightness 
profiles of both input and outputs. 
5.5.1 White effect 
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The image in Figure 5.3b shows the output profile of ACCF model when 
applied to the stimulus in Figure 5.3a, which shows 
input profile has also been shown for comparison. We can observe that, as 
expected, the brightness of the patches has shifted in the same direction as 
the stripes on either side of the patches. This difference in output 
brightnesses of the patches is more pronounced in ACCF model than in 
the ODOG model (Figure 5.3c).

       (b)
Figure 5.3: (a) Input stimulus for White effect. (b) Output brightness profile (solid) of ACCF model superimposed on the input inteprofile of ODOG model. 

5.5.2 SBC 
The image in Figure 5.4b shows the output result of ACCF model for the 
SBC stimulus in Figure 5.4a. As expected we get a brightness
effect, i.e., the patch with a brighter surrounding looks darker while the 

The DDOG Based Adaptive Contrastive Context Filter 
The image in Figure 5.3b shows the output profile of ACCF model when 
applied to the stimulus in Figure 5.3a, which shows the White effect. The 
input profile has also been shown for comparison. We can observe that, as 
expected, the brightness of the patches has shifted in the same direction as 
the stripes on either side of the patches. This difference in output 

f the patches is more pronounced in ACCF model than in 
the ODOG model (Figure 5.3c). 

 (a) 

(b)                 (c) (a) Input stimulus for White effect. (b) Output brightness profile (solid) of ACCF model superimposed on the input intensity profile (dotted). (c) Output brightness 

The image in Figure 5.4b shows the output result of ACCF model for the 
SBC stimulus in Figure 5.4a. As expected we get a brightness
effect, i.e., the patch with a brighter surrounding looks darker while the 
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The image in Figure 5.3b shows the output profile of ACCF model when 
the White effect. The 

input profile has also been shown for comparison. We can observe that, as 
expected, the brightness of the patches has shifted in the same direction as 
the stripes on either side of the patches. This difference in output 

f the patches is more pronounced in ACCF model than in 

 
(a) Input stimulus for White effect. (b) Output brightness profile (solid) of nsity profile (dotted). (c) Output brightness 

The image in Figure 5.4b shows the output result of ACCF model for the 
SBC stimulus in Figure 5.4a. As expected we get a brightness-contrast 
effect, i.e., the patch with a brighter surrounding looks darker while the 



 

patch with a darker surrounding looks br
in Figure 5.4c also shows the same brightness

      (b)
Figure 5.4: (a) Input stimulus of SBC illusion. (b) Output profile (solid) of ACCF model superimposed over the input profilmodel. 

5.5.3 Checkerboard
The checkerboard illusion shows a brightness
Figure 5.5a. The output of ACCF as shown in Figure 5.5b shows an overall 
shift in patch brightness in th
ODOG output also shows a shift, but interestingly, not in the right 
direction. In other words, ODOG here fails to explain the assimilation 
effect in checkerboard illusion.

patch with a darker surrounding looks brighter. The ODOG output shown 
in Figure 5.4c also shows the same brightness-contrast effect. 

 (a) 

(b)                  (c) (a) Input stimulus of SBC illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of ODOG 

5.5.3 Checkerboard 
The checkerboard illusion shows a brightness-assimilation effect as seen in 
Figure 5.5a. The output of ACCF as shown in Figure 5.5b shows an overall 
shift in patch brightness in the same direction as the surroundings. The 
ODOG output also shows a shift, but interestingly, not in the right 
direction. In other words, ODOG here fails to explain the assimilation 
effect in checkerboard illusion. 
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      (b)
Figure 5.5 (a) Input stimulus of Checkerboard illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of ODOG model. 

5.5.4 Sine grating induction
The Sine grating stimulus as shown in 
sinusoidally varying background over which a thin grey strip is placed. 
The grey patch shows an apparent brightness which varies in the opposite 
direction as the background brightness. The output profile of ACCF model 
as shown in Figure 5.6b correctly shows the input peaks coinciding with 
the output troughs and vice versa. The sinusoid being a smoothly varying 
function has very few edges and as a result the P
ODOG output shown in Figure 5.6c also shows the sam
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nduction 
The Sine grating stimulus as shown in Figure 5.6a consists of a 
sinusoidally varying background over which a thin grey strip is placed. 
The grey patch shows an apparent brightness which varies in the opposite 
direction as the background brightness. The output profile of ACCF model 

Figure 5.6b correctly shows the input peaks coinciding with 
the output troughs and vice versa. The sinusoid being a smoothly varying 
function has very few edges and as a result the P-filter dominates. The 
ODOG output shown in Figure 5.6c also shows the same effect. 
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(a) Input stimulus of Checkerboard illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of 
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direction as the background brightness. The output profile of ACCF model 

Figure 5.6b correctly shows the input peaks coinciding with 
the output troughs and vice versa. The sinusoid being a smoothly varying 

filter dominates. The 



 

       (b)
Figure 5.6 (a) Input stimulus of Sine grating illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of ODOG model. 

5.5.5 Square grating 
The square grating induction is similar to the sine grating except that, 
instead of a sine wave background it has a square wave background, i.e., 
the background consists of alternating white and black stripes. Here too 
the apparent brightness of the grey patch shifts in the opposite direction to 
the background, but the effect is much weaker than the sine grating 
illusion. Also unlike the sine grating here the input image is full of edges 
and therefore the output is mainly formed by the M
shows the output profile of ACCF model superimposed on the input 
profile and as expected, the peaks of the output coincide with the troughs 
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(b)                 (c) 
(a) Input stimulus of Sine grating illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of 
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shows the output profile of ACCF model superimposed on the input 
profile and as expected, the peaks of the output coincide with the troughs 
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(a) Input stimulus of Sine grating illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of 
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of the input and vice versa. The ODOG output shown in Figure 5.7c also 
shows the same effect. 

     (b)
Figure 5.7 (a) Input stimulus of Square grating illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of ODOG model. 

5.5.6 Sine grating to Square 
Figure 5.8a-5.8f show the output profiles of a series of stimuli which show 
a gradual transition from sine to square grating. The strength of the output 
response falls gradually from sine to square, as observed. Figure 5.8g 
shows the relative M
transition. This demonstrates that even though the M
from low to high, the output always shows a brightness
the brightness-assimilation effect.
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of the input and vice versa. The ODOG output shown in Figure 5.7c also 
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to Square grating transition 
f show the output profiles of a series of stimuli which show 

a gradual transition from sine to square grating. The strength of the output 
response falls gradually from sine to square, as observed. Figure 5.8g 

tive M-channel weights, f(λ), for the sine to square 
transition. This demonstrates that even though the M-channel weight goes 
from low to high, the output always shows a brightness-contrast effect, not 

assimilation effect. 
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       (a)                 (b) 

       (c)                 (d) 

       (e)                 (f) 

 (g) 
Figure 5.8 (a - f) ACCF output profiles (solid) of Sine to Square transition superimposed over the respective input profiles (dotted). (g) Graph of relative M-channel weights. 



Chapter 5: The DDOG Based Adaptive Contrastive Context Filter

5.5.7 Howe’s illusion
Howe’s illusion (Figure 5.9b) [Howe, 2001] may be looked upon as an 
intermediate stage in a gradual transition of the White effect into the SBC 
illusion. The illusion changes gradually from brightness
brightness-contrast. Figure 5.9g shows the output intensities of the two 
grey patches when the ACCF model i
in Figure 5.9a-5.9f. It shows the brightness curve of one of the patches 
crossing over the brightness curve of the other patch, just as expected from 
direct observation. The ODOG output (Figure 5.9h) also yields a simila
response. 

The DDOG Based Adaptive Contrastive Context Filter 
Howe’s illusion 

Howe’s illusion (Figure 5.9b) [Howe, 2001] may be looked upon as an 
intermediate stage in a gradual transition of the White effect into the SBC 
illusion. The illusion changes gradually from brightness-assimilation to 

contrast. Figure 5.9g shows the output intensities of the two 
grey patches when the ACCF model is applied to the sequence of images 

f. It shows the brightness curve of one of the patches 
crossing over the brightness curve of the other patch, just as expected from 
direct observation. The ODOG output (Figure 5.9h) also yields a simila
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 (g) 

 (h) 
Figure 5.9: (a-f) Transition from White effect to SBC, with (b) representing the Howe’s illusion. (g) ACCF output intensities of the two grey patches for the sequence of images in (a-f) (h) ODOG output intensities of the two grey patches for the sequence of images in (a-f). 

5.5.8 Mach band 
The Mach band illusion consists of bright and dark lines seen where a 
brightness gradient meets a region of constant brightness as shown in 
Figure 5.10a. The right part of the image is a region of high and constant 
intensity. The left part of the image is a region of low and constant 
intensity. The middle part of the image has a brightness gradient which 
connects the left side to the right side. At the boundary of this gradient 
region and the right side a bright white line can be seen. Similarly at the 
other boundary a dark line can be seen. These lines are known as Mach 
bands. Although the brightness profile of the original image is a non-
decreasing function, the apparent brightness profile seems to have 
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brightness-peaks and 
model shows a brightness
right boundaries, respectively, of the gradient region. However the ODOG 
output does not show such distinct peak or trough. This is another case, 
apart from the checkerboard illusion, where ACCF model shows a distinct 
advantage over the ODOG model. 

