
Cryptanalysis of Symmetric Key Schemes using
Classical and Quantum Techniques

Submitted to Indian Statistical Institute
in partial fulfillment of the thesis requirements for the Degree of

Doctor of Philosophy in Computer Science

Author: Mostafizar Rahman
Senior Research Fellow

Supervisor: Goutam Paul
Associate Professor

Cryptology and Security Research Unit
R. C. Bose Centre for Cryptology and Security

Indian Statistical Institute
Kolkata - 700108, India

January 2022

2

Dedicated to
My Parents and my Brother

3

4

DECLARATION OF AUTHORSHIP

I, Mostafizar Rahman, a student of Cryptology and Security Research Unit, of the

Ph.D. program of Indian Statistical Institute, Kolkata, hereby declare that the re-

search work presented in this thesis titled “Cryptanalysis of Symmetric Key Schemes

using Classical and Quantum Techniques” is based on my works. To the best of my

knowledge, the materials presented in this thesis have not previously been published

or written by any other person, nor it has been submitted as a whole or as a part of

any degree/diploma or any other academic award anywhere before.

Mostafizar Rahman

Cryptology and Security Research Unit

Indian Statistical Institute, Kolkata

203, Barrackpore Trunk Road

Kolkata 700108, INDIA.

5

6

LIST OF PUBLICATIONS/MANUSCRIPTS

1. Mostafizar Rahman, Dhiman Saha and Goutam Paul, “Cryptanalysis of

FlexAEAD", Progress in Cryptology - AFRICACRYPT 2020. Lecture Notes

in Computer Science, vol 12174. Springer, Cham,

DOI: https://doi.org/10.1007/978-3-030-51938-4_8.

2. Dhiman Saha, Mostafizar Rahman and Goutam Paul, “New Yoyo Tricks

with AES-based Permutations", IACR Transactions on Symmetric Cryptology,

2018(4), 102-127,

DOI: https://doi.org/10.13154/tosc.v2018.i4.102-127.

3. Mostafizar Rahman, Dhiman Saha and Goutam Paul, “Boomeyong: Em-

bedding Yoyo within Boomerang and its Application to Key Recovery Attacks

on AES and Pholkos", IACR Transactions on Symmetric Cryptology, 2021(3),

137–169,

DOI: https://doi.org/10.46586/tosc.v2021.i3.137-169.

4. Mostafizar Rahman and Goutam Paul, “Quantum Attacks on HCTR and Its

Variants", IEEE Transactions on Quantum Engineering, vol. 1, pp. 1-8, 2020,

DOI: https://doi.org/10.1109/TQE.2020.3041426.

5. Mostafizar Rahman and Goutam Paul, “Grover on Katan: Quantum Re-

source Estimation", Accepted in IEEE Transactions on Quantum Engineering

on 21 December, 2021

(DOI not yet available)

6. Mostafizar Rahman and Goutam Paul, “Grover on Present: Quantum Re-

source Estimation", communicated to: Journal of Cryptographic Engineering,

submitted on 12𝑡ℎ November, 2021.

7

https://doi.org/10.1007/978-3-030-51938-4_8
https://doi.org/10.13154/tosc.v2018.i4.102-127
https://doi.org/10.46586/tosc.v2021.i3.137-169
https://doi.org/10.1109/TQE.2020.3041426

ACKNOWLEDGEMENT

I wish to express my genuine appreciation and warm gratitude to all the well-wishers

without whom this thesis would not have been possible. First and foremost, it is my

great pleasure to acknowledge my Ph.D. supervisor Dr. Goutam Paul, Associate Pro-

fessor of Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata,

for introducing me to the exciting and fascinating research field of cryptography. His

valuable comments, endless support and encouragement, motivating discussions and

ideas, positive criticisms help me a lot to continue my research work. I shall be forever

obliged to him for his support and encouragement.

I want to express my special gratitude to Dr.Dhiman Saha, Department of Electri-

cal Engineering and Computer Science, IIT Bhilai, for guiding me in every step and

motivating me with his insightful comments and suggestions. The hour-long technical

and non-technical discussions with him have a profound impact on my life.

I would like to express my deepest appreciation to all of my colleagues, namely,

Samir Kundu, Amit Jana, Nayana Das, Prabal Banerjee, Avishek Majumder, Laltu

Sarder, Diptendu Chatterjee, Pritam Chattopdhayay, Soumya Das, Ram Govind

Singh for helping me with their passionate discussions without any entitlement during

this journey. I am lucky enough to be surrounded by all of them during this tedious

and tough journey. The moments I have spent with them will be cherished by me

forever. I am also thankful to Dr. Pabitra Pal and other members of de.ci.phe.red

lab, IIT Bhilai, for their support during my visit to IIT, Bhilai.

I greatly appreciate my parents for their continuous support and the sacrifices that

they have made on my behalf. I express my deep gratitude to my beloved brother

Masud for his constant encouragement and unconditional support. Special thanks to

my friend Bidar for being there to help me out during the rough patches of my life.

Thank you, Tamanna, for all the love and support you give me since we met.

8

ABSTRACT

Symmetric key cryptography refers to the encryption methods in which the same key

is used by both the sender and the receiver. Cryptanalysis is a process of finding

vulnerabilities in cryptographic algorithms in order to distinguish the algorithm, or

to retrieve the plaintext from ciphertext without the knowledge of the secret key, or

sometimes to recover the secret key also. In this work, in addition to using exist-

ing cryptanalysis techniques to analyze some recent ciphers, we also develop novel

cryptanalysis techniques.

The cryptanalysis techniques that are involved here are based on both classical

and quantum computing models. In classical cryptanalysis, first of all, we break the

authenticated encryption scheme FlexAEAD by mounting forgery using the devised

iterated truncated differentials. Further, we mount key recover attacks on the under-

lying keyed permutation of FlexAEAD. We develop new techniques of cryptanalysis

by augmenting yoyo game with classical, impossible and improbable differentials and

its impact is shown by applying it on public permutation AESQ and AES in the

known-key setting. Another new technique is developed by embedding a boomerang

attack within a yoyo game, which is shown to be effective by breaking the claimed

security of AES-like block ciphers. In quantum cryptanalysis, we analyze several

symmetric key schemes by using Simon’s algorithm or by combining Simon’s with

Grover’s algorithms. We also provide cost estimation for mounting Grover’s attack

on lightweight block ciphers KATAN and Present. To strengthen the validity of our

results, all practical attacks are experimentally verified.

9

10

CONTENTS

1 Introduction 25

1.1 Motivation . 27

1.1.1 Symmetric Key Algorithms 27

1.1.2 Cryptanalysis . 28

1.1.3 Speeding up the Attacks using Quantum Algorithms 28

1.2 Outline and Contribution . 29

2 Background 33

2.1 Block Cipher Primitives . 34

2.1.1 AES: The Advanced Encryption Standard 34

2.1.2 Internal keyed Permutation (PF𝑘) of FlexAEAD 35

2.1.3 AESQ Permutation . 37

2.1.4 Katan Block Cipher . 38

2.1.5 Present . 41

2.2 Some Interesting Underlying Constructions in Block Ciphers and Per-

mutations . 43

2.2.1 Super-Sbox . 43

2.2.2 MegaSbox . 45

2.3 Mode of Operations . 46

2.4 Cryptanalysis Basics . 51

11

2.4.1 Attack Goals . 51

2.4.2 Classical Attack Models . 51

2.4.3 Quantum Attack Models . 53

2.4.4 Complexity of Cryptanalysis. 53

2.5 Classical Cryptanalysis Techniques 54

2.5.1 Boomerang Attack . 55

2.5.2 Yoyo Attack . 58

2.5.3 Yoyo Analysis for Two Generic SP-Rounds 62

2.6 Quantum Cryptanalysis Tools . 63

2.6.1 Simon’s Algorithm . 64

2.6.2 Grover’s Algorithm . 66

2.6.3 Simon’s Algorithm with Asymmetric Queries 69

2.7 Other Tools . 71

2.7.1 Data Complexity and Success Probability 72

2.7.2 Signal-to-Noise Ratio and Ranking Test 73

3 Differential Attacks on FlexAEAD 77

3.1 Iterated Truncated Differential Attacks on PF𝑘 79

3.1.1 One Round Probabilistic Iterated Truncated Differential . . . 80

3.1.2 Key Recovery Using Iterated Truncated Differential 83

3.1.3 Complexity Evaluation . 84

3.1.4 Experimental Verification . 85

3.2 Forgery Attacks on FlexAEAD . 86

3.2.1 Differential Characteristics in Sequence Generation 86

3.3 Chapter Summary . 88

4 Yoyo Attacks on Internal Keyed Permutation of FlexAEAD 89

4.1 Yoyo Attacks on PF𝑘 . 89

4.1.1 Super-Sbox of PF𝑘 . 90

4.1.2 Deterministic Distinguisher for 𝑟-round Flex-𝑥 91

4.1.3 Key Recovery for (𝑟 + 1)-round Flex-𝑥 92

12

4.2 Success Probability of Distinguishing Attacks 95

4.3 Chapter Summary . 96

5 Yoyo Attacks on AES-based Designs 99

5.1 Distinguishers using Direct Yoyo on AESQ 101

5.1.1 Distinguisher for 8 Rounds 104

5.1.2 Extension to 9-round AESQ . 105

5.2 Improbable Differential Yoyo . 108

5.2.1 The Inside-Out Technique . 110

5.2.2 Improbable Differential Yoyo Distinguisher for 9-round and 10-

round AESQ . 112

5.3 Impossible Differential Yoyo . 115

5.3.1 Impossible Differential Yoyo Distinguisher for 12-round AESQ . 115

5.3.2 Impossible Differential Bi-directional Yoyo Distinguisher for 16-

round AESQ . 115

5.4 Applications to AES in the Known-Key Setting 118

5.5 Practical Verification . 122

5.6 Discussion . 122

5.7 Experimental Verification . 125

5.7.1 Success Probability . 128

5.8 Chapter Summary . 129

6 Boomeyong Attacks on AES-based Designs 131

6.1 Boomeyong: Embedding Yoyo within Boomerang 136

6.2 Boomeyong Attacks on AES . 140

6.2.1 Distinguishing and Key Recovery Attacks on 5-round AES . . . 143

6.2.2 Key Recovery Attack on 6-round AES 148

6.2.3 Experimental Verification on 64-bit AES 154

6.3 Boomeyong Attack on Pholkos . 156

6.3.1 Specification of Pholkos . 156

6.3.2 Key Recovery Attack on 10-round Pholkos 159

13

6.4 Attacks on AES-256 . 162

6.5 Relation with Retracing Boomerang Attack 163

6.6 Chapter Summary . 165

7 Quantum Attacks on Symmetric Designs beyond Grover’s Search 167

7.1 Output Truncation of Quantum Oracles 168

7.2 Attacks . 170

7.2.1 Attack on HCTR . 170

7.2.2 Attack on Tweakable-HCTR 176

7.2.3 Attack on HCH . 177

7.3 Chapter Summary . 181

8 Quantum Resource Estimation 183

8.1 Design Rationale . 185

8.1.1 NIST PQC Standardization 185

8.1.2 Implementation Issues of the Grover’s Algorithm 185

8.1.3 Cost Metrics. 187

8.1.4 Automated Resource Estimation. 187

8.1.5 Realization of Classical ‘AND’ Operation in Quantum Circuits 187

8.2 Grover on Katan: Resource Estimation 188

8.2.1 Resource Estimation of KATAN Implementation 189

8.2.2 Quantum Resource Estimation of Grover on KATAN 193

8.3 Grover on Present: Resource Estimation 197

8.3.1 A Quantum Circuit on Present 198

8.3.2 Quantum Resource Estimation of Grover on Present 204

8.4 Chapter Summary . 210

9 Conclusion 211

9.1 Summary . 211

9.2 Open Problems . 212

A Sample Trail for 5-round AES-128 215

14

LIST OF FIGURES

2-1 Byte Representation of Flex-128 Block Cipher 36

2-2 Round Function of Flex-128 Block Cipher 37

2-3 2-Round AESQ Permutation . 38

2-4 Schematic Diagram of a Round Function of KATAN. 39

2-5 AES Super-Sbox . 44

2-6 4 Parallel AES Super-Sbox . 44

2-7 Super-Sbox of AESQ . 45

2-8 MegaSbox of AESQ [9] . 47

2-9 ECB Mode Encryption . 48

2-10 ECB Mode Decryption . 48

2-11 CBC Mode Encryption . 49

2-12 CBC Mode Decryption . 49

2-13 Counter Mode Encryption . 50

2-14 Counter Mode Decryption . 50

2-15 Boomerang Attack Framework [178] 57

2-16 Sandwich Attack Framework [178] . 59

2-17 Different words and a sample state showing zero and non-zero bytes. . 61

2-18 Yoyo Attack on 𝑆 ∘ 𝐿 ∘ 𝑆 . 63

2-19 Implementation of 𝑈𝑓 using 𝐵𝑓 . 67

3-1 Iterated Truncated Differential with One-round probability of 2−7 . . 82

15

3-2 Differential Characteristics of Sequence Generation for FlexAEAD-128 87

4-1 Super-Sbox of Flex-128 Block Cipher 91

4-2 7-round Yoyo Distinguisher for Flex-128 93

5-1 AESQ2→9 as an 𝑆 ∘ 𝐿 ∘ 𝑆 construction. 103

5-2 Word configuration for each MegaSBox 103

5-3 Deterministic 8-round yoyo distinguisher 106

5-4 Probabilistic 9-round yoyo distinguisher 108

5-5 Different State Configurations Conforming to Claim 5.2.1 112

5-6 Improbable Differential Yoyo distinguisher for 9/10-round AESQ . . . 113

5-7 Impossible Differential Yoyo Distinguishers on AESQ2→13 and AESQ2→17 116

5-8 Impossible Differential Yoyo based Known-Key distinguisher for 6/8-

round AES . 121

6-1 Embedding yoyo within boomerang 137

6-2 Visualizing Yoyo Word-Swap as a combination of S-box switch and

Ladder switch operations . 139

6-3 Visualization of Lemma 1 when 𝐼 = {3} and 𝐽 = {2, 3} 142

6-4 An example elaborating a case described in Lemma 2. 143

6-5 Partitioning 5-round AES in 𝐸0 and 𝐸1 144

6-6 Upper and Lower Trail of 5-round AES 146

6-7 Key Recovery Attack on 5-round AES 148

6-8 Key Recovery Attack on 6-round AES 150

6-9 Two Rounds of Pholkos-512 . 157

6-10 MegaSbox in Pholkos-512 . 158

6-11 Relationship of boomeyong on AES with mixing retracing boomerang

attack . 164

7-1 Construction of 𝒪′𝑘{𝑝} from 𝒪𝑘 . 170

7-2 Construction of 𝐻𝐶𝑇𝑅 . 171

7-3 Simon function for 𝐻𝐶𝑇𝑅 . 174

16

7-4 Construction of ̃︂𝐻𝐶𝑇𝑅 . 176

7-5 Construction of 𝐻𝐶𝐻 . 179

7-6 Simon function for 𝐻𝐶𝐻 . 180

8-1 Decomposition of toffoli Gate into clifford + 𝑇 set with 𝑇 -depth 4. . 188

8-2 Design of AND gate. 189

8-3 Grover Oracle of KATAN32 . 194

8-4 Grover Oracle of KATAN48/KATAN64 195

8-5 Decomposition of Toffoli gate into Clifford+𝑇 Set with 𝑇 -depth of 4 . 198

8-6 Decomposition of toffoli gate into Clifford+𝑇 Set with 𝑇 -depth of 3 . 199

8-7 Decomposition of toffoli gate into Clifford+𝑇 Set with 𝑇 -depth 1 . . . 199

8-8 Quantum Circuit for Present S-box using toffoli Gate 201

8-9 Present Key Scheduling Function of 80-bit Key 204

8-10 Grover Oracle for Present-80 . 206

8-11 Grover Oracle for Present-128 . 207

17

18

LIST OF TABLES

2.1 Shuffle Table of AESQ . 39

2.2 Parameters of the KATAN Variants. 40

2.3 Bit Permutation of Present . 42

2.4 S-box of Present . 42

2.5 Confusion Matrix of 𝒞 and ℛ . 73

3.1 Comparison of trail probabilities of internal keyed permutation of Flex-

AEAD . 79

3.2 List of iterated truncated differential based key recovery attacks on PF𝑘 80

3.3 Iterated Differential Trails . 83

3.4 Comparison of Differential Probabilities 83

3.5 Comparison of Forgery Attacks on FlexAEAD 87

4.1 List of key recovery attacks on PF𝑘 using the yoyo game 90

4.2 Success Probabilities of Various Distinguishers 95

4.3 Experimental Verification of Success Probability 96

4.4 Comparison of Success Rate for Flex-64 96

4.5 Comparison of Success Rate for Flex-256 97

5.1 Distinguishers on Round-Reduced AESQ 102

5.2 8-round Known-Key Distinguishers on AES 122

5.3 Distinguishers reported in this work 124

19

5.4 Confusion Matrix of 𝒞 and ℛ . 128

5.5 Experimental Verification of Success Probability 129

6.1 Comparisons of key recovery attacks on AES and Pholkos 133

6.2 Key recovery attacks reported in this work. ACC is adaptive chosen

ciphertexts. 135

6.3 Required number of plaintext-ciphertext pairs versus the success prob-

ability for key recovery attack on 6-round AES 152

8.1 Resource Estimation for Reversible Quantum Circuit of Katan Block

Cipher using a decomposition of Toffoli gate with 𝑇 -depth 4 192

8.2 Resource Estimation for Reversible Quantum Circuit of Katan Block

Cipher using a decomposition of Toffoli gate with 𝑇 -depth 3 192

8.3 Resource Estimation for Reversible Quantum Circuit of Katan Block

Cipher using a decomposition of Toffoli gate with 𝑇 -depth 1 192

8.4 Resource Estimation for Reversible Quantum Circuit of KATAN Block

Cipher using AND gate. 192

8.5 Comparison of 𝐺-cost metric and Depth of the Designs. 193

8.6 Resource Estimation for Grover Oracle of Katan Block Cipher 195

8.7 Resource Estimation for Grover’s Search on Katan Block Cipher . . . 196

8.8 Resource Estimation for Grover’s Search on Katan Block Cipher with

Depth Limit . 197

8.9 Quantum Resources Required for Present S-box for Several Decompo-

sitions . 203

8.10 Resource Estimation for Key Scheduling Algorithm of Present 205

8.11 Resource Estimation for Reversible Quantum Circuit of Present . . . 205

8.12 Comparison of Reversible Quantum Circuit of Present using 𝐺-cost

Metric and 𝐷𝑊 -cost Metric . 205

8.13 Resource Estimation for Grover Oracle of Present. 𝑝𝑠 denotes the

Success Probability of Recovering the Right Key Uniquely. 208

8.14 Resource Estimation for Grover Search on Present 208

20

8.15 Comparison of Quantum Circuit for Grover Search on Present using

𝐺-cost Metric and 𝐷𝑊 -cost Metric 209

8.16 Gate Cost for Grover’s Search on Present with Depth Limit 209

21

LIST OF ACROYNMS AND ABBREVIATIONS

Expansion Acronyms/ Abbreviations

Authenticated Encryption with Associated Data AEAD
Advanced Encryption Standard AES
AddRoundKey AK
AddRoundTweakey ATK
Cipher Block Chaining CBC
Difference Distribution Table DDT
Decryption Queries Decs
Electronic Codebook ECB
Elliptic-curve Diffie–Hellman ECDH
Elliptic Curve Digital Signature Algorithm ECDSA
Encryption Queries Encs
Initialization Vector IV
Hash-Counter-Hash HCH
Hash Counter HCTR
Key Scheduling Algorithm KSA
Lightweight Cryptography LWC
Memory Access MA
MixColumns MC
MegaMixColumns MMC
National Institute of Standards and Technology NIST
Post Quantum Cryptography PQC
Rivest, Shamir, Adleman RSA
Substitution Box S-Box
SubBytes SB
Secure Hash Algorithm SHA
Substitution-Permutation Network SPN
Signal-to-Noise Ratio S/N
ShiftRows SR
Exclusive-OR XOR
Zero Difference Pattern ZDP
That is i.e.

22

LIST OF SYMBOLS

Throughout the thesis, we use some notations and we describe those common nota-

tions here.

• Pr(𝐴) : Probability of occurrence of an event 𝐴.

• Pr(𝐴|𝐵) : Probability of occurrence of an event 𝐴 given that the event 𝐵 has

already occurred.

• 𝑥← 𝑦: 𝑥 gets the value of 𝑦

• 𝛼→ 𝛽: The transition from 𝛼 to 𝛽

• 𝛼 9 𝛽: 𝛼 does not transit to 𝛽

• 𝑤𝑡(𝑥): Weight of a vector 𝑥

• 𝑥𝑖: 𝑖𝑡ℎ component of vector 𝑥

• AESQ𝑖→𝑗: AESQ permutation from round 𝑖 to round 𝑗

• ⊂𝜑: Non-null proper subset

• |+⟩ : 1√
2(|0⟩+ |1⟩), |−⟩ = 1√

2(|0⟩ − |1⟩).

• 𝑈 † : Conjugate transpose of 𝑈 .

• 𝐻 = 1√
2(𝜎𝑥 + 𝜎𝑧): The Hadamard operator.

23

24

1
INTRODUCTION

Contents
1.1 Motivation . 27

1.1.1 Symmetric Key Algorithms 27

1.1.2 Cryptanalysis . 28

1.1.3 Speeding up the Attacks using Quantum Algorithms 28

1.2 Outline and Contribution 29

Cryptography is the science of protecting information from potential adversaries.

As of documented sources, the history of cryptography starts with the introduction of

scytale, a Spartan cryptographic device based on transposition technique which was

used by the military in the fifth century BC. Caesar cipher is one of the famous ancient

cryptographic schemes based on substitution techniques. Although, these techniques

were quite secure at that time, with the advent of modern systems, these crypto-

systems become vulnerable. In earlier times, cryptography is practiced primarily as

a form of an art. The introduction of the communication theory of secrecy systems

by Shannon [185] helped in transiting the subject from an art to a science. The main

goal of cryptography is to provide confidentiality, integrity, authenticity, anonymity,

etc.

In terms of security, cryptography can be divided into two types: information-

theoretic security and computational security. Information-theoretic security, also

25

called perfect security or unconditional security, defines the security of a crypto-

system based on the theoretical impossibility of breaking the system, even if unlim-

ited computing power is available to the adversary; whereas computational security

defines the security of crypto-systems based on the hardness assumption of breaking

the system using limited computing power. Although, information-theoretic secure

systems are more secure in comparison to the computational secure systems; however,

such systems are quite impractical to implement. One such information-theoretic se-

cure cryptosystem is one-time pad which requires a key of length same as the plaintext

to be encrypted and the key has to be different for each encryption. However, with

respect to information theoretic security, two relaxations are considered for compu-

tational security. They are as follows-

1. Time Boundedness. It is assumed that the adversary will run only for a

feasible amount of time. If unlimited time is available to the adversary, then

the scheme can be broken.

2. Low Success Probability. The adversary can break the scheme with a very

low probability. This probability should have a negligible effect on the security

of the scheme.

To precisely define these relaxations, two approaches are considered: the concrete

approach and the asymptotic approach.

Concrete Approach. In a concrete approach, the security of a cryptographic

scheme is quantified. The computational effort of the adversary is specified and

the maximum success probability of the adversary explicitly bounds the security of

the scheme.

Asymptotic Approach. In the asymptotic approach, the security of cryptographic

schemes are parametrized by a security parameter. Generally, the length of the key

is considered as the security parameter and it is assumed that it is known to the

adversaries.

26

1.1 Motivation

Due to the impracticability of information-theoretic security, in the modern age

crypto-systems are designed mainly based on computational security. In terms of

application, cryptography covers a broad area which includes banking, communica-

tion, digital authentication, healthcare, etc. Computational security provides a way to

measure the strength of security and requires rigorous proof. However, such security

proofs do not guarantee “absolute security" as bypassing the underlying security as-

sumptions makes the system vulnerable. In addition, there are many security schemes

which relies on the rigorous third-party analysis rather than security proofs [21], like

AES [88, 6]. With the advent of quantum computers and the recent progress towards

the design of new quantum algorithms, the computational secure systems are also at

the edge of vulnerability with respect to newly evolved threat models.

1.1.1 Symmetric Key Algorithms

Broadly, there are two types of cryptographic algorithms, namely, symmetric key

algorithms and asymmetric key algorithms. Symmetric key, also known as secret key

or private key cryptography, uses the same key for both encryption and decryption.

In asymmetric key cryptography two different keys are used- a public key is used

for encryption and a private key is used for decryption and thus it is also known

as public key cryptography. Symmetric key schemes are faster and more efficient to

use whereas asymmetric key schemes are more secure to use. However, in end-to-end

encryption both symmetric and asymmetric key algorithms are used.

The symmetric key algorithms can be categorized into several variants: stream

cipher, block ciphers, message authentication code (MAC) and authenticated encryp-

tion (AE). Stream ciphers and block ciphers are used for achieving data confidentiality.

In general, the block ciphers use the secret key to encrypt a block of plaintext to ci-

phertext whereas the stream ciphers encrypt the plaintext by XOR-ing the plaintext

with a keystream that is generated using the secret key. MAC are used to provide

data integrity by generating a tag on the sender’s end and verifying it at the receiver’s

27

end. To encrypt messages arbitrary length using block ciphers, encryption modes are

used. AE algorithms serve data confidentiality and data integrity by encrypting ar-

bitrary length messages as well as generating tags. In recent times, owing to the

application of cryptography in resource constraint devices, the notion of lightweight

cryptography has emerged.

1.1.2 Cryptanalysis

Cryptanalysis is the study of finding the weaknesses in ciphers. According to Ker-

ckhoff’s principle (Kerckhoffs’s desideratum, assumption, axiom), a cipher should be

secure even if the cipher’s construction and structure, except the secret key, is public.

Owing to this principle, a cryptographic algorithm should be designed in a way such

that no attacker can break the scheme without the knowledge of the key even though

the complete structure of the scheme is known to the attacker.

This model is known as the open cryptographic model and based on this model,

several cryptographic algorithms are standardized, like- Authenticated Encryption

Standard (AES) [169], Secure Hash Algorithm 3 (SHA3) [5], CAESAR: Competition

for Authenticated Encryption: Security, Applicability, and Robustness [1], New Eu-

ropean Schemes for Signatures, Integrity, and Encryption (NESSIE) project [3], eS-

tream [2], Lightweight Cryptography (LWC) competition [4], etc. Several algorithms

that are submitted in such standardization competitions are made public and receive

rigorous analysis for several years. After public scrutiny, one algorithm or a suite

of algorithms are standardized based on the requirement of the competition. Thus

designing a cryptographic schemes does not complete the requirements of obtaining

a secure system, rigorous analysis of such systems are necessary to build confidence

in such schemes to use them for practical purposes.

1.1.3 Speeding up the Attacks using Quantum Algorithms

Exploting the quantum-mechanical phenomena to solve computationally hard prob-

lems is the focus of researchers in the recent time which has lead to the development of

28

Grover’s search algorithm [120], Simon’s algorithm [189], Shor’s algorithm [188, 187],

etc. The introduction of such algorithms threatens the security of cryptographic

schemes. The most notable of these is the Shor’s algorithm, whose ability to solve

the factorization problem and compute discrete logarithms in polynomial-time has

unveiled the vulnerability of several public key cryptographic schemes, like, RSA,

ECDSA and ECDH. Private key schemes are vulnerable to generic key recovery at-

tacks due to implications of Grover’s search algorithm on block ciphers [211]. Re-

cently, the vulnerabilities posed by Simon’s algorithm on some specific symmetric

key schemes have been studied [145, 146, 134, 66, 175, 112]. Thus, the security

of cryptographic algorithms are on the verge of being compromised due to the in-

evitability of the introduction of quantum computers. Owing to such conditions, the

National Institute of Standards and Technology (NIST) has called for proposals for

post-quantum cryptography standardization with goals for standardizing new crypto-

graphic algorithms that are secure against classical as well as quantum attacks [171].

Thus studying the security of existing cryptographic algorithms in quantum comput-

ing models provides insights regarding the validity of such algorithms in the post-

quantum world.

1.2 Outline and Contribution

The thesis discusses the cryptanalysis of symmetric key schemes using classical and

quantum techniques. New cryptanalytic techniques are designed to mount attacks

on several new and old ciphers. First, a brief introduction is provided and then in

Chapter 2, necessary backgrounds required for the rest of the thesis are discussed.

The main work of the thesis is divided as follows.

• In Chapter 2, we provide a brief introduction to block cipher and mode of

operation. The block cipher and permutations used in the thesis are discussed

here. We briefly describe about several classical cryptanalysis techniques and

introduce some quantum algorithms that are considered in the later part of the

thesis.

29

• In Chapter 3, we report an iterated truncated differential for all the variants

of internal keyed permutation of FlexAEAD (PF𝑘) using the property of AES

Difference Distribution Table (DDT) where the output difference of a byte is

confined to either upper or lower nibble. The probability of the truncated dif-

ferential for one round is 2−7. Its iterative nature makes it possible to penetrate

more number of rounds for all Flex-𝑥. These differentials are further exploited

to devise key-recovery attacks on all the variants.

Further, we have used the iterated truncated differentials to

mount forgery attacks on FlexAEAD similar to the ones reported by Eichlseder

𝑒𝑡 𝑎𝑙. [103, 104]. Finally, to measure the effectiveness of all distinguishers re-

ported in this work, their theoretical success probabilities are estimated by

following the approach given in [174]. The success probabilities are estimated

to be high and some of them with practical complexities are experimentally

verified.

All the attacks presented in this chapter exploit the vulnerabil-

ity that merely divides the bytes into nibbles while using AES s-box is suscepti-

ble to differential attacks as diffusion may be slow in some scenarios. Although,

FlexAEAD is out of NIST lightweight cryptography competition, this particular

vulnerability has a far-reaching impact on designing ciphers using AES s-box.

Hence, it forms the basis of continued motivation for this work.

• In Chapter 4, we explore the application of the yoyo property on PF𝑘 which has

been introduced by Rønjom 𝑒𝑡 𝑎𝑙. [176] on generic 2-round Substitution Per-

mutation Networks and further extended on AES-based permutations and block

ciphers [180, 27]. We have been able to devise deterministic yoyo distinguishers

for 4, 6 and 8 rounds of Flex-64, Flex-128 and Flex-256 respectively which are

further extended by one more round to mount key recovery attacks.

• In Chapter 5, we explore the yoyo idea in distinguishing public permutations

for the first time. We introduce the notion of nested zero difference pattern,

which extends the yoyo idea and helps compose it using improbable and impos-

30

sible differential strategies to penetrate a higher number of rounds. We devise

a novel inside-out application of yoyo which enables us to start the yoyo game

from an internal round. We devise a novel inside-out application of yoyo which

enables us to start the yoyo game from an internal round. As an application,

we investigate the AES-based public permutation AESQ used inside the authen-

ticated cipher PAEQ. We achieve the first deterministic distinguisher of AESQ

up to 8 rounds and the first 9-round distinguisher of AESQ that start from the

first round with a practical complexity of around 226. We manage to augment

yoyo with improbable and impossible differentials leading to distinguishers on

9, 10, 12 rounds with complexities of about 22, 228, 2126 respectively. Further,

with impossible differentials and a bi-directional yoyo strategy, we obtain a 16-

round impossible differential distinguisher with a complexity of 2126. Our results

outperform all previous records on AESQ by a substantial margin. As another

application, we apply the proposed strategies on AES in the known-key setting

leading to one of the best 8-round known-key distinguisher with a complexity

of 230. Finally, this work amplifies the scope of the yoyo technique as a generic

cryptanalysis tool.

• Chapter 6 investigates a generic way of combining two very effective and well-

studied cryptanalytic tools, proposed almost 18 years apart, namely the boomerang

attack introduced by Wagner in FSE 1999 and the yoyo attack Ronjom 𝑒𝑡 𝑎𝑙.

in Asiacrypt 2017. In doing so, the s-box switch and ladder switch techniques

are leveraged to embed a yoyo trail inside a boomerang trail. As an immedi-

ate application, a 6-round key recovery attack on AES-128 is mounted with a

time complexity of 278. A 10-round key recovery attack on recently introduced

AES-based tweakable block cipher Pholkos is also furnished to demonstrate the

applicability of the new technique on AES-like constructions. The results on

AES are experimentally verified by applying and implementing them on a small-

scale variant of AES. We provide arguments that relate the proposed strategy

with the retracing boomerang attack devised in Eurocrypt 2020. To the best

31

of our knowledge, this is the first attempt to merge the yoyo and boomerang

techniques to analyze SPN ciphers and warrants further attention as it has the

potential of becoming a vital cryptanalysis tool.

• In Chapter 7, we use similar approach to the one proposed by Bonnetain 𝑒𝑡

𝑎𝑙. in Asiacrypt 2019 to mount new attacks on HCTR and HCH construction.

In addition, we mount attacks on HCTR, Tweakable-HCTR and HCH using

the superposition queries to the encryption oracle using strategies proposed by

Leander and May in Asiacrypt 2017 and Kaplan 𝑒𝑡 𝑎𝑙. in Crypto 2016.

• Chapter 8 presents the cost analysis of mounting Grover’s key search attack on

the family of KATAN block cipher. Several designs of the reversible quantum

circuit of KATAN are proposed. Due to NIST’s proposal for Post Quantum

Cryptography standardization, the circuits are designed to minimize the overall

depth. We observe that the reversible quantum circuits designed using AND

gates and 𝑇 -depth one toffoli gate give more shallow circuits. Grover oracle for

KATAN is designed based on those designs which are used further to mount

Grover’s key search attack on KATAN. The designs are implemented using

the software framework ProjectQ which provides a resource estimation tool to

perform an appropriate cost analysis in an automated way. While estimating

the resources, NIST’s depth restrictions are also respected. We also provide a

similar kind of analysis for the Present block cipher.

• In Chapter 9, all the results in this thesis are summarized and we furnished

concluding remarks.

32

2
BACKGROUND

Contents
2.1 Block Cipher Primitives 34

2.2 Some Interesting Underlying Constructions in Block Ci-

phers and Permutations 43

2.3 Mode of Operations . 46

2.4 Cryptanalysis Basics . 51

2.5 Classical Cryptanalysis Techniques 54

2.6 Quantum Cryptanalysis Tools 63

2.7 Other Tools . 71

In general, symmetric key schemes includes block ciphers, stream ciphers, mode

of encryptions, message authentication codes, authenticated encryptions and hash

functions. However, as this thesis is focused on the cryptanalysis of block ciphers and

mode of encryptions, these two schemes are briefly discussed in this chapter. The

constructions of some block ciphers and permutations are also provided. The details

regarding the adversarial models, attack costs and attack goals are also discussed.

33

2.1 Block Cipher Primitives

A block cipher is a family of functions and inverse functions that provides confiden-

tiality by mapping fixed-length bit strings (input block) to the same length bit strings

(output block). This family of functions are parametrized by a secret key and for a

fixed key it acts as a permutation. More commonly, the input and output blocks are

called plaintexts and ciphertexts respectively. Ideally, for a block cipher, the relation

between the plaintext and the ciphertext should be completely random.

