Sports Video Action Recognition

A Thesis Submitted in the Partial Fulfilment
of the Requirements for the Degree of

Master of Technology

1

Computer Science
by

Santanu Datta
Under Guidance of

Prof. Kumar Sankar Ray

STATISTICAL

("

Z>» =0 Z -
MeC—A == Z =

ey p— zax |

[unNiTY IN BIVERSITY |

Electronics and Communications Unit
Indian Statistical Institute, Kolkata
India
June 30,2019

Certificate

This is to certify that the thesis entitled, Sports Video Action Recog-
nition and submitted by Santanu Datta, Roll No. CS1706 in partial
fulfillment of the requirements of Master of Technology in Computer
Science embodies the work done by him under my supervision.

Prof. Kumar Sankar Ray
ECSU, ISI Kolkata
Date:

Acknowledgement

I would like to thank my supervisor Prof. Kumar Sankar Ray for the
kind guidance he has provided throughout the dissertation work.

Abstract

From playing games to driving cars, deep learning has achieved great success
in the recent past.In this dissertation, we apply deep learning to recognize
sports videos. We have implemented state of the art VGG3D model on
different challenging state of the art video datasets. In this paper , we com-
municate our findings.

Contents

1__Introduction|
(1.1 What i1s action recognition?|
(1.2 Objective]

2 Deep Learning]
2.1 Perceptron|.
2.2 Mult1 Layer Perceptron|.
2.3 Deep Neural Network|

2.5 Dropout|
2.5.1 Why dropout 7| L
2.6 Transter Learning|

3__Architecturel
[3.1 Developing Architecturel
(3.2 Architecture Description|o
3.2.1 VGGI6

[3.2.3 FCLayers
[3.3 Architecture Methodologyl

[4_Datasets]

(4.3 UCE Sports|
4.4 Action Quality Assessment|.
4.5 Sports Videos in the Wild|

11
11
11
11
12
12
12

[5 Implementation|
[>.1 Train Test Spht|
[>.2 Preprocessing|
(5.3 Trainingl
5.4 Testingl.
[5.5 Computational Details|

6.4 UCF-Sports|

[6.5 Action Quality Assessment Performancel

[6.6 Sports Videos in the Wild Pertormance|

[7__Related Workl

[7.1 Comparison
2 104, ..

(7.4 UCF Sports|
[7.5 Action Quality Assessment|. .
[7.6 Sports Videos in the Wild| . .

[9 Appendix|
[9.1 Train Test Split Codef.
[9.2 PreProcessing Code].
[9.3 Iraining and Evaluation Code|

[References]

22
22
22
22
23
23

24
24
24
24
25
25
25

27
27
27
27
28
28
29

31
31
31

32
32
34
38

44

Chapter 1

Introduction

From the advent of computer, researchers have always wondered about mak-
ing it intelligent so that it can do our work. Over the past few decades,
artifical intelligence was a interesting topic and many activities have been
tried to teach the computer.From winning chess against grandmaster Garry
Kasparov to answering questions, artificial intelligence showed a way to ful-
filling the dream. But due to lack of computational power and lack of data,
it was not being used in much in real life scenario.

In the last 20 years, internet era and progress in computational technolo-
gies broke those barriers. Now terabytes of data is being generated everyday
and computational facilities such as GPU computing, Cloud computing are
available to researchers.This encouraged researchers to apply deep learning,
a section of artificial intelligence to real world problems. Within a few years,
deep learning based algorithms showed immense success in most of the Ma-
chine learning tasks. Specially in computer vision, deep neural network based
algorithms won the prestigious Imagenet competition. Not only in image
recognition, segmentation, localization, deep learning showed promising re-
sults in other domains also. In this thesis, we apply deep learning in videos,
and we show how it is providing good results to a challenging video action
recognition task.

1.1 What is action recognition?
Action recognition is a computer vision task involves the identification of

different actions from video clips (a sequence of 2D frames) where the action
may or may not be performed throughout the entire duration of the video.

4

Action recognition is a important topic having a great many benefits.Sports
action recognition can help us build a software that automatically recognizes
an uploaded sports video and index it so that it will come up during appro-
priate query.

Though it seems similar to image recognition task, over the years image
recognition has achieved immense success, while video action recognition is
not.Some of the difficulties are :

e Huge Computational Cost A simple convolution 2D net for classifying
101 classes has just approx bM parameters whereas the same architec-
ture when inflated to a 3D structure results in approx 33M parameters.

e Capturing long context Action recognition involves capturing spatio
temporal context across frames. Additionally, the spatial information
captured has to be compensated for camera movement.

e Designing classification architectures Designing architectures that can
capture spatiotemporal information involve multiple options which are
non-trivial and expensive to evaluate.

1.2 Objective

Our objective is to develop a deep neural network architecture than can rec-
ognize a given sports video in one of the given classes. To show the robustness
of the network, we will train and test the architecture on several standard
dataset. At the end, we compare our findings with other techniques.We also
conduct some analysis to explain our findings.

1.3 Outline

In the next chapter we briefly go through the topics of deep learning we will
be using in our thesis. In chapter 3, we present a detailed presentation of the
architecture we are using. In the subsequent chapter, we describe the datasets
that we are using. Chapter 5 comprises of implementation details. Chapter
6 conveys the results that have been found by us. In the next chapter, we
compare our finding to other works. Lastly, in chapter 8, we conclude the
thesis.

Chapter 2

Deep Learning

We provide brief introduction to deep learning.A good resource is the book
written by Goodfellow et al [2].This will be helpful to understand the model
architecture. It will also explain the reason we choose the architecture.

2.1 Perceptron

Perceptron [6] was the simplest model of neural network.It was proposed by
Minsky and Papert in 1969.1t consists of only one computational neuron. It
takes inputs x1, xs, ..., x, with labels 0,1 and outputs y which is a function
of weighted sum of inputs. The goal is to learn the weights so that it can
classify them accurately. Notice that perceptron model can correctly classify
only the datapoints that are linearly separable.

