
Augmenting GAN with continuous depth Neural
ODE

A thesis submitted for the partial fulfillment of
the conditions for the award of the degree M.Tech. Computer Science.

by

Love Varshney
Roll No: CS1711

Supervised by:
Prof. Sushmita Mitra

Machine Intelligence Unit

Indian Statistical Institute
Kolkata, India

July, 2019

To my family and the professors of ISI. . .

Certification

This is to certify that the dissertation entitled “Augmenting GAN with continuous

depth Neural ODE” submitted by Love Varshney (CS1711) to Indian Statistical In-

stitute, Kolkata, in partial fulfillment for the award of degree Master of Technology

(M.Tech) in Computer Science is a bonafide record of work carried out by him under

my supervision and guidance. The dissertation has fulfilled all the requirements as per

the regulations of this institute and, in my opinion, has reached the standard needed

for submission.

Prof. Sushmita Mitra

Machine Intelligence Unit

Indian Statistical Institute

Kolkata 700 108, INDIA

i

Acknowledgements

I would like to show my highest gratitude to my supervisor, Prof. Sushmita Mitra, Ma-

chine Intelligence Unit, Indian Statistical Institute, Kolkata, for accepting my request to

work with her and her constant support and guidance. I want to thank Prof. B. Uma

Shankar for his support and guidance. I also want to thank Subhashis Banerjee for his

valuable comments.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valu-

able suggestions and discussions which added an important dimension to my research

work. Finally, I am very much thankful to my parents and family for their everlasting

support.

ii

Abstract

Generative adversarial networks are extremely powerful tools for generative modeling

of complex data distributions. Research is being actively conducted towards further

improving them as well as making their training easier and more stable. In this the-

sis, we present Neural ODE Generative Adversarial Network (NGAN), a framework

that uses Neural ODE blocks instead of the standard convolutional neural networks

(CNNs) as discriminators and generators within the generative adversarial network

(GAN) setting. We show that NGAN outperforms convolutional-GAN at modeling

image data distribution on MNIST dataset, evaluated on the generative adversarial

metric.

iii

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Outline of This Thesis . 2

2 Preliminaries 3

2.1 GAN . 3

2.1.1 Cost function . 4

2.1.2 Training Algorithm . 4

2.1.3 Issues . 5

2.2 Neural ODE . 6

2.2.1 Forward Propagation . 6

2.2.2 Back Propagation . 7

2.2.3 Issues and Augmented Neural ODE 7

3 Related Work 9

3.1 DCGAN . 9

3.2 GRAN . 10

3.3 Conditional GAN . 11

3.4 Capsule GAN . 13

4 The Proposed Method 14

iv

4.1 Neural ODE GAN (NGAN) . 14

4.2 Experiments and Results . 16

4.2.1 MNIST dataset . 16

4.2.2 Visual Quality of randomly genearted images 17

4.2.3 Generative Adversarial Metric . 18

5 Conclusion and Future Scope 20

5.1 Discussion and Conclusion . 20

5.2 Scope for Future Work . 20

Bibliography 21

v

List of Figures

2.1 GAN training (Source [6]) . 5

2.2 Neural ODE (NODE) Block . 7

3.1 Generator Architecture in DCGAN (Source [6]) 10

3.2 Generative Recurrent Adversarial Networks architecture (Source [8]) . . 11

3.3 Conditional GAN (Source [12]) . 12

4.1 Generator Architecture . 16

4.2 Discriminator Architecture . 17

4.3 Randomly Generated Images . 17

4.4 Generator Loss Comparison . 18

4.5 Discriminator Loss Comparison . 18

4.6 Number of forward evaluations (nfe) of G and D in NGAN 19

vi

Chapter 1

Introduction

Deep learning has made significant contributions to areas including natural language

processing and computer vision. Most accomplishments involving deep learning use

supervised discriminative modeling. However, the intractability of modeling proba-

bility distributions of data makes deep generative models difficult which makes gen-

erative modeling of data a very challenging and interesting machine learning prob-

lem. Image generation is one of the most difficult task in Computer Vision. Generative

adversarial networks (GANs)[5] help alleviate this issue through setting a Nash Equi-

librium between a generative neural network model (Generator) and a discriminative

neural network (Discriminator). The discriminator is trained to determine whether its

input is from a real data distribution or a fake distribution that was generated by the

generative network.

