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Abstract

List coloring is a variation of coloring where instead of having a global set of colors
available to choose from for each vertex, we constrain each vertex with a list of &k
colors, which is a k-sized subset of the global set of colors. The goal is to assign each
vertex a color from its corresponding list so that no two adjacent vertices get the
same color. Such a coloring is called a list coloring of the graph for this particular
assignment of lists to vertices. If for every possible assignment of lists of size k to
the vertices of a graph, there is a list coloring of the graph, then the graph is said to
be k-choosable. The minimum value of & for which a graph is k-choosable is known
as its list chromatic number. Therefore, for a k-choosable graph, if we assign lists of
size [ to its vertices, where [ < k, it may not be possible to color all the vertices of
the graph, i.e. there may not exist a list coloring for the whole graph. But can we
give any lower bound on the number of vertices that can be colored using colors from
their respective lists? The partial list coloring conjecture tries to answer this question.
This conjecture states that for a graph G with n vertices and list chromatic number
xi(G), and any assignment of t-sized lists to the vertices of G, where t < y(G), at
least lt”G vertices can be colored using colors from their respective lists in such a way
that no two adjacent vertices get the same color. This conjecture has not yet been
proven for general graphs. It has been proven for some special classes of graphs. We

study the proof of this conjecture for claw-free graphs, graphs G' having chromatic
V(G)
2

number at least LU=t and chordless graphs.
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Chapter 1

Introduction

A proper vertex coloring of a graph G is an assignment of a color to each vertex
v € V(G) such that no two adjacent vertices are assigned the same color.

A list vertex coloring or list coloring is a variant of vertex coloring along with a
constraint assigned to each vertex in the form of a list of colors.

In this report, we will study the Partial List Coloring conjecture [1] (which we shall
formally state in Chapter 2) and see various kind of graphs for which this conjecture
has been proved.

1.1 Definitions

Let G(V, E) be a graph where V is the set of vertices of G and E is the set of edges
of G.

e Degree of a vertex is the number of edges incident on it. For a vertex v € V(G),
we denote the degree of v as d(v).

o For X CVand U CV\X, Nx(U) is defined as the set of neighbours of vertices
of Uin X, i.e. Nx(U)={v € X :3u € U such that (u,v) € E}.

¢ For S CV, we denote by G[S] the subgraph induced in G by S.

o A proper vertex coloring or proper coloring of a graph G is an assignment of
colors to the vertices of G such that no two adjacent vertices are assigned the
same color.

o A graph G is said to be t-colorable if it has a coloring using ¢ colors.

e The chromatic number x(G) of a graph G is the minimum number of colors
required in any proper coloring of G. That is, it is the minimum integer ¢ such
that G is t-colorable.
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e An independent set of a graph G is defined as a set of vertices in V(&) such
that no two vertices in the set share an edge between them.

o The independence number a(G) of a graph G is the maximum possible size of
an independent set in G.



Chapter 2

Coloring and list coloring

Let G(V, E) be a graph and let P be a set.

We say that a function f: V — P is a coloring of G using the set of colors P.

A proper coloring of G is a coloring such that V(u,v) € E, f(u) # f(v).

A proper coloring f of a graph which uses r colors py,pa, . .., p, partitions the vertex
set into r sets C1,Cy, ... ., C, such that Yv € Cj, f(v) = p;. The sets Cy, Cs, ..., C, are
also called the color classes of the coloring f. Since two vertices that have the same
color cannot be adjacent in G, it follows that each color class of a proper coloring is
an independent set in . Conversely, if the vertex set of a graph G can be partitioned
into 7 independent sets I, 5, ..., I, then assigning every u the color p; if and only
if u € I; gives a proper coloring of G using r colors. Thus, we have the following
observation.

Observation 1. A graph is r-colorable if and only if its vertexr set can be partitioned
into r independent sets.

Theorem 1. Let G be a graph with n vertices. If there is a proper coloring f of
G which uses r colors, then there exists a color class of f which contains at least *
vertices.