Definition 1. Let, 𝑛 be the block length and 𝑘 be the key length. Then the keyed

permutation 𝐸𝑘 : {0, 1}𝑛 × {0, 1}𝑘 ↦→ {0, 1}𝑛 is called as a block cipher. 𝐸−1
𝑘 is

defined as the inverse of 𝐸𝑘.

A block cipher can also be considered as a public permutation by making the secret

key public. Now, a brief discussion about some of the block ciphers and permutations

analyzed in the thesis are provided.

2.1.1 AES: The Advanced Encryption Standard

AES, designed by Joan Daemen and Vincent Rijmen, is an iterated block cipher with

128-bit data blocks [8, 88]. Depending on the key length, it has three variants- i)

AES-128- it uses a 128-bit key, ii) AES-192- it uses a 192-bit key and iii) AES-256- it

uses a 256-bit key. The number of rounds in AES-128, AES-192 and AES-256 are 10,

12 and 14 respectively.

128-bit plaintext in AES is represented by a 4 × 4 byte matrix called state. The

rows and columns of the state are both numbered from 0 to 3. In each round, four

transformations are applied to an AES state. They are-

• SubBytes (𝑆𝐵)- A non-linear substitution operation applied to each byte of AES

state in parallel.

• ShiftRows (𝑆𝑅)- It cyclically shifts left different rows of the state by different

offsets. In general, for 0 ≤ 𝑖 ≤ 3, 𝑖-th row is cyclically shifted left by 𝑖 bytes.

34

• MixColumns (𝑀𝐶)- It is column-mix operation. For applying this operation, a

4×4 constant maximum distance separable (MDS) matrix is used. Note that, in

the context of differential cryptanalysis, in the input and output of mixcolumns,

out of 8 bytes at least 5 bytes should be active. So, if there are 4 active bytes

in the input of 𝑀𝐶, then there must be at least one active byte in the output.

In the rest of the thesis, a term 4-to-1 property is used, which denotes the

transition from 4 active bytes to 1 active byte via 𝑀𝐶. 4-to-1 property occurs

with probability 4× 2−24 = 2−22.

• AddRoundKey (𝐴𝐾)- This operation is the XOR-ing of subkey with the AES

state. The subkeys for each round are generated by key scheduling algorithm.

All the operations discussed above are invertible. In the last round, 𝑀𝐶 is omitted

and before the start of the first round, 𝐴𝐾 is applied to the state. In this thesis, a

special construction named Super-Sbox [89] is used for applying the attacks.

Note that, the analysis of AES permutation is also a part of this thesis where it is

assumed that the key is known to the attacker.

2.1.2 Internal keyed Permutation (PF𝑘) of FlexAEAD

The design strategy of PF𝑘 follows the Feistel construction. Let 𝑚 be the number of

bytes in a Flex-𝑥 state (𝑚 = 𝑥/8). The state of Flex-𝑥 is denoted by 𝐵 and is divided

into two equal halves: the bytes in the left half being numbered from 𝐵[0] to 𝐵[𝑚2 −1],

and the ones on the right half from 𝐵[𝑚2] to 𝐵[𝑚− 1]. Each byte is divided into two

parts representing the two nibbles, with the upper half (upper nibble) being the most

significant one. The other nibble is called the lower nibble. After the BlockShuffle

operation, 𝑚 nibbles from 𝐵[0] to 𝐵[𝑚2 −1] constitute the upper nibbles of each bytes

whereas the nibbles from 𝐵[𝑚2] to 𝐵[𝑚 − 1] constitute the lower ones. The bytes at

position 𝐵[𝑖] and 𝐵[𝑖+ 𝑚
2] are referred to as a “pair of symmetric bytes". Application

of BlockShuffle operation on state 𝑠 in 𝑟-th round is denoted by 𝐵𝑆𝑟(𝑠). Fig. 2-1

shows the byte representation in Flex-128 state.

Fig. 2-2 shows the round function of Flex-128. Each round of Flex-𝑥 starts with

35

Figure 2-1: Byte Representation of Flex-128 Block Cipher

the BlockShuffle operation. Then the state is bifurcated and the right half goes

through subbytes operation. AES s-box is used for byte substitution. The left half is

modified by XOR-ing it with the right half and applying the subbytes operation. The

modified values of the left half are XOR-ed with the right half values and subbytes is

applied to get new values of the right half. Then the left and right half are combined

to form the new state and the next round follows. In Flex-𝑥 there are no round keys;

there are only two subkeys 𝐾𝛼, 𝐾𝛽 which are used at the beginning and the end

of round functions, respectively. The total number of rounds for Flex-64, Flex-128

and Flex-256 are 5, 6 and 7 respectively [96]. In authenticated encryption modes,

three PF𝑘 are used sequentially for encrypting a block of plaintext, which makes the

effective number of rounds 15, 18 and 21 in FlexAEAD-64, FlexAEAD-128 and

FlexAEAD-256, respectively.

Key Generation. Key generation in Flex-𝑥 uses the PF𝑘 where the master key

𝐾 is divided into two parts and used as two subkeys. The state is initialized with

0|𝐾|/2 and three times PF𝑘 is applied to generate part of the subkey to be used for

encryption of the plaintext. This process is repeated several times till the required

number of subkeys is obtained. Apart from the first round, each time, the state

is initialized with the output of the previous round. The key generation algorithm

makes it difficult to recover the master key from a known subkey.

36

2.1.3 AESQ Permutation

PAEQ is an authenticated encryption scheme. At its core, PAEQ uses the 512-bit

AESQ permutation. This can be viewed as four 128-bit registers with each register

running two rounds of AES where XOR-ing the subkey operation is replaced with

XOR-ing a round constant. In AESQ, a state is of 64 bytes. There are four groups of

16 bytes each. We called each of them a register and named them A,B,C and D from

Figure 2-2: Round Function of Flex-128 Block Cipher

37

left to right. Each column of the registers is 32-bit words and is numbered from 0 to

3. The first and last column of register A is A[0] and A[3], respectively. Two rounds

AES is run for each of the registers. Then a shuffling is done among all the registers.

Shuffle mapping is shown in Table 2.1. In original AESQ, this operation is repeated

10 times. So, AESQ permutation consists of 20 AES rounds. Fig. 2-3 shows a 2-Round

AESQ Permutation.

Figure 2-3: 2-Round AESQ Permutation

2.1.4 Katan Block Cipher

Katan is a family of lightweight hardware oriented block ciphers proposed by Cannière

𝑒𝑡 𝑎𝑙. in 2009 [91]. Depending on the block-length, there are three variants-

1. KATAN32- It has a block length of 32 bits.

2. KATAN48- It has a block length of 48 bits.

38

From A[0] A[1] A[2] A[3]
To A[3] D[3] C[2] B[2]

From B[0] B[1] B[2] B[3]
To A[1] D[1] C[0] B[0]

From C[0] C[1] C[2] C[3]
To A[2] D[2] C[3] B[3]

From D[0] D[1] D[2] D[3]
To A[0] D[0] C[1] B[1]

Table 2.1: Shuffle Table of AESQ

3. KATAN64- It has a block length of 64 bits.

Figure 2-4: Schematic Diagram of a Round Function of KATAN.

The key size is 80 bits for all variants. Initially the plaintext is loaded into two

registers, 𝐿1 and 𝐿2. The length of 𝐿1 and 𝐿2 is different across the variants and listed

in Table 2.2. The least significant bit (LSB) and the most significant bit (MSB) of

the plaintext are loaded to 𝐿2[0] and 𝐿1[|𝐿1| − 1] respectively where 𝐿𝑖[𝑝] denotes

the 𝑝-th bit in register 𝐿𝑖 (𝑖 ∈ {1, 2}). In each round, the values in 𝐿1 and 𝐿2 are

updated using two non-linear feedback functions 𝑓𝑎(·) and 𝑓𝑏(·). These two functions

39

are defined as follows:

𝑓𝑎(𝐿1) = 𝐿1[𝑥1]⊕ 𝐿1[𝑥2]⊕ (𝐿1[𝑥3] · 𝐿1[𝑥4])⊕ (𝐿1[𝑥5] · 𝐼𝑅)⊕ 𝑘𝑎

𝑓𝑏(𝐿2) = 𝐿2[𝑦1]⊕ 𝐿2[𝑦2]⊕ (𝐿2[𝑦3] · 𝐿2[𝑦4])⊕ (𝐿2[𝑦5] · 𝐿2[𝑦6])⊕ 𝑘𝑏

where 𝑘𝑎, 𝑘𝑏 are two subkey bits and 𝐼𝑅 is irregular update rule. Let a KATAN

variant uses 𝑟 rounds in total. Then the 80-bit key is expanded using a key scheduling

algorithm to 2𝑟 bits and in round 𝑖, key bit at position 2𝑖 and 2𝑖+1 are used as 𝑘𝑎 and

𝑘𝑏 respectively. The taps ({𝑥𝑗} and {𝑦𝑗}) of 𝐿1 and 𝐿2 are different for the variants

and their values are listed in Table 2.2. The irregular update rule 𝐼𝑅 controls the

XOR-ing of 𝐿1[𝑥5] and its values depends on another linear feedback shift register

(LFSR) (For more details regarding 𝐼𝑅 and its values, refer to [91, Table 3]). Fig. 2-4

shows a brief outline about the round function of KATAN.

There are in total 254 rounds for all variants. In a single round, 𝑓𝑎 and 𝑓𝑏 are ap-

plied one, two and three times for KATAN32, KATAN48 and KATAN64 respectively.

The key bits that are used in 𝑓𝑎 and 𝑓𝑏 remains the same even if the functions are

applied more than once in the same round. In each round, bit at position 𝑖 moves to

𝑖+ 1 in both 𝐿1, 𝐿2 and the MSBs are discarded. 𝐿1[0] and 𝐿2[0] are updated using

the value of 𝑓𝑏(𝐿2) and 𝑓𝑎(𝐿1) respectively. Now, the details regarding key scheduling

algorithm are provided.

Table 2.2: Parameters of the KATAN Variants.

Variant |𝐿1| |𝐿2| 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

KATAN32 13 19 12 7 8 5 3
KATAN48 19 29 18 12 15 7 6
KATAN64 25 39 24 15 20 11 9

Variant 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6

KATAN32 18 7 12 10 8 3
KATAN48 28 19 21 13 15 6
KATAN64 38 25 33 21 14 9

40

Key Scheduling Algortihm Consider an 80-bit key 𝐾 and 𝐾𝑗 denotes the 𝑗-th

bit of 𝐾. Initially, 𝐾 is loaded to an LFSR where the LSB of K is loaded to position

0 of the LFSR. As discussed earlier, in round 𝑖, key bits at position 2𝑖 and 2𝑖+ 1 are

used from the expanded round key. The 80-bit key 𝐾 is expanded in the following

way:

𝑘𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝐾𝑖 for 0 ≤ 𝑖 ≤ 79

𝑘𝑖−80 ⊕ 𝑘𝑖−61 ⊕ 𝑘𝑖−50 ⊕ 𝑘𝑖−13 Otherwise

The key scheduling algorithm is same for all variants.

2.1.5 Present

Present [62] is a Substitution-Permutation network [165] based block cipher which

has a block length of 64 bits. In terms of key size there are two variants- 80-bit and

128-bit. Present contains 31 rounds and the round function is comprised of adding the

round key (AddRoundKey), a linear bitwise permutation (pLayer) and a non-linear

substitution layer (sBoxLayer).

• AddRoundKey. There are in total 32 round keys are used in Present. 31

round keys are used in 31 different rounds and the last one is used for post-

whitening. Consider a round key 𝑅𝐾𝑖 = 𝑘𝑖63 · · · 𝑘𝑖0 for 1 ≤ 𝑖 ≤ 32 and state bits

𝑎63 · · · 𝑎0, then the AddRoundKey operation is defined as

𝑎𝑗 ← 𝑎𝑗 ⊕ 𝑘𝑖𝑗,

where 0 ≤ 𝑗 ≤ 63.

• pLayer. In this layer bits are permutated as shown in Table 2.3. A bit in

position 𝑖 is moved to a new position 𝑃 (𝑖).

• sBoxLayer. Present uses a 4-bit to 4-bit s-box which is applied in parallel 16

times to the Present-state. The input to the s-box is 4 consecutive bits starting

from the least significant bit. The input and output to the s-box is shown in

41

𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑃 (𝑖) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

𝑖 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑃 (𝑖) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

𝑖 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
𝑃 (𝑖) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

𝑖 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
𝑃 (𝑖) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 2.3: Bit Permutation of Present

Table 2.4.

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2.4: S-box of Present

Key Scheduling Algorithm (KSA).

There are two variants of Present on the basis of key- 80-bit and 128-bit variant.

The two key scheduling algorithms are quite similar. Here, the a brief description

regarding the two variants are provided.

KSA of 80-bit Key. Initially the key register is loaded with 80-bit supplied key.

Let’s consider the contents of the key register 𝐾 is 𝜅79𝜅78 · · ·𝜅1𝜅0. In each round the

key register is updated in the following way-

1. The key register is left rotated by 61 bits, i. e.

[𝜅79𝜅78 · · ·𝜅1𝜅0] = [𝜅18𝜅17 · · ·𝜅20𝜅19].

2. S-box is applied on the leftmost 4 bits, i. e. [𝜅79𝜅78𝜅77𝜅76] = 𝑆[𝜅79𝜅78𝜅77𝜅76].

3. Round Counter is XOR-ed with 𝜅19, 𝜅18, 𝜅17, 𝜅16 and 𝜅15.

In each round, the key bits 𝜅79𝜅78 · · ·𝜅16 are used as round key bits.

42

KSA of 128-bit Key. Initially the key register is loaded with 128-bit supplied

key. Let’s consider the contents of the key register 𝐾 is 𝜅127𝜅126 · · ·𝜅1𝜅0. The key

bits 𝜅127𝜅126 · · ·𝜅64 constitutes the round key for each round. In each round, the key

register is updated in the following way-

1. The key register is left rotated by 61 bits, i. e.

[𝜅127𝜅126 · · ·𝜅1𝜅0] = [𝜅66𝜅65 · · ·𝜅68𝜅67].

2. Two s-boxes are applied on the leftmost 8 bits, i. e.

(a) [𝜅127𝜅126𝜅125𝜅124] = 𝑆[𝜅127𝜅126𝜅125𝜅124]

(b) [𝜅123𝜅122𝜅121𝜅120] = 𝑆[𝜅123𝜅122𝜅121𝜅120]

3. Round Counter is XOR-ed with 𝜅66, 𝜅65, 𝜅64, 𝜅63 and 𝜅62.

2.2 Some Interesting Underlying Constructions in

Block Ciphers and Permutations

In general, a round function is iterated multiple number of times in block ciphers and

permutations. However, there are some underlying constructions, due to which a part

of the state is dependent on another part of the state over several number of rounds.

Such constructions are identified as Super-Sbox [89] and MegaSbox (cf. [86]).

2.2.1 Super-Sbox

Here, we briefly describe about the Super-Sbox of AES and AESQ.

Super-Sbox of AES

Super-Sbox [89] was introduced and first studied by Daemen and Rijmen in 2006.

Refer to Fig. 2-5 for Super-Sbox construction in AES. Consider the diagonal in 𝐴

(four red-colored bytes). After applying 𝐴𝐾, 𝑆𝐵 and 𝑆𝑅, those four bytes aligns in

43

Figure 2-5: AES Super-Sbox

a column. The following 𝑀𝐶 affects only that column. As 𝐴𝐾 and 𝑆𝐵 are byte-wise

operations, those four bytes remain independent of the other 12 bytes. The last 𝑆𝑅

operation aligns the bytes to an inverse diagonal in 𝐵. These four bytes in 𝐵 are

dependent on the four bytes in 𝐴 only through the 1.5 rounds. This is conceptualized

as Super-Sbox with 32-bit input and 32-bit output. In general, an inverse diagonal

in 𝐵 is uniquely determined by a diagonal in 𝐴. There are four Super-Sbox in AES

state. Fig. 2-6 depicts the four parallel Super-Sbox.

Super-Sbox of AESQ

Let us consider round 2 and round 3 (before MixColumns) of AESQ permutation. We

can consider the input to round 2 as 16 diagonals of 4 bytes each. In round 2, after

SubBytes and ShiftRows operation, each of the 16 diagonals aligns in a single column.

Effect of MixColumns and shuffle operation is confined within the column. SubBytes

Figure 2-6: 4 Parallel AES Super-Sbox

44

Figure 2-7: Super-Sbox of AESQ

and ShiftRows operation of round 3 dealigns the column into an inverse diagonal.

From the above analysis we observe that a group of 4 bytes (a diagonal) in the input

to round 2 affects only a group of 4 bytes (inverse diagonal) in the output of round

3 (before MixColumns). These operations can be grouped into a single 32-bit s-box

called as Super-Sbox. Therefore, round 2 and round 3 of AESQ permutation can be

viewed as a single round with 16 parallel Super-Sboxes.

2.2.2 MegaSbox

Now, a brief description about the MegaSbox of AESQ is discussed.

45

MegaSbox of AESQ

The notion of Super-Sbox can be further extended and four round AESQ permutation

can be viewed as a single round with 128-bit MegaSboxes [86, 9]. We are now analysing

round 2 to round 5 of AESQ permutation. AESQ state consists of 4 registers of 128 bits

each. Consider four diagonals each from all the registers. After the SubBytes and

ShiftRows operation each of them transforms into a column. MixColumns and adding

a constant operation does not influence the other columns. Shuffling accumulates

all the four columns into a single register where each of the registers undergoes two

rounds of AES-like operation (round 3 and 4) which again does not influence the other

registers. Shuffling disperse the columns from a single register to four registers. Round

5 SubBytes and ShiftRows operation dealigns the columns into inverse diagonals.

These operations can be grouped into a single 128-bit MegaSbox and round 2 to 5

(before MixColumns) can be viewed as a single round with 4 parallel MegaSboxes.

The following MixColumns operation can be considered as mega-linear transformation

on AESQ state (512-bits) and called as MegaMixColumns (MMC) operation. Fig. 2-7

and Fig. 2-8 respectively shows how two rounds and four rounds of AESQ permutation

exhibits the properties of Super-Sbox and MegaSbox.

2.3 Mode of Operations

Block ciphers can only encrypts a fixed length plaintext to the same length ciphertext.

However, to encrypt a message with arbitrary length, modes of operations are used.

Here, a brief discussion about major modes of operations are provided.

1. Electronic Codebook Mode (ECB Mode). In this mode, each plaintext

block is independently encrypted by the block cipher using the same. This

mode can operate in parallel. However, by using this mode, identical plaintext

blocks are encrypted identical ciphertext blocks. Fig. 2-9 and Fig. 2-10 shows

the encryption mode and decryption of ECB respectively.

2. Cipher Block Chaining Mode (CBC Mode). In this mode, before encryp-

46

MC

1

SB SRMC

5

MC

2

SB SRMC

6

MC

3

SB SRMC

7

MC

4

SB SRMC

8

SB SRMC

9

SB SRMC

13

SB SRMC

10

SB SRMC

14

SB SRMC

11

SB SRMC

15

SB SRMC

12

SB SRMC

16

SB SR SB SR SB SR SB SR

MC MC MC MC

SB SRMC

5

SB SRMC

9

SB SRMC

13
SB SR

∼

MegaMixColumns

MegaSubBytes

Round 2

Round 3

Round 4

Round 5

Figure 3.3: MegaSBox in AESQ.

3.2.2 Analysis of permutations in the attack context

Only a few permutations as a single and secure object have been designed for the use in practical con-
structions. The most well-known is the Keccak 1600-bit permutation, which is used in the Keccak/SHA-3
hashing algorithm; the others are used in the SHA-3 competitors: CubeHash [4], Grostl [11], JH [17].
It is worth noticing that a permutation per se can not be formally defined “secure”. The best we can
make is an informal statement like the 2l “flat sponge” claim [6], which basically states that no attack
with complexity below 2l and specific for the particular permutation exists. The parameter l is used in
defining the capacity parameters in sponge functions and in fact measures the designers’ confidence.

In our case we claim l = 256 or the 256-bit security of AESQ against all attacks. In order to support
our claim, we look at the existing attacks on permutation-based designs and check if they apply to AESQ.

Collision attacks. We first consider collision attacks on sponge-based hash functions. The collision
attacks on the reduced Keccak [10] strongly rely on high-probability differential trails [16], and only add
a couple of rounds over their length with the help of message-modification techniques. The so-called
internal-differential attack, while exploiting similarities within the internal state, is also limited by the
propagation of difference generated by the round constants. Hence to prevent these attacks we have to
demonstrate the absence of high-probability differential trails for a high number of rounds.

Let us now consider compression functions based on permutations. For example, Grostl uses functions

P (x⊕ y)⊕Q(y)⊕ x and x⊕ P (x),

where P and Q are AES-based permutations. The main strategy in collision attacks [14, 12] is the
construction of a truncated differential trail with low input and output Hamming weight. Then the
conforming inputs are found with the rebound attack and are tested for a collision.

Preimage attacks. The preimage attacks on sponge-based hash functions have been also based on
the differential properties of the permutation. As long as a differential generated by message difference
∆M has high probability in some output bits, it can be used to speed up the preimage search [15]. There
are also generic methods that can save a factor of several bits by exploiting incomplete diffusion in the
final rounds, but we note that their complexity can not be reduced much. The invariant attacks [2] do
not apply because of round constants.

14

Figure 2-8: MegaSbox of AESQ [9]

47

Figure 2-9: ECB Mode Encryption

Figure 2-10: ECB Mode Decryption

tion, a plaintext block is XOR-ed with the previous ciphertext block. For the

first block of plaintext, an initialization vector (IV) is used for XOR-ing. While

sending the ciphertext, the IV is also sent for using in the decryption function.

As the encryption of each block is dependent on the previous block, CBC mode

can only operate serially during the encryption process. However, as during

48

Figure 2-11: CBC Mode Encryption

Figure 2-12: CBC Mode Decryption

the decryption all the ciphertext blocks are available, it can be run in parallel.

Note that, during the encryption process changing a plaintext block affects the

subsequent ciphertext blocks. Fig. 2-11 and Fig. 2-12 shows the encryption and

decryption of CBC respectively.

3. Counter Mode. In this mode, first a counter is initialized. Then for each

block of plaintext, the value of the counter is incremented and encrypted uing

the block cipher. The plaintext is XOR-ed with the output of the block cipher

49

to generate the ciphertext blocks. This mode can be run in parallel. Fig. 2-13

and Fig. 2-14 shows the encryption and decryption of counter mode respectively.

Figure 2-13: Counter Mode Encryption

Figure 2-14: Counter Mode Decryption

50

2.4 Cryptanalysis Basics

Cryptanalysis is the analysis of cryptographic schemes with the aim of finding weak-

nesses in those schemes. However, for block cipher what should be considered as a

weakness needs to be specified. In addition, assumption on the power of the adversary

and the way of modeling the cost of an attack are also discussed. Attack scenarios in

the quantum computing model are also briefly described.

2.4.1 Attack Goals

For a block cipher, compromising the secrecy of the private key breaks the security.

Apart from that, if a probabilistic-polynomial time adversary distinguishes a block

cipher from a uniform random permutation, then it is also considered as a valid

attack. Based on this, there are mainly two kind of attacks on a block cipher.

1. Key Recovery Attack. If the secret key of a block cipher is retrieved by an

adversary, then it is said that the cipher is susceptible to key recovery attack.

As the public permutations have no secret key, the notion of key recovery attack

on such schemes is invalid.

2. Distinguishing Attack. If an adversary is able to distinguish a block ci-

pher from a uniform random permutation, then the cipher is considered to be

susceptible to distinguishing attack.

2.4.2 Classical Attack Models

The attack models are defined based on how much information is available to the

adversary. Generally, there are three kinds of attack models- black-box model, gray-

box model and white-box model. In black-box model, an adversary can query the

cipher and obtains a response without getting any additional information regarding

the implementation of the cipher. In gray-box model, the adversary has access to the

implementation of the cipher. The adversary receives information regarding power

consumption, electromagnetic emanations of the cipher. In white-box model, the

51

adversary has full control over the cipher implementation and its execution environ-

ment. In this thesis, only the black-box model is considered. The attack scenarios in

the black-box model that are considered while mounting cryptographic attacks are

sorted below based on the increasing power of the adversary.

1. Ciphertext Only Attack. In this model, the adversary has access only to the

ciphertexts. He has no knowledge about the corresponding plaintexts.

2. Known Plaintext Attack. The adversary has access to plaintext-ciphertext

pairs. Although, the adversary can not chose the plaintexts, however, he has

knowledge regarding the ciphertexts associated with the plaintexts.

3. Chosen Plaintext Attack. In this model, the adversary can obtain cipher-

texts associated with the plaintexts chosen by him. The plaintexts should be

chosen uniformly at random.

4. Chosen Ciphertext Attack. Adversary can choose random ciphertexts and

query the decryption oracle to obtain corresponding plaintexts.

5. Adaptive Chosen Plaintext Attack. The adversary can query the encryp-

tion oracle by adaptively chosing plaintexts to obtain the corresponding cipher-

texts.

6. Adaptive Chosen Ciphertext Attack. The adversary can query the de-

cryption oracle by adaptively chosing ciphertexts to obtain the corresponding

plaintexts.

7. Related Key Attack. In this model, the adversary can obtain several cipher-

texts/plaintexts corresponding to a plaintext/ciphertext that are encrypted/decrypted

with multiple keys. The relation between the keys that are used for encryp-

tion/decryption are known to the adversary. Note that, the adversary has no

knowledge about the secret key.

52

2.4.3 Quantum Attack Models

The attacks that are discussed are valid only when classical computing models are

considered. One of the major questions in the analysis of quantum attacks is what

should be the adversarial model. In this regard, there are mainly two types of adver-

sarial models, mainly 𝑄1 and 𝑄2 models, which are used extensively in the literature

for mounting quantum attacks on cryptographic schemes [64, 65, 111, 90, 66, 110,

67, 135, 126]. In the quantum computing model, based on the access to a quantum

computer for an adversary and on the computing model of the oracle, several attack

scenarios are described. The oracle that only accepts only classical queries are re-

ferred to as classical oracle whereas the oracles that responds to superposition queries

are referred to as quantum oracle. In [214], several adversarial models in the context

of post-quantum world have been defined.

1. 𝑄0 Model. The adversary has access to a classical computer and can query to

a classical oracle.

2. 𝑄1 Model. In addtion to the power in 𝑄0 model, the adversary has access to a

quantum computer.

3. 𝑄2 Model. In addtion to the power in 𝑄1 model, the adversary can ask super-

position queries to a quantum oracle.

2.4.4 Complexity of Cryptanalysis.

To measure the efficiency of an attack, following three quantities are measured by

following the convention in [181].

1. Data Complexity. Total number of queries that are queried to the oracle is

measured as the data complexity of an attack. Usually, it is measured in terms of

the number of encryption/decryption queries in a corresponding attack model.

It is also referred to as online computational cost.

2. Time Complexity. The offline computational cost of an attack is measured

as the time complexity of the attack. Usually, it is measured in terms of the

53

one execution of the encryption/decryption algorithm. Note that, the compu-

tational cost of the oracle related to online queries are not considered as a part

of the time complexity [181].

3. Memory Complexity. It measures the amount of memory required by an

adversary to mount an attack. Usually, it is measured in terms of block length

of the cipher on which the attack is mounted.

These three quanttities are together referred toas attack complexity.

2.5 Classical Cryptanalysis Techniques

One of the oldest and strongest generalized cryptanalytic technique is differential

cryptanalysis (besides linear cryptanalysis [159]) introduced by Biham and Shamir [47,

48, 49, 50, 51, 52]. It was claimed that differential cryptanalysis is already known

to IBM as “T-attack" and resistance against this was considered as one of the most

important design criteria for cryptographic schemes [85]. Typically, in differential

cryptanalysis, a cipher is analyzed by considering the propagation of an initial differ-

ence through the cipher. Let, 𝐸 be a cipher and two plaintexts 𝑃 1 and (𝑃 1⊕Δ𝑃) are

queried to 𝐸 to obtain 𝐶1 and 𝐶2 respectively. The goal of differential cryptanalysis

is to find any non-random relation between Δ𝑃 and (𝐶1 ⊕ 𝐶2). Later on, many ci-

phers are analyzed using this technique [162]. However, differential cryptanalysis has

its own limitations and thus often the whole cipher is not susceptible to such attacks.

This limitation was overcome by boomerang attack [201] which uses two smaller dif-

ferential trails to attack the complete cipher. In boomerang attack, an adversary can

query the oracle by adaptively chosing plaintexts and ciphertexts (which is a stronger

assumption). Rectangle attack [136, 42] is a variant of the boomerang attack which

was introduced in the chosen plaintext model. Later, many cryptanalytic techniques

are developed based on differential cryptanalysis, like, impossible differential [41],

mixture differential cryptanalysis [116], yoyo cryptanalysis [38], retracing boomerang

cryptanalysis [99], exchange attack [33], higher order differentials [141], truncated

54

differential attack [141, 69], extended truncated differential attack [29], related key

attack [37, 137, 45], meet-in-the-middle (mitm) attack [40], etc. In such attacks, ex-

cept the secret key, the underlying design of the cipher is considered publicly known.

However, there are also attacks in which the underlying s-box is considered to be se-

cret [199, 68, 192]. In the light of this thesis, a brief discussion on boomerang attack

and yoyo attack is provided here.

2.5.1 Boomerang Attack

Boomerang attack, introduced by Wagner, is an extension of the differential crypt-

analysis [201]. It attempts to construct a trail for a cipher by a quartet of plaintexts

combining two differential trails. It decomposes the cipher into two parts- the upper

and lower; likewise, the differential trails corresponding to these parts are called the

upper trail and lower trail. 𝐸 is decomposed into 𝐸0 and 𝐸1, with 𝐸0 being the upper

part. Let 𝑃𝑟[𝛼 𝐸0−→ 𝛽] = 𝑝 and 𝑃𝑟[𝛾 𝐸1−→ 𝛿] = 𝑞 and initially assume 𝑝 = 𝑞 = 1. The

boomerang attack works in the following way.

1. Choose a pair of plaintext 𝑃 1, 𝑃 2 such that 𝑃 1 ⊕ 𝑃 2 = 𝛼. Encrypt them using

𝐸 to obtain 𝐶1, 𝐶2 respectively.

2. Construct 𝐶3, 𝐶4 such that 𝐶1⊕ 𝛿 = 𝐶3 and 𝐶2⊕ 𝛿 = 𝐶4. Decrypt them using

𝐸 to obtain 𝑃 3, 𝑃 4 respectively. The value 𝑃 3 ⊕ 𝑃 4 should be 𝛼.

As 𝑃𝑟[𝛼 𝐸0−→ 𝛽] = 1, 𝐸0(𝑃 1)⊕ 𝐸0(𝑃 2) = 𝛽. Also, 𝐸−1
1 (𝐶1)⊕ 𝐸−1

1 (𝐶3) = 𝐸−1
1 (𝐶2)⊕

𝐸−1
1 (𝐶4) = 𝛾 as 𝑃𝑟[𝛾 𝐸1−→ 𝛿] = 1. Note that, 𝐸0(𝑃 𝑖) = 𝐸−1

1 (𝐶𝑖).

Let 𝐸 encrypts 𝑃 1, 𝑃 2, 𝑃 3 and 𝑃 4 to obtain 𝐶1, 𝐶2, 𝐶3 and 𝐶4. 𝑄0, 𝑄1, 𝑄2 and𝑄3

are intermediate encrypted values of 𝑃 1, 𝑃 2, 𝑃 3 and 𝑃 4
(︁
𝑄𝑖 = 𝐸0(𝑃 𝑖) = 𝐸−1

1 (𝐶𝑖)
)︁
.

55

Then 𝑄1 ⊕𝑄2 = 𝛽 and 𝑄1 ⊕𝑄3 = 𝑄2 ⊕𝑄4 = 𝛾. Now,

𝑄3 ⊕𝑄4 = 𝐸0(𝑃 3)⊕ 𝐸0(𝑃 4)

=
(︁
𝐸0(𝑃 1)⊕ 𝐸0(𝑃 2)

)︁
⊕
(︁
𝐸0(𝑃 1)⊕ 𝐸0(𝑃 3)

)︁
⊕
(︁
𝐸0(𝑃 2)⊕ 𝐸0(𝑃 4)

)︁
=
(︁
𝑄1 ⊕𝑄2

)︁
⊕
(︁
𝑄1 ⊕𝑄3

)︁
⊕
(︁
𝑄2 ⊕𝑄4

)︁
= 𝛽

As 𝑝 = 1, so 𝑃 3 ⊕ 𝑃 4 = 𝛼. Note that, for any arbitary 𝑝, 𝑞, 𝑃 3 ⊕ 𝑃 4 = 𝛼 with

probability 𝑝2𝑞2 under the assumption that the upper and lower trail are independent.

Fig. 2-15 shows the framework for boomerang attack.

Later on, several other ciphers are analyzed by using this technique [54]. Biryukov

and Khovratovich further improved the boomerang attack by introducing the concept

of S-box switch and ladder switch [57, 55]. These notions add dependency between

upper and lower trail.

Sbox Switch and Ladder Switch. Assume, that the last substitution layer in 𝐸0

partitions the state into 𝑡 parts, 𝑖. 𝑒., 𝑄1 = 𝑄1
0||𝑄1

1 · · ·𝑄1
𝑡−1 and 𝑄2 = 𝑄2

0||𝑄2
1 · · ·𝑄2

𝑡−1.

In similar way, 𝛽 and 𝛾 can also be partitioned. Let the last substituion layer in 𝐸0

be 𝑆 and 𝑆−1(𝑄1
𝑖)⊕ 𝑆−1(𝑄2

𝑖) = 𝜑. Consider the 𝑖-th partition.

𝑄3
𝑖 = 𝑄1

𝑖 ⊕ 𝛾𝑖

𝑄4
𝑖 = 𝑄2

𝑖 ⊕ 𝛾𝑖

For satisfying the 𝐸0 trail, 𝑆−1(𝑄3
𝑖)⊕ 𝑆−1(𝑄4

𝑖) = 𝜑 must hold. If 𝑃𝑟[𝜑 𝑆−→ 𝛽𝑖] = 𝑞′,

then 𝑞′2 probability needs to be paid for satisfying this trail. Now, analyze two special

cases.

• Case 1 [𝛾𝑖 = 𝛽𝑖]: In such cases, 𝑄3
𝑖 = 𝑄2

𝑖 and 𝑄4
𝑖 = 𝑄1

𝑖 . Now,

𝑆−1(𝑄3
𝑖)⊕ 𝑆−1(𝑄4

𝑖) = 𝑆−1(𝑄2
𝑖)⊕ 𝑆−1(𝑄1

𝑖) = 𝜑

56

P 1

E0

E1

C1

P 2

E0

E1

C2

α

P 3

E0

E1

C3

P 4

E0

E1

C4

δ

δ

β

p

γ

γ

q

q

β

α
p

Figure 2-15: Boomerang Attack Framework [178]

Therefore, in such cases probability for one side needs to be paid and other side

occurs deterministically; which improves the overall probability by a factor of

𝑞′. This is known as S-box switch.

