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Abstract

Deep neural networks (DNNs), as well as shallow networks, are usually black
boxes due to their nested non-linear structure. In other words, they provide no
information about what exactly makes them arrive at their predictions/decisions.
This lack of transparency can be a major drawback, particularly in critical applica-
tions, such as medicine, judiciary, and defense. Apart from this, almost all DNNs
make a decision even when the test input is not from one of the classes for which
they were trained or even when the test point is far from the training data used to
design the system. In other words, such systems cannot say “don't know” when
they should. In this work, we develop systems that can provide some explanations
for their decisions and also can indicate when they should not make a decision.
For this, we design DNNs for classification, which can classify an object and pro-
vide us with some explanation. For instance, if the network classifies an image,
say a bird of kind Albatross, the network should provide some explanatory notes
on why it has classified the image as an instance of Albatross. The explanation
could be pieces of information that are distinguishing characteristics of Albatross.
The system also detects situations when the inputs are not from the trained classes.
To realize all these, we use four networks in an integrated manner: a pre-trained
convolutional neural network (we use it as we do not have an adequate comput-
ing power to train from the scratch), two multilayer perceptron networks, and a
self-organizing (feature) map. Each of these networks serves a distinctive purpose.
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Chapter 1

Introduction

Though deep neural networks (DNNs) are extremely popular due to their clas-
sification abilities, they lack transparency, and hence, act as black boxes. A black
box cannot describe why it makes a decision. Hence, they are not trustworthy. It
is, therefore, important to create models that are trustworthy, responsible, and ca-
pable of providing us with an explanation [1]. Explainable artificial intelligence
(XAI) aims to produce more explainable models while maintaining a high level
of learning performance (prediction accuracy); and enable human users to under-
stand, trust, and effectively manage the emerging generation of artificially intelli-
gent partners [2]. Note that, in this work, we do not make CNN transparent but
we augment it with explainability.

1.1 What is Explainable Artificial Intelligence (XAI)?

The concept of explainability sits at the intersection of several areas of active re-
search in AI, with a focus on the following [3]:

Transparency: We have a right to have decisions affecting us explained to us in the
language we understand.

Causality: When we learn a model from data, can this model provide us with not
only the correct inferences but also some explanation for the underlying phe-
nomena or the causes?

Bias: How can we ensure that the AI system has not learned a biased view of the
world based on the limitations of the training data or objective function?

Fairness: If decisions are made based on an AI system, can we verify that they
were made fairly?. This issue is somehow related to the bias.

Trustworthiness: Can we trust our AI system without an explanation of how it
reaches the conclusions?. Can it decline to make a decision when it should?

An XAI or transparent AI or interpretable AI is an AI in which the actions of the
system can be easily understood and analyzed by humans.
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1.2 Objective and Organization of This Thesis

The objective of this work is to design a classifier using DNNs, which can provide
us with an explanation behind the decision it makes, has a decent performance in
terms of accuracy and can refuse to make decisions when required.

This thesis has seven chapters. Chapter 2 provides the preliminary knowledge
required for understanding the proposed work. Chapter 3 presents related works.
Chapter 4 gives an overview of the dataset. In Chapter 5, we discuss the proposed
work. Chapter 6 presents the experiments and their results. Finally, we conclude
in Chapter 7.
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Chapter 2

Preliminaries

2.1 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) has an input layer to receive the input and an out-
put layer that makes a decision or prediction about the input. Moreover, in be-
tween those two layers, it can have an arbitrary number of hidden layers that are
the true computational engine of the MLP. Here, we consider an MLP with a single
hidden layer. Figure 2.1 shows the architecture of the MLP that we use here. An
MLP with a single hidden layer is a function f : RD → RL, where D is the length of
each input vector x = (x1, x2, . . . , xD) ∈ RD, and L is the size of the output vector,
f(x), such that, in a matrix notation:

f (x) = S (2)(b(2) + W(2)(S (1)(b(1) + W(1)x))), (2.1.1)

where b(i), W(i), and S (i)(·) denote the bias vector, weight matrix, and an array of
activation functions of the ith layer, respectively. In this work, we use ReLU as the
activation functions of the hidden layer neurons, sigmoid function as the activation
functions of the penultimate layer neurons and softmax function as the activation
functions of the output layer neurons. In particular,

S (1)
(j) (ξ) =

{
0 for ξ < 0
ξ for ξ ≥ 0

, j = 1, 2, · · · , H (2.1.2)

S (2)
(j) (ξ) =

1
1 + e−ξ

, j = 1, 2, · · · , L. (2.1.3)

Here, H is the number of nodes in the hidden layer.

