INADMISSIBILITY OF CUSTOMARY ESTIMATORS IN SAMPLING OVER TWO OCCASIONS

By P. K. PATHAK* and T. J. RAO

Indian Statistical Institute

SUMMARY. Insulmissibility of customary estimators of population total in sampling over two occasions is demonstrated by providing more officient estimators under some well-known schemes of sampling over two occasions.

1. IMPROVED ESTIMATORS FOR SES SOMEME

In this paper, we consider two schemes of sampling over two occasions:

(1) when simple random sampling (srs) (without replacement) is used on both the
occasions and (2) when probability proportional to size (pps) sampling is used on both
the occasions.

Under scheme 1, a sample of size n is selected by simple random sampling (without replacement) from the population on the first occasion. Then on the second occasion m units of the first sample are retained and (n-m) units are selected independently by simple random sampling (without replacement) from the whole population. For estimating the total of the population on the second (current) occasion, the customary estimator (Cochran, 1903) of the population total is given by

$$l_2 = \phi(N\bar{y}_{2n}) + (1-\phi)N\bar{y}'_{2m}$$

where

N = population size,

 $g_{\lambda \mu} = \text{mean of the unmatched portion on occasion } h(\lambda = 1, 2),$

 \bar{y}_{kn} = mean of matched portion on occasion h(h = 1, 2),

 \hat{g}_{k} = mean of the whole sample on occasion h(h = 1, 2),

 $\bar{y}_{2m} = \bar{y}_{2m} + b(\bar{y}_1 - \bar{y}_{1m})$, is the regression estimate based on the matched portion

and o is determined such that the variance of to is minimised.

Now, let the (n-m) units selected independently on the second occasion be represented by $s = (s_1, s_2)$, where $s_1 = (u_{11}, u_{12}, ..., u_{1m_2})$ denotes the sample units of s which come from the matched portion and $s_2 = (u_{21}, u_{22}, ..., u_{n_2})$ denotes the remaining units.

The following theorem now provides an estimator more precise than t₂ and thus proves the inadmissibility of t₂.

Theorem 1: Let

$$l_{1}^{*} = N\phi \Big\{ \frac{m_{1}\,\bar{y}_{2m} + l_{1}\,\bar{y}_{2l_{2}}}{m_{1} + l_{1}} \Big\} + N(1 - \phi)\hat{y}_{2m}^{*}.$$

^{*}Now with University of Illinois, U.S.A.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

where $g_{u_2} = mean$ of the units based on the sample s_1 . Then $E(t_1^*) = E(t_1)$ and for any convex loss function t_1^* does not have greater expected loss than t_2 .

Proof: We have

$$E[t_1|s_2,s_m] = \frac{N\phi}{t_n+m_n} [m_2 E(g_{2m_2}|s_m) + t_2 g_{3l_2}] + N(1-\phi) g_{2m}' = t_2'', \qquad \dots \quad (1)$$

where g_{2m_a} is the mean of units based on the sample s_1 .

Therefore.

$$E(t_*^0) = E(t_*)$$
 by (1).

Now as a consequence of Jensen's inequality, it follows from (1) that t_2^* does not have greater expected less than t_2 .

This completes the proof of the theorem.

Although the main object of this paper is to demonstrate the inadmissibility of the customary estimators of the population total in sampling over two occasions, we, however, provide below for completeness (Corollaries 1 and 2) the gain in efficiency of f₂ over f₄ and an upper bound to it.

Corollary 1: If squared error is the loss function, the gain in efficiency on using is given by

$$E(t_2''-t_2)^2 = N^2 \phi^2 S^2 \frac{m-1}{N-1} \left(\frac{1}{n-m} - \frac{1}{N} \right).$$

Proof:

$$\begin{split} E(l_2^* - l_2)^3 &= N^2 \phi^3 \, E \left[\frac{m_2^*}{(l_1 + m_2)^2} \, (g_{2m_2} - \bar{g}_{2m})^2 \right] \\ &= \frac{N^2 \phi^3}{(n - m)^2} \, E \left[E m_2^2 (g_{2m_2} - \bar{g}_{2m})^2 \, | \, m_2; \, e_{nl} \right] \\ &= \frac{N^3 \phi^5}{(n - m)^3} \, E \left[\, m_1 \left(1 - \frac{m_2}{m} \right) S_m^2 \, \right] \\ &= \frac{N^2 \phi^4 S^3}{(n - m)^3} \, \left[\, (n - m) \, \frac{m}{N} - \frac{1}{m} \left\{ E^2 (m_2) + V(m_2) \right\} \right] \\ &= \frac{N^2 \phi^4 S^2}{(n - m)^3} \, \left[(n - m)^3 \, \frac{m}{N} \left\{ \frac{1}{n - m} - \frac{1}{N} - \frac{1}{m} \left(\frac{1}{n - m} - \frac{1}{N} \right) \frac{N - m}{N - 1} \right\} \right] \\ &= N^2 \phi^4 S^3 \, \frac{m}{N} \left(\frac{1}{n - m} - \frac{1}{N} \right) \frac{m - 1}{N - 1} \cdot \frac{N}{m} \\ &= N^2 \phi^4 S^3 \, \frac{m}{N - 1} \left(\frac{1}{n - m} - \frac{1}{N} \right) \frac{m - 1}{N} \end{split}$$