• Case 2 [𝛾𝑖 = 0]: In such cases, 𝑄3
𝑖 = 𝑄1

𝑖 and 𝑄4
𝑖 = 𝑄2

𝑖 . Observe that, irrespective

of the value of 𝛽𝑖, 𝑆−1(𝑄3
𝑖) ⊕ 𝑆−1(𝑄4

𝑖) = 𝜑 always holds. The trail probability

is improved by a factor of 𝑞′2. This is referred to as ladder switch.

57

In [57, 55], these two notions were exploited to mount related key boomerang

attacks on AES-192 and AES-256. Later on, Dunkelman 𝑒𝑡 𝑎𝑙. formalized these notions

by dividing the cipher into 𝐸0, 𝐸𝑚 and 𝐸1 [100]. The notion was introduced as

sandwich attack which was used to attack 7 rounds out of 8 rounds of Kasumi block

cipher [100]. Fig. 2-16 shows the framework for sandwich attack. The probability of

a distingisher in this attack framework is 𝑝2𝑞2𝑟 where

𝑟 =𝑃𝑟[𝐸0(𝑃 3)⊕ 𝐸0(𝑃 4) = 𝛽|(𝐸0(𝑃 1)⊕ 𝐸0(𝑃 2) = 𝛽)

∧ (𝐸−1
1 (𝐶1) ∧ 𝐸−1

1 (𝐶3) = 𝛾) ∧ (𝐸−1
1 (𝐶2) ∧ 𝐸−1

1 (𝐶4) = 𝛾)]
(2.1)

Cid 𝑒𝑡 𝑎𝑙. considered the 𝐸𝑚 as a S-box layer and developed a tool Boomerang

Connectivity Table in order to unify s-box switch and ladder switch [83]. Further,

to realize the switching effect on multiple rounds Boomerang Difference Table was

proposed [203]. Several other papers have followed to extend this concept further [72,

92].

2.5.2 Yoyo Attack

Another interesting cryptanalytic tool is the yoyo game which was recently shown to

be very effective in devising distinguishers [176] on the block cipher standard AES.

The yoyo strategy was first reported in crypto literature by Biham et al. who used it

for the cryptanalysis of SKIPJACK [38]. In the yoyo game, new pairs of plaintexts

and ciphertexts are made adaptively from the original pairs. While making new

pairs a certain property is kept invariant. A common strategy is the use of zero

difference in the pairs. Suppose a pair of plaintext/ciphertexts have certain zero

difference after some rounds of a cipher. In the yoyo game, it is verified whether

new pairs of plaintexts/ciphertexts that are formed by swapping bytes/words of the

original pairs still hold the same zero difference after the same number of rounds of

the cipher. Using the yoyo game Biryukov et al. have found a 7-round distinguisher

for Feistel networks[58]. In Asiacrypt 2017, Rønjom et al. applied the yoyo game

to generic Substitution-Permutation (SP) networks [176] and proposed a generic 2-

SP round deterministic distinguisher. As a case-study they applied the strategy on

58

P1

E0

Em

E1

C1

P2

E0

Em

E1

C2

P3

E0

Em

E1

C3

P4

E0

Em

E1

C4

α α

β β

γ

γ

δ

δ

Figure 2-16: Sandwich Attack Framework [178]

variants of AES and found many practical distinguishers on up to 5 rounds of AES.

They also reported a distinguisher for 6-round AES with data complexity 2122.83

and a key recovery attack on 5-round AES with complexity 231 that requires 211.3

59

plaintexts/ciphertexts pairs.

Here, we describe some of the notations used in [176]. A generic permutation is

assumed to be of the form of F𝑛𝑞 → F𝑛𝑞 where, 𝑞 = 2𝑘 given by:

𝐹 (𝑥) = 𝑆 ∘ 𝐿 ∘ 𝑆 ∘ 𝐿 ∘ 𝑆(𝑥)

Here, 𝑆 is considered as a large s-box to be visualized as a concatenation of

smaller component s-boxes operating on F𝑞. The linear layer over F𝑛𝑞 is denoted by

𝐿. A word represents an element of F𝑞 while the internal state is a vector of words

𝛼 = (𝛼0, 𝛼1, · · · , 𝛼𝑛−1) ∈ F𝑛𝑞 . Based on this the authors in [176] define the Zero

Difference Pattern (ZDP) as below:

Definition 2. Zero Difference Pattern.[176] Let, 𝛼 ∈ F𝑛𝑞 for 𝑞 = 2𝑘. The Zero

Difference Pattern for 𝛼 is

𝜈(𝛼) = (𝑧0, 𝑧1, ..., 𝑧𝑛−1),

where 𝜈(𝛼) takes values in F𝑛2 and 𝑧𝑖 = 1 if 𝛼𝑖 = 0 or 𝑧𝑖 = 0 otherwise.

Interestingly, the zero-difference pattern does not consider the nature of separate

words when they are non-zero and just classifies them into one category. Our aim

is to look further into individual words i.e. we want to investigate the nature of 𝛼𝑖
when 𝑧𝑖 = 0. To facilitate this, we define a unit as the element on which the smallest

s-box of the cipher is defined. For e.g. for AES a unit is a byte. It can be noted

that considering the smallest s-box a word is 8-bit, while considering the Super-Sbox

representation [89], a word is 32 bits. So, the AES state representation changes from

F16
28 to (F4

28)4. When a word uses multiple units, the zero difference pattern does not

take into account the nature of these units and marks a word active even if at least

one unit in the word is active. We want to study the activity of the units. So we

introduce the notion of Nested Zero Difference Pattern.

Definition 3. Nested Zero Difference Pattern Let, 𝛼 ∈ (F
𝑛
𝑚
𝑞)𝑚 for 𝑞 = 2𝑘 and

𝛼𝑖 ∈ F
𝑛
𝑚
𝑞 and 𝛼𝑖 = (𝛽𝑖0, 𝛽𝑖1, · · · , 𝛽𝑖(𝑛

𝑚
−1)), where 𝛽𝑖𝑗 is the unit. The Nested Zero

60

Difference Pattern (𝜈2) defined for 𝛼 is

𝜈2(𝛼) = {𝜈2(𝛼0), 𝜈2(𝛼1), · · · , 𝜈2(𝛼𝑛−1)}, 𝜈2(𝛼𝑖) = (𝑦0, 𝑦1, ..., 𝑦 𝑛
𝑚
−1),

𝑤𝑡(𝜈2(𝛼)) =
𝑛−1∑︁
𝑖=0

𝑤𝑡(𝜈2(𝛼𝑖)),

where 𝜈2(𝛼𝑖) takes values in F𝑛2 and 𝑦𝑖 = 1 if 𝛽𝑖𝑗 = 0 or 𝑦𝑖 = 0 otherwise1.

The following example will make things clearer.

Example 1. Here we show the different words of the AES state considering the inputs

of the Super-Sbox. Note that the words will change based on whether we are observing

the Super-Sbox input or output.

α0 α1 α2 α3

A sample state

Active Byte Inactive Byte

Figure 2-17: Different words and a sample state showing zero and non-zero bytes.

Let us consider the Zero Difference Pattern of the sample state (𝛼) in Fig. 2-17:

𝜈(𝛼) = (0, 0, 1, 0) and 𝑤𝑡(𝜈(𝛼)) = 1. Thus ZDP considers only one word to be

inactive. Let us now look at the Nested ZDP of the state 𝛼. It can be easily inferred

that Nested ZDP gives more information pertaining to the active words. The idea of

Nested ZDP will be useful when we will consider differentials over and above the yoyo

game.

1It is understood that 𝑚|𝑛

61

𝜈2
1(𝛼0) = (0, 0, 0, 0), 𝜈2

2(𝛼1) = (0, 0, 1, 1),

𝜈2
3(𝛼2) = (1, 1, 1, 1), 𝜈2

4(𝛼3) = (0, 1, 1, 1),
𝑤𝑡(𝜈2(𝛼)) = 9.

2.5.3 Yoyo Analysis for Two Generic SP-Rounds

Rønjom et al. have carried out yoyo analysis for two generic SP-rounds [176]. Two

generic SP-round is 𝐺′2 = 𝐿 ·𝑆 ·𝐿 ·𝑆, where L is the linear transform layer and S is the

permutation layer. For simplicity, the final L layer is omitted and the modified two

generic SP round is denoted as 𝐺2 = 𝑆 · 𝐿 · 𝑆. They have presented a deterministic

distinguisher for 𝐺2. For the explanation of the distinguisher and how it works,

we have to go through some definitions originally defined in their work. The next

definition signifies how to swap between pairs of texts to form a new pair of texts.

Definition 4. [176] Let, 𝛼, 𝛽 ∈ F𝑛𝑞 be two states and 𝑣 ∈ F𝑛2 be a vector, then 𝜌𝑣(𝛼, 𝛽)

is a new state in F𝑛𝑞 created from 𝛼, 𝛽 by swapping components among them. The 𝑖𝑡ℎ

component of 𝜌𝑣(𝛼, 𝛽) is defined as

𝜌𝑣(𝛼, 𝛽)𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝛼𝑖, if 𝑣𝑖 = 1;

𝛽𝑖, if 𝑣𝑖 = 0.
(2.2)

The following theorem describes the deterministic distinguisher for 2 generic SP-

rounds.

Theorem 1. [176] Let, 𝑝0, 𝑝1 ∈ F𝑛𝑞 , 𝑐0 = 𝐺2(𝑝0) and 𝑐1 = 𝐺2(𝑝1). For any vector

𝑣 ∈ F𝑛2 , 𝑐′0 = 𝜌𝑣(𝑐0, 𝑐1) and 𝑐′1 = 𝜌𝑣(𝑐1, 𝑐0). Then

𝜈(𝐺−1
2 (𝑐′0)⊕𝐺−1

2 (𝑐′1)) = 𝜈(𝑝′0 ⊕ 𝑝′1) = 𝜈(𝑝0 ⊕ 𝑝1).

Fig. 2-18 depicts the application of yoyo attack on the 𝑆 ∘ 𝐿 ∘ 𝑆 construction.

The trick is to choose any random pair of plaintexts with certain zero difference

pattern and encrypt them using 𝐺2. Then swap words/bytes between the produced

ciphertexts and create a new pair of ciphertexts. Decrypt the new pair using 𝐺2

and obtain a new pair of plaintexts. The zero difference pattern of these new pair of

plaintexts will be same as the zero difference pattern of the original pairs of plaintexts.

62

S
◦L
◦S

S
◦L
◦Sp0

p1

α

c0

c1

β

S
◦L
◦S

S
◦L
◦S

c′0

c′1

Swapping
β

p′0

p′1

∆
ν(α) = ν(∆)

Figure 2-18: Yoyo Attack on 𝑆 ∘ 𝐿 ∘ 𝑆 Constructon [177]. Here, 𝑝0 ⊕ 𝑝1 = 𝛼,
𝑐0 ⊕ 𝑐1 = 𝑐′0 ⊕ 𝑐′1 = 𝛽 and 𝑝′0 ⊕ 𝑝′1 = Δ.

This event occurs with probability 1. This property of two generic SP-rounds can be

exploited to distinguish it from a random construction.

2.6 Quantum Cryptanalysis Tools

Here, some quantum algorithms and how they have been used in cryptanalysis are

discussed. First, a brief description of Simon’s algorithm is given and how it was

applied in [134] is discussed. Next, Grover’s search algorithm is briefly mentioned.

Finally, the results in [151] and [66] are illustrated upon.

63

2.6.1 Simon’s Algorithm

In the discussion of Simon’s algorithm [189], first of all, the problem that it solves

needs to be defined. The problem is popularly known as Simon’s Problem.

Problem 1: Simon’s Problem: Given a boolean function 𝑓 : {0, 1}𝑛 ↦→

{0, 1}𝑛 and the promise that there exists 𝑠 ∈{0, 1}𝑛 (Simon’s promise) such that

for any (𝑥, 𝑦) ∈{0, 1}𝑛, [𝑓(𝑥) = 𝑓(𝑦)] ⇐⇒ [𝑥⊕ 𝑦 ∈ {0𝑛, 𝑠}]; the goal is to find 𝑠.

Classically, this problem can be solved in Θ(2𝑛/2). Using Simon’s algorithm this

problem can be solved in 𝑂(𝑛) quantum complexity. The steps of Simon’s algorithm

are given in Algorithm 1.

Simon’s Algorithm in Cryptography.

In cryptographic applications, it is not the case that always Simon’s algorithm can be

applied directly. The reason is that sometimes the function that needs to be analyzed

has some partial period apart from having a full period. Kaplan 𝑒𝑡 𝑎𝑙.. have also

shown the application of Simon’s algorithm under such constraints. This particularly

handles the conditions where ∃𝑡 such that 𝑓(𝑥) = 𝑓(𝑥⊕ 𝑡), 𝑡 /∈ {0, 𝑠}. They have used

𝜖(𝑓, 𝑠) for computing the success probability of Simon’s algorithm based on the rate

of the collision, where

𝜖(𝑓, 𝑠) = max
𝑡∈{0,1}𝑛∖{0,𝑠}

𝑃𝑟𝑥[𝑓(𝑥) = 𝑓(𝑥⊕ 𝑡)].

The following theorems in [134] handles the conditions when Simon’s promise does

not hold precisely.

Theorem 2. (Simon’s Algorithm with Approximate Promise). [134] If 𝜖(𝑓, 𝑠) ≤

𝑝0 ≤ 1, then with probability at least 1−
(︂

2
(︁

1+𝑝0
2

)︁𝑐)︂𝑛
Simon’s algorithm returns 𝑠 at

the expense of 𝑐𝑛 queries.

If there is no bound on 𝜖(𝑓, 𝑠), then it is not possible to recover 𝑠 always. But

we can find a 𝑡 such that Pr𝑥[𝑓(𝑥) = 𝑓(𝑥 ⊕ 𝑡)] is very high. The following theorem

64

Algorithm 1 Simon’s Algorithm

1. Let’s consider a unitary map 𝑈𝑓 given by |𝑥, 𝑦⟩ ↦→ |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩. Two registers
are initialized with 𝑛-qubit state |0⟩ each. Hadamard transform 𝐻⊗𝑛 is applied
to the first register to obtain quantum superposition

1√
2𝑛

∑︁
𝑥∈{0,1}𝑛

|𝑥⟩|0⟩.

2. 𝑓 is queried to 𝑈𝑓 using these two registers to obtain

1√
2𝑛

∑︁
𝑥∈{0,1}𝑛

|𝑥⟩|𝑓(𝑥)⟩.

3. The second register is measured. Measuring the value in the second register
collapses the value in both the registers. If the value in the second register is
𝑓(𝑧), then the state in the first register should be a superposition state due to
Simon’s promise. The state in the first register is

1√
2

(|𝑧⟩+ |𝑧 ⊕ 𝑠⟩).

4. On first register, Hadamard transform 𝐻⊗𝑛 is again applied to obtain

1√
2

1√
2𝑛

∑︁
𝑦∈{0,1}𝑛

(−1)𝑦.𝑧(1 + (−1)𝑦.𝑠)|𝑦⟩.

5. Measuring the first register collapses it to a random vector 𝑦 such that 𝑦.𝑠 = 0.
The 𝑦 vectors with 𝑦.𝑠 = 1 have 0 amplitude; so, the first register never collapses
to such values.

6. Steps 1 to 5 are repeated 𝑂(𝑛) times, produceing 𝑛− 1 random vectors orthog-
onal to 𝑠. These can be solved to retrieve the value of 𝑠.

dictates that.

Theorem 3. (Simon’s Algorithm without Promise). [134] After the execution

of 𝑐𝑛 steps of Simon’s algorithm, if 𝑡 is orthogonal to all vectors 𝑢𝑖 returned by each

step of the algorithm, then 𝑃𝑟𝑥[𝑓(𝑥) = 𝑓(𝑥 ⊕ 𝑡)] ≥ 𝑝0 with probability at least 1 −(︂
2
(︁

1+𝑝0
2

)︁𝑐)︂𝑛
.

65

In both cases, if 𝑐 ≥ 3
(1−𝑝0) then the probabilities become high.

2.6.2 Grover’s Algorithm

Grover’s algorithm [120] is used for searching in a completely unstructured dataset.

Consider a function 𝑓 : {0, 1}𝑛 → {0, 1} (𝑁 = 2𝑛) and there exists a state 𝑤 such

that

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, for 𝑥 = 𝑤

0, for 𝑥 ̸= 𝑤.

Suppose, 𝑓 can be realized using a black-box reversible function 𝐵𝑓 , where

𝐵𝑓 |𝑥⟩|𝑎⟩ = |𝑥⟩|𝑓(𝑥)⊕ 𝑎⟩, ∀𝑥 ∈ {0, 1}𝑛and 𝑎 ∈ {0, 1}.

The problem is to find a 𝑥 such that 𝑓(𝑥) = 1. Any deterministic classical algorithm

can solve the problem by querying the function 𝑓 𝑂(2𝑛) times. However, leveraging

on quantum computing techniques, Grover’s algorithm can solve the problem by

making 𝑂(
√

2𝑛) queries; which is a significant speed-up in comparison to the classical

counterpart.

Before describing Grover’s algorithm, consider two unitary maps on 𝑛 qubits, 𝑈𝑓 :

|𝑥⟩ ↦→ (−1)𝑓(𝑥)|𝑥⟩ and 𝑈 : |𝑥⟩ ↦→ (−1)𝑔(𝑥)|𝑥⟩, where the function 𝑔 : {0, 1}𝑛 → {0, 1}

is defined as

𝑔(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, for 𝑥 = 0𝑛

0, for 𝑥 ̸= 0𝑛.

Fig. 2-19 shows the implementation of 𝑈𝑓 using the black-box 𝐵𝑓 and an ancillary

qubit by employing the phase kick-back phenomenon. Classically, 𝑔(𝑥) can be realized

by computing (𝑥0 ∧ 𝑥1 · · · ∧ 𝑥𝑛−1), where 𝑥𝑖 corresponds to (𝑖 + 1)th bit of 𝑥. Thus,

𝑈 can be implemented by replacing 𝐵𝑓 with a reversible quantum circuit for the

following map:

|𝑥⟩|𝑎⟩ ↦→ |𝑥⟩|𝑎⊕ (𝑥0 ∧ 𝑥1 · · · ∧ 𝑥𝑛−1)⟩.

Now, Grover operator 𝐺 is defined as 𝑈𝜓⊥𝑈𝑓 where 𝑈𝜓⊥ = 𝐻⊗𝑛𝑈𝐻⊗𝑛. Based on

66

Figure 2-19: Implementation of 𝑈𝑓 using 𝐵𝑓

this, the steps of Grover’s algorithm is shown in Algorithm 2.

Algorithm 2 Grover’s Algorithm

1. An 𝑛-qubit register 𝑍 is initialized. Hadamard transformation 𝐻⊗𝑛 is applied
on 𝑍.

2. Grover operator 𝐺 is applied ⌊𝜋4
√
𝑁⌋ times to the register 𝑍.

3. 𝑍 is measured and the result is output.

Consider instead of iterating ⌊𝜋4
√
𝑁⌋ times, 𝐺 is iterated 𝑘 times in Step 2 of

Algorithm 2. Two superposition states |𝑈⟩ and |𝑉 ⟩ are defined as

|𝑈⟩ = 1√
𝑢

∑︁
𝑥∈𝑈
|𝑥⟩

|𝑉 ⟩ = 1√
𝑣

∑︁
𝑥∈𝑉
|𝑥⟩

where 𝑈 = {𝑥 ∈ {0, 1}𝑛 : 𝑓(𝑥) = 1}, 𝑢 = |𝑈 | and 𝑉 = {𝑥 ∈ {0, 1}𝑛 : 𝑓(𝑥) ̸= 1},

𝑢 = |𝑉 |. Based on this, following proposition can be stated.

Proposition 1 ([120, 207]). As hadamard operation is applied in Step 1 of Algo-

rithm 2, the state is in the superposition 1√
2𝑛

∑︀
𝑥∈{0,1}𝑛|𝑥⟩. After application of 𝑘

iterations in Step 2, the resulting superposition of the state is

𝑠𝑖𝑛((2𝑘 + 1)𝜃)|𝑈⟩+ 𝑐𝑜𝑠((2𝑘 + 1)𝜃)|𝑉 ⟩,

67

where 𝜃 = 𝑠𝑖𝑛−1
√︁

𝑢
𝑁

.

Note that, in this case 𝑢 = 1, as it is assumed that only when 𝑥 = 𝑤, 𝑓(𝑥) = 1.

However, Proposition 1 holds for any arbitary value of 𝑢. From Proposition 1, it can

be concluded that after the measurement in Step 3, a right/correct state is output

by Grover’s algorithm with probability |𝑠𝑖𝑛((2𝑘 + 1)𝜃)|2. When 𝑘 = ⌊𝜋4
√︁
𝑁/𝑢⌋, a

state from 𝑈 is measured with probability at least 1
2 [120, 76]. Now, the technique of

mounting key recovery attack on block ciphers using Grover’s search is discussed.

Key Recovery Attack on Block Cipher using Grover’s Algorithm.

Yamamura and Ishizuka have shown that Grover’s algorithm can be used to mount

key recovery attack on a block cipher [211]. This attacks is generic as it does not

rely on the construction of the block cipher. Consider a block cipher 𝐸 which uses a

𝑘-bit key 𝒦 and its block length is 𝑛. The encryption of a message 𝑚 by block cipher

𝐸 using the key 𝒦 is denoted by 𝐸𝒦(𝑚). Algorithm 3 shows the steps of mounting

Grover’s attack on 𝐸.

Algorithm 3 Grover’s Attack on Block Cipher

1. A plaintext-ciphertext pair (𝑃,𝐶) is prepared where 𝐶 = 𝐸𝒦(𝑃). The function
𝑓 is defined as

𝑓(𝑥) =
⎧⎨⎩1 if 𝐸𝑥(𝑃) = 𝐶

0 if 𝐸𝑥(𝑃) ̸= 𝐶

2. A 𝑘-qubit register 𝑍 is initialized. Hadamard transformation 𝐻⊗𝑛 is applied on
𝑍 to obtain

1√
2𝑘

∑︁
𝑥∈{0,1}𝑘

|𝑥⟩.

3. Grover operator 𝐺 is applied ⌊𝜋4
√

2𝑘⌋ times to the register 𝑍.

4. 𝑍 is measured and the right key 𝒦 is obtained with probability at least 1
2 .

68

2.6.3 Simon’s Algorithm with Asymmetric Queries

Leander 𝑒𝑡 𝑎𝑙. has combined Grover’s search algorithm with Simon’s algorithm to

recover keys for FX construction [151]. This combination of algorithms for finding

a period has a huge impact on cryptographic schemes and Bonnetain 𝑒𝑡 𝑎𝑙. have

formally defined the problem as Asymmetric Search of a Period [66].

Problem 3: Asymmetric Search of a Period [66]: Consider a family of

functions 𝐹 indexed by {0, 1}𝑚, denoted by 𝐹 (𝑖, ·) = 𝑓𝑖(·) and a function 𝑔; they

are defined as

𝐹 : {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑙

𝑔 : {0, 1}𝑛 → {0, 1}𝑙

The problem is to find an 𝑖0 and a 𝑠 such that ∀𝑥 ∈ {0, 1}𝑛, 𝑓𝑖0(𝑥) ⊕ 𝑔(𝑥) =

𝑓𝑖0(𝑥⊕ 𝑠)⊕ 𝑔(𝑥⊕ 𝑠) for a certain 𝑠, under the following assumptions,

• Quantum oracle access to 𝐹 is given.

• In 𝑄1 model, classical oracle access to 𝑔 is given whereas in 𝑄2 setting 𝑔 is

accessed as quantum oracle.

• There is exactly one 𝑖 ∈ {0, 1}𝑚 such that 𝑓𝑖 ⊕ 𝑔 has a hidden period.

Bonnetain 𝑒𝑡 𝑎𝑙. have observed that while testing whether 𝑓𝑖 ⊕ 𝑔 have period or

not; the function 𝑔 always remains same. Leveraging on that the number of queries

to 𝑔 is reduced and the superposition

|𝜓𝑔⟩ =
𝑐𝑛⨂︁(︂ ∑︁

𝑥∈{0,1}𝑛

|𝑥⟩|𝑔(𝑥)⟩
)︂

is used several times. In 𝑄2 model, 𝑔 is queried using superposition queries; whereas

in 𝑄1 only classical queries are allowed to make to 𝑔. From |𝜓𝑔⟩,

|𝜓𝑓𝑖⊕𝑔⟩ =
𝑐𝑛⨂︁(︂ ∑︁

𝑥∈{0,1}𝑛

|𝑥⟩|𝑓𝑖(𝑥)⊕ 𝑔(𝑥)⟩
)︂

69

is constructed by making quantum superposition queries to 𝑓𝑖.

In our work, we have used the existing techniques in [66] to attack encryption

schemes. A brief overview of all algorithms and their corresponding complexities in-

troduced in [66] to solve the problem of Asymmetric Search of a Period is given here

(For details, refer to [66]).

• Alg-PolyQ2- Solves the problem of Asymmetric Search of a Period in 𝑄2

model. It is allowed to make quantum superposition queries to 𝑔 for online

computations.

• Alg-ExpQ1- Solves the problem of Asymmetric Search of a Period in 𝑄1

model. It is allowed to make classical queries to 𝑔 for online computations.

During offline computations both Alg-PolyQ2 and Alg-ExpQ1 find an 𝑖 using

Grover’s search algorithm, such that for that fixed 𝑖, 𝑓𝑖 ⊕ 𝑔 has a period. Note that,

both algorithms never returns the actual period of 𝑓𝑖 ⊕ 𝑔. For finding the period,

Simon’s algorithm is applied to 𝑓𝑖 ⊕ 𝑔. In the 𝑄1 model, for finding period Simon’s

algorithm is applied by making classical queries to the oracle. In regard to this

Alg-SimQ1 has been defined in [66].

Cost Estimation.

The attacks, presented in this work, make use of Alg-ExpQ1 and Alg-SimQ1. The

following two propositions (proposed in [66]) are regarding the cost estimation when

these algorithms are applied to mount attacks.

Proposition 2. (Proposition 3 in [66]) Let 𝑐 be a sufficiently large constant, 𝑚

70

is in 𝑂(𝑛) and 𝑔 ⊕ 𝑓𝑖0 has a period for a good 𝑖0. Assume that

max
𝑡∈{0,1}𝑛∖{0𝑛},
𝑖∈{0,1}𝑛∖{𝑖0},
𝑥∈{0,1}𝑛

Pr[(𝑓𝑖 ⊕ 𝑔)(𝑥⊕ 𝑡) = (𝑓𝑖 ⊕ 𝑔)(𝑥)] ≤ 1
2 (2.3)

holds. Then a good 𝑖 ∈ {0, 1}𝑚 with probability Θ(1) is found by Alg-ExpQ1 by mak-

ing classical and quantum queries to 𝑔 and 𝐹 respectively. The number of classical

and quantum queries are 𝑂(2𝑛) and 𝑂(𝑛2𝑚/2) respectively. If for evaluating 𝐹 once

𝑇𝐹 is the required time, then Alg-ExpQ1 executes the offline computations in time

𝑂
(︁
(𝑛3 +𝑛𝑇𝐹)2𝑚/2

)︁
. Note that, in offline computation the time required for preparing

the state |𝜓𝑔⟩ is not included.

Proposition 3. (Proposition 4 in [66]) Suppose that, 𝑓𝑖0 ⊕ 𝑔 has a period 𝑠 ̸= 0

and satisfies

max
𝑡̸={𝑠,0𝑛}

𝑃𝑟𝑥[(𝑓𝑖 ⊕ 𝑔)(𝑥⊕ 𝑡) = (𝑓𝑖 ⊕ 𝑔)(𝑥)] ≤ 1
2 . (2.4)

Then Alg-SimQ1 makes 𝑂(2𝑛) classical queries to 𝑔 and 𝑐𝑛 queries to 𝑓𝑖0 and returns

the period 𝑠 with a probability at least 1 − 2𝑛.(3/4)𝑐𝑛. If 𝑇𝑓 is the required time for

evaluating 𝑓𝑖0 once, then the offline computation of Alg-SimQ1 runs in time 𝑂(𝑛3 +

𝑛𝑇𝑓).

For performing attacks in 𝑄1 model, to form |𝜓𝑔⟩ whole codebook of 𝑔 should be

queried. In order to reduce the number of queries to 𝑔, a trade-off between online

classical queries to 𝑔 (Data complexity) and offline quantum computations (Time

complexity) exists. In Chapter 7, number of online classical queries is denoted by 𝐷

and number of offline computations is denoted by 𝑇 .

2.7 Other Tools

Here, details regarding data complexity, success probability, signal-to-noise ratio and

ranking test are discussed.

71

2.7.1 Data Complexity and Success Probability

For a distinguishing event, the data complexity and the success probability depend on

the probabilities 𝑝 and 𝑝0 = 𝑝(1+𝑞) of the same event respectively in the random case

and in the case of the algorithm under consideration. In [174], detailed analysis of

various relations between data complexity of the distinguisher and the corresponding

success probability is presented. We use the most general result from [174, Theorem

2], which involves no crude approximation such as ignoring the constant terms or

assuming 𝑝, 𝑞 to be small.

Theorem 4. [174, Theorem 2] Suppose, the event 𝑒 happens in uniform random

bitstream with probability 𝑝 and in keystream of a stream cipher with probability 𝑝(1+

𝑞). Then the data complexity of the distinguisher with false positive and false negative

rates 𝛼 and 𝛽 is given by

𝑛 >

(︂
𝜅1
√

1− 𝑝+ 𝜅2

√︂(︁
1 + 𝑞

)︁(︁
1− 𝑝(1 + 𝑞)

)︁)︂2

𝑝𝑞2 (2.5)

where Φ(−𝜅1) = 𝛼 and Φ(𝜅2) = 1− 𝛽.

For computing success probability, we consider 𝜅1 = 𝜅2 in Theorem 4, which gives

us 𝛼 = 𝛽. Then the success probability is given by (1−𝛽). Note that, in the theorem

data complexity essentially refers to sample complexity.

Experimental Verification of Success Probabilities.

For experimental verification of success probabilities of distinguishers, the strategy

from [180] has been followed. First, consider a blackbox which can act as either a

cipher 𝒞 or a uniform discrete random permutation ℛ. Then the experiment is run

two times in the following ways:

1. Consider the blackbox as 𝒞 and repeat the experiment 𝑎𝑐 times.

2. Consider the blackbox as ℛ and repeat the experiment 𝑎𝑟 times.

72

Let out of (𝑎𝑐+𝑎𝑟) experiments, distinguisher decides it as 𝒞 𝑜𝑐 times and as ℛ

𝑜𝑟 times. 𝑛𝐹𝑃 and 𝑛𝐹𝑁 denotes the number of false positives and false negatives

respectively. Based on this parameters, the confusion matrix is shown in Table 2.5.

Table 2.5: Confusion Matrix of 𝒞 and ℛ

Actual
Observed

𝒞 ℛ

𝒞 𝑜𝑐 − 𝑛𝐹𝑃 𝑛𝐹𝑁

ℛ 𝑛𝐹𝑃 𝑜𝑟 − 𝑛𝐹𝑁

Then the success probability is calculated by:

𝑃𝑟[𝑆𝑢𝑐𝑐𝑒𝑠𝑠] = (𝑜𝑐 − 𝑛𝐹𝑃) + (𝑜𝑟 − 𝑛𝐹𝑁)
𝑜𝑐 + 𝑜𝑟

= (𝑜𝑐 − 𝑛𝐹𝑃) + (𝑜𝑟 − 𝑛𝐹𝑁)
𝑎𝑐 + 𝑎𝑟

.

2.7.2 Signal-to-Noise Ratio and Ranking Test

While mounting a key recovery attack, situations may arrive when it is not possible

to distinguish the right pair from the wrong ones. In such cases, the notion of signal-

to-noise ratio is used. Signal-to-noise ratio (𝑆/𝑁) is used to determine the number

of right pairs required to recover the right key. The right key can be suggested by

both right pairs or wrong pairs. The ones that are suggested by the right pair are

called signal whereas the ones that are suggested by the wrong pair are called noise.

Let 𝑀 be the number of pairs queried by the adversary and 𝑝 be the probability of

the characteristic. Then the number of right pair is 𝑀𝑝. As each right pair suggests

the right key one time, hence the amount of signal is 𝑀𝑝. Now the number of

wrong pairs is 𝑀(1 − 𝑝). Let a filtering technique is used and a wrong pair survive

the filtering with probability 𝛽. Therefore, after filtering the remaining number of

wrong keys is 𝑀(1 − 𝑝)𝛽. Consider 𝜂 be the average number of key candidates

suggested by the wrong pair. Note that, such suggestions consist of both right and

wrong key candidates. So, the total number of keys suggested by wrong pairs is

73

𝑀(1 − 𝑝)𝛽𝜂. Under the assumption that the keys suggested by wrong pairs are

uniformly distributed, the amount of noise is 𝑀(1 − 𝑝)𝛽𝜂2−𝑘, where 𝑘 is the length

of the guessed key in bits. Therefore signal-to-noise ratio is 𝑀𝑝
𝑀(1−𝑝)𝛽𝜂2−𝑘 = 2𝑘𝑝

(1−𝑝)𝛽𝜂 .

A counter is maintained for each key suggested by either right or wrong pairs. The

value of the counter for each key depends on the signal-to-noise ratio. If 𝑆/𝑁 > 1

then the right key is suggested more than the other keys whereas for 𝑆/𝑁 < 1 the

right key is suggested fewer times than the wrong ones. By analysing the counters, the

right key can be detected. More details regarding the signal-to-noise ratio is provided

in [143, 181]. For 𝑆/𝑁 > 1, generally the candidate key with highest counter value is

considered as the right candidate. But cases may arrive when the counter value for

the right candidate is not maximum. Thus, as stated in [181], several key candidates

whose counter value is close the highest one is considered as the candidate key. This

method is known as ranking test.

In the context of differential cryptanalysis, the relation between the number of right

pairs required to identify the unique key, the number of key candidates whose counter

value is close to the highest one and the success probability was given by Selçuk in

[182]. Let 𝑀 be the number of pairs queried to the oracle, 𝑝 be the probability

of the characteristic and let 𝑘 be the length of the guessed key in bits. Without

loss of generality, let the right key be denoted by 𝒦0 and 𝒦1, · · · ,𝒦2𝑘−1 denote the

wrong keys. A plaintext pair suggests 𝒦𝑖 as key candidate with probability 𝑝𝑖 and

the counter value for each 𝒦𝑖 is 𝑇𝑖. Under the assumption that 𝑇𝑖’s are independent

and identically distributed (i.i.d.), the probability of any of the wrong keys being

suggested as the right one is the same and is denoted by 𝑝𝑤. For 1 ≤ 𝑖 ≤ 2𝑘 − 1, 𝑇𝑖
follows the binomial distribution ℬ(𝑀, 𝑝𝑤) and 𝑇0 follows the binomial distribution

ℬ(𝑀, 𝑝0). For large values of 𝑀 , these binomial distributions can be approximated

74

by normal distribution 𝒩 (𝜇𝑤, 𝜎2
𝑤) and 𝒩 (𝜇0, 𝜎

2
0) where

𝜇0 = 𝑝0𝑀 , 𝜎2
0 = 𝑝0(1− 𝑝0)𝑀 ≈ 𝑝0𝑀

𝜇𝑤 = 𝑝𝑤𝑀 , 𝜎2
𝑤 = 𝑝𝑤(1− 𝑝𝑤)𝑀 ≈ 𝑝𝑤𝑀.