— out(t)

in(t) <

wo(t) = 6

Figure 2.1: Perceptron Model

The perceptron weights are learned via the following algorithm:

6

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1:

N +— inputs with label 0;

Initialize w randomly;

while !convergence do

Pick random x e PUN :

if xe P and w.x <0 then
‘ W =W + X .

end

if xe N and w.x >0 then
‘ W =W —X !

end

end
//the algorithm converges when all the
inputs are classified correctly

Figure 2.2: Learning Algorithm

2.2 Multi Layer Perceptron

It was noticed in the same article @ that perceptron cannot even learn
XOR.So, in search of more advanced architecture, multilayer perceptron
model(MLP), or which we know by the name of neural networks, was found.
The main principle is backpropagation algorithm, which was discovered by

Geofrey Hinton in 1986.

The main idea is that the input goes through a multiple layers of neurons
and provides an output. Then there is a loss function which calculates the
error. The error is then backpropagated to the neurons where weights are
adjusted using gradient descent update rule. This whole process is called
one epoch. The algorithm stops when error is within predefined tolerance

7

Input Hidden Layer Output
Layer

Input #1 —

Input #2 —

Figure 2.3: MLP

level or a predefined number of epochs has been passed or the network is has
stopped learning.

2.3 Deep Neural Network

By the discovery of the Universal Approximation Theorem |[3|, it was
shown that any given function can be approximated by neural network with
sufficient number of neurons.This encouraged the researchers to go for more
complicated networks. The layers between input layer and output layer are
called hidden layers in MLP. When the number of layers are large, the net-
work is called deep neural network.

2.3.1 Limitations

The main limitation was the requirement of huge computational resource
needed to train those network.

Deep neural network

hidden layer 1 hidden layver 2 hidden layer 3

input layer

Figure 2.4: Deep neural Network

2.4 Convolutional Neural Network

The convolutional neural networks was invented to solve the problem. Th
idea is to use multiple filters and convolve with the input to learn represen-
tations of data capturing the underlying principle. The convolutional neural
network has two advantages :

e Parameter Sharing : A filter is used over all of the parts of the input.
For example, a filter which detects vertical edge can be used in all of
the picture to detect vertical edge.

e Sparsity of Connections : In each of the layers, a neuron in con-
nected to selected neurons from the previous layer, where in DNN, each
neuron is connected to all the neurons in previous layer.

2.5 Dropout

Dropout is a training technique invented by Hinton et al . It works during
training as follows :

e Choose a number p between 0 and 1, generally 0.5 is chosen.

e In each layer, p fraction of neurons are randomly chosen and given 0
weight so that they do not take part in learning.

e During test time, dropout is not used but the output of the neurons
are multiplied by 1 - p, since it is the expected time that neuron took
part in training.

2.5.1 Why dropout ?

Dropout forces the neurons not to rely on other neurons, thus forces to learn
the hidden representation. Also dropout implements ensemble of different
neural networks without high computational cost. Dropout thus prevents
overfitting and gives way to learn.

2.6 Transfer Learning

Transfer learning is the process of using an already learned network to learn
a similar task. This is useful in mainly two cases :

Less Computational Resource : The transfer learning technique pro-
vides already some expertise to the network in task, which means network
needs fewer training to be done.

Less Data : If the data is scarce for the particular task, then using
transfer learning, network inherits some of the underlying representations
already.

10

Chapter 3

Architecture

3.1 Developing Architecture

After reading a few research papers regarding video action recognition, we
pointed out two main underlying principles :

e Increasing number of layers on CNN, which is one of the main philos-
ophy behind VGGNet [12].

e Using a pretrained model on image dataset(available online).

Since , we also have computational constraints and storage limitations, we
decided to use an architecture which enjoys the advantages of transfer learn-
ing. We avoided heavy computation based algorithms such as incorporating
optical flow. Also, we wanted the main underlying principle behind the ar-

chitecture to be simple, so we have avoided LSTM or RNN based algorithms
for now.

Based on those underlying principles, we decided to go with the following
architecture [4].

3.2 Architecture Description

The architecture can be divided into 3 parts.

3.2.1 VGGI16

VGG is the model developed by Karen et al [12]. The architecture of the
VGG model is a specific combination of convolutional layers, fully connected

11

mple N frames

ideo mVideo 2Video 1}>-{uniformly spaced in time
|V "'“V | |—» rom each video S

P

Y

<

0]

z

a
Conv 3D

fc 1
Dropout
Dropout

fc3

256x3x3x3 4096 1024 K

512xNx7x7
concatenated
feature maps

Figure 3.1: VGG3D
layers. This is the architecture of VGG :

This is the first part of the architecture. We feed extracted frame to
VGG16 model. We remove the last 7 layers of VGG. The reason is that after
passing through this modified VGG we will get a representation of the image
as a vector.

3.2.2 Concatenation

In this step, we concatenate all the frames representation vector together.
This concatenated vector represents one video to the last part of the deep
neural network.

3.2.3 FC Layers

In the third stage, the architecture contains a series of convolution layer,
two fully connected layer each followed by dropout. Finally, there is a fully
connected layer of size K for multiclass classification.

3.3 Architecture Methodology

The architecture works as follows :
e Take a video.
e Sample N frames from it.
e Feed them through different vggl6 models and get a representation.

e Concatenate those representations.

12

e Pass them through conv3D layer of size 256 x 3 x 3 x 3
e Pass them through fully connected layers of size 4096 and 1024.

e Finally pass through output layer with K nodes, where K is the number
of classes.

13

ConvNet Configuration

A A-LRN B C D E
11 weight | 11 weight | 13 weight | I6weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv 3-Hd conyv 3-6d comv3-6d cony 3-6d comy3-6d conv3-Hd
LRN conv3i-6d convi-6d comv3-6d conv3-o4

maxpool
convi-128 | conv3-128 | conv3-128 | comv3-128 | comv3-128 | conv3-128
conv3-128 | conv3-128 | comv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3i-256 | comv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | comv3-256 | conv3-236
convl-256 | comv3-256 | conv3-236
conv3-256

maxpool
convi-312 | conv3-512 | conv3-5312 | comv3-512 | conv3d-312 | comv3-512
conv3-512 | conv3-512 | comv3i-512 | comv3-512 | conv3-512 | comv3-512
convl-512 | comv3-512 | conv3-512
conv3-512

maxpool
conv3-5312 | conv3-312 | conv3-5312 | comv3-512 | comv3-512 | conv3-5312
convi-512 | conv3-312 | conv3-512 | comv3-512 | comv3-512 | conv3-512
convl-512 | comv3-512 | conv3-512
conv3-512

miaxpool

FC-4096

FC-4096

FC-1000

soft-max

Figure 3.2: VGG Architecture

14

Chapter 4

Datasets

4.1 UCF-101

UCF-101 dataset is an action recognition dataset collected from YouTube.
It was developed in University of Central Florida [13]. The dataset contains
13320 videos from 101 action classes, making it quite a large dataset to
work with.Not only the action classes are diverse, but also the dataset has
large variance in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, illumination conditions etc. So, it is a
challenging dataset.