Proof:
We know that

Z]Oi\zn

i=1
Suppose there does not exist a color class with at least ™ vertices. In other words,
, n
VZ, |Cl‘ < =
¥
Then,
: n
Z G| <=-r<n
i=1 "

5
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Hence, a contradiction. 0

Corollary 1. For any graph G, o(G) > 5

s

Proof:

Since x(G) is the chromatic number of G, there exists a coloring of G which uses
X(G) colors. So by Theorem 1, there exists a color class of size at least ﬁ Since a
color class is an independent set, we have a(G) > L O
For a graph G and ¢t < x(G), let a;(G) be the maximum cardinality of a set S C 'V
such that G[S] can be properly colored using ¢ colors.

Theorem 2. For a graph G, if there is a proper coloring f which uses r colors, then
at(G’) Z t7n

Proof:

Let C1,Cs,...,C; be the r color classes of the proper coloring f of G such that
ICy] > |Cyf > -+ > |C;|. Suppose oy(G) < 2. By Observation 1, the graph
G[CyUCyU---UCy) has a proper coloring using ¢ colors, which implies that |Cy| +
|Cs| 4 -+ +|Cy < ay(G). Since o4(G) < %”, there exists i € {1,2,...,t} such that
|Ci| < . Further, |Cipq| + [Crpo| + -+ +|Cy| >n— 2 > @ Therefore, there
exists j € {t+1,t+2,...,r} such that |Cj| > &, which is contradiction since we have

assumed that |C;| > [C}). O
Corollary 2. For a graph G, oay(G) > %

Proof:

Since x(G) is the chromatic number of G, there exists a coloring of G which uses
X(G) colors. So by Theorem 2, 0;(G) 2 . O

2.1 List coloring

Let G(V, E) be a graph and let P be a set of colors.

A t-assignment of G is defined as a function f : V — 2 such that Yv € V,|f(v)| = t.
In other words, a t-assignment of (¢ assigns to each vertex of G a list of ¢ colors from
the set of colors P.

A proper list coloring of a t-assignment f of G is defined as a function [ : V — P
such that Yo € V,l(v) € f(v) and Y(u,v) € E,l(u) # l(v). In other words, it is a
proper coloring which assigns to each vertex a color from its list of colors given by
the t-assignment f.

A graph G is said to be t-choosable if for every possible t-assignment of G there exists
a proper list coloring.
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The minimum possible value of ¢ for which a graph is ¢-choosable is called the list
chromatic number of the graph. We denote the list chromatic number of a graph G

by xi(G)-
Theorem 3. For any graph G, x(G) < xi(G).

Proof:

Suppose that x;(G) < x(G). Let us consider a y;(G)-assignment [ such that Vv €
VAI(v) = {p1. P2, -, Py(c)}- Since G is yi(G)-choosable, for every x;(G)-assignment,
there exists a proper list coloring for G. Thus there exists a proper list coloring f
for the y;(G)-assignment I. Since ||,y I(v)| = xi(G) < x(G), f is a proper coloring
of G which uses less than x(G) colors, which is a contradiction since y(G) is the
minimum number of colors that needs to be used by any proper coloring of G. [

Let G be any graph. For t < y;(G), let £ be the set of all possible t-assignments.
Then not all t-assignments may have a proper list coloring. For [ € £, we define a
partial list coloring of | as an assignment to each vertex v of some subset V' C V
a color in [(v) such that no two adjacent vertices in V' get assigned the same color.
We say that this partial list coloring “colors” the set of vertices V” (and it leaves the
vertices in V' \ V' uncolored). Let A(l) be the maximum number of vertices that are
colored by any partial list coloring of the t-assignment [. Let M(G) = mingez(Me(1)).

Conjecture 1 (Partial list coloring (PLC) conjecture [1]). For any graph G on
n vertices having list chromatic number xi(G), and t € {1,2,...,xi(G),

SAT(E

This conjecture has not yet been proven for general graphs. In the next chapter, we
present some classes of graphs for which this conjecture has been proven.



