Computational Learning Theory aspects of
Piecewise Polynomial and Sigmoidal Neural
Networks

Dissertation Submitted in Partial Fulfilment of the Requirements for the
Degree of

Master of Technology
in

Computer Science

by
Soumya Kanti Das
[Roll No: CS-1729]

Under the Guidance of

Dr. Swagatam Das
Associate Professor

Electronics and Communication Sciences Unit (ECSU)

STATISTICAL

Z>» -0 Z—
Mo === N Z =

)

TN chan
I UNITY IN PIVERSITY I

Indian Statistical Institute
Kolkata-700108, India

July 2019

To my family and supervisor

CERTIFICATE

This is to certify that the dissertation entitled “Computation Learning Theory aspects of Piecewise
Polynomial and Sigmoidal Neural Networks” submitted by Soumya Kanti Das to Indian Statistical
Institute, Kolkata, in partial fulfilment for the award of the degree of Master of Technology in Com-
puter Science is a bona fide record of work carried out by him under my supervision and guidance. The
dissertation has fulfilled all the requirements as per the regulations of this institute and, in my opinion, has

reached the standard needed for submission.

Swagatam Das

Associate Professor,

Electronics and Communication Sciences Unit,
Indian Statistical Institute,

Kolkata-700108, India.

Acknowledgements

I would like to take this opportunity to thank people who are behind my success in this project.

Prima facie, I would like to thank my parents, family members and teachers who supported me in every

walk of my life.

I would like to show my highest gratitude to my adviser, Dr. Swagatam Das of Electronics and Communi-
cation Sciences Unit, for his guidance and continuous support and encouragement. His zeal and method of

teaching are highly motivating.

I would also like to thank Dr. Mandar Mitra, Dr. Utpal Garain and Dr Debapriyo Majumdar, for their

valuable suggestions and discussions.

My deepest thanks to all the professor of Indian Statistical Institute, for their valuable suggestions which

added an important dimension to my research work.

Last but not the least, I would like to thank all of my friends for their help. I would also like to thank all

those, whom I have missed out from the above list.

Soumya Kanti Das
Indian Statistical Institute
Kolkata - 700108 , India.

Abstract

VC (Vapnik Chervonenkis) Dimension is a useful tool for measuring the power of a neural network or
some other types of classifiers. In the field of learning theory VC dimension represents the generalized power
of a neural network. From mid 20" century researchers have been interested in this work and have provided
a vast horizon of upper and lower bounds for VC dimension of a neural network. Most of the published work
assumes feed forward neural network with no skip connections to establish the upper and lower bounds of
VC dimension. In this work we establish that the upper bound of VC Dimension for neural network with
piece wise polynomial activation functions can be tighter. Along with this we proposed some other methods
for calculating VC Dimension upper bound for RVFLN (neural network with skip connections). Most of
the relevant work on VC Dimension upper bound for neural network with sigmoidal activation functions
are based on model theoretic approach or number of operations on a basic computing model. Later in this
work we give a different approach for calculation of VC Dimension upper bound for neural network with
sigmoidal activation functions. Moreover on top this we give an idea about how a theoretical test error rate
and practical test error rate depend upon on the number of layers and the number of parameters for a feed
forward neural network.

Keywords: Growth function, Shattering, VC Dimension, function approximation, bit extraction tech-

nique.

Contents

1 Introduction

1.1
1.2
1.3

Introduction L e e e e e e e e
Our Contributions e e e
Thesis Outline o o e e e e e e e e

2 Preliminaries and Background

2.1

2.2

2.3

24

2.5

2.6
2.7

Growth function and Shattering L
2.1.1 Properties e e e
VO DIMension v v v e e e e e e e e e e e
2.2.1 VC Definition of Function Classes
2.2.2 Parametric Classes of Functions
Linear Parameterizations e e
2.3.1 Affine parameteization L Lo
2.3.2 Perceptron L
VC Dimension Related Results
2.4.1 Single Hidden Layer with Fixed Input Weights:
Basic Properties of VC Dimension Lo
2.5.1 Boolean Closure 0 i i e e e e e
VC Related Results for Multilayer Neural Net o ...
Counting Weights o e
2.7.1 Multilayer Nets with both H and Linear activation

3 VC Dimension of Neural Networks

3.1

3.2

3.3

3.4

VC Dimension of Piece wise Polynomial Networks
3.1.1 Linear VC Dimension Bounds for Piece wise Polynomial Network
3.1.2 Refinement of [1]
VC Dimension of Sigmoidal Neural Networks

3.2.1 Lower Bound of Sigmoidal Network which Approximate Continuous Functions

3.2.2 Polynomial Bound for VC Dimension of Sigmoidal Networks
3.2.3 Additional Activation Functions o o
Bounding The VC Dimension of Concept Class Parametrized by Real Numbers
3.3.1 Upper Bounds e
VC Dimension from Geometric Approach L oo
3.4.1 Some Notions of Geometric Approach

10
10

12
12
13
14
15
15
16
17
17
17
17
19
20
21
22
22

3.4.2 VC Bounds for Neural Networks

3.5 Application of VC Dimension on Machine Learning
3.5.1 PAC Model e
3.5.2 VC Dimension and Learnability L oo
3.5.3 VC Dimension and Generalization Performance
3.5.4 Structural Risk Minimization
3.5.5 Decision Tree e

Random Vector Functional Link Network

4.1 Feedforward Neural Network (FNN)
4.2 Single Hidden Layer Neural Network (SLFN),
4.3 Random Weight SLEN (RWSLFN)
4.4 Random Vector Functional Link Network (RVFLN)

4.5 Equations

Related Work and Our Contribution

5.1 VC Dimension for Neural Network with Continuous Activation Functions
5.1.1 For Linear and Threshold Gates
5.1.2 For Linear, Threshold, Multiplication, Division Gates
5.1.3 Conclusion

5.2 VC Dimension for Piece wise Polynomial Network

5.3 VC Dimension of S shape functions L L L
5.3.1 Neural Network with Sigmoid Activation Functions
5.3.2 Neural Network with tanh Function

5.4 VC Dimension Calculation For RVFLN
5.4.1 First Approach L
5.4.2 Second Approach

5.5 Comparison of Different VC Dimension Bounds

5.6 Experiments and Results. L L e
5.6.1 Conclusion e

Future Works

6.1 Scope of Future Work oL

43
43
44
44
44
45

47
47
48
o1
51
52
53
93
56
58
98
58
59
63
64

65

List of Figures

2.1 Four points can not be shattered by half spaces 13
2.2 Three points shattered by straight lines 15
2.3 Neural net with activation function oL o o 17
3.1 The Network N,, e e 31
3.2 Comparison of Empirical Risk and True Risk 42
4.1 Random Vector Functional Link Network 46
5.1 The network f!, where input in R™ and shattered set is [n]™. 50
5.2 Comparison of sigmoid and scaled sigmoid functions 54
5.3 Sigmoidal Approximating Curve L e 54
5.4 Lagrange Approximating Curve 55
5.5 Another Approximation of Sigmoid L 56
5.6 Comparison of sigmoid and tanh functions 56
5.7 Continued Approximation of tanh oL 0oL o 57
5.8 Comparison of tanh(x) and 73(x)o 58
5.9 For input dimension 10 oL Lo 60
5.10 For input dimension 50 Lo 61
5.11 For ReLLU Neural Network e 64

List of Tables

4.1 RVFL Network with Different Configurations 44
5.1 For input dimension 10 e 59
5.2 For input dimension 50 60
5.3 Different VC Upper Bounds 62
5.4 Test Error for Neural Network with ReLU Activation. 63
5.5 Total parameters for Neural Network with ReLU Activation 63

Chapter 1

Introduction

1.1 Introduction

Neural Networks are the star performers of modern machine learning literature. So in theoretical machine
learning, researchers mainly focus on the expressive power of a neural network. The complexity of a neural
classifier depends on the number of points that can be classified correctly. VC dimension is used as a tool to
compute the sample bound for statistical PAC learning and also to measure the complexity of a classifier. VC
Dimensions where originally defined by Vladimir Vapnik and Alexey Chervonenkis in 1971. In PAC frame
model, we need to find the minimum number of samples needed during training time such that the classifier
predicts all the labels of the samples correctly. For this calculation we need VC dimension as a prerequisite
tool. For model evaluation Structural Risk Minimization (SRM) technique is important in which we use VC
dimension. Also in computational geometry VC Dimension is used to determine the critical parameters in
the size of e —nets, which determine the complexity of approximation algorithms. Beside that, VC dimension
also predicts a probabilistic upper bound on the test error rate of a classifier model.

In general we can say VC Dimension upper bound is more than the practical test error bound. During the
inception phase of neural network, people mainly used linear or piece-wise polynomial activation function.
But recently, the data and its distribution are more complex than previous, so in a classification task based
on neural network we use sigmoid, tanh activation functions instead of just linear function. For this reason
the calculation of VC Dimension also becomes more harder than previous bounds. So instead of the usual
approach, researchers proposed some model theoretic approach for calculations. As of now, we know general
feed forward neural network (FNN) takes too much time during back propagation. To overcome this, some
scientists discovered a type of neural network which is a combination of SLEN (Single Layer Feed Forward
Neural Network) and functional link, which is famously known as RVFLN (Random Vector Functional Link
Network). In this network from input layer to hidden layer the weights are randomly assigned so that
during back propagation weights are not updated. And also from input layer to output layer there are skip
connections. For this structural advantage RVFLN takes less time in back propagation with respect to a

FNN. Researchers have proposed many bounds, among those some are tighter than others. So we did a study

which will give assurance about the trade off between these bounds. And at last we proposed a procedure
to handle VC Dimension for sigmoidal neural network using algebraic topology concepts. But nowadays we
see that deep learning has a great importance, so we can extend our learning theory concepts in this field.

Because theoretical foundations are the basis of every practical concept.

1.2 Our Contributions

Our contributions are summarized as follows.

e In the paper [2], the authors have proposed an idea about whether O(wlogw) and O(w?) bound
for neural network can be made closed enough, where w is the total number of parameters of the
corresponding neural network. But in the paper [18], the author constructed a neural network which
upper bounded by wlogw. The author of the paper [2] constructed a network which achieves the
bound w2, but the network takes inputs from R? and R. Here we propose a construction of a neural
network which takes input from R™, m > 2 and shatters the same size set. This network only consists

of threshold and linear gates.

e This thesis also provides a relationship between number of parameters and VC Dimension for input
domain R™, m > 2 of a neural network. Here this trade off depends upon the input dimension m; the
constructed network contains threshold, linear, multiplication and division gates. Basically a network
with multiplication and division gate comes when we are working with network with continuous (such

as sigmoid) activation function.

e We made the VC upper bound tighter than the existing one for neural network with piece wise poly-

nomial activation functions.

e We have also proposed some techniques for calculating VC upper bound for neural network with S

type activation functions (mainly sigmoid and tanh).
e Also for RVFLN, we suggest an idea for calculating VC dimension upper bound.

e We have made a comparison among different upper bound on VC dimension for similar type of network
(having same set of activation functions), and also for neural network with different configurations of

activation functions.

e We have drawn a conclusion on the fact of relationship between theoretical test error rate and practical
test error rate for a neural network with classification task. We have reached to this conclusion by

performing experiments on some benchmark data sets.

1.3 Thesis Outline

Chapter 2 covers a brief details of growth function, shattering, VC dimension. Here we discussed about
set theoretic as well as functional way definition of the above mentioned terms. This chapter also includes
some general properties of those same. Chapter 3 contains different ideas of calculating VC upper and lower
bound for different types of feed forward neural network. This chapter also elaborates importance of VC

dimension on machine learning. Chapter 4 covers description of Random Vector Functional Link Network

10

(RVFLN). In Chapter 5, we discuss our proposed ideas and constructions. In Chapter 6 we also suggest a

scope of future work on this field.

11

Chapter 2

Preliminaries and Background

2.1 Growth function and Shattering

We denote the sample space by X C R™ which is a collection of data points or samples. The sample space
also known as input space. And collection of activation functions of a particular type known as hypothesis
space which is denoted by H. The cardinality of H is finite or infinite. If it is finite we can use decision
tree as a complexity measure and for infinite case we use VC' (Vapnik Chervonenkis) Dimension. The VC

dimension is geared towards binary classification.

Definition 2.1.1 (Growth Function). The growth function Il : N — N for a hypothesis set H is defined
by
Iy (m) = max {(h(z1), h(z2), ... h(zm)) : h € H}|,¥Ym € N.

(T1,T2,eeeneey T) CX

Basically Il (m) is the mazimum number of ways m points can be classified using H.
Set Theoretic Definition: Let H be a set family and C be a set, then Il (m) := maxc.|c|=n |[H N C].

Definition 2.1.2 (Shattering). 2™ is the mazimum number of classification of m points by H. We say that
a sample space X of length m shattered by hypothesis space H if this maximum value is attained, that is H
gwwes all possible classifications of X.

Set Theoretic Definition: Let S be a set family (set of sets) and C a set. Then SNC = {sNC|s € S}.
we say a set C is shattered by S if |S N C| = 2/€.

Example 2.1.1. No 4 element set S C R? can be shattered by C = all open half spaces. But every non

collinear three element set can be shattered.

Figure 2.1: Four points can not be shattered by half spaces

2.1.1 Properties

Consider each function in function class F' takes value in some finite set Y. Let F C Y X be a class of Y valued
functions. Fj,, ~ is the function class F' restricted to z1,...,2m, i,e Fjgym = {(f(z1), ..., f(zm)) : f € F}.
Fig,m is finite and |Fj;,m| < min{2™, |F[}. Define g (m) := max,,mex [F . Note that Iy (m) < |Y|™.

™y

Lemma 2.1.1 ([36]). Let F! C Y{¥ and F? C Y5* be two function classes. Let F = F' x F? be their
Cartesian product. Then
Hp(m) g le(m)HFz(m)

Proof. Fix ™. By definition of cartesian product we can write

| Fym | = |F| | F2n

Now taking max in both sides, which imply
Hp(m) g le(m)HF2(m)

Since z,, is arbitary, this completes the proof. O

Lemma 2.1.2 ([36]). Let F* € YX and F? C Y, be two function classes. Let F = (F?o F') be their
composition. Then
HF(’I’TL) g le(m)HFQ(m)

Proof. Fix 2™ € X™. By definition of F', we have

For = {(f2(f1(@0), fo(F1(22)), - fo(fr(am))) - 1 € FY, fo € F?}
= U {(f2(01), f2(v2)s ooy fovim)) : fo € F?}

veEFl m

Now we have,

[Fom| < D H(f2(01), f2(v2))s v f2(vm)) : f2 € F2}

’UEFlwnz

> TpP(m)

veEFl, m
= || 115 (m)
Hp(m) < HF2(m).HF1(m)

N

Since =™ is arbitary, this completes the proof. O

13

2.2 VC Dimension

Cross Validation, Bayesian Information Criteria, Structural Risk Minimization are the methods for evaluating
a machine learning model. Among all these methods which model selection method is best? Understanding
which learning machines are more less power full under which circumstances. To reach a conclusion we can
focus on V'C' Dimension as a process.

VC Dimension for neural network increases with number of parameters and also depends upon non

linearity and depth of the network.

Definition 2.2.1 (VC Dimension). VC' Dimension of H is defined by
VC(H) = max{m : Iy (m) =2™M}.

Basically it is the size of the largest set that can be fully shattered by H.
Equivalently, S C U where U is a subset of R™ for some m belongs to natural number. And the concept

class C is collection of subsets of U:
VC(H) := sup{cardS : S shattered by C'}.

Example 2.2.1. VC(convex d gons) = 2d + 1. Consider point on a circle and consider the sequence of

alternating sign, then 2d 4+ 2 points can not be shattered.
Example 2.2.2. VC(intervals in R) = 2. Any set of two points can be shattered by four points.

Example 2.2.3. VC(axis aligned rectangles) = 4. Consider a five points configuration like four points
are in boundary of a rectangle with same sign and other is inside the rectangle with different sign. So it can

not be shattered.

Example 2.2.4. 2d+1 points on a circle can be shattered by a d gon. If |positive points| < |negative points|,

then polygon inscribed the circle and if |positive points| > |negative points|, then circle is inscribed in a

polygon.

Example 2.2.5. VC(hyperplanes in R?) = d + 1.

Example 2.2.6. Consider the parametrized class F = {f : f(x) = sign(sin(6z)) : 8 > 0}. Then VC(Fyip) =
oo, where X = [0, 2x].

Proof. Consider the points {(27107%, y;),4 = 1(1)n}. Now fix w = 2(1+ 37" | (15£10%)). Now y; = —1 and
z; = 2r1077, find wz; which is equal to m(1 + €) 4+ 2kn. From 7 < 7(1 + €) < 27 implies sin(wz;) < 0. It
is true for any n € N. This completes the proof. O

Example 2.2.7. Now consider 8 points in 2 — D euclidean plane. Hypothesis H = set of straight line. Two
classes y = {1,—1}. For every 8 labelling there exit a straight line to classify these 3 points. Therefore 3
points can be shattered. Now consider any 4 points. But this can not be shattered by this H. So VC(H) = 3.