             (b) 
Figure 5.10: (a) Input stimulus of Mach band illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of ODOG model. 

5.5.9 Mach band with varying gradient
Figure 5.11a shows a series of Mach band im
of the gradient region. It is clear and has also been previously shown 
[Békésy, 1967] [Békésy
with increasing width of the gradient region. This fact is clearly reflected 

The DDOG Based Adaptive Contrastive Context Filter 
peaks and brightness-troughs. The output profile of ACCF 

model shows a brightness-trough and a brightness-peak at the left and 
right boundaries, respectively, of the gradient region. However the ODOG 
output does not show such distinct peak or trough. This is another case, 
apart from the checkerboard illusion, where ACCF model shows a distinct 
advantage over the ODOG model.  

 (a) 

         (c) 
(a) Input stimulus of Mach band illusion. (b) Output profile (solid) of ACCF model superimposed over the input profile (dotted). (c) Output brightness profile of 

and with varying gradient 
Figure 5.11a shows a series of Mach band images with increasing widths 
of the gradient region. It is clear and has also been previously shown 

Békésy, 1968] that the brightness of the illusion decreases 
with increasing width of the gradient region. This fact is clearly reflected 
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] that the brightness of the illusion decreases 
with increasing width of the gradient region. This fact is clearly reflected 



 

in the output profiles from ACCF (Figure 5.11b) whose peak
decreases as size of gradient region increases that has been plotted in 
Figure 5.11d, but the same is not found true for the ODOG output (Figure 
5.11c).  

in the output profiles from ACCF (Figure 5.11b) whose peak
decreases as size of gradient region increases that has been plotted in 
Figure 5.11d, but the same is not found true for the ODOG output (Figure 
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in the output profiles from ACCF (Figure 5.11b) whose peak-size 
decreases as size of gradient region increases that has been plotted in 
Figure 5.11d, but the same is not found true for the ODOG output (Figure 
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 (c) 

 (d) 
Figure 5.11: (a) Series of Mach Band images with increasing brightness gradients. (b) Brightness profiles for corresponding output images (solid) superimposed over respective input profiles (dotted). (c) ODOG predicted output brightness profile for Mach band stimuli in (a). (d) Graph showing peak height of output profile for the ACCF algorithm plotted against the width of gradient region. As expected it is a decreasing curve. 

5.6 Discussion and conclusions 
In this chapter we introduced the ACCF model in which we automated the 
process of estimation of the FOCC (Factor of Contrastive Context), which 
was left as a free variable in the VCCF model of the previous chapter. We 
also hypothesized that feedback received by the LGN from the upper 
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stages of the visual system may be considered as the biological analog of 
the FOCC, since the LGN is the region where the various visual channels 
arrive and merge before the visual signals get passed on to the upper 
stages. We also compared the ACCF algorithm to the well known ODOG 
model and we demonstrated that while ACCF and ODOG agree in most 
cases, ACCF does show one benefit compared to ODOG, which is that 
ACCF is a much simpler model with far fewer number of DOGs than 
ODOG. While ACCF only uses 4 DOGs, 2 each for the M and P channels, 
which are isotropic filters, a fact which greatly simplifies its 
implementation, ODOG uses a set of six oriented DOGs, which are then 
combined in the last step of ODOG using a nonlinear contrast 
normalization step. The contrast normalization step weights the output of 
each of the oriented filters according to their variance and adds the results 
to produce the final result. It is this contrast normalization step, which is 
primarily responsible for producing the response to brightness 
assimilation illusions (e.g. White effect). Although Kingdom [Kingdom, 
2011] had pointed out that there is no known physiological analog of the 
ODOG filter, in this work we have hypothesized how such a nonlinear 
adaptive combination of different channels may be achieved through a 
mechanism of feedback from the upper stages of the visual system back 
into the lower stages. Another feature of the ACCF model is that the DOG-
like center-surround response profiles, whose combinations have led to 



 

 

94

94

the DDOG filters, have long been known to be present in neural responses 
[Rodieck and Stone, 1965]. Furthermore, in the case of the Mach band 
illusion ACCF gives much better output than the ODOG filter. The ACCF 
model produces the decreasing nature of the height variation of the Mach 
band response curve with respect to changing brightness gradients, in 
accordance with direct perceptual experience. The ACCF model also 
successfully predicts the checkerboard illusion, unlike the ODOG model.  
In the ACCF model we can also see the relative weights of the M channel 
to the P channel. For example, in the sine to square grating transition, it 
could be seen that the M channel weight increased from very low to high. 
Even though both sine and square gratings produce a brightness-contrast 
effect, they are caused by different channels. While the sine grating is 
closer to the SBC effect, the square grating is much more like the White 
effect. The ACCF model is also able to reproduce the Howe illusion just 
like the ODOG model. 



Chapter 6 
Applications of brightness perception models 
in image smoothing with edge preservation 
In Chapters 4 and 5 we introduced the VCCF and ACCF models which 
combine the inputs from the M and P visual channels in various possible 
proportions, in order to model brightness illusions. The M and P channels 
were individually modeled using the DDOG filter. In this chapter we 
explore how we can use the DDOG filter in edge preserving noise 
reduction algorithms. 

In this chapter we shall see some practical applications of 
brightness perception modeling. We will see how brightness perception 
model can be used to improve traditional smoothing techniques. First we 
use a lateral inhibition based brightness perception model similar to an 
adaptive version of the P-channel DDOG filter for the purpose of image 
noise reduction via image smoothing with edge preservation. In a second 
application we shall see how a Human Visual System inspired DDOG 
based M-channel filter performing "Vision at a glance" can produce results 
comparable to the well known Bilateral Filter, which is a very 
computationally intensive filter. In this chapter we restrict ourselves only 
to reducing additive white noise because averaging filters are only good 
for removing this type of noise by taking advantage of the fact that while 



 

 

96

96

white noise is uncorrelated from one pixel to the next, the image data at 
neighbouring pixels are highly correlated (except at edge boundaries). The 
noise reduction algorithms introduced in this chapter are not appropriate 
for reducing other types of noise, such as salt and pepper noise. 
6.1 Introduction 
We first introduce various filters used in this chapter. 
6.1.1 The Bilateral filter 
The bilateral filter is a well known image filtering algorithm primarily 
used for a wide variety of applications. It was first introduced by Tomasi 
and Manduchi in 1998 [Tomasi and Manduchi, 1998] as a denoising filter 
for noise suppression while preserving edges at the same time. Apart from 
noise removal it is also used for dynamic range compression [Durand and 
Dorsey, 2002], image cartoonizing [Paris et al., 2009] [Dade] and many 
others. This makes the bilateral filter a very important algorithm in the 
field of image processing. 
However, despite its importance the bilateral filter is a very 
computationally intensive algorithm, which keeps it from being used in 
real time and mobile applications. Several fast alternatives to the bilateral 
filter have been proposed over the years. Some of these alternatives 
algorithms are either only perceptual approximations (i.e. produce 
visually similar results) [Paris and Durand, 2006] or are restricted in the 
type of spatial and range kernels (defined below) they use. Some 
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techniques achieve speedup by using polynomial or trigonometric range 
kernels. Other techniques achieve speedup by using the box function as 
the spatial kernel. 
Bilateral Filter Definition: 
The Bilateral filter can be considered as a modification of the Gaussian 
convolution filter, except that instead of averaging with a fixed set of 
weights, the weights are modulated according to the intensity values of 
the pixels that are being averaged. More specifically, the weight 
corresponding to a neighbouring pixel n is increased if its value is close to 
the value of the centre pixel c, and decreased if its value is further away 
from the centre pixel. 
Let I(p) be the intensity value of a pixel p of the input image I. Here p = (i, 
j) is a two component vector representing the position of a particular pixel 
located at the position (i , j). I(p), a scalar value, is the intensity of the pixel 
at position p. Similarly, let B(p) represent the value of the bilateral filtered 
image at pixel position p. Then the Bilateral filtering algorithm can be 
mathematically expressed as: 
(ࢉ)ܤ = 1