For an input x, let o = (o1, o2, . . . , oL)
T ∈ {0, 1}L be the desired output. After

feeding the input x to the network, at the output layer we get y = (y1, y2, . . . , yL)
T ∈

RL . Our objective is to minimize the difference between the predicted output y
and the desired output o. So we want to minimize the instantaneous squared error

3



Figure 2.1: MLP with one hidden layer

(ISE), E(x):

E(x) =
1
2

L

∑
i=1

(oi − yi)
2 (2.1.4)

Thus, for a given set of training data D = {(xi, oi)}n
i=1 with n samples, we mini-

mize the mean squared error, E :

E =
1
n ∑

x
E(x) (2.1.5)

To train an MLP, we learn all parameters of the model, θ = {W(2), b(2), W(1), b(1)},
using stochastic gradient descent.

2.2 Self Organizing Map (SOM)

Kohonen’s self-organizing map (SOM) [4, 5], a type of artificial neural network
(ANN), can be used to represent important topological information. A SOM is
trained in an unsupervised fashion that generates a lower (usually two or three)
dimensional discrete representation of the training samples, which is called a map.
SOMs apply a competitive learning rule, where the output nodes compete among
themselves to represent distinct training samples by preserving the relationships,
i.e., the topology in the data. Figure 2.2 shows the architecture of a SOM. A SOM
works in two modes: training and mapping. For the input data, “training” mode
builds the map, whereas in the “mapping” mode it classifies a new input example.
A finite lower-dimensional map space is defined before it goes to the “training”
mode. In this work, we use a two-dimensional map.

A SOM is a two-layered network. The first layer is the input layer. If the train-
ing data are in an D-dimensional space, the input layer will have D input nodes
(x1, x2, . . . , xD). The second layer is the competitive layer (or output layer) of nodes
(N1, N2, . . . , Nk). There is a complete connection between the two layers. The sec-
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Figure 2.2: The Architecture of a Self Organizing Map (SOM)

ond layer nodes are arranged on a two-dimensional lattice. Thus each node is as-
sociated with a D-dimensional weight vector. The task of “training” is to move the
weight vectors towards input data, but without damaging the topology induced
from the map space. A SOM involves the following three characteristics [6]:

Competition: The output nodes in a SOM compete with each other for a better
representation of the particular input sample. For each output node, we com-
pute a value by comparing an input vector to the associated weight vector
using a discriminant function (usually Euclidean distance). The output node
with the minimum Euclidean distance associated with the particular input is
declared as the best-matching unit (BMU) or the winner of the competition.

Let there be k nodes in the map space. So for the jth node the weight vector is,
wj = (wj1, wj2, . . . , wjD)

T where j = 1, 2, . . . , k. Now, to find the best matching
unit, we find the Euclidean distances between input x and the weight vector
wj, ∀j. For input x, we select the ixth node as the winner (best matching) node,
such that, the following hold:

ix = arg min
j

{
||x−wj||2

}
(2.2.1)

Cooperation: A SOM performs topological preservation of input data in which
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nearby locations in the output space represent inputs with similar properties.
For, an input x, a SOM finds a neighborhood around the winning node, i.e.,
the ixth neuron. Instead of defining an explicit neighborhood, we use an im-
plicit neighborhood function. For this, we define hjix as the topological neigh-
borhood centered around the ith

x node, encompassing node j. hjix decreases
with the lateral distance on the 2D-lattice(grid), i.e., the distance between the
winning node ix and node j. The lateral distance between node ix and node
j is denoted by djix , where node ix is the winning node and node j is the ex-
cited node as an effect of the winning node. Here, a typical choice is to use
Gaussian type neighborhood function, i.e.,

hjix = exp

(
−

d2
jix

2σ2

)
. (2.2.2)