The right keys are deterministically suggested by the right pairs and probabilistically

suggested by the wrong pairs; whereas wrong keys are probabilistically suggested by

both the right and the wrong pairs. If a certain key is suggested as the right key

candidate by a random pair with probability 𝑝𝑟, then

𝑝0 = 𝑝+ (1− 𝑝)𝑝𝑟 ≈ 𝑝+ 𝑝𝑟

𝑝𝑤 = 𝑝𝑟.

The attack is successfully performed if 𝒦0 is ranked among the top 𝑟 candidates on

the basis of the counter values. Let 𝜑 be the probability density function and Φ be

the cumulative distribution function. Then the success probability 𝑃𝑠 can be given

by

𝑃𝑠 =
∫︁ ∞
− 𝜇0−𝜇𝑞√

𝜎2
0+𝜎2

𝑞

𝜑(𝑥)𝑑𝑥,

where 𝜎𝑞 = 𝜎𝑤

𝜑(Φ−1(1−2𝑙𝑜𝑔2𝑟−𝑘))2
− 2𝑘−𝑙𝑜𝑔2𝑟

2 and 𝜇𝑞 = 𝜇𝑤 + 𝜎𝑤Φ−1(1− 2𝑙𝑜𝑔2𝑟−𝑘) [182]. Based

on this, the following propositions connect success probability, data complexity and

the number of top ranked values that should be considered as right key candidate.

Proposition 4. [182] Let the correct key 𝒦0 of length 𝑘 is among the top 𝑟 val-

ues of key counters with probability 𝑃𝑠 when a differential attack with characteristic

probability 𝑝 is mounted using 𝑀 plaintext-ciphertext pairs and signal-to-noise ratio

of 𝑆𝑁 . Under the assumptions that the counters corresponding to the wrong keys are

independent and follows an identical distribution and the value of 𝑘 and 𝑀 is too

large, then 𝑃𝑠 can be expressed as a function of the other variables by the following

equation:

𝑃𝑠 = Φ
⎛⎝√𝑝𝑀𝑆𝑁 − Φ−1(1− 2𝑙𝑜𝑔2𝑟−𝑘)√

𝑆𝑁 + 1

⎞⎠
75

Proposition 5. [182] Let the correct key 𝒦0 of length 𝑘 is among the top 𝑟 val-

ues of key counters with probability 𝑃𝑠 when a differential attack with characteristic

probability 𝑝 is mounted using 𝑀 plaintext-ciphertext pairs and signal-to-noise ratio

of 𝑆𝑁 . Under the assumptions that the counters corresponding to the wrong keys are

independent and follows an identical distribution, the value of 𝑘 and 𝑀 is too large,

then 𝑀 can be expressed as a function of the other variables by the following equation:

𝑀 = (
√
𝑆𝑁 + 1Φ−1(𝑃𝑠) + Φ−1(1− 2𝑙𝑜𝑔2𝑟−𝑘))2

𝑆𝑁
𝑝−1.

The rest of the thesis is described by following the conventions and methodology

discussed here. The main part of the thesis is based on the tools and techniques

provided in this chapter.

76

3
DIFFERENTIAL ATTACKS ON FlexAEAD

Contents
3.1 Iterated Truncated Differential Attacks on PF𝑘 79

3.2 Forgery Attacks on FlexAEAD 86

3.3 Chapter Summary . 88

In the modern era, the aim is to connect each of the physical devices, even the

miniature ones, with the internet so that they can be monitored and controlled re-

motely for maximum utilization. These devices are powered with the ability of com-

municating among themselves. Such a huge interconnected system, consisting of

numerous tiny devices, is not free from vulnerabilities. Moreover, a security breach

in such systems can be catastrophic. So, a major concern in the world of internet-

of-things is how to provide security and privacy to each system with the constraints

of limited power and area. SKINNY [34], PRESENT [62], QARMA [23], KATAN

and KTANTAN [91], GIFT [28] are some of the block ciphers which are designed for

such constrained environments. Until recently, no standardization process has been

introduced (like AES Development [6], SHA-3 Project [5], CAESAR Competition [1])

for cryptographic schemes in lightweight environments. NIST LightWeight Cryptog-

raphy (LWC) competition [4] is a major step towards addressing these issues. There

are a total of 57 submissions in this competition. Apart from authenticated encryp-

tion algorithms in lightweight environment, some of the designs also comprise of hash

functions. Some of them have also provided new primitives for block cipher design.

77

FlexAEAD is one of the round-1 candidates proposed by Nascimento and Xexéo

in NIST LWC competition [96]. It is a family of lightweight authenticated encryption

schemes with associated data. In this version, the processing of Associate Data (AD)

has been added to the original variants [97, 95, 94]. There are mainly three variants

of FlexAEAD that have been listed with block sizes of 64, 128 and 256 bits. In

general, a FlexAEAD scheme is denoted by FlexAEAD-𝑏, with 𝑏 being the block

size. The size of nonce and tag is the same as block size across all variants. The

length of key is 128 bits for FlexAEAD-64 and FlexAEAD-128 whereas it is 256 bits

for FlexAEAD-256. The nonce in FlexAEAD is used to generate sequence numbers

which are eventually XOR-ed with associated data, plaintext and intermediate-state

to produce ciphertext-tag pair. The lightweight of FlexAEAD essentially comes from

the fact that for computational purposes it uses XOR operations, a look-up table for

substitution layer and bit reorganizations for BlockShuffle layer. FlexAEAD has

an underlying block cipher; internal keyed permutation (PF𝑘) of 64, 128 and 256 bits.

We have analyzed the PF𝑘 function and reported several results. A brief description

of PF𝑘 has been provided in Section 2.1.2. The PF𝑘 with 𝑥-bit state is referred to as

Flex-𝑥.

Existing Security Claims.

The designers have claimed that mounting an attack on Flex-𝑥 based on differential

and linear characteristics is more difficult than the brute force attack. According to

their analysis, the probability of best differential characteristic for Flex-64, Flex-128

and Flex-256 is 2−168, 2−204 and 2−240 respectively. The number of chosen plaintext

pairs required for a linear trail in Flex-64, Flex-128 and Flex-256 are 2272, 2326 and

2380 respectively [96]. Eichlseder 𝑒𝑡 𝑎𝑙. have claimed several forgery attacks [103, 104]

on FlexAEAD. They have followed several different approaches: like changing asso-

ciated data, truncating ciphertexts and reordering ciphertexts. They have reported

differential characteristics for 5-round Flex-64, 6-round Flex-128 and 7-round Flex-

256 with probability 2−66, 2−79 and 2−108 respectively. Length extension attacks based

78

Table 3.1: Comparison of trail probabilities of internal keyed permutation of Flex-
AEAD. #R denotes the number of rounds.

Block
Size #R Trail

Probability Technique Reference

64

5 2−66 Differential
Characteristics [103]

5 2−46 Clustered
Characteristics [103]

5 2−21 Iterated Truncated
Differential Section 3.1

5 2−13 Yoyo Game Section 4.1.3

128

6 2−79 Differential
Characteristics [103]

6 2−54 Clustered
Characteristics [103]

6 2−21 Iterated Truncated
Differential Section 3.1

6 1 Yoyo Game Section 4.1.2

256

7 2−108 Differential
Characteristics [103]

7 2−70 Clustered
Characteristics [103]

7 2−21 Iterated Truncated
Differential Section 3.1

9 2−11 Yoyo Game Section 4.1.3

on associated data have also been shown [161]. Table 3.1 shows the comparison of

different trail probabilities reported till date with the ones furnished in the current

work. For uniformity, we have enlisted trail probabilities for same number of rounds.

3.1 Iterated Truncated Differential Attacks on PF𝑘

Differential of iterative characteristics can be easily exploited to penetrate full rounds

of a cipher. The fundamental strategy behind devising an iterated differential is to

choose the output differential in a way such that after some operations the input

differential can be produced easily. Alkhzaimi 𝑒𝑡 𝑎𝑙. have reported such differentials

for SIMON family of block ciphers [14]. In this work, iterated differentials in truncated

form have been considered. First of all, a particular property of AES s-box which has

79

Table 3.2: List of iterated truncated differential based key recovery attacks on PF𝑘
reported in this work. Encs, Decs, MAs refers to encryption queries, decryption
queries and Memory Accesses respectively. For uniformity, memory accesses and
memory complexity has been provided in terms of Flex-128 state. 1 MA for Flex-128
corresponds to 2 MA in Flex-64 and 0.5 MA in Flex-256. Memory complexity is also
normalized by the same ratio. #R denotes the number of rounds.

Block
Size

#R
Data

Complexity
Time

Complexity
Memory

Complexity
Attack
Type

Section No. of
Current Work

Encs Decs MAs

64 7 230.5 − 234.5 218.5 Iterated Truncated
Differential

3.1.2

128 16 293.5 − 2108.5 220.5 Iterated Truncated
Differential

3.1.2

256 21 2109.5 − 2125.5 222.5 Iterated Truncated
Differential

3.1.2

been exploited needs to be discussed.

Property of AES DDT Table.

From AES DDT table it has been observed that the number of randomly chosen input

differences that map to output differences, such that the non-zero bits in each output

difference are confined to the upper nibble is 4096. Same is true if they are confined

to the lower nibble. In other words,⃒⃒⃒{︁
(𝑥1, 𝑥2)|

(︁
𝑆(𝑥1)⊕ 𝑆(𝑥2)

)︁
& 0xf0 = 0,∀𝑥1, 𝑥2 ∈ F28

}︁⃒⃒⃒
= 4096,⃒⃒⃒{︁

(𝑥1, 𝑥2)|
(︁
𝑆(𝑥1)⊕ 𝑆(𝑥2)

)︁
& 0x0f = 0,∀𝑥1, 𝑥2 ∈ F28

}︁⃒⃒⃒
= 4096,

where 𝑆 is the AES s-box. Therefore, with probability 4096
216 = 2−4 a random input

difference transits to upper nibble in the output difference. With same probability,

random input difference transits to lower nibble. The way this property is exploited

to devise iterated truncated differential is provided in the next subsection.

3.1.1 One Round Probabilistic Iterated Truncated Differen-

tial

Refer to Fig. 3-1 for the iterated differential of Flex-128. In 𝑋1, keeping the difference

in 𝐵[0] ensures that in 𝑌1 difference are in 𝐵[0] and 𝐵[8]. With probability 2−7

80

both differences are confined in either upper nibble or lower nibble in those bytes.

Therefore, after BlockShuffle only one byte is active in 𝑋2. In 𝑋2 the active byte

can be either 𝐵[0] or 𝐵[1], depending on whether the upper or lower nibbles in 𝑌1

are active. The iterative nature of the differential comes from the fact that in 𝑋2

only one byte is active at the cost of 2−7 probability under the constraints that only

one byte is active in 𝑋1, and this particular event can be repeated an infinite number

of times. Similar kinds of iterated truncated differential with the same probability

exists for Flex-64 and Flex-256. Now, how these one round differentials are exploited

to penetrate more number of rounds is discussed.

Application to Variants of PF𝑘.

The one round iterated truncated differential can be applied to all the versions of PF𝑘.

The iterated differential occurs with probability 2−7. Depending on the blocksize, last

few rounds can be made free as no byte to nibble transition is needed for those rounds.

Let the iterated truncated differential is kept free for last 𝑓 rounds for Flex-𝑥. Then

the probability of the trail is 2−7×(𝑟−𝑓). For uniform random discrete distribution,

the same event will occur with probability 2−8×(𝑥
8−2𝑓) = 2−(𝑥−8×2𝑓). For devising a

distinguisher for 𝑥-bit flex,

2−7×(𝑟−𝑓) > 2−(𝑥−8×2𝑓)

=⇒ 𝑟 <
(𝑥− 8× 2𝑓)

7 + 𝑓. (3.1)

Then, the probability of the iterated truncated differential trail for 𝑟-round Flex-𝑥

is 2−7×(𝑟−𝑓). Table 3.3 shows the trail probabilities for different Flex-𝑥. 𝑟𝑚𝑎𝑥 denotes

the maximum number of rounds reachable under the constraints of fixed 𝑓 . Table 3.4

compares the differential probabilities claim of the designers with our claim using the

iterated differential. 𝒫𝐷 denotes the designers’ claim whereas 𝒬𝐷 denotes our claim.

Another aspect of such kind of trails is the position of active byte in each round.

As mentioned in 3.1.1, if 𝐵[0] is active in 𝑋0, then either 𝐵[0] or 𝐵[1] is active in

𝑋2. If 𝐵[1] is active in 𝑋2, then either 𝐵[2] or 𝐵[3] is active in 𝑋3. In general, for

81

Figure 3-1: Iterated Truncated Differential with One-round probability of 2−7. Note
that, the key-addition is not shown, since it has no effect on the trail

Flex-𝑥 if 𝐵[𝑚] or 𝐵[𝑥
2×8 +𝑚] is active in 𝑋𝑖, then either 𝐵[2𝑚] or 𝐵[2𝑚+ 1] is active

in 𝑋(𝑖+1). Now, the mechanism of transforming these distinguishers to key recovery

attacks is detailed.

82

Table 3.3: Iterated Differential Trails

Block Size 𝑓 𝑟𝑚𝑎𝑥 Trail Probability

64 1 7 2−42

2 6 2−28

128
1 16 2−105

2 15 2−91

3 12 2−63

256

1 21 2−140

2 21 2−123

3 21 2−126

4 21 2−119

Table 3.4: Comparison of Differential Probabilities

BlockSize #R Active S-boxes 𝒫†D 𝒬*D
64 15 28 2−168 2−98

128 18 34 2−204 2−119

256 21 40 2−240 2−119

† Probability of the classical differential trail claimed by the designers

* Probability of the iterated truncated differential trail

3.1.2 Key Recovery Using Iterated Truncated Differential

At the end of each round, the difference in a pair of symmetric bytes after S-box

transits to the same nibble with probability 2−7. This has been used as a filtering

technique to eliminate wrong key bytes. Let the first subkey, 𝐾𝛼 for Flex-128 is

being recovered. Using iterated truncated differential for 𝑟 rounds a right pair can be

identified with probability 2−7×(𝑟−𝑓), where 𝑓 is number free rounds. Suppose, in the

right pair the initial difference is in 𝐵[𝑖] and 𝐵[𝑖 + 8]. So, we guess key byte 𝐾𝛼[𝑖]

and 𝐾𝛼[𝑖 + 8]. There are 216 possible guesses and these are used to verify whether

at the end of first-round byte to nibble transition occur. Out of 216, 29 key-byte

candidates remain. For further filtering, two more right pairs are used. The second

right pair reduces the candidate numbers to 22. After filtering using three different

right pairs, it is expected only one candidate should remain for the key byte pair

83

(︁
216 × (2−7)3 = 2−5 < 1

)︁
. For the remaining symmetric key bytes, the procedure

is repeated 7 more times. In the end, it is expected that only one key candidate

should pass the test. The other subkeys can be recovered similarly. After recovering

the first subkey, the values of the plaintexts are exactly known till the second subkey

whitening. The same key recovery attacks are applicable for Flex-64 and Flex-256. In

the next subsections, details about the complexities of all attacks and experimental

verification of practical ones are provided.

3.1.3 Complexity Evaluation

First, we discuss about the complexity analysis of the distinguishing attacks and then

analysis regarding the key recovery attacks are provided.

Distinguisher.

To distinguish iterated truncated differential for 𝑟 rounds, 27×(𝑟−𝑓) number of plaintext

pairs are required, where 𝑓 is the number of free rounds at the end. In devising the

distinguishers, difference can be kept in 2 bytes only in 𝑋1, which yields
(︁

216

2

)︁
≈ 231

pairs of plaintexts. For distinguishers requiring more than 231 pairs, a different set of

states is needed. So, the data complexity is 27×(𝑟−𝑓)

231 ×216 = 27×(𝑟−𝑓)

215 encryption queries.

Time complexity involves the memory accesses required to compute the specified

collisions, which is the number of plaintext pairs needed, i. e., 27×(𝑟−𝑓). Memory

complexity is 216 Flex-𝑥 states, which is the memory required for storing different

states.

Consider a particular case for 21-round Flex-256. According to Inequality 3.1, the

value of 𝑓 can be set to 4. For this case

1. Data Complexity is 27×17

215 = 2104 encryption queries..

2. Time Complexity is 2119 memory accesses.

3. Memory Complexity is 216 Flex-256 states = 217 Flex-128 states.

84

Key Recovery.

Complexities of key recovery attack of Flex-𝑥 depends on distinguisher. To recover

each pair of key-byte, three different right pairs are required. This procedure also

needs to be repeated 𝑥
16 times for recovering the full key. Therefore, data complexity,

time complexity and memory complexity of distinguisher needs to be multiplied by a

factor of 3× 𝑥
16 . Moreover, candidate key-byte recovery for each pair of byte can be

computed in parallel. To recover the other subkey, a plaintext, ciphertext pair
(︁
𝑝1, 𝑐1

)︁
is chosen and PF𝑘 round functions till the second subkey whitening is computed offline

and XOR-ed with 𝑐1. So, the complexities of 𝑟-round Flex-𝑥 with 𝑓 free rounds are-

1. Data Complexity is 3× 𝑥
16 ×

27×(𝑟−𝑓)

215 encryption queries.

2. Time Complexity is 3× 𝑥
16 × 27×(𝑟−𝑓) memory accesses.

3. Memory Complexity is 3× 𝑥
16 × 216 Flex-𝑥 states.

The complexities of particular cases for 7-round Flex-64 with 𝑓=1, 16-round Flex-

128 with 𝑓=1 and 21-round Flex-256 with 𝑓=4 have been listed in Table 3.2.

3.1.4 Experimental Verification

The key recovery attack using iterated differentials has been experimentally verified

for 8 rounds Flex-128 with 𝑓=3. The attack initiates after a key is chosen randomly.

The number of key candidates after using the first right pairs for each pair of sym-

metric bytes (from (𝐾𝛼[0],𝐾𝛼[8]) to (𝐾𝛼[7],𝐾𝛼[15])) are 316, 520, 632, 448, 568, 484,

368 and 356 respectively. It conforms to the theoretical analysis, which states that

the number of candidates should be around 29. After using the second right pairs,

the number of candidates is reduced to 2, 12, 4, 4, 6, 5, 2 and 5 respectively which

is close to the theoretical value of 22. The third right pair reduces the number for all

pairs of bytes to 1. The key recovery attack correctly recovers the subkeys.

In the following section, we show how to mount forgery attacks on FlexAEAD

variants using the idea of iterated truncated differentials.

85

3.2 Forgery Attacks on FlexAEAD

Eichlseder 𝑒𝑡 𝑎𝑙. have shown forgery attacks on FlexAEAD by applying several strate-

gies [103]. All those strategies are also applicable using the differentials described in

this chapter. The main difference between these two approaches is the differential

characteristics for the sequence generation. First, the differential characteristic of the

sequence generation step is shown.

3.2.1 Differential Characteristics in Sequence Generation

A sequence of bits is used by FlexAEAD for authenticated encryption. These se-

quences are generated by using PF𝑘, with initial state being the nonce. For details on

sequence generation refer to [96]. The difference between two consecutive sequence

numbers is that their last call to PF𝑘 differ by a INC32 call. INC32 is a 32-bit word

operation which acts as an XOR operation with probability 2−1.

Consider, 𝑚 32-bit words in a 𝑟-round Flex-𝑥 state. Due to INC32 with probability

2−𝑚, 𝑚 nibbles at 𝑚
2 symmetric positions become active between two subsequent se-

quence generation steps. Due to BlockShuffle, those 𝑚 active nibbles is converted

to 𝑚
2 active bytes which occupies 𝑚

4 symmetric positions. In the next round, those

active bytes transits to 𝑚
8 symmetric positions (𝑚4 active bytes) at the cost of 2−2𝑚.

In the next round, 𝑚
16 symmetric positions get occupied at the cost of 2−𝑚. After

repeating the process,
(︁

log2(𝑚) − 2
)︁

times, only one symmetric position remains

occupied by the active byte. For the rest
(︁
𝑟 − log2(𝑚) + 2

)︁
rounds, with probability

2−8 for each round the position of two active nibbles in the output get fixed (Note

that, in the iterated truncated differential, the position of active is not fixed and that

is why the probability of 2−7 is paid). With 2−8 probability the value of the active

nibbles can be fixed to a specific value.

By following this approach, the difference of two consecutive sequence numbers

can be fixed to a specific value with probability 2−50 for FlexAEAD-64, 2−60 for

FlexAEAD-128 and 2−80 for FlexAEAD-256 (Corresponding complexities of forgery

attacks are computed by taking the inverse of these probabilities). Differential char-

86

Figure 3-2: Differential Characteristics of Sequence Generation for FlexAEAD-128.
Note that, plaintext difference or associated data difference can cancel out difference
in 𝑆𝑖 ⊕ 𝑆𝑖+1 with probability 2−8.

Table 3.5: Comparison of Forgery Attacks on FlexAEAD

Scheme Complexity Technique Reference

FlexAEAD-64 250

Changing Associated Data/
Truncating Ciphertext/
Reordering Ciphertext

Current Work
246 [103]

FlexAEAD-128 260 Current Work
254 [103]

FlexAEAD-256 280 Current Work
270 [103]

acteristics of sequence generation for FlexAEAD-128 is shown in Fig 3-2. Once the

output difference value is fixed, the techniques (Changing Associated Data, Truncat-

ing Ciphertext, Reordering Ciphertext) in [103] can be applied to forge ciphertext-tag

pair. Comparison between several approaches regarding forgery attack is enlisted in

Table 3.5.

87

3.3 Chapter Summary

In this work, we analyzed all variants of PF𝑘 of FlexAEAD. We reported a one round

differential characteristic of PF𝑘, which due to its iterative nature was exploited to

penetrate a large number of rounds. All the attacks were easily exploited to recover

the subkeys. The iterated truncated differential attack strategy was applied to the

nonce-based sequence number generator which was exploited to devise similar kinds

of forgery attacks on FlexAEAD as given by Eichlseder 𝑒𝑡 𝑎𝑙. [103]. The success

probabilities of all distinguishing attacks were shown to be high. All attacks reported

in this work with practical complexities were experimentally verified. All these attacks

have exploited a vulnerability in the design which is based on dividing the nibbles

into two parts while using AES s-box.

88

4
YOYO ATTACKS ON INTERNAL KEYED

PERMUTATION OF FlexAEAD

Contents
4.1 Yoyo Attacks on PF𝑘 . 89

4.2 Success Probability of Distinguishing Attacks 95

4.3 Chapter Summary . 96

In this chapter, we explore the application of the yoyo property which has been

introduced by Rønjom 𝑒𝑡 𝑎𝑙. [176] on generic 2-round Substitution Permutation Net-

works and further extended on AES-based permutations and block ciphers [180, 27].

We have been able to devise deterministic yoyo distinguishers for 4, 6 and 8 rounds

of Flex-64, Flex-128 and Flex-256 respectively which are further extended by one

more round to mount key recovery attacks. All key recovery attacks (reported in this

work) with their respective complexities are summarized in Table 4.1. The attacks

with practical complexities are experimentally verified.

4.1 Yoyo Attacks on PF𝑘

The yoyo distinguishing attack has been briefly described in Section 2.5.2. First, the

result of yoyo game on 2-generic SP rounds has been applied for devising 𝑟-round

Flex-𝑥 deterministic distinguisher. Then cipher specific properties has been exploited

89

Table 4.1: List of key recovery attacks on PF𝑘 using the yoyo game reported in this
work. Encs, Decs, MAs refers to encryption queries, decryption queries and Memory
Accesses respectively. For uniformity, memory accesses and memory complexity has
been provided in terms of Flex-128 state. 1 MA for Flex-128 corresponds to 2 MA in
Flex-64 and 0.5 MA in Flex-256. Memory complexity is also normalized by the same
ratio. #R denotes the number of rounds.

Block
Size

#R
Data

Complexity
Time

Complexity
Memory

Complexity
Attack
Type

Section No. of
Current Work

Encs Decs MAs

64 5 210 216.5 215.5 210 Yoyo
Attack

4.1.3

128 7 210.5 216.5 216.5 211.5 Yoyo
Attack

4.1.3

256 9 211 216.5 217.5 213 Yoyo
Attack

4.1.3

to penetrate one more extra round and recover the key. Here, 𝑟 is 4, 6 and 8 for Flex-

64, Flex-128 and Flex-256 respectively. First, details about Super-Sbox of Flex-𝑥 is

given.

4.1.1 Super-Sbox of PF𝑘

Refer to Fig. 4-1 for the Super-Sbox construction in Flex-128 block cipher. Consider

the bytes {𝐵[0], 𝐵[2], · · ·𝐵[7]} at 𝑋1. Due to round function, only the symmetric

bytes affect each other. So, in 𝑌1 every symmetric bytes depends on every symmetric

bytes at 𝑋1. Due to 𝐵𝑆2, 𝐵[2𝑖], 𝐵[2𝑖+ 8] (0 ≤ 𝑖 ≤ 3) from 𝑌1 constitutes the 𝐵[4𝑖],

𝐵[4𝑖 + 1] (0 ≤ 𝑖 ≤ 3) at 𝑋2. Due to application of 𝐵𝑆3, {𝐵[2𝑖], 𝐵[2𝑖 + 1], 𝐵[2𝑖 +

8], 𝐵[2𝑖+9]}, (0 ≤ 𝑖 ≤ 1) at 𝑌2 affects {𝐵[8𝑖], 𝐵[8𝑖+1], 𝐵[8𝑖+2], 𝐵[8𝑖+3]}, (0 ≤ 𝑖 ≤ 1)

at 𝑋3. This constitutes a Super-Sbox which spans over 2.5 rounds (omitting the initial

BlockShuffle). There are two 64-bit Super-Sbox in the Flex-128 state. In similar

way, Flex-64 and Flex-256 has 32-bit and 128-bit Super-Sbox which span over 1.5 and

3.5 rounds respectively. In the next subsection, how these Super-Sboxes are used to

design deterministic yoyo distinguishers is discussed.

90

Figure 4-1: Super-Sbox of Flex-128 Block Cipher

4.1.2 Deterministic Distinguisher for 𝑟-round Flex-𝑥

In devising this distinguisher, Theorem 1 has been used directly. For this purpose,

the 𝑆 ∘ 𝐿 ∘ 𝑆 layers need to be identified in this construction. The 𝑆 here corre-

sponds to Super-Sbox described in Section 4.1.1 whereas the 𝐿 corresponds to the

BlockShuffle layer. A pair of plaintexts is chosen such that only one of the Super-

Sbox is active at 𝑋1. yoyo game is played using these two plaintexts to obtain a

new pair of texts. The same Super-Sbox should be active in the new pair of texts

and the other should be inactive. For a uniform random discrete distribution, this

occurs with probability 1
2

𝑥
2

. Next, attack procedures and their corresponding com-

plexities are provided. In the attack procedure, steps pertaining to Flex-128 has been

91

described. Same attack strategy follows for Flex-64 and Flex-256.

Attack Procedure.

1. Choose two 128-bit plaintexts 𝑝1, 𝑝2 such that, 𝑤𝑡(𝜈(𝑝1 ⊕ 𝑝2)) = 1. Inverse

BlockShuffle is applied to 𝑝1, 𝑝2 and then they are queried to encryption oracle

to obtain 𝑐1, 𝑐2.

2. As there is two Super-Sboxes, so only one swapping is possible. One of the

Super-Sbox is swapped between 𝑐1 and 𝑐2 to form 𝑐′1, 𝑐
′
2, which are queried to

decryption oracle and 𝑝′1, 𝑝
′
2 is obtained.

3. Check whether 𝑤𝑡(𝜈(𝐵𝑆(𝑝′1)⊕ 𝐵𝑆(𝑝′2))) = 1 or not. If it is 1, then distinguish

it as Flex-128; otherwise it is a random permutation.

Complexity Evaluation.

The attack needs 2 encryption queries and 2 decryption queries; its time complexity

is 2 BlockShuffle, 2 inverse BlockShuffle operation and 2 Flex-128 state XOR,

and the memory complexity is negligible.

4.1.3 Key Recovery for (𝑟 + 1)-round Flex-𝑥

For attacking (𝑟+1)-round Flex-𝑥, yoyo distinguishing attack on 𝑟-round is composed

with the one round trail of iterated truncated differential. The attack for Flex-128

is shown in Fig. 4-2. With probability 2−7 only one Super-Sbox is active at 𝑋2. By

virtue of yoyo game, only one Super-Sbox should be active in 𝑊2. Due to inverse

BlockShuffle, the differences should be confined to either upper nibbles or lower

nibbles in 𝑍1; the other half should be free. With probability 2−8, two symmetric

bytes become free at 𝑍1. There are 8 (4 and 16 for Flex-64 and Flex-256 respectively)

choices for symmetric byte positions which increases the probability to 2−5
(︁
2−6 and

2−4 for Flex-64 and Flex-256
)︁
. Therefore, at the cost of 2−12, two symmetric bytes

92

Figure 4-2: 7-round Yoyo Distinguisher for Flex-128

become free for the 7-round Flex-128. Probability of the same event for 5-round

Flex-64 and 9-round Flex-256 is 2−13 and 2−11 respectively. Now, the attack steps of

Flex-128, it’s corresponding complexities and experimental verifications are discussed.

Attack Procedure.

1. Choose 26 plaintexts such that they differ only in 𝐵[0] and 𝐵[8]. Apply inverse

BlockShuffle on them and query them to encryption oracle to obtain corre-

sponding ciphertexts. Consider all ciphertext pairs, swap bytes between them

according to the Super-Sbox output and query them to the decryption oracle

to obtain new pairs of plaintexts. Check whether the pair has a pair of free

symmetric bytes. At least one such pair is expected.

2. Repeat step 1 two more times to obtain two more right pairs. Let (𝑐1, 𝑐2),

(𝑐3, 𝑐4) and (𝑐5, 𝑐6) be such pairs and their corresponding plaintexts are (𝑝1, 𝑝2),

(𝑝3, 𝑝4) and (𝑝5, 𝑝6). After byte swapping, (𝑐1, 𝑐2), (𝑐3, 𝑐4) and (𝑐5, 𝑐6) becomes

(𝑐′1, 𝑐′2), (𝑐′3, 𝑐′4) and (𝑐′5, 𝑐′6). BlockShuffle is applied on the decrypted value of

these modified ciphertexts to obtain (𝑝′1, 𝑝′2), (𝑝′3, 𝑝′4) and (𝑝′5, 𝑝′6).

3. Guess key bytes 0 and 8 for 𝐾𝛼, run one round encryption for 𝑝′1, 𝑝′2 and observe

93

whether same nibble in 𝐵[0] and 𝐵[8] remains free or not for the pair. Using

nibble transition, out of 216 candidates, 27 are filtered out. Then the remaining

two right pairs subsequently reduces the number of candidates for 𝐾𝛼[0] and

𝐾𝛼[8] to 22 and 1 respectively.

4. For the remaining 7 symmetric pairs of bytes, step 3 is repeated 7 more times.

At, the end 1 key candidates are expected for 𝐾𝛼. For each 𝐾𝛼, 𝐾𝛽 is computed

by using a plaintext-ciphertext pair. If there is more than one 𝐾𝛼, 𝐾𝛽 pair, they

are exhaustively tried for finding the right key candidate.

Complexity Evaluation.

Let probability of the event that “two symmetric bytes become free" is 2−𝑝. So, for

retrieving a right pair, 2 𝑝
2 encryption queries and 2𝑝 decryption queries are required.

For guessing each pair of key byte, 3 such right pairs are needed and to recover the

key, this process need to be repeated 𝑥
16 times. Therefore, data complexity of the

attack is 3×𝑥
16 × 2 𝑝

2 encryption queries and 3×𝑥
16 × 2𝑝 decryption queries.

Time complexity is 3×𝑥
16 × 2𝑝 memory accesses for retrieving the stored ciphertexts.

Memory complexity is 3×𝑥
16 × 2 𝑝

2 +1 Flex-𝑥 states for storing the plaintexts and cipher-

texts.

The complexities of 7-round Flex-128 key recovery attack are-

1. Data Complexity is 24 × 26 ≈ 210.5 encryption queries and 24 × 212 ≈ 216.5

decryption queries.

2. Time Complexity is 216.5 memory accesses.

3. Memory Complexity is 211.5 Flex-128 states.

Experimental Verification.

The yoyo attack for 7-round Flex-128 has been experimentally verified. Initially the

oracle chooses a master key randomly and computes the subkeys. Adversarial algo-

rithm queries according to attack steps in Section 4.1.3 and retrieves right pairs. The

94

Table 4.2: Success probabilities of various distinguishers. #R denotes the number of
rounds.

Distinguisher
Type

Block
Size

𝑓 #R 𝑝× (1 + 𝑞) 𝑝
Success

Probability

Iterated
64 1 7 2−42 2−48 0.8
128 1 16 2−105 2−112 0.82
256 4 21 2−119 2−192 0.84

Yoyo
64 𝑛/𝑎 5 2−13 2−14 0.61
128 𝑛/𝑎 7 2−12 2−13 0.61
256 𝑛/𝑎 9 2−11 2−12 0.61

number of key candidates corresponding to each symmetric bytes
(︁
from (𝐾𝛼[0],𝐾𝛼[8])

to (𝐾𝛼[7],𝐾𝛼[15])
)︁

after filtering with first right pairs are 502, 618, 546, 496, 510,

486, 552 and 538 respectively which conforms to the theoretical value of 29. The

second right pairs further reduces it to 6, 7 6, 7, 7, 3, 3 and 5 respectively which

is close to the theoretical value of 22. The third pairs reduces all these values to 1.

This reduction in the number of key candidates using the right pairs conforms to the

theoretical analysis. At last, the algorithm successfully recovers the subkeys.

In the next section, we discuss the success probability of distinguishing attacks

reported in this work.

4.2 Success Probability of Distinguishing Attacks

The effectiveness of an attack depends on its success probability. First, the success

probability of all reported distinguishers is computed. Then, the success probability

of practical ones is experimentally verified. To deduce the theoretical estimation of

success probabilities, the following theorem from [174] has been applied.

Table 4.2 lists the success probabilities of different distinguishers presented in this

chapter.

95

Table 4.3: Experimental Verification of Success Probability

Distinguisher #rounds 𝑓 #𝑛 Blackbox
Detected as

𝒞
Detected as

ℛ

Experimental
Success

Probability

Estimated
Success

Probability

Flex-64 5 2 100 Flex-64 65 35 0.8 0.83
ℛ 5 95

Flex-64 6 2 100 Flex-64 79 21 0.76 0.77
ℛ 27 73

Table 4.4: Comparison of Success Rate for Flex-64

𝑓 #rounds 𝑝× (1 + 𝑞) 𝑝
Success

Probability
1 6 2−35 2−48 0.83
2 6 2−28 2−32 0.77

Experimental Verification.

The values of success probabilities for 5-round and 6-round Flex-64 derived using

experiments and theoretical estimations are listed in Table 4.3.

Trade-off between Success Rate and Free Rounds.

The iterated truncated differentials can have a different number of free rounds at

the end. More number of free rounds reduces the trail complexity at the expense of

success rate. For analysis, consider the case pertaining to 6-round Flex-64 with the

number of free rounds 1 and 2. The success rate for both cases is listed in Table 4.4.