Since the advent of GANs, many applications and variants[1, 8, 9, 14] have risen. Most

of its applications are inspired by computer vision problems, and involve image gen-

eration as well as (source) image to (target) image style transfer. GANs have shown

great promise in modeling highly complex distributions underlying real world data,

especially images. However, they are notorious for being difficult to train and have

problems with stability, vanishing gradients, mode collapse and inadequate mode cov-

erage. Consequently, there has been a large amount of work towards improving GANs

by using better objective functions [1, 10], sophisticated training strategies [16], using

structural hyper parameters [14, 12] and adopting empirically successful tricks. In [14],

1

1.1. Problem Statement 2

authors provide a set of architectural guidelines, formulating a class of convolution

neural networks (CNNs) that have since been extensively used to create GANs (re-

ferred to as Deep Convolution GANs or DCGANs) for modeling image data and other

related applications.

1.1 Problem Statement

Generative Modeling of data is a challenging machine learning problem. Recently [5],

introduced Generative Adversarial Networks for generating data. But, GANs are no-

toriously difficult to train and therefore there are less variety of model architectures

known for GANs. We are improving GAN by augmenting them with Neural ODE.

1.2 Outline of This Thesis

In Chapter 2, we discuss preliminaries which includes GAN and Neural ODE. Chapter

3 discusses related work. Chapter 4 presents our work i.e. NGAN. We conclude and

discuss future scope in Chapter 5.

Chapter 2

Preliminaries

In this chapter we will explain fundamentals behind GAN and Neural ODE. We started

with explaining the fundamentals behind GAN and its training algorithm. Then, we

explain the concept behind Neural ODE and forward and back propagation in Neural

ODE.

2.1 GAN

Generative adversarial networks (GANs) are an example of generative models.The

term “generative model” is used in many different ways. When talking about GAN,

the term refers to any model that takes a training set, consisting of samples drawn from

a distribution pdata, and learns to represent an estimate of that distribution somehow.

This can be explicit or implicit. GANs focus primarily on sample generation. The ba-

sic idea of GANs is to set up a game between two players. One of them is called the

generator. The generator creates samples that are intended to come from the same dis-

tribution as the training data. The other player is the discriminator. The discriminator

examines samples to determine whether they are real of fake. The discriminator learns

using traditional supervised learning techniques, dividing inputs into two classes (real

or fake). The generator is trained to fool the discriminator. Generator is fed up with

nooise z. The two players in the game are represented by two functions, each of which

is differentiable both with respect to its inputs and with respect to its parameters. The

discriminator is a function D that takes x as input and uses θ(D) as parameters. The

3

2.1. GAN 4

generator is defined by a function G that takes z(noise) as input and uses θ(G) as pa-

rameters.

2.1.1 Cost function

Specificaaly, GAN solves the following minmax game:

min
G

max
D

Loss(D, G) = Ex∼Ps[log D(x)] + Ex∼Pz[log(1− D(G(z)))]

where Ps and Pz are sample and noise distribution; G(z) is the geneartor that maps z to

input space X; D(x) is the discriminator that takes x ∈ X and outputs a scaler between

[0, 1]. The meaning of this minmax cost function is that generator tries to fool the dis-

criminator and discriminator tries to maximize the differentiation power between real

and generated fake data. There are many versions of GAN[6] which slightly modifies

this cost fuunction to achieve robustness and efficiency.