This neighbourhood does not depend on the position of the winning node.
Therefore, it is translation invariant. In case of two dimensional output space
djix = ||rj− rix ||2, where rj is the coordinate of the excited node j and rix is the
coordinate of the winning node ix. With iterations, we decrease σ as follows:

σ(t) = σinit − (σinit − σf inal)
t

tmax
, (2.2.3)

where t is the iteration counter, σinit and σf inal are parameters to control neigh-
bourhood, and tmax is the maximum number of iterations. Consequently, for
iteration t, (2.2.2) can be rewritten as follows:

hjix(t) = exp

(
−

d2
jix

2σ2(t)

)
. (2.2.4)

We note that there could be other ways of shrinking the neighborhood.

Synaptic Weight Adaptation: We adjust the weight vectors of the winner and its
neighboring units in the map in favor of higher values of their discriminant
functions. Here, we use Hebbian learning. It means that when the pre-
synaptic and post-synaptic features are correlated then the synaptic connec-
tion is strengthened. If they are not correlated then the synaptic connection is
weakened.

The usual way of finding the change in weight with the Hebbian hypothesis
is as follows:

∆wj = ηyjx, (2.2.5)

6



where ∆wj is the change in the weight vector wj, and η ∈ R+ is the learning
rate. Now to forget, considering yj = hjix we modify (2.2.5) as follows:

∆wj = ηyjx− ηyjwj

= ηhjix x− ηhjix wj

= ηhjix(x−wj) (2.2.6)

Using discrete time formulation we obtain the following weight updation for-
mula:

wj(t + 1) = wj(t) + η(t)hjix(t)(x−wj(t)), (2.2.7)

where η(t) is dependant on t and it is defined as follows:

η(t) = ηinit

(
1− t

tmax

)
. (2.2.8)

Here, ηinit is the initial value of the learning rate. Note that, with this update
rule, the weight vector associated with the winning node achieves the max-
imum degree of update and it moves closer to x. All other weight vectors
also move closer to the input. However, for them, the strength of the update
reduces with an increase in the distance of the node from the winner node.

We use a two-phase learning for SOM. In the first phase, the weights of the
winner and its neighbors are updated in the way mentioned above. In the
second phase, we update only the weight vector associated with the winner
node for some iterations to refine the weights.

2.2.1 Learning of a SOM

We assume that the initial value of the learning rate (ηinit); parameters to control
neighbourhood (σinit) and (σf inal); and the maximum number of iterations (tmax);
and the size and the dimension of the output space are given. We perform the
following steps to train a SOM [7]:

i. We randomly initialize the weight vectors wj(0), normalize the training data,
and set iteration index t = 1.

ii. We randomly select an input vector x from the training data set.

iii. We compute the Euclidean distances between x and each weight vector of the
output node to find the best matching node ix using (2.2.1).

iv. We update the weights of the winning node and its neighborhood using (2.2.7).

7



v. We set t← t + 1. We then update the neighborhood size and the learning rate
using (2.2.4) and (2.2.8), respectively.

vi. We repeat Steps (ii)-(v) until t reaches 0.8× tmax.

vii. We repeat Steps (ii)-(v) for 0.2× tmax steps while updating only the winner.
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Chapter 3

Related Works

Usually, deep neural networks (DNNs) are large networks, in terms of the num-
ber of layers, the number of learnable parameters, and the number of nodes per
layer. Consequently, they require a large number of elementary operations to make
a decision. When we attempt to explain a decision made by a DNN, we need to re-
duce the complexity of these operations. In [8], the authors have proposed LIME, a
novel explanation technique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable model locally around
the prediction.

Recently, both the hardware quality and data availability have improved signif-
icantly. Consequently, high-performance predictive systems, which are complex
and opaque, have emerged. However, these models do not consider the inter-
pretability and explainability of these systems. Explainable models consider im-
portant features while predicting the output, such that, these important features
can be used to generate an explanation for a given decision. In [9], researchers
have proposed a layer-wise relevance propagation and sensitivity analysis to ex-
plain prediction for DNNs in terms of input variables.

Hendricks et al. [10] proposed a model that focuses on discriminating properties
of a visual object. It jointly predicts a class label and explains why the predicted
label is appropriate for the image. Their explanation model differs from the caption
model. This is so because it includes the object category as an additional input and
uses a reinforcement learning-based discriminative loss to learn the same.