(ࢉ)ܹ ෍ ݌ݔ݁ ቈ− ቆ‖࢔ − ଶ‖ࢉ
௦ଶߪ2

ቇ቉ ݌ݔ݁ ቈ− ቆ|(࢔)ܫ − ଶ|(ࢉ)ܫ
௥ଶߪ2

ቇ቉
(ࢉ)ே∋࢔,࢔

 (6.1)       (࢔)ܫ

Where,  
(ࢉ)ܹ = ෍ ݌ݔ݁ ቈ− ቆ‖࢔ − ଶ‖ࢉ

௦ଶߪ2
ቇ቉ ݌ݔ݁ ቈ− ቆ|(࢔)ܫ − ଶ|(ࢉ)ܫ

௥ଶߪ2
ቇ቉

(ࢉ)ே∋࢔,࢔
                         (6.2) 
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c is the position vector of the center pixel whose bilateral filtered value is 
being computed. N(c) is the set of pixels in the neighbourhood of the 
center pixel c over which the summation is computed and n is a particular 
pixel position in that neighbourhood. σs is a parameter called the spatial 
blur radius and σr is called the range parameter. 
Equation (1) is nothing but a weighted average computation of the 
neighbourhood image intensities I(n) for each pixel c in the image. W(c) is 
a normalization factor defined such that the sum total of the weight factors 
is unity. This normalization is done so that there is no change in the mean 
brightness of the image. 
In equation (6.1) the first exponential factor inside the summation 
corresponds to the weight factor in the ordinary Gaussian convolution. 
This factor is intended to assign lower weights to pixels that are spatially 
farther away from the central pixel c. The second exponential factor is the 
core feature of bilateral filtering. Its purpose is to assign lower weight 
values to pixels whose intensities differ greatly from that of the central 
pixel. The reasoning behind this is that if a pixel value differs vastly from 
the value of a neighbouring pixel, then they probably belong to different 
objects in the scene and it makes no sense to average their intensities 
together. Simple Gaussian averaging of all the neighbouring pixels leads 
to edges getting blurred in the output image, but if bilateral filtering is 
used, the strong edges tend to remain sharp. Because of this a bilateral 
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filter preserves strong edges very well. The selection of filter parameters 
affects the results significantly and the choice of the range parameter 
especially has to be done on a case by case basis. Despite producing 
impressive results the bilateral filter has two major drawbacks. One 
drawback is that the weak edges in the image also tend to get washed out 
along with the uniform regions. Another major problem with the bilateral 
filter is its slow computation speed since, first of all, it cannot be 
decomposed into two successive 1-D filters, unlike the Gaussian filter. 
Secondly, the mask being adaptive has to be computed at each pixel. 
Therefore the convolution operation becomes very tedious. Because of its 
slowness the bilateral filter is completely impractical for application to 
video frames in real time, especially when the neighbourhood N(c) is of 
large size. 
6.1.2 The DOG filter 
The DOG (Difference of Gaussian) function is defined as: 

DOG(ࢉ; Aଵ, Aଶ, σଵ, σଶ) = ෍ ൥Aଵ݁ିቆ‖ࢉି࢔‖మ
ଶఙభమ ቇ − Aଶ݁ିቆ‖ࢉି࢔‖మ

ଶఙమమ ቇ൩
(ࢉ)ே∋࢔,࢔

                (6.3) 

Where, r is the radial distance from the center of the receptive field. The 
parameters σ1 and σ2 signify the widths of the two Gaussian functions. 
6.1.3 The DDOG filter 
The Difference of Difference of Gaussians (DDOG) filter, as introduced in 
Chapter 4 is defined as: 
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DDOG(ࢉ; Aଵ, Aଶ, Aଷ, Aସ, σଵ, σଶ, σଷ, σସ) =
DOG(ࢉ; Aଵ, Aଶ, σଵ, σଶ) − DOG(ࢉ; Aଷ, Aସ, σଷ, σସ)    (6.4) 
6.2 The Adaptive DOG (ADOG) filter 
In this section we use an adaptive version of the ordinary DOG filter to 
perform noise reduction in color images and then compare it with the 
Bilateral filter. The DOG filter is very close to the P-channel filter as 
mentioned in Chapter 4 (Figure 4.3d). So the A-DOG filter may be looked 
upon as an adaptive version of the P-channel DDOG filter. Biologically the 
P-channel originates mainly in the foveal region of the eye and is 
responsible for both color vision and visual acuity. For this reason it makes 
sense to denoise color images with the A-DOG filter. Our proposed 
Adaptive DOG (A-DOG) first approximates the gradient at each image 
point using only the intensity values in a 3×3 region around the image 
point, just as in the well-known Sobel operator. We calculate the gradient 
in both directions (x and y). Then the overall gradient magnitude is 
calculated for each image pixel. Then we use two different DOG filters, 
one representing a larger receptive field that we apply for gradient values 
above a threshold and another, representing a smaller receptive field that 
we apply for gradient values below the threshold, where the threshold is 
the simple arithmetic mean of the approximated gradient values all across 
the image. In the real visual system of an organism there may be 
numerous such filter banks using the billions of neurons in the visual 
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system representing different pathways. But for simplicity, we have tried 
to see the effect of a simple two pathway DOG switch which may be 
looked upon as a first step towards an Adaptive DOG (A-DOG) model of 
the visual system. The intensity information of the above obtained image 
is combined with color information from the more blurred DOG image to 
produce the final image. This step has a physiological justification in terms 
of the density of rods and cones in the eye. The rods, which can detect 
only brightness, have an overall higher density in the retina than the 
cones, which can detect color. So it is justified to take color information 
from a more blurred image while intensity information has to be taken 
from less blurred image. Below we represent this algorithm: 
6.2.1 Proposed algorithm 

 Step 1 - Read the input image. 
 Step 2 - Compute the gradient of the image. 
 Step 3 – Compute a threshold gradient value by calculating the 

mean of all gradients. 
 Step 4 - Calculate two different DOG filtered images with two 

different radii. One image is sharper while the other is blurrier. Call 
the sharper as Is and the blurry image as Ib. 

 Step 5 - For each and every pixel in the image check the following-  
If gradient (pixel) > threshold value  
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Replace it by the sharper DOG filtered pixel as computed in 
Step 4 above. 

Else  
Replace it by the less sharp DOG filtered pixel as computed in 
Step 4 above. 

 Step 6 - Calculate λ for each pixel based on the following formula-  
λ=(Ri+Gi+Bi)/(Rc+Gc+Bc) 
Where Ri,Gi,Bi are the Red, Green, Blue value of the image resulting 
from Step 5 (Intensity information) and Rc,Gc,Bc are the Red, Green, 
Blue value of Ib as calculated in Step 4 (Color Information). 

 Step 7 - Calculate red, green, blue value of each pixel for the final 
output image according to the following formula-  
R=λ*Rc, G=λ*Gc, B=λ*Bc 

6.2.2 Results and observations 
Our proposed Adaptive Difference of Gaussian (A-DOG) filter provides 
encouraging results when compared to the bilateral filter [Dasgupta et al., 
2013]. It is effective because it preserves the contrast edges even when the 
spatial smoothing is significantly large and because the time requirement 
is much lower than bilateral filter, which otherwise provides good results. 
We demonstrate the results with the help of three images shown below 
each of which is filtered by four different filtering algorithms, viz. the 
Gaussian filter (at comparatively lower variance, since higher variances 
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wipe out the edges), the classical lateral inhibition based DOG filter, the 
bilateral filter and finally our A-DOG filter. 

 (a) 

              (b)       (c) 
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             (d)     (e) 
Figure 6.1: (a) Original noisy image (Image 1) (b) Simple Gaussian filtered Image (c) DOG filtered Output (d) Bilateral Filtered Image (e) Proposed A-DOG Filtered Image 
 

 (a) 

              (b)       (c) 
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              (d)       (e) 
Figure 6.2: (a) Original noisy image (Image 2) (b) Simple Gaussian filtered Image (c) DOG filtered Output (d) Bilateral Filtered Image (e) Proposed A-DOG Filtered Image 

 (a) 

              (b)       (c) 

              (d)       (e) 
Figure 6.3: (a) Original noisy image (Image 2) (b) Simple Gaussian filtered Image (c) DOG filtered Output (d) Bilateral Filtered Image (e) Proposed A-DOG Filtered Image 
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A visual comparison of four different filtering techniques for three 
different images is shown in Figures 6.1a to 6.3e. Although the bilateral 
filter gives impressive results, some creases, such as on the leaf in Figure 
6.1a, are better preserved in our proposed technique. 

It can be clearly seen that like the bilateral filter, the A-DOG filter is 
better than a simple Gaussian filter, because the Gaussian filter is unable 
to preserve significant details of an image. Similarly our algorithm also has 
an advantage over the simple DOG filter because the DOG operator by 
itself is not capable of deciding which edges to preserve and which edges 
to omit because it lacks a mechanism to prioritize edges. It only globally 
enhances the edges and hence does not perform well for noisy images. In 
our algorithm we used the gradient value which is the indication of an 
edge and from the gradient we can easily distinguish the stronger edge 
from a weaker edge. So, for strong edges we suggest to use a DOG filter 
with larger radii which will less disturb the strong edges and for weak 
edges the filter with smaller radii which will preserve some of these 
details. So, automatically we are keeping strong edges as well as some 
weak edges intact. Moreover, we are taking color information from the 
less sharp DOG filtered image and intensity information from the A-DOG 
filtered image. Now, the threshold value will determine how much details 
we want to preserve. So, by changing the threshold value we can actually 
control the amount of details we need in the filtered image. 
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6.3 Using the DDOG based M-channel filter for image 
smoothing with edge preservation 
As explained in Chapter 4 the M-channel filter can be considered as 
performing "vision at a glance" in the human visual system (HVS). "Vision 
at a glance" may be defined as the high-level generalized, categorical scene 
interpretation, identifying "forest before trees". The established and 
prevalent viewpoint conceives that the human visual system perceives 
categorical information at a glance (using high level cortical mechanisms) 
and misses (or assumes) details that are detected by lower areas but not 
represented in the individual high-level receptive fields [Ghosh, 2012]. We 
perceive the details later by focusing serially on the components and 
features, slowly scanning them one at a time [Bullier, 2001]. The Reverse 
Hierarchy Theory (RHT) [Hochstein and Ahissar, 2002] proposes that such 
an initial "vision at a glance" includes results of automatic and implicit 
bottom-up processing, which makes the initial explicit perception 
introspectively direct without conscious antecedents. 
 In Chapter 4 we used the DDOG filter (equation 6.4) for the 
purpose of modeling the M & P channels of the human visual system. In 
the previous section we used the Adaptive DOG filter to show that it 
could achieve similar levels of edge preservation quality as the bilateral 
filter. In this section, instead of using the DOG we use the M channel filter 
of chapter 4 for performing image smoothing with edge preservation. The 
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M-channel filter has a image smoothing property because it carries less 
detail about the visual scene and therefore is spatially smoother than the P 
channel, while also being temporally faster, which is why it is the channel 
used as a first estimate for "vision at a glance". But because of the extra 
Gaussians of the DDOG, it also has an edge preservation property. In this 
section we compare the performance of the M-channel filter with the well-
known bilateral filter in achieving such "vision at a glance" which is akin 
to image preprocessing in the computer vision domain. We find that at 
higher noise levels, the M-channel filter performs better than the bilateral 
filter in terms of reducing noise while preserving edge details. The M-
channel filter is also significantly simpler and therefore faster than the 
bilateral filter. Overall, the M-channel filter enables us to model, simulate 
and arrive at a better understanding of some of the initial mechanisms in 
visual pathway, while simultaneously providing a fast, biologically 
inspired algorithm for digital image preprocessing. 