2.1.2 Training Algorithm

Algorithm 1 GAN

Require: Generator G and Discriminator D, η : the learning rate, β1 and β2 for Adam
Optimizer, m : batch size

Require: All parameters in G and D should be initialized
1: procedure ADVERSARIAL TRAINING(G,D)
2: for number of training iterations do
3: for number of minibatchs do

. Train Discriminator D
4: Sample minibatch of m noise samples Z = {z(i)}m

i=1 ∼ p(z) (noise prior)
5: Sample minibatch of m examples X = {x(i)}m

i=1 ∼ pdata(x)
6: Update the discriminator by ascending its stochastic gradient:
7: ∇θd

1
m ∑m

i=1[logD(x(i)) + log(1− D(G(z(i))))]
. Train Generator G

8: Sample minibatch of m noise samples Z = {z(i)}m
i=1 ∼ p(z) (noise prior)

9: Update the generator by descending its stochastic gradient:
10: ∇θg

1
m ∑m

i=1[log(1− D(G(z(i))))]
11: end for
12: end for
13: end procedure

2.1. GAN 5

Figure 2.1: GAN training (Source [6])

2.1.3 Issues

It is well-known that the training GAN is difficult. In particular, the authors in [6] have

identified the following sources of the difficulties:

• when the discriminator becomes accurate, the gradient for generator vanishes (a

popular fixation to reduce the effect is to use gradient updating in generator with

Ex∼Pz [− log(D(G(z)))

• when discriminator becomes poor, the gradient for generator contains less valu-

able information

• Sometimes generator G gets stuck at a point with producing limited varieties of

samples or one sample repeatedly during or after training the GAN, called Mode

Collapse

• Hard to find nash equilibrium since GAN is a non cooperative game

• No proper evaluation metric

2.2. Neural ODE 6

2.2 Neural ODE

Residual networks build a series of transformations by learning the difference between

two consecutive transformation hidden states:

ht+1 = ht + f (ht, θt)

where t ∈ {0...T − 1}, ht ∈ RD and T is depth of residual network and D is dimension

of hidden state i.e. number of neurons. This can be seen as Euler discretisation of a

continuous transformation [11, 7, 15]. Now as we add more layers and take smaller

steps, in limit we parameterize the continuous dynamics of hidden units using ODE:

d(h(t))
dt

= f (h(t), θt)

Here h(0) is input layer and we have to find h(T) for some T. In [2], authors gives a

reverse mode differentiation of ODE initial value problem. Neural ODE have several

benefits like memory efficiency, Adaptive computation, Parameter efficiency.

2.2.1 Forward Propagation

Forward propagation in a neural ode block can be done by solving a initial value prob-

lem. We can use a numerical approximation solver for that purpose.

∂z(t)
∂t

= f (z(t), θt, t) (2.1)

z(t0) = x (2.2)

where x is input to NODE block. Now suppose we are using ODEsolver() as our

approximate initial value solver. This can use any method i.e. euler, runga-kutta etc.

So, z(t1) will be:

z(t1) = ODESolver(z(t0), f (z(t), θt, t), t0, t1)

2.2. Neural ODE 7

Figure 2.2: Neural ODE (NODE) Block

2.2.2 Back Propagation

In a NODE block we can back propagate either through the operations of ODESolver()

or we can use algorithm 2 [2]. Back-propagation through operations of NODE block is

time consuming and depends on the particular method used. In [2], authors presented

a novel reverse-mode derivative of an ODE initial value problem. (we are assuming

θt = θ i.e. θt is constant function of t) (see algorithm 2)

2.2.3 Issues and Augmented Neural ODE

In [4], authors highlighted many problems in neural ode. For example, for arbitary d,

let 0 < r1 < r2 < r3 and let g : IRd → IR be a function such that:

g(x) =


−1 if ||x|| ≤ r1

1 if r2 ≤ ||x|| ≤ r3

and proof that g(x) can not be represented by a ODE transformation and to overcome

that give a modified version called augmented neural ode.

2.2. Neural ODE 8

Algorithm 2 Reverse-mode derivative of an ODE initial value problem

Require: t0 : lower limit for ode integration
t1 : upper limit for ode integration
output z(t1)
loss gradient ∂L

∂z(t1)

d : dimension of input and output
n : size of θ i.e. number of parameters
parameters θ

Require: All parameters in NODE block should be initialized
1: procedure AUGMENTDYNAMICS(x, t, θ)
2: z(t) = x[1 : d]
3: a(t) = x[d + 1 : 2 ∗ d]
4: return [f (z(t), θ, t),−a(t)T ∂ f

∂z(t) ,−a(t)T ∂ f
∂θ]