Based on fine-grained visual categorization, Berg et al. [11] proposed a fully
automatic method for choosing the best part-based features from a large set of
features. These features identify the difference between two similar classes. This
method annotates the images to show these distinguishing features.

9





Chapter 4

Dataset

We use Caltech-UCSD Birds-200-2011 (CUB-200-2011) [12] dataset. It is an image
dataset with 11788 samples that is divided into a training dataset with 5994 sam-
ples and a test dataset with the remaining 5794 samples. There are 200 North
American bird species (classes) in the data, and hence, there are approximately
60 samples per class. Figure 4.1 shows 200 samples from the dataset, such that,
each sample corresponds to a distinct class [13]. Each bird is characterised by 28
attributes, where depending on the type of the birds, different attributes take dif-
ferent values. When these attributes are represented using orthogonal coding, the
length of the attribute vector for each bird becomes 312. These attributes are: (1) bill
shape, (2) wing color, (3) upper-parts color, (4) underparts color, (5) breast pattern,
(6) back color, (7) tail shape, (8) upper tail color, (9) head pattern, (10) breast color
, (11) throat color, (12) eye color, (13) bill length, (14) forehead color, (15) under tail
color, (16) nape color, (17) belly color, (18) wing shape, (19) size, (20) shape, (21)
back pattern, (22) tail pattern, (23) belly pattern, (24) primary color, (25) leg color,
(26) bill color, (27) crown color, and (28) wing pattern. Description of some bird
attributes are given in Table 4.1. From this dataset, we consider 10 distinct classes
of birds that contain 600 images (60 samples per class) along with their 312 binary
attributes. These 10 species are (1) Laysan Albatross, (2) Red winged Blackbird, (3)
Bobolink, (4) Indigo Bunting, (5) Eastern Towhee, (6) Pelagic Cormorant, (7) Shiny
Cowbird, (8) American Crow, (9) Black billed Cuckoo, and (10) Purple Finch.

11



Figure 4.1: Illustrative examples from the Caltech-UCSD Birds-200-2011 dataset

Table 4.1: Attribute Description for the Caltech-UCSD Birds-200-2011 dataset

12



Chapter 5

Proposed Work

In this Chapter, we first discuss the training of the system used in this work.
Then, we discuss the testing of the system.

5.1 Training of the System

5.1.1 Extracting Features With A Pre-trained CNN

We use a pre-trained convolutional neural network (CNN) called VGG16 [14] which
is present in keras library (version 2.2.4). It is trained on a dataset of roughly 1.2
million images belonging to 1000 classes. We remove the last three fully connected
layers of VGG16, and use the features extracted by the remaining network. We
illustrate the modified architecture of the remaining CNN in Fig. 5.1. In Fig. 5.1, fi

represents the ith feature extracted from the modified VGG16. When we provide a
224× 224 dimensional RGB images in the input layer, the modified CNN produces
a 7× 7× 512 dimensional representation of the images that on flattening produces
a feature vector of dimension 25088.

5.1.2 Training of the First MLP - Classification MLP

Now, we train an MLP with the 25088 dimensional features extracted by the mod-
ified VGG16 to predict the class labels. Consequently, there are 10 nodes in the
output layer and we use a one-hot encoding of dimension 10. We use three hid-
den layers in this MLP, such that, these layers have 1000, 500, and 150 numbers
of nodes, respectively. We choose this architecture based on some ad-hoc experi-
ments. No claim is made that this is the best architecture for this problem. Addi-
tionally, each of the input layer and the three hidden layers also contains a single
bias node. The input layer is a fanout layer. We use ReLu activation functions in
the first hidden layer, sigmoidal activation functions in the second and third hid-
den layers, and softmax activation function in the output layer. The architecture of
this MLP is shown in Fig. 5.2. Here fi represents the ith feature extracted from the
modified VGG16. We use keras (Python version 3.7.2) based implementation for
this MLP along with the adam optimizer and the categorical crossentropy loss
function. We use only 150 epochs for training and a batch size of 30.