For 21-round Flex-128, the number of free rounds can take any value between

1 and 4. For each of the cases, the theoretical estimation of success probability is

almost equal. The estimated success probabilities have been shown in Table 4.5. The

difference between the distribution of random bitstream and 21-round Flex-128 for

each case is so huge, that it has a negligible effect on the success probability.

4.3 Chapter Summary

Here, it is shown that the generalized yoyo distinguishing attack on SPN ciphers is

applicable for PF𝑘. While deploying yoyo attack, a Super-Sbox construction of 1.5,

96

Table 4.5: Comparison of Success Rate for Flex-256

𝑓 𝑝× (1 + 𝑞) 𝑝
Success

Probability
1 2−140 2−240 0.84
2 2−133 2−224 0.84
3 2−126 2−208 0.84
4 2−119 2−192 0.84

2.5 and 3.5 rounds in 64-bit, 128-bit and 256-bit PF𝑘 respectively were reported. All

these attacks were easily exploited to recover the subkeys. All the attacks reported

in this work with practical complexities were experimentally verified.

97

98

5
YOYO ATTACKS ON AES-BASED DESIGNS

Contents
5.1 Distinguishers using Direct Yoyo on AESQ 101

5.2 Improbable Differential Yoyo 108

5.3 Impossible Differential Yoyo 115

5.4 Applications to AES in the Known-Key Setting 118

5.5 Practical Verification . 122

5.6 Discussion . 122

5.7 Experimental Verification 125

5.8 Chapter Summary . 129

Non-random behavior of a cryptographic construction has been historically seen

as a sign of an inherent weakness waiting to be exploited. In this regard, devising

distinguishers forms one of the fundamental aims of a cryptanalyst since they help

exhibit non-randomness. A distinguisher generally constitutes a statistical or struc-

tural property of a crypto-primitive that is not expected to occur for an equivalent

random function. The scope of distinguishers is further amplified by the probability

of their possible conversion/extension to more stronger forms of attacks like key-

recovery for block ciphers or collisions for hash functions. The SHA3 competition

[170] witnessed the Zero-Sum distinguisher (introduced by Aumasson and Meier [22])

which was one of the most studied attacks against the internal public permutation

99

Keccak−𝑓 of SHA3 winner Keccak. On the other hand, a multitude of distinguishing

attacks have been reported on AES [87] both in the secret-key as well as known-key

setting (introduced by Knudsen and Rijmen [142]). The known-key paradigm is of

particular interest since it enables studying a cipher as a public permutation. More-

over, as argued by Knudsen and Rijmen, non-existence of a known-key distinguisher

implies non-existence of a secret-key one, making it imperative to study the former.

This work aims to explore distinguishing attacks on public permutations based on

AES with the motivation that results reported here might lead to stronger attacks on

constructions where these permutations are deployed as an internal transformation.

The current work intends to look at the yoyo technique as a general cryptanal-

ysis strategy specially in the light of public permutations. In particular, we look at

AESQ, the AES-based internal permutation of CAESAR [1] round 2 candidate PAEQ [9].

PAEQ, along with AESQ permutation was introduced by Biryukov and Khovratovich

in ISC 2014 [56]. There are many variants of PAEQ but across all variants, the same

permutation AESQ of width 512 bits is used. The designers themselves have done

a lot of cryptanalysis on PAEQ and have shown a Constrained Input Constrained

Output (CICO) attack with complexity 232 on 8-round AESQ. They have also pro-

posed a 12-round distinguisher with complexity 2256. Bagheri et al. have reduced

the complexity of the 12-round disgtinguisher to 2128[25]. They have extended their

work for 16-round AESQ permutation and shown a distinguisher with complexity 2192

using 2128 memory. A key recovery attack has also been devised on PAEQ targeting

the diffusion of the AESQ permutation by Saha et al. [179]. They have proposed a

8-round key recovery with complexity of 248.

This work reports a family of distinguishers on AESQ which primarily capitalize on

the yoyo game. This is the first time that yoyo based distinguishers have been devised

for a public permutation. The basic yoyo idea is augmented with other cryptanalytic

principles to penetrate a higher number of rounds. In doing so, the first practical

9-round distinguisher that works from the first round is achieved. The inside-out

technique is leveraged up on to reach up to 10 rounds with practical complexities

and extended to 12 rounds with 2126 queries. Further, we introduce the idea of

100

bi-directional yoyo game where two yoyo games are played in opposite directions

and connected using the properties of the linear layer of AESQ. This leads to the

development of a 16-round distinguisher with a complexity of 2126. We summarize our

results in comparison to the previous works in Table 5.1. As can be seen, the current

work outperforms all previous results by a huge margin while requiring negligible

memory. Finally, to emphasize the scope of the devised techniques we apply them

to AES which under the known-key setting also behaves like a public permutation.

Applying bi-directional yoyo on AES helps devise one of the best 8-round distinguishers

with complexity of 230 and negligible memory requirement, as shown in Table 5.2.

The rest of the work is organized as follows. In Section 5.1.1, a deterministic

distinguisher for 8-round AESQ is presented. This deterministic distinguisher is ex-

tended and a 9-round probabilistic distinguisher is illustrated in Section 5.1.2. In

Section 5.2, a brief overview of improbable differential and inside-out technique and

their application to AESQ is given. In Section 5.3, impossible yoyo distinguishers for 12

and 16-round AESQ are demonstrated. In Section 5.4, impossible differential yoyo and

impossible differential bi-directional yoyo techniques is applied to round-reduced AES

in known-key setting. Experimental setup and results are briefly mentioned in Sec-

tion 5.5. Arguments in favour of the validity of the work are discussed in Section 5.6.

The chapter is summarized in Section 5.8.

5.1 Distinguishers using Direct Yoyo on AESQ

In order to adapt the yoyo trick on AESQ, we need to first identify the 𝑆 ∘ 𝐿 ∘ 𝑆

construction embedded in the permutation. To do that one has to recall the notion

of MegaSBox whereby 3.5 rounds1 of AESQ starting from an even round can be de-

picted as independent computations of four 128-bit words (Refer to Fig. 2-8). These

four MegaSBoxes constitute the first 𝑆 layer of the generic SPN. The subsequent

MegaMixColumns corresponds to 𝐿 layer while the next iteration of four MegaS-

Boxes represent the last 𝑆 layer thereby completing the 𝑆 ∘ 𝐿 ∘ 𝑆 sequence. Fig. 5-1
1Without the MegaMixColumns of the last round

101

Table 5.1: Distinguishers on Round-Reduced AESQ

Rnd
Complexity

Technique Reference
Time Memory Success Prob.

8 232 CICO Designers [9]
8† 1 Negligible

Yoyo
Section 5.1.1

9 226.08 Negligible 0.71 Section 5.1.2

9† 5 Negligible 0.82 Improbable

Differential Yoyo

Section 5.2.2

10† 228 Negligible 0.77 Section 5.2.2

12†

2126 Negligible 0.84
Impossible

Differential Yoyo
Section 5.3.1

2256 2256 0.61
Rebound Attack

Designers [9]
2128 Negligible 0.83

Bagheri et al. [25]

2102.4 2102.4 0.83 Time-memory
Trade-off2128−𝑥/4 2𝑥

16†

2192 2128 0.83 Rebound Attack

2188 2128 0.83
Multi Ltd.-Birthday

Distinguisher

2192+𝑥 2128−𝑥 Time-memory
Trade-off

2126 Negligible 0.84
Impossible Differential

Bi-directional Yoyo
Section 5.3.2

† Starting from round 2

102

shows this construction starting from Round-2. So two generic SP-rounds map to

8 rounds of AESQ without the last MMC. So, the yoyo distinguisher pertaining to

two generic SP-rounds as discussed above directly applies to AESQ2→9. In the next

subsection we work out the details of this distinguisher which is the first deterministic

8-round distinguisher for the AESQ permutation.

Figure 5-1: AESQ2→9 as an 𝑆 ∘ 𝐿 ∘ 𝑆 construction.

Figure 5-2: Word configuration for each MegaSBox

103

5.1.1 Distinguisher for 8 Rounds

Let us first look at the yoyo game for AESQ which we will call as a subroutine for

the distinguishing algorithm. The yoyo game shown in Algorithm 4 is tailored w.r.t

AESQ𝑖→𝑗 but will be analogous for any corresponding random permutation. The pro-

cedure is self-explanatory except for two things:

• The function MSwap is used to swap words between two states of AESQ. Apart

from the states it accepts an argument DIRECTION which decides whether input

or output words (Ref. Fig. 5-2) will be swapped. So, if DIRECTION = FORWARD,

then output words will be swapped while for DIRECTION = BACKWARD, it will

be done in accordance with input word pattern. This distinction takes into

account the direction in which the game is being played. As will be seen later,

we will need to play the game in the backward direction to penetrate a higher

number of rounds. Moreover, MSwap can, at random, swap any one, two or

three words of the states. As shown by the authors of [176], all such word-swap

configurations are equivalent and preserve the properties of the yoyo game.

• The argument Mode is used to play either half or full of the yoyo game and

respectively receives values MID or FULL. Later, in this work we will show how

output of half of the game can be used to generate input states that help to

distinguish up to 16 rounds of AESQ.

Algorithm 4 Yoyo Game for AESQ
1: procedure Yoyo(𝑝1, 𝑝2, AESQ𝑖→𝑗, Mode, DIRECTION)
2:

{︁
𝑐1 ← AESQ𝑖→𝑗(𝑝1); 𝑐2 ← AESQ𝑖→𝑗(𝑝2)

3: (𝑐′1, 𝑐′2)← MSwap(𝑐1, 𝑐2, DIRECTION) ◁ DIRECTION ∈ {FORWARD, BACKWARD}
4: if Mode = MID then
5: return (𝑐′1, 𝑐′2)
6: else if Mode = FULL then
7:

{︁
𝑝′1 ← AESQ−1

𝑖→𝑗(𝑐′1); 𝑝′2 ← AESQ−1
𝑖→𝑗(𝑐′2)

8: end if
9: return (𝑝′1, 𝑝′2)

10: end procedure

104

With the yoyo game in place, the 8-round distinguisher that uses it, is straight-

forward as shown in Algorithm 5. The distinguisher accepts a permutation PERMUTE.

It chooses inputs 𝑝1 and 𝑝2 such that 𝛼 = 𝑝1 ⊕ 𝑝2 has a particular ZDP (of weight

at least one and at most three), say 𝜈(𝛼) = (1, 0, 1, 0). Then it plays the yoyo game

generating two new inputs 𝑝′1 and 𝑝′2 with Δ = 𝑝′1 ⊕ 𝑝′2. If PERMUTE = AESQ2→9, it is

ensured that ZDP of 𝛼 is same as that of Δ.

Algorithm 5 Distinguisher for AESQ2→9
Output: 1 for AESQ, -1 otherwise ◁ 8-Round AESQ without last MMC

1: procedure DistYoyo(PERMUTE)
2: 𝑝1, 𝑝2 ←

{︂
(𝑚1,𝑚2) : 3 ≥ 𝑤𝑡(𝜈(𝑚1 ⊕𝑚2)) > 0

}︂
◁ At least one word active

3: 𝑝′1, 𝑝
′
2 ← Yoyo(𝑝1, 𝑝2, PERMUTE, FULL, FORWARD)

4: if 𝜈(𝑝′1 ⊕ 𝑝′2) = 𝜈(𝑝1 ⊕ 𝑝2) then ◁ Holds for AESQ2→9 deterministically
5: return 1
6: else
7: return -1
8: end if
9: end procedure

The pictorial description is captured by Fig. 5-3. It is intentionally shown that

the Nested ZDP might differ which will definitely happen probabilistically. This is

because the yoyo principle guarantees that the ZDP will be preserved but has no

claim on the activity pattern inside the active words. In the next subsection we will

show how assuming a particular Nested ZDP enables us to extend the distinguisher

to include the first round making it the first 9-round AESQ result that starts from

round one.

5.1.2 Extension to 9-round AESQ

The inclusion of the first round relies on the notion of Nested ZDP that we introduced

earlier. The basic idea is to:

• First leverage on the determinism of the 8-round yoyo while imposing some

restriction on both the input and output Nested ZDP, thereby making it proba-

bilistic. If the input and output differences of the yoyo are 𝛼 and 𝜂 respectively,

105

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

p′1

p′2

c′1

c′2

c1

c2

MSwap
β β

α ∆
ν(α) = ν(∆)

α : ν(α) = (1, 0, 0, 1)

∆ : ν(∆) = (1, 0, 0, 1)

Figure 5-3: Deterministic 8-round yoyo distinguisher. ZDP of input difference 𝛼 is
preserved by output difference Δ of the yoyo game. A possible configuration of (𝛼,Δ)
is shown. Note that though 𝜈(𝛼) = 𝜈(Δ), 𝑤𝑡(𝜈2(𝛼)) ̸= 𝑤𝑡(𝜈2(Δ)). We will use this
kind of Nested ZDP to extend the yoyo beyond 8 rounds.

106

then the restrictions are of the form:

1. Input: Exactly one byte active in one word.

𝑤𝑡(𝜈(𝛼)) = 3 and ∃𝑖 : 𝑤𝑡(𝜈2(𝛼𝑖)) = 15.

2. Output: Exactly one byte inactive in one word.

𝑤𝑡(𝜈(𝜂)) Yoyo= 3 and ∃𝑖 : 𝑤𝑡(𝜈2(𝜂𝑖)) = 1.

Now, the probability that 𝛼 leads to 𝜂 is
[︁
16× 2−8 × (255

256)15
]︁
≈ 2−4.08.

• The second step is to find a one-round differential to connect with the input

difference 𝛼. This is standard2 and we can, with a probability 2−22, find an

input difference that conforms to the input restriction for the yoyo game. This

leads to the inclusion of round one in the forward direction.

• The last step is to include the round in the backward direction. One can easily

note that if the output restriction is satisfied then, the extra round in the

return path will automatically lead to a state that has four inactive bytes. More

precisely, if the last difference is denoted by Δ then we have ∃𝑖 : 𝑤𝑡(𝜈2(Δ𝑖)) = 4.

Also, the inactive bytes will belong to same diagonal due to the last inverse

ShiftRows operation of Round 1.

Fig. 5-4 gives an overview of the entire extension strategy and also depicts a partic-

ular configuration of states that conform to the above statements while Algorithm 6

illustrates the distinguishing procedure.

Now, the final probability Pr
[︂
∃𝑖 : 𝑤𝑡(𝜈2(Δ𝑖)) = 4

]︂
for AESQ1→9 and a correspond-

ing random permutationℛ is given by 𝑝0 = 2−26.08 and 𝑝 = 16×2−32×(255
256)60 ≈ 2−28.34

respectively, giving us a success rate of 71% at the data complexity of 226.08.

In the next section, we introduce the notion of improbable differential yoyo whereby

we try to compose the yoyo game with improbable differentials capitalizing on the
2Recall, the classical 4→ 1 transition though AES MixColumns.

107

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

i1

i2

A
E
S
Q
1

A
E
S
Q
1

p1

p2

i′1

i′2

A
E
S
Q
1

A
E
S
Q
1

p′1

p′2

c′1

c′2

c1

c2

MSwap

α ∆

β η

γ γ

2−22

∃i : wt(ν2(∆i)) = 4

Verify

Figure 5-4: Probabilistic 9-round yoyo distinguisher. A configuration of (𝛼,Δ) is
shown.

inside-out strategy.

Algorithm 6 Distinguisher for AESQ1→9
Output: 1 for AESQ, -1 otherwise ◁ 9-Round AESQ without last MMC

1: procedure ImpDistYoyo(PERMUTE)
2: count← 0
3: while count ≤ 226.08 do
4: 𝑖1, 𝑖2 ←

{︂
(𝑚1,𝑚2) : 𝛼 = 𝑚1 ⊕𝑚2;𝑤𝑡(𝜈(𝛼)) = 3 ∧ ∃𝑖 : 𝑤𝑡(𝜈2(𝛼𝑖)) = 12

}︂
◁ All four active bytes should belong to the same diagonal

5: 𝑝′1, 𝑝
′
2 ← Yoyo

(︂
𝑖1, 𝑖2, PERMUTE, FULL, FORWARD

)︂
6: if ∃𝑖 : 𝑤𝑡(𝜈2(𝛼𝑖)) = 4 then return 1

◁ All four inactive bytes should belong to the same diagonal
7: end if
8: count← count + 1
9: end while

10: return -1
11: end procedure

5.2 Improbable Differential Yoyo

In Indocrypt 2010, Tezcan introduced the notion of improbable differential cryptanal-

ysis [194]. The idea is to find a differential which is less probable for a given permu-

108

tation (say, 𝒫) in comparison to a random permutation (say, ℛ). So if 𝑃𝑟𝒫(Δ𝑖𝑛 →

Δ𝑜𝑢𝑡) = 𝑝0 while 𝑃𝑟ℛ(Δ𝑖𝑛 → Δ𝑜𝑢𝑡) = 𝑝, then for the improbability criteria we must

have 𝑝0 < 𝑝, where 𝑃𝑟𝒫 and 𝑃𝑟ℛ, represent the probabilities of the input difference

Δ𝑖𝑛 and output difference Δ𝑜𝑢𝑡 to occur for 𝒫 and ℛ respectively. Tezcan argued

that improbability led to the well-known impossibility criteria where 𝑝0 = 0. He fur-

ther proposed an idea known as the expansion technique [194] to devise improbable

differential by connecting (multiple) differentials with an impossible differential. The

expansion technique is briefly stated below:

𝑃𝑟𝒫(Δ𝑚𝑖𝑑 → Δ𝑜𝑢𝑡) = 0 Impossible Differential

𝑃𝑟𝒫(Δ𝑖𝑛 → Δ𝑚𝑖𝑑) = 𝑝′ Connecting Differential

Let 𝑃𝑟ℛ(Δ𝑖𝑛 → Δ𝑜𝑢𝑡) = 𝑝

Let 𝑃𝑟𝒫(Δ𝑖𝑛 → Δ𝑜𝑢𝑡) = 𝑝0 if Δ𝑖𝑛 ̸→ Δ𝑚𝑖𝑑

Then probability of the improbable differential for a given permutation 𝒫 is given by:

𝑃𝑟𝒫(Δ𝑖𝑛 → Δ𝑜𝑢𝑡) = 𝑝0 = (1− 𝑝′)× 𝑝+ 𝑝′ × 0 = (1− 𝑝′)𝑝 (5.1)

Our idea is to:

• First, use our notion of Nested ZDP with properties of the MixColumns to

devise an impossible differential.

• Then, we find a differential that connects the starting ZDP of the yoyo game

with input difference of the impossible differential.

Overall, by virtue of the expansion technique, we are able to devise an improbable

differential leading to higher number of rounds than that covered by the yoyo game.

In order to do this, we will use the inside-out technique described next.

109

5.2.1 The Inside-Out Technique

The inside-out technique [163, 22] has been used extensively in distinguishing public

permutations like the Keccak-𝑓 permutation [22], whereby the idea is to start from an

intermediate state to generate a set of inverted initial states that preserve a certain

property (e.g. the zero-sum property in case of Keccak). Here we try to adapt the

technique to incorporate the yoyo game. The idea is as follows:

• Play the yoyo game from an intermediate round to generate pairs of input states.

• In the return path of the yoyo game, we extend the number of rounds using an

improbable/impossible differential.

In the next subsection we will show different distinguishers based on the following

claim which leads to impossible differences at various rounds of AESQ.

Claim 5.2.1 (Impossible Difference). Let the input difference before the 𝑟𝑡ℎ round

(where 𝑟 denotes an odd round) MegaMixColumns be 𝛿 and let exactly one word of 𝛿

(say 𝛿𝑖) be active i.e. 𝑤𝑡(𝜈(𝛿)) = 3, then the following will hold

1. If 𝑤𝑡(𝜈2(𝛿𝑖)) = 0, then all 64 SBoxes of the state will be active before (𝑟 + 1)𝑡ℎ

round Mega-MixColumns.

2. If 𝑤𝑡(𝜈2(𝛿𝑖)) = 0, then all 16 SuperSBoxes of the state will be active before

(𝑟 + 2)𝑡ℎ round Mega-MixColumns.

3. Unconditionally, all 4 MegaSBoxes of the state will be active before (𝑟 + 4)𝑡ℎ

round Mega-MixColumns.

Proof. The proof proceeds as below:

1. 𝑤𝑡(𝜈(𝛿)) = 3 and 𝑤𝑡(𝜈2(𝛿𝑖) = 0) implies that every byte in word 𝛿𝑖 is active.

Since only one word is active, we have a byte active in every column. The word-

configuration will be in accordance with MegaSBox output words (See Fig. 5-2).

Now, the claim follows directly from the property of AES MixColumns. It is

well known that the total number of active bytes before and after a MixColumns

110

operation cannot be less than 5. Since, the input to every MixColumns operation

in the 𝑟𝑡ℎ round has 1 byte active, then the output has all 4 bytes of the column

active with a probability 1. So the entire state is active after 𝑟𝑡ℎ round MMC.

Thus in the (𝑟+1)𝑡ℎ round, all SBoxes of the state have non-zero input difference

and hence cannot have a zero output difference and hence will be all active

deterministically up to the next MMC operation. If the output difference is

denoted by 𝜂, then

Pr
[︂
𝑤𝑡(𝜈2(𝜂)) = 1

]︂
= 0 ← Impossible Difference

2. The argument remains the same with the only difference that after the 𝑟𝑡ℎ round

MMC all 16 Super-Sboxes are activated that span 1.5 rounds ending just before

(𝑟 + 1)𝑡ℎ round MMC. Since, all Super-Sboxes are active, it is impossible to

have a zero-difference at the output of any of them.

3. For MegaSBox, the restriction 𝑤𝑡(𝜈2(𝛿𝑖)) = 0 is no longer required. So, we only

need 𝑤𝑡(𝜈(𝛿)) = 3. Irrespective of the status of the bytes inside the word, after

𝑟𝑡ℎ round MMC, all 4 MegaSBoxes will be activated and will span 3.5 rounds.

Thus, at the end of (𝑟 + 4)𝑡ℎ round MMC, we cannot have the case that any

of the words signifying the output of the MegaSBoxes is inactive. If the output

difference is denoted by 𝛾, then

Pr
[︂
𝑤𝑡(𝜈(𝛾)) = 1

]︂
= 0 ← Impossible Difference

The implications of Claim 5.2.1 are captured by Fig. 5-5 which shows the particular

case of 𝑟 = 9 relevant for this work. So, we have three impossible differentials covering

10, 10 to 11 and 10 to 13 rounds respectively. We next show how we convert the

first two into improbable differentials to get a 9-round and 10-round distinguisher

with practical complexities. Later, using the third one, we will devise an impossible

111

differential distinguisher for 12 rounds.

Figure 5-5: Different State Configurations Conforming to Claim 5.2.1

5.2.2 Improbable Differential Yoyo Distinguisher for 9-round

and 10-round AESQ

As per the requirement of the expansion technique explained earlier, we need an im-

possible differential and a connecting differential that conforms to its input. Now,

Claim 5.2.1 (1,2) already gives us the impossible differential. We are interested par-

ticularly for the case when 𝑟 = 9. So, for 𝑟 = 9, we have 1 and 2 round impossible

differential (without last MMC as shown in Fig. 5-5). We now use the yoyo game to

generate the connecting differential. The strategy is demonstrated in Fig. 5-6. The

probabilities can be derived as below:

𝛼 : 𝑤𝑡(𝜈(𝛼)) = 3

Pr[𝑤𝑡(𝜈(𝛿)) = 3] = 1 [∵ 𝜈(𝛼) Yoyo= 𝜈(𝛿)]

Pr[𝑤𝑡(𝜈(𝛿)) = 3 ∧ 𝑤𝑡(𝜈2(𝛿𝑖)) = 0] =
(︂255

256

)︂16
[𝛿𝑖 ← Only active word]

So, the technique is to use the yoyo game to generate an "arbitrary" number of

112

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
M
C

M
M
C

A
E
S
Q
1
0

A
E
S
Q
1
0

c′1

c′2

MSwap

α δ

γ γ

β

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
M
C

M
M
C

A
E
S
Q
1
0
→

1
1 A
E
S
Q
1
0
→

1
1

c′1

c′2

MSwap

α δ

γ γ

β

Figure 5-6: Improbable Differential Yoyo distinguisher for 9/10-round AESQ

inputs pairs (𝑝′1, 𝑝′2) such that the output difference of these pairs over AESQ2→10 or

AESQ2→11 can never have an inactive SBox or Super-Sbox respectively. To ascertain

the data complexity one needs to find the probabilities of these events occurring for

a random permutation. In the next subsection we find the data-complexity.

We directly use Eq. (5.1) to derive the probability of the combined differential.

For the 9-round attack, the probability of observing at least one inactive SBox for a

random permutation is 1−
(︂

255
256

)︂64
≈ 0.22. Similarly, for 10 rounds the probability of

observing an inactive Super-Sbox is 𝑝 = 16× 1
232 ×

(︂
232−1

232

)︂15
≈ 2−28. As per notations

of Eq. (5.1), we have:

• For 9 rounds

𝑝 ≈ 0.22

𝑝′ =
(︂255

256

)︂16
≈ 0.94

𝑝0 = (1− 𝑝′)𝑝 ≈ 0.0132

• For 10 rounds

𝑝 ≈ 2−28;

𝑝′ =
(︂255

256

)︂16
≈ 0.94

𝑝0 = (1− 𝑝′)𝑝 ≈ 0.06× 2−28

113

Algorithm 7 Distinguisher for AESQ2→10/AESQ2→11

Output: 1 for AESQ, -1 otherwise ◁ 9/10-Round AESQ without last MMC
1: procedure ImprDistYoyo(PERMUTE, RNDS)
2: if RNDS = 9 then
3: CMPLXTY← 5
4: COND← 𝑤𝑡(𝜈2(𝑐′1 ⊕ 𝑐′2)) > 0
5: else
6: CMPLXTY← 228

7: COND← 𝑤𝑡(𝜈2(𝑐′1 ⊕ 𝑐′2)) = 4 ◁ Inactive bytes ∈ same Super-Sbox
8: end if
9: count← 0

10: while count ≤ ⌈CMPLXTY⌉ do
11: 𝑖1, 𝑖2 ←

{︂
(𝑚1,𝑚2) : 𝑤𝑡(𝜈(𝑚1 ⊕𝑚2)) = 3

}︂
◁ One active word in 𝑚1 ⊕𝑚2

12: 𝑝′1, 𝑝
′
2 ← Yoyo

(︂
𝑖1, 𝑖2, AESQ−1

2→9, MID
)︂

◁ 9-Round AESQ without last MMC

13:

⎧⎨⎩𝑐′1 ← PERMUTE(𝑝′1);
𝑐′2 ← PERMUTE(𝑝′2)

14: if COND = TRUE then return -1
15: end if
16: count← count + 1
17: end while
18: return 1
19: end procedure

Thus the numbers of input pairs needed to distinguish AESQ2→10 and AESQ2→11 are

around 1
0.22 ≈ 5 and 228 respectively with a success probability of 82% and 77%

respectively, thereby leading to the first practical distinguishers for these rounds of

AESQ. For merely 5 samples in case of 9 rounds, the Normal approximation used in

[174, Theorem 2] does not hold and so we perform direct calculation of false positive

and false negative errors in computing the theoretical estimate of the success proba-

bility. Algorithm 7 captures both 9/10 round distinguishers at the same time. In the

next section, we introduce the notion of impossible differential yoyo in the inside-out

setting. Based on that we develop two distinguishers on 12 and 16 rounds of AESQ.

114

5.3 Impossible Differential Yoyo

Impossible differential has been shown to be a special case of improbable differential

[195, 198]. Now it is easy to note that if the connecting differential used in the expan-

sion technique occurs with a probability 1, then the combined differential becomes

impossible. The basic idea is to use the determinism of the yoyo game along with the

inside-out technique to arrive at the input of an impossible differential. We do this

in two ways: The first way leverages upon the third part of Claim 5.2.1. The second

way tries to combine two yoyo games in two directions.

5.3.1 Impossible Differential Yoyo Distinguisher for 12-round

AESQ

This attack is similar to the ones described in the previous section with only difference

that we no longer have restriction on the connecting differential due to Claim 5.2.1

(3). So what we have is an impossible differential spanning 3.5 rounds due to the

MegaSBox and the connecting differential that hold with probability 1 due to the

yoyo game. Fig. 5-7a illustrates the strategy while the procedural details are covered

by Algorithm 8.

The probability that any one of the words corresponding to the MegaSBoxes is

active for a random permutation is 𝑝 = 4
2128 . Further, we have 𝑝′ = 1 and therefore

𝑝0 = 0, resulting in a data complexity of 2126 with a success probability of 84%. Next

we show an interesting way to combine two yoyo games to come up with a 16-round

distinguisher starting from round 2.

5.3.2 Impossible Differential Bi-directional Yoyo Distinguisher

for 16-round AESQ

As the name suggests, bi-directional yoyo combines two yoyo games. These games

are played in opposite directions and employ the inside-out strategy. The ZDP re-

quirements of the two games are different as stated below:

115

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
M
C

M
M
C

A
E
S
Q
1
0
→

1
3

A
E
S
Q
1
0
→

1
3

c′1

c′2

MSwap

α γ

β β

∆

wt(ν(α)) = 3

wt(ν(γ))
Yoyo
= wt(ν(α))

Let, ∆ =
{
s : ∃i wt(ν2(si)) = 16

}

Pr
[{

AESQ2→13(p′1)⊕ AESQ2→13(p′2)
}
∈ ∆

]
= 0

Pr
[{
R(p′1)⊕R(p′2)

}
∈ ∆

]
= 2−126

(a) Impossible Differential Yoyo

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

M
M
C

M
M
C

A
E
S
Q
1
0
→

1
7 A
E
S
Q
1
0
→

1
7

A
E
S
Q
1
0
→

1
7 A
E
S
Q
1
0
→

1
7

p1

p2

p′1

p′2

i′1

i′2

i′3

i′4

c′1

c′2

m1

m2

v1

v2

r1

r2

MSwap

MSwap

α

β β

γγ

∆

η

δ

Impossible Difference

Induced Difference

(b) Impossible Differential Bi-directional Yoyo

Figure 5-7: Impossible Differential Yoyo Distinguishers on AESQ2→13 and AESQ2→17

116

Algorithm 8 Distinguisher for AESQ2→13
Output: 1 for AESQ, -1 otherwise ◁ 12-Round AESQ without last MMC

1: procedure ImpDistYoyo(PERMUTE)
2: count← 0
3: while count ≤ 2126 do
4: 𝑖1, 𝑖2 ←

{︂
(𝑚1,𝑚2) : 𝑤𝑡(𝜈(𝑚1 ⊕𝑚2)) = 3

}︂
◁ One active word in 𝑚1 ⊕𝑚2

5: 𝑝′1, 𝑝
′
2 ← Yoyo

(︂
𝑖1, 𝑖2, AESQ−1

2→9, MID
)︂

◁ 9-Round AESQ without last MMC

6:

⎧⎨⎩𝑐′1 ← PERMUTE(𝑝′1)
𝑐′2 ← PERMUTE(𝑝′2)

7: if 𝑤𝑡(𝜈(𝑐′1⊕ 𝑐′2)) = 1 then return -1 ◁ Impossible difference for AESQ2→13
8: end if
9: count← count + 1

10: end while
11: return 1
12: end procedure

• Game 1 is played with AESQ−1
2→9 without last MMC. Only one word should be

active in the input differential. So the weight of ZDP needs to be 3.

𝑖′1, 𝑖
′
2 ← Yoyo

(︂
𝑚1,𝑚2, AESQ−1

2→9, FULL, BACKWARD
)︂

: 𝑤𝑡(𝜈(𝑚1 ⊕𝑚2)) = 3

• Game 2 is played with AESQ10→17 without last MMC. All words should be active

in the input differential. So the weight of ZDP needs to be 0.

𝑟1, 𝑟2 ← Yoyo
(︂
𝑖′3, 𝑖

′
4, AESQ10→17, FULL, FORWARD

)︂
: 𝑤𝑡(𝜈(𝑖′3 ⊕ 𝑖′4)) = 0

• In order to connect Game 1 and Game 2, we will use an MMC operation. One

can visualize this as the MMC of Round 9 which is excluded while playing Game

1. So the claim is as follows:

Claim 5.3.1. If 𝑖′3 = MMC(𝑖′1) and 𝑖′4 = MMC(𝑖′2), then

1. 𝑤𝑡(𝜈(𝑖′3 ⊕ 𝑖′4)) = 0 and

2. Pr
[︁
𝑤𝑡(𝜈(𝑟1 ⊕ 𝑟2)) = 1

]︁
= 0

Proof. The first claim follows from the fact that due to Game 1, 𝑤𝑡(𝜈(𝑖′1⊕𝑖′2)) =

3. So, we have exactly one word active in (𝑖′1⊕ 𝑖′2). This also implies that due to

the word configuration (Recall Fig. 5-2) we can have exactly one byte active in

117

each column of (𝑖′1⊕𝑖′2). Due to the property of MixColumns, every single active

byte in (𝑖′1 ⊕ 𝑖′2) will lead to a fully (all four bytes) active column in (𝑖′3 ⊕ 𝑖′4).

Since, the minimum number of active bytes in (𝑖′1 ⊕ 𝑖′2) is one, so after after

MMC on 𝑖′1 and 𝑖′2, we will have at least one column active in (𝑖′3⊕ 𝑖′4). Now, as

each byte in the active column belongs to a different word, so an active column

implies four active words i.e. 𝑤𝑡(𝜈(𝑖′3 ⊕ 𝑖′4)) = 0.

The second claim can be easily inferred from Game 2. Since, the input difference

of Game 2 has four active words, so we cannot have an inactive word in the

output difference 𝑟1 ⊕ 𝑟2.

The entire bi-directional game is captured by Fig. 5-7b. Once Game 1 and Game

2 are connected, we can appreciate the fact that the combination of the second half of

Game 1, the connecting MMC layer and the first half of Game 2 actually behaves like

AESQ2→17 without the last MMC. This leads us in the direction of the distinguishing

strategy described in Algorithm 9. So one can arbitrarily generate pairs of inputs for

16 round AESQ starting from round 2 excluding last MMC. The corresponding outputs

under MSwap when subjected to AESQ−1
10→17 without Round 10 MMC can never lead to

output difference having one inactive word. For a random permutation this happens

with a probability of 2−126. So, the data complexity and the success probability

remain the same as the 12-round distinguisher.

In the next section, we investigate the Known-Key security of AES in the light of

the impossible differential yoyo strategies developed above.