The M-channel filter possesses the characteristic of suppressing the 
high frequency information and provides a holistic view containing less 
detail (but enough for the initial sensorial percept), to achieve the goal of 
providing "vision at a glance". In chapter 4 the coefficients of the DDOG 
equation 4 for the case of the M-channel filter were as shown  in Table 6.1: 
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With the values of σ1=0.7, σ2=3σ1, σ3=3σ1, σ4=9.3σ1 for the filter sizes. 
6.3.1 Comparison of M-channel filter and Bilateral filter by visual 
inspection 
In this section we compare the performance of the DDOG based M-
channel filter with the bilateral filter on a grayscale image by visual 
inspection. We present the results of filtering on a standard benchmark 
image Lena (Figure 6.4a) with zero-mean, Gaussian white noise of 
variance 0.01 added to it (Figure 6.4b). The results of filtering are shown 
Figure 6.4c and 6.4d. Figure 6.4c and 6.4d show the effectiveness of the M-
channel and Bilateral filters respectively as filters helping in ‘vision at a 
glance’. It can be observed that both of them filter out the noise and 
provide a smoothing effect when compared to Figure 6.4b. We can also 
observe that the edge details have been preserved. For example, looking at 
the lining of the hat in the region marked by the white rectangle, we can 
observe that it has been preserved in the filtered images when compared 
to the original image Figure 6.4a. Therefore, these qualitative results, as 
well as some quantitative ones [Bhattacharjee et al., 2015] motivate us in 
future to conduct detailed experimental studies and subsequent analysis 

 
A1 A2 A3 A4 Sampling Interval 

M-filter 10 0.5 0.5 0.08 0.5 
Table 6.1 
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of the performance of M-channel vs. bilateral filter for achieving ‘vision at 
a glance’. Our studies conducted so far reveal several advantages of using 
the DDOG filter over bilateral filter which has been detailed in the 
Appendix of the present thesis after the concluding chapter. 

 
6.4 Conclusion 

 Figure 6.4 (a) Lena.jpg 512 x 512 grayscale image. (b) Lena image with additive white Gaussian noise of variance 0.01. (c) M-channel filter result on Figure 6.4(b). (d) Bilateral filter (spatial-domain standard deviation = 3 and the intensity-domain standard deviation = 0.1) result on Figure 6.4(b). The region of interest has been marked using a white rectangle in each figure. 
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In this chapter we explored the effectiveness of the physiologically 
inspired DDOG filter, which we hypothesized to model the M and P 
channels of the visual system, for the purpose of designing image 
smoothing algorithms that preserve edges. We compared our algorithms 
with the bilateral filter which is well known for preserving strong edges 
while smoothing out relatively uniform regions. 

The Adaptive Difference of Gaussian (ADOG) algorithm is simpler 
and faster compared to bilateral filtering, but gives output of comparable 
quality. In contrast to the other DDOG based algorithm introduced in this 
chapter the ADOG algorithm uses the simpler DOG filter instead of the 
DDOG filter. This is because the DDOG filter of the P channel introduced 
in Chapter 4 is a very close approximation of the DOG filter. The P 
channel is responsible for high acuity color vision. Therefore we test this 
algorithm on color images. 

The ADOG filter utilizes the fact that although the human eye is 
more sensitive to color noise than intensity noise it takes spatial 
information mainly from the intensity signal. Therefore the ADOG filter 
takes color information from more blurred image and intensity 
information from the less blurred image of the same object. Moreover it is 
adaptive in nature as it is dependent on gradient of the edges. So our 
algorithm is capable of enhancing edges by taking into account gradient, 
intensity and color information. This algorithm is also capable of 
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smoothing the image. So smoothing as well as edge enhancement can be 
achieved simultaneously by our algorithm. Being faster than the bilateral 
filter, it may be suitable for real life applications to image enhancement.  

In this chapter, we have also used the Human Visual System 
inspired DDOG based M-channel filter for modeling ‘vision at a glance’, 
that closely resembles image denoising with edge preservation, an 
important task in computer vision. We compared our algorithm with the 
bilateral filter and from the results we find that the performance of both 
the filters as satisfactory in achieving image smoothing. The ability to pre-
compute the filtering kernel in case of M-channel filter helps in very fast 
implementation of the filter. On the other hand, bilateral filtering can 
smooth images to differing extents, while preserving the edge details by 
appropriate setting of the range parameter of the spatial and range kernel. 
The highlight of M-channel filter is the simplicity of the kernel and its low 
computation requirements which make it suitable for initial processing of 
an image. These factors in favour of the DDOG filter over bilateral filter 
have been detailed in the Appendix of this thesis. 
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Chapter 7 
In lieu of a conclusion 
 In this concluding chapter we first briefly outline the findings and 
contributions of the present thesis to brightness perception through the 
adoption of a spatial filtering approach, and then we discuss some 
shortcomings of spatial filtering models of brightness perception in general. 
We show some experimental observations which raise fundamental questions 
about the validity of spatial filtering algorithms. Finally, we speculate on what 
future directions could be taken to resolve these difficulties. 

We begin this chapter by first summarizing the basic contributions of 
the present thesis. In this thesis we investigate brightness perception from the 
perspective of spatial filtering. The thesis comprises of both experimental and 
theoretical contributions. At first, we have experimentally demonstrated the 
limitations of existing spatial filtering models, especially the well established 
ODOG model. We then proposed the Varying Contrastive Context Filter (VCCF) 
and the Adaptive Contrastive Context Filter (ACCF) models respectively, based 
on a new spatial filter namely the Difference of Difference of Gaussians (DDOG) 
filter, as alternatives in order to address some shortcomings of the ODOG 
model. Next, some applications of the alternative models to image noise 
reduction with edge preservation which is a fundamental challenge in 
computer vision, were shown. 
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In the remaining part of this concluding chapter, we would traverse 
beyond the domain of spatial filtering by discussing some experimental 
observations on the scaling behaviour of various brightness stimuli, viz. the 
Mach band stimulus, the Sine and Square grating stimuli and the Hermann 
grid stimulus. These experiments will demonstrate the various complexities of 
brightness perception modeling and the limitations of spatial filtering models 
of brightness perception. 

After that we demonstrate an interesting quirk in the perception of the 
Hermann grid illusion which is difficult to explain using spatial filtering 
algorithms. 
7.1 Scaling behavior of visual illusions 

By the term scaling behavior we mean the changes in the illusory effect 
brought about by a change in one of the length-scale parameters of the 
illusion. For example, in the Shifted-White stimulus, one scale parameter 
would be the width of the alternating black and white bars or equivalently its 
inverse, i.e. the number of bars per unit length, also known as spatial 
frequency. It is well known that the perceived brightnesses of the grey patches 
depend on the width of the bars. A second scale parameter would be the 
vertical size of the grey patch. We have already seen in Chapter 3 that this 
second scale parameter leads us to some limitations of the ODOG model. 
7.2 Scaling behavior of the Mach band illusion 

The Mach band illusion, as introduced in Section 1.3.9, shows a very 
interesting scaling behavior, which was partly discussed in section 3.3, that 
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defies the predictions of many brightness models. The Mach band stimulus 
only possesses a single length scale par
gradient region. Peculiarly
gradient region, but only at the edges where there is a change of the gradient. 
However, there is no scale parameter attached with the gradient c
occurs instantly at a single position on the x
Figure 7.1, the Mach band illusion scales proportionally with the length 
parameter. 