13



Figure 5.1: Modified VGG16 network for feature extraction

5.1.3 Training of the Second MLP - Attribute MLP

We remove the last layer of the Classification MLP and use the features extracted
by the remaining network. When we provide a 25088 dimensional feature vector
(extracted from modified VGG16) in the input layer of the Classification MLP, it
produces a feature vector of dimension 150 at the penultimate layer. We use these
150 dimensional features to train the second MLP, where we use the 312 dimen-
sional binary vectors as the target vectors. We call this MLP as Attribute MLP. This
Attribute MLP has two hidden layers with 500 and 600 nodes, respectively. We
consider 150 features extracted from the Classification MLP to train an Attribute
MLP to predict the 312 binary attributes of the birds. The input layer is a fanout
layer and uses ReLu activation functions in the first hidden layer. The second hid-
den layer and output layer uses sigmoidal activation functions. Additionally, each
of the input layer and the two hidden layers also contains a single bias node. The
architecture of this MLP is shown in Fig. 5.3. In Fig. 5.3, pj represents the jth
feature extracted from the penultimate layer of the Classification MLP and âk rep-
resents the kth predicted attribute of the associated bird. We use keras (Python
version 3.7.2) based implementation for this MLP along with the adam optimizer
and the mean square error function. Here we use 1500 epochs and a batch size
of 30 for training. The intention here is to use attributes that are distinguishing
characteristics of the birds i.e., the attribute that defines the category of the birds.

14



Figure 5.2: The Architecture of the Classification Multilayer Perceptron (MLP)

Figure 5.3: The Architecture of the Attribute Multilayer Pereceptron (MLP)

5.1.4 Training a Self Organizing Map (SOM)

We use the original 312-dimensional binary attributes to train a SOM. As explained
earlier, there are two layers in the SOM: an input layer and an output layer. The

15



Figure 5.4: SOM Training with attributes of birds

single dimensional input layer has 312 nodes and the two dimensional output layer
has 10 × 10 nodes. The architecture of the SOM is shown in Fig. 5.4. Here ak

represents the kth binary attribute of the bird and N(i, j) represents the output
node present at the ith row and the jth column. The output nodes in this SOM
compete with each other to best represent the particular bird attributes. To train
the SOM, we use the following parameters: (1) number of iterations tmax = 80000,
(2) the range of the (uniformly distributed) initial weights is [0, 1], (3) learning rate
is η = 0.01, and (4) the parameters to control neighbourhood are σinit = 11 and σf

= 0.2

The number in the rectangular grid represents the class label of bird having
maximum frequency at that node, such that, a zero indicates that no class has been
assigned to that node and a value v ∈ {1, 2, . . . , 10} indicates that the maximum
number of samples assigned to the cell belongs to class v.

After Training the SOM, for each sample x we compute its similarity with the
associated winner node:

Six = exp
(
−||x, WSOM(ix)||2

)
; (5.1.1)

where Six is the similarity of the ixth node on mapping x for which ixth node is
the winner node, and WSOM is the weight matrix of the trained SOM. Now, we
calculate the threshold Tj for the jth output node as follows:

Tj = min
x

ix=j

{Six} . (5.1.2)

Thus Tj is the minimum similarity of all inputs whose best matching unit was
the jth SOM node. While testing, if the similarity of the winner for a given attribute
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vector is less than kTj, k > 0 than the match can be questioned to be good enough
to make a decision. Here we use k=1.

5.2 Testing of the System

5.2.1 Extracting Features with Modified VGG16

We provide a 224× 224 dimensional RGB image in the input layer of the modified
VGG16 to produce a 25088 dimensional representation of the image.

5.2.2 Predicting the class label of the image

The 25088 dimensional feature extracted from the Modified VGG16 is used as an
input to the Classification MLP to predict the class label of the image.

5.2.3 Predicting bird attributes

The 150 dimensional feature extracted by the penultimate layer of the Classification
MLP is used as an input to the Attribute MLP to produce the prediction of a 312
dimensional attributes of the bird. For any test input, this predicted attribute vector
will be used to match the SOM nodes.