Chapter 3

Partial list coloring of some special
classes of graphs

To understand this chapter, we first need some definitions.

3.1 Definitions

A complete bipartite graph K,,, is defined as a graph whose vertex set can be
partitioned into two disjoint sets U and V, where |U| = m and |V| = n, such that
Yu,v, w € E(G) uelweV.

3.2 Claw-free graph

A claw is defined to be the graph K 5.
A claw-free graph is a graph that does not contain a claw as an induced subgraph.

In a graph G(V, E), we say that two edges e;,es € E are adjacent if they have a
common vertex.

Line graph: Consider a graph G(V, E). The line graph of G is the graph with vertex
set E and edge set {e1eq: 1,62 € E(G), €1 and ey are adjacent edges in G}.

Theorem 4. The line graph of a graph is always claw-free.

Proof:

Let us say the line graph of a graph G contains a claw as an induced subgraph.
This subgraph isomorphic to K 3 has four vertices z,u, v, w such that u, v, w form
an independent set and z is adjacent to each of u,v,w. These four vertices each
represent a unique edge in the original graph G. Now the edge belonging to vertex z,
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say ey, shares a vertex with each of the edges of G represented by the vertices u, v, w,
say ey, €y, €y, respectively. Since e, only has 2 vertices which it can share with the 3
edges ey, €,, €y, by pigeonhole principle, e, shares the same vertex with at least two
of these three edges, say ey, e,. Then e, and e, are adjacent in G, implying that uv
is an edge in the line graph. This contradicts the fact that w,v, w is an independent
set in the line graph. g

Theorem 5 (Janssen, Mathew and Rajendraprasad [2|). Let G be a claw-free graph
on n vertices whose list chromatic number is s. Then for every t € {1,2,...,s},
)\t(G) > tn

Proof:

If t = s, then the statement of the theorem is clearly true. Suppose that ¢ < s. Let
Iy be a t-assignment of G. Let T = |,y Li(v). Let k= |T| and T = {c1,¢s, ..., i }.
Since t < s, there might not exist a proper list coloring for the t-assignment ;.
Let us take another set S of (s —t) colors different from the colors in 7. Let S =
{Chs1, Cryas - -, Cop(s—t) }- We now define an s-assignment [, of G as follows: for v € V,
ls(v) = l;(v) U S. Since s is the list chromatic number of the graph, for the s-
assignment [, there exists a proper list coloring of G. Let us consider a proper
list coloring f of [ such that the number of vertices assigned a color in S is as
small as possible. We know that f partitions the vertex set into k + (s — t) color
classes C1,Cy, ..., Cr, Cr1, Crya, - - -, Cip(s—ty Where v € C; <= f(v) = ¢;. Also
Vie{l,2,....k}, let V,={veV:¢ell)}

We claim |{v € V : f(v) € S} = T H(0
flo) €TY = £L, 10| >
Suppose for the sake of contradiction that [{v € V' : f(v) € S}| = ZfJ’kilt |Ci| >

. Then there exists a color class C, where k+1 < p < k+ (s —t), such that
\C \ > 2 le. there exists a color class C corresponding to one of the colors in S
whose cardinality is greater than *.

Then,

lies that |[{v e V :

\{vEV:f(v)ET}|:Z\Ci|<t_n

Since in the summation Zle |C, NV, every vertex v € C, is counted ¢ times
(corresponding to the ¢ colors in ;(v)), we have

k
t
Z|Cpnw =1[Cy| > ;n

The above two inequalities imply that there exists a color class C;, where 1 <7 <k,
such that |Cj| < |C, NVl
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Let Z be the smallest subset of C, NV; such that |[Ng(Z) N Ci| < |Z|. We say that
such a Z will always exist since Z = C, NV; already satisfies the condition. We claim
that Yv € Ng(Z)NC;, [Nz(v)| > 2, for if Jv € Ng(Z)NC; such that Nz(v) <1, then
we contradict the minimality of Z, since Z \ Nz(v) satisfies the above condition and
is smaller in size than Z. Then if for some v € Ng(Z) N C;, we have Ne,\z(v) # 0,
then |Ng,(v)| > 3. Since C, is an independent set in G, this implies that there is
an induced subgraph of G isomorphic to a claw, which is a contradiction to the fact
that G is claw-free. Thus, we can conclude that Yo € Ng(Z) N Ci, Ney\z(v) = 0,
i.e. P(u,v) € E such that u € Ng(Z) N C; and v € C, \ Z. This makes it possible
to form another valid proper list coloring f’ of I, by taking the coloring f and then
giving color ¢; to Z and ¢, to Ng(Z) N C;. Since |Ng(Z) N Ci| < |Z|, f"is a proper
list coloring of [ which assigns lesser number of vertices a color from S than f, which
is a contradiction to the choice of f.

O

Theorem 6 (Noel, Reed and Wu [3]). For a graph G, x(G) > % = x(G) =
x(G).

Theorem 7 (Janssen, Mathew and Rajendraprasad [2|). Let G be a graph with

xi1(G) = s and x(G) > W(G# Then for every t € {1,2,...,s}, there is an induced

subgraph say H; of G such that:

(i) x(H,) > M=

(i) xi(H;) = x(H;) =t

(iii) |V (H,)| > e

= S

Proof:

We shall prove this lemma by induction on s —¢. For the base case when s —t =0,
or s = t, we can choose H, = G since |V(G)| > EW—LE'G)—l (ast = s), x(G) > M%
(as given in the statement of the lemma), and consequently by Theorem 6, x(G) =
x1(G) = s. Let t be an integer such that t < s. Suppose that the statement of the
lemma is true of every r such that s —r < s—t, i.e. for every r > t. By the induction
hypothesis, we have that there exists an induced subgraph Hy,; that satisfies the
three properties in the statement of the lemma. Then y(H1) =t + 1. Consider a
proper coloring which uses ¢+ 1 colors and let Cy, Cs, . .., C;,1 be the color classes for
this coloring. Since we also have t +1 = y(Hy1) > %, there are two possible
cases.

Case 1. t+1>W(Hz¢l)‘.
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Since the number of colors is more than half of the number of vertices, there must
exist one color class which contains exactly one vertex. Let C, be that particular
color class which contains exactly one vertex. We construct H; by removing C, from
Hiiy,ie. Hy = Hyyy —C,. Since {Cy, Cy, ..., Ci1}\ {C,} is a partition of the vertex
set of H; into ¢ independent sets, we have that x(Hy) =t. Since t +1 > |V(Ht“)|

have ¢ > Vel g = WUHsl22 WL (o5 (B, ) - 1 = |V(H)). Then by
Theorem 6, Xl(Ht) = x(H;) = t. Further, |V(H;)| = |V(Hiy)| -1 > w —1=

W@l | VIO _ 1 5 IV (since [V(G)] > x(G) = 9).

, We

Case 2. VHusl=l <4 4 1 < VBl
There are two possibilities.

(a) If there exists at least one color class C, such that |C,| = 2, then we define
H; = Hi11—C,. As{C1,C, ..., Cii1 }\{C,} is a partition of V/(H;) into ¢ independent
sets, we have y(H;) <t. If x(H;) < t, then adding back the vertices in C, and giving
them a new color will give us a t-coloring of Hy.q, which contradicts the fact that
X(Hg1) =t + 1. Thus we have y(H;) =t.

(b) Otherwise, every color class has size at least 3 or equal to 1. Since M <

t+1< |V(Ht“ , we have 2t +2 < |V(Hg1)| < 2t + 3. Thus every color class cannot
have size at least 3 since in that case |V (Hgy1)| > 3(t+1) > 2t43 (ast > 1), and every
color class cannot have size equal to 1 since in that case |V (H1)| =t +1 < 2t 4 2.
Thus there must exist color classes Cy, C,. such that |Cy| = 1 and |C,| > 2. Consider a
vertex u € C,. First, let us consider the case when y(Hiy1 —u) = t, i.e after removal of
u, the chromatic number decreases by one. In this case, we take another vertex v from
C. other than u. We can always find such a vertex v since |C.| > 2. We claim that if
X(Hy1—u) =t, then x(Hpy —{u,v}) = t. Otherwise, if y(Hy 1 —{u,v}) < t—1, then
adding u and v back to the graph can only increase its chromatic number by 1, since
u and v do not have an edge between them, which means that x(H.1) < t, which
is a contradiction. Therefore, x(Hyy1 — {u,v}) = t. We take H; = Hyyq — {u,v}.
Next, let us consider the case when x(H; ; — {u}) = t + 1. In this case, we take
H; = Hyy — (CyU{u}). Then {Cy,Cy,...,Cii1} \ {Ch} is a partition of V(H;) into
t independent sets, and therefore y(Hy) < t. If x(H;) < t, then adding back Cy to Hy
and giving the single vertex in it a new color, we get that x(H;y; — {u}) < t, which
contradicts the fact that y(H;y; — {u}) = t+ 1. Therefore we again have y(H;) = t.

Thus, no matter what H; we happen to take, y(H;) =t. Also, |V (Hy)| = |V (His1)| —
2. Therefore, we have y(H;) =t =(t+1)—-1> _‘V(Htgl)\zl —-1= —‘V(H;)Hl -1=

%_ So, by Theorem 6, y;(H;) = x(H;) =t.
Finally, we know that [V(H;)| = |V(Hy1)| -2 = % 9 = W(iitfl)‘ -

W(g:fl)‘ -2 > t—mﬁ%”—‘ + 2 — 2, since we have assumed that ¢t +1 < W(H;“)'.
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Therefore, |V (Hy)| > W Thus |V (H;)| > m7 since |V (Hyy1)| > (Hl)\s‘/(G)l‘
O

Corollary 3. Let G be a graph on n vertices with x(G) > "2;1 Then for every

te (1.2 (G} MG) 2 .

3.3 Minimally 2-connected graphs

A graph G is chordless if for each cycle in G, there does not exist any pair of
nonconsecutive vertices that are adjacent in G.

A graph G is 2-vertex connected or 2-connected if removal of any one vertex does not
disconnect the graph.

A graph G is minimally 2-connected if it is 2-connected as well as chordless, and is
not a single edge.

Lemma 1 (Plummer [4]). A graph G is minimally 2-connected if and only if

o cither G is a cycle

o or if we remove all the vertices of degree 2 from the G, we get a forest with two
or more components (trees).

Theorem 8 ([2]). Let G be a minimally 2-connected graph. Then for every z € V(G),
there exist two distinct vertices v,w € V(G) — {z} and a vertex u € V(G) such that
v,w € Ng(u) and d(v) = d(w) = 2.

Proof:

Suppose that G is a cycle. Since each vertex of a cycle has degree 2, for each
¢ € V(G), z has two neighbours of degree 2. Let v and w be these two neighbours of
z and let w = 2. Then v,w € Ng(u) and d(v) = d(w) = 2, and we are done.

Now suppose that G is not a cycle. Let T = {z € V(G) : d(z) = 2}. Then by
Lemma 1, V(G) — T is a forest with 2 or more components (trees). Since G is 2-
connected, we know that Yo € V(G),d(z) > 2. Thus Vz € V(G) — T, d(z) > 3.
Suppose first that G[V — T contains an isolated vertex z. Then Np(z) > 3. We fix
u =z If £ =z then we fix any two vertices of Nr(z) as v and w, since each one
of them has degree 2 in G. If & # z, then since Ny(z) > 3, there exist at least two
vertices in Np(z) different from z. Since these two vertices belong to T, each one of
them has degree 2 in G, so we fix them as v and w. Next suppose that G[V —T7 does
not contain any isolated vertices. Then there exist at least two trees in G[V —T7 each
containing at least two vertices. Let T, Ty be two such trees. Since Ty, T, are trees
containing at least two vertices, each one of them contains at least two leaf vertices.
Let a1, b; be two leaf vertices of T} and as, by be two leaf vertices of T,. Since each of
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a1, by, ag, by have degree 1 in their respective trees, they have at least two neighbours
eachin T. If z ¢ T, then we designate a vertex in {ay, by, as,bo} that is different
from z as u, and two of its neighbours in 7" as v and w. If z € T, then since z has
degree 2, there are at least two vertices in {ay, by, a2,by} that are not adjacent to z.
We designate one of these two vertices as u, and two of its neighbours in 7" as v and
w. U