INADMISSIBILITY OF CUSTOMARY ESTIMATORS IN SAMPLING

Corollary 2: An upper bound to the relative gain in efficiency of t_1^* over t_1 is equal to $\frac{u}{n}, \frac{m-1}{n-1}/1 - \frac{u}{n}, \frac{m-1}{N-1}$ when $\phi < \frac{u}{n}$.

Proof: We have from Cochran (1963)

$$V(t_2) = N^2 S^4 \left(\frac{n - u \rho^4}{mn} - \frac{1}{N} \right) \left(\frac{1}{u} - \frac{1}{N} \right) / \left(\frac{n^2 - u^2 \rho^2}{mnu} - \frac{2}{N} \right)$$

where ρ is the correlation between units over two occasions and u = n - m. The relative gain in efficiency of t_0^* over t_0 is defined to be

$$G = \frac{E(t_2^* - t_2)^2}{V(t_2^*)}$$
.

Since $V(t_s^*) = V(t_s) - E(t_s - t_s^*)^s$, we get by virtue of Corollary 1

$$G = \frac{\phi[(m-1)/(N-1)]}{1-\phi[(m-1)/(N-1)]} \text{ where } \phi = \left(\frac{n-u\rho^2}{mn} - \frac{1}{N}\right) \left(\frac{n^2 - u^2\rho^3}{mun} - \frac{2}{N}\right).$$

In practice $\frac{n}{N} < \frac{1}{4}$ and $\rho > \frac{1}{2}$ so that $\phi < \frac{u}{n}$. Therefore

$$a < \frac{u}{n} \cdot \frac{m-1}{N-1} / 1 - \frac{u}{n} \cdot \frac{m-1}{N-1}$$

Further in practice we have

$$\frac{m}{n} < \frac{1}{2}$$
 and so $\frac{m-1}{N-1} = \frac{m-1}{n-1} \cdot \frac{n-1}{N-1} < \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$

so that
$$G < \frac{u}{8n} / \left(1 - \frac{u}{8n}\right) = \frac{1}{8} \left(1 - \frac{m}{n}\right) / \left(1 - \frac{1}{8} \left(1 - \frac{m}{n}\right)\right) < 7\%$$
 approximately.

When one is dealing with finite populations and the sampling fraction is large, a modified sampling scheme has been suggested by the referee in which (n-m) units are selected on the second occasion from the (N-n) units in the population not sampled on the first occasion. It seems that the estimator similar to t_2 under the new scheme would fare better than t_2^* . Since our aim has been to demonstrate the inadmissibility of the customary estimators, we do not go into detailed comparisons of these estimators.

2. IMPROVED ESTIMATORS FOR PPS SCHEME

We now consider the other sampling scheme over two occasions where pps sampling is used on both the occasions (Des Raj, 1965). In this scheme, a sample s_f of size n is selected by pps with replacement on the first occasion and on the second

SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS: SERIES A

occasion a simple random sample of size m is selected without replacement from s_i and an independent sample of (n-m) units is selected by pps with replacement from the whole population.

As an estimator of the population total on the second occasion Des Raj considers the following estimator:

$$z_2 = \phi z_{2u} + (1 - \phi) z'_{2m}$$

where

$$z_{ku} = \frac{1}{n-m} \sum \frac{y_{ki}}{v_i}$$

is the estimate of the population total based on the unmatched sample, on occasion h(h=1,2),

$$z_{km} = \frac{1}{m} \sum \frac{y_{ki}}{p_i}$$

is the estimate of the population total based on the matched sample, on occasion h(h = 1, 2),

$$z_{\lambda} = \frac{1}{n} \sum \frac{y_{\lambda i}}{p_{i}}$$

is the estimate of the population total based on the whole sample, on occasion h(h = 1, 2) and

$$z'_{2m} = (z_{2m} - z_{1m}) + z_{1m}$$

is the difference estimate of the population total on the second occasion, based on the matched portion.

Now, let s_n denote the matched sample and represent the unmatched sample on the second occasion by $s=(s_1,s_2)$, where $s_1=(u_1,u_1,\dots,u_{1s_d})$ denotes the sample units which come from the matched portion and $s_2=(u_1,u_2,\dots,u_{2s_d})$ denotes the remaining units. We then have the following theorem.