(a)  

(c)  

(e)  

Figure 7.1: Mach band stimuli for various widths of the gradient region. Figures (a) through (f) have their regions of gradient progressively increased in size in ratios of 2:5:10:20:60:80 respectively, i.e. the horizontal gradients have been scaled down in that prop

In Lieu of a Conclusion 
defies the predictions of many brightness models. The Mach band stimulus 
only possesses a single length scale parameter, which is the width of the 

eculiarly, the illusory effect is not visible all over the 
but only at the edges where there is a change of the gradient. 

there is no scale parameter attached with the gradient change as it 
occurs instantly at a single position on the x-axis. Interestingly, as shown in 
Figure 7.1, the Mach band illusion scales proportionally with the length 

              (b) 

                 (d) 

                 (f) 

 (g) Mach band stimuli for various widths of the gradient region. Figures (a) through (f) have their regions of gradient progressively increased in size in ratios of 2:5:10:20:60:80 respectively, i.e. the horizontal gradients have been scaled down in that proportion as shown in (g). 
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Mach band stimuli for various widths of the gradient region. Figures (a) through (f) have their regions of gradient progressively increased in size in ratios of 2:5:10:20:60:80 respectively, i.e. 



 

 To experimentally test this claim we conducted an experiment to 
measure the width of the Mach band as a function of the size of the gradient 
region. In this experiment
images with increasing size of the gradient region as in the demonstrations 
shown in Figure 7.1a to 7.1
white Mach band between a pair of cursors by moving the cu
in a GUI software as shown in Figure 7.2
as possible while still enclosing the Mach band completely. The distance 
between the cursors is then taken to be the width of the Mach band. When the 
average distance between the cursors is plotted against the size of the gradient 
region (both being measured in the same unit), we get a curve as shown in 
Figure 7.3. 

Figure 7.2: Screenshot of the GUI presented to volunteers for the experimental measurement of the width of the Mach band as a function of the size of the gradient region. 

To experimentally test this claim we conducted an experiment to 
measure the width of the Mach band as a function of the size of the gradient 
region. In this experiment a set of volunteers were shown a sequence of 
images with increasing size of the gradient region as in the demonstrations 

7.1f. The volunteers were instructed to enclose the 
white Mach band between a pair of cursors by moving the cursors left or right
in a GUI software as shown in Figure 7.2. The cursors must be brought as close 
as possible while still enclosing the Mach band completely. The distance 
between the cursors is then taken to be the width of the Mach band. When the 

distance between the cursors is plotted against the size of the gradient 
region (both being measured in the same unit), we get a curve as shown in 

 
Screenshot of the GUI presented to volunteers for the experimental measurement of the width of the Mach band as a function of the size of the gradient 

To experimentally test this claim we conducted an experiment to 
measure the width of the Mach band as a function of the size of the gradient 

a set of volunteers were shown a sequence of 
images with increasing size of the gradient region as in the demonstrations 

f. The volunteers were instructed to enclose the 
rsors left or right 

. The cursors must be brought as close 
as possible while still enclosing the Mach band completely. The distance 
between the cursors is then taken to be the width of the Mach band. When the 

distance between the cursors is plotted against the size of the gradient 
region (both being measured in the same unit), we get a curve as shown in 

 
Screenshot of the GUI presented to volunteers for the experimental measurement of the width of the Mach band as a function of the size of the gradient 
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The next image demonstrates 
the gradients only and does not depend on the absolute levels of brightness at 
a particular point. 

Figure 7.4 has been generated such that the gradient of the horizontal 
brightness profile is independent of the vertical position. Inspection of Figure 

Figure 7.4: Every horizontal line in this image has the same brightness profile as that of the horizontal line at the bottom of the image, except for an added offset. The offset itself increases as we move from bottom to top.

Figure 7.3: Mach band width measured as a function of the size of gradient region averaged over nine different volunteers. Error bars show the standard errors of the means.

In Lieu of a Conclusion 

The next image demonstrates that the width of a Mach band is a function of 
the gradients only and does not depend on the absolute levels of brightness at 

Figure 7.4 has been generated such that the gradient of the horizontal 
brightness profile is independent of the vertical position. Inspection of Figure 

Every horizontal line in this image has the same brightness profile as that of the horizontal line at the bottom of the image, except for an added offset. The offset itself increases as we move from bottom to top. 

Mach band width measured as a function of the size of gradient region averaged over nine different volunteers. Error bars show the standard errors of the means. 
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that the width of a Mach band is a function of 

the gradients only and does not depend on the absolute levels of brightness at 

 
Figure 7.4 has been generated such that the gradient of the horizontal 
brightness profile is independent of the vertical position. Inspection of Figure 

 
Every horizontal line in this image has the same brightness profile as that of the horizontal line at the bottom of the image, except for an added offset. The offset itself increases 

 
Mach band width measured as a function of the size of gradient region averaged 
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7.4 will reveal that the width of the Mach band is constant throughout from 
top to bottom. Therefore it can be concluded that the width of the Mach band 
is a function only of the intensity gradients on the either side of the band and 
not dependent on the absolute brightness levels themselves. Therefore 
ℎݐ݀݅ݓ = ݂(ܵ௅, ܵோ)     (7.1) 
Where SL is the gradient on the left side and SR is the gradient on the right side 
of the band. If the image is inverted left to right then the width remains 
unchanged. Therefore 
݂(ܵ௅, ܵோ) = ݂(−ܵ௅, −ܵோ)    (7.2) 
The widths of the clearly visible Mach bands seem to be scaled up 
proportionally in size. Mathematically this can be written as 
݂(݇ܵ௅ , ݇ܵோ) = ଵ

௞ ݂(ܵ௅, ܵோ)    (7.3) 
At smaller scales the bands are thin and sharp while at larger scales the bands 
are wide and less prominent. Note particularly that at the smallest scale the 
Mach band is hardly visible since the band itself has been compressed into a 
very thin line. This is expressed by 
lim|ௌಽ|→ஶ ݂(ܵ௅ , ܵோ) = 0    (7.4) 
This explains why no Mach band can be seen for a step change of intensity. 
In the context of our previous assumption that the width of a Mach band is a 
function of the neighbourhood gradients only, this scaling property implies 
that 
݂(ܵ௅ , 0) ∝ ଵ

|ௌಽ|      (7.5) 
Also if the gradients on both sides are nearly equal then the width is very 
large. Therefore as SL → SR , f ( SL , SR ) → ∞. 
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limௌಽ→ௌೃ ݂(ܵ௅, ܵோ) = ∞    (7.6) 
The above two equations can be combined in the single equation 
ℎݐ݀݅ݓ = ݂(ܵ௅, ܵோ) ∝ |ܵ௅௡ − ܵோ௡|ିଵ ௡⁄    (7.7) 
Where n is a real positive number. Although this last relation cannot be strictly 
derived from the previous relations but such a power law seems to be the 
simplest function which satisfies all of the above properties while containing a 
minimum number of coefficients. 

The above results reveal some problems with spatial filtering 
algorithms that may be used to explain brightness illusions. These problems 
may be stated in brief as follows: 
 Any physically realizable filter function must have a finite, non-zero 
width with some typical length scales, e.g. the length scales of the DOG filter 
are characterized by the parameters σ1 and σ2 of Equation 2.2 of the DOG 
filter function. The response signals would therefore also have these same 
length scales. Consequently, very short (almost tending to zero) or very long 
responses as we obtain here, cannot be obtained by linear filtering. 
7.3 Scaling behavior of the Sine grating and Square grating 
illusions 
 In this section we describe certain experimental observations to reveal 
the scaling behavior of sine and square grating illusions [Bakshi et al., 2017]. 
This experiment was conducted upon volunteer subjects. Sine and square 
grating stimuli, such as shown in Figures 7.5a to 7.5h, were shown to the 
subjects at various cycle frequencies. Cycle frequencies ranged from 20 
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cycles/radian to 121 cycles/radian in case of sine-wave grating. For the 
square-wave grating, minimum frequency was 20 cycles/radian and 
maximum frequency was 101 cycles/radian. The size of the entire illusion was 
0.15 radian by 0.15 radian and it was same for both the gratings. Grayscale 
intensity value of the test strip was 150. Before the experiments, the subjects 
were instructed to concentrate on the approximate horizontal centerline of the 
strip and report the perceptibility of the illusion at the centerline, i.e. whether 
or not brightness undulations could be seen along the horizontal centerline of 
the gray-strip.  
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                   (e)  
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 For any specific value of cycle frequency of grating, we started with a 
width of .002 radian of the gray
until the gray strip fully overlaid the grating and marked that strip width at 
which response of the subjec
‘no’ to ‘yes’). From this value of strip width, at which the transition in 
response occurred, the absolute threshold for strip width was determined for a 
particular frequency. This procedure was done for e
both sine-wave and square
the strip was being changed using key presses. For each key press the width of 
the strip was being changed by 0.0005 radians. To avoid tiring the subject, t

                     (g) 
Figure 7.5: (a) Low frequency sinebrightness undulations are visible all throughout the graysquare-wave grating stimulus with narrow gray strip. Illusory brightness undulations are visible all throughout the graywide gray- strip. Illusory brightness undulations are visible only along the ulower edges of the gray-strip. (d) Low frequency squaregray-strip. Illusory brightness undulations are visible only along the upper and lower edges of the gray-strip. (e) High frequency sinestrip. Illusory brightness undulations are visible all throughout the grayfrequency square-wave grating stimulus with narrow grayundulations are visible all throughout the graygrating stimulus with wide gray strip. Illusory brightness undulations are visible only along the upper and lower edges of the graygrating stimulus with wide gray strip. Illusory brightness undulatalong the upper and lower edges of the gray