UCF -101 is the base dataset where authors of the architecture trained the
network.

4.2 KTH

KTH |[11] is an old sports video dataset.The summary of KTH dataset is :

e There are six types of human actions :walking, jogging, running, boxing,
hand waving and hand clapping.

e Actions are performed several times by 25 subjects in four different sce-
narios: outdoors, outdoors with scale variation, outdoors with different
clothes and indoors.

e There are 2391 sequences in the database. All sequences were taken
over homogeneous backgrounds with a camera with 25fps frame rate.

e The sequences were downsampled to the spatial resolution of 160 x 120
pixels. The video lengths are four seconds in average.

15

iy

Rope Climbing Wall Pushups

L Y

Band Marching Playing Dhol

—

|| Baseball Pitch

»
-

-

Breaststroke

g ¢ Lo ¥ P
Long Jump Parallel Bars

Table Tennis Shot} Tennis Swing || Throw Discus

Uneven Bars [Volleyball Spiking

Figure 4.1: UCF-101

16

® Total Time

w Average Clip Duration

2500

2000

(99s) dur],

Sumuy

Funyedey]
adoydung
yoepSurdwing
siregduissng
MOIY L UI[oAR]
Surouegad]
dooyeny
Suipryesioy
QIBYISIOH
dumpySry
oSesseNpeoy
Supjjempuelspuey
sdnysngpueispuey
MOIY [DWW
Suuowweyy
oI
Suimgyion
[MEIDIUOL]
018)99qSLL{
SONSEUWANIOO0].
KyjeuogAx00HpIaL
Suroua g
Suruwnig

Suiaigq
uayoIyuISumIny
10YSINOLD
Suymogioyou)
SulAI@yD
SHarpuyue[)
o Furysnig
ajongisealg
SegpoaadgSuixog
SegSunyoungSurxog
Suimog
sienbgiyS1opApog
so[pue)Suimorg
negAIgmorg
spret[ig

Sunjig
$SAIJyIUdY
Junqireqryseq
l1eqioysed
yoaudieqaseq
Suryoreypueg
weagaoue|eg
SunmerdAqeg
Krayary
YonsdriAddy
dnoyenoAgAddy

=
2
g
=
a
S
o
O
.me
= o
< B
g2
=<
LI
g g8 8 8 8 °
un <3 wn =3 wn
~N ~N - -

(99s) duur,

OAOA
preoguOIunuIp
sdnysngjrem
SoqunmBuiem
Supdg|reqarion
SIEEUIAUN
SuidA],
Surdwnpaurjodwery,
SNOSIAMOIY [,
Suimgsiuua |,
oL
JoyssIuud [A[qeL
Suimg

Suiyng

Suipsarp owng
SSuRY(INS

A)[eud 190008
Bur38n[10000g
SuaiaAls
IR

Sumyg
Surpreogaieys
mdioys
pireagSuiaeys
uidgesjes
Suimoy
Suiquujyadoy
J00pufSuIquIl[)}I0Y
Sunyey
sdnysng

young

sdniind
JSIOH[QWIWOJ
IneAdod
uijorASuikelq
e[qeSuikeld
aensBuikeq
ouerg3uikelq
aeynn3uikeld
ampSuikelg
[oyqsuike|q
Jeqsuikelq
o[eD3uIkelg
Suissojezzig
stego|[esed
syonyounN
J00[j3urddojy
Surxipy
operedAreiiN
safun
duwmnfSuo

4.3 UCF Sports

ing features

@H has the follow

e [t contains 10 sports action classes.

UCF Sports dataset

e The dataset includes a total of 150 sequences with the resolution of

720 x 480.

17

Actions 10 Total duration 958s
Clips 150 |Frame rate 101fps
Mean clip length|6.39s |Resolution 720 x 480
Min clip length [2.20s |Max num. of clips per class|22

Max clip length |14.40s|Min num. of clips per class |6

250 14
¥ Total Time Average Clip Duration

12

I 1

8
& & & & & &
(’8‘4\0 & 0‘&(\ & & N

Time (sec)
BN
s & o
8 & 8

"
S
onN s

0
& <3
& X
3 e S
9 § e & & @
& € $ & & W

12
&
Q\O
& «® S §
< o <

&

UCF Sports Actions

e The collection represents a natural pool of actions featured in a wide
range of scenes and viewpoints.

e The dataset has been used for numerous applications such as: action
recognition, action localization, and saliency detection.

4.4 Action Quality Assessment

Action quality assessment is yet another useful dataset for sports action
recognition.

e This is developed by Real-Time Intelligent Systems (RTIS) Laboratory.

e Contains 7 type of actions : singles diving-10m platform, gymnas-
tic vault, big air skiing, big air snowboarding,synchronous diving-3m
springboard, synchronous diving-10m platform, and trampoline.

e There are 1106 samples.

® & & ® ¢ ®
& & oS S & &
& & &) &,s

§

Number of Clips
B R oNN
5 & S &

o w

& X
& é\(\‘b N

\\% of Q\o‘\ Q’g,

o & e & N
@ < o o ©

S
N
&

&
&

&S
&

&

N

UCF Sports Actions

18

Sport Avg, Seq. Len. # Samples Score Range # Participants View Variation

Single Diving 10m platform 97 370 21.60 - 102.60 1 negligible
Gymnastic vault 87 176 12.30 - 16.87 1 large
Big Air Skiing 132 175 8-50 1 large
Big Air Snowboarding 122 206 8-50 1 large
Syne. Diving 3m springboard 156 88 46.20 - 104.88 2 negligible
Synec. Diving 10m platform 105 91 49.80 - 99.36 2 negligible
Trampoline 634 83 6.72 - 62.99 1 small

Table 1. Characteristics of AQA-7 dataset.

4.5 Sports Videos in the Wild

Sports Videos in the Wild [10] or SVW has the following properties :

e SVW contains 4200 videos captured using smartphones by users of
Coach’s Eye smartphone app, a leading app for sports training devel-
oped by TechSmith corporation.

e SVW includes 30 categories of sports and 44 different actions.

e Due to imperfect practice of amateur players and unprofessional captur-
ing by amateur users, SVW is very challenging for automated analysis.

e SVW can be used in : genre categorization, action recognition, action
detection, and spatio-temporal alignment.