14

0 []
., e|° S e o ., o
(3 o,/ : |eo °
1/
0
° ° ° °
1 0 1
° ° ° °
)
o . o ° °

Figure 2.2: Three points shattered by straight lines

2.2.1 VC Definition of Function Classes

The concept of this part has taken from the paper [26]. Let V' C R™ for some n € N. A is a collection of
subsets of V' which is known as concept class. The concept based definition of V' C' Dimension is raised in
combinatorics and computer science. It is useful to provide an equivalent formulation in terms of functions,
which is the way in which the subject arises in statistical estimation.

Instead of A we may define a function class G = {g|g : V' — {0,1}}. To each g € G we associate the set
Ay ={veV:g) =1}
And thus to G we might associate a concept class,
Ag:={A,: 9 G}.

we define
VC(G) :=VC(Ag).

Conversely to any concept class A we may formulate a function class G in such a way that A = Ag (just
take characteristics function of subsets).

For a set of real valued function class G, we define
VC(G) :=VC ({Hog,g € G}),where H(x) = Heaviside function.

According to this definition, a subset W = {wq,wa,....,w,} C V shattered means, for any combination
e = (e1,ea,....,e,) € {0,1}", there must exists some function g = g. € G which has precisely the same sign,
ie H(g(u;)) = e;.

2.2.2 Parametric Classes of Functions

The paper [26] describes the following topic in a gentle way. Suppose we have a function

a:WxU—R

15

where W = R, p is number of weights or parameters and consider a parameter vector w = (w1, wa,,w,) €

W. For each choice of parameter vector we get a function:
F, :={a(w,.):we W}

and we also define
VC(a) :=VC(F,).

Example 2.2.8. Consider the map o : R?> x R — R given by
a((e,d),z) :=c + dux.
which imply U = R and C = All open infinite intervals and empty set.
Example 2.2.9. Consider the function o : R? x R?> — R given by
a((c,d,e), (z,y)) :=c + dz + ey.

which also suggests that U = R% and C = open half spaces.

2.3 Linear Parameterizations

Linear parametrized classes account for vector spaces. And the dimension of this classes is the number of
independent parameters. F' is a finite dimensional vector space of functions. Dim(F') equal to m iff there
exists {f1, f2, ..., fm} C F such that the following matrix is non singular and any (m+ 1) by (m+ 1) matrix

of this form is singular.

fl (Ul) fl (UQ) f1 (’U,m)

fa(ur) foluz) o Ja(um)
M = . e,

fm(u1) fm(u2) . fm ()

A finite subset V' = {uq,ug,,u;m } C U is shattered by F' if there exit 2™ functions f1, fa,...fam such that
the matrix formed accordingly to M gives all possible 2™ sign patterns i,e each row vector of the matrix

gives one sign pattern.
Lemma 2.3.1 ([26]). Suppose F is a vector subspace of RV, then dim(F) = VCO(F).

Proof. Suppose {f1, fa, ..., fm} is a linearly independent set and there exit a set V = {v1,va,....., v, } such
that the matrix M has rank m. To show V is shattered it is enough to proof there exit some function f € F
such that H(f(u;)) = e; where e € {0,1}™ . M has rank m imply there exit v € R™ such that vT A = e. So
f=v7(f1, fay -, fm) has given the sign pattern same as e. Therefore VC(F) greater than equal to m. So
dim(F) < VC(F).

Conversely, assume VC(F) is m. So there exit a set S = {s1, $2, ..., $;m} C U is shattered by F. So by
definition total 2™ rows of the matrix gives all possible sign pattern. And from this 2" by m matrix we will

get a m by m matrix which is non singular, so dim(F') is at least m. We conclude that VC(F') < dim(F). O

16

2.3.1 Affine parameteization

According to paper [26], the concept of this topic describe as follows. Consider S = {uy, ug, ..., C U is
shattered by F' and F is a linear space, then the following result holds:

A. For any e = {0,1}™, § > 0, there exists some function f € F such that f(u;) > d ife; = 1 and f(u;) < =6
if e; = 0.

Consider F is a affine subspace, then G+ fo = {g+ fo : ¢ € G} where G is a vector subspace of functions
and fy is a arbitary fixed function. Then VC(F) = VC(G) = dim(G). Enough to show a subset is shattered
by G iff it is shattered by F'.

If there exists g, h in F such that H(g(u;) + fo(u;)) = e;,Vi and H(h(u;) + fo(u;)) = 1 — e;,Vi. Then
(g — h)(u;) > 0 when e; = 1 otherwise (g — h)(u;) < 0. Suppose S is shattered by F' then make a function
f = g—h where g, h € G which has the property H(f(u;)) = e;. For other direction we consider g € G such
that g(u;) > d if e; =1 and g(u;) < —9 if e; = 0, then the result follows.

2.3.2 Perceptron

Here F = all affine function from R™ to R. So f(u) = f(u1,ug,....,upn) = ap + a1uy + ... + aptip.

These functions are linearly parametrized by (ag, a1, ...a,) € R**1. So according to Lemma 2.3.1 VC(F)
isn+ 1.

Another approach: Consider {u, us, .., u, } are inputs and {y1,y2, ..., yn } are the corresponding labels.

We can define wy, ws, .., w, and bias unit b to ensue sign(wuy, + b) = y; for all k. Which means

sign(wug, + b) = sign(b + Z ui4])
j=1

So we choose b = 0 and wy, = uy, for all k, k = 1(1)n.

2.4 VC Dimension Related Results

2.4.1 Single Hidden Layer with Fixed Input Weights:

Input Hidden Output
layer layer layer
b1

Figure 2.3: Neural net with activation function o.

17

The proof of this part has mentioned in [26]. Here M is the m by n input to hidden layer matrix. Assume
dis are the hidden to output layer weights and ag)js for i = 1(1)m and j = 1(1)n are the input to hidden
layer weights, b1,, by, are the hidden layer bias and dy is the output layer bias.

y=f(u)=do+ Y dp.o(Myu+by)
k=1

Now weight matrix is M7 = [a(i, j)](n x m) and input vector is u = (u1, ug, ..., u,). And also o is a arbitary
activation function. Consider My,M,, are the row vectors of M which is fixed and also biases are fixed.
Therefore the network is span of 1 and o(M;.u + b;) where ¢ = 1(1)m. Now by Lemma 2.3.1, we conclude
that dim(F) < m + 1.

We can say the bound is tight when ¢ is "tanh” which follows from the following remark.

Remark 2.4.1. Assume that (M;,b;) # (M;,b;) for all i # j and that M; # 0 for all i. o = tanh and
consider the remaining as above network. Then VC(F) =m+ 1.
If a network have no biases. For an analytic function o, and for such a net VC dim is n iff o is not a

polynomial.
Lemma 2.4.1 (Sauer). H be a hypothesis space with VC(H) = d, then for allm € N, Il (m) < Z?:o (™.

Proposition 2.4.1 ([37]). Let H be hypothesis space with VC(H) = d, then Vd < m

Iy (m) < (em/d)* < O(m?).

Proof.
d d
M < ") (/)=
(1) < 30
< (m/d)*~
% (%)
= (m/d) dZ() (d/m)*
= (m/d)*(1+ (d/m))™
< (m/d)%ed.
So either VO(H) = d < 400 and Il (m) = O(m?) or VO(H) = +oo and Il (m) = 2™. O

VC of Piece-wise polynomial function: Consider each polynomial is a fixed polynomial. Then the
network computes a parametrized polynomial in the input variables, which is a linearly parametrized class

(i,e a vector space), follows that the VC' is bounded.

18

2.5 Basic Properties of VC Dimension

Assume F is a set of functions from U to {0,1}. Then for each n and for all sequence {uy,us, ..., u,}, the

number of total classification possible for this sequence as a input sequence is:

7(“17“27 ------ aun) = Card{(f(ul)’f(u2)7 ’f(un))|f € F}

So the n element set is shattered iff v attains its maximum value 2". If VC dimension if finite then + grows
polynomially.
For each two non-negative integers d < n, we define ®(n,d) is the total number of subsets of a subset

has cardinality at most d of a n element set.

d n nd
®(n,d) := ; <k> <25 < (en/d)?

0

Lemma 2.5.1 ([26]). Let 1 < n and 0 < d < n, and suppose that the matriz C' € {0,1}"*" is so that all
its columns are distinct, where v is an integer satisfying ®(n,d) < r. Then there is some d + 1 by 291 sub

matriz of C whose columns are distinct.

Theorem 2.5.1 (Vapnik-Chervonenkis-Sauer-Shelah). Suppose VC(F) = d < co. Then for each d < n and
all sequences {u1,ug, ..., Un }

Y(ur,ug, . uy) < P(n,d).
[26]. We directly derive from the Lemma 2.5.1. Suppose VC(F') = d, then consider any sequence {uy, ug,, un },

with d < n and define k = ~y(u1,ug, .., u,). Now we rearrange all the possible classification as rows in below:

f1 (ul) f1 (UQ) f1 (un)

fQ (Ul) fQ (’ZLQ f2 (un
M=\ . .

fk (ul) fk (UQ) fk (un)

If the result does not follows means ®(n,d) < k. Then from Lemma 2.5.1 there is a sub matrix of order 29+!
by d + 1. And as each row are distinct so we get a subset of size d + 1 which is shattered, contradicts our

hypothesis. So the result follows. O

Theorem 2.5.2 ([7]). A. Consider a parametrized class of binary valued function,
Fy={z — f(z,0): 0 € R}, where f:R™ x RP — {+1,—-1}.

Suppose for each z, f(x,.) can be computed using no more than t operations of the following kinds:
o +,—x,/
°« =<,>
o output +1 or —1.

Then VC(Fy) < 4p(t +2).
B.Consider all the above operations with one more operation x — exp(x). Then VC(Fy) = O(p*t?).

19

2.5.1 Boolean Closure

One technique to evaluate upper bound on the VC Dimension. Here concept class arises as unions, intersec-
tions and other Boolean operations. We have found Fi, Fs, , B, are m classes of functions U — {0, 1}.
And t:{0,1}™ — {0,1} is a fixed boolean function. We define:

HEL, oy ooy Fy) 2= {(F1()s f2 (s oo fn O fs € Fryi = 1,2, ..y m).

Lemma 2.5.2 ([26]). With ¢, = 2mlog(em), a constant which does not depend on the classes F; nor on

the Boolean function t,

ey

Proof. Suppose S C U is shattered and |S| = n. Each F; is a set of functions from S to {0,1}. Define
F=F xFyx.... X Fy,. So F is a function from S to {0,1}™. Since F — t(F1, ..., Fin) : f1,., fm —

to (f17) fm) is OIltO7
card t(Fy, ..., Fy) < card(F) = 11; card(F;).

Also d; = VC(F;) is finite for all i. Now by Theorem 2.5.1

card(F;) < (%”)daw
Let d = _max d;, which gives
card t(Fy, ..., Fy) < (%)dm
As S is shattered by F, 2" < (4¢)4™. O

Composition Suppose we have F'= {f|f: U — V} and G = {g|lg: V — W} and we define
GoF:={goflgeqG, feF}

a set of function from U to W. We assume given ”growth functions” for each class, which bound the number

~ of possible classifications, that is, two functions p and ¢ so that
V.S C Uwith card S < n,card F|g < p(n).And VR C Vwith card R < n,card G|r < q(n).

where p and q are two growth functions.
Lemma 2.5.3 ([26]). For each S C U with card S < n, card(G o F)|s < p(n)q(n).

Proof. We already proved it before. Now we will give a new idea to proof it. Let S = {u1,...,u,}. Choose
a subclass o = {f1,..., fp(n)} of F such that Fy|s = F'|s. We consider the following subset of V'

Ri = {fi(u1), -, fi(un)}

for each ¢ = 1(1)p(n). For each R; there is G; = {gi,...,g;(n)} of G so that G;|g, = G|gr,. Now take
go f € GoF. Consider i and j such that f|s = fi|s and g|g, = gij|Ri. Thus (go f)|s = (gij o fi)ls. So we
get

(GoF)ls={g"; 0 fili=1(1)p(n),j = 1(1)a(n)}.

20

This completes the proof. O

2.6 VC Related Results for Multilayer Neural Net

As an application of Lemma 2.5.3, the following result holds for neural network with binary activation
functions. This bound is formulated by Cover (1968) and also obtained in Baum and Haussler (1989).
Maass (1994) and Sakurai (1993) showed that this bound is tight. Maass’s construction follows a network

with three layers and binary inputs. Sakurai used two layers and arbitary real numbers as input.

Theorem 2.6.1 ([26]). The class of functions computed by multilayer neural networks with binary activa-

tions and p weights has VC dimension O(plog(p)).

To finding VC lower bound of two layered neural network with tanh activation functions we use the below
theorem. But here all the parameters (weights, bias) and input is restricted to a open subset in real number

containing origin.

Theorem 2.6.2 ([22]). Let F be a class of two layer feedforward neural networks with k hidden units with
tanh activation function, input space X = {(z1,...,x,) € R" : |z;| < C}, C > 0 and k(n + 2) + 1 weights
restricted to an open set which include the origin. Then VC(Fy) > p where p = (k—1)(n+ 1) 4+ 1 is the

number of weights of a network with n — 1 inputs and k — 1 hidden units.

Since the network with sigmoid activation function is proportional to a network with tanh activation
function as it is a translation of weights, so this result holds for sigmoidal network also. The VC dimension
of k-term radial basis function has been shown at least k& by Anthony and Holden (1993). When centers
are not adjustable, this bound is tight but when the centers are adjustable the below theorem gives a lower

bound of VC dimension.

Theorem 2.6.3 ([22]). Let F be a k—term radial basis function with gaussian basis functions. If the input
space is R®, then VC(Fy) > p where p = kn — n is the number of parameters in a k — 1 term radial basis

function with n — 1 inputs.

The below theorem for VC upper bound of neural network with linear threshold functions does not
depends upon depth of the neural network. So according to this theorem the power of a classifier does not

depends upon the depth of this classifier (mainly neural network).

Theorem 2.6.4 ([35]). F), 1 be the class of functions computed by a feed forward network of linear threshold

functions, with k computation units and p parameters. Then for p < n,

Op, () < (enk/p)?

and hence VC(F, 1) < 2plogy(2k/1In2).

Proof. Fix a set of n input vectors z1, xs, ..., . Consider topological ordering of the computation units. For
computation unit [, let p; be no of parameters and let D;(.S) be the no of distinct states (i,e parameter settings
that compute distinct mappings {z1, 2, ...,7,} — {+1,—1}! from input vector to outputs of computation
units up to the I'th).

e Dy(5) < (en/py)Pr.

21

o Di(S) < Di—1(S)(en/p)?".
o Hence Dy(S) < I}, (en/p)?* and log(Ily, ,(ny) <), 1 log(en/pr).
e bound maximized, log(Ilf, , (n)) < plog(enk/p).
This completes the proof. O

VC lower bound for two layered neural network with linear threshold functions follows from the below

mention theorem. This bound only depends upon number of computation units and number of weights.

Theorem 2.6.5 ([35]). Fyx be the class of functions f : RY — {+1,—1} computed by a two layer feed
forward network of linear threshold functions, with k computation units(p = (d+2)k+1). Then VC(Fy) =
Q(p). A more involved argument shows that VC(Fq) = Q(plog(k)).

Proof. The idea of proof is given below:
e Arrange kd points in k well separated clusters on the surface of a sphere in R9.
e Ensure d points in each cluster are in general position.

e For each cluster, fit the decision boundary (hyperplane) of a hidden unit to intersect all d points.

Oriented so that the unit has output 1 at the centre of the sphere.
e Choose the parameters of the output unit so that it computes the conjunction of its k inputs.
e By perturbing the hidden unit parameters, it is clear that 2%¢ classification can be computed.
This completes the proof. O

Remark 2.6.1. Consider the class F' of {—1,1} valued functions computed by a network with L layers, p

parameters, k computation units with the following non linearities:
e Piece-wise constant(linear threshold) = O(p).(Baum,Haussler- 1989)
o Piece-wise linear = O(p?).(Harvey, Liaw,-,-2017)
e Piece-wise polynomial = O(pL?).(Maiorov, Meir - 1998)

o Sigmoid = O(p*k?).(Karpinsky, Macintyre - 1994)

2.7 Counting Weights

2.7.1 Multilayer Nets with both H and Linear activation

The number of regions grown by n hyperplanes is a polynomial of n?, d is the dimension of the space. Let
U(n,d) be the largest no of regions into which n hyperplanes can partition R4. In other words ¥(n,d) is
the best bound for number of connected components created by Hy, Hs, ..., H,, in R™ of R™ — (., H;).
The argument has given for neural network with binary activation functions can not be apply to real
valued activation functions. Because here the total number of functions on a set of size is n is no more than

finite. To overcome these difficulties we follow the below mentioned theorem.