For any specific value of cycle frequency of grating, we started with a 
width of .002 radian of the gray-strip. Then we increased the width in steps 
until the gray strip fully overlaid the grating and marked that strip width at 
which response of the subject reverses (response changes from ‘yes’ to ’no’ or 
‘no’ to ‘yes’). From this value of strip width, at which the transition in 
response occurred, the absolute threshold for strip width was determined for a 
particular frequency. This procedure was done for each spatial frequency of 

wave and square-wave grating. During the experiment the width of 
the strip was being changed using key presses. For each key press the width of 
the strip was being changed by 0.0005 radians. To avoid tiring the subject, t

         (h) 
Low frequency sine-wave grating stimulus with narrow gray strip. Illusory brightness undulations are visible all throughout the gray-strip. (b) Low frequency wave grating stimulus with narrow gray strip. Illusory brightness undulations are visible all throughout the gray-strip. (c) Low frequency sine-wave grating stimulus with strip. Illusory brightness undulations are visible only along the upper and strip. (d) Low frequency square-wave grating stimulus with wide strip. Illusory brightness undulations are visible only along the upper and lower strip. (e) High frequency sine-wave grating stimulus with narrow graystrip. Illusory brightness undulations are visible all throughout the gray-strip. (f) High wave grating stimulus with narrow gray- strip. Illusory brightness undulations are visible all throughout the gray-strip. (g) High frequency sinegrating stimulus with wide gray strip. Illusory brightness undulations are visible only along the upper and lower edges of the gray-strip. (h) High frequency squaregrating stimulus with wide gray strip. Illusory brightness undulations are visible only along the upper and lower edges of the gray-strip. 
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wave grating stimulus with narrow gray strip. Illusory strip. (b) Low frequency wave grating stimulus with narrow gray strip. Illusory brightness undulations are wave grating stimulus with pper and wave grating stimulus with wide strip. Illusory brightness undulations are visible only along the upper and lower ith narrow gray- strip. (f) High strip. Illusory brightness frequency sine-wave grating stimulus with wide gray strip. Illusory brightness undulations are visible only strip. (h) High frequency square-wave ions are visible only 
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interval between two successive key presses was kept to more than 10 
seconds. 

The results from the experiment 1 have been demonstrated in Figure 
7.6a & 7.6b. From these figures it can be distinctly seen that for every subject 
and at each spatial frequency of t
the gray test strip above which the illusory brightness undulations is not 
visible at the centerline. This implies that the illusory effects in the Grating 
Induction illusion are confined to the boundaries of th
though the values of thresholds at different frequencies can vary from subject 
to subject, some threshold must exist for every subject.

These results show that as the spatial cycle
increases the threshold also increa
that the visibility threshold of the illusory effect increases roughly linearly 
with the wavelength of the background sine/square wave. This implies that 
the length scale of the illusory effect increases in pro
wavelength of the background waveform. This suggests that the perceptual 
mechanism which is generating this illusion is capable of generating the 

       (a)  Figure 7.6: (a) Threshold stripThreshold strip-width vs. spatial frequency curve for 

In Lieu of a Conclusion 
interval between two successive key presses was kept to more than 10 

The results from the experiment 1 have been demonstrated in Figure 
b. From these figures it can be distinctly seen that for every subject 

and at each spatial frequency of the grating there exists a threshold width of 
the gray test strip above which the illusory brightness undulations is not 
visible at the centerline. This implies that the illusory effects in the Grating 
Induction illusion are confined to the boundaries of the gray-strip. Even 
though the values of thresholds at different frequencies can vary from subject 
to subject, some threshold must exist for every subject. 

These results show that as the spatial cycle-width of the grating 
increases the threshold also increases. From Figures 7.6a & 7.6b, it can be seen 
that the visibility threshold of the illusory effect increases roughly linearly 
with the wavelength of the background sine/square wave. This implies that 
the length scale of the illusory effect increases in proportion with the 
wavelength of the background waveform. This suggests that the perceptual 
mechanism which is generating this illusion is capable of generating the 

             (b) Threshold strip-width vs. spatial frequency curve for subject 1. width vs. spatial frequency curve for subject 2. 
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illusory response at all length scales from very small to very large, which as 
mentioned in the previous section about the scaling properties of Mach bands, 
is difficult to explain using spatial filtering models, since spatial filters can 
only produce responses of limited length scales both on very large length 
scales and very short length scales. 

We can also see that irrespective of the subject, at any given wavelength 
of the background waveform the threshold value for square-wave grating is 
smaller than that for sine-wave grating. This clearly indicates, in agreement 
with the previous assertions [McCourt and Foley, 1985], that the sine-wave 
grating induction illusion is much stronger than square-wave grating 
induction illusion. 
7.4 Scaling properties of the Hermann grid illusion 

In this section we describe an experiment to measure the scaling 
properties of the Hermann grid illusion using stimuli as shown in Figure 7.7a-
7.7c [Bakshi et al., 2017]. The subjects were shown several sequences of 
Hermann grid illusions which differed from one another by the size of their 
squares. Maximum side-length of squares was taken 0.03 radian and the 
minimum count was 0.008 radian. In this range we varied the side-length of 
the squares in the grid. 
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We started with a Hermann grid with specific square side-length and 

asked the subject whether he could see the illusory blobs or not. Initially, the 
width of separation between the squares was taken to be 5x10-4 radians. Then 
we increased the separation width between the squares in small steps, keeping 
the square-size constant, as shown in Figures 7.7a-7.7c, while recording the 
perceptibility of the illusion by the subject. At each step, if any transition in 
subject response occurred we noted the separation width and used it for the 
separation width threshold calculation. We repeated this procedure using 
Hermann grids with squares of different side-lengths. Separation width was 

                                            (a)                                                                               (b) 

   (c) 
Figure 7.7: (a) The Hermann grid stimulus with small separation width. Illusory blobs are prominently visible at the intersections. (b) The Hermann grid stimulus with medium separation width. Illusory blobs can be seen at the intersections, but are less prominent than Figure (a). (c) The Hermann grid stimulus with large separation width. No illusory blobs can be seen anymore. 



 

incremented in steps of 5x10
was maintained above 15 seconds in order to avoid subject fatigue.

It was observed, that below a minimum separation between squares, 
the illusory effect of Hermann grid was not perceivable. We termed this 
threshold as the ‘lower threshold’ of separation. Its complement, a ‘higher 
threshold’ also exists, above which the illusion can’t be se
experimental results, as illustrated in Figure 7.8a & 
any subject the value of ‘lower threshold’ remains almost constant as the 
square size in Hermann grid changes. But the ‘higher threshold’ increases 
almost linearly as the size of the squares increases in the grid.

 This once again is a type of scaling behavior as seen above in the case of 
Mach band illusion and Sine/Square grating illusions. This proportional 
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length scales and would not respond for stimuli much smaller or much larger 
than those typical length scale. The design of perceptual models of visual 
illusions should take such scaling behavior into consideration. 
7.5 Abrupt disappearance of Hermann grid illusory blobs by 
tiny perturbations to the Hermann grid stimulus 

In the previous section we saw how the Hermann grid illusion 
disappears when the grid square separation increases beyond a limit. Another 
way to disappear the Hermann grid illusion is by distorting the grid square 
shape into some other shape. In Figure 7.9a-7.9f we show three examples, from 
preexisting research [Lingelbach et al., 1985] [Spillmann, 1994] [Schiller and 
Carvey, 2005] [Geier, 2008], of various ways the grid may be distorted so that 
that the illusory blobs disappear. Geier et al. [Geier, 2008] had shown that the 
condition for complete wiping out of the illusion is to depart from the straight 
edges of the grids. 

In this section we describe a novel modification of the Hermann grid 
stimulus in which tiny perturbations were added to the four corners of each of 
the grid squares, as a result of which the illusory blobs disappeared [Bakshi 
and Ghosh, 2020]. The size of perturbing squares was so small that overall 
only less than 2% of the total pixels of the original Hermann grid stimulus 
were changed. Even this small change was able to completely wipe out the 
illusory effect. Next we describe an experiment in which the modified version 
of the Hermann grid illusion was used as the stimulus, as shown in Figure 
7.9h. The grid shown to our subjects contained 81 black squares in it. The 
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separation between the squares was kept fixed at 0.01 radians. This value of 
separation and the range of the square sizes were selected using the 
observations of the previous experiment described in section 7.4 so that the 
subjects could perceive the illusory blobs most prominently. The subjects were 
shown a modified Hermann grid, in which four tiny squares were added to 
each of the four corners of the Hermann grid squares. The added squares 
constitute less than 2% of the area of the unmodified Hermann grid stimulus. 
A series of such stimuli were shown one by one to the subjects with increasing 
width of the grid squares. Since the total number of squares was kept constant 
the size of the entire stimulus was also increasing accordingly. For each 
stimulus we changed the gray-level intensity of the added squares in steps, 
from white to black, as shown in Figures 7.10a, 7.10c, 7.10e, 7.10f, and the 
subjects were asked if the illusion was visible or not. As the gray-level 
intensities were varied, if any alteration in subject response occurred we 
recorded that particular gray-level intensity and from this information, we 
later calculated the gray-level intensity threshold of those tiny squares for a 
Hermann grid with specific square width. This procedure was repeated for 
different choices of square width. The largest grid in our experiments had 
squares of 0.04 radians width and the smallest one had 0.03 radians. 