5: end procedure

6: procedure REVERSE-MODE DERIVATIVE

. x is initial state of NODE block
7: x[1 : d] = z(t1)
8: x[d + 1 : 2 ∗ d] = ∂L

∂z(t1)

9: x[2 ∗ d + 1 : 2 ∗ d + n] = 0
. fill zeroes, this part represent gradient of L w.r.t. θ at t1

10: [z(t0), ∂L
∂z(t0)

, ∂L
∂θ] = ODESolver(x, augementDynamics, t1, t0, θ)

11: return ∂L
∂z(t0)

, ∂L
∂θ

12: end procedure

Chapter 3

Related Work

GANs were originally implemented as feed-forward multi-layer perceptrons, which

did not perform well on generating complex images. They suffered from mode col-

lapse and were highly unstable to train [14, 16]. In an attempt to solve these problems,

[14] presented a set of guidelines to design GANs as a class of CNNs, giving rise to

DCGANs, which have since been a dominating approach to GAN network architecture

design. In [8], authors later proposed the use of Recurrent Neural Networks instead of

CNNs as generators for GANs, creating a new class of GANs referred to as Generative

Recurrent Adversarial Networks or GRANs. On a related note, [13] proposed an archi-

tectural change to GANs in the form of a discriminator that also acts as a classifier for

class-conditional image generation. This approach for designing discriminators has

been a popular choice for conditional GANs [12] recently. These are all architectural

changes in Original GAN. We are also proposing an architectural change in GAN by

augmenting them with Neural ODE.

3.1 DCGAN

Most GANs today are at least loosely based on the DCGAN architecture [14]. DCGAN

stands for “Deep Convolution GAN”. Though GANs were both deep and convolu-

tional prior to DCGANs [3], the name DCGAN is useful to refer to this specific style of

architecture. Some of the key insights of the DCGAN architecture were to:

9

3.2. GRAN 10

• Use batch normalization layers after most layers of both the discriminator and

generator, with the two mini-batches for the discriminator normalized separately.

The last layer of the generator and first layer of the discriminator are not batch

normalized, so that the model can learn the correct mean and scale of the data

distribution.

• The overall network structure is mostly borrowed from the all-convolutional net.

This architecture contains neither pooling nor “un-pooling” layers. When the

generator needs to increase the spatial dimension of the representation it uses

transposed convolution with a stride greater than 1.

• The use of the Adam optimizer rather than SGD with momentum.

Figure 3.1: Generator Architecture in DCGAN (Source [6])

3.2 GRAN

In [8], Generative Recurrent Adversarial Networks(GRAN) has been proposed. The

main difference between GRAN and other generative adversarial models is that the

generator G consists of a recurrent feedback loop that takes a sequence of noise samples

drawn from the prior distribution z ∼ p(z) and draws an output at multiple time steps

∆C1, ∆C2,, ∆CT . Accumulating the updates at each time step yields the final sample

drawn to the canvas C. At each time step t, a sample z from the prior distribution

3.3. Conditional GAN 11

p(z) is passed to a function f along with the hidden states hc,t. Where hc,t represent

the hidden state, or in other words, a current encoded status of the previous drawing

∆Ct−1. Here, ∆Ct represents the output of function f . Henceforth, the function g can

be seen as a way to mimic the inverse of function f .

Figure 3.2: Generative Recurrent Adversarial Networks architecture (Source [8])

We have an initial hidden state hc,0 that is set as a zero vector in the beginning. We then

compute the following for each time step t = 1....T:

z ∼ p(z) (3.1)

hc,t = g(∆Ct−1) (3.2)

hz,t = tanh Wzt + b (3.3)

∆Ct = f ([hz,t, hc,t]) (3.4)

where [hz,t, hc,t] denotes the concatenation of hz,t and hc,t. Finally, we sum the gener-

ated images and apply the logistic function in order to scale the final output to be in

(0, 1):

C = σ(
T

∑
t=1

∆Ct)

3.3 Conditional GAN

In an unconditioned generative model, there is no control on modes of the data being

generated. In the Conditional GAN(CGAN) [12], the generator learns to generate a

3.3. Conditional GAN 12

Figure 3.3: Conditional GAN (Source [12])

fake sample with a specific condition or characteristics rather than a generic sample

from unknown noise distribution.