5.2.4 Passing Predicted attributes to the pretrained SOM

We use the 312-dimensional predicted attributes as an input to a SOM. The output
of SOM is the Best Matching Unit (BMU) or Winner node corresponding to the
predicted attribute of the test input. In Fig. 5.5, we illustrate what happens to a
SOM when we use the predicted attributes of the bird as an input to the SOM.
Here âk represents the kth predicted attribute of the bird and N(i, j) represents the
output node present at the ith row and the jth column. After finding the BMU, we
consider the four neighbours of the winner node: the neighbours at the left, right,
top, and bottom. Among these four neighbours, we find the Second Best Matching
Unit (SBMU) or the second winner node corresponding to the predicted attribute
of the bird. We do this as SOM preserves the topology of the inputs. Thus birds
with similar attributes will be mapped to nearby nodes on the lattice.

5.2.5 Generating Explanation

We first describe how we generate an explanation from the SOM weight vector.
For each attribute, there are multiple possible values. While generating the ex-
planation, first we find the highest attribute value. If the highest attribute value
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Figure 5.5: Passing predicted attributes to the pretrained SOM

is greater than equal to 0.7 we declare that attribute is present. Else if it lies in
[0.5, 0.7) we say that the attribute is probably present. Otherwise, it is absent.

Let the class label of the first MLP, best matching unit and second best match-
ing unit of SOM be Predclass, Wclass and SWclass, respectively. Now, to generate an
explanation, we first find the similarity between the input sample and the winner
node of the SOM. If the similarity of the sample is greater than the threshold (Tj),
then we can have any of the following three cases. First, if the predclass is equal to
the Wclass then we generate an explanation using the weight vector of the BMU.
Otherwise we compare the predclass and SWclass. If they are equal then we gener-
ate the explanation using the weight vector of the SBMU. Otherwise, we use the
weight vectors corresponding to both BMU and SBMU(using the max of the two)
to produce an explanation for the image.

If the similarity between the input sample and winner node of the SOM is less
than the threshold (Tj) then we may have any of the following three doubtful cases.
First, if the predclass is equal to the Wclass than we generate a probable explana-
tion using the weight vector of the BMU. Otherwise, we compare the predclass and
SWclass, if they are equal then we also generate a probable explanation using the
weight vector of the SBMU. Otherwise, we reject the image and say “don’t know”
to indicate that the test sample may correspond to some unknown distribution.
We use the algorithm shown in Algorithm 1 to generate the textual description.
We note here that this is one possibility that we have considered. However one
can design different algorithms using different use of SOM score(winner + neigh-
borhood) and Classification MLP output. A natural question may come, why are
we not considering the second best output of the Classification MLP. Yes, this is
plausible but we do not use it as it is well known that MLP can produce strange
generalization [15, 16], while SOM is a more transparent model.
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Algorithm 1 Generating Explanation
Result: Explanation of the bird.
if Six > Tj) then

if (predclass = Wclass) then
Generate the explanation using the weights of BMU

else
if (predclass = SWclass) then

Generate the expalnation using the weights of SBMU
else

Generate the explanation using weights of both BMU and SBMU
end

end
else

if (predclass = Wclass) then
Generate explanation as a doubtful case using weights of BMU

else
if (predclass = SWclass) then

Generate explanation as a doubtful case using weights of SBMU
else

Reject the image and say it does not belong to the set of training classes
end

end
end

5.3 Summary

We illustrate the complete training process of the proposed system in figure 5.6.
Figure 5.7 shows the process of generating an explanation given an input image.
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Chapter 6

Results

In this Chapter, we discuss the results obtained by providing the training images,
the test images, and the images that do not belong to the training classes.

6.1 Train Data

We obtain 100% training accuracy with the first MLP as the classifier. In Fig. 6.1
we show two images that belong to the training data along with the predicted
class labels and the descriptions generated using the proposed method. In Fig. 6.1,
the best matching unit (BMU) of the SOM predicts the same class label as that of
the Classification MLP. The results shown in Fig. 6.2 are the examples of birds in
which predicted class label by the Classification MLP is the same as the second best
matching unit (SBMU) of the SOM. The explanation generated by the weights of
the SBMU shows the visible attributes of the bird present in the image. The results
shown in Fig. 6.3 are the examples of birds in which the class labels predicted by
the first MLP is different from the class labels predicted by both the BMU and the
SBMU of the SOM. In this case, though the SOM failed to predict the correct class
label, the explanation generated matches the attributes of the bird. Here, we would
like to emphasize that we do not consider the class label generated by the SOM as
the predicted class label of the proposed system. Instead, we consider the class
label predicted by the Classification MLP as the predicted class label of the system.