5.4 Applications to AES in the Known-Key Setting

Rønjom et al. have already shown application of yoyo on AES in the secret key

paradigm and argued that the maximum penetration was up to 6 rounds. In contrast,

here we are more interested in public permutations which is motivated by our need to

engage strategies like inside-out and start-in-the-middle which are implicitly inhibited

in the secret-key setting. So an obvious direction would be to look at the known-key

118

Algorithm 9 Distinguisher for AESQ2→17
Output: 1 for AESQ, -1 otherwise ◁ 16-Round AESQ without last MMC

1: procedure ImpDistBiYoyo(PERMUTE)
2: count← 0
3: while count ≤ 2126 do
4: 𝑖1, 𝑖2 ←

{︂
(𝑚1,𝑚2) : 𝑤𝑡(𝜈(𝑚1 ⊕𝑚2)) = 3

}︂
◁ One active word in 𝑚1 ⊕𝑚2

5: 𝑝′1, 𝑝
′
2 ← Yoyo

(︂
𝑖1, 𝑖2, AESQ−1

2→9, MID, BACKWARD
)︂

◁ 9-Round AESQ without
last MMC

6:

⎧⎨⎩𝑐′1 ← PERMUTE(𝑝′1)
𝑐′2 ← PERMUTE(𝑝′2)

7: (𝑣1, 𝑣2)← MSwap(𝑐′1, 𝑐′2, FORWARD) ◁ Excludes possibility of trivial
extension

8:

⎧⎨⎩𝑟1 ← AESQ−1
10→17(𝑣1)

𝑟2 ← AESQ−1
10→17(𝑣2)

◁ 9-Round AESQ without last MMC

9: if 𝑤𝑡(𝜈(𝑟1 ⊕ 𝑟2)) = 1 then ◁ Impossible difference for AESQ2→17
10: return -1
11: end if
12: count← count + 1
13: end while
14: return 1
15: end procedure

119

notion under which AES behaves as a public permutation and which opens up the

avenue to expose AES to our extension strategies. As suggested, known-key refers to

the scenario where the attacker has access to the key. Introduced by Knudsen and

Rijmen [142] in Asiacrypt 2007, the idea was mainly motivated by the fact that non-

existence of known-key distinguishers would imply non-existence of secret-key ones.

Additionally, since block-ciphers are often used as primitives in hash functions where

key-input could be totally or partially controllable, such kind of known-key analysis

is imperative. The known-key security of block ciphers has received a lot of attention

with Andreeva et al. attempting to formalize it first [19] and later being systematically

treated by Mennink and Preneel [166] in the context of hash functions. Below, we

explore how some of the techniques introduced so far adapt to AES in this setting.

In the process, we are able to device the one of the most efficient 8-round known-key

distinguisher in terms of overall cost. It is assumed that the reader is familiar with

AES and the notations used here are analogous to AESQ. The basic approach, as also

taken in [176] and earlier in this work for AESQ, is to capitalize on the well-known AES

Super-Sbox.

Impossible Differential Yoyo for 6-round AES The first idea is to apply the

basic impossible differential yoyo technique described in Section 5.3.1. So we use

the inside-out philosophy to devise a connecting differential as per the last part of

Claim 5.2.1 which is easily adapted to be applicable on AES. So we initiate the yoyo

game such that weight of ZDP is three. By virtue of the game, we get back the same

ZDP at the end of 3.5 rounds. Now due to MixColumns (MC) of fourth round, all

Super-Sboxes get activated. Thus, propagating forward for two rounds, due to the

Super-Sbox property, we cannot have the case, that the output difference has at least

one inactive Super-Sbox. The same for a random permutation would occur with a

probability of 2−30.

Impossible Differential Bi-directional Yoyo for 8-round AES The bi-directional

yoyo trick introduced in the last section extends easily to the known-key model of AES.

120

A
E
S
Q
1
→

4 A
E
S
Q
1
→

4

A
E
S
Q
1
→

4 A
E
S
Q
1
→

4

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
C

M
C

A
E
S
5
→

6

A
E
S
5
→

6

c′1

c′2

MSwap

α γ

β β

∆

Induced Difference

Impossible Difference

A
E
S
1
→

4

A
E
S
1
→

4

A
E
S
1
→

4

A
E
S
1
→

4

M
C

M
C

A
E
S
5
→

8

A
E
S
5
→

8

A
E
S
5
→

8

A
E
S
5
→

8

p1

p2

p′1

p′2

i′1

i′2

i′3

i′4

c′1

c′2

m1

m2

v1

v2

r1

r2

MSwap

MSwap

α

β β

γγ

∆

η

δ

Impossible Difference

Induced Difference

Figure 5-8: Impossible Differential Yoyo based Known-Key distinguisher for 6/8-
round AES

Since a single 𝑆 ∘𝐿 ∘ 𝑆 instance covers 4 rounds barring the last MixColumns (MC),

two back-to-back yoyo games with MC in between extends the attack to 8 rounds.

As argued earlier, since the same impossible differential is used here, we are able to

devise an 8-round known-key distinguisher with a complexity of 230 with negligible

memory. Fig. 5-8 depicts both the 6 and 8 round distinguishers.

Since, the introduction of known-key model, AES, in particular, has been analyzed

extensively. Below we look at the state-of-the-art in devising 8-round known-key

distinguishers on AES. Our inclination to 8 rounds stems from the urge to make a

direct comparison with the maximum rounds we are able to penetrate here. This is

captured in Table 5.2, where all the complexities (including ours) correspond to a

success probability of 84%. Grassi and Rechberger [117] provide a near exhaustive

analysis of known-key distinguishers while improving most of the available ones and

also reporting new ones. Their main contribution was to show that the idea proposed

by Gilbert [113] is not limited to 10 rounds and can be further extended to 12 rounds.

Going back to results on 8 rounds, we can see from Table 5.2 that the result reported

here is only superseded by the extended multiple differential trail attack by Grassi

121

and Rechberger while incurring some extra memory complexity.

Table 5.2: 8-round Known-Key Distinguishers on AES

Time
Complexity

Memory
Complexity

Property Reference

264 264 Uniform Distribution [113]
248 232 Differential Trail [114]
244 232 Multiple Differential Trail [132]

230 negligible
Impossible Differential

Bi-directional Yoyo
Section 5.4

223 216 Extended 7-Round Multiple
Differential Trail

[117]

5.5 Practical Verification

All distinguishers having practical complexities, i.e., AESQ2→9, AESQ1→9, AESQ2→10, AESQ2→11,

AES1−6 and AES1−8 were implemented on a Java based hyper-threaded environment

and verified to be conforming to the expected results. The details are furnished in

Appendix 5.7. The experimental details of the success probabilities computed for the

distinguishers are provided in Appendix 5.7.1. We now provide a discussion on all

the distinguishing strategies introduced in this work.

5.6 Discussion

Distinguishing public permutations has always been seen as tricky due to the unkeyed

nature of these crypto primitives. Two important things that are needed to be ensured

to make a distinguisher in this setting meaningful are non-triviality and randomness.

A distinguisher should not be trivial in the sense that it should not be trivially

extendible meaning that it is not supposed to work for any arbitrary number of

rounds. Let us now discuss all distinguishers presented here in the light of this

intended property. It is easily noticeable that the limitation of the yoyo principle

to hold only for (𝑆 ∘ 𝐿 ∘ 𝑆) is the first line of defence against non-triviality. Thus

122

rounds covered based on only a single yoyo game cannot be extended beyond any 8

rounds of AESQ excluding last MMC while starting from an even round. The same

is true for 4 rounds of AES without the last MC. As regards the strategies that were

composed with yoyo, they mostly rely on differentials that work over certain specified

rounds and hence are not arbitrarily extendible. The only exception comes with the

bi-directional yoyo distinguisher where the last verification might seem non-standard.

However, the non-triviality is ensured by the last MSwap operation (for example, Step 7

of Algorithm 9 for AESQ). Without that operation the distinguisher would be trivial

because one could append any number of rounds as a part of first half of the second

yoyo game and invert the same number of rounds in the verification step.

The requirement of randomness is fundamental to devising distinguishers in gen-

eral and for public permutations in particular. This is primarily because due to the

unkeyed nature one could easily enumerate the permutation and employ the inverse to

have a trivial verification. The distinguishing strategy should allow in principle suffi-

cient randomness in choosing the inputs. In this respect, all distinguishers developed

in the current work allow for that. Most of the distinguishers use first half of the yoyo

game as a subroutine and can generate almost arbitrary number of inputs which con-

form to certain input differences. These inputs lead to certain required differences in

the middle either deterministically by virtue of the yoyo technique or probabilistically

augmenting yoyo with probable, improbable or impossible differentials.

This work explores many ways to extend the yoyo game. The authors in [176],

have shown attacks on 3/5 rounds AES, where they extend the basic yoyo game.

However, with the exception of the AESQ2→9 and AESQ1→9 distinguishers, the strategies

reported here differ from the ones shown in [176]. This is mostly because of the inside-

out philosophy used here which becomes inapplicable in the secret-key setting. The

main contribution of this work comes in the form of the idea of using the inside-out

technique to partially deploying the yoyo game as an input generator. The notion

of Nested ZDP introduced here seems to work nicely as a combiner of yoyo and

classical differential cryptanalysis. Along with MixColumns, the techniques used

here exploit the properties of SuperSBoxes and MegaSBoxes. The bi-directional yoyo

123

Table 5.3: Distinguishers reported in this work

#R Start → End Complexity Strategy Remarks

AESQ

8 2→ 9 1 Yoyo Basic Yoyo

9 1→ 9 226.08 Yoyo +
Nested ZDP

First 9 round
Distinguisher
starting from

Round 1
9 2→ 10 5 Improbable

Differential Yoyo
Uses the

inside-out
technique

10 2→ 11 228

12 2→ 13 2126 Impossible
Differential Yoyo

16 2→ 17 2126 Bi-directional Impossible
Differential Yoyo

Uses
inside-out with

bi-directional Yoyo

AES
6 1→ 6 230 Impossible

Differential Yoyo

Uses the
inside-out
technique

8 1→ 8 230 Bi-directional Impossible
Differential Yoyo

Uses
inside-out with

bi-directional Yoyo

game is the most effective strategy leading to doubling of the number of rounds

penetrated. One might look critically at the last verification which uses AESQ−1
10→17.

However, usage of such kind of verification is available in literature of distinguishers on

Feistel schemes [153]. Moreover, as argued earlier, the strategy ensures non-triviality.

Except the 12 and 16 round distinguishers of AESQ, all other distinguishers of AESQ

and AES rely on practical data complexities and negligible memory. The closest

comparable results for AESQ are due to Bagheri et al. [25] who report rebound and

time-memory trade-off attacks. Though the maximum number of rounds is same, the

current work exponentially outperforms the former both in terms of data and memory

requirements.

In case of 8-round AES, in the known-key setting, with the exception of [117], our

result beats all other works, while being the only one that requires negligible memory.

Table 5.3 summarizes the attacks presented here. It should be noted however that

124

comparing attacks in the known-key model only by their complexity is not completely

fair, as one has to take into consideration also the rate of simplicity of the found

non-random property, which may affect the chances to extend the distinguisher to

more rounds or to more powerful attacks. In this respect, our attack is not directly

comparable to several of the previous results, as the non-random property we find is

somewhat complex.

5.7 Experimental Verification

Most of the distinguishers presented in this chapter have practical complexities. These

have been performed experimentally and their complexities have been verified. All the

experiments have been performed on a system with Intel core i7-6700 CPU@3.40 × 8

and memory 16GB. For programming, we have used Java openjdk version 1.8.0_181.

For implementing AES functionalities, we have used publicly available code [93].

The distinguisher for AESQ2→9 is deterministic in nature and this attack is per-

formed in negligible time using Algorithm 5. The complexity of the distinguisher for

AESQ1→9 is 226.05. For the attack, pairs of plaintexts having only one word difference

have been chosen at random. Plaintexts pairs whose differences have not mitigated

into a byte after the first round of AESQ are filtered out. Among the remaining pairs,

all possible swapping are done between the corresponding ciphertexts. Algorithm 6

describes the distinguisher. This attack has been performed using a single thread and

it took 17435867(≈ 224.05) iterations in 557 seconds for successfully finding a pair of

plaintexts and a swap vector which conforms to our claim. The following pair of texts

conform to our claim when swapped after forward permutation using the given vector.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fa b1 5a 2f 00 68 a1 e5 b3 55 81 01 c3 3d 4c 8a

b7 64 0e f1 92 d5 10 b0 89 cb 6f 51 b1 63 6c 00

f8 9f 22 15 97 1a 44 7b 2d c3 64 c6 67 64 b2 43

28 87 32 25 18 df 4f 98 c6 b0 c7 a4 28 2a 59 9d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
125

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2e b1 5a 2f 00 68 a1 e5 b3 55 81 01 c3 3d 4c 8a

b7 70 0e f1 92 d5 10 b0 89 cb 6f 51 b1 63 6c 00

f8 9f f2 15 97 1a 44 7b 2d c3 64 c6 67 64 b2 43

28 87 32 4c 18 df 4f 98 c6 b0 c7 a4 28 2a 59 9d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑣𝑒𝑐𝑡𝑜𝑟 =
[︂

01 01 01 00 01 01 00 01 01 01 00 01 01 01 01 00
]︂

• Initial difference of two input states:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 d0 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Difference of two states after one round⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Two states before swapping (before last MixColumns and ShiftRows)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4e 12 6c 05 2c ab 29 96 c7 76 26 7c 68 a6 b2 e1

b2 38 9b 7a f3 68 e0 02 10 f1 40 f6 dc 42 0c 59

67 97 9b 0a 6c 61 25 0e 0f f4 92 cd 59 33 18 d3

53 d2 4c 06 2e da e9 29 88 fa 5f 2d b1 ae b7 be

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

24 2c e7 0d 40 4d a4 20 92 30 a8 fa b6 0e 8a 2d

8b 89 a0 1a 14 c5 e7 e9 c6 84 2e 86 49 32 13 a5

c1 31 6b 2f a1 87 1c cf ea ca ce cd e0 46 c3 1f

03 c4 c4 e5 6f e5 f3 ad cf 8d be 5a 8c ad 7a bd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Difference of two permuted states before swapping

126

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6a 3e 8b 08 6c e6 8d b6 55 46 8e 86 de a8 38 cc

39 b1 3b 60 e7 ad 07 eb d6 75 6e 70 95 70 1f fc

a6 a6 f0 25 cd e6 39 c1 e5 3e 5c 00 b9 75 db cc

50 16 88 e3 41 3f 1a 84 47 77 e1 77 3d 03 cd 03

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Two states after swapping (before last MixColumns and ShiftRows)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4e 12 6c 0d 2c ab a4 96 c7 76 a8 7c 68 a6 b2 2d

b2 38 9b 1a f3 68 e7 02 10 f1 2e f6 dc 42 0c a5

67 97 9b 2f 6c 61 1c 0e 0f f4 ce cd 59 33 18 1f

53 d2 4c e5 2e da f3 29 88 fa be 2d b1 ae b7 bd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

24 2c e7 05 40 4d 29 20 92 30 26 fa b6 0e 8a e1

8b 89 a0 7a 14 c5 e0 e9 c6 84 40 86 49 32 13 59

c1 31 6b 0a a1 87 25 cf ea ca 92 cd e0 46 c3 d3

03 c4 c4 06 6f e5 e9 ad cf 8d 5f 5a 8c ad 7a be

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Difference of two permuted states after swapping⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6a 3e 8b 08 6c e6 8d b6 55 46 8e 86 de a8 38 cc

39 b1 3b 60 e7 ad 07 eb d6 75 6e 70 95 70 1f fc

a6 a6 f0 25 cd e6 39 c1 e5 3e 5c 00 b9 75 db cc

50 16 88 e3 41 3f 1a 84 47 77 e1 77 3d 03 cd 03

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Difference of states after 1st round (during inverse permutation)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d7 00 00 00 d9 00 00 00 46 00 00 00 75 00 00 00

00 c3 00 00 00 06 00 00 00 15 00 00 00 c8 00 00

00 00 ec 00 00 00 e6 00 00 00 65 00 00 00 16 00

00 00 00 ec 00 00 00 00 00 00 00 8f 00 00 00 02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Difference of two states after inverse permutation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b5 d0 e8 68 6c b4 07 00 90 19 58 4e 4c b1 ff b1

06 1a 63 cb 00 48 08 cf 9a 77 37 1b bf 0d 35 c5

e4 f5 61 de d1 00 de fb a7 65 6c fa 34 2d 4a ed

1c c0 83 d6 bf 9f 00 d4 25 a3 c1 67 18 2e f0 0f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
127

For performing distinguishing attack on AESQ2→11, 228 pairs of plaintexts have

been used. To reduce the running time, 16 threads have been used. It is an im-

probable differential distinguisher. For AESQ2→11, the distinguisher took 5047.616

seconds to run for all 228 iterations and have not found the improbable differential

property; while for the random permutation it took 225885057 (≈ 227.75) iterations

to find the improbable differential property; and thus it conforms to our claim. The

distinguisher for AESQ2→10 is also improbable differential in nature with a complexity

of 5. In negligible time, its property has been verified. Algorithm 7 describes both of

these distinguishers. We did not implement distinguishers for AESQ2→13 and AESQ2→17

as their complexities are impractical.

The distinguishing attacks on AES1→8 introduced in this chapter have practical

complexity. This distinguishing attack is similar to Algorithm 9 with reduced com-

plexity. The distinguishing algorithm ran for 230 iterations in 2977.575 seconds in

the above machine and have not found the impossible differential with an inactive

SuperSBox. For random permutation, we have found this differential in 187840320

(≈ 227.48) iterations.

5.7.1 Success Probability

For experimental verification of success probabilities, a blackbox is considered which

can act as a cipher 𝒞 (we consider 𝒞 =AESQ/AES) or as a random permutation ℛ.

To calculate the success probability, consider the following confusion matrix in Table

5.4.

Table 5.4: Confusion Matrix of 𝒞 and ℛ

Actual
Observed

𝒞 ℛ

𝒞 𝑜𝑐 − 𝑛𝐹𝑃 𝑛𝐹𝑁

ℛ 𝑛𝐹𝑃 𝑜𝑟 − 𝑛𝐹𝑁

The experiment is performed considering 𝒞 in the blackbox 𝑎𝑐 times and ℛ in the

128

Table 5.5: Experimental Verification of Success Probability

Distinguisher #𝑛 Blackbox Detected as
AESQ/AES

Detected as
ℛ

Experimental
Success

Probability

Estimated
Success

Probability

AESQ1→9 1000 AESQ1→9 826 174 0.75 0.70
ℛ 324 676

AESQ2→10 1000 AESQ2→10 645 355 0.70 0.82
ℛ 258 742

AESQ2→11 100 AESQ2→11 100 0 0.86 0.77
ℛ 29 71

AES1→6 100 AES1→6 100 0 0.81 0.83
ℛ 39 61

AES1→8 100 AES1→8 100 0 0.82 0.83
ℛ 37 63

blackbox 𝑎𝑟 times. Based on the output, 𝒞 is decided 𝑜𝑐 times and ℛ is decided 𝑜𝑟

times. The numbers of false positives and false negatives are denoted by 𝑛𝐹𝑃 and

𝑛𝐹𝑁 respectively. Then the success probability is given by

𝑃𝑟[𝑆𝑢𝑐𝑐𝑒𝑠𝑠] = (𝑜𝑐 − 𝑛𝐹𝑃) + (𝑜𝑟 − 𝑛𝐹𝑁)
𝑜𝑐 + 𝑜𝑟

= (𝑜𝑐 − 𝑛𝐹𝑃) + (𝑜𝑟 − 𝑛𝐹𝑁)
𝑎𝑐 + 𝑎𝑟

.

Table 5.5 shows the experimental results of various distinguishers and their cor-

responding success probabilities. The success probabilities calculated by experimen-

tation is close enough to their respective theoretically estimated values.

5.8 Chapter Summary

In this work we explored the impact of the yoyo cryptanalytic strategy on public

permutation AESQ as well as AES in the known-key model. We deployed the basic

yoyo technique to get a deterministic 8-round distinguisher for AESQ and extended it

129

using our notion of Nested ZDP to include the first round using around 226 queries.

In addition to this we used the inside-out strategy to augment yoyo using classical,

improbable and impossible differentials to reach 9, 10, 12 rounds starting from round

2 with data complexities of about 22, 228 and 2126 respectively. The final strategy

devised here allows us to combine two yoyo games giving a 16-round distinguisher

using 2126 queries. The impossible difference based yoyo strategies when applied

to AES lead to known-key distinguishers for 6 and 8 rounds with a complexity of

230. One may note that all improbable distinguishers reported can be converted

to impossible ones while paying some extra cost in terms of data complexity. The

success probabilities of the attacks have been computed to be high enough and all

distinguishers with practical complexities were verified using computer simulations.

130

6
BOOMEYONG ATTACKS ON AES-BASED

DESIGNS

Contents
6.1 Boomeyong: Embedding Yoyo within Boomerang 136

6.2 Boomeyong Attacks on AES 140

6.3 Boomeyong Attack on Pholkos 156

6.4 Attacks on AES-256 . 162

6.5 Relation with Retracing Boomerang Attack 163

6.6 Chapter Summary . 165

Cryptanalysis is one of the most important ways of determining the strength of

a cryptosystem. Ever since the introduction of differential cryptanalysis by Biham

and Shamir [47], a multitude of cryptanalytic techniques that build upon the basic

idea of differential cryptanalysis has been proposed. Among these, a certain class

of attacks particularly aims to divide a cipher into multiple sub-ciphers and study

the sub-ciphers individually often analyzing the interactions between them. These

methods find high probability trails (primarily due to the lesser number of rounds)

for the sub-ciphers and compose them efficiently to mount an attack on the com-

plete cipher. Some of the prominent candidates of this class are the boomerang

attack [201], amplified boomerang attack (rectangle attack) [136], impossible differ-

ential attack [39], rebound attack [163]. These techniques have been widely applied

131

to several ciphers: like the rectangle attack on Serpent [42, 43], Kasumi [44]; impos-

sible differential attacks on AES [157, 216, 46], CLEFIA, Camellia, LBlock, Simon,

ARIA [209, 210, 74, 73], Rijndael-160 and Rijndael-224 [167], rebound attack on

Whirlpool and Grøstl [163, 164], Keccak [98] and boomerang attack on AES in single-

key setting [53] and in the related-key setting [55, 57, 115, 190, 107]. A recent addition

to the class include the retracing boomerang attack [99] and the extended truncated

differential attack [29] on AES. The retracing boomerang attack has been proposed

in Eurocrypt 2020 by Dunkelman 𝑒𝑡 𝑎𝑙. and at the outset it tries to additionally

spatially divide the sub-ciphers. The extended truncated differential attack mounts

distinguishing and key-recovery attack on 5-round and 6-round AES by prepending a

round that starts from the diagonal subspaces as proposed in [118].

In particular, the boomerang attack is the center of interest concerning this work

as the techniques developed here extensively rely on it. Boomerang attack, introduced

by Wagner, makes use of two differentials to construct a distinguisher spanning over a

large number of rounds when it is not possible to devise a single differential. As stated

earlier, it conceptually divides a cipher into two sub-ciphers where each differential

corresponds to each sub-cipher. Though initially thought to be independent, it has

been shown that the differentials can rely on each other based on their interaction

at the boundary of the sub-ciphers. The dependency can either lead to an incom-

patibility as shown by Murphy [168] or can be exploited to improve the number of

rounds as shown later by the idea of s-box switch, ladder switch [57, 55] and further

generalized by the sandwich attack [100, 101]. This also leads to the introduction of

new tools like the boomerang connectivity table (BCT) [83], Feistel BCT [71] and

the boomerang distribution table (BDT) [203]. Another interesting cryptanalytic

technique that is structurally similar to boomerang (though it does not divide the

cipher into sub-ciphers) is the yoyo game which was introduced by Biham 𝑒𝑡 𝑎𝑙. to

analyze Skipjack [38]. In Asiacrypt 2017, it has been used to devise a determinis-

tic distinguisher for generic 2-round Substitution-Permutation Network (SPN) [176]

which leads to key recovery attacks on 5-round AES. The concept of yoyo game is

further extended and applied to AES in known-key setting [180] and on ForkAES [27]

132

Table 6.1: Comparisons of key recovery attacks on AES and Pholkos. Note that,
time complexity is measured in terms of one AES and Pholkos encryption respectively
(where no unit is mentioned). Memory complexity is measured in terms of memory
required to store a single state of the primitive. All the attacks tabulated for AES are
key recovery attacks. For 10-round Pholkos, key recovery attack using boomeyong is
compared with the distinguishing attack given by the designers. CP and ACC are
Chosen Plaintext and Adaptively Chosen Ciphertext respectively. Mix. Diff., Ret.
Boom., and ETD refers to Mixture Differential, Retracing Boomerang and Extended
Truncated Differential respectively.

Primitive Attack Type
Complexity

Ref.
Data Time Mem.

5-round
AES-128

Improved Square 233 CP 235 Negl. [106]

Boomerang 239 ACC 239 233 [53]

Mix. Diff. 224 CP 224 221.5 [30]

Mix. Diff. 232 CP 234 232 [116]

Yoyo Attack 213.3 ACC 233 Negl. [176]
Partial Sum 28 CP 240 Negl. [200]

Ret. Boom. 29 ACC 223 29 [99]

Ret. Boom. 215 ACC 216.5 29 [99]

Boomeyong 249 ACC 248 XOR 223 Section 6.2.1

6-round
AES-128

Yoyo Attack 2122.8 ACC 2121.8 XOR Negl. [176]
Exchange Attack 288.2 CP 288.2 Negl. [33]

Boomerang 271 ACC 271 233 [53]
Ret. Boom. 226 ACC 280 235 [99]
Partial Sum 234.5 CP 244 232 [106]

ETD 271.3 CP 278.7 - [29]

Boomeyong 279.72 ACC 278 228 Section 6.2.2

10-round
Pholkos

Boomerang 2260 ACC 2260 232 [70]
Boomeyong 2189.8 ACC 2188.8 XOR 2122 Section 6.3.2

in secret-key setting. Table 6.1 lists the complexities of the attacks presented in this

chapter on 5-round AES-128 (variant of AES with key length of 128 bits), 6-round

AES-128 and 10-round Pholkos respectively along with the other attacks. It is evident

133

from the table that for 10-round Pholkos, the boomeyong attack performs fairly well

with respect to the boomerang attack in terms of data and time complexities. In

addition, using the boomerang strategy distinguishing attack is mounted on Pholkos;

whereas using the boomeyong technique secret key is recovered.

The work investigates the yoyo technique further to essentially extend the num-

ber of rounds that it can penetrate. The new approach can be visualized like an

embedding of the yoyo game inside a boomerang trail, where the upper trail of the

boomerang essentially conforms to the yoyo while the lower trail is a standard but

specially crafted differential trail. It applies the concept of the s-box switch and the

ladder switch in the boundary of the upper and lower trail. The primary motiva-

tion is to construct the lower trail in such a way that the difference added to the

ciphertexts leads to a yoyo word-swap in the boundary of upper and lower trails.

This in turn satisfies the essential criteria of the yoyo and leads to return of the yoyo

with probability 1 which can be verified at the top, like the classical yoyo trick. We

prove how the s-box switch and ladder switch help achieve the required word-swap

(see Fig. 6-2). The proof idea stems from the fact that the words that swap can be

mapped to an equivalent s-box switch while the words that remain unchanged make

a ladder switch. The price we pay is the construction of a truncated differential trail

superimposed on the yoyo which behaves like the upper trail of the boomerang. This

is the motivation for using the term embedding while visualizing this setting. So in

classical boomerang terms if the truncated upper trail has a complexity 𝑝 and the

lower trail has a complexity 𝑞, owing to the word-swap happening at the boundary,

the complexity of the complete boomerang distinguisher is 𝑝𝑞2. We save a factor of 𝑝

while going up due to the yoyo property.

As a natural application, first of all, 5(= 4+1)-round AES is considered, where the

yoyo covers the first 4 rounds constituting the upper trail and the lower trail covers

1 round. By embedding yoyo within boomerang, first a distinguisher is reported at

the expense of 247 oracle queries contributing to the data complexity and 246 XOR

operations contributing to the time complexity. The distinguisher is used further to

correctly recover the secret key of AES-128 (variant of AES with key length of 128 bits)

134

Table 6.2: Key recovery attacks reported in this work. ACC is adaptive chosen
ciphertexts.

Attack
Complexity

Ref.
Data Time Memory

5-round AES 249 ACC 248 XOR 223 Section 6.2.1

6-round AES 279.72 ACC 278 228 Section 6.2.2

10-round Pholkos † 2189.8 ACC 2188.8 XOR 2122 Section 6.3.2
† 512-bit key

with the time complexity of 248 XOR operations. The next result is the application

to 6-rounds which is achieved by sandwiching the yoyo in-between a classical 1-round

differential on top and the lower boomerang trail developed in the 5-round attack.

The result is a key recovery attack on 6-round AES-128 with the time complexity of 278

AES encryptions and the data complexity of 279.72 adaptive chosen ciphertexts. Note

that, the distinguishing attack on the AES is independent of the key size whereas the

key recovery attacks described in the chapter are applicable on AES-128. However,

the key recovery attacks can be further extended to recover the key of 6/7-round

of a variant of AES with 256-bit key. In the rest of the chapter, unless otherwise

mentioned, AES-128 is referred to as AES.

Finally, to show the versatility of the strategy a 10-round key recovery attack

is mounted on a very recently proposed AES based tweakable block cipher Pholkos.

We support all our claims with theoretical arguments. The combination of the two

strategies seems to be an interesting proposition and may lead to improved results for

other SPN ciphers as well thereby providing better insights. One can appreciate the

fact that the proposed technique bears structural similarity with some of the well-

known results. For instance, the 6-round attack can easily be seen in the framework of

the sandwich attack where 4 rounds of AES form the middle layer. In that sense, this

work reports the first result where the middle layer consists of 4 rounds of AES. On

the other hand, the attack can also be shown to have a close relation to the retracing

attack, a discussion on which is furnished later (See Section 6.5). The contributions

135

of the current work are summarized in Table 6.2.

The chapter is organized as follows. The notion of embedding yoyo within boomerang

is introduced and thoroughly illustrated in Section 6.1. In Section 6.2, the developed

cryptanalytic technique is applied on 5-round and 6-round AES to mount key recovery

attacks. As an additional application of the developed techniques, a 10-round attack

on Pholkos [70] is shown in Section 6.3. Section 6.5 illustrates the close relation

between retracing boomerang attack and the attacks presented in this chapter. In

Section 6.4, the key recovery attacks on 5-round and 6-round AES-128 are extended

to recover the key of a variant of AES with key size of 256 bits. Finally, the chapter

is summarized in Section 6.6.

6.1 Boomeyong: Embedding Yoyo within Boomerang

The central notion of this work is to devise a cryptanalytic technique by combining

two powerful techniques: yoyo and boomerang. The same conceptual division as

used in the boomerang attack is considered for embedding yoyo within boomerang

leading to a new strategy which we call boomeyong. Proposition 1 states that there

is a deterministic distinguisher for 𝑆 ∘ 𝐿 ∘ 𝑆 construction irrespective of the internal

structure of 𝑆 and 𝐿 layer (Here, 𝑆 corresponds to the substitution layer and 𝐿

corresponds to linear layer). The trick is to use this 𝑆 ∘ 𝐿 ∘ 𝑆 layer as the upper

trail in devising the boomerang trail. The problem of embedding yoyo game within

boomerang is that the previous is based on classical differential whereas for the latter

one truncated forms are considered. Refer to Fig. 6-1 for the attack. Let 𝐸 : F𝑛2𝑘 ↦→

F𝑛2𝑘 be a cipher which is divided into two parts: 𝐸0 (upper) and 𝐸1 (lower). 𝐸0 is

comprised of initial 𝑆 ∘𝐿∘𝑆 layers and the remaining parts of the cipher is considered

as 𝐸1. Now, 𝑃 1, 𝑃 2, 𝑃 3 and 𝑃 4 be four plaintexts which are encrypted by 𝐸 to obtain

𝐶1, 𝐶2, 𝐶3 and 𝐶4 respectively. Aim is to simulate yoyo game in the upper trail 𝐸0.

Let 𝑄𝑖 = 𝐸0(𝑃 𝑖) for 1 ≤ 𝑖 ≤ 4. Therefore, if 𝑃 1, 𝑃 2 is considered as initial pair, then

by virtue of yoyo game 𝜈(𝑃 1 ⊕ 𝑃 2) = 𝜈(𝑃 3 ⊕ 𝑃 4). This also implies that 𝑄3, 𝑄4 can

be obtained by swapping words between 𝑄1, 𝑄2. Therefore, 𝑄1 ⊕𝑄2 = 𝑄3 ⊕𝑄4 = 𝛽

136

E
0

E
0

E
0

E
0

P 1

P 2

P 3

P 4

[
I2ws

I1wl

]

[
I1ws

I2wl

]

[
I1ws

I1wl

]

[
I2ws

I2wl

]

E
1

E
1

E
1

E
1

C1

C2

C3

C4

δ

δ

[
βws
βwl

]

[
βws
βwl

]

α α′

[
γws = βws
γwl

= 0

]

[
γws = βws
γwl

= 0

]

ν(α) = ν(α′)

q

q

p

1

Word-Swap(
I1ws

, I2ws

)

Figure 6-1: Embedding yoyo within boomerang. Note that, for the yoyo game 𝐸0
corresponds to 𝑆 ∘𝐿∘𝑆 layer, whereas for the boomerang there is no such constraints.
Here, the trail superimposed on yoyo is 𝛼→ 𝛽 with a probability 𝑝. The words of 𝛽
that are intended to be swapped are denoted by 𝛽𝑤𝑠 . These words will be switched
using corresponding words in the lower trail 𝛿 → 𝛾 which holds with probability 𝑞
using the idea of s-box switch. The remaining words 𝛾 i.e. 𝛾𝑤𝑙

in the lower trail are
zero thereby leading to a ladder switch of the corresponding words in 𝛽 i.e. 𝛽𝑤𝑙

. Note
that Pr[𝛽 → 𝛼′] = 1 due to the yoyo trick.

(say). Consider, 𝑃 1 ⊕ 𝑃 2 = 𝛼, 𝑃 3 ⊕ 𝑃 4 = 𝛼′. The difference of boomerang with the

attack developed in this work is that for the former one 𝛼 = 𝛼′, whereas for the latter

one 𝛼 = 𝛼′ does not hold always; instead 𝜈(𝛼) = 𝜈(𝛼′) must hold.

Constructing the lower trail is quite similar to the construction of the lower trail

in the boomerang attack. Let 𝑄1 ⊕ 𝑄3 = 𝛾, which gives 𝑄2 ⊕ 𝑄4 = 𝑄1 ⊕ 𝑄3 = 𝛾.

Now, for the lower half a trail 𝛿 𝐸−1
1−→ 𝛾 needs to be constructed. For realizing the

‘Swapping of Words’ in the middle (the boundary of 𝐸0 and 𝐸1), a special kind of

137

relationship must exist between 𝛽 and 𝛾.

Theorem 5. Let 𝑄1, 𝑄2, 𝛾 ∈ F𝑛2𝑘 and 𝑄1⊕𝑄2 = 𝛽. Consider, 𝑄𝑖 = 𝑄𝑖
1||𝑄𝑖

2|| · · · ||𝑄𝑖
𝑛,

𝛽 = 𝛽1|| · · · ||𝛽𝑛 and 𝛾 = 𝛾1|| · · · ||𝛾𝑛. If 𝐽 ⊂ {1, · · · , 𝑛}, 𝐽 ̸= ∅ and for all 𝑗 ∈ 𝐽 ,

𝛾𝑗 = 𝛽𝑗; otherwise, 𝛾𝑗 = 0, then, 𝑄1 ⊕ 𝛾, 𝑄2 ⊕ 𝛾 can be formed by swapping words

between 𝑄1, 𝑄2.