19

|-Archery 2-Baseball 3-Basketball
IS M O X

4-BMX 5-Bowling
o

_6-_Baxing

12-Gymnastics

e

(-Foothall

1-Cheerleading

9-Diving

[3-Hammer throw | 0-Hurdling

Etie

23-Skating

Figure 4.2: SVW Classes

300 45
4D
250
EC
" =
g
£ 200 0 =
z 5 @
5 150 5
s »
E =]
£ 100 15 2
5
= =
[s
50
5
o 0
T S - . T I Yt R R NP P I I T R Y
P L P F & & & G & P
s & 2§ §F F O & & o & & &G AP S N F & Calii o
gt T T F T FTSE T TG T TS T e
& o & & 4

20

.

00

5588

0

Camera orientation

& @& &

mPortrat ® Landscape

<&

© & o %

5 RS Sl -e“ \° y gl
& 5@‘5& & "p & ¥ »é‘@} s G F 5 ‘1‘:“ e «
@
¥

Aspects of the action field mShared mUnique mlirrelevant

&

»& A &
0\ o \53

&

‘R\é‘

& &
& P& TS S f 5
‘5{5. 6& o € \ \,‘f qa@ Hﬁéé\ \:\ &

21

Chapter 5

Implementation

In this chapter we carefully provide detailed training and testing methodol-
ogy.

5.1 Train Test Split

UCF-101 provides train - test split file, so we have used them.For other
datasets, we decide the ratio of train test split to be 70 — 30 or 80 — 20. For
each class, we randomly split the videos into train and test folder according
to the ratio. Scikit-Learn’s traintestsplit package was extremely useful.

5.2 Preprocessing

We have resized every frame to 224 x 224 since vggl6 accepts input of the
same size. For preprocessing, we transformed every pixel value within range
of 0 — 1 by dividing them by 255.

5.3 Training

The training procedure aims to optimize the CrossEntropy loss with stochas-
tic gradient descent. We have limited ourselves withN = 4 for computational
limitations, that is, we sampled 4 frames uniformly from each video.The
learning rate is kept at 0.001.The Dropout ratio is kept at 0.5.

We used pretrained vggl6 networks, which provides us with a strong start-
ing point. After each epoch of training, we monitor the test accuracy. We

22

stop training when we observe the accuracy on both training and testing is
nonincreasing.

5.4 Testing

For testing, we use top-1 accuracy method.For each video, we select N frames
uniformly,resize them to 224 x 224, then pass them through our trained
model,consider argmax of the probabilities and compare with the correct

label.

5.5 Computational Details

We have implemented the model in python using PyTorch framework.We
have used the CSSC computational GPU server for training and testing.Also,
in the preprocessing stage, we have extracted frames beforehand to save time
and memory space during execution of training process. Depending on the
dataset, training time ranges from 1 hr to 30 hr using single NVIDIA GPU.
Due to unavailability of GPU memory in most of the time, we ran training
process on CPU also, which significantly increased the training time by at
least 10x — 20x.

23

Chapter 6

Result

6.1 Evaluation Metric

We have used accuracy as the evaluation metric for every model, since accu-
racy is the standard metric in deep learning community.

6.2 UCF-101

We have run 15 epochs with N =4, [r = 0.001 using SGD.
Training accuracy : 99.21% and test accuracy 59.74%

100

Figure 6.1: UCF-101 Train Figure 6.2: UCF-101 Test

6.3 KTH

We have run 20 epochs with N =4, [r = 0.001 using SGD.
Training accuracy : 70.15% and test accuracy 60%

24

60 55
= 50 . 50
Z Z
8 8

o 45

35

15 5.0 75 00 125 150 175 200 25 50 75 00 125 150 175 200
Epochs Epochs

Figure 6.3: KTH Train Figure 6.4: KTH Test

6.4 UCF-Sports

We ran for 25 epochs with the same hyper-parameters and algorithm.
Training accuracy : 100%, test accuracy : 68.97%

100

o 5 10 15 20 5 o 5 10 15 20 5
Epochs Epochs

Figure 6.5: UCF-Sports Train Figure 6.6: UCF-Sports Test

6.5 Action Quality Assessment Performance

We ran for 20 epochs with the same hyper-parameters and algorithm.
Training accuracy : 100%, test accuracy : 97.51%

6.6 Sports Videos in the Wild Performance

We ran for 25 epochs with the same hyper parameters and algorithm.
Training accuracy : 100%, test accuracy : 74.56%

25

Accuracy
8 2 # 8 8 & &

100

25 50 75 100 125 150 175 200
Epochs

Figure 6.7: AQA Train

Epochs

Figure 6.9: SVW Train

26

Accuracy

93

92

25 50 75 100 125 150 175 200
Epochs

Figure 6.8: AQA Test

Epochs

Figure 6.10: SVW Test

Chapter 7
Related Work

7.1 Comparison

We now start comparing our model with others. A few points regarding this

For each of the dataset, we find some papers.

Find and compare the results they have obtained.

Since people have used different metrics for evaluating their models, it
is difficult to decide whether their model is actually better or it is due
to the evaluation metric.

We only report top papers that we have came across while searching.
The sources of the informations are referenced.