6.2 Test Data

The accuracy of the proposed system on the test data is 90%. For none of the test
images (from the 10 classes), the system said “don’t know”. The results shown in
Fig. 6.4 correspond to some cases, where the predicted class by the Classification
MLP is the same as the predicted class by the BMU of the SOM. Here also, the
generated explanations show the visible attributes of the birds present in the im-
ages. The results shown in Fig. 6.5 are some of the examples of birds in which the
predicted class by the Classification MLP is the same as the class predicted by the
SBMU of the SOM. In this case, too, the explanations generated by weights of the
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Figure 6.1: Predclass is the same as Wclass of SOM

SBMUs correctly illustrates the visible attributes of the birds present in the image.
The result shown in Fig. 6.6 are the examples of birds in which class labels pre-
dicted by the Classification MLP is different from the class labels predicted by both
the BMU and the SBMU of the SOM. In this case, the bird class may not be correctly
classified but the explanation generated matches with the visible description of the
bird.

6.3 What happens when the test images are not from the training

classes?

First, we randomly select 20 samples corresponding to the other 10 classes of the
CUB-200-2011 dataset, such that, these classes have not been used in the training
of the proposed system. We find that in 55% cases the SOM and the Classification
MLP produce the same prediction for these 20 samples. In Fig. 6.7, we depict two
randomly chosen images among them. The descriptions generated for these birds
are sufficiently successful to capture the visible attributes of birds. This limited
experiment confirms that the proposed system can also generate an acceptable tex-
tual description of types of birds that are not used for training, at least for some
cases. In Fiq. 6.8 we show two birds among these 20 birds for which the proposed
system said “don’t know”. This is what we expect the system to do when it finds
patterns from unknown distributions.

To inspect further, we randomly select 20 images of animals from the Internet.
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Figure 6.2: Predclass is the same as SWclass of SOM

However, the system said “don’t know” for only four cases. Fig. 6.9 shows two
such images. For the remaining 16 images, the system provided us with a textual
description of the image. Figure 6.10 depicts two such images with their descrip-
tions. We observe that at least for these two cases the descriptions are somewhat
meaningful, atleast for some attributes. For instance, the system identified that
horse (though it classified it as a bird) “probably” has “buff legs”.
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Figure 6.3: Predclass is different from both Wclass and SWclass of SOM

Figure 6.4: Predclass is the same as Wclass of SOM
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Figure 6.5: Predclass is the same as SWclass of SOM

Figure 6.6: Predclass is different from both Wclass and SWclass of SOM
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Figure 6.7: Predclass is the same as Wclass or SWclass of SOM

Figure 6.8: Similarity is less than the threshold
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Figure 6.9: Similarity is less than the threshold

Figure 6.10: Predclass is same as Wclass or SWclass of SOM
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Chapter 7

Conclusions and Future Scopes

7.1 Conclusions

The work discussed in this thesis has addressed the problem of “explainablity”
while classifying image dataset with neural networks. Using four neural networks
together, we proposed a system that augments a CNN with explainability. The
proposed system either says “don’t know” or provides us with a predicted class
label and a textual explanation about its prediction. For this, we use a pre-trained
convolutional neural network (CNN), two multilayer perceptrons (MLPs), and a
self-organizing map (SOM). The first MLP (Classification MLP) predicts the class
label and we use the output from the SOM to generate an explanation.

7.2 Future Scopes

The predicted output depends on the classification model so a good classification
model will provide a better result. We can give confidence to the predicted output
using SOM. A fuzzy label can also be attached to the SOM class label and can be
used in generating a class label and description. New methods can be used to
find the Second Winner of SOM. Highly impure nodes may be removed from the
SOM. The explanation can be improved by considering the neighboring nodes of
the BMU. The threshold of each output node of SOM can be improved which can
reject unknown classes more accurately. In other words, we used k=1, but other
choices can be used and learned using validation data.
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