Proof. Construct 𝑣 ∈ F𝑛2 as

𝑣𝑗 =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑗 ∈ 𝐽 ;

1, Otherwise.

for (1 ≤ 𝑗 ≤ 𝑛). Now, following the Definition 4 construct 𝜌𝑣(𝑄1, 𝑄2). For (1 ≤ 𝑗 ≤ 𝑛)

𝜌𝑣(𝑄1, 𝑄2)𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑄1
𝑗 , if 𝑣𝑗 = 1;

𝑄2
𝑗 , if 𝑣𝑗 = 0.

=⇒ 𝜌𝑣(𝑄1, 𝑄2)𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑄1
𝑗 , if 𝛾𝑗 = 0;

𝑄2
𝑗 , if 𝛾𝑗 = 𝛽𝑗.

=⇒ 𝜌𝑣(𝑄1, 𝑄2)𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑄1
𝑗 , if 𝛾𝑗 = 0;

𝑄1
𝑗 ⊕ 𝛽𝑗, if 𝛾𝑗 = 𝛽𝑗.

=⇒ 𝜌𝑣(𝑄1, 𝑄2)𝑗 = 𝑄1
𝑗 ⊕ 𝛾𝑗

Therefore, 𝜌𝑣(𝑄1, 𝑄2) = 𝑄1⊕𝛾. In similar way, it can be proved that 𝜌𝑣(𝑄2, 𝑄1) =

𝑄2 ⊕ 𝛾.

Theorem 5 states that the words in 𝛾 either should be zero or equal to the value

of the same word in 𝛽. This ensures that in the middle swapping of words has taken

place between the initial pair and thus for 𝐸0 yoyo game is run. Fig. 6-2 shows the

swapping mechanism in the middle.

For the upper trail 𝐸0, 𝛼 is not fixed; instead 𝜈(𝛼) is fixed. Let 𝑃𝑟[{𝛼|𝜈(𝛼) =

𝑡} 𝐸0−→ 𝛽] = 𝑝 and 𝑃𝑟[𝛿 𝐸−1
1−→ 𝛾] = 𝑞. Therefore, at the cost of 𝑝𝑞2 probability 𝑄3, 𝑄4

138

S
◦L
◦S

S
◦L
◦S

S
◦L
◦S

S
◦L
◦SP 1

P 2

P 3

P 4

[
C2

ws
C1

wl

]

[
C1

ws
C2

wl

]

[
C1

ws
C1

wl

]

[
C2

ws
C2

wl

]

Word-Swap(
C1

ws , C
2
ws

)
[
βws
βwl

] [
βws
βwl

]

α α′ν(α) = ν(α′)

(a) Yoyo Word-Swap

S
◦L
◦S

S
◦L
◦S

S
◦L
◦S

S
◦L
◦SP 1

P 2

P 3

P 4

[
C2

ws
C1

wl

]

[
C1

ws
C2

wl

]

[
C1

ws
C1

wl

]

[
C2

ws
C2

wl

]
[
βws
βwl

] [
βws
βwl

]

α α′

[
γws = βws
γwl

= 0

]

[
γws = βws
γwl

= 0

]

Word(SBox)-Switch (γws)

Ladder-Switch (γwl)

ν(α) = ν(α′)

(b) Equivalent S-box and Ladder switch

Figure 6-2: Visualizing Yoyo Word-Swap as a combination of S-box switch and Ladder
switch operations

139

are formed by swapping words between 𝑄1, 𝑄2 and thus with the same probability it

is expected that 𝜈(𝑃 3⊕𝑃 4) = 𝜈(𝑃 1⊕𝑃 2). Let 𝑤𝑡(𝜈(𝑃 1⊕𝑃 2)) = 𝑡. If 𝐸 is a random

permutation, then this event would occur with probability 2−𝑡𝑘. While embedding

yoyo within the boomerang distinguishers, such upper and lower trails should be con-

sidered for which 𝑝𝑞2 > 2−𝑡𝑘.

Attack Idea. Based on the analysis, the following are the steps of devising a dis-

tinguisher by embedding yoyo within boomerang. Suppose, access to oracle 𝒪 is

given and the distinguisher tries to distinguish that whether 𝒪 is 𝐸 or a random

permutation.

1. Choose two plaintext 𝑃 1, 𝑃 2 such that 𝑤𝑡
(︁
𝜈(𝑃 1 ⊕ 𝑃 2)

)︁
= 𝑡. Encrypt them

using 𝒪 to obtain 𝐶1, 𝐶2 respectively.

2. Prepare 𝐶3 = 𝐶1 ⊕ 𝛿, 𝐶4 = 𝐶2 ⊕ 𝛿 and decrypt them by 𝒪 to obtain 𝑃 3, 𝑃 4.

3. Check whether 𝜈(𝑃 1 ⊕ 𝑃 2) = 𝜈(𝑃 3 ⊕ 𝑃 4) or not.

4. If 𝜈(𝑃 1⊕𝑃 2) = 𝜈(𝑃 3⊕𝑃 4), then distinguish 𝒪 as 𝐸; otherwise, repeat step 1 to

step 3 1
𝑝𝑞2 times. Even after repeating 1

𝑝𝑞2 if distinguisher fails to find a quartet

(𝑃 1, 𝑃 2, 𝑃 3, 𝑃 4) such that 𝜈(𝑃 1 ⊕ 𝑃 2) = 𝜈(𝑃 3 ⊕ 𝑃 4), then distinguish 𝒪 as a

random permutation.

Now, the techniques developed here are extensively applied to 5-round and 6-round

AES and 10-round Pholkos.

6.2 Boomeyong Attacks on AES

In the previous section, it is shown how to embed yoyo within a boomerang. The first

application of this technique is mounting attacks on 5-round and 6-round AES. The

main disadvantage of appending a boomerang trail under the yoyo is that it is no

longer possible to swap words between ciphertexts deterministically. In this regard,

first of all, a probabilistic yoyo game needs to be devised. The next three definitions

140

define the diagonals, inverse diagonals and columns of an AES state. The notations

in [33] are used in these definitions whereas the notions behind these definitions are

described in [118]. The notation ⊂𝜑 is used to denote non-null proper subset.

Definition 5. [118, 33] For a set 𝐼 ⊂𝜑 {0, 1, 2, 3}, let 𝒞𝐼 = {(𝑖, 𝑗) : 𝑖 ∈ 𝑆, 𝑗 ∈ 𝐼}.

For an AES state 𝑋, a set of columns 𝐼 is represented by 𝒞𝐼(𝑋).

Definition 6. [118, 33] For a set 𝐼 ⊂𝜑 {0, 1, 2, 3}, let 𝒟𝐼 = {(𝑖, 𝑗 + 𝑖 mod 4) : 𝑖 ∈

𝑆, 𝑗 ∈ 𝐼 }. For an AES state 𝑋, a set of diagonals 𝐼 is represented by 𝒟𝐼(𝑋).

Definition 7. [118, 33] For a set 𝐼 ⊂𝜑 {0, 1, 2, 3}, let ℐ𝒟𝐼 = {(𝑖, 𝑗− 𝑖 mod 4) : 𝑖 ∈

𝑆, 𝑗 ∈ 𝐼}. For an AES state 𝑋, a set of inverse diagonals 𝐼 is represented by ℐ𝒟𝐼(𝑋).

The following two lemmas provide the basis of devising a probabilistic yoyo game

for AES. However, probabilistic yoyo was already considered in [33] and Lemma 1,

Lemma 2 are the special cases of Theorem 5, Theorem 6 respectively in [33]. While [33]

avoids the adaptive setting, there are adaptive considerations of [33] in the distin-

guisher setting [32, 31]. The main motivation of devising such a game is to penetrate

more rounds at the expense of probability. For 5-round AES, the aim is to add such a

difference in the ciphertext so that in the fourth round before mixcolumns swapping

of inverse diagonals is realized.

Lemma 1. [33] Let 𝐼, 𝐽 ⊂𝜑 {0, 1, 2, 3} and 𝑝1, 𝑝2 ∈ F4×4
28 . Then the probability that

a set of inverse diagonals 𝐽 are swapped between 𝑝1, 𝑝2, given that a set of columns 𝐼

are swapped is given by 𝑃𝐼𝐷(|𝐼|, |𝐽 |) = 2−8×
(︁

4(|𝐼|+|𝐽 |)−2|𝐼||𝐽 |
)︁
.

Proof. Note that, |𝒞𝐼∩ℐ𝒟𝐽 | = |𝐼||𝐽 |. So, |𝒞𝐼∪ℐ𝒟𝐽 | = 4(|𝐼|+ |𝐽 |)−|𝐼||𝐽 |. Among all

these 𝒞𝐼∪ℐ𝒟𝐽 bytes, if the bytes only in 𝒞𝐼∩ℐ𝒟𝐽 are active between 𝑝1, 𝑝2 then column

swap is equivalent to inverse diagonal swap. Therefore, bytes in (𝒞𝐼∪ℐ𝒟𝐽)∖(𝒞𝐼∩ℐ𝒟𝐽)

needs to be inactive. |(𝒞𝐼 ∪ ℐ𝒟𝐽) ∖ (𝒞𝐼 ∩ ℐ𝒟𝐽)| = 4(|𝐼| + |𝐽 |) − 2|𝐼||𝐽 |. Hence, the

required probability 𝑃𝐼𝐷(|𝐼|, |𝐽 |) = 2−8×
(︁

4(|𝐼|+|𝐽 |)−2|𝐼||𝐽 |
)︁

is achieved.

Lemma 2. [33] Let 𝑝1, 𝑝2 ∈ F4×4
28 and 𝑐1 = 𝑓(𝑝1), 𝑐2 = 𝑓(𝑝2), where 𝑓 is 𝑀𝐶 ∘𝐴𝐾 ∘

𝑆𝐵 ∘𝑆𝑅∘𝐴𝐾. Then the probability of occurence of certain 𝑝1, 𝑝2, such that swapping

141

of a set of inverse diagonals 𝐼 ⊂𝜑 {0, 1, 2, 3} between 𝑐1, 𝑐2 is equivalent to swapping

of inverse diagonals between 𝑝1, 𝑝2 is given by 𝑃𝑠𝑤𝑎𝑝(|𝐼|) = ∑︀3
𝑗=1

(︁
4
𝑗

)︁
𝑃𝐼𝐷(|𝐼|, 𝑗).

Proof. It is easy to visualize that due to 𝑆𝑅, swapping of ℐ𝒟𝐼 between 𝑐1, 𝑐2 is

equivalent to swapping of 𝒞𝐼 between 𝑝1, 𝑝2. Lemma 1 states that swapping of 𝒞𝐼 is

equivalent to swapping of ℐ𝒟𝐽 (where 𝐽 ⊂𝜑 {0, 1, 2, 3}) when bytes in (𝒞𝐼 ∪ ℐ𝒟𝐽) ∖

(𝒞𝐼 ∩ ℐ𝒟𝐽) of (𝑝1 ⊕ 𝑝2) are inactive. Such 𝑝1, 𝑝2 occur with probability 𝑃𝐼𝐷(|𝐼|, |𝐽 |).

By taking sum over all possible choices of 𝐽 , 𝑃𝑠𝑤𝑎𝑝(|𝐼|) = ∑︀3
𝑗=1

(︁
4
𝑗

)︁
𝑃𝐼𝐷(|𝐼|, 𝑗).

For |𝐼| = 1, 𝑃𝑠𝑤𝑎𝑝 ≈ 2−46, which is its maximum value. For a better visualization

of Lemma 1 consider the case when 𝐼 = {3} and 𝐽 = {2, 3}. In Fig. 6-3 only the

bytes in 𝒞{3} ∩ ℐ𝒟{2,3} are active. So, swapping the last column between 𝑝1, 𝑝2 can

also be considered as swapping of last two inverse diagonals.

Now, we give example of Lemma 2. Let 𝑝1, 𝑝2, 𝑐1 and 𝑐2 be four AES states as

shown in Fig. 6-4a where 𝑐1 = 𝑓(𝑝1) and 𝑐2 = 𝑓(𝑝2) (Here, 𝑓 is the same function as

described in Lemma 2). ℐ𝒟{3} is swapped between 𝑐1 and 𝑐2 to obtain 𝑐′1 and 𝑐′2 as

shown in Fig. 6-4b. Let 𝑝′1 = 𝑓−1(𝑐′1) and 𝑝′2 = 𝑓−1(𝑐′2). Now, swapping of ℐ𝒟{3}
between 𝑐1 and 𝑐2 can be equivalently considered as swapping of 𝒞{3} between 𝑝′1 and

Figure 6-3: Visualization of Lemma 1 when 𝐼 = {3} and 𝐽 = {2, 3}. As 𝐼 = {3}
the last column between 𝑝1 and 𝑝2 is swapped, which is equivalent to swapping of
the third and fourth inverse diagonals between 𝑝1 and 𝑝2 because of the positions of
inactive bytes in 𝑝1 ⊕ 𝑝2. Note that, in the last column of 𝑝′1 and 𝑝′2 there are two
swapped bytes.

142

𝑝′2 due to the function 𝑓 . Due to the bytes that are equal in 𝑝1 and 𝑝2, this can also

be considered as swapping of ℐ𝒟{2,3} between 𝑝1 and 𝑝2 (Fig. 6-4c).

(a) Depiction of 𝑝1, 𝑝2, 𝑐1 and 𝑐2.

(b) 𝑐′1 and 𝑐′2 which is ob-
tained by swapping ℐ𝒟{3} be-
tween 𝑐1 and 𝑐2.

(c) 𝑝′1 and 𝑝′2 which can
be equivalently obtained by
swapping ℐ𝒟{2,3} between 𝑝1

and 𝑝2.

Figure 6-4: An example elaborating a case described in Lemma 2.

Note that, in this example a case is shown when 𝐽 = {2, 3}; but, in Lemma 2 all

the cases are considered where 𝐽 ⊂𝜑 {0, 1, 2, 3}.

Next, we apply these results to devise a yoyo game embedded within a boomerang

for 5-round AES.

6.2.1 Distinguishing and Key Recovery Attacks on 5-round

AES

The attack strategy discussed above is applied to devise a 5-round AES distinguisher,

which is subsequently converted into a key recovery attack. First of all, 5-round

AES is divided into two parts- before 𝑀𝐶 of the 4-th round is termed as 𝐸0 and

the remaining part of the cipher is termed as 𝐸1. Note that, 𝐸0 is comprised of

𝑆 ∘ 𝐿 ∘ 𝑆 layer where 𝑆 and 𝐿 corresponds to AES Super-Sbox and 𝑀𝐶 respectively.

143

Fig. 6-5 depicts the 𝐸0 and 𝐸1 partition in AES. Now, Theorem 1 and Lemma 2 are

Figure 6-5: Partitioning 5-round AES in 𝐸0 and 𝐸1

combined to design a 5-round AES distinguisher by devising a probabilistic yoyo game

by embedding yoyo within boomerang.

Definition 8. Let 𝛼 ∈ F4×4
28 be a state and 𝑣 ∈ F4

2 be a vector. Then a state 𝜏 𝑣(𝛼) ∈

F4×4
28 is constructed from 𝛼 such that for 0 ≤ 𝑖 ≤ 3

ℐ𝒟{𝑖}(𝜏 𝑣(𝛼)) =

⎧⎪⎪⎨⎪⎪⎩
ℐ𝒟{𝑖}(𝛼), if 𝑣𝑖 = 0;

0, Otherwise.

.

Lemma 3. Let 𝑝1, 𝑝2 ∈ F4×4
28 and 𝑐1 = 𝑅5(𝑝1), 𝑐2 = 𝑅5(𝑝2) where 𝑅5 is 5-round AES

or alternatively 𝑅5 = 𝐸1 ∘ 𝐸0. For any vector 𝑣 ∈ F4
2 such that 1 ≤ 𝑤𝑡(𝑣) ≤ 3, let

𝑐′1 = 𝑐1 ⊕ 𝜏 𝑣(𝑐1 ⊕ 𝑐2), 𝑐′2 = 𝑐2 ⊕ 𝜏 𝑣(𝑐2 ⊕ 𝑐1) and 𝑝′1 = 𝑅−1
5 (𝑐′1), 𝑝′2 = 𝑅−1

5 (𝑐′2). Then

𝜈(𝑝1 ⊕ 𝑝2) = 𝜈(𝑝′1 ⊕ 𝑝′2) occurs with probability 𝑃𝑠𝑤𝑎𝑝
(︁
4− 𝑤𝑡(𝑣)

)︁
.

Proof. Let 𝑠1 = 𝐸0(𝑝1) and 𝑠2 = 𝐸0(𝑝2). Due to Lemma 2, the probability of oc-

curence of certain 𝑠1, 𝑠2 such that swapping of ℐ𝒟𝐼 between 𝑐1, 𝑐2 is equivalent

to swapping of ℐ𝒟𝐽 (where 𝐼, 𝐽 ⊂𝜑 {0, 1, 2, 3}) between 𝑠1, 𝑠2 is 𝑃𝑠𝑤𝑎𝑝(|𝐼|). Let

𝑠′1 = 𝐸−1
1 (𝑐′1) and 𝑠′2 = 𝐸−1

1 (𝑐′2). Due to the existence of Super-Sbox in 𝐸1, the

intermediate pair 𝑠′1, 𝑠′2 can be considered as constructed from 𝑠1, 𝑠2 as follows.

𝑠′1 = 𝑠1⊕ 𝛾 and 𝑠′2 = 𝑠2⊕ 𝛾, where some inverse diagonals in 𝛾 are zero and some of

them are exactly equal to the same inverse diagonal in 𝑠1 ⊕ 𝑠2. Thus by Theorem 5,

𝑠′1, 𝑠′2 is constructed from 𝑠1, 𝑠2 using word swap. Then by Proposition 1, this new

144

pair should preserve the zero difference property. So, the zero difference property

over 𝐸1 ∘𝐸0 (𝐸1 ∘𝐸0 is 𝑅5) can be preserved at the expense of 𝑃𝑠𝑤𝑎𝑝(|𝐼|) probability.

From Definition 8 it can be concluded that |𝐼| = 4− 𝑤𝑡(𝑣).

Note that, in Lemma 3, the value of 𝑃𝑠𝑤𝑎𝑝
(︁
4−𝑤𝑡(𝑣)

)︁
is maximum (≈ 2−46) when

𝑤𝑡(𝑣) = 3. Next, the upper trail and the lower trail are constructed for 5-round

AES distinguisher by leveraging on Lemma 3. For lower trail, 𝑣 = 1110 (𝐼 = {3})

is considered and for better understanding of the upper trail, 𝐽 = {3} is shown in

Fig. 6-6.

Constructing the Upper Trail. Refer to Fig. 6-6 for the upper trail. For 𝛼, pair

of plaintexts 𝑝1, 𝑝2 are chosen such that 𝑤𝑡
(︁
𝜈(𝑝1⊕𝑝2)

)︁
= 1. In 𝛽, at the cost of 2−48,

6 bytes in (𝒞{3} ∪ ℐ𝒟{3}) ∖ (𝒞{3} ∩ ℐ𝒟{3}) remain inactive. By considering the cases

when 𝐽 = {0}, {1} or {2}, the probability is increased to 2−46. We ignore the cases

when |𝐽 | > 1, as it has a negligible effect on the cumulative probability.

Constructing the Lower Trail. For 5-round AES, the construction of the lower

trail partially depends on the upper trail. At least one word of 𝛾 should be equal to

a word in the same position of 𝛽. In Fig. 6-6, 𝛽3 is equal to 𝛾3; 𝛾0 = 𝛾1 = 𝛾2 = 0. To

generate such 𝛾, dependency on the upper trail is required while constructing 𝛿. Let

𝑝1, 𝑝2 are encrypted to obtain 𝑐1, 𝑐2. For 0 ≤ 𝑖 ≤ 3, 𝛿 is constructed as follows-

𝛿𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑐1

3 ⊕ 𝑐2
3, if 𝑖 = 3;

0, Otherwise.

Note that, by Definition 8, 𝛿 = 𝜏 𝑣(𝑐1⊕ 𝑐2). In the upper trail, 𝛽 occurs with prob-

ability 2−46. In the lower trail, one may think that 𝛿 𝐸−1
1−→ 𝛾 occurs probabilistically.

But assuming that 𝛽 has occured, 𝛿 𝐸−1
1−→ 𝛾 occurs deterministically. This determines

that the overall complexity of the attack is 2−46.

Attack Overview.

1. Prepare a structure of 223 plaintexts 𝑝𝑖, 𝑖 ∈ {1, 2, · · · 223} such that all bytes

are constant except the bytes in principal diagonal (0𝑡ℎ diagonal), which are

145

different for each 𝑝𝑖.

2. For 0 ≤ 𝑖 ≤ 223, query encryption oracle with each 𝑝𝑖 to obtain 𝑐𝑖.

3. For 0 ≤ 𝑖 ≤ 223 − 1 and for 𝑖+ 1 ≤ 𝑗 ≤ 223,

(a) Construct 𝛿 as-

𝛿𝑚 =

⎧⎪⎪⎨⎪⎪⎩
𝑐𝑖3 ⊕ 𝑐

𝑗
3, if 𝑚 = 3;

0, Otherwise.

for 0 ≤ 𝑚 ≤ 3.

(b) Prepare 𝑐′𝑖 = 𝑐𝑖 ⊕ 𝛿 and 𝑐′𝑗 = 𝑐𝑗 ⊕ 𝛿. Query decryption oracle with 𝑐′𝑖, 𝑐′𝑗

to obtain 𝑝′𝑖, 𝑝′𝑗.

(c) Check whether 𝜈(𝑝𝑖⊕𝑝𝑗) = 𝜈(𝑝′𝑖⊕𝑝′𝑗). If yes, distinguish oracle as 5-round

AES and refer to (𝑝𝑖, 𝑝𝑗, 𝑝′𝑖, 𝑝′𝑗) as a quartet.

4. If no quartet is found, distinguish oracle as random permutation.

Figure 6-6: Upper and Lower Trail of 5-round AES. In this trail, the red-colored
byte should be equal in 𝛽 and 𝛾 in order to realize the inverse diagonal swap in the
boundary of 𝐸0 and 𝐸1.

146

Analysis. The data complexity of the attack is (223 encryption queries + 247 de-

cryption queries) ≈ 247 decryption queries. The time complexity of the attack is 246

XOR operations. The memory complexity is 223 AES state which is used to store the

encrypted plaintexts.

Experimental Verification. Due to high data complexity, it is quite difficult to

run the complete attack. Instead, an experiment is run to verify the existence of such

claimed trails. One such trail is listed in Appendix A. In addition, an experiment

for the distinguishing attack is run on 64-bit AES whose details are provided in

Section 6.2.3.

Key Recovery Attack.

The key recovery attack is an extension of the distinguishing attack. Refer to Fig. 6-7

for the attack. Let’s assume distinguisher has successfully found a quartet (𝑝1, 𝑝2, 𝑝′1, 𝑝′2)

and its corresponding ciphertexts (𝑐1, 𝑐2, 𝑐′1, 𝑐′2). Consider the active bytes of (𝑐1⊕𝑐′1)

in 𝑍. 𝑆𝑅−1 aligns the bytes in the last column. Guess the last column of 𝐾, invert

the bytes using 𝑆𝐵−1. Consider the differential in 𝑌 , apply 𝑀𝐶−1 to it and check

whether it transits to a single byte or not in 𝑋. The guesses for which only a single

active byte is obtained in 𝑋 are right guesses. The active byte in 𝑋 can have 255

different values; thus for the active diagonal 255 ≈ 28 right key candidates are ob-

tained. The process is repeated for the remaining three diagonals which gives a total

232 right key candidates. An exhaustive search is done over these 232 candidates to

recover the right key.

Analysis. For guessing each column, four different right pairs are required. So,

the data complexity and the memory complexity is 4 × 247 = 249 adaptive chosen

plaintexts and ciphertexts and 223 AES states respectively. Once a right pair is found

using the distinguisher, 28 key candidates for a column can be retrieved by doing

232 × 2 one round AES encryption for a column. To retrieve key candidates for all

the columns, 232 × 2 = 233 one round AES encryption needs to be done. Considering

five such operations as 5-round AES, 233/5 = 230.5 AES encryptions are required. For

exhaustive search, 232 more encryptions are required. So, the total time complexity

147

Figure 6-7: Key Recovery Attack on 5-round AES

is 232 + 230.5 ≈ 232.4 AES encryptions and 4× 246 = 248 XOR operations.

6.2.2 Key Recovery Attack on 6-round AES

The 6-round key recovery attack on AES is the extension of the 5-round attack de-

scribed in this chapter. The 6-round attack extensively uses the 4-to-1 property of

the AES in the initial round. One round is prepended to the 5-round boomeyong

attack. As shown in Fig. 6-8a, if a diagonal is inactive in D for a pair then it is

included in the candidate set. The main problem is that the candidate set contains

right and wrong pairs as for a random pair, any one of the diagonals is inactive with

probability 4 × 2−32 = 2−30. However, using the boomeyong attack such a pair can

be obtained with much lesser probability. Hence, to retrieve the right key candidate

using the candidate pairs the notion of the signal-to-noise ratio is applied.

Attack Idea. Refer to Fig. 6-8a for the attack. Choose pairs of plaintexts such that

only 4 bytes of a diagonal of the pairs are active; the remaining bytes are inactive.

Query the pairs to the encryption oracle to obtain corresponding ciphertext pairs.

An inverse diagonal is swapped between the ciphertexts to obtain new pair of texts

which are queried to the decryption oracle to obtain new pair of plaintexts. As

already stated in Section 6.2.1, with probability 2−46 swapping an inverse diagonal

between the ciphertexts is equivalent to swapping an inverse diagonal between the

intermediate states in the previous round. This is a base condition for the yoyo

148

Algorithm 10 Algorithm for Key Recovery Attack on 6-round AES
Output: The secret key

1: procedure
2: 𝑣 ← 1110
3: for 0 ≤ 𝑚 ≤ 1 initialize 𝐾𝑚 = 𝜑 do
4: for 0 ≤ 𝑖 < 232 do
5: 𝑐𝑡𝑟[𝑖]← 0
6: end for
7: for 0 ≤ 𝑖 < 277.72 do
8: Choose 2 AES state 𝑃 1

𝑖 , 𝑃 2
𝑖 such that only the 4-bytes in 𝒟{𝑚}(𝑃 1

𝑖 ⊕𝑃 2
𝑖)

are active
9: 𝐶1

𝑖 = 𝐸𝑛𝑐
(︁
𝑃 1
𝑖

)︁
, 𝐶2

𝑖 = 𝐸𝑛𝑐
(︁
𝑃 2
𝑖

)︁
10: 𝐶3

𝑖 = 𝐶1
𝑖 ⊕ 𝜏 𝑣

(︁
𝐶1
𝑖 ⊕ 𝐶2

𝑖

)︁
and 𝐶4

𝑖 = 𝐶2
𝑖 ⊕ 𝜏 𝑣

(︁
𝐶1
𝑖 ⊕ 𝐶2

𝑖

)︁
11: 𝑃 3

𝑖 = 𝐷𝑒𝑐
(︁
𝐶3
𝑖

)︁
and 𝑃 4

𝑖 = 𝐷𝑒𝑐
(︁
𝐶4
𝑖

)︁
12: if 𝒟{𝑚}(𝑃 3

𝑖 ⊕ 𝑃 4
𝑖) is inactive then

13: Discard 𝑃 1
𝑖 , 𝑃 2

𝑖 , 𝑃 3
𝑖 , 𝑃 4

𝑖

14: Go to step 8
15: end if
16: if @𝑗 ∈ {0, 1, 2, 3} and 𝑗 ̸= 𝑚 such that 𝒟{𝑗}(𝑃 3

𝑖 ⊕𝑃 4
𝑖) is inactive then

17: Discard 𝑃 1
𝑖 , 𝑃 2

𝑖 , 𝑃 3
𝑖 , 𝑃 4

𝑖

18: Go to step 8
19: end if
20: for 0 ≤ 𝑗 < 232 do
21: 𝑋 ←𝑀𝐶𝑚 ∘ 𝑠4

(︂
𝒟{𝑚}(𝑃 1

𝑖)⊕ 𝑗
)︂
⊕𝑀𝐶𝑚 ∘ 𝑠4

(︂
𝒟{𝑚}(𝑃 2

𝑖)⊕ 𝑗
)︂

22: 𝑌 ←𝑀𝐶𝑚 ∘ 𝑠4
(︂
𝒟{𝑚}(𝑃 3

𝑖)⊕ 𝑗
)︂
⊕𝑀𝐶𝑚 ∘ 𝑠4

(︂
𝒟{𝑚}(𝑃 4

𝑖)⊕ 𝑗
)︂

23: if there is only one active byte in 𝑋 and 𝑌 and its position is same
in both 𝑋 and 𝑌 then

24: 𝑐𝑡𝑟[𝑗]← 𝑐𝑡𝑟[𝑗] + 1
25: end if
26: end for
27: end for
28: Include the first 27 key candidates with highest counter value in 𝐾𝑚

29: end for
30: 𝐾2 and 𝐾3 are populated with all 232 candidates
31: Exhaustively search for the right subkey in 𝐾0 ×𝐾1 ×𝐾2 ×𝐾3
32: Finds the secret key from the subkey
33: end procedure

149

1-round
AES

5-round Boomeyong Attack

1-round
AES

A

B

D

C

Active Byte

Inactive Byte

(a) Candidate pair for Boomeyong Attack on 6-round
AES

A D

B C

Candidate
Key Guess

(b) Candidate Key for Boomeyong Attack on 6-round AES

Figure 6-8: Key Recovery Attack on 6-round AES

150

property, under which it is expected that there is one inactive Super-Sbox between

the intermediate state before one round decryption (Position C in Fig. 6-8a). Now in

C, out of 3 active bytes, one byte becomes inactive with probability 3× 2−8 = 2−6.4

(The inactive diagonal in D should not be the same as the active diagonal in A,

otherwise the number of candidate keys increases significantly. So, the corresponding

byte in C should be active). The transition A→ B occurs with probability 4 ×

2−24 = 2−22. Hence, the cumulative probability of obtaining an inactive diagonal is

2−22 × 2−46 × 2−6.4=2−74.4. For a random pair, a pair of texts with such an inactive

diagonal can be obtained with probability 3× 2−32 = 230.4. Therefore, by this attack,

a set of right and wrong pairs can be obtained and there is no way to distinguish

the right ones from the wrong ones. If 274.4 pairs are queried then it is expected that

there are around 274.4 × 2−30.4 = 244 wrong pairs and one right pair. The right key

candidate is suggested by the right pair whereas the wrong pairs can suggest both

right and wrong key candidates. The diagonal of the key corresponding to the active

diagonal of the initial plaintext pairs are guessed (refer to Fig. 6-8b). So, the size

of the guessed key space is 32 bits and thus a counter for each of the 232 keys is

maintained to count the key suggestions. To determine the required number of right

pairs, the notion of the signal-to-noise ratio is applied.

Determining the required number of right pairs. With reference to Sec-

tion 2.7.2, the values of 𝑝 and 𝑘 are 2−74.4 and 32 respectively. Now, the number of keys

(right and wrong) suggested by each wrong pair needs to be determined. Consider 𝑃 1,

𝑃 2 be a pair of texts which are encrypted, diagonals are swapped between their cor-

responding ciphertexts and decrypted to obtain 𝑃 3, 𝑃 4. Let the first diagonal of the

key be guessed. So, the first diagonal of 𝑃 1, 𝑃 2 is partially encrypted for one round

using the guessed key and checked whether 4-to-1 transition occurred or not. Similar

experiment is done with 𝑃 3, 𝑃 4. If 4-to-1 occurs for both the cases, then the value of

the counter corresponding to the key is incremented. After 4-to-1 the position of the

active byte should be same for both cases. Hence, for a fixed wrong pair and a fixed

guessed key, the counter value is incremented with probability 4×2−24×2−24 = 2−46.

So, the average number of keys suggested by a wrong pair is 2−46 × 232 = 2−14

151

Table 6.3: Required number of plaintext-ciphertext pairs versus the success probabil-
ity for key recovery attack on 6-round AES. The value of 𝑟 is considered 27 for all the
cases.

Pairs Required Success Probability

276.95 0.65

277.14 0.7

277.31 0.75

277.51 0.8

277.72 0.85

277.96 0.9

(𝜂 = 2−14). Note that, if the first diagonal of 𝑃 3, 𝑃 4 is inactive, then the pair needs

to be discarded as this pair suggests 4 × 2−24 × 232 = 210 keys and to recover the

correct key the data complexity may need to be increased. Hence, with probability

3 × 2−32 = 2−30.4 a wrong pair survives. Therefore, 𝑆/𝑁 = 232×2−74.4

(1−2−74)×2−30.4×2−14 ≈ 22.

Plugging in the values of 𝑟 as 27 in Proposition 5, the number of plaintexts-ciphertexts

pairs required to recover a diagonal of the correct key for various success probabil-

ities are listed in Table 6.3. From Table 6.3, the number of plaintexts-ciphertexts

pairs required for key recovery with success probability 0.85 is 277.72. As 𝑝 is 2−74.4,

277.72 × 2−74.4 = 9.98 right pairs are required to recover four bytes of the right key.

The process is repeated one more time for another diagonal. The remaining part of

the key is recovered using exhaustive search. In order to minimize the cost of the

exhaustive search, the value of 𝑟 is considered as 27. Hence, the cumulative success

probability is 0.85 × 0.85 ≈ 0.72. Details regarding key recovery attack on 6-round

AES are given in Algorithm 10. Note that, in Step 21 and Step 22 in Algorithm 10,

𝑠4 is four parallel application of subBytes on four bytes and 𝑀𝐶𝑚 is application of

𝑀𝐶 on 𝑚-th column.

Analysis. With reference to the Step 7, 277.72 pairs are required to be queried to both

the encryption and the decryption oracle for the first and second diagonal. Hence,

the data complexity is 2× 2× 2× 277.72 = 280.72 encryption/decryption queries. Time

152

complexity involves 279.72 XOR operations, computations of 𝑀𝐶∘𝑆𝐵∘𝐴𝐾 operations

for a single column in Step 21 and Step 22 and exhaustive search for finding the right

key. After filtering, the remaining number of pairs is 277.72 × 2−30.4 = 247.32. So, the

total number of 𝑀𝐶 ∘ 𝑆𝐵 ∘ 𝐴𝐾 operations is 247.32 × 4 × 2 = 250.32. As four such

operations approximately constitute one round AES encryption, it is assumed that 24

such operations are equivalent to one AES (6-round) encryption. So, the total number

of such operations are 250.32/24 ≈ 245.73 AES encryptions. In Step 31, |𝐾0|=|𝐾1|=27

and |𝐾2|=|𝐾3| = 232. Therefore, 27× 27× 232× 232 = 278 offline computations of AES

encryptions are required to recover the right key. The cost of 279.72 XOR operations

is lesser in comparison to the 278 AES encryptions (even if 6 XOR operations are

considered as one encryption of 6-round AES, then the 279.72 XOR operations are

equivalent to 277.14 AES encryptions). Memory requirement for this attack is the

memory used for storing the counter. As a byte is sufficient for storing the value for

each index of the counter, 232 bytes are required which is equivalent to 232/16 = 228

AES states that constitutes the memory complexity.

Reducing the Encryption Queries. Refer to 𝛽 in the upper trail in Fig. 6-6.

Only four combinations corresponding to the position of the active byte in the last

column are considered. But similar events can occur for the other columns also.