Theorem 2 : Let

$$z_2^* = \frac{\phi}{n-m} \left[\sum_i (y_{2i}/p_i) + \left(m_2 \left(\sum_{i=1}^m y_{2i} \right) \right) / \sum_{i=1}^m p_i \right] + (1-\phi) z_{2m}^*.$$

where Σ_k denotes the summation over the units in s_k and the summation in the second term within braces is taken over the matched portion. Then $E(z_k^*) = E(z_k)$ and for any convex loss function z_k^* does not have greater expected loss than z_k .

Proof: We have

$$\begin{split} E[z_2 \mid s_0, s_m] &= (1 - \phi) z_{2m}^* + \frac{\phi}{n - m} \left[\Sigma_2 \frac{y_{2i}}{p_i} + E \sum_{\epsilon_1} \frac{y_{2i}}{p_i} \mid s_m \right] \\ &= z_1^*. \\ \therefore E(z_0^*) &= E(z_0). \end{split}$$

INADMISSIBILITY OF CUSTOMARY ESTIMATORS IN SAMPLING

That z_1^* does not have greater expected loss than z_1 for any convex loss function follows from Jensen's inequality.

Corollary 3: If equated error is the loss function then the gain in efficiency in using z₁* is given by

$$\begin{split} E(z_{1}-z_{2}^{2})^{2} &= \frac{\phi_{-}^{2}}{(n-m)^{2}} \left\{ \sum Y_{1}^{2} Y_{1}^{2} Y_{1}^{2} (P_{1}+P_{1}) + (m-1) \sum_{c \neq j} \sum_{l} \frac{Y_{1}^{2} P_{1}^{2}}{P_{1}^{2}} \right. \\ &\qquad \qquad - (m-2) \sum_{c \neq j, \neq k} \sum_{l} Y_{1}^{2} Y_{1}^{2} P_{1}^{2} \right\} \\ Proof: \quad E(z_{1}-z_{1}^{2})^{2} &= c^{2} E \left[\sum_{l} \frac{\pi}{2} \left(\left(y_{kl} | p_{l} \right) - \left(\sum_{l} \frac{y_{kl}}{y_{kl}} \sum_{l} p_{l} \right) \right) \right]^{l}, \quad \text{where } c \Rightarrow \frac{\phi}{n-m} \\ &= c^{2} E \left[E \left\{ \frac{1}{(\sum p_{l})^{2}} \left(\sum_{l} \frac{y_{kl}}{p_{l}^{2} \sum_{l} p_{l}} - \sum_{l} y_{kl} \right) \right] \right] \\ &= c^{2} E \left[\frac{m_{2}}{(\sum p_{l})^{2}} V \left(\frac{y_{kl}}{p_{l}^{2} \sum_{l} p_{l}} - y_{kl} \right) \right] \right] \\ &= c^{2} E \left[\frac{m_{2}}{(\sum p_{l})^{2}} V \left(\frac{y_{kl}}{p_{l}^{2} \sum_{l} p_{l}} - \frac{y_{kl}}{p_{l}^{2} \sum_{l} p_{l}} \right)^{2} \right] \right] \\ &= c^{2} E \left[\left(\sum_{l=1}^{\infty} \frac{p_{l}}{p_{l}^{2}} \right) \sum_{c \neq l} \sum_{l=1}^{\infty} \left(\frac{y_{kl}}{p_{l}^{2} \sum_{l} p_{l}} - \frac{y_{kl}}{p_{l}^{2} \sum_{l} p_{l}^{2}} \right)^{2} \right] \right] \\ &= \frac{c^{2}}{2(m-1)} \left[2(m-1) E \left\{ (\sum p_{k}) \sum_{l=1}^{\infty} \sum_{l=1}^{\infty} \left(\sum p_{l} \right) \sum_{c \neq l} \sum_{l=1}^{\infty} \frac{y_{l} y_{l}}{p_{l}^{2}} \right\} \\ &= \frac{c^{4}}{2(m-1)} \left[2(m-1) \left\{ m \sum_{l=1}^{\infty} \sum_{l=1}^{\infty} \sum_{l=1}^{\infty} \frac{y_{l}^{2} P_{l}^{2}}{p_{l}^{2}} \right\} \\ &- 2 \left\{ m(m-1) \sum_{c \neq l} \sum_{l=1}^{\infty} \sum_{l$$

A sampling scheme which would probably fare better than the above described scheme of sampling over two occasions can be suggested in a manner similar to that given in the equal probability case.

SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS; SERIES A AGENOWLEDGEMENT

The authors are grateful to the referee for his valuable suggestions.

REFERENCES

COURMAN, W. G. (1983): Sampling Techniques, (2nd Edition), Wiley, New York.

DER RAI (1985): On exampling over two occasions with probability proportionate to size. Ann. Math.

Size. 38, 327-30.

Paper received : August, 1966.