Generative adversarial nets can be extended to a conditional model if both the gener-

ator and discriminator are conditioned on some extra information y. y could be any

kind of auxiliary information, such as class labels or data from other modalities. Au-

thors perform the conditioning by feeding y into both the discriminator and generator

as additional input layer. In the generator the prior input noise p(z) and y are com-

bined in joint hidden representation, and the adversarial training framework allows

for considerable flexibility in how this hidden representation is composed. In the dis-

criminator x and y are presented as inputs and to a discriminative function (embodied

again by a MLP in this case). The objective function of a two-player min-max game

3.4. Capsule GAN 13

would be:

min
G

max
D

V(D, G) = Ex∼Pdata [log D(x|y)] + Ez∼Pz [log(1− D(G(z|y)))]

3.4 Capsule GAN

In [9], authors proposed CapsuleGAN framework to incorporate capsule-layers instead

of convolutional layers in the GAN discriminator, which fundamentally performs a

two-class classification task. The final layer of the CapsuleGAN discriminator contains

a single capsule, the length of which represents the probability whether the discrim-

inator’s input is a real or a generated image. We use margin loss LM instead of the

conventional binary cross-entropy loss for training our CapsuleGAN model because

LM works better for training CapsNets. Therefore, the objective of CapsuleGAN can be

formulated as:

min
G

max
D

V(D, G) = Ex∼Pdata [−LM(D(x), T = 1)] + Ez∼Pz [−LM(D(x), T = 0)]

Chapter 4

The Proposed Method

Generative Modeling of data is a challenging machine learning problem. Recently [5],

introduced Generative Adversial Networks for generating data. But, GANs are notori-

ously difficult to train and therefore there are less variety of model artitectures known

for GANs. We are improving GAN by augmenting them with Neural ODE. In this the-

sis, we used DCGAN [14] as a benchmark for us due to its popularity and we propose

to change the DCGAN architecture with Neural ODE based architecture. We perform

experiments on image generation with MNIST data.

4.1 Neural ODE GAN (NGAN)

For NAGAN, the model follow guidelines given in [14] paper by including batch nor-

malization and relu layers in generator and leaky relu in discriminator. Architecture

includes Neural ODE block with Convolution blocks defining the derivative in ODE.

In [9], only discriminator architecture has been changed without changing generator

architecture. We proposed to change both CNN based architectures into a combination

of CNN and Neural ODE based architectures. Both generator and discriminator archi-

tectures involve 2-D Transpose Convolution and 2-D Convolution layers respectively.

The basic idea is to use some Neural ODE Block in these architectures.

14

4.1. Neural ODE GAN (NGAN) 15

Algorithm 3 NGAN algorithm

Require: NODE based Generator G and Discriminator D
η : the learning rate
β1 and β2 for Adam Optimizer.
m : batch size
tol : tolerance for ode Solver . for NODE Block
t0 : lower limit for ode integration
t1 : upper limit for ode integration

Require: All parameters in G and D should be initialized
1: procedure FORWARD(N, x) . N is a NODE based neural net
2: L : number of layers in N
3: z(i): output of ith layer in N and z(0) = x (input to N)
4: for i← 1 to L do
5: if ith layer is a NODE Block then
6: z(i) = ODESolve(z(i− 1), f , t0, t1, tol) . f is the func used in ith layer
7: else
8: z(i) is the forward propagation as in standard NN layer
9: end if

10: end for
11: end procedure

12: procedure ADVERSARIAL TRAINING(G,D)
13: for number of training iterations do
14: for number of minibatchs do

. D(x)= FORWARD(D, x) and
. D(G(z))=FORWARD(D, FORWARD(G, z))

. Train Discriminator D
15: Sample minibatch of m noise samples Z = {z(i)}m

i=1 ∼ p(z) (noise prior)
16: Sample minibatch of m examples X = {x(i)}m

i=1 ∼ pdata(x)
17: gradθd ←−∇θd

1
m ∑m

i=1[logD(x(i)) + log(1− D(G(z(i))))]
18: θd ← θd − η∗Adam(θd, gradθd , β1, β2)

. If θd comes from NODE block use algorithm 2 for update
. Train Generator G

19: Sample minibatch of m noise samples Z = {z(i)}m
i=1 ∼ p(z) (noise prior)

20: gradθg ←−∇θg
1
m ∑m

i=1[log(D(G(z(i))))]
21: θg ← θg − η∗Adam(θg, gradθg , β1, β2)

. If θg comes from NODE block use algorithm 2 for update
22: end for
23: end for
24: end procedure

4.2. Experiments and Results 16

4.2 Experiments and Results

We evaluate the performance of NGAN at MNIST due to its simplicity. And we also

compare the results with DCGAN both qualitatively and quantitatively.