Thus, instead of swapping only the last inverse diagonal, if all the inverse diagonals

are swapped then it is possible to reduce the number of encryption queries by 3
4 ; as for

each pair of initial plaintexts, four different pairs of ciphertexts after swapping can be

constructed. Thus the number of encryption queries can be reduced. The number of

decryption queries can not be decreased as all the swapped pairs need to be queried

to the decryption oracle. The number of encryption queries can be further reduced by

using the structure technique. Hence the modified data complexity is approximately

279.72.

One may be tempted to think that instead of repeating the algorithm for two

diagonals independently, reusing the set of plaintext-ciphertext pairs that suggest the

top key candidates to recover the second diagonal of the key may lead to a significant

reduction in the number of wrong pairs while keeping the number of right pairs

153

the same. However, our investigation suggests that in the above modified strategy

the number of right pairs corresponding to the second diagonal also reduces. It

happens because the pairs whose second diagonal is inactive need to be discarded

while recovering the second diagonal of the key. This claim about the ineffectiveness

of the above mentioned strategy has also been supported by our experimental results.

Moreover, it can be noted that the key recovery attacks on 5/6-round AES-128 can

be extended to mount key recovery attacks on 6/7-round AES-256 respectively. The

details of those attacks are provided in Section 6.4.

6.2.3 Experimental Verification on 64-bit AES

To show the validity of the attacks presented in this chapter, experimental verification

of the attacks are carried out on a small-scale variant of AES proposed by Cid 𝑒𝑡

𝑎𝑙. [82]. The variant that is considered has a block length of 64 bits and thus referred

here as 64-bit AES. The bytes in the original AES are replaced with nibbles (4 bits).

The round operations - SubBytes, ShiftRows, MixColumns and AddRoundKey are

redefined to comply with the 64-bit version. As the design of 64-bit AES is quite

similar to the original version, the analysis on AES presented in this chapter applies

to it. Thus it provides a framework for verifying the validity of the attacks.

Distinguishing Attack on 5-round 64-bit AES

Recall the attack in Section 6.2.1. In this case, the modified probability of the occur-

rence of 𝛽 is 4×2−24 = 2−22. Hence, by checking 222 pairs of plaintexts the validity of

the attack can be established. Hence, a structure with 211 plaintexts are constructed

such that only the bytes in principal diagonal differ; the remaining bytes are the same

for all plaintexts. Using these states, the experiment for the 5-round attack is carried

out on 64-bit AES. As expected, a pair of states with the same zero difference pattern

as the initial pair of states is obtained. The code for the 5-round attack on 64-bit AES

is available online1.
1https://github.com/de-ci-phe-red-LABS/Boomeyong-codes-ToSC_2021_3

154

https://github.com/de-ci-phe-red-LABS/Boomeyong-codes-ToSC_2021_3

Key Recovery Attack on 6-round 64-bit AES

To validate the theoretical claims, experiments have been conducted on the 6-round

64-bit AES [82] where key recovery attacks could successfully recover a diagonal. Here,

we detail the experimental results of the attack. One can recall from Section 6.2.2 that

swapping an inverse diagonal between ciphertexts is equivalent to swapping an inverse

diagonal between the intermediate states in the previous round with probability 6×

2−24 = 2−22. For the rest of the discussion refer to Fig. 6-8a. For 64-bit AES it can be

seen that the transition from A→B occurs with probability 4×2−12 = 2−10. In C, out

of three active bytes one becomes inactive with probability 3×2−4 = 2−2.4. Hence, the

total probability of the characteristic is 2−10× 2−22× 2−2.4 = 2−34.4. For any random

pair, any one of the three diagonals become inactive with probability 3×2−16 = 2−14.4

(this is the filtering probability). Average number of keys suggested by each wrong

pair is 216 × 4 × 2−12 × 2−12 = 2−6. Hence, 𝑆/𝑁 = 216×2−34.4

(1−2−34.4)×2−14.4×2−6 ≈ 22. With

reference to Proposition 5, if the values of 𝑟 and 𝑃𝑠 are set to 27 and 0.75 respectively,

then the number of plaintext-ciphertext pairs required to recover the correct key is

237.4 (8 right pairs are required). After the filtering, expected number of pairs (both

right and wrong) is 237.4 × 2−14.4 = 223. As described in Section 2.7.2, the counter

values corresponding to each key follows the normal distribution. Hence, the counter

with the highest value may not be the right key (if the counter values would have

followed uniform distribution, then the candidate key having the highest counter value

could have been considered as the right key).

The experiment is initiated by randomly choosing a 64-bit key. The experiment

is conducted to recover the nibbles corresponding to the first diagonal of the key. As

expected, after the filtering 6749861 pairs (≈ 222.69) survive. After the experiment,

the counter value corresponding to the first diagonal is 15; whereas the highest value

for the counter is 17. The counter value corresponding to the right key is among the

top 128 values (number of key candidates corresponding to the counter value 17, 16

and 15 are 4, 2 and 10 respectively).

To further validate the success probability of the proposed attack, the partial key

155

recovery corresponding to a diagonal has been repeated 55 times. Out of which, 43

times the diagonal corresponding to the right key rank among the top 27 candidates.

Hence, the practical success probability of the attack is 43/55 = 0.78 which is close

to the theoretical value of 0.75.

6.3 Boomeyong Attack on Pholkos

Next, the boomeyong technique is applied on a tweakable block cipher Pholkos [70].

Attack strategy quite similar to the 6-round attack on AES is used to mount an key

recovery attack on 10-round Pholkos with the data, time and memory complexity of

2189.8, 2188.8 and 2122. Till now, there is a distinguishing attack on 10-round Pholkos

block cipher by the designers whose data, time and memory complexity is 2260, 2260

and 232 respectively.

6.3.1 Specification of Pholkos

Pholkos is a recently proposed family of tweakable block cipher which is based on AES

round functions. It follows the design strategy of AESQ [56] and Haraka [144]. An

instance of Pholkos with a block size of 𝑛 bits and a key size of 𝑘 bits is denoted by

Pholkos-𝑛-𝑘. The tweak size in Pholkos is 128 bits for all variants. The secret key

variants of Pholkos are Pholkos-256-256, Pholkos-512-256 and Pholkos-512-512. 𝑛-

bit Pholkos state is considered as 𝑛/128 parallel AES substates where each substate

goes through 2 rounds of AES operations followed by a columnwise permutation of

words between substates. The substates are indexed from 0 to 𝑛
128−1 with the leftmost

substate indexed as 0. The AddRoundKey (AK) operation in AES is substituted by

AddRoundTweakey (ATK) in Pholkos. Like AES, MC is also omitted in the last round

of Pholkos. The total number of rounds in Pholkos variants with a block size of 256

and 512 are 16 and 20 respectively. The details regarding key expansion and tweakey

generation is omitted here; for more details refer to [70]. The notations are reviewed

here.

156

• 𝑃𝑖[𝑗]: Denotes the 𝑗-th substate in the 𝑖th round of Pholkos state 𝑃 .

• 𝒳 𝑃
𝑖 : Denotes the state before 𝑀𝐶 in the 𝑖th round for an initial state 𝑃 .

• 𝒳 𝑃
𝑖 [𝑗]: Denotes the 𝑗th substate before 𝑀𝐶 in the 𝑖th round for an initial state

𝑃 .

Figure 6-9: Two Rounds of Pholkos-512

As the attacks discussed here are independent of the key size, an instance of

Pholkos with block size 𝑏 is denoted by Pholkos-𝑏. Fig. 6-9 shows round operations

for Pholkos-512 and Pholkos-256. In Pholkos, there is a group of 128 bits which is

independent of other bits in the Pholkos state over a certain number of rounds. This

is called MegaSbox (cf. [86]) and details regarding this are now discussed.

MegaSbox. Refer to Fig. 6-10 for the MegaSbox construction in Pholkos. Four diag-

onals in four AES substates are aligned to a column in each substate due to the effect

of 𝑅𝑖−1
𝑗 for 0 ≤ 𝑗 ≤ 3 in 𝑖− 1 round. The subsequent 𝜋512 combines these columns in

a single substate where they go through two rounds of AES. The following 𝜋512 breaks

the substate by moving the columns to different substates and 𝑆𝑅 ∘ 𝑆𝐵 aligns the

157

Figure 6-10: MegaSbox in Pholkos-512

bytes in inverse diagonals. The MegaSbox in Pholkos-512 spans over 3.5 rounds. 3.5

rounds Pholkos-512 can be considered as four parallel operations of MegaSbox. This

MegaSbox is exploited while mounting the key recovery attack on Pholkos.

158

6.3.2 Key Recovery Attack on 10-round Pholkos

The key recovery attack on 10-round Pholkos is similar to the 6-round key recovery

attack on AES. For the upper trail, the 𝑆 ∘𝐿 ∘ 𝑆 layer needs to be identified. Here, 𝑆

and 𝐿 refers to the MegaSbox and MC respectively. As MegaSbox spans over 3.5 rounds,

𝑆 ∘𝐿∘𝑆 layer starting from round 2 covers 7.5 rounds in total. The strategy remains

the same- at the end of 10-round, such a 𝛿 to be added so that the inverse diagonals

are swapped between the intermediate states in the previous round. Contrary to AES,

here four different inverse diagonals in four substates need to be swapped and they

should be a part of the same MegaSbox. Suppose, 𝑃 1, 𝑃 2 be two Pholkos states which

are encrypted to obtain 𝐶1, 𝐶2 respectively. By Lemma 2, swapping of ℐ𝒟{3} between

𝐶1[3] and 𝐶2[3] is equivalent to swapping of ℐ𝒟𝐽 for 𝐽 ⊂𝜑 {0, 1, 2, 3}, between 𝒳 𝑃 1
9 [3]

and 𝒳 𝑃 2
9 [3] with probability 2−46 (approx). If all other inverse diagonals corresponding

to a MegaSbox in the remaining substates are inactive in the difference 𝒳 𝑃 1
9 ⊕𝒳 𝑃 2

9 , then

swapping of ℐ𝒟{3} between 𝐶1[3] and 𝐶2[3] is equivalent to swapping of MegaSbox

in 𝒳 𝑃 1
9 ⊕𝒳 𝑃 2

9 with probability 2−46 × 2−32×3 = 2−142. Thus for the lower trail of the

boomerang, 𝛿 is constructed by taking ℐ𝒟{3} from the last substate of 𝐶1 ⊕ 𝐶2 and

setting all other bytes to zero. Then, with probability 2−142 it is known that swapping

of MegaSbox has occurred in the middle.

Attack Idea. Choose a pair of plaintext 𝑃 1, 𝑃 2 such that only the four bytes in

𝒟{0}(𝑃 1[0]⊕ 𝑃 2[0]) are active. 𝑃 1, 𝑃 2 are queried to the encryption oracle to obtain

𝐶1, 𝐶2. After one round of partial encryption only one byte becomes active with

probability 2−22 (i. e. in 𝑃 1
1 [0] ⊕ 𝑃 2

1 [0] only one byte is active) which implies that

only one MegaSbox is active. Now, a inverse diagonal is swapped between 𝐶1, 𝐶2

and the new states are queried to the decryption oracle to obtain 𝑃 3, 𝑃 4. Now, with

probability 2−142 only one MegaSbox should be active in 𝑃 3
1 [0]⊕ 𝑃 4

1 [0]. 𝑡 bytes out of

the 16 bytes of the active MegaSbox are inactive with probability
(︁

16
𝑡

)︁
× 2−8𝑡. Hence,

with probability 2−22 × 2−142 ×
(︁

16
𝑡

)︁
× 2−8𝑡 = 2−164−8𝑡 ×

(︁
16
𝑡

)︁
, 𝑡 diagonals are inactive

in 𝑃 3 ⊕ 𝑃 4. For a random pair of texts, 𝑡 diagonals are inactive with probability(︁
16
𝑡

)︁
× 2−32𝑡. Note that, for 7 ≤ 𝑡 ≤ 16, 2−164−8𝑡 ×

(︁
16
𝑡

)︁
>
(︁

16
𝑡

)︁
× 2−32𝑡 and thus a

159

Algorithm 11 Algorithm for Key Recovery Attack on 10-round Pholkos
Output: The secret key

1: procedure
2: 𝑣 ← 1110
3: Initialize a pholkos state 𝛿 by setting all bytes to 0
4: for 0 ≤ 𝑚 ≤ 2 do
5: Initialize 𝐾𝑚 = 𝜑
6: for 0 ≤ 𝑖 < 2128 do
7: 𝑐𝑡𝑟[𝑖]← 0
8: end for
9: for 0 ≤ 𝑖 < 2186.2 do

10: Choose 2 pholkos state 𝑃 1,𝑖, 𝑃 2,𝑖 such that only the 4-bytes in
𝒟{𝑚}(𝑃 1,𝑖[0]⊕ 𝑃 2,𝑖[0]) are active

11: 𝐶1,𝑖 = 𝐸𝑛𝑐
(︁
𝑃 1,𝑖

)︁
, 𝐶2,𝑖 = 𝐸𝑛𝑐

(︁
𝑃 2,𝑖

)︁
12: 𝛿[3] = 𝜏 𝑣

(︁
𝐶1,𝑖[3]⊕ 𝐶2,𝑖[3]

)︁
13: 𝐶3,𝑖 = 𝐶1,𝑖 ⊕ 𝛿
14: 𝐶4,𝑖 = 𝐶2,𝑖 ⊕ 𝛿
15: 𝑃 3,𝑖 = 𝐷𝑒𝑐

(︁
𝐶3,𝑖

)︁
and 𝑃 4,𝑖 = 𝐷𝑒𝑐

(︁
𝐶4,𝑖

)︁
16: 𝐷𝑖𝑎𝐶𝑜𝑢𝑛𝑡← 0
17: for 0 ≤ 𝑗 ≤ 3 do
18: for 0 ≤ 𝑘 ≤ 3 do
19: if 𝒟{𝑘}(𝑃 3,𝑖[𝑗]⊕ 𝑃 4,𝑖[𝑗]) is inactive then
20: 𝐷𝑖𝑎𝐶𝑜𝑢𝑛𝑡← 𝐷𝑖𝑎𝐶𝑜𝑢𝑛𝑡+ 1
21: end if
22: end for
23: end for
24: if 𝐷𝑖𝑎𝐶𝑜𝑢𝑛𝑡 < 4 then
25: Discard 𝑃 1,𝑖, 𝑃 2,𝑖, 𝑃 3,𝑖, 𝑃 4,𝑖

26: Go to Step 10
27: end if
28: for 0 ≤ 𝑗 < 2128 do
29: Use the 128-bit key to partially encrypt 𝑚-th diagonal of the 4

substates
30: if If there is one active byte corresponding to each of the four diag-

onals then
31: 𝑐𝑡𝑟[𝑗]← 𝑐𝑡𝑟[𝑗] + 1
32: end if
33: end for
34: end for
35: Include the top 27 key candidates with highest counter value in 𝐾𝑚.
36: end for
37: 𝐾3 is populated with all 2128 candidates
38: Exhaustively search for the right subkey in 𝐾0 ×𝐾1 ×𝐾2 ×𝐾3
39: Finds the secret key from the subkey
40: end procedure

160

right pair can be uniquely distinguished; but it requires a data complexity around

2206.5. To reduce the data complexity, instead of using a unique right pair, a set

of right and wrong pairs are used and then by using the ranking test the right key

candidate is guessed. Note that, as 𝑡 diagonals are inactive in 𝑃 3 ⊕ 𝑃 4, a wrong

pair survives the filtering with probability
(︁

16
𝑡

)︁
× 2−32𝑡. Now, 128 bits of the key are

guessed corresponding to four active diagonals in 𝑃 3 ⊕ 𝑃 4. For a wrong pair, out

of 232 key guesses for each diagonal, 232 × 2−22 = 210 guesses conforms to the 4-to-1

transition. So, a wrong pair suggests 240 key guesses. Therefore,

𝑆/𝑁 =
2128 × 2−164−8𝑡 ×

(︁
16
𝑡

)︁
(︁

16
𝑡

)︁
× 2−32𝑡 × 240

= 2−76+24𝑡

Now, 𝑆/𝑁 > 1 when 𝑡 ≥ 4. As the probability of the trail is 2−164−8𝑡 ×
(︁

16
𝑡

)︁
, so

with the increasing value of 𝑡, the trail probability decreases significantly. Hence,

𝑡 = 4 is considered. For 𝑡 = 4, the trail probability is 2−185.2, 𝑆/𝑁 = 220. With

reference to Proposition 5, if 𝑟 = 27 is considered, then the success probability is 0.92

if 2186.2 plaintext-ciphertext pairs are used for recovering a diagonal of the key. As in

Algorithm 11, this step is repeated three times, so the overall success probability of

recovering the correct key is 0.78. Therefore, collecting two right pairs is enough for

guessing the right key. As 128 bits of the key are guessed at a time, the size of the

counter is 2128. Algorithm 11 gives the details of the key recovery mechanism.

Analysis. Referring to Step 9 in Algorithm 11, 2186.2 pairs are required for encryption

and decryption queries in each iteration. So, total data complexity is 3× 2186.2× 4 =

2189.8 encryption/decryption queries. Time complexity involves 3× 2186.2 × 2 = 2188.8

XOR operations, computations of partial encryptions and cost of exhaustive search

in Step 38. Out of 2186.2 pairs, after the filtering 258.2 pairs remain. Each pair

suggests around 240 candidate keys. So, for 258.2 pairs, 2× 240 × 258.2 = 299.2 partial

encryptions are computed. As this process is repeated for three different sets of

diagonals, total number of partial encryptions is 2100.8. By assuming four such partial

encryptions as one round of Pholkos encryption, the total computation is 2100.8/40 =

295.5 Pholkos encryptions. As |𝐾0| = |𝐾1| = |𝐾2| = 27 and |𝐾3| = 2128, Step 38

161

requires computations of 2149 Pholkos encryptions. Memory requirement for this

attack is the memory used for storing the counter. As a byte is sufficient for storing

the value for each index of the counter, 2128 bytes are required which is equivalent to

2128/64 = 2122 Pholkos states and that constitutes the memory complexity.

6.4 Attacks on AES-256

The key recovery attacks on 5-round and 6-round AES-128 can be extended to mount

attacks on 6-round and 7-round AES-256. This variant of AES is composed of 14

rounds and 15 subkeys are used where the first two subkeys are part of the master

key. The remaining keys are derived from the master key using a key scheduling

algorithm. Let 𝐾0 and 𝐾1 denote the first two subkeys. The attack idea is that if

𝐾0 is correctly guessed then 𝐾1 for 6/7-round AES-256 can be recovered by following

strategies similar to the one proposed in this work for AES-128.

To mount an attack on 6/7-round AES-256, first 𝐾0 needs to be guessed. Then

intermediate states similar to the ones used for attacking AES-128 are constructed.

These states are inverted one round by using the guessed value of key 𝐾0. These

inverted states form the input of AES-256, which are then queried to the encryption

oracle. The states that are obtained from the decryption oracle are encrypted one

round using the same guessed value of 𝐾0 to obtain the intermediate states. It can be

noted that for 6/7-round AES-256, these intermediate states along with the initially

constructed ones reduce the attack to recover 𝐾1 to a setting analogous to 5/6-round

AES-128 respectively (as described in Section 6.2).

The attack depends on the guess of the key 𝐾0. Brute-force attack is applied

to recover the 128-bit key 𝐾0 and thus 2128 try-outs are required. Hence, the data

complexity is 2128 encryption queries and the time complexity is 2128 times of the

corresponding values of the attacks on AES-128. However, the memory complexity

remains the same as two independent key guesses has no effect on one another, i. e.,

the data obtained for one key guess have no use for another key guess. Therefore, the

data, time and memory complexity of the key recovery attack on 6-round AES-256 are

162

249 × 2128 = 2177 adaptive chosen ciphertexts, 248 × 2128 = 2176 XOR operations and

223 AES states respectively. The corresponding complexities of the attack on 7-round

AES-256 are 279.72 × 2128 = 2207.72 adaptive chosen ciphertexts, 278 × 2128 = 2208 AES

encryptions and 228 AES states respectively.

Next, a brief discussion about the close relationship between attacks presented in

this chapter and recently proposed retracing boomerang framework [99] is given.

6.5 Relation with Retracing Boomerang Attack

Dunkelman 𝑒𝑡 𝑎𝑙. recently proposed the retracing boomerang attack [99] in Eurocrypt

2020. With some restrictions, those attacks can also be visualised using the boomey-

ong attack framework. Before discussing further, a brief description of retracing

boomerang is provided.

In retracing boomerang attack, a cipher is divided into 𝐸12 ∘𝐸11 ∘𝐸0. The 𝐸12 is

further divided into two parts: 𝐸𝐿
12 and 𝐸𝑅

12 where 𝐸𝐿
12 operates on 𝑏 bits on the left and

𝐸𝑅
12 operates on the remaining (𝑛−𝑏) bits on the right. Let consider 𝑃𝑟[𝛼 𝐸0−→ 𝛽] = 𝑝,

𝑃𝑟[𝛾 𝐸11−→ (𝜇𝐿, 𝜇𝑅)] = 𝑞1, 𝑃𝑟[𝜇𝐿
𝐸𝐿

12−→ 𝛿𝐿] = 𝑞𝐿2 and 𝑃𝑟[𝜇𝑅
𝐸𝑅

12−→ 𝛿𝑅] = 𝑞𝑅2 . In general,

the probability of a boomerang distinguisher satisfying these trails is (𝑝𝑞1𝑞
𝑅
2 𝑞

𝐿
2)2.

There are two variants of retracing boomerang attack- shifting retracing boomerang

attack and mixing retracing boomerang attack. Suppose, 𝐸 encrypts 𝑃 1, 𝑃 2 to 𝐶1, 𝐶2.

In the shifting retracing boomerang attack, if 𝐶1
𝑅 ⊕ 𝐶2

𝑅 = 0 or 𝛿𝑅, only then a new

pair of ciphertexts are formed by performing 𝐶1 ⊕ 𝛿 and 𝐶2 ⊕ 𝛿. This increases

the probability of the boomerang distinguisher to (𝑝𝑞1𝑞
𝐿
2)2𝑞𝑅2 as in the return path

the differential over 𝐸𝑅
12 is deterministically satisfied. In the mixing variant, 𝛿 is

constructed as (0, 𝐶1
𝑅⊕𝐶2

𝑅). This improves the probability of boomerang distinguisher

by a factor of (𝑞𝐿2)−2(𝑞𝑅2)−1.

In particular, the mixing variant can be redefined using the boomeyong framework.

Consider the last 𝐴𝐾 ∘ 𝑆𝑅 ∘ 𝑆𝐵 ∘ 𝐴𝐾 ∘ 𝑀𝐶 operations of 5-round AES on first

three columns as 𝐸𝑅
12 and on the last column as 𝐸𝐿

12. In the boomeyong attack, 𝛿

is constructed by taking the difference of two ciphertexts in one inverse diagonal;

163

Figure 6-11: Relationship of boomeyong on AES with mixing retracing boomerang
attack [99]. In the left, framework for mixing retracing boomerang attack is shown;
whereas on the right, lower trail of the boomeyong attack on 5-round AES is shown.
In both the attacks, a part of the state is exchanged between the ciphertexts. Here,
𝑌 𝑖
𝐿 ← 𝐸𝐿

12
−1(𝐶𝑖

𝐿) and 𝑌 𝑖
𝑅 ← 𝐸𝑅

12
−1(𝐶𝑖

𝑅).

164

the other inverse diagonals are set to zero. By following this strategy, it is possible

to swap a column one round inside without incurring any probability and when the

required differential in the upper trail occurs, this strategy essentially swaps inverse

diagonals one round inside, which is a necessary condition for the yoyo game to occur

in the upper trail. In the mixing retracing boomerang attack, 𝛿 is constructed by

following a similar kind of strategy. However, the main advantage of the boomeyong

attack over mixing retracing boomerang attack is that no extra cost is incurred for

the return path of the upper trail as it occurs deterministically. Fig. 6-11 shows the

relation between the mixing retracing boomerang attack and the boomeyong attack

on AES.

6.6 Chapter Summary

In this chapter, we concentrated on devising a generic strategy for embedding the yoyo

trick inside a boomerang trail. In doing so, we take a fresh look at the word-swap

operation of the yoyo trick that is fundamental to the deterministic nature of the

basic yoyo game. Our investigations lead to proving that the word-swap operation is

a combination of s-box switch and ladder switch if we geometrically visualize the yoyo

to be on top of the lower boomerang trail. The core idea here is to devise the lower

boomerang trail in such a way that the intended s-box and ladder switches happen at

the boundary thereby fulfilling the condition of the yoyo game which then leads to a

deterministic transition on the way back to the top. The proposed strategy leads to

new key recovery attacks on AES reduced to 5 and 6 rounds. The 5-round attack has a

time complexity of 248 XOR operations. The 6-round attack reaches a time complexity

of 278 AES encryptions. The attack is further adapted on 10 out of 20 rounds of

Pholkos-512 showcasing its versatility. To the best of our knowledge, this is the first-

ever third-party cryptanalysis of Pholkos. While mounting the key recovery attacks,

the notion of signal-to-noise ratio is employed. The attacks on AES are experimentally

verified by employing them on a 64-bit variant of AES (code is available online2). We

2https://github.com/de-ci-phe-red-LABS/Boomeyong-codes-ToSC_2021_3

165

https://github.com/de-ci-phe-red-LABS/Boomeyong-codes-ToSC_2021_3

also establish a relation of the proposed strategy with the retracing boomerang attack.

It is worth mentioning that the boomeyong strategy performs better than most of the

recent attacks reported on 6-round AES like extended truncated differential attack,

exchange attack, yoyo attack in time/data complexity or both. Finally, the embedded

yoyo-boomerang strategy helps to increase the understanding of AES and other AES-

like designs and may be used as an effective cryptanalysis tool for other SPN and

non-SPN ciphers as well.

166

7
QUANTUM ATTACKS ON SYMMETRIC

DESIGNS BEYOND GROVER’S SEARCH

Contents
7.1 Output Truncation of Quantum Oracles 168

7.2 Attacks . 170

7.3 Chapter Summary . 181

The polynomial-time solvability of integer factorization problem and discrete log-

arithm problem introduced by Shor’s algorithm [187] causes a major threat to public

key cryptographic primitives against quantum adversaries. In the case of symmetric

key schemes, for a long time, Grover’s algorithm [120] has been considered to pro-

vide the best attack by speeding up the exhaustive search of the private key by a

quadratic factor. Thus, doubling the key-length resists such attacks by upgrading

the quantum security of the schemes to that of the classical ones. Leveraging on the

power of Simon’s algorithm [189], chosen plaintext attack on 3-round Feistel [145]

and the quantum attack on Even-Mansour cipher [146] by Kuwakado and Mori has

opened up a new direction for cryptanalysis of symmetric key schemes in the quantum

setting.

The way of realizing cryptographic protocols using quantum resources so that they

can be queried using superposition queries is another aspect and in this direction,

several works are carried out in which AES is implemented using quantum circuits

167

and gates to analyze the requirements of quantum resources while applying Grover’s

algorithm [119, 148]. In the 𝑄2 model, Kaplan 𝑒𝑡 𝑎𝑙. has shown attacks on the

mode of operation for authentication and authenticated encryption by using Simon’s

algorithm [134]. Leander and May have shown how to combine Grover’s algorithm

with Simon’s algorithm to mount attacks on FX construction [151]. These attacks

are also based on quantum superposition queries to the quantum oracle. Bonnetain

𝑒𝑡 𝑎𝑙. has given attacks on several schemes without making superposition queries to

the oracle [66].

Rest of the chapter is organized as follows. Initially, the method of truncating

outputs of quantum oracles is described in Section 7.1. In Section 7.2, the attacks on

various schemes are described. First, attacks on HCTR in both 𝑄1 and 𝑄2 model are

proposed. Then attacks on 𝐻𝐶𝑇𝑅 are illustrated upon considering only 𝑄2 model.

Finally, attacks on HCH in 𝑄1 and 𝑄2 model are discussed. Then the chapter is

summarized furnishing with concluding remarks.

7.1 Output Truncation of Quantum Oracles

In the attack on 3-round Feistel cipher, Kuwakado and Morii [145] use the right half

of the output from the quantum oracle to mount distinguishing attacks. In [134],

it is mentioned that the outputs of 3-round Feistel oracle in the left and the right

halves are entangled. So, it cannot be used as an input to the Simon’s algorithm,

because as described in the attack, the values of the left and the right halves need

to be unentangled. In [121], it is shown how to truncate the right half of the output

from the complete output when a quantum oracle is queried.

The attacks presented in this chapter are on the modes of operation of block ci-

phers. Essentially, a part of the ciphertexts are exploited to mount attacks. The

truncation technique mentioned in [121] can be employed to take a part of the cipher-

text. Let 𝐸𝑘 encrypts 𝑚1|| · · · ||𝑚𝑠 to 𝑐1|| · · · ||𝑐𝑠 where 𝑚𝑖’s, 𝑐𝑖’s are 𝑛-bit messages

and 𝑦1|| · · · ||𝑦𝑠 are ancilla qubits. Then the corresponding quantum oracle 𝒪𝑘 can be

168

represented as

𝒪𝑘 :|𝑚1⟩ · · · |𝑚𝑠⟩|𝑦1⟩ · · · |𝑦𝑠⟩

↦−→ |𝑚1⟩ · · · |𝑚𝑠⟩|𝑦1 ⊕ 𝐸𝑘(𝑚1, · · · ,𝑚𝑠)⟩ · · · |𝑦𝑠 ⊕ 𝐸𝑘(𝑚1, · · · ,𝑚𝑠)⟩.

Suppose, the 𝑝-th ciphertext 𝑐𝑝 needs to be considered for further operation.

Therefore, we want to simulate an

𝒪𝑘{𝑝} :|𝑚1⟩ · · · |𝑚𝑠⟩|𝑦𝑝⟩ ↦−→ |𝑚1⟩ · · · |𝑚𝑠⟩|𝑦𝑝 ⊕ 𝐸𝑘(𝑚1, · · · ,𝑚𝑠)⟩. (7.1)

This is similar to the simulation of the oracle

𝒪′𝑘{𝑝} :|𝑚1⟩ · · · |𝑚𝑠⟩|𝑦𝑝⟩
(𝑠−1) times⏞ ⏟
|0𝑛⟩ · · · |0𝑛⟩

↦−→ |𝑚1⟩ · · · |𝑚𝑠⟩|𝑦𝑝 ⊕ 𝐸𝑘(𝑚1, · · · ,𝑚𝑠)⟩
(𝑠−1) times⏞ ⏟
|0𝑛⟩ · · · |0𝑛⟩ .

(7.2)

Let𝐻⊗𝑛 be an 𝑛-bit Hadamard gate and |+⟩ := 𝐻⊗𝑛(0𝑛). Considering 𝑦1, · · · , 𝑦𝑝−1,

𝑦𝑝+1, · · · , 𝑦𝑠 = 0𝑛 and applying Hadamard on them, the oracle representation in (7.1)

can be rewritten as

𝒪𝑘 :|𝑚1⟩ · · · |𝑚𝑠⟩|+⟩ · · · |𝑦𝑝⟩ · · · |+⟩

↦−→ |𝑚1⟩ · · · |𝑚𝑠⟩|+⟩ · · · |𝑦𝑝 ⊕ 𝐸𝑘(𝑚1, · · · ,𝑚𝑠)⟩ · · · |+⟩.

Let swap(p) be a function that swaps (𝑠 + 1)-th output with (𝑠 + 𝑝)-th. Now, the

oracle 𝒪′𝑘{𝑝} can be defined as

(𝐼𝑛𝑠+𝑛 ⊗𝐻⊗(𝑠−1)𝑛) · swap(p) · 𝒪𝑘 · swap(p) · (𝐼𝑛𝑠+𝑛 ⊗𝐻⊗(𝑠−1)𝑛).‘

It can be verified that 𝒪′𝑘{𝑝} can be applied to truncate 𝑝-th ciphertext block when

a quantum access to 𝒪𝑘 is given. Figure 7-1 shows how 𝒪′𝑘{𝑝} is constructed from 𝒪𝑘.

169

Figure 7-1: Construction of 𝒪′𝑘{𝑝} from 𝒪𝑘

7.2 Attacks

Based on the previous theoretical explanations, it is possible to mount attacks on

HCTR, Tweakable-HCTR(𝐻𝐶𝑇𝑅), and HCH constructions in 𝑄1 and 𝑄2 model.

The attacks on HCTR have been discussed extensively. The remaining two attacks

are quite similar to the attack on HCTR, and thus they have been briefly described.

HCTR can encrypt a 𝑛-block message (𝑀1||𝑀2|| · · ·𝑀𝑟) to produce (𝐶1||𝐶2|| · · ·𝐶𝑟).

For mounting attack, the second ciphertext block 𝐶2 has been used. Instead of 𝐶2,

any 𝐶𝑖(2 ≤ 𝑖 ≤ 𝑟) can be used in order to perform the attack. Similar strategies have

been followed for 𝐻𝐶𝑇𝑅 and HCH.

7.2.1 Attack on HCTR

Our first attack is on HCTR or Hash-Counter which is a tweakable enciphering scheme

proposed by Wang, Feng, and Wu [206]. It is a strong tweakable pseudorandom

permutation and hash-encipher-hash based construction where the middle layer uses

counter mode. It is a length preserving tweakable enciphering scheme which supports

input with arbitrary variable length. Fig. 7-2 shows the HCTR construction. HCTR

170

Figure 7-2: Construction of 𝐻𝐶𝑇𝑅

uses a block cipher

𝐸 : {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑛

and a universal hash function

𝐻 =
{︁
𝐻ℎ : {0, 1}* → {0, 1}𝑛|ℎ ∈ {0, 1}𝑛

}︁
.

Let 𝑀1||𝑀2|| · · · ||𝑀𝑟 be encrypted by

𝐻𝐶𝑇𝑅[𝐸,𝐻] : {0, 1}𝑚+𝑛 × {0, 1}𝑡 × {0, 1}≥𝑛 → {0, 1}≥𝑛

171

to obtain 𝐶1||𝐶2|| · · · ||𝐶𝑟, then

𝐶1||𝐶2|| · · · ||𝐶𝑟 = 𝐻𝐶𝑇𝑅𝑇
𝐾(𝑀1||𝑀2|| · · · ||𝑀𝑟),

where 𝑇 ∈ {0, 1}𝑡 is a tweak and 𝐾 ∈ {0, 1}𝑚 is the key of the underlying block

cipher. To consider only the 𝑖-th ciphertext block, we introduce the operator Π𝑖.

Note that, as all the blocks in ciphertexts are entangled; it is not trivial to truncate

the 𝑖-th ciphertext block. In this regard, the method described in Section 7.1 can be

followed for truncating a specific block of the cipher.

In the original construction, the tweak length is fixed and can be zero. In the

following attacks, the tweak length is considered non-zero and each message block

is 𝑛-bit. The attack is performed using two message blocks, which can be easily

extended for an arbitrary number of message blocks.

Consider, HCTR is used to encrypt a message 𝑀1||𝑀2 using a tweak 𝑡 to obtain

𝐶1||𝐶2 and 𝐾 is the key of the underlying block cipher. Then,

𝐶1||𝐶2 = 𝐻𝐶𝑇𝑅𝑇
𝐾(𝑀1||𝑀2),

𝐼