22

Lemma 2.7.1 ([26]). For n >d, ¥(n,d) < ®(n,d).

The below Lemma is a construction of a special type of neural network which is used for the proof of

Theorem 2.7.4. This result also holds for neural network with skip connections and without skip connections.

Lemma 2.7.2 ([26]). The network has two H activations and one linear function at a first level, and a
linear function at the top level. Suppose that there are a total of g heaviside gates (including one at the top

level). Then there exist r < g29~1 Boolean functions of the form
Q;(w,u) = H(L;i(w,u)),

where each L; is an affine function of u with parameters w and a boolean function b of r arguments, such
that

H(B(w,u)) =b(Q1(w,u), Qa(w,u), ..., Qr(w, u)), for all (w,u).

The below theorem gives a direct calculation of growth function bound instead of using the concept of
vector space dimension for parameters. But this bound only holds for neural network with linear threshold

functions.

Theorem 2.7.1 ([35]). For the class of linear threshold function,

Hpym) = 2; ((n ; 1)>

Proof. Fix n points {x1,72,...,2,} € RY. Divide the parameters space of {(#,0y)} = R4*! into cells that
give the same classification of the points, and count the no of these equivalence classes using a geometric

argument.

e Assume the points in S are in general position, i,e all subsets of {(“"11), (zf), ey (zl")} of sizeup to d+1

are linearly independent. No three in a line, no four are in a plane.
e For each x;, define the hyperplane P; = {(0,6y) € R4t : 0Tz, + 6, = 0}.

e In order for (8,6y) and (6',6,") to label z; differently, they must lie on opposite sides of P;(neither on
P;). Thus |F(z;")] = CC(RY*! — """ | P;), where CC means connected components.

e We define C(n,d + 1) := CC(RITL = 3" | P).
e First C(1,d) = 2.

e Next C(n+1,d) = C(n,d) +C(n,d—1). We have n planes in RY and add (n + 1)’th. It splits some of
the C(n,d) cells into two, and leaves some of them intact. The number that are split by P, 41 is equal

to the no of connected components of P41 — > ., P; which is C(n,d — 1).
o C(n,d)=2%7020 ("Y).
This completes the proof. O

The definition of VC dimension for function class F implies that VC(F) < log, |F|, when |F| is finite.
But for some infinite function classes the bound is finite. To reach this argument we follows the below

mention two theorems.

23

Theorem 2.7.2 (Wenocur and Dudley([27])). VC(N) =n+1 if N consists of a single linear threshold

gate with n inputs.

Corollary 2.7.1. A linear threshold gate with n inputs can compute at most | X |"*1 + 1 different functions
from any set X C R™ into {0,1}.

As a conjecture we know that the VC dimension can not be greater than the number of parameters. So
the below bound can be improved to O(w). Hence with regard to the VC-dimension it is fair to say that a

neural net can be "more than the sum of its parts.”

Theorem 2.7.3 ([27]). Let N be an arbitrary feedforward neural net with w weights that consists of linear
threshold gates. Then VC(N) = O(w.log(w)).

Proof. Consider S be the input vector of dimension m of N. By the corollary 2.7.5 a gate g in N can
compute at most | X|fen—n(9)+1 11 different functions from any finite set X c R™2~(®) into {0,1}. Hence
N can compute at most Iy gure in j\r(mf‘m_i’””(g)Jrl +1) < m?* different functions from S into {0,1}. If
S is shattered by N then N can compute all 2™ functions from S into {0,1}. Then 2™ < m?* implies
m < 2wlog(m). From log(m) = O(log(w)), we get m = O(w log(w)). O

The below theorem is a counterpart of the theorem 2.6.1. This upper bound only depends upon number

of weights. This network contains binary as well as linear functions as its activation function.

Theorem 2.7.4 ([26]). The class of functions computed by multilayer neural networks with binary as well

as linear activaton and p weights has VC dimension O(p?).

The below Lemma shows that the upper bound for Theorem 2.7.4 can be attained. This Lemma gives

an particular type of architecture to proof the above mentioned claim.

Remark 2.7.1. The above bound is tight for the given network. Find a family of maps 8, where each has

cp linear and threshold units and each constitute a network architecture. So VC(B,) = p* for each p. Define

P
Bo={w e Rlw=">b;/2" by, by, ..., b, € {0,1}}.

=1

And

And also define 8, : R” x R? — R, so0 that for each w € A, and for each (i,j) € S,

Bo((w1, wa,;w)), (i, 7)) = i'th bit of w,.

24

Chapter 3

VC Dimension of Neural Networks

We will formalize our discussion in somewhat more abstract terms. This chapter will give us different

ideas of calculating VC upper bound for different type of neural networks.

3.1 VC Dimension of Piece wise Polynomial Networks

Here the units of neural network contains piece wise polynomial activation functions, specially we will discuss
about piece wise linear like ReLU function. First part will give a idea of proof of VC upper and lower bound.

The second part of this section will give more tighter bound of the first part of this section.

3.1.1 Linear VC Dimension Bounds for Piece wise Polynomial Network

Goldberg and Jerrum (1995) have shown that the VC upper bound for neural network with piecewise
polynomial activation functions is O(W?). Koiran and Sontag (1997) have demonstrated a network with
piecewise polynomial activation functions has VC lower bound Q(W?). But this proof assume a fact that
the number of layers can grow with W. But in pratical situation, this number is a small constant. Now the

question is whether this bound can be improve?

Theorem 3.1.1 (Upper Bound [1]). Consider a network of real inputs, upto W parameters, upto k com-
putational units arranged in L layers, a single output unit with identity activation function, and all other
computation units with piece wise polynomial activation functions of degree I and with p break points, for
any positive integer W, k < W, L < W, 1 and p. F be the class of real valued functions computed by this
network. Then

VC(sgn(F)) < 2W Llog(2eW Lpk) + 2W L?log(l + 1) + 2L

and also if p,1 are fized and since L,k are O(W), implies that
VC(sgn(F)) = O(WLlog L + WL?)

Proof. The below part will give us a idea of the whole proof which has discussed in the main paper. Basically,

this bound holds for piece wise polynomial neural network.

e Fixed x as an input, output of the network is f(z,a) corresponds to a piece wise polynomial of

parameter a and degree of this polynomial no more than (I + 1)Lt

e Parameter domain A = RW can be split into regions, in each of which the function f(z,.) is a polyno-

mial.

e To obtain an upper bound of the number of sign assignments, that can be attained by varying the

parameters of a set of polynomials.
® Ty,To,..., Ty, are m arbitary points.
e Target is bound K = |{(sgn(f(z1,a)), ..., sgn(f(zm,a))) : a € A}|.
e If we consider a partition Si,Ss, ..., Sy of parameter domain A.
o Then K < 310, [{(sgn(f(21,0))..., sgn(f(zm, a))) : a € Si}].

e Choose partition such that within each region f(z1,.),..., f(zm,.) are all fixed polynomials of degree

no more than (I + 1)£-1.
e Then each term of the summation less than equal to 2((2em(l + 1)2=1)/W)W.
e Construct the partition and determine an upper bound of its size.

e Let S; be a partition of A such that, for all S € Sy, there exists constants by, ; ; € {0,1} for which
5gn(Ph,e; (a) — ;) = bpij,Va € S, where j € [m], h € [k1],7 € [p].

e {; are the break points of the piece wise polynomial functions and Ph,z; = Gh-Tj + apo where ap, €
R4, an0 € R are the weights of the h'th unit in the first layer.

e 57 is determined by only parameters of the first hidden layer.
e Clearly, for a € S, the output of any first layer unit in response to an z; is a fixed polynomial in a.

o Let Wy,....,Wr = W be the number of variables used in computing the unit outputs up to layer
1,2, ..., L respectively, and k1, .., k;, = 1 be the number of computation units in layer 1,2, ..., L respec-

tively.

e Choose S; so that |S1| is no more than the number of sign assignments possible with mk;.p affine

functions in Wj variables.
e Then |S;| < 2((2empky)/W1)Wr.

e Assume for all S € S,_1 and all x;, the net input of every unit in layer n in response to x; is a fixed

polynomial of a € S, of degree no more than (I + 1)"1.

e Let S, be a partition of A that is refinement of S, _1, such that for all S € S,, there exists constants
br,i,; € {0, 1} such that sgn(pn,a,(a) —t;) = bpj for all a € S. pp ., is describing the net input of the

h/th unit in the n’th layer, in response to z;.

e Refinement: For all S € S,,, there exist an S’ € S,,_1 such that S C 5’.

26

e Output of each n’th layer unit is a fixed polynomial in a of degree no more than I(I + 1)"~! for all
a€S.

e Choose S, such that for all S" € S,,_1 we have |{S € S,, : S C S’}| is no more than the number of sign
assignments of mpk,, polynomials in W,, variables of degree no more than (I 4+ 1)"~1.

e So this is no more than 2((2empk,, (I + 1)"~1)/W,,)V.

e Net input of every unit in layer n 4+ 1 is a fixed polynomial of a € S € S,, of degree no more than
I+ 1™

e Finally S;_1 of A such that for all S € S,,_1, the network output is a fixed polynomial of a € S of

degree no more than [(I + 1)£~2 in response to z;.
o |Sp 1| < 2((2empky) /W)W TTE 2((2empk; (14 1)) /W)W,
o K <IIX 2((2empk;p(l + 1)'=1) /W)W,
e m< L+ Ele W, log((2empk; (1 + 1)i=1) /W;), log is base 2.
This completes the proof. O

Theorem 3.1.1 gives an upper bound O(WL? + W Llog(WL). If L os fixed this is W log(W) which is
better than O(W?). The below theorem gives a lower bound Q(W L), L = O(W). This generalize the result
of Koiran and Sontag as it holds for any number of layers. But this lower bound holds for neural network

with continuous activation functions.

Theorem 3.1.2 (Lower Bound [1]). f: R — R is a function with following properties:

A. limasoof(a) =1 and lima——oo f (@) = 0.

B. f differentiable in some point xo with f'(xz¢) not equal to zero.

Now for any L > 1 and W > 10L—14, there exists a feed forward neural network with following properties:
The network has L layers, W parameters, output unit has a linear function and all other units have f as a

activation functions. Then the set sgn(F') of functions computed by the network has
VC(sgn(F)) = (L/2)(W/2).

W = number of parameters or edges. L = number of layers.
Remark 3.1.1 (Upper Bound). Here we organized some VC upper bounds.
e OWLlogW +WL?)[[1]].
o OW2)[[7]].
o O(WlogW)[[34]], NN with linear threshold function.
Remark 3.1.2 (Lower Bound). This remark contains some VC lower bounds.
e QWL [1]
o Q(WlogW)[M’98].

o Q(WlogW)[[18]], NN with linear threshold.

27

o Q(WL)[Bartlett’98], NN with linear threshold and identity function.

The below theorem gives a upper bound on VC dimension for neural network with ReLLU activation
functions. This bound tight for any parameter range. All of these bound generalize for arbitary piecewise
linear class of activation functions. Theorem 3.1.4 gives a proof idea for lower bound and Theorem 3.3.5

gives a proof idea for upper bound.

3.1.2 Refinement of [1]

Theorem 3.1.3 ([17]). For a ReLU neural network W params, L layers Q(W Llog(W/L)) < VCDim <
O(W LlogW).

Theorem 3.1.4 ([16]). Lower Bound(Refinement of [1])

Proof. Here instead of one bit per layer, we are taken multiple bits.
e Shattered set S = {e;}icin) X {€;}je[ml-
e Encode f with weights a; = 0.a;1, 42, ..., @i m Where a; ; = f(e;, €;).
e Given e;, easy to extract a;.

e Design bit extractor to extract a; ;. One bit per layer imply Q(W L) and log(W/L) bits per layer imply
Q(W Llog(W/L).

This completes the proof O
Theorem 3.1.5 ([16]). Upper bound(Refinement of [1])

Proof. Here concept of depth upto layer i'th is added, which is a function of weights of the predefined neural

network.
e Fix a shattered set X = {z!, 22, ...,2™}.

e Partition parameter space such that input to 1’st hidden layer has constant sign. Can replace o with
0 (if < 0) or identity (if > 0)!
e Size of partition is small, i,e < (cm)W by Warren’68.
oWwL)

e Repeat procedure for each layer to get partition of size < (cLm) .

e In each piece, output is polynomial of deg L. So total no of signing < (cLm)?WE),
e Since X is shattered, 2™ < (cLm)®MWL) which imply m = O(WLlogW).
This completes the proof. O

The below theorem follows bit extraction technique. Here instead of one bit extraction they extract many

bits per iteration time. As a result the new obtained bound is tighter than the previous calculated bound.

Lemma 3.1.1 ([16]). Suppose a ReLU neural network of W params, L layers extract m’th bit of input.
Then m < O(Llog(W/L)).

28

The below theorem gives a lower bound on VC dimension for neural network with ReLU activation
functions. Goldberg and Jerrum (1995) has been given a lower bound on VC dimension for neural network
with piecewise polynomial activation functions. Here the authors used the fact that a function that can be

expressed as a Boolean formula containing s distinct atomic predicates.

Lemma 3.1.2 ([16]). There ezit constant ¢ such that the following holds. Given any W, L with C? <
CL < W, there exists a ReLU network with < L layers and < W parameters with VC Dimension >
W Llogy(W/L)/c.

The below theorem imply that the bit extraction approach cannot give a lower bound better than the

calculated bound.

Lemma 3.1.3 ([16]). Assume there exists a neural network with W parameters, L layers that computes
a function f : R — R, with the property that |f(z) — (x mod 2)| < 1/2 for all x € {0,1,....,.2™ — 1}.
Also suppose the activation functions are piece wise polynomial of degree at most d > 1 in each piece, and
have at most p > 1 pieces. Then we have m < Llogy(13pd“+Y/2W/L). For Piece wise linear this gives
m = O(Llog(W/L)).

The below theorem applicable for neural network with piecewise linear activation functions. And the

input of this neural network is arbitary real domain.

Lemma 3.1.4 ([16]). Consider piece-wise linear neural network with W parameters arranged in L layers.
Let F be the set of real valued function computed by this network. Then if m = VC(sgn(F)) and p is
no of pieces of the activation function, it holds that m < 4W(L 4 1)logy(2eWmp). So VC(sgn(F)) =
O(W LlogW).

Proof. For piece-wise polynomial we know O(W?) by ([13]) and O(W L2 +W Llog W) by (Bartlett’98). This
proof is similar to (Bartlett’98). Here use a result [warren(1968)]. O

The below theorem gives upper bound on VC dimension for neural network with piecewise polynomial
activation functions. Also this network supports both with skip connections and without skip connections.

Here the authors imposed a new term L;. The new modified bound depends upon this term.

Theorem 3.1.6 ([16]). Consider a neural network with W parameters, U computational units arranged in
L layers, so that each unit has connection only from units in earlier layers. Let k; denote the number of units
at the i'th layer.Suppose that all non output units have piece wise polynomial activation functions with p+ 1
pieces and degree no more than d, and the output unit has identity function as its activation function.

If d = 0, let W; denote the number of parameters(weights and biases) at the inputs to units in layer i;
if d; > 0,let W; denote the total number of parameters(weights and biases) at the inputs to units in all the
layers up to layer i(1,2,...7). Define the effective depth as

L
Ly=1/W> W,
i=1

and let
L

Ri=Y k(14 (i—1)d ") <U+UL-1)d" "
i=1

29

Case I For the class F of all(real valued) functions computed by this network and LiW < m,we have
Wogn(r) (m) < L2 2((2empk;(1+ (i — 1)d' ™)) /W)
Case II If U > 2,then
VC(F) < L+ LiWlog(4epRlog(2epR)) = O(L1 W log(pU) + LLiW log d).
Case III If d = 0, then
VC(F) < L+ Wlog(4epU log(2epU)) = O(W log(pUl)).
Case IV If d = 1,then

VC(F) < L+ LiWlog(dep > (ik;log(d_(2epik;)))) = O(L1W log(pU)).

3.2 VC Dimension of Sigmoidal Neural Networks

In this section we discussed about neural network with sigmoid and radial basis functions. We focused on

VC finiteness of the network and also give an idea of VC for definable sets.

3.2.1 Lower Bound of Sigmoidal Network which Approximate Continuous Func-

tions

Definition 3.2.1. A dichotomy of a set S C R" is a partition of S into 2 disjoint subsets Sp,S1 such that
SouUS; =S.

According to functions: For a set of functions F' mapping from R™ to {0,1} and a dichotomy So, S1 of
S, we say F induced the dichotomy if there is a f € F such that f(So) C {0}, f(S1) C {1}.

Definition 3.2.2. F shatters S if F' induced all dichotomies on S.

Basics

We show how to construct a neural network N, that computes some of the polynomials. This architecture has
only one programmable parameter. Let the sequence of polynomials over R is defined by p,(z) = 4z(1 — x)

when n =1 and p, () = p(pn—1(z)) when n > 2. So p, has degree 2™.