4.2.1 MNIST dataset

The MNIST dataset consists of 28X28 sized grayscale images of handwritten digits. No

pre-processing has been done on images. In Neural ODE based generator architecture,

we used only a single 2-D Transpose Convolution as ODE function. As suggested in

[4], we have augmented neural ode by increasing the dimension of each channel with

zero padding.

For generator architecture we used a simple ODE block that consists of only a single

2-D transpose convolution layer whose output also depends on time at which ODE

evaluation has been done, to achieve this we have increased a channels of all t values

filled, where t is time at which evaluation has been done. As recommended in [14] we

have used relu and batch normalization in generator architecture. For discriminator

Figure 4.1: Generator Architecture

architecture we used a ODE block that consists of three 2-D convolution layer, each

followed by a leaky relu layer. Also these convolution layers are also time dependent.

4.2. Experiments and Results 17

As recommended in [14] we have used leaky relu and batch normalization in discrimi-

nator architecture. For experiment, we have used runga-kutta method for solving ODE

and back propagate from its operations.

Figure 4.2: Discriminator Architecture

4.2.2 Visual Quality of randomly genearted images

(a) DCGAN Generated Images (b) NGAN Generated Images

Figure 4.3: Randomly Generated Images

Qualitatively, both dcgan and ngan produce same quality images (even some images

are exactly similar). As seen in figure 4.4 and 4.5, the divergence of loss is less in NGAN

as compared to DCGAN. And in figure 4.6, we can see the number of forward evalua-

tions in Generator and Discriminator of NGAN in training.

4.2. Experiments and Results 18

Figure 4.4: Generator Loss Comparison

Figure 4.5: Discriminator Loss Comparison

4.2.3 Generative Adversarial Metric

In [8], authors introduced the generative adversarial metric (GAM) as a pairwise com-

parison metric between GAN models by pitting each generator against the opponent’s

discriminator, i.e., given two GAN models M1 = (G1, D1) and M2 = (G2, D2), G1 en-

gages in a battle against D2 while G2 against D1. The ratios of their classification errors

on real test dataset and on generated samples are then calculated as rtest and rsamples.

Ratios of classification accuracy is considered instead of errors to avoid numerical prob-

lems:

rsamples =
Acc(Ddcgan(Gngan))

Acc(Dngan(Gdcgan))

4.2. Experiments and Results 19

Figure 4.6: Number of forward evaluations (nfe) of G and D in NGAN

Then we take some unseen MNIST data xtest and calculated rtest:

rtest =
Acc(Ddcgan(xtest))

Acc(Dngan(xtest))

Therefore, for NGAN to win against DCGAN, both rsamples < 1 and rtest ' 1 must be

satisfied. In our experiments, we achieve rsamples = 0.86 and rtest = 1 on the MNIST

dataset. Therefore, NGAN working better than DCGAN on MNIST dataset.

Chapter 5

Conclusion and Future Scope

5.1 Discussion and Conclusion

Generative adversarial networks are extremely powerful tools for generative model-

ing of complex data distributions. Research is being actively conducted towards fur-

ther improving them as well as making their training easier and more stable. In this

thesis, we present Neural ODE Generative Adversarial Network (NGAN), a frame-

work that uses Neural ODE blocks instead of the standard convolutional neural net-

works (CNNs) as discriminators and generators within the generative adversarial net-

work (GAN) setting. While modeling image data, we show that NGAN outperforms

convolutional-GAN at modeling image data distribution on MNIST dataset, evaluated

on the generative adversarial metric. We have seen that NGAN outperform convo-

lution based GAN on MNIST dataset. This indicates that NGAN can be used as a

potential alternative to simple convolution based GAN.

5.2 Scope for Future Work

• Theoretically neural ode are more powerful than simple neural network. It would

be useful to provide more theoretical analysis for how and why augmentation

improves existing GANs.

• We have only used MNIST dataset to show the superiority of NGAN over simple

20

5.2. Scope for Future Work 21

convolutional-GAN, we can replicate experiments on more datasets like cifar etc.

• We can also compare the results of NGAN with more sophisticated versions of

GAN

• Since we proposed a architectural change, neural ode based WGAN, MMD GAN

can also be designed.

Bibliography

[1] ARJOVSKY, M., CHINTALA, S., AND BOTTOU, L. Wasserstein generative adversar-

ial networks. In Proceedings of the 34th International Conference on Machine Learning

(International Convention Centre, Sydney, Australia, 06–11 Aug 2017), D. Precup

and Y. W. Teh, Eds., vol. 70 of Proceedings of Machine Learning Research, PMLR,

pp. 214–223.

[2] CHEN, T. Q., RUBANOVA, Y., BETTENCOURT, J., AND DUVENAUD, D. K. Neural

ordinary differential equations. In Advances in Neural Information Processing Sys-

tems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 6571–6583.

[3] DENTON, E. L., CHINTALA, S., SZLAM, A., AND FERGUS, R. Deep generative

image models using a laplacian pyramid of adversarial networks. In Advances in

Neural Information Processing Systems 28. Curran Associates, Inc., 2015, pp. 1486–

1494.

[4] DUPONT, E., DOUCET, A., AND TEH, Y. W. Augmented neural odes. ArXiv

abs/1904.01681 (2019).

[5] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D.,

OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets. In

Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc.,

2014, pp. 2672–2680.

22

BIBLIOGRAPHY 23

[6] GOODFELLOW, I. J. NIPS 2016 tutorial: Generative adversarial networks. CoRR

abs/1701.00160 (2017).

[7] HABER, E., AND RUTHOTTO, L. Stable architectures for deep neural networks.

Inverse Problems 34, 1 (dec 2017), 014004.

[8] IM, D. J., KIM, C. D., JIANG, H., AND MEMISEVIC, R. Generating images with

recurrent adversarial networks. CoRR abs/1602.05110 (2016).

[9] JAISWAL, A., ABDALMAGEED, W., WU, Y., AND NATARAJAN, P. Capsulegan:

Generative adversarial capsule network. In Workshop on Brain-Driven Computer

Vision at European Conference on Computer Vision (2018).

[10] LI, C.-L., CHANG, W.-C., CHENG, Y., YANG, Y., AND POCZOS, B. Mmd gan: To-

wards deeper understanding of moment matching network. In Advances in Neural

Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,

pp. 2203–2213.

[11] LU, Y., ZHONG, A., LI, Q., AND DONG, B. Beyond finite layer neural net-

works: Bridging deep architectures and numerical differential equations. ArXiv

abs/1710.10121 (2018).

[12] MIRZA, M., AND OSINDERO, S. Conditional generative adversarial nets. CoRR

abs/1411.1784 (2014).

[13] ODENA, A., OLAH, C., AND SHLENS, J. Conditional image synthesis with auxil-

iary classifier GANs. In Proceedings of the 34th International Conference on Machine

Learning (International Convention Centre, Sydney, Australia, 06–11 Aug 2017),

D. Precup and Y. W. Teh, Eds., vol. 70 of Proceedings of Machine Learning Research,

PMLR, pp. 2642–2651.

[14] RADFORD, A., METZ, L., AND CHINTALA, S. Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. In 4th International

Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,

2016, Conference Track Proceedings (2016).

BIBLIOGRAPHY 24

[15] RUTHOTTO, L., AND HABER, E. Deep neural networks motivated by partial dif-

ferential equations. ArXiv abs/1804.04272 (2018).

[16] SALIMANS, T., GOODFELLOW, I., ZAREMBA, W., CHEUNG, V., RADFORD, A.,

CHEN, X., AND CHEN, X. Improved techniques for training gans. In Advances in

Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 2234–2242.