The most interesting outcome of this experiment is to show that very 
little modification of the Hermann grid (like adding very tiny squares with 
less than 2% area of the unmodified stimulus) is sufficient to wipe out the 
illusory perception of the dark blobs. Usage of the phrase “very little 
modification” will be more transparent if we compare our amount of 
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alterations in the Hermann grid with those in the existing literature [Figure 5 
of Geier, 2008]. Gray-level intensity threshold vs. square side-length plots for 
the two subjects have been illustrated in Figure 7.11. From these graphs, it can 
be clearly observed that, for a particular subject, irrespective of the size of the 
squares, there is a fixed gray-level intensity threshold of the added 
perturbation below which the illusion becomes imperceptible. The size of the 
added squares doesn’t need to be modified when the size of the stimulus is 
changed. Exactly same size of added squares could remove the illusory effect 
from the smallest as well as the biggest version of Hermann grid stimulus. 

The modified Hermann grid stimulus shows that even tiny changes to a 
visual stimulus can drastically change the illusory effect. This implies that the 
visual mechanism producing this illusion can be extremely sensitive to the fine 
structure of the input stimulus. This observation would be very difficult to 
explain using spatial filtering models, since in these models tiny changes in 
input will only produce tiny changes to output and will not be able to produce 
such abrupt wipe out of the illusion as demonstrated by the modified 
Hermann grid stimulus. 



 

                                                                           (a)  

                                                                                   (c)  

                                                                                    (e)  

                                                                                    (g)  Figure 7.9:  (a, c, e, g) The classical Hermann grid. (b) The distorted (sinusoid) grid 
reproduced from Geier et al. (2008). (d) The Schiller
vertical lanes distorted into a zigzag path (f) The Spillman (1994) modification where th
relative positions of some of the grid squares have been changed (h) The proposed Hermann 
grid modification where the tiny perturbing squares are placed overlapping with each grid 
square corner. While modifications in (d) and (f) succeed in reducing the 
those in (b) and (h) completely wipes out the illusory spots

                                  (b) 

                                             (d) 

                                             (f) 

                                                (h) (a, c, e, g) The classical Hermann grid. (b) The distorted (sinusoid) grid 
reproduced from Geier et al. (2008). (d) The Schiller-Carvey (2005) modification with the 
vertical lanes distorted into a zigzag path (f) The Spillman (1994) modification where th
relative positions of some of the grid squares have been changed (h) The proposed Hermann 
grid modification where the tiny perturbing squares are placed overlapping with each grid 
square corner. While modifications in (d) and (f) succeed in reducing the illusory strength, 
those in (b) and (h) completely wipes out the illusory spots.  

 

(a, c, e, g) The classical Hermann grid. (b) The distorted (sinusoid) grid 
Carvey (2005) modification with the 
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                   (e)  

                         (g)  
Figure 7.10: Modified Hermann grid stimulus with tiny gray squares added to the corners. 
The columns correspond to the size of the grid squares. The rows correspond to the intensity 
values of the tiny squares added to the corners of the large squares. The images on left 
column, (Figures a, c, e, g) correspond to small square sizes whereas the images on the right 
column (b, d, f, h) correspond to large square sizes. The gap between the grid squares is kept 
fixed. The first row (a, b) has tiny squares added to the corners with a grayscale value 
identical to the white background. The second row (c, d) has tiny squares with a high 
grayscale value (but less than in a, b) added to the corners. The tiny squares added to t
third row (e, f) are darker than those on the second row. The tiny squares on the fourth row 
(g, h) have grayscale values same as the large squares of the Hermann grid.

     (f) 

        (h) Modified Hermann grid stimulus with tiny gray squares added to the corners. 
The columns correspond to the size of the grid squares. The rows correspond to the intensity 

ed to the corners of the large squares. The images on left 
column, (Figures a, c, e, g) correspond to small square sizes whereas the images on the right 
column (b, d, f, h) correspond to large square sizes. The gap between the grid squares is kept 

he first row (a, b) has tiny squares added to the corners with a grayscale value 
identical to the white background. The second row (c, d) has tiny squares with a high 
grayscale value (but less than in a, b) added to the corners. The tiny squares added to t
third row (e, f) are darker than those on the second row. The tiny squares on the fourth row 
(g, h) have grayscale values same as the large squares of the Hermann grid. 
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7.6 Concluding remarks on 
models and the way a
 In the previous sections we demonstrated several situations which 
would be difficult to explain using spatial filtering algorithms. First we 
showed how several different types of illusions follow a scaling behavior in 
which the length scale of the illusory
length scale of the input stimulus, 
ones. This seemingly simple observation goes completely against the lateral 
inhibition based explanation of brightness illusions. Lateral 
matter how it occurs biologically, will only produce responses of a finite range 
of length scales, unless we assume that the size of receptive field itself is 
variable and can change its size from extremely small to extremely large.
There have only occasionally been some such attempts towards building 
multiscale models of visual illusions [Blakeslee 

Figure 7.11: Graph of Intensity threshold vs. Side length of Hermann grid squares depicts that the gray level intensity threshold remains almost the same for each subject over a range of grid square length, with the size of the perturbing squares covering only about 1squares. 
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which the length scale of the illusory effect scales in proportion with the 
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matter how it occurs biologically, will only produce responses of a finite range 
of length scales, unless we assume that the size of receptive field itself is 
variable and can change its size from extremely small to extremely large.
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multiscale models of visual illusions [Blakeslee and McCourt, 1997]
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[Nematzadeh et al., 2017]. Any moderately sized response function will 
neither respond to signals of very small scale nor signals of very large scale  
[Bakshi and Ghosh, 2012a] [Bakshi and Ghosh, 2012b]. Secondly we showed 
how even a very tiny change to the visual stimulus is capable of completely 
destroying the illusory effect. This sensitivity to tiny changes in the input 
stimulus will also be very difficult to explain with spatial filtering algorithms 
since most spatial filtering algorithms have a continuous nature, which means 
that a small change to the input will produce only a small change to the output 
and therefore will not be able to wipe out the illusory effect completely 
[Bakshi and Ghosh, 2020]. 
 Several approaches suggest themselves in trying to solve the above two 
problems. For example, fractal based spatial filtering approaches may be used 
to produce responses at all possible length scales. Another approach could be 
to use wavelet based filters which show the property of scale invariance. The 
second problem of sensitivity to input signal may be solved with a nonlinear 
dynamical system approach which also shows the property of extreme 
sensitivity to initial conditions. 

Spehar et al. have reported before [Spehar et al., 2003], [Spehar et al., 
2015] that humans show an aesthetic preference for visual patterns having a 
fractal nature because images of natural scenes show a similar fractal nature. 
This aesthetic preference is correlated with visual sensitivity, i.e. the ability to 
distinguish between two slightly differentiated patterns. The human visual 
system shows higher visual sensitivity for patterns having a fractal nature 
than patterns of non-fractal nature. This ability to distinguish between 
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patterns is high for fractal patterns with a certain range of fractal dimensions 
and low for patterns outside this range or for non-fractal patterns. This 
suggests that the pattern recognition ability of the visual system is different for 
different fractal or non-fractal patterns and there must exist regions within the 
visual system for recognition of these fractal patterns. Combining this fractal 
based approach with a multiresolution representation of 2D signals, such as 
the wavelet transform, could help in building useful models which exhibit this 
property of scale invariance [Field, 1993] [Field, 1999] [Van De Ville and 
Unser, 2008]. 

A non-linear dynamical model could be used to model the property of 
sensitivity to small changes in the input stimulus [Ditzinger, 2010] [Hock and 
Schöner, 2016] [Richards et al., 1994]. In such a model the output would be 
computed by recursively applying a non-linear transformation to the input 
stimulus which would then iteratively converge to the final output. If the non-
linear transformation is chosen carefully it is possible that it may exhibit 
sensitivity to initial conditions which would produce drastic changes in the 
final output, like the example shown in the Hermann Grid illusion in this 
chapter [Bakshi and Ghosh, 2020]. 

Exploring such approaches to solve the scale problem and the 
sensitivity problem should be a priority in future. 
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Appendix A 
 
A.1 Detailed experimental procedure for the comparison of 
performance of M
implementing "vision at a glance".
The main components of the experimental setup include a standard set of 
images, a Gaussian noise adding system, algorithms that implement the 
Bilateral and DDOG filters and a set of parameters to compare the 
performance of the filters implementing ‘vision at a glance’ with respect to 
the original (noise free) images. The workflow is depicted in the following 
flowchart. The detailed methodology is stated in the following subsections.