Theorem 3.2.1 ([3]). The polynomial (p,) approximated in [0,1] by a sigmoidal neural network with error

rate O(27™) in the lo norm must have at least Q(n'/*) computation nodes.

Proof. Here we will give a basic idea about how the original proof is going.

30

- w{®) - L w{?) - -t -
bog 3 2) (1)
1 P3 . 11 - w;T P> . 11 Fw; P . I — wy
L ¥ g {30 L w1
i
J
k

Figure 3.1: The Network N,

e Input values of input nodes are x4 =1, x3 =1, x5 = j, x1 = k.

e Only programmable weight w is associated with outgoing edge from node x4.

e Computation nodes are divides into six labels, each label is a network.

e Three labels, denoted by II having n + 1 input nodes and 1 output node.

e Each calculate projections 7 : R*! — R where 7(y1, ..., Yn,a) = ya for a € [n].

e The levels Py, Py, P3 have n output nodes and one input node each. Pj receives 1 as a input.

e Define output of Py for A € [3] by wy* = py.,a—1(v),b € [n] where v denotes input value of level Py.

A+1

e This value equal to w for A = 3 and 7(w; M1, ... w, ML

,Zx4+1) otherwise.
e Also w1 can be calculated from wy? as p,r-1(wp?).
e Therefore computation of level Py contains n gates, each of them computing the function p,x-1.

e To show N,, can shatter a set of cardinality n>.

Rest of the proof and details of the proof is in [3]. O

3.2.2 Polynomial Bound for VC Dimension of Sigmoidal Networks

In this section the VC upper bound of sigmoidal neural network is calculated using model theory approach.
Basically they first tried to compute VC upper bound of definable sets and then tried to establish a repre-

sentation of this neural network using terms, o-minimal set.
Definition 3.2.3 (Term). A term defined as follows
o A wariable is a term.

o A constant symbol is a term.

31

o If F is a m-placed function symbol and t1,..,t,, are terms, then F(tq,..,t,,) is a term.

o A string of symbols is a term iff it can be shown to be a term by finite number of application of above

three steps.

Definition 3.2.4 (Formula). A formula defined as follows

o Ifty,ty are terms, then (t, = t3) is a formula.

e If R is a n-placed relation symbol and tq,..,t,, are terms then R(t1, ...,y) is a formula.

o If ¢ is formula, then —¢ is a formula.

o If &, x are formulas, then ¢V x, b AN x, ¢ = X, & <= x are also formulas.
Definition 3.2.5 (Language). A Language L is

o A set I of function symbols and a positive integer ny for each f € F.

o A set R of relation symbols and a positive integer ng for each r € R.

o A set C' of constant symbols.

Example 3.2.1. Language of Rings: F ={+,—,.}, ny =n. =n_=2,R=¢,C ={0,1}.
Language of group: F ={.},n. =2,C ={1},R = ¢.

Definition 3.2.6. An L structure M is
e A non empty set M, underlying set of the structure.
o A function f™ : M™ — M for each f € F.
o A relation RM C M™% for each R € R.
o An element C™M € M for each constant c.

Each first order structure M has a satisfaction relation M = ¢ defined for all formulas ¢ in the language
consisting of the language of M together with a constant symbol for each element of M.
A structure M is said to be a model of a theory T if the language of M is the same as the language of T

and every sentence in T is satisfied by M.

Definition 3.2.7 (Definable Relation). An n-ary relation R on the universe M of a structure M is said to
be definable if there exists a formula ¢(x1,x2,...,x,) such that R = {(a1,...,an) € M™ : M = ¢(a1,...,an)}.
There exists a ¢ such that (ay,...,a,) € R iff M = ¢(aq, .., an) is correct.

Definition 3.2.8. M is o —minimal if for every formula ®(v1, ..,v;) and every B € MY, ®4 is a finite union

of intervals with endpoints in M U {oo, —oo}.

32

Model Theoretic Preliminaries

The concept of this part has taken from [9]. We consider a Network A with activation function o and also
have k inputs, m computation units, [weights. It has output in {0, 1} set. By model theory we can express A
by a exponential formula ®(v, %), where v € R¥ and y € R!, which is a combination of polynomials, activation
functions over the computation nodes of A. The functions computed by A represent by ®(v,y) > 0.

In other way we can say A could be express a Boolean combination of atomic formulas of two forms
7(v,y) = 0 or 7(v,y) > 0, describing local computations of A at its computation nodes. Now VC of A is the
VC of the class Cp = {®p : 8 € R'} for 5 = {x € R¥ : ®(z, B) > 0}, the partition of R by A according to
the weight assignment .

We turn our attention to the analysis of general formula resulting from the local computations. We
consider structure M on real field consists of C'*° functions. L is a first order language consists primitives
<,0,1,—,., 4+, together with n ary function symbols f. Each f has a fixed interpretation by a C*° function
f': R® = R, thereby determining an L structure M.

If 7(v1, Va, .., Viy) is an L term with free variables vy, va, ..., vy, 7 defines a m ary C*° function from R™
to R. L formulas ®(vy,vs, ..., vx) defines subset of R¥, and L formulas ®(vy, v, .., Vg, Y1, .., 1) together with
B = (Bi,...., 51) € R! defines subset of R¥, namely &5 = {z € R¥: M |= ®(x, 8)}. For ®(v,y) as above, let
{Ps:0¢€ Rl} = Cg. Also Cs is a definable family of definable sets.We calculate VC dimension of Cg.

Theorem 3.2.2 ([9]). VC dim of ® < 2log B + (17log s)l.

Application to Sigmoidal Networks

The fundamental idea behind this proof has taken from [9]. Consider a sigmoidal network A with | weights
Y1, ..., Y, Or programmable parameters, k input nodes vy, ..., vy and one output node. The m’th computation
node known as N,, is labelled by a variable z,,, and a polynomial Py, (v, ;..o Ut,, Zuys s Zuy s Yhys o5 Yas)
where y's are subset of the weight variables and v's correspond to the input nodes immediately below m
(i,e. connected to m) and z’s correspond to the computation nodes immediately below m.

Then A computes a function 54 : R¥*! — R. If N is a computation node as above labelled by z,,, then
IN(,y) = Pn(vey, vt 0(fn, (0,9)), -0 0 (fN, (0, 9)), Yny s -0, U,), Where N corresponds to u; for 1 <4 < 7.
Also 4 is fwn, where N, is the output node.

For the case of a language with +, —,.,0,1 and a symbol o for a activation function, the f4(v,y) is given
by the term 7(v,y), by transcribing naively the above recursion. Assume ®(v,y) be 7(v,y) > 0. The VC
dimension if finite since o is definable in +, —,., 1,0, exp x.

We have simply to bound I"(7,j),j < [in order to get B. For this we should calculate number of
connected components of an intersection of no more than j sets of the form {y : 7(a;,y) = €},1 < i < J.
This estimate will get from Khovanski estimate.

Zm is use as a computation variable and Z/, is those correspondence with this. Z,, consider as a output
variable. Now consider }-, [(Zm — Prn(0ty, -, U,y Zy, s os ZN, 3 Y con)2 (L= Z5 (1 + exp™?m))?] =
(v, z,y). Notice that p(v,z,y) =0 = Z, = 7(v,y) and Z, = 7(v,y) <= (Iz)u(v,z,y) = 0. By [§] for
fixed a the number of connected components in R™*2™ of pu(a, z,y) = 0 is < 27m=D/2(2d)*+2™[(1 4 2m +
1)(2d + 1))'*3™ where m is the number of computation units.

From here we will get a bound for 7(a,y) = e. But we need to handle < j, 7(a;,y) = €; together.
Now we need vy, Zn,i, Zy ;,i < j as variables. We obtain an estimate 2(mI=1/2(2d)!F2m3[(1 + 2mj +

1)(2d +1))!*3mJ in R*2™ space. Since B can be chosen no larger than the supremum of these j < I, we get

33

log(B) < (ml)(ml —1)/24 (14 2mj)(log(2d)) + (I + 3ml) log(l + 2mi + 1) + (I + 3ml) log(2d + 1). So VC(A)
< (ml)(ml —1)/2 +1(1 + 2m)(log(2d)) + I(1 + 3m) log(I(2m + 1) + 1) + (1 + 3m) log(2d + 1).

3.2.3 Additional Activation Functions

Definition 3.2.9. A two layer sigmoid network with n inputs, W weights, and a single real valued output
is described by the function fs : RV x X — R, where X C R®, fs(,7) = ag + Zle m, with
a; € R, b; = (b;1,...,bin) € R™ and 0 = (ag, ..., ag, b1g, ..., bpn) € RW. In this case W = kn + 2k +1. A RBF
network is described by the function frpr(0,) = ag + 2?21 ai.e_“’”_cinz, where ¢; = (¢i1, ..., Cin) € R™ and
0 = (ag, -, Gk, C11, s Chn) € RV, Here W = kn +k + 1.

Theorem 3.2.3 ([22]). Let X = {—D,...,D}" for some positive integer D. For the sigmoid and RBF
networks, fs, frer : RW x X — R, we have

VC(fs) < 2W log,(24eW D)

VC(fRBF) < 4W log2(24eWD)

Proof. For any 0 € ©,z € X,r € R, let
(0, (@.7)) = (f5(0,2) = r) (T Ty D) (I (14 e ()

Clearly, fs:(0,(x,r)) always has the same sign as fs(6,x) — r, since the denominators in fg(6,2) is always
positive. So dim(fs) < VC(fs). But fs/(6,(x,r)) is polynomial in § = (ag, .., ar,e b1, ...,e~%n) with
degree no more than 2Dnk + k + Dn + 1 < 3WD. From [7] we get VC(fs/) < 2W log,(24eW D). O

3.3 Bounding The VC Dimension of Concept Class Parametrized
by Real Numbers

Here we establish bound on the VC dimension of non discrete concept classes. Assume X is an instance

space.

Definition 3.3.1. The membership test of a concept class C over domain X takes as input a concept C' € C

and instances a € X, and returns the boolean value a € C'.

The membership test for €y, as defined above, is assumed to be expressed as a formula ® ,, (in the
first order theory of the reals) with k + n free variables representing a concept C and instance a. Or as an
algorithm Ay, ,,, similarly taking k 4+ n real inputs, which uses exact real arithmetic and returns the truth

value a € C. We say Cy, ., is defined by &y, ,, or Ay p.

n

j=1).

Example 3.3.1. k =m(n+ 1) where m is a positive integer. Define @y, = Uim D" (x; — aij)* < r;
It defines the concept class whose elements are unions of m balls in n dimensional Euclidean space. a;;

parameterize the centers of the m balls, v; be their radii, x; is cartesian co ordinates of the instance.

We focus on the result of [10] which exhibits a NASC on a first order formula over some structure to

define a class of finite VC dimension.

34

3.3.1 Upper Bounds

A concept C and instance a will be represented by the sequence of reals (y1, .., yx) and (z1, .., ,,) respectively.
A sign assignment to polynomial p is one of the (in)equalities p > 0, p = 0, p < 0, a sign assignment to a set
of m polynomials is consistent if all m equalities can be satisfied by some assignment of real numbers to the

variables. A non zero sign assignment is one which has no equalities.
Theorem 3.3.1. Warren Result given in [11].

Corollary 3.3.1 ([13]). If p1,...,pm is a set of polynomials of degree at most d > 1 in n real variables with

m > n, then the number of consistent non zero sign assignments to the p; is at most (8edm/n)™.

Proof. Let P = {p1..,pm}. Consider the set of polynomials P; = {p1 + €,p1 — €,.c..., pm + €, pm — €}. To

proof for € > 0, every sign assignments to P corresponds to a unique non zero sign assignment to P;.
Milnor theorem gives an upper bound on the number of connected components of the subset of R"

corresponding to any sign assignment. The size of a formula refers to the number of distinct atomic predicates

that it contains. O

For polynomial learn ability we need upper bound on VC dimension that is polynomial in synthetic
complexity of concepts. This result trivial for discrete input cases but non trivial for generalized case of
examples and concepts. The author has been showed that this result true for two generalized classes. One is
classes where the criterion for membership of an instance in a concept can be expressed as a formula (in the
first order theory of reals) with fixed quantification depth and exponentially bounded length, whose atomic

predicates are polynomial inequalities of exponentially bounded degree.

Theorem 3.3.2 ([13]). Let {Cxp : k,n € N} be a family of concept classes where concepts in Cy,, and
instances are represented by k and n real numbers, respectively. Suppose that the membership test for any
instances a in any concept C of C, can be expressed as a boolean formula @y, ,, containing s = s(k,n) distinct
atomic predicates, each predicate being a polynomial inequality or equality over k +n variables (representing
C and a) of degree at most d = d(k,n). Then VC(Cy,,) < 2klog(8eds).

Corollary 3.3.2. If the size s and degree d are both at most exponential in k and n, then the VC dimension

of Ck.pn s polynomially bounded in k,n.

The other is classes where containment of an in a concept is testable in polynomial time, assuming we

may compute standard arithmetic operations on reals exactly in constant time.

Theorem 3.3.3 ([7]). Let {Crpn : k,n € N be a set of concept classes as before, for which the test for
membership of an instance a in a concept C consists of an algorithm Ay, ,, taking k+n real inputs representing
C and a, whose run time is t = t(k,n), and which returns the truth value a € C. The algorithm Ay, is

allowed to perform conditional jumps and execute the standard arithmetic operations on real numbers +,—, ., /
in constant time. Then VC(Cy,,) = O(kt).

Corollary 3.3.3. Let Cj,, be as in the above theorem. If the run time of algorithm Ay, is polynomially

bounded in k and n, then so is the VC' dimension of the concept class Cy, .
There exists an algorithm with runtime ¢, defines a concept class of VC dimension Q(kt).
Theorem 3.3.4. See [12]. It is a quantifier elimination procedure to give us a quantifier free formula of the

original form.

35

Corollary 3.3.4 ([13]). Let {Ck,, : k,n € N} be a set of concept classes as before. Suppose that the
membership test of a given instance a in a given concept C' can be expressed as a formula Xk in the first
order theory of the real numbers with k + n free variables representing C,a; suppose further that the number
of bound variables in polynomial in k,n, that the depth of alteration of quantifiers is uniformly bounded, and
that the atomic predicates are bounded in number and degree by an exponential function of k,n. Then the

VC dimension of Cy. p, is polynomial in k,n.

3.4 VC Dimension from Geometric Approach

For calculating VC dimension of linear threshold gates, the proof involve the number of distinct output of all
linear units along with input varies on m patterns. But the sigmoidal network have infinitely many output,
so this technique does not work. To overcome this issues, this section has come in computational learning
theory field.

3.4.1 Some Notions of Geometric Approach

Definition 3.4.1. Let H be a class of {0, 1} valued functions defined on X, and F be a real valued function
defined on RYx X. We say H is a k—combination of sgn(F) if there is a Boolean function g : {0,1}* — {0, 1}
and functions fi, fa,..., fx in F so that for all h € H there is a parameter a € RY such that h(z) =
g(sgn(fi(a,x)),....,sgn(fr(a,x))) for all x € X.

Definition 3.4.2. A set {f1, f2, ..., fu} of differential functions mapping from R to R is said to have regular
zero set intersection if for all non empty subset {i1,i2,...0;} C {1,2,......,k}, the Jacobean of {fi,, firs -y fir} :
R? — R! has rank | at every point a of the solution set {a € R : f; (a) = fi,(a) = ... = fi,(a) = 0}.

For instance, if two zero-sets 'touch’ at a point, so that the hyperplanes tangential to them at that point

coincide, the functions do not have regular zero-set intersections.

Definition 3.4.3. A set G of real valued functions defined on RY. We say that G has solution set components
bound B if for any 1 < k < d and any {f1,..., fx} C G that has regular zero set intersection, we have
ce(nk_{ae R?: fi(a) =0}) < B.

The intersection of any k > d zero-sets of functions with regular zero-set intersections must be empty. We
shall always be concerned with classes F of real-valued functions defined on RY x X, and with the solution
set components bound for the class G = {a — f(a,z) : f € F,z € X}. Furthermore, we say that F' is closed

under addition of constants if, for any ¢ € R, whenever f € F, the function (a,z) — f(a,z)+ cis also in F'.

Theorem 3.4.1 ([14]). Suppose that F is a class of real-valued functions defined on RY x X, and that H is
a k-combination of sgn(F). If F is closed under addition of constants, has solution set components bound B,
and functions in F are CY in their parameters, then gz (m) < B Z?:o (m.k) < B(emk/d)?, for allm > d/k.

Proof. Taking zero sets Z; in Lemma 7.9 in [14] to be those of the mk functions a — fi(a,x;) defined as
parameter space RY,i = 1(1)k,j = 1(1)m. Then Iy (m) < maxg, >sc{i2,...mky CC(NiesZ;). This is less
then equal to B Z?:o (”;k) Which follows from the fact that the intersection of more than d such zero sets

is always empty. O

36

Example 3.4.1. Suppose H is a class of functions computed by perceptron on RY. Then the parameter
space is R4 and we can define F as the class of functions satisfying f(a,x) = Zle x;a; + ag + ¢ for some
¢ € R, where a = (ag, a1, ...,aq). In this case, F has solution set components bound B = 1.

In the proof of the growth function bound for the perceptron, we first related the number of dichotomies of
a set of input points x; to the number of cells in the partition of the parameter space defined by the equations

wlz; —0 =0.

For the proof of growth function bound for perceptron the author related the number of dichotomies
of a set of input points x; to the number of cells in the partition of the parameter domain defined by the

Tx; — 60 = 0. The following lemma shows that we can do this more generally, for any class

equations w
that is a k-combination of thresholded real-valued functions. In this case, we relate the growth function to
the number of connected components of the complement of certain zero-sets of functions that have regular

zero-set intersections.

Lemma 3.4.1 ([14]). Given a set {f1, f2, .., fu} of C? functions mapping from R to R, the set S = {\ €

R%: {f1 — A1, .., fx — M\ }does not have regular zero intersection} has measure 0.

Let F = {f(.,a) : a € A}, Aisa open subset of R™, f is continuously differentiable. Let g : Ax X™ — R™
be defined by g(a,x1,...,xm) = (f(a,21), ..., f(a,2,,))T. For a fixed x, define g,(a) = g(a,).

Theorem 3.4.2 ([22]). Let A be an open subset of R™ and X be an open subset of R® and f: Ax X - R
be a continuously differentiable function. Let F:= {f(a,.): a € A}. If there exists a k dimensional manifold
M C A, which has unique decision boundaries, then VC(Fy) > k.

Lemma 3.4.2 ([14]). Let F be a class of real-valued functions defined on RY x X that is closed under
addition of constants. Suppose that the functions in F are continuous in their parameters and let H be a
k-combination of sgn(F). Then for some functions {f1, fa, ..., fr} in F and some examples x1,.., Ty in X,
the set {a — fj(a,z;) : i =1(1)m,j = 1(1)k} has reqular zero set intersections and the number of connected
components of the set RY — U¥F_, UL, {a € R4: fi(a,xj) = 0} is at least 1Ly (m).

3.4.2 VC Bounds for Neural Networks

Here we discussed VC dimension of some deep neural networks using the above approach, we just have
discussed. We first consider the classes of functions which can be expressed as a Boolean combination of
thresholded real valued functions, each of which is polynomial in its parameters. We need a solution set

component bound to apply Theorem 3.4.1. For this purpose we need the following theorem.

Theorem 3.4.3 ([14]). Let F be a class of functions mapping from RY x X to R so that, for all x € X
and f € F, the function a — f(a,z) is a polynomial on RY of degree no more than l. Suppose that H is a
k—combination of sgn(F). Then if m > d/k, Iy (m) < 2(222)d and hence VC(H) < 2dlogy(12kl).

The above mentioned theorem can be used to give bounds on the VC dimension of a function class in
terms of the number of arithmetic operations required to compute the functions, as the following theorem

demonstrates.

Theorem 3.4.4 ([14]). Suppose h is a function from R x R™ to {0,1} and let H = {x — h(a,z) : a € R}
be the class determined by h. Suppose that h can be computed by an algorithm that takes as input the pairs

(a,x) € RY x R™ and returns h(a,z) after no more than t operations of the following types:

37

e The arithmetic operation +, —, x, / on real numbers.
o Jumps condition on >,>,<,<,=,%# comparison of real nos.

e output 0 or 1.
Then VC(H) < 4d(t + 2).

The following theorem shown that the bound of Theorem 3.4.4 can not be improved more than a constant

factor.

Theorem 3.4.5 ([14]). For all d > 1, there is a class H of functions, parametrized by d real numbers, that
can be computed in time O(t), and that has VC(H) > dt.

As an application of Theorem 3.4.4 we may consider a class of feed forward linear threshold networks.
Since the computing a output of linear threshold network takes time O(w), so the following bound is worse

than the bound O(w log(w)). The theorem can be generalized a network with piecewise polynomial functions.

Theorem 3.4.6 ([14]). Suppose N is a feed forward linear threshold network with a total of w weights, and
let H be the class of functions computed by this network. Then VC(H) = O(w?).

Theorem 3.4.7 ([14]). Suppose N is a feed forward network with a total of w weights and k computation
units, in which the output is a linear threshold unit and every other computation unit has a piece wise
polynomial activation functions with p pieces and degree no more than l. Then if H is the class of functions

computed by N, VC(H) = O(w(w + kllog, p)).

Proof. To compute an activation functions, we can determine the appropriate piece with log, p comparisons.
Computing the value of the function takes an additional O(l) steps. Hence total computation time is
O(w + kllog, p). O

The author construct a network of linear threshold units and linear units. This construction is help full
for the below theorem. The theorem shows that the bound O(w?) can not be improved more than by a

constant factor if we allow a arbitary number of layers.

Theorem 3.4.8 ([14]). Suppose s: R — R has the following properties:
o lima_oos(@) =1 and lima—_oos(a) =0
e s is differentiable at some point a, € R with s'(a,) # 0.

For any L > 1 and w > 10L — 14, there exists a feed forward network with L layers and total w parameters,
where every computation unit but the output unit has activation functions s, the output unit being a linear
threshold unit, and for which the set H of functions computed by the network has VC(H) > (L/2)(w/2).

The below theorem holds for two layered neural network with sigmoid activation functions. But input
of this network is discrete. The author defined the fan-in of a computation unit to be the number of input

units or computation units that feed into it.

Theorem 3.4.9 ([14]). Consider a two layer feed forward network with input domain X = {—D,—D +
1, ..., D} for D € N and k first layer computation units, each with the standard sigmoid activation function
(output L.T.). Let w be the total no of parameters in the network, and suppose that the far-in of each first
layer unit is no more than N. Then the class H of functions computed by this network has VC(H) <
2wlog, (60N D).

38

Proof. For a first layer unit, z1,...,zy be the input and ws,..,wy are the corresponding weights and 6 be
the threshold. So the unit computes f(x) = 1/(1+ exp(— Zjvzl w;x; +0)). It computes the sgn function of
an affine combination of k of these rational functions or of inputs. O

Theorem 3.4.10 ([37]). Consider a two layer feed forward linear threshold network that has w parameters
and whose first layer units have far-in no more than N. If H is the set of functions computed by this network
on binary inputs, then VC(H) < 2w log,(60N).

The following theorem provides a general VC dimension bound for standard sigmoid network. There is
a considerable gap between this bound O(kw?) and the lower bound Q(w?), which is exhibited by a neural
network with k& = ©(w) computation units.

Theorem 3.4.11 ([14]). Let H be the set of functions computed by a feed forward network with w parameters
and k computation units, in which each computation unit other than the output unit has the standard sigmoid
activation function. Then VO (H) < (wk)? + 11wk log, (18wk?).

The below theorem is a counter part of the Theorem 3.4.4. In this case, the author also allow the

computation of the exponential function to be one of the basic operations.

Theorem 3.4.12 ([14]). All the conditions same as Theorem 3.4.4 and to addition o — exp(a) on real
numbers. Then VC(H) < t2d(d + 191og,(9d)).

This result immediately implies a bound on the VC dimension for feed forward standard sigmoid networks
that is only a constant factor worse than the bound of Theorem 3.4.11. To proof Theorem 3.4.12 we need
the solution set component bound for polynomial of certain exponential function. For this purpose we need

the following theorem.

Theorem 3.4.13 ([14]). Let f1,..., fq be fized affine functions of a1,,aq and let h be the class of polyno-
mials in a, ..., aq, exp(fi(a)),...,exp(fy(a)) of degree no more than l. Then h has solution set components
bound B = 2904=D/2(] 4 1)%d+a(q 4 1)4+2a,

Lemma 3.4.3 ([14]). Suppose G is the class of functions defined on RY computed by a circuit satisfying
the following conditions: the circuit contains q gates, the output gate computes a rational function of degree
no more than | > 1, each non output gate computes the exponential function of a rational function of degree
no more than I, and the denominator of each rational function is never zero. Then G has solution set
components bound 2(qd)2/2(9qdl)5qd.

3.5 Application of VC Dimension on Machine Learning

The performance of learning machine on test data is called generalization performance of a machine. For
a given learning task, with finite set of training examples the best generalization will be achieved if the
right balance will be stucked between the accuracy attained on that particular training set and the capacity
(expressiveness) of the machine. VC Dimension comes from a similar concept in the information theory. The
observation is if you have N objects and among those N objects you are looking for a specific one. How
many bits of information do you need to find this object. Suppose you have N functions such that given
input x, you have to find how many functions give you yes and how many give you no. How many training

examples do you need to remove all those wrong functions. A machine with more capacity could give low

39

training error, but might over fit the data as a result of gives low performance on test data. A machine
with less capacity not going to over-fit, but restricted in what it can model. How can we characteristics
the capacity of learning machines? VC Dimension provides a quantitative way to measure the capacity of a

learning machine.

3.5.1 PAC Model

Generate instances from unknown distribution p, x* ~ p(x),Vi. Oracle labels each instance with unknown

function ¢, y* = c(z?),Vi. Learning algorithm chooses hypothesis h € H with low training error R(h),

h = argminpR(h). Our goal is to choose an h with low generalization error R(h). Define True Error
(Expected Risk) is R(h) = pg~p(z)(c(z) # h(z)), Train Error (Empirical Risk) is R(h) = pus(c(z) # h(x)),
where S is a training set. And also Expected Risk Minimization (Lower True Error) is ' = argminpeg R(h)
and Empirical Risk Minimization (Lower Training Error) is h = argminge HR(h). The goal of the model is
to learn a concept so that with a high degree of confidence the prediction error will be small. A learning
machine or concept classes defined as a set of possible mapping = — f(y, (z,a)) where x is in input domain,
y is the labels and «a is the parameter. A particular choice of a gives a trained machine. PAC approach is
that the error should not depends on the data distribution. The bound is the distribution free. The concept

of VC Dimension is distribution free.

VC Dimension and Number of Parameters

The VC Dimension give the concreteness of the notion of the capacity of a given concept class.Intuitively one
might expect that learning machines with more parameters would give high VC Dimension, while learning
machines with less parameters would has low VC Dimension. Although this is true for most cases, some
counter examples exists. VC Dimension is responsible for how many example need to learn and PAC learning

responsible for how many mistakes before you converges.

3.5.2 VC Dimension and Learnability

It helps to answer some questions on learning theory like (a) Is a concept class learnable (b) Can a concept
class learned efficiently (c¢) How many training samples do we need. The PAC criteria is that the learner
produces a high accuracy learner with high probability. Algorithm consistent if for all €,§ > 0, there exists

N training examples such that for any distribution p, we have p(|R(h) — R(h)| <€) > 1 —§. The sample

Complexity is the minimum value of N for which this statement holds.

Definition 3.5.1. The Static learning algorithm has the following properties: the number of samples it ask

for is PAC Bound and It chooses its hypothesis based on the sample it gets.

But Static learning algorithm is not adaptive. The below two Theorem related to Static learning algo-

rithm.

Theorem 3.5.1 ([19]). If a concept class C' has oo VC Dimension, then C is not learnable by any Static

learning algorithm.

Theorem 3.5.2 ([19]). The concept class C(n) is not polynomially learnable, if the VC Dimension of C(n)

grows more than polynomial in n, where n is the dimension of domain space.

40

Theorem 3.5.3 (Upper Bound on Sample Complexity (Blumer 1989)). Let H and F be two function
classes such that F C H and let A an algorithm that derives a function h € H consistent with m training
examples. Then there exists co such that for all f € F, for all D distribution, for all € > 0 and § < 1 if
m > 2(VC(H).Inl.3), then with a probability 1 — 6, errorp(h) < €, where errorp(h) is the error of h

according to the data distribution D.

Theorem 3.5.4 (Lower Bound On Sample Complexity (Blumer 1989)). To learn a concept class F whose
VC Dimension is d, any PAC algorithm requires m = O(X.(d + %)) ezamples.

Theorem 3.5.5 (Bound on Classification Error (Vapnik 1995)). Let H be a hypothesis space having VC
Dimension d. For any probability distribution D on X x {0,1}, with probability 1 — & over m random
examples S, any hypothesis h € H that is consistent with S has error no more than error(h) < e(m, H,d) =
2(d+1n2.1n 242, provided that d < m and m > 2/e.

3.5.3 VC Dimension and Generalization Performance

[19] A low complexity model will have a high bias and a low variance, while it has low expressive power
leading to high bias, it is also very simple, so it has very predictable performance. Model with higher VC
Dimension will require more train data to properly train. The Generalization performance concerns the error
rate of a learning machine on test data.

Choose 0 < n < 1. With probability 1—7 the bound holds R(a) < Rem,,(a)+\/ h(log(2t/h)t1) log(n/d) g

the number of training samples and h is the VC Dimension of the learning machine. R(«) is the expectation

of test error. The quality of R(«) is called actual risk. The empirical risk Remp(cr) is the measure of mean
error rate on training samples. Repp(a) = o Zi:l lyi — f(x;,@)] and R(a) = [(3]y — f(z,a)|)dD(z,y),
where D(x,y) is the cumulative distribution that generates training and test set samples. The upper bound
of actual risk known as VC Bound and second term of this bound known as VC confidence. This bound
gives a principal method for choosing a learning machine for a given task and is the essential idea of the
Structural Risk Minimization. Given a fixed family of learning machine, to choose from, to the extent that

the bound is tight for at least one of the machines, one will not be able to do better than this.

41

3.5.4 Structural Risk Minimization

M Underfitting P > Overfitting

True Risk

Confidence Interval

Classification Error

Empirical Risk
>

h

S

Figure 3.2: Comparison of Empirical Risk and True Risk

Each S; have similar VC Dimension. VC Dimension is measured on the X axis as h. As complexity increase
your transition from under fitting to over fitting, adding complexity is good up until a certain point. This
approach suggest when we do choose a model. Only empirical error is not sufficient as for some machine
may overfit training data. So consider VC Bound. VC Confidence depends on the chosen class of functions
but actual risk and empirical risk only depends on the particular chosen function during training procedure.
We would like to find the set of functions such that the risk bound for this set is minimized. To do that we
divide the functions as some subset of functions such that functions for each class have same VC Dimension.
Since all the functions within a subset have same VC Confidence, it is enough to compute only Empirical
Risk of each machine. From each subset we choose the one which has minimum empirical risk. One then

takes that trained machine in the series whose sum of empirical risk and VC Confidence is minimal.

3.5.5 Decision Tree

Decision tree are enough to express any Boolean valued function. We try to find a Decision tree which
has smaller length and consistent on training samples. Finding the smallest Decision tree is a intractable
problem. Decision tree pruning consists of methods Structural Risk Minimization, cross validation, C'4.5.
We need to compute VC Dimension h for a given tree. Roughly h is the number of internal nodes of a
tree. The main problem is finding the best (Minimum Empirical Risk) decision tree for a given h. In a
rigorous way we can do from all permutations of trees, but it is exponential time consuming procedure. So

for overcome this difficulty we use a algorithm given in [19] using idea of dynamic programming.

42

Chapter 4

Random Vector Functional Link
Network

This chapter gives an informal introduction to RVFLN and the class of problems we focus on in this

dissertation.

4.1 Feedforward Neural Network (FNN)

The neurons in the adjacent layers are connected. But there is no interconnection of neurons within the
same layer or across non-adjacent layers. In the input layer, each neuron 4,,, m € {1,2,..... M} takes a
kyn €
{1,2,..,Kn},n € {1,2,..,N} is formed by a nonlinear weighted sum of the outputs of the input layer or

feature of input vector and passes to the several hidden layers. Each neuron in n'th hidden layer h,,

n’

preceding hidden layer (except the last hidden layer).

M
higy = F(Winkyim), ¥k € {1,2, ..., K1 }.
m=0
anl
hn7k7'n = f(Z wknflaknhn_Lkn—l)’an € {2’37 aKn}
kpn—1=0

f(.) is a non linear activation function. wqy, = 1,k, € {1,2,..., K, } denotes the input layer and hidden
layer biases. M is number of input layer neurons, N is number of hidden layers, K,, is number of n’th hidden
layer neurons. wyy, x, are weights between input and hidden layer neurons, wy,,_, x, are weights between the
hidden layer neurons.

logsig(x) =1/(1+e™7)

tanh(x) = (e* —e *)/(e® +e7%)

Kn

o] = Z Wy ANy, VI € {1,2, ...,L}.
kn=0

L is number of output neurons, wy, ; are weights between hidden and output layer neurons. To get optimal
output value, the weights are determined by the BP learning. BP has a tendency to trapped in local

minimuim.

4.2 Single Hidden Layer Neural Network (SLFN)

SLFN has single hidden layer, adjacent layers connection, no interconnection of neurons with same layer or

across non adjacent layers.

Method ILB HLB in-out connection

M1 p p p
M 2 p a p
M3 a P P
M4 a a P

Table 4.1: RVFL Network with Different Configurations

This table has taken from [33]. ILB: Input Layer Bias, HLB: Hidden Layer Bias, p: Present, a: Absent.

4.3 Random Weight SLFN (RWSLFN)

Schmidt reported SLFN with fixed random weights assigned to input to hidden layer. Hidden layer activation
function is logsig. Training a SLFN is to minimize the squared output error by finding the optimal hidden

layer weights Wy, = {wm, k, b; 1} and output layer weights Wy = {wy;, by i }-

N K

M
min € = Z(yl - Zwk,lf(z Wy ki, + i k) + bpa)?
i=1 k=1 m=1
For SLFN, the optimal hidden layer and output layer weights determined by BP. For RWSLFN, W) are
randomly sampled from a uniform distribution in [—1, 1] and Wy are optimized by a least square method.

4.4 Random Vector Functional Link Network (RVFLN)

The idea of this type of network has taken from [33]. It combines the advantage of random weights and
functional link. It is an SLFN with direct connection from input layer to output layer. Enhancement
nodes equivalent to hidden layer nodes. Use conjugate BP to tune the weights from input to output and
enhancement to output layer. Apply least square method if matrix inversion is possible. Pao’s - activation
function in enhancement nodes is logsig, Chen’s - hidden nodes use tanh, an additional activation function to
output layer. Does not require iteratively updating the input to hidden layer weights, speed up the training

process.

44

4.5 Equations

Equations are gien in the paper [33]. Related weight updating equations of RVFLN are..
E 1:
M
hy = f(z Win ke + b3 k)

m=1

K M
o] = Z ’LUthk + th + Z Win 1%m + biy

k=1 m=1
E 2
M
hy = f(z Wi kbm + bi k)
m=1
K M
o) = Zwk,lhk + Z Win,1tm + byl
k=1 m=1
E 3:
M
hy = f(z wm,kim)
m=1
K M
o] = Zwk,lhk + bp, + Z Wi, 1lm
k=1 m=1
E 4

M
m=1

K M
o, = E wg,thy, + E Wi, 10m
k=1 m=1

The below figure describes the structure of a RVFLN with one hidden layer. The figure has taken
from [33].

45

input layer hidden layer output layer

Figure 4.1: Random Vector Functional Link Network

46

Chapter 5

Related Work and Our Contribution

5.1 VC Dimension for Neural Network with Continuous Activa-

tion Functions

This section shows that neural network with continuous activation functions have VC dimension at least
O(w™), where O(w™ 1) is the total parameters (weights and biases) of the network and also input domain
is R™ for m > 2. For a satisfactory result on test data of a classifier we need to learn the classifier properly and
accurately. For this purpose we need sufficient training samples. In computation Learning Theory branch,
PAC formulation is a concept where we can determine number of examples needed to learn a classifier such
that it will predict all future data correctly. If F'is a hypothesis space or collection of binary valued functions,
then we fit the training examples to each f € F. We will consider the training data and test data from same
domain X and follow same probability distribution. After the Vapnik’s contribution in statistics, people
know that a certain quantity known as VC Dimension, which is related to sample size. And also it is needed
for learnability in the PAC sense. Roughly speaking, generally VC is proportional to the sample size needed
for learn the machine reliably. Basically we focus on calculating VC of F'. For the pure hard threshold class
VC(F) = O(wlog(w)) by Cover, by Baum and Hausseler. For sigmoidal class the VC dimension is O(w?)
by Karpinski and Macintyre and also for piece wise polynomial feedforward neural network VC dimension
is O(w?). Also Mass showed that in [18] that there is also a lower bound of the form Q(wlogw). Basically
now days back propagation method rely upon continuous activation function, that is neuron with graded
responses. Basically use analog activation give advantage of passing the rich information among layers. It
needs higher memory capacity means to learn f we need more train data. This section showed that there
are conceivable neural network architecture with exactly high VC Dimensions. Thus the study of VC(F) of
analog neural network is an interesting and relevant issues.

Jerrum and Goldberg showed that upper bound of VC is O(w?) for piece wise polynomial activation
function. Now the question is Is there any neural network architecture which can achieve lower bound
w? for such networks and more generally for arbitary continuous activation nets. For pure threshold nets

VC proportional to wlogw and pure linear nets VC proportional to w. Then there are architecture with

arbitary large number of weights w and VC proportional to w?

. First we are showing that the network
with linear and Heaviside activation functions have this power. The continuous activation functions o have
the property in +o00, —oco attain two different values and for at least one point it has derivative non zero.
Now we obtained our expected results on continuous activation function, approximating Heaviside gates by
o nets with large weights and approximating linear gates by o nets with small weights. However there is
still a gap between Q(w?) lower bound and the O(w*) upper bound in [2]. The original paper [18] showed
that real number program with running time 7" have VC Dimension Q(T?) for input space R2. We mainly
consider the case which generalize the input domain from R? to R™, m > 2. And also accordingly our results
will changed. When the input domain dimension is increased the VC dimension increased accordingly total
number of weight increase. But out target will be for any dimensional input domain there exists a neural

net architecture which has VC at least square of total number of weights of the network.

5.1.1 For Linear and Threshold Gates

All the notations has taken from [2]. We define an architecture or network A is a connected directed acyclic
graph. In the network, a subset of nodes has a activation function or functions. One is identity or linear
gate id(z) = x, and another one is threshold or Heaviside gate H(z) = 1, > 0 and H(z) = 0,2 < 0. F
is collection of functions computed by the network A. For a given weight w € R™, there exists a function
F, : R™ — RP defined by F,(z) = F(z,w), sometimes we say that this function obtained from A’s
calculation. We say a subset S C R™ is shattered by A if for any arbitary Boolean function g : S — {0,1}
there exists some weight w € R™ so that F,,(z) = B(x) for all z € S. If the output is real number then we
use a thresholding in output node with respect to some real number, which gives us a Boolean output. If A
is the net wg + w1 H(2z — 1), it has one linear gate and one Heaviside gate, input is , number of weights
if 4, which are 2, —1,wp,w;. The phrase ”for each n > 1 there is an architecture A with O(n™~1) weights
and gates in S = {id, Heaviside}” to assert the existence of a sequence of architectures A, so that S is a
set of gates for each A,, and so that the number of weights of A,, is O(n™~!). A shatters a set of size 6(n)

we really mean that there is a sequence of sets A,, so that A, shatters A,, and the cardinality of each A, is

6(n).

Theorem 5.1.1. For every n > 1, there is a network architecture A with inputs in R™(m > 2) and O(n)

2

weights that can shatters a set of size n”. This architecture is made of linear and threshold gates.

Proof. The shattered set S constructed in a sequential manner, described below and the construction fol-
lows the idea of [2]. If input in R™ and the network has n weights W7, ..., W,, where each W; belongs to
T = {0wyws..w, : w; € {0,1}}, then the cardinality of the shattered set S will be n?. And the ele-
ments are {(z1,...,2,) : 1 <z < n and for each 1 1 < zp, < n,Vi # 1,m x; = x,,}. Consider the
example for m = 4,n = 4. Then the shattered set will have n? = 16 elements and the elements are
{{1111,1222, 1333, 1444}, {2111, 2222, 2333, 2444}, {3111, 3222, 3333, 3444}, {4111, 4222, 4333,4444}}. Now
for a given choice of W = (Wq,...,W,,), A will compute the Boolean function gy : S — {0,1} defined
as gw (1, ..m) = x,,th bit of W,,. We have to show for any Boolean function g on S, there exists a unique
W such that g = gw .

A consists of three sub networks g', g2, g3. Now by our definition each of these three hold O(n) weights.
gt w (3) will give output W, for all 1 <i < nand W = (Wy,....,W,,). ¢*>(W;) will give output (wy, ws, ..., wy),
where W; = wyws...,w, be a binary representation and w; € {0,1}, 1 < j < n. Output of g3 (k, W;) will be
wg, where W = wq.... w, and k € [n], j € [n].

48

The obvious one architecture which computes the function:

9w (i) = Wi+ > (W, — Wy_1)H(i — u+0.5)
u=2

sending each i € [n] to W;. It has one linear gate, n — 1 threshold gates, 3(n — 1) + 1 weights.

g2 is a multi output net. Basically g? constructed using a sequence of N2; nets, 1 < i < n. N?; takes as
input W; and produce output (ws, ..., w;, 0.w;q1....wy,) for 1 < j < n. Since 0.wjqs....w, = 10.0.wi41.... wy, —
wiy1 and w41 = H(0.w;q1....w, — 0.5) holds, from N2, to N2i+1 we need extra one threshold gate, one
linear gate, four weights. As of our knowledge, we can say N,, = g2, and to compute g2 total n linear gates,
4n weights, n threshold gates required.

And the last one is:

g (k,W;) = wy —|—ZwuH(k;—u—|—O.5) —Zwu_lH(k—u+O.5),1 <j<nken]
u=2

u=2

As multiplication of inputs are not allowed, so uv can be replaced by H(u 4+ v — 1.5). Then in our network
ew can replace w,H(k —u + 0.5) by H(w, + H(k —u + 0.5) — 1.5). Thus ¢> has total 4(n — 1) threshold
gates, one linear gate, 12(n — 1) + n weights.

Finally our original network is gy (21, ..., Zm) = ¢°(2m, 9*(g*w (21))). It can be constructed using n + 2
linear gates, (n — 1) +4(n — 1) + n = 6n — 5 threshold gates and (3n — 2) +4n + (12n — 11) = 19n — 13
weights. O

Theorem 5.1.2. For everyn > 1, there is a network architecture A with inputs in R™(m > 2) and O(n™1)

weights that can shatter a set of size n™. This architecture is made only of linear and threshold gates.

Proof. Wy,..,W,, are n parameters of our architecture where each W,’s is a element of T =
{0.wiws..... wym-1 : w; € {0,1}}. We have to show that S = [n]™ = {1,2,...,n}"™ will be the shattered set.

Suppose we have a predefined weight vector W = (W, ..., W,,). Now for this vector the network A will
compute the Boolean function fy : S — {0,1} and defined as follows: fu (1,2, ..., Zm) is equal to the gth
bit of W,,. Our target is for any Boolean functionf on S, there must exists a unique W such that f = fu .
Now we take ¢ =[S ni(n — 2, _4)] + 1.

We consider a architecture which computes the function fy'(x2, 3, ..., 2,,), which gives the output
[2262 ni(n — ;)] + 1. The inputs are za, ..., Z,,, nodes in hidden layer are uy, ..., u,,, and single output
node. So net input of the node w; is net; = > ", wi;z;,2 < j < m. The output of the node u; is
out; = id(net; + n). w;; implies edge from x; to u;. And also w;; = —1 if i = j, otherwise 0. Bias of
hidden layer is n. So net input of the output node is net,uipur = ka:2 n™ Fy;, and output of output node
is id(net puput + 1), bias in output layer is +1 and weights are n™~2, ..., n" from hidden layer to output layer.

So the network is

m m
frow =id(Y_id(> " wawy; +n)n! +1)
j=2 =2
where w;; = —1if i = j for 4,5 € {2,..,m}. So total linear gates is m, Heaviside gate is 0, total weights are

m?—m+2.
According to our condition m? —m+2 < k.n™~!, where k < n is a positive constant. But this inequality

m—1

always holds, because only possible case for contradiction is n <<< m. But also in this case n increases

49

exponentially with respect to m? —m + 2, which is basically a polynomial of m. So we conclude from here
that !y, has weights O(n™1).
Now we define second architecture

fWQ(xl) = Wl + Z(Wz - szl)H(«Tl — 2+ 1/2)

z=2

which computes for each point 21 € [n] to W,,. This network has n — 1 threshold gate, 1 linear gate,
3(n —1) + 1 weights.

We define a architecture which maps W;, 1 <i <n to wy,ws, ..., w,m—1. So basically it is a multi output
net. Then the network would be f3(w) = (w1, wa, ..., Wym-1).

Assume by induction that we have a net N3; that maps w to (wy, .., w;, 0.w;41...w,m-1). Since w;1; =
H(10.(0.wiy1...wpm—1) — 1/2) and 0.w;yo...wpm-1 = 10.0.w;41...wym—1 — wis1, N3;11 can be obtained by
adding one threshold gate and one linear gate to N3;, as well as 4 weights. It follows that f3 = N3,.._1 has
n™ ! threshold gates, n™~! linear gates, and 4n™ ! weights.

Finally we define a net N* which takes as input ¢ € [n™ 1] and w = (w1, wa, ..., w,m-1) € {0, 1}”m71,

and outputs wy. The network is as follow

m—1 nm 1

n
g, w) =w + Z w,H(qg—2+1/2) — Z wy,—1H(qg—2z+1/2).
z=2 z=2
As multiplication between w; and Heaviside function are not allowed, so instead of uwv we write H(u+v—1.5),
as v,u are binary valued. Therefore N* has 1 linear gate, 4(n™~! — 1) threshold gate, 12(n™~! — 1) +n
weights.
So

fW(zla ..,l‘m) = f4(f1($25 ..,Qjm), fB(f2W($1)))

This implies that the net has total m +1+n™"! +1 linear gates, (0+n—1+n""1+4(n™"! —1)) threshold
gates, (m? —m+2)+3(n—1)+144n™" 1 +12(n™"! — 1) + n) weights.

Input Hidden Output

layer layer layer

Figure 5.1: The network f!, where input in R™ and shattered set is [n]™.

This completes the proof. O

50

5.1.2 For Linear, Threshold, Multiplication, Division Gates

Lemma 5.1.1 ([2]). For all n > 1, there exists an architecture Ay with inputs (x, W1, Wa, ..., Wym-1) in
R+ and O(n™~1Y) weights such that the following property holds: for every e > 0, there exists a choice of
the weights of A1 such that the function f'. implemented by the network satisfies lime_o f1 (i, W, ..., Wym-1) =

W, for alli=1(1)n™"1.

m— . m—1 . 3
Proof. Let us consider the map f! (z, Wy, Wa, ..., Wym-1) = I 1(a: —e—i)> a Wi = where a; =

r—e—1i’
m and € # 0. For this implementation we have used one multiplication gate with n™~! + 1 inputs,
one linear gate with n~! inputs, n™~! division gates, n™~! linear gate with one input each (compute the
value of x — € —i). Total number of weights used here n™~1 + 1 4 n™m~1 4 2p™m~1 4 2p™~1 = g™~ 4 1.

m—1 Iz (x—e—j .

Now flé(SC, Wl,...,an—l) :Zz‘;l Wl% Hence lim._,q fle(I,W17...7an—1) = W,. O
Lemma 5.1.2 ([2]). There exists an architecture of linear and multiplication gates with inputs in R, n
output units and O(n) weights such that the following property holds for every e € {0,1}", there exists an
input w € [0,1] such that the output of the network f2(w) = (f2(w)1,...., f2(w),) of the network satisfies

f2(w); €10,1/2[,if ¢, =0 and f*(w); €]1/2,1],if € = 1.

Proof. Consider the function ¢ : [0,1] — [0, 1] such that ¢(z) = 4z(1 — z). We claim that for all € € {0,1}",
there exists w € [0, 1] such that ¢*~1(w) € [0,1/2[,¢; = 0 and ¢*~*(w) €]1/2,1],¢; = 1. This result follows
from the claim, using the iterates ¢*~1,i = 1(1)n as the co ordinates of f?, since the logistic map can be
implemented by a sub-network of linear and multiplication gates.

Note that each element of [0, 1] has two distinct preimages by ¢, except 1, and that ¢(1/2) = 1,¢(1) =
0,#(0) = 0. If e, = 0, choose an element w,, €]0,1/2[otherwise choose w,, €]1/2,1[. We construct a sequence
w1, Wa,, W, by ”going backward in time” as follows, w; is defined to be the preimage of w;; which is in

10,1/2[if ¢; = 0 and the preimage which is in [1/2, 1] otherwise. By construction one can take w = w;. O

Theorem 5.1.3. For every n > 1, there is a network architecture with inputs in R™,m > 2 and O(n™™1)
weights that can shatter a set of size n™. This architecture is made only of linear, multiplication and division

gates.