7.2 UCF-101

We found the following comparison chart provided by [1]. Our Approach:
Test accuracy 59.74%

7.3 KTH

We have come across with the following chart [16] : Our Approach: Test
accuracy 60%

27

Model UCF-101
Two-Stream [7] 88.0
IDT [7] 36.4
Dynamic Image Networks + IDT [] 39.1
TDD + IDT [34] 91.5
Two-Stream Fusion + IDT [#] 03.5
Temporal Segment Networks [5] 94.2
ST-ResNet + IDT [7] 94.6
Deep Networks [5], Sports 1M pre-training 65.2
C3D one network [1], Sports 1M pre-training 82.3
C3D ensemble [71|, Sports 1M pre-training 85.2
C3D ensemble + IDT [31], Sports 1M pre-training 90.1
RGB-I3D, Imagenet+Kinetics pre-training 95.6
Flow-13D, Imagenet+Kinetics pre-training 96.7
Two-Stream [3D, Imagenet+Kinetics pre-training 98.0
RGB-I3D, Kinetics pre-training 95.1
Flow-13D, Kinetics pre-training 96.5
Two-Stream I3D, Kinetics pre-training 07.8

Figure 7.1: UCF-101 Comparison

7.4 UCF Sports

7.5 Action Quality Assessment

28

The following result is from the paper . Our Approach: Test accuracy :
68.97%

This dataset is very recent and people haven’t applied it for action recog-
nition. The main paper [§| gives the following table :
accuracy : 97.51%

Our Approach: Test

~Method] KTH

Proposed method 96.98%
Yadav et al. [14] 98.2%
Kovashika et al. [15] 94.53%
Gilbert et al. [16] 94.50%
Wang et al. [7] 94.20%
Laptev et al. [17] 91.80%

Shuiwang et al. (CNN) [18] | 90.2%
Mahdyar et al. (CNN) [19] -
kizler-Cinbis et al. [20] -
Liu et al. [13] -

Figure 7.2: KTH

M static B motion I static+motion

65

o
[N T TN T T N T Y T N T

ARUIVIOY
ounou1o

dive golf kick lift ride run sk_b sw_a sw_b walk

Figure 7.3: The average accuracy for static, motion and static+motion ex-
perimental strategy is 74.5%, 79.6% and 84.5% respectively.

7.6 Sports Videos in the Wild

The main paper [10] who prepared the dataset reports highest accuracy of

61.53% .The following result is from :
Our Approach: Test accuracy : 74.56%

29

http://cs231n.stanford.edu/reports/2017/posters/715.pdf

Unseen action

class . Gym- L Snow- Sync- Sync- Avg.
Training Diving vault Skiing board Dive3m Dive 10m Corr.
action class
Random Wts./Ini. 0.0590 0.0280 -0.0602 -0.0703 -0.0146 -0.0729 | -0.0218
Diving 0.6997 -0.0162 0.0425 0.0172 0.2337 0.0221 | 0.0599
Gymvault 0.0906 0.8472 0.0517 0.0418 -0.1642 -0.3200 | -0.0600
Skiing 0.2653 -0.1856 0.6711 0.1807 0.1195 0.2858 0.1331
Snowboard 0.2115 -0.2154 03314 0.6294 0.0945 0.1818 | 0.1208
Synec. Dive 3m 0.1500 -0.0066 -0.0494 -0.1102 0.8084 0.0428 | 0.0053
Sync. Dive 10m 0.0767 -0.1842 0.0679 0.0360 0.4374 0.7397 0.0868
Multi-action | 02258 00538 00139 02259 0.3517 0.3512 | 0.2037

Table 3: Zero-shot AQA. Performance comparison of randomly-initialized model, single-action models (for e.g., first row
shows the results of training on diving action measuring the quality of the remaining (unseen) action classes), and multi-
action model (all-action model trained on five action classes) on unseen action classes. In multi-action class, the model is
trained on five action classes and tested on the remaining action class (column-wise). In single-action model rows, diagonal
entries show results of training and testing on the same action. Avg. Corr. shows the result of average (using Fisher’s z-score)
correlation across all columns.

Results
Model Validation Mo_del _1: Two convolutior_wal I_ayers (with ReLU
Accuracy activation), batch normalization, and dropout
(25%), followed by an affine layer. 30 frames
1 43.3% sampled from each video.
2 41.7% Model 2: Two 3D convolutional layers with
' RelLU and max pooling, with affine layer.
3 47.7% Model 3: Broke videos into 10 chunks,
classified each chunk using basic model
(Model 1 without dropout), then combined.
4 72.3%]]
Model 4: Pretrained Inception-
0 Resnet-V2 model fine-tuned on our data, using
5 71.0% single frame only.
6 85.6% Model 5: Model 4, only backpropagating
' through top half of pretrained model
7 74.7% Model 6: Model 4 averaged across 10 frames.

Model 7: Model 4 with LSTM prediction layer
across 16 frames.

30

Chapter 8

Conclusion

8.1 Performance

We find that though in some cases our results are not in par with current
state of the art, our results are quite satisfactory in comparison with other
Machine Learning/Deep Learning models. The main reason is computational
capacity, which bottlenecks our architecture. But, with this limited source of
computational facility, our architecture is able to perform good in datasets
such as Sports Videos in The Wild, which is a good achievement.

8.2 Future Work

In future, we plan to extend our architecture and experiment with larger
datasets.

31

14

16

S © w =

O N Rt

W oW NN NN N NN NN N E e e
= O © W N o o W W 2

Chapter 9

Appendix

9.1 Train Test Split Code

£ coding: utf-—8

In[20]:

import os
from sklearn.model selection import train test split

In[21]:

PATH = ’SVW/Videos/’

In[22]:

os . makedirs (’Train)
os. makedirs (' Test ")

list _of labels = os.listdir (PATH)
video path = os.path.join (os.getcwd () ,PATH)

X =

y —_—
for

[
[

label in list of labels:

os.makedirs (’Train/’ + label)

os . makedirs('Test/’ + label)

path to label = os.path.join (video path,6label) +

32

)

) /9
/
/

o

45

64

66

67

#print (path to label)

In

list of labelled video = os.listdir (path to label)
for video in list of labelled video:
path to video = os.path.join (path to label, video)
print (path to_ video, label)
X.append (path to_ video)
y.append (label)

[23]:

X train, X test, y train, y test = train_ test split (X, y,

t

In

for

est size=0.3, random state=42 stratify=y)
[24]:
i in range(len(y_test)):

file name = X test[i].split(’/)[—-1]
copy_to_ path = os.getcwd () + ’/7 + "Test/’ + y_test[i] + '/’

+ file _name

In

for

)

print (X test|[i],copy_ to_ path)
os.rename (X test[i],copy to path)

[25]:

i in range(len(y_train)):

file name = X train[i].split(’/’)[—1]

copy_to_path = os.getcwd() + ’/’ + ’'Train/’ + y_train[i] + '/
+ file name

print (X train[i],copy_ to_ path)

os.rename (X train[i],copy to_ path)