Figure A.1: Schematic of comparison of the DDOG based M
filter. 
A.1.1 Set of images (S)
Since, the natural ‘vision at a glance’ is unlikely to provide us with any 
detail about the color information of an image because of the supposedly 
poor chromatic selectivity of the M channel [Merigan 

Detailed experimental procedure for the comparison of 
performance of M-channel vs. Bilateral Filter in 
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The main components of the experimental setup include a standard set of 
images, a Gaussian noise adding system, algorithms that implement the 
Bilateral and DDOG filters and a set of parameters to compare the 
performance of the filters implementing ‘vision at a glance’ with respect to 
the original (noise free) images. The workflow is depicted in the following 
flowchart. The detailed methodology is stated in the following subsections.
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channel filter with the bilateral 

Since, the natural ‘vision at a glance’ is unlikely to provide us with any 
detail about the color information of an image because of the supposedly 

1991] [Merigan 



 

 138

and Maunsell, 1993], we are motivated to use gray-scale images for the 
experiment with both the natural (M) filter and the artificial (bilateral) filter. 
We use a standard set of 26 gray scale images [Heath et al., 1998] 
[http://marathon.csee.usf.edu/edge/edge_detection.html] as reference 
images for our experiment. This reference set consists of both indoor and 
outdoor scenes and both natural and manmade objects.  
A.1.2 The Experiment 

For a given reference image (I) from our set of images(S), we add 
zero-mean, Gaussian white noise of local variance v, to obtain a noisy 
image (INOISY). Then we apply standard DDOG based M-channel filter on 
INOISY to obtain filtered image IDDOG. We use spatial-domain standard 
deviation = 3 and the intensity-domain standard deviation = 0.1 for bilateral 
filter and then apply it on INOISY to obtain filtered image IBF. 

We apply 5 different levels of zero-mean, Gaussian white noise of 
local variance v ( v = 0.1 , 0.05 , 0.01 , 0.005 , 0.001 ) to each image and carry 
out the above mentioned experiment to demonstrate the efficiency of 
filtering in presence of varied levels of noise. 

Thus after the completion of the experiment, corresponding to the 
reference image set, we have the noisy image set, the M-channel filtered 
image set and the bilateral filtered image set corresponding to each value of 
v. 
A.1.3 Edge detector used for obtaining edge map 
We have chosen the Canny edge detection method [Canny, 1986] for 
obtaining the edge map of the reference image (I) and the edge maps of the 
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corresponding filtered images. The Canny method finds edges by looking 
for local maxima of the gradient of I. The gradient is calculated using the 
derivative of a Gaussian filter. The method uses two thresholds, to detect 
strong and weak edges, and includes the weak edges in the output only if 
they are connected to strong edges. We have used the Matlab function edge 
[http://www.mathworks.in/help/images/ref/edge.html] with the 
parameters set as follows: thresh = 0.1, sigma = 0.975 and type = ‘canny’. 
A.1.4 Parameters to compare the filter performances in 
implementing ‘vision at a glance’ 
The primary objective for vision at a glance is to smoothen the images to 
reduce fine level details while preserving the edge information. This 
objective needs to be achieved without much computational complexity, 
since we are focused on ‘vision at a glance’ and not ‘vision with scrutiny’ 
[Hochstein and Ahissar, 2002]. We propose to use two metrics for 
comparing how well the filters achieve our objective.  

a) Peak Signal to Noise Ratio(PSNR) 
To compute the PSNR, we first calculate the mean-squared error 
(MSE) using the following equation: 
ࡱࡿࡹ =  ∑ ࡺ,ࡹ૛[(࢔,࢓)૛ࡵି(࢔,࢓)૚ࡵ]

ࡺ∗ࡹ                                            (A.1) 
I1 is the reference image and I2 is the image of which PSNR is being 
calculated. M and N are the number of rows and columns in the 
input images, respectively. Then the PSNR is calculated using the 
following equation. 



 

 140 

ࡾࡺࡿࡼ = ૚૙ࢍ࢕࢒૚૙ ቀ ૛ࡾ
            ቁ                                                        (A.2)ࡱࡿࡹ

where R is the maximum possible pixel value of the image. When the 
pixels are represented using 8 bits per sample, this is 255.  

b) Edge preservation accuracy (EPA)    
For a given image I, and corresponding reference IREF, with 
corresponding edge map E and EREF respectively, a pixel in an edge 
map is classified into an edge pixel if it is part of an edge, else it is 
classified as a non edge pixel. 
EPA [Heath et al., 1998] [Bowyer et al., 2001] [Liu and Haralick, 2000] 
is defined as follows: 
࡭ࡼࡱ = ࡺࢀାࡼࢀ 

ࡼ                                                                    (A.3) 
Where  P is the total number of pixels in E. TP is the count of edge 
pixels present at E(x, y), and also present at EREF (x,y) and TN is the 
count of edge pixels absent at E(x, y), and also absent at EREF (x,y) . 
PSNR helps in providing us with a measure of the extent of 
smoothing achieved by filtering, while EPA provides a measure of 
the extent of edge information preserved post filtering.  

A.1.5 Analysis of the filtered images 
 The PSNR of the filtered images (IDDOG and IBF) is compared with that of 
INOISY. The PSNR in each of the cases is measured with respect to a reference 
image (I). We apply the Canny edge detector on I, IDDOG and IBF with the 
parameters mentioned earlier. We obtain 3 edge maps say E, EDDOG and EBF 
respectively. Each of this edge maps are black and white images with white 
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regions marking out the edges.  Using E as reference edge map, we 
calculate edge preservation accuracy EPADDOG and EPABF corresponding to 
EDDOG and EBF respectively. 
A.2 Results and discussion 
The parameters defined in section A.1.4 are used to compare the 
performance of the two concerned filters at various noise levels. These have 
been presented in Figures A.2-A.6. 

 (a) 

 (b) 
Figure A.2 (a) PSNR comparison (v=0.1 of 'gaussian noise') (b) Edge Preservation Accuracy comparison (variance = 0.1) 

 (a) 
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 (b) 
Figure A.3 (a) PSNR comparison (variance=0.05) (b) Edge Preservation Accuracy comparison (variance = 0.05) 
 

 (a) 

 (b) 
Figure A.4 (a) PSNR comparison (variance=0.01) (b) Edge Preservation Accuracy comparison (variance = 0.01) 

 (a) 
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 (b) 
Figure A.5 (a) PSNR comparison (variance=0.005) (b) Edge Preservation Accuracy comparison (variance = 0.005) 

 (a) 

 (b) 
Figure A.6 (a) PSNR comparison (variance=0.001) (b) Edge Preservation Accuracy comparison (variance = 0.001) 

Analyzing the results demonstrated in Figures A.2-A.6, and comparing the 
performance of the bilateral filter vis-a-vis the M DDOG filter in image 
smoothing and edge preservation, one can draw the following conclusions: 
 

1) For images containing high level of noise (i.e. white Gaussian 
noise having high variance with v = 0.1 and 0.05), PSNR of M-
channel filtered image is substantially and consistently greater 
than the PSNR of bilateral filtered image. On the other hand, in 
case of very low noise images (i.e. noise having low variance v = 
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0.01, 0.005 and 0.001), the bilateral filter performs better than the 
M channel filter in terms of PSNR. 

 
2)  For all values of variances of white Gaussian noise, the EPA for 

bilateral filters is only marginally better than the corresponding 
M-channel filtered images and both may be considered equal for 
all practical purposes. 

 
3) Most significantly, for 512x512 size gray scale images, M-channel 

filtering runs 193 times faster on average, than bilateral filtering 
on our machine. Since we have a linear combination of Gaussian 
functions for M-channel filter, the kernel of filtering can be pre-
computed which helps in achieving faster implementation. On 
the other hand, the kernel of filtering for bilateral filter needs to 
be computed at runtime since it varies according to the input 
image. Hence M-channel filtering is significantly faster than 
bilateral filtering.   

For each pixel p in a m x m mask, bilateral filter has to compute the 
difference of every pixel intensity (Ip) with the mask’s center pixel intensity 
(Ic) and thereafter use this difference to compute the Gaussian G(|Ip - Ic|). 
In case of M-channel filter, this computation is not required.  
We can formally state it as follows: 
 Let the size of filter be m x m and the size of the image be n x n.  
The number of times the filter has to be applied on the image = n x n. 
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The number of extra computations per computation of bilateral filter kernel 
= m x m 
Thus the total number of extra computation for the entire image = (m x m) x 
n x n 
The plot in Figure A.7 shows how the number of extra computations that 
bilateral filters performs increases with increase in size of image for a filter 
size of 3x3. 
 

4) Thus from points 1), 2) & 3) we may claim that the performance 
of both M-channel and Bilateral filters in removing noise is 
substantial. Moreover with the M-channel filter, we achieve 
higher PSNR as compared to the noisy images and at the same 
time, we have achieved an EPA of at least 0.6 for all values of 
variance of white Gaussian noise added to our reference images. 
So with the specified settings of bilateral filter and DDOG based 
M-channel filter we have been able to remove noise while 
preserving edge details. Although both the filters are appropriate 
in achieving ‘vision at a glance’ akin to image preprocessing in 
computer vision, the M-channel filter shows better overall 
performance for high noise images and acceptable performance 
for very low noise images while maintaining much higher 
computational performance all throughout, and is therefore 
highly appropriate for real time applications.  
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Figure A.7  Computation overhead of Bilateral filter with respect to the M-channel filter 
[Filter size = 3 x 3] 
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