A graph G is said to be k-degenerate every subgraph of G contains a vertex of degree
at most k. Thus, any subgraph of a k-degenerate graph is also k-degenerate.

Observation 2. If a graph G is k-degenerate, then G is (k + 1)-choosable.

Proof:

We shall prove this by induction on [V(G)|. Let [ be any (k+1)-assignment of G. As
G is k-degenerate, G contains a vertex v of degree at most k and moreover, G — {v}
is also k-degenerate. Let I' be the (k + 1)-assignment of G — {v} that is obtained by
setting I'(u) = l(u) for every vertex u € V(G) \ {v}. By the induction hypothesis,
G — {v} is (k 4 1)-choosable, and therefore there is a proper list coloring for the
(k+1)-assignment ['. Now since in this coloring, at most £ different colors appear on
the neighbours of v, we can assign v a color from [(v) that is different from all the
colors that appear on its neighbours. It is easy to see that we now have a proper list
coloring of the (k + 1)-assignment [. Thus a proper list coloring is possible for any
(k + 1)-assignment of G, and hence G is (k + 1)-choosable. O

For a connected graph G, we define an induced subgraph Bg of G as follows. If G
contains no cut-vertices than we define By = G. For every cut-vertex v of G, we
define g(v) to be the size of the smallest component in G —{v}. Let = be a cut-vertex
of G for which g(z) is as small as possible. Let C' be a component of G —{z} with size
g(x). We define Bg = G[{z} UV(C)]. The graph Bg has the following properties:

(i) The only cut-vertex of G that is contained in By is z.

Suppose that B contains a cut-vertex y of G other than z. Then y € V(C) \ {z}.
Let Cy,Cy, ..., Ck be the connected components of G — {z} other than C. Clearly,
the vertices in V(C1)UV(Cy)U---UV(Ck) U{z} all lie in one connected component
of G —{y}. Let C' be any other connected component of G — {y}. Then it follows
that every vertex in C' is from V(C) \ {y}, which implies that |C'| < |C|. Then
9(y) < g(z), which contradicts our choice of .

(ii) Bg is 2-connected.

Suppose that Bg contains a cut-vertex y. Clearly Bg — {«} results in the connected
graph (', so we have y # z. Let v be a vertex from a connected component of B;—{y}
that is different from the connected component that contains x. Clearly, every path
in By between x and v contains y. Since x separated every vertex of C' from every
vertex in G — (V(C) U {z}), we know that every path in G between z and v lies
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entirely inside Bg. From our previous observation, this means that every path in G
between x and v contains y. Thus x and v belong to different connected components
of G — {y}, implying that y is a cut-vertex of G. But this contradicts (i).

(iii) Every vertex of By other than z has the same degree in By as well as G.

Recall that Bg = G[{z} UV/(C)|, where C' is a connected component of G — {z}. It
is clear that no vertex of C' is adjacent to any vertex in V(G) \ ({z} UV(C)}. Thus
every vertex of C' has the same degree in By as well as in G.

Theorem 9. If a graph G is chordless, then it is also 2-degenerate.