33

Bow o =

0 N o v

10

11
12
13
14

15

17
18
19
20
21
22
23
24
25

26

28
29
30
31
32
33
34

36

37

39

41
42

9.2 PreProcessing Code

import os

import shutil

import cv2

import matplotlib.pyplot as plt
import numpy as np

import pickle

def extractFrames(pathIn, pathOut):
nmnn
This code takes absolute path of the video(pathIn) and
returns the frames of the video in the folder pathOut.
If the folder is not present, it will be created.
nnn

os.makedirs (pathOut, exist ok=True)

cap = cv2.VideoCapture (pathln)
count = 0

cap.read ()
while (cap.isOpened()):

Capture frame—by—frame
ret , frame = cap.read ()

if ret = True:
#print (’Read %d frame: ’ % count, ret)

cv2.imwrite (os.path.join (pathOut, "{:d}.jpg".format(

count)), frame) # save frame as JPEG file
count += 1
else:
break

When everything done, release the capture
cap.release ()
cv2.destroyAllWindows ()

In|6]:
def extract dataset (folder name = ’/userl/student/mtc/mtc2017/
cs1706/dissertation/’ ,frame dir = ’/userl/student/mtc/mtc2017

/cs1706/dissertation /Extracted Frames test/’ ,N=4):

nnn

folder name contains the path to training folder.

frame dir contains the folder where the extracted frames of

the videos will be stored.

34

63
64

65

66

co 0 N N ~ ~ ~
= O © o N o O A

[
N

83

84

N is the number of frames we need from each video.
nnn

list _ = []
list = os.listdir (folder name) #contains name of all the
labels

Aprint (7 list 7, list)
dict _of labels = {} #stores the path to the extracted frames
of an video as key and the label as value.
#list stores class names
for i in list_:
tmp = folder name + '/’ + i # i is the label of video
#print (71 1)
_list = os.listdir (tmp) # stores the name of the videos
in the class.
for vid in _ list:
pathIn = tmp + 7/’ + vid
Aprint ("tmp — vid ’,tmp, vid)
pathOut = frame dir + i + ° 7 + vid + ° _jpg’
dict of labels[pathOut] = i
#print (’pathin—out ’,pathIn , pathOut)
Extracting frames from the video and storing to the
required destination

extractFrames (pathIn ,pathOut)

To select the frames we need

list of files = os.listdir (pathOut)

num_frames = len (list of files) # counts the number
of frames

selected frame indices = np.linspace(start=0,stop=
num_frames ,num=N-+1,dtype=np.int)[: —1]

selected frame names = [str(x) + ’'.jpg’ for x in
selected frame indices]
#print (selected frame names)
Deleting the unnecessary frames
for file in list of files:
if file in selected frame names:
print ("the following file remains’, file)
else:
#print (’this should be deleted:’, file)

os.remove (os.path.join (pathOut, file))

#print (_list)
return dict of labels

In[8]:

def dict_ save(framelist, path = ’/userl/student/mtc/mtc2017/

35

cs1706/dissertation/’,file = ’“dict.save’):

nnn

85

86 Utility function To save the dict of labels in a file for
future use.

87 nnn

88 with open(path+file , ’wb’) as f:

89 pickle .dump(framelist , f)

90

o1 def dict load(path = ’/userl/student/mtc/mtc2017/cs1706/
dissertation/’, file = ’dict.save’):

92 nnn

93 Utility function To load the dict of labels from a file for
future use.

04 nmnn

95 with open(path+file , 'rb’) as f:

96 framelist = pickle.load(f)

97 return framelist

98

99 def get mnumeric_labels(path="Action/Test/”):

100 nnn

101 Provides numeric labels for each of the class.The path to
dataset is input.

102 Outputs a dict containing the string labels as keys and
numeric labels as values.

103 nnn

104 list _of labels = os.listdir (path)

105 label dict = {}

106 i = 0;

107 for label in list of labels:

108 label dict[label] = i

109 i 4= 1

110

11 for key,item in label dict.items():

112 print (key ,item)

113 return label dict

114

115 label dict = get numeric_labels ()

116 PATH = os.getcwd () + 7/’

17 dict _save(label dict ,path = PATH, file = ’dict of labels.save’)

115 dict _labels = dict load (PATH, *dict of labels.save’)

119

120 # In[9]:

121

122

125 train_folder name = os.path.join (os.getcwd (), Action/Train/”)

124 train_frame dir = os.path.join (os.getcwd(),’

Extracted Frames train/’)
125 print (train _folder name ,train frame dir)
126 test folder name = os.path.join (os.getcwd (), Action/Test/”)

36

134
135
136
137

138

test frame dir = os.path.join (os.getecwd (), Extracted Frames test/
")

print (test folder name ,test frame dir)

In[11]:

dict test = extract dataset(test folder name,test frame dir)
dict _save(dict test ,os.getcwd() + '/’ ,file="dict test.save’)
print (’Test dataset successfully preprocessed’)

dict train = extract dataset(train_ folder name,train frame dir)

dict _save(dict train ,os.getewd() + /7, file="dict train.save’)
print (’Train dataset successfully preprocessed’)

37

15
16
17
18

19

» mod2=models.vggl6

9.3 Training and Evaluation Code

import os

import shutil

import cv2

import matplotlib.pyplot as plt
import numpy as np

import pickle

import torch

import torchvision.models as models

def dict save(framelist , path = ’/userl/student/mtc/mtc2017/
csl706/dissertation/’, file = ’dict.save’):
nnn
Utility function To save the dict of labels in a file for
future use.
nnn
with open(path+file , ’wb’) as f:
pickle .dump(framelist , f)

def dict load (path = ’/userl/student/mtc/mtc2017/cs1706/
dissertation/’, file = ’dict.save’):
nnn
Utility function To load the dict of labels from a file for
future use.
nnn
with open(path+file , 'rb’) as f:
framelist = pickle.load(f)
return framelist

Assuming N = 4, we create 4 vggl6 models
modl=models.vggl6 (pretrained=True)
pretrained=True)
pretrained=True)
pretrained=True)

mod3=models . vggl6
mod4=models . vggl6

A~~~

In[17]:

Taking out the last 7 layers

modl. classifier=modl. classifier [: —7]
mod2. classifier=mod2. classifier [: —7]
mod3. classifier=mod3. classifier [: —7]
mod4. classifier=mod4. classifier [: —7]

38

a5 # In[18]:

s output list = |[]
models = [modl, mod2, mod3, mod4]| #putting models to a list

52 # In[19]:

53

54

55 class PartC(torch.nn.Module) :

56 def init (self , num frames, n_ classes=10):
57 super (PartC, self). init ()