Proof. First consider [n]™ be our shattered set. And also assume f be an arbitary Boolean function on this
shattered set. Let the input sequence of the net f? of Lemma 5.1.2 be W = (W71, ..., Wym-1) and it satisfies
H(f* (Wi)a, — 3) = f(z1,22, ..xm) = fi(z, k) for ; € [n],i = 1(1)m and k = [}, n™ " (z; — 1)] + 1.
Now consider the map N, : (z1,...,7m) — fro(@y, F2(FL (B, W))1, o, f2(f1 (K, W)),). By Lemma 5.1.1
lime0 f1.(j,W) = W;. By continuity of f2, when € is small enough f2(f' (k,W)); < 1/2 if fi(x1,k) =0
and f2(f1.(k,W)); > 1/2if fi(x1,k) = 1, for all i = 1(1)n. Hence it follows from Lemma 5.1.1 that when
e is small enough, N.(21,...,2m) < 1/2 if fi(x1,k) = 0 and Ne(21,...,2m) > 1/2 if fi(x1,k) = 1. In a
conclusion the Boolean function f thus be computed by comparing the output of N, to 1/2. O

5.1.3 Conclusion

VC dimension for feed forward neural network with linear and threshold gates is square of total number of
parameters. Thus we can not say that VC dimension upper bound of this network is wlogw. As already
we have proved that there exists a network which has VC upper bound O(w?). Next we have showed that
the VC dimension also depends upon the input dimension of the net. If input dimension increases, then

size of shatter set will be increase along with total number of parameters increases. The size of shatter

o1

set changes proportionally with number of parameters. As a part of the conclusion we can say that if we
wants to increase the shattered set size for a neural network, then we have to increase also total number of

programmable parameters.

5.2 VC Dimension for Piece wise Polynomial Network

Theorem 5.2.1. If2™ < 2! (mr/w)™ wherer > 16 andm > w >t > 0. Then m < t+wlog,(log, 7. logy (log, 7).

Proof. We would like to show that 2% > 2!(zr/w)¥ for all z > t + wlog,y(log, r.logy(log, 7). Let f(x) =
x —t —wlogy(zr/w). To show that f(x) > 0 for all x > m =t + wlog,(log, r.log, (log, 7). We need only
to show that f(m) > 0 and f'(x) > 0 for all x > m. First f(m) > 0 iff

wlog, (log, . logsy (logy 7)) — wlogy (mr/w) >0

if f logy(r).logs(logy 1) — mr/w > 0
t + wlogs(log, 1. logs (log, 7))
w

if [logy(r).logy(logy 1) — >0

. t
if f logy(r).logy(logy) — o log, (log, 1. logy (log, 7)) > 0

i1 Toga(r +logy) — — — logy(logy (r +logy 7)) 2 0

r+log,r t

log, (r + log, 1) w
r + logy

pp 082 o ok
v log, (r +logy) —

>0

if f logy(

Now to show g(z) = —2— > 2 for z > 20. It is enough to show ¢'(z) > 0 for all x > 20.

— log, x

Only remaining part is f/(z) > 0 for all x > m.

f(x) =2 —t — wlogy(xr/w)

f(z) =2 —t—wlogy(zr) — wlog, w

1
/ —1_
/@) zlog, 2
10
/ -1
@) 2.6.93
f()>0 = z>1.44
So in addition an extra condition is ¢ + 3w > 1.44. This completes the proof. O

Now we apply this result to our VC upper bound theorem in [16]. The proof of the rest part given in

52

this paper, so we only focus on a part where we can apply our result.

2empk;(1+ (i — l)difl))wi
W;
em (2 — i—1)

< 2L(2 pYk (z(:wil)d + 1))ZWZ
_ 2L(2§:m£f)z Wi

demp(1 4 (L — 1)d*=H S k; :
<(ST)=
< (demp(1 4 (L — 1)dL=1))= W

Hsgn(F) (m) < HzL:12(

From the third line of this proof and definition of VC dimension, 2V¢() =

Hygnm) (VCdim(F)) < 2%%&7”(“)2 Wi, Then the above theorem gives VCdim(F)
L+ (3 W;)log,(logy(2epR). log,(logy (2epR))), where 2epR = r, VCdim(F) =m,L =1t,> W, = w.

IN

5.3 VC Dimension of S shape functions

5.3.1 Neural Network with Sigmoid Activation Functions

Theorem 5.3.1. Consider a neural network of W parameters, L layers and K computation units, except
output unit all the units contain sigmoid activation function. The input of the network is real numbers and
output is one unit with binary output. So for L < W and k < W, the class of functions computed by this
network is F. Then VC(sgn(F)) < 2W Llog(2eW LpK) +2W L? log(l +1) +2L, where | is max degree of the
polynomial functions and p is the total breakpoints of that function. Also if l,p is fized and L, K = O(W),
then VCO(sgn(F)) = O(W LlogW + W L?).

Chebyshev Approximation

Let f(z) be a real valued function, we want to approximate to it such that f(z) = >"°, ¢;T;(z), where ¢;’s
are the coefficients and T;’s are the normalized Bernstein basis functions. We will get the basis functions from
the recursion T),41(x) = 22T, (z) — T),—1(z) where base case is Ty = 1,71 = x,n > 1. First few polynomials
are Ty(x) = 222 —1, T3(z) = 423 -3z, Ty(z) = 8x* —8x2+1. Basically the Bernstein basis functions of degree
n defined on (0,1) is bx,(t) = (7)t"(1 — t)"~*. But we need on interval (—1,1), we give a transformation
s = 2t —1 and the changed functions are by, (s) = (})(1+s)*(1—s)""**2". Now the integral of normalized

1459t o (itg 2

basis function becomes Cp 4(s) = -3 Lo (7

Cpql(s) = Zf.vzo a(1)T;(s), where N = p+ g + 1. The below figure gives a idea between original sigmoid and

)%Z. The expansion of Chebyshev polynomials follows

scaled sigmoid curve. The equation of sigmoid funtion is f(z) = and equation of scaled sigmoid is

_1
1+e—=

53

Sigmoid vs Scaled Sigmoid

10
0B
0.6
Il
=
<
S
04
02
= s=raled_sigmoid
0.0 — sigmoid
4+ 3 2 41 0o 1 2 3 4

X Axis

Figure 5.2: Comparison of sigmoid and scaled sigmoid functions

For scaled sigmoid function o(s) & C, 4(s) = 112 at P o (1Y) 1§Si =N, a(@)Ti(s) on interval (~1,1)
and also choose p = 11,¢ = 11. So our approximation become o(z) = 0,z < —1 and Cp 4(z),-1 <z <1
and 1,z > 1. The following figure shows a comparison between approximation polynomial and our original

function.

Sigmoid Approximation

10
vk}
(L
A
]
<
-
0.4
0z
—— bernsetin_paolynomial
0.0 —— scaled_sigmoid

-1.00 -0.75 —050 -025 000 025 050 075 100
X Axis

Figure 5.3: Sigmoidal Approximating Curve

VC Dimension Calculation of This Network

This activation function has maximum degree I = 23 and number of break points is p = 3. Choose m
arbitary data points xi,Zg, ..., Z,, from input domain and the parameter space is S = RW. We have to
bound K := [{(sgn(f(z1,5)), ..., sgn(f(xm, s))) : s € S}|. Divide the parameter space such a way that in
each part every polynomials have a fixed degree and no more than (d + 1)~!. Partition S into Si, ..., S;
such that within each region f(z1,.),..., f(#m,.) are all polynomials of degree no more than (d + 1)~
Then K < S0 [{(sgn(f(x1,5)), e, 5g0(f (1, 8))) : 5 € S}|. Then each term of the summation less than
equal to 2(2em(d + l)L_l/W)W. S is determined by only parameters of first hidden layer. W7, ..., W, be
the parameters used in computing the unit outputs upto the layer 1,2, ..., L respectively, and also k1, ..., kr,
are the number of units upto the layer 1,2, ..., L respectively. Choose S; such that |S1| is no more than the
number of sign assignments possible with mk;p affine functions with W; variables. Rest of the construction

technique follows proof of [1]. Now applying our constraints p = 3,1 = 23, which gives VC(sgn(F)) <

54

2W log(6eW LK) + 10W L2 + 2L.

Lagrange Approximation

Let (1, f1), (z2, f2), ., (Tn, fn) are the n choosen points and its corresponding functional values. Find
polynomial p(z) such that p(z1) = f1,p(x2) = fa2,.... Lagrange polynomials Ly, Lo, ... have the following
property:

Li(z)=1at x =x1 and Li(x) =0 for x = x9, 23, ..., Tp.

Lo(z) =1 at © = x5 and La(z) =0 for x = xq, 23, ..., Ty, and so on.
So our polynomial becomes f(x) =~ p(x) = fi1L1(z) + foLa(z) + Where

(x —x2)(x — x3) (T — 24)...
(1 — x2)(x1 — 23) (21 — T4)-..
(x —x1)(x — x3)(x — 24)...
(2 — x1) (22 — 23) (T2 — T4)...

Ll(LL') =

Lg (.13) =

Now Apply For Sigmoidal Network

For sigmoid f(z) our approximate function will be

f(z) = p(x) = fili(z) + ...feLe(x), where
(x — z2)(x — x3)...(x — x¢)

Ly(x) = (z1 — x2) (21 — 23)....(T1 — T6)

and so on. So we basically approximate it by a 5 degree polynomial on [—4,4], and for less than —4 it
will be 0 and for greater than 4 it will be 1. Our pre assumed 6 points are z; = 1.050909826341572, x5 =
—3.2748296386052527, x5 = 2.623648850589679, x4 = —3.2990950890760633, x5 = 3.522774111950934, x¢
—2.1661034488309143. And our comparison function picture will be

Lagrange Approximation

vk}

e

T Axis

04

02
—— Lagrange_polynomial

00 — sigmoid

4 3 2 a0 1 2 3 2

Figure 5.4: Lagrange Approximating Curve

Now apply Theorem 5.3.1 where our constraints would be | = 5,p = 3.

55

One More Approximation
Let f(z) be our sigmoid function and we approximated it by o(x) where

1
>
e r2 iV

o(z) =

Sigmoid Approximation

10
0g
06
i)
=
<
S
04
02
—— Polynomial
— sigmoid
00 s
—4 -3 -2 -1 o 1 2 3 4

Figure 5.5: Another Approximation of Sigmoid

First check if Warren result for sign assignment of a polynomial valid for rational function, we will apply
Theorem 5.3.1. Or our target is we approximate it by some polynomial approximation Theorem, next to
apply Theorem 5.3.1.

5.3.2 Neural Network with tanh Function

The equation of tanh function is f(z) = # If we compare tanh with sigmoid, this is a scaled version of
e2z 41

one another. The below figure gives a idea of these two functions:

Function Comparison

100

075

050

0.25
0.00

T Axis

-0.25

—0.50

-0.75 — sigmoid

~1.00 —— tanh

Figure 5.6: Comparison of sigmoid and tanh functions

56

Using Continued Fraction
The rational function that comes from truncation of the continued fraction for the hyperbolic tangent:
x

—_—.
1+
3+s1

tanh(x) =

Here for instance are plots comparing tanh and the convergent.

R(z) = 3 .
R —

Continued Approximation

100

075

050

0.25
0.00

T Axis

-0.25

—-0.50

—0.75 — fanh
—— continued_approx

-1.00

4 3 2 a0 1 2 3 4

Figure 5.7: Continued Approximation of tanh

We approximate the function on [—4, 4], and the rest part of this function is asymptotic type. Now if
Warren result applicable, we use it and Theorem 5.3.1 or we approximate it by polynomial and then use

Theorem 5.3.1.

Using Pade Approximation

This idea based on the Pade approximants of exp(x). More precisely, let the (n,n) approximant of exp(x)

be represented by exp(z) ~ pI::E(—I:Z)’ where p,(z) = 37_ %x]

From this, we find that we can approximate tanh(x) with a rational function like so:

pn(x)z - pn(_x)2
Pn(2)? + pu(—2)?

tanh(x) = 7,(x) =

Consider
z(10 + 22)(60 + 22)

600+ 27022 + 1124 + 20

Td(x)

Here are comparison plots for tanh(x) and 73(x):

57

Pade approximation

100
0.75
050
0.25
n
Z 000
S
-0.25
-0.50
-0.7% — t@nh
~1.00 —— FPade_approx
4 3 2 a o0 1 ' ERR
X Axis

Figure 5.8: Comparison of tanh(z) and 73(x)

We approximate the function on [—4,4], and the rest part of this function is asymptotic type. Now if
Warren result applicable, we use it and Theorem 5.3.1 or we approximate it by polynomial and then use
Theorem 5.3.1.

5.4 VC Dimension Calculation For RVFLN

5.4.1 First Approach

We consider the network has uq, us, ..., un as input nodes value and a; ;,¢ < m,j < n are input to hidden
layer weights, by,, b, are the hidden layer bias, cq, ..., ¢, are hidden to output layer weights, ¢y is output
layer bias and output layer has one unit as consider as binary classification problem. Also input to hidden

output layer weights are dy, ..., d,,. Then output of the network is

Yy=c<C +Zuldl +ZC]‘O'(A]‘U+I)J')

i=1 j=1

By our definition, all a;’ ;s are fixed and assigned from a probability distribution. Now the obtained class of
functions are span of 1,dy,,dm,0(A1u + b)), ...,0(Apu + by,).

So the vector space span by these elements has dimension at most n+m + 1. From Lemma 2.3.1, we get
VC(F)<n+m+1.

5.4.2 Second Approach

From input to hidden unit weights are assigned randomly, no need to tuning these weights during training
the network. So, these weights are fix during calculation of VC dimension. RVFLN has one hidden unit and
assume binary output. Consider the network has m input units, £ hidden units. For a general case class of
functions associated with layer i,

FP=FOD x L x Fldo)

where d; is total unit nodes at layer ¢. Class of function associated with whole network is

F=Flo. . oF!

58

where [is total number of layers except input layer. Use this concept on RVFLN, for hidden layer, F! =
FOD o x FOR) for output layer F2 = F21 x ... x FL) Now for whole network,

F=F?oF' = (F@®V x . x F&L)o(FULD x| x pOHR)

Assume first part of the equation is A and second part is B. Then IIp(m) < II4(m) x Ip(m). From here

we get

5.5 Comparison of Different VC Dimension Bounds

Already so many VC upper bound have been calculated using different techniques of different type of neural
networks. But we can make a study for comparison of the bound for same type activation function classes.
This study will give us a concept of bound for different number of parameters and also different input
dimension. We hae seen that when input dimension increases, one bound dominant other bound after a
certain number of parameters. Here we consider only weights as a parameter not the bias term. Here Layers
means all layers except input and output layer. Also each layer has same number of computational units. So
total number of computational units is |Layers| x |per layer computatinal unit|. And also total number of
parameters is |computationalunits| x [number of incoming edge to each unit|. Total number of operations
is O(|parameters| + |nodes|).

The below table for input dimension 10. Assume each hidden layer has same number of unit 10.

H Layers Units Parameters H

2 20 200
) 50 500
10 100 1000
20 200 20000

Table 5.1: For input dimension 10

The following figure give us a idea of different VC upper bound for sigmoidal type networks, piece wise

polynomial type networks, piece wise linear type networks.

59

Sigmoid Function Case Piece wise Linear Function Case

10 10
08 08
h=l =
5 5
o 0.6 5 06
m o
T T
8 g
= = 04
H H — Type-9
Type-10
0.2 — Type3 02 — Type-12
Type-6 — Type-13
00 — Type-7 00 Type-14
0 2500 5000 7500 10000 12500 15000 17500 20000 D 2500 5000 7500 10000 12500 15000 17500 20000
Parameters Parameters

Piece wise Polynomial Function Case

08

06

— Type-1
Type-2
— Type-4
— Type-8
Type-11
— Type-15

04

VC Upper Bound

02

00

0 2500 5000 7500 10000 12500 15000 17500 20000
Parameters

Figure 5.9: For input dimension 10

For sigmoidal neural network all these three bounds are almost same according to our plot. For piece wise
linear neural network after a certain number of parameters types bound behaves oppositely with respect to
its first part. And for the other types all are almost same. From the figure we have drawn that for piece wise
polynomial network type-1 changes its bound value, comparing to the other bounds value after a certain
number of parameters. But all the bounds are monotonically increasing. Some of them also are strictly
monotonically increasing.

The below table for input dimension is 50. Here each hidden layer has same number of units 30. We
assume p = 1 and [= 2,5,10,20 for layers = 2,5,10, 20 respectively. If we increase p then bound also

change proportionally.

H Layers Units Parameters H

2 60 2400
5 150 5100
10 300 9600
20 600 18600

Table 5.2: For input dimension 50

The following figure give us a idea of different VC upper bound for sigmoidal type networks, piece wise

polynomial type networks, piece wise linear type networks.

60

Sigmoid Function Case Piece wise Linear Function Case

0.8

VE:]

=
=

E =
5 06 5
=] =]
m o
g 5 04l
204 g
= =2
g g — Type-9
02 0.2 Type-10
) — Type-3 — Type-12
Type-6 — Type-13
00 — Type-7 00 4 Type-14
2000 4000 G000 G000 10000 12000 14000 16000 13000 2000 4000 6000 BO00 10000 12000 14000 16000 13000
Parameters Parameters

Piece wise Polynomial Function Case

035

=
=

=
-

Type-1
Type-2
— Type-4
— Type-8

Type-11
— Type-15

VC Upper Bound

=
¥

00 4

000 4000 6000 8000 10000 12000 14000 15000 13000
Parameters

Figure 5.10: For input dimension 50

Here type-i means the function of type i’th row of the main table described later. And also row number
starts from 1. Here row 3,6, 7 belong so sigmoidal case, row 9,10, 12,13, 14 belong to piece wise polynomial
case, row 1,2,4,8,11,15 belong to piece wise polynomial type network.