Proof:

We can assume that G is connected as the disjoint union of 2-degenerate graphs is
also a 2-degenerate graph. We shall prove this by induction on |V(G)|. Clearly, if
|V(G)| =1, then the statement is true. So we shall assume that |V/(G)| > 2 and that
every chordless graph containing less than |V (G)| vertices is 2-degenerate. Consider
the graph Bg defined as above, with z having the same meaning. By (ii) Bg is 2-
connected. If Bg is a single edge, then the vertex in B other than x has degree
1 in Bg, and by (iii), it also has degree 1 in G. Otherwise, since Bg is an induced
subgraph of G, and hence also a chordless graph, we have that B¢ is a minimally
2-connected graph. By Theorem 8, in Bg, there exist two vertices v, w different from
z, each having degree 2. From (iii), these vertices also have degree 2 in G. Thus in
any case, G contains a vertex of degree at most 2. The graph obtained by removing
this vertex is a chordless graph with lesser than [V/(G)| vertices and hence by the
induction hypothesis is a 2-degenerate graph. It follows that G is also a 2-degenerate

graph. 0
Theorem 10 (Janssen, Mathew and Rajendraprasad [2]). If G is a chordless graph
with n vertices having list chromatic number s, then Wt € 1,2,...,s, N(G) > %”
Proof:

We shall prove this by induction on |V(G)|. The base case when G contains only
one vertex trivially satisfies the statement of the theorem.

First of all, note that we can assume that ¢ < s as the case when ¢ = s is trivially
true. Moreover if ¢ = 1, then note that the largest color class in an y(G)-coloring of
G will contain at least % vertices (since x(G) < xi(G) = s). Then this color class,
being an independent set, is an induced subgraph of G that is 1-choosable. Thus
M(G) > 2. So we assume from here on that 1 <t <.

Since by Theorem 9, G is a 2-degenerate graph, we know by Observation 2 that
xi(G) < 3. If s = y(G) < 2, then we have already shown the theorem to be true for
all possible values of ¢. Hence we can ssume that s = x;(G) = 3 and ¢t = 2. That is,
we need to show that Ay(G) > %” If G contains a vertex v of degree at most 1, then
G—{v} is a chordless graph having lesser number of vertices than G, and hence by the
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induction hypothesis, we have that \y(G —{v}) > 2(713_4) Consider any 2-assignment
[ of G. Let ' be the 2-assignment of G — {v} obtained by setting '(u) = {(u) for all
u € V(G)\ {v}. Since \(G — {v}) > 2(";1), there exists a partial list coloring of
[" that colors @ vertices of G — {v}. This is also a partial list coloring of [ that
colors @ vertices of G. Now since the vertex v has degree at most 1, there is one
color in [(v) that is different from any color that has been given to a neighbour of v.
We can give this color to v to obtain a partial list coloring of [ that colors at least
@ +1> 2?" vertices of G. Next, suppose that every vertex in G has degree at
least 2. Let G’ be any connected component of GG. Consider the graph Bg. Since
By is 2-connected, is not a single edge (since we have assumed that every vertex in
G has degree at least 2), and is a chordless graph (since it is an induced subgraph
of the chordless graph G), we know that Be is a minimally 2-connected graph. Let
z be the only cut-vertex of G’ in Bg. Then by Theorem 8, there exist vertices v, w
distinct from z such that both of them have degree 2 in B and they have a common
neighbour u in Bgr. By (iii) v, w also have degree 2 in G', and hence also in G. Now let
H = G—{u,v,w}. As H is a chordless graph on lesser number of vertices than G, we
have by the induction hypothesis that A\y(H) > @ Now given any 2-assignment [
of G, we can construct a 2-assignment " of H as before (by setting I'(z) = I(z) for all
z € V(H)), and we have that there exists a partial colouring of ' that colours @
vertices of H. We now leave the vertex u uncoloured and colour the vertices v and
w using colours from [(v) and [(w) respectively. Since u is a neighbour of both v, w,
each of v, w has at most one coloured neighbour. This means v can be given a colour
from [(v) that is different from the colours of its neighbours, and similarly, u can be
given a colour from [(u) that is different from the colours of its neighbours. Now we

have coloured at least @ +2 =2 vertices of G. This shows that )y(G) > 2. O
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