59 self .num_ frames = num frames

60 kernel size = 3

61 fc_input = 256 % (self.num frames — kernel size + 1) % 5
* D

62 self.convdd = torch.nn.Conv3d (512, 256, kernel size)

63 self .relul = torch.nn.ReLU()

64 self.fcl = torch.nn.Linear (fc_input, 4096)

65 self.relu2 = torch.nn.ReLU()

66 self .dropoutl = torch.nn.Dropout ()

67 self.fc2 = torch.nn.Linear (4096, 1024)

68 self.relu3 = torch.nn.ReLU()

69 self .dropout2 = torch.nn.Dropout ()

70 self . fc3 = torch.nn.Linear (1024, n_classes)

71 #self .softmax = torch.nn.Softmax (dim=-—1)

74 def forward(self , x):

75 x = self.conv3d(x)

76 x = self.relul (x)

77 x = x.view (1, —1)

78 x = self.fcl(x)

79 x = self.relu2(x)

80 x = self.dropoutl (x)

81 x = self.fc2(x)

82 x = self.relu3(x)

83 x = self.dropout2(x)

84 x = self.fc3 (x)

85 #x = self .softmax (x)

86 return x

87

so # In[20]:

90

91

39

92 class VGG3d(torch.nn.Module):

93 def init (self, A, C):

94 super (VGG3d, self). init_ ()

95

96 self .A = torch.nn.ModuleList (A)

07 self .C =C

98

99 def forward (self, video):

100 output_list = []

101

102 for i in range(len(self.A)):

103 out = self .A[i](video[i].unsqueeze (0))

104 output list.append (out)

105

106 B = torch.cat(output list).transpose(1l, 0) #
Concatenation

107 final output = self.C(B.unsqueeze (0))

108 return final output

109

110

111 # In 121]:

112

113

114 device = ’cuda:2’

115 cudal = torch.device(device)

116
117

118 # In [22]:

119

120

121 #Instanciation of the model. .cuda(cudal) is added to move the
model into GPU memory .

122 models = [modl. features.cuda(cudal), mod2. features.cuda(cudal),

mod3. features.cuda(cudal), mod4. features.cuda(cudal)]
123 C = PartC(num_frames=4, n_classes=30)
124 vgg3d = VGG3d(models, C).cuda(cudal)
125
126
127 # 111[10]:
128
129
150 def image resize (filename , shape=(224,224)):

131 nnn

132 Utility function to resize an image to (224,224,3) which is
the input size needed to feed into the model

133 nmnn

134 image = cv2.imread (filename)

135 new img = cv2.resize (image,shape)

136 return new_img

40

137

138

139 7

140
141
142
143

144

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166

167

168

170
171
172
173
174
175
176
177
178
179

180

tIn[11]:

def get frame from one video(folder path):

nnn

This utility function loads frames of an video, after
resizing them to (224,224,3) format

Input is path to folder where the frames of the video is
stored .

Returns a numpy array of size (N,3,224,224)

mmnn

frame list = []

list of files = os.listdir (folder path)

for frame name in list of files:
temp path = os.path.join (folder path ,frame name)
temp img = image resize (temp path)
temp img = np.array (temp img,np.float32)
frame list.append (temp img.T)
return np.array (frame list)

In[12]:

def training (vgg3dd,epochs=1):

criteria = torch.nn.CrossEntropyLoss().cuda(cudal)
optimizer = torch.optim.SGD(vgg3d.parameters(), lr=0.001)
saved list = dict load(’/userl/student/mtc/mtc2017/cs1706/
dissertation/’,’dict train.save’)
saved list test = dict load(’/userl/student/mtc/mtc2017/
csl1706/dissertation/’, dict test.save’)
get label = dict load(’/userl/student/mtc/mtc2017/cs1706/
dissertation/’,’dict of labels.save’)
#epochs = 10
for epoch in range(epochs):
correct = 0
total = 0
vgg3d. train ()
1 = np.random.permutation (len (saved list))
for pos in 1:
key ,item = list (saved list.items())|[pos]
#print (video)
if len(os.listdir (key)) >= 4:
total += 1 # for training accuracy
path to video = key

41

187
188
189
190

191

192
193
194
195
196
197
198
199
200
201
202
203

204

205

206

207

208

209

210

219

220

#print (path to video,item)

temp list = get frame from one video(
path to video)

frame list = |[]

#print (frame list.max(), frame list.min())

Aprint (’current epoch " epoch)

for i in range(temp list.shape[0]):
temp = temp list[i].astype(float)/255.0
frame list.append (temp)
#print (1, frame list[i].dtype)
frame list = np.array(frame list ,np.float64)
inp = torch.from numpy(frame list).type(torch.
FloatTensor)
inp = inp.cuda(cudal)#for running in gpu

#print ('len frame:’, frame list.shape)
#print (’inp shape:’, inp.shape)

#print ("inp 0 shape:’, inp[0].shape)
vgg3d.zero grad ()
prediction = vgg3d(inp).cuda(cudal)
#print (prediction .shape)
target = get label[item]
#For training accuracy
predicted label = prediction.argmax/()
#print (predicted label.item (), target ,correct ,
total)
if predicted label =— target:
correct += 1
target = torch.tensor (target)
target = target.unsqueeze (0).type(torch.
LongTensor) .cuda(cudal)
#print (' prediction target’,prediction .shape,
target .shape ,type(prediction) ,type(target))
#print (prediction .argmax (), target)
loss = criteria(prediction, target)
loss . backward ()
optimizer.step ()
#else :
- print ("has less than 4 frames’, key)

print (’train accuracy after epoch is ’,epoch, correct/
total)
correct test = 0

total test = 0
vgg3dd.eval ()
for key,item in saved list test.items():

42

224 if len(os.listdir (key)) >= 4:

225 total test += 1 # for training accuracy

226 path to video = key

227 temp list = get frame from omne video(
path to video)

228 frame list = []

229 for i in range(temp list.shape[0]):

230 temp = temp list[i].astype(float)/255.0

231 frame list.append (temp)

232 #print (i, frame list[i].dtype)

233 frame list = np.array (frame list ,np.float64)

234 inp = torch.from numpy(frame list).type(torch.
FloatTensor)

235 inp = inp.cuda(cudal)#for running in gpu

236

237 prediction = vgg3d(inp).cuda(cudal)

238 target = get label[item|]