For sigmoidal neural network all the bounds are basically same but these bounds behaves like strictly
monotone increasing function after a certain number of parameters. We can say that for piece wise polynomial
neural network, the VC upper bounds behaves differently, means two bounds are strictly monotone increasing
function and others are showing this property after a certain number of parameters. Also for piece wise

polynomial network, the VC upper bounds crosses one another after a certain number of parameters.

61

Theorem 8.3 of |

Theorem 8.4 of |

Theorem 8.14 of |

Theorem 8.7 of |

Theorem 8.11 of |

Theorem 8.13 of |

Constraints

F={f:RIx X —
R}, a € R4, X = input
Domain

h(a,z) has no more
than t operations,R™
= input Domain

h(a,x) has no more
than t operations, R™

= input Domain

w weights,k
computational units

w parameters,first layer
computation units = k,
fan in of first layer unit

no more than N

w parameters, k

computation units

| programmable
parameters,k input
nodes,m computation

nodes

w parameters,k
computation units, L
layers

L layers, p parameters,

k computation units

L layers, p parameters,
k computation units

L layers, p parameters,

k computation units

w parameters, L layers

w parameters, L layers

W parameters, L layers

W parameters,U units

Activation function

H - k—combination of
sgn(F)

h:RI xR —
{0,1},H = {z —
h(a,z) : a € RY}
h:RI xR —
{0,1}, H ={z —
h(a,z) : a € R}
linear threshold,Piece
wise polynomial of p

pieces and degree no

more than [

first layer with sigmoid
activation

linear
threshold,sigmoidal
function

sigmoid function

Identity function,Piece
wise polynomial of
degree at most [and p
break points

Piece wise constant

Piece wise linear

Piece wise polynomial

piece wise linear

piece wise linear

RelLu function

piecewise polynomial
of degree at most d

Bound

VC(H) <
2d log,, (12kl)

VC(H) < 4d(t + 2)

VC(H) <
t2d(d + 191og,(9d))

VC(H) =
O(w(w + kllogs(p)))

VC(H) <
2w log, (60N D)

VC(H) < (wk)? +
11wk logy(s),s =
18wk?

VC(A) < (ml)(ml —
1)/2 4 1(2m +
1)log(2d) +1(3m +
Dlog((2m+ 1)l +1) +
1(3m 4+ 1)log(2d + 1)

VC(sgn(F)) <
2wl log(2ewLpk) +
2wL?log(l + 1) + 2L

VC(sgn(F)) = O(p)

VC(sgn(F)) = O(p?)
VC(sgn(F)) =
O(pL?)

VO(F) =
O(wL log(w) + wL?)

VC(F) =
O(wlogy(w))

VCO(F) =
O(W Llog(W))

VC(sgn(F)) =
O(WU log(d+ 1))

Additional Conditions

m >d/k,a— f(a,z)
is a polynomial of

degree no more than [

operations of types:
output 0, 1;+, —, *, /;<
b >5 :5 S, 27 #

operations of types:
output

0,14, —, %, /i<, >, =

'S, 2, #5 @ - exp()

feed forward
network,output unit
linear threshold

input domain
X = {D7 seeey _D}n'
D € N,two layer feed

forward

feed forward network,

m > w

d =maximum degree of
polynomial p,
constructing from
terms and

VC(4) = O((ml)?)

k<w,L <w and if
Lk = O(w),then
VC(sgn(F)) =

O(wL? + wLlog, L)

Example: Linear
Threshold

Example: RelLu
Network

More Generalized

(Bartlett, Maiorov,
Meir, 1998)

Cover, 1968; Baum
and Haussler, 1989

Special case of Piece
wise Polynomial

Generalized Case

Table 5.3: DifferemeVC Upper Bounds

5.6 Experiments and Results

Here we will compare test error bound from VC upper bound and practical test error bound. And the
experiment has done on the following bench mark datasets 1) D1 (Shuttle Data) 2) D2 (Skin Segmentation
data) 3) D3 (Avila Data) 4) D4 (HTRU2 Data) 5) D5 (Default of credit card clients Data) 6) D6 (Online
Shoppers Purchasing Intention Data). All data collected from UCI Machine Learning Repository site. El:
Each hidden layers contain 2 nodes, E2: Each hidden layer contains 3 nodes, E3: Each hidden layers contains

4 nodes.
Dataset kL k2 k3
L1 L2 L3 L1 L2 L3 L1 L2 L3

D1 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001
D2 0.003 0.021 0.019 0.002 0.007 0.007 0.001 0.002 0.001
D3 0.316 0.316 0.316 0.316 0.288 0.328 0.296 0.264 0.278
D4 0.025 0.024 0.025 0.025 0.024 0.022 0.025 0.026 0.025
D5 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271
D6 0.017 0.064 0.151 0.109 0.098 0.112 0.105 0.133 0.108

Table 5.4: Test Error for Neural Network with ReLU Activation

L1: Contains 3 hidden layers. L2: Contains 4 hidden layers. L3: Contains 5 hidden layers. Here train
test split is 0.10. Number of epochs used here is 80, batch size is 20. Also as a optimizer we used Adam

optimizer. And also as a important point we tried all these experiments in same setup.

Dataset El k2 E3
L2 L3 L1 L2 L3 L1 L2 L3

D1 29 35 41 46 58 70 65 85 105
D2 17 23 29 28 40 52 41 61 81
D3 31 37 43 49 61 73 69 89 109
D4 27 33 39 43 55 67 61 81 101
D5 57 63 69 88 100 112 121 141 161
D6 33 39 45 52 64 76 73 93 113

Table 5.5: Total parameters for Neural Network with ReLU Activation

Now we will give a overview of these data sets. Class ratio consider for total (including training and test

part) sample and Total sample consider for samples used for training.

e D1: Total sample:

D2: Total sample:

D3: Total sample:

D4: Total sample:

D5: Total sample:

32909, Total features: 9, No categorical features, Class ratio: 34108 : 2458.
220551, Total features: 3, No categorical features, Class ratio: 194198 : 50859.
5622, Total features: 10, No categorical features, Class ratio: 4286 : 1961.
16108, Total features: 8, No categorical features, Class ratio: 16259 : 1639.

27000, Total features: 23, No categorical features, Class ratio: 23364 : 6636.

63

e DG6: Total sample: 11097, Total features: 11, No categorical features, Class ratio: 10422 : 1908.

The test error rate is

h L1

R(0) < Ranplo) + 1/ H1og(1) -

. log(6)

Now Repp(r) = % Zizl ly; — f(x;, @)|. h is the VC dimension of the machine and 0 < < 1, [is the total
number of training examples. The following figure gives a details comparison between real test error and
practical test error.

For ReLU neural network VC(F) = O(L1W log,(pU) + L1Llogy(d)). Here d =1,p=1and L, =~ L. So
modified bound is VC(F) = O(LW logy(pU)). Here every symbol has similar meaning as symbols in [16].
But the bound which we have used here is VC(F) < L + (>, W;). log, (logy(2epR). log, (log, (2epR)))

The following figures give us a idea about theoretical test error bound and practical test error bound.
We always say that the theoretical bound is more than the practical bound. As the experiment has done in
a general setting, so we can conclude that almost all the time this tradeoff happens. Here all used activation

functions are ReLU function.

Comparison of two test error bound for D1 Comparison of two test error bound for D2 Comparison of two test error bound for D3
025 025
07
020 020
o B 06
< 015 T o1s 4
g E E
& E Eos
% 010 % 010 i
& ® ®
o4
005 0.05
—— Original test error —— Original test error 03 —_f— Original test error
—— Theoretical test error N T Theoretical test ermar : — Theoretical test error
0.00 000
v 40 50 &0 0 a0 90 100 20 30 4 50 &0 70 80 30 40 50 &0 0 a0 20 100 1o
Total Weights Total Weights Total Weights
Comparison of two test error bound for D4 Comparison of two test error bound for DS Comparison of two test error bound for D6

=
I~

055
035 0s
030 050
04
045

03
0.40

Test Error Rate:
Test Error Rate:
Test Error Rate:

02
0.35

010
01
005 —— Original test error 030 —— Original test error —— Original test error
- —— Theoreticaltestermor —— Theoretical test error — Theoretical test error

0.0

80 90 100 B0 80 100 120 140 160 30 40 50

@ 70 € 70 & W 100 110
Total Weights Total Weights Total Weights

Figure 5.11: For ReLU Neural Network

5.6.1 Conclusion

We know that the Bayesian classifier is the best classifier among all the classifiers. As a conclusion from this
statement, we can say that this classifier has the lowest misclassification error. Similarly, We can make a
conclusion that the test error bound derived from VC dimension always more than the practical test error

bound. From this atleast we get a idea about upper bound of test error rate.

64

Chapter 6

Future Works

In this chapter we will pose some problems which arises from our proposed methods or solutions. Also

we will propose a few things that might have greater importance in statistical learning field.

6.1 Scope of Future Work

Our proposed problems are:

e We have showed that there is a neural network with linear and threshold gates and inputs in R™ which
has VC dimension O(n™) with weights O(n™~1) for n > 1. Is there some architecture which has same

VC dimension bound but has less number of weights?

e Same question as above will arise for neural network with linear, threshold, multiplication, division

gates.

e Is there any sufficient method for calculating VC dimension of neural network with skip connections
(example RVFLN, ResNet)? Also the upper bound on VC dimension should be tighter than a upper
bound of feed forward neural network with out skip connections. We have made this claim because

skip connection network gives better performance than without skip connection network in-general.

e Also, there is a result in topology about how many convex regions created by intersecting some number
of hyperplanes. Is there similar result for S shape curve? If yes, then we can use that result to calculate

VC upper bound for feed forward neural network with S shape functions.

e Besides model theoretic, time taking for each operations, approximation of curves approaches, is there
any other way to handle the calculation of VC upper bound for feed forward neural network with

sigmoidal activation function with or without skip connections?

e How much the gap between theoretical test error and practical test error depends upon the number of

layers, nodes per layers, activation functions in hidden layers?

e Already some researchers have proposed the concept for calculating number of nodes for each hidden
layer of a feed forward neural network which depends upon the shape of the data set. For this concept
they correlated betti number (number of holes) of this datasets with number of computational nodes.
Basically it does not depends upon the activation functions. If we can correlate the VC dimension
which depends upon activation function with betti number which correlates with shape of datasets,
then we might get more tighter and significant VC bound for each different type of neural networks.
And if VC bound depends upon both data sets shape, dimension and activation functions, the bound

will be more specific.

66

Bibliography

Peter L. Bartlett, Vitaly Maiorov, Ron Meir. Almost Linear VC Dimension Bounds for Piece wise

Polynomial Networks.
P.Koiran, E. D. Sontag. Neural networks with Quadratic VC Dimension.

Michael Schmitt. Lower Bounds on the Complexity of Approzimating Continuous Functions by Sigmoidal
Neural Networks.

L. van der Dries. Tame Topology and o-minimal Structures, University of Illinois.

J. Knight, A. Pillay and C. Steinhorn. Definable Sets and Ordered Structures II, American mathematical

society.

M. C. Laskowsky. VC Classes of Definable Sets, J. London Math Society.

P. Goldberg, M. Jerrum. Bounding the VC Dimension of Concept Class Parametrized by Real Numbers.
A. G. Khovanski, Fewnomials. American Mathematical Society.

Marek Karpinski, Angus Macintyre. Polynomial Bounds for VC Dimension of Sigmoidal Neural Net-

works.

M. C. Laskowski. Vapnik-Chervonenkis Classes of Definable sets.

H. E. Warren. Lower Bounds for Approxzimation by Non linear Manifolds.

J. Renegar. On the Computational Complexity and Geometry of the First Order Theory of the Reals.

Paul W. Goldberg, Mark R. Jerrum. Bounding the Vapnik Chervonenkis Dimension of Concept Classes

Parameterized by Real Numbers.
Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.

Marek Karpinski, Angus Macintyre. Polynomial Bounds for VC Dimension Of Sigmoidal and General
Pfaffian Neural Networks.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, Abbas Mehrabian. Nearly-tight VC-Dimension and

Pseudodimension Bounds for Piecewise Linear Neural Networks.

Nick Harvey, Christopher Liaw, Abbas Mehrabian. Nearly-tight VC-Dimension Bounds for Piecewise

Linear Neural Networks.

67

[18]
[19]

[20]

[21]

[22]

[23]

[29]

[30]
[31]

[32]

[33]

Wolfgang Maass. Vapnik-Chervonenkis Dimension of Neural Nets.
Xu Miao, Lin Liao. VC Dimension and its Applications in Machine Learning.

A. J. Wilkie. Model Completeness Results For Expansions Of The Ordered Field Of Real Numbers By
Restricted Pfaffian Functions And The Ezxponential Function.

Peter L. Bartlett, Robert C. Williamson. The VC-Dimension and Pseudodimension of Two-Layer Neural
Networks with Discrete Inputs.

Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson. Lower Bounds on the VC' Dimension of Smoothly

Parametrized Function Classes.

John W. Milnor. From The Differentiable Viewpoint.

E. D. Sontag, Angus Macintyre. Finiteness Result of Sigmoidal Neural Network.

Martin Anthony and Norman Biggs. Computational Learning Theory for Artificial Neural Networks.
Eduardo D. Sontag. VC' Dimension of Neural Networks.

Peter L. Bartlett, Wolfgang Maass. Vapnik-Chervonenkis Dimension of Neural Nets.

Shai Ben David, Nicolo Cesa Bianchi, Philip M. Long. Characterizations of Learnability for Classes of
{0,..,n} Valued Functions.

Eshan Chattopadhyay, Pravesh Kothari, Adam Klivans. An Ezplicit VC-Theorem for Low-Degree Poly-

nomials.
Bernard Ycart, Joel Ratsaby. VC-Dimensions of Random Function Classes.
Elchanan Mossel and Christopher Umans. On the Complexity of Approximating the VC Dimension.

Marek Karpinski, Thorsten Werther. VC Dimension and Learnability of Sparse Polynomials and Ratio-

nal Functions.

Ye Ren, P.N. Suganthan, N. Srikanth, Gehan Amaratunga. Random Vector Functional Link Network
for Short-term FElectricity Load Demand Forecasting.

Baum, Haussler. What Size Net Gives Best Generalization.
Peter Bartlett. CS281B/Stat241B. Statistical Learning Theory.
Sham Kakade and Ambuj Tewari. CMSC 85900 (Spring 2008) Learning Theory.

Mohri, Rostamizadeh, Talwalkar. Foundations of Machine Learning

68

	Introduction
	Introduction
	Our Contributions
	Thesis Outline

	Preliminaries and Background
	Growth function and Shattering
	Properties

	VC Dimension
	VC Definition of Function Classes
	Parametric Classes of Functions

	Linear Parameterizations
	Affine parameteization
	Perceptron

	VC Dimension Related Results
	Single Hidden Layer with Fixed Input Weights:

	Basic Properties of VC Dimension
	Boolean Closure

	VC Related Results for Multilayer Neural Net
	Counting Weights
	Multilayer Nets with both H and Linear activation

	VC Dimension of Neural Networks
	VC Dimension of Piece wise Polynomial Networks
	Linear VC Dimension Bounds for Piece wise Polynomial Network
	Refinement of p1

	VC Dimension of Sigmoidal Neural Networks
	Lower Bound of Sigmoidal Network which Approximate Continuous Functions
	Polynomial Bound for VC Dimension of Sigmoidal Networks
	Additional Activation Functions

	Bounding The VC Dimension of Concept Class Parametrized by Real Numbers
	Upper Bounds

	VC Dimension from Geometric Approach
	Some Notions of Geometric Approach
	VC Bounds for Neural Networks

	Application of VC Dimension on Machine Learning
	PAC Model
	VC Dimension and Learnability
	VC Dimension and Generalization Performance
	Structural Risk Minimization
	Decision Tree

	Random Vector Functional Link Network
	Feedforward Neural Network (FNN)
	Single Hidden Layer Neural Network (SLFN)
	Random Weight SLFN (RWSLFN)
	Random Vector Functional Link Network (RVFLN)
	Equations

	Related Work and Our Contribution
	VC Dimension for Neural Network with Continuous Activation Functions
	For Linear and Threshold Gates
	For Linear, Threshold, Multiplication, Division Gates
	Conclusion

	VC Dimension for Piece wise Polynomial Network
	VC Dimension of S shape functions
	Neural Network with Sigmoid Activation Functions
	Neural Network with tanh Function

	VC Dimension Calculation For RVFLN
	First Approach
	Second Approach

	Comparison of Different VC Dimension Bounds
	Experiments and Results
	Conclusion

	Future Works
	Scope of Future Work