239 predicted label = prediction .argmax/()

240 if predicted label = target:

241 correct test 4= 1

242 #else :

243 +# print (’has less than 4 frames’, key)

244 #print (predicted label.item () ,target ,correct test
,total test)

245 print ('testing accuracy after epoch is ’, epoch,
correct test/total test)

246

247 return vgg3dd

248

249

250 # In[13]:

251

252

253 vggdd = training (vggdd, 25)

254

255

256 # In[14]:

258

250 PATH = os.getcwd () + ’/saved gpu dict.pth’
260 torch.save (vgg3d.state dict () ,PATH)

43

References

[1]

2]
3]

4]

[5]

6]

7]

Joao Carreira and Andrew Zisserman. “Quo Vadis, Action Recogni-
tion? A New Model and the Kinetics Dataset”. In: arXiv e-prints,
arXiv:1705.07750 (May 2017), arXiv:1705.07750. arXiv: 1705 . 07750
[cs.CV]l

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Kurt Hornik. “Approximation capabilities of multilayer feedforward
networks”. In: Neural Networks 4.2 (1991), pp. 251-257. 1SSN: 0893-
6080. DOI: https://doi.org/10.1016/0893-6080(91) 90009 - T.
URL: http://www. sciencedirect . com/science/article/pii/
089360809190009T.

F. Husain, B. Dellen, and C. Torras. “Action Recognition Based on
Efficient Deep Feature Learning in the Spatio-Temporal Domain”. In:
IEEE Robotics and Automation Letters 1.2 (July 2016), pp. 984-991.
ISSN: 2377-3766. DOI: 10.1109/LRA.2016.2529686

J. Liu, Jiebo Luo, and M. Shah. “Action recognition in unconstrained
amateur videos”. In: 2009 IEEE International Conference on Acoustics,
Speech and Signal Processing. Apr. 2009, pp. 3549-3552. DOI:10.1109/
ICASSP.2009.4960392.

Allen Newell. “Perceptrons. An Introduction to Computational Geom-
etry. Marvin Minsky and Seymour Papert. M.I.T. Press, Cambridge,
Mass., 1969. vi + 258 pp., illus. Cloth, 12;paper,4.95”. In: Science
165.3895 (1969), pp. 780-782. 1sSN: 0036-8075. DOI:10.1126/science.
165.3895.780. eprint: https://science.sciencemag.org/content/
165/3895/780.full.pdf. URL: https://science.sciencemag.org/
content/165/3895/780.

Paritosh Parmar and Brendan Tran Morris. “Action Quality Assess-
ment Across Multiple Actions”. In: arXiv e-prints, arXiv:1812.06367
(Dec. 2018), arXiv:1812.06367. arXiv: 1812.06367 [cs.CV].

44

http://arxiv.org/abs/1705.07750
http://arxiv.org/abs/1705.07750
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
https://doi.org/10.1109/LRA.2016.2529686
https://doi.org/10.1109/ICASSP.2009.4960392
https://doi.org/10.1109/ICASSP.2009.4960392
https://doi.org/10.1126/science.165.3895.780
https://doi.org/10.1126/science.165.3895.780
https://science.sciencemag.org/content/165/3895/780.full.pdf
https://science.sciencemag.org/content/165/3895/780.full.pdf
https://science.sciencemag.org/content/165/3895/780
https://science.sciencemag.org/content/165/3895/780
http://arxiv.org/abs/1812.06367

[8] Paritosh Parmar and Brendan Tran Morris. “Action Quality Assess-
ment Across Multiple Actions”. In: arXiv e-prints, arXiv:1812.06367
(Dec. 2018), arXiv:1812.06367. arXiv: 1812.06367 [cs.CV].

[9] Mikel Rodriguez. SPATIO-TEMPORAL MAXIMUM AVERAGE COR-
RELATION HEIGHT TEMPLATES IN ACTION RECOGNITION
AND VIDEO SUMMARIZATION. 2010.

[10] Seyed Morteza Safdarnejad et al. “Sports Videos in the Wild (SVW): A
Video Dataset for Sports Analysis”. In: Proc. International Conference
on Automatic Face and Gesture Recognition. Ljubljana, Slovenia, May
2015.

[11] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing Hu-
man Actions: A Local SVM Approach. 2004.

[12] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: arXiv e-prints, arXiv:1409.1556
(Sept. 2014), arXiv:1409.1556. arXiv: 1409.1556 [cs.CV].

[13] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101:
A Dataset of 101 Human Actions Classes From Videos in The Wild”. In:
arXiv e-prints, arXiv:1212.0402 (Dec. 2012), arXiv:1212.0402. arXiv:
1212.0402 [cs.CV].

[14] Khurram Soomro et al. Chapter 9 Action Recognition in Realistic Sports
Videos.

[15] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15 (2014), pp. 1929-1958. URL: http:// jmlr . org/papers/vi5/
srivastaval4a.html.

[16] G. K. Yadav and A. Sethi. “Action recognition using spatio-temporal
differential motion”. In: 2017 IEEE International Conference on Image
Processing (ICIP). Sept. 2017, pp. 3415-3419. DOI: 10.1109/ICIP.
2017.8296916.

45

http://arxiv.org/abs/1812.06367
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1212.0402
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/ICIP.2017.8296916
https://doi.org/10.1109/ICIP.2017.8296916

	Introduction
	What is action recognition?
	Objective
	Outline

	Deep Learning
	Perceptron
	Multi Layer Perceptron
	Deep Neural Network
	Limitations

	Convolutional Neural Network
	Dropout
	Why dropout ?

	Transfer Learning

	Architecture
	Developing Architecture
	Architecture Description
	VGG16
	Concatenation
	FC Layers

	Architecture Methodology

	Datasets
	UCF-101
	KTH
	UCF Sports
	Action Quality Assessment
	Sports Videos in the Wild

	Implementation
	Train Test Split
	Preprocessing
	Training
	Testing
	Computational Details

	Result
	Evaluation Metric
	UCF-101
	KTH
	UCF-Sports
	Action Quality Assessment Performance
	Sports Videos in the Wild Performance

	Related Work
	Comparison
	UCF-101
	KTH
	UCF Sports
	Action Quality Assessment
	Sports Videos in the Wild

	Conclusion
	Performance
	Future Work

	Appendix
	Train Test Split Code
	PreProcessing Code
	Training and Evaluation Code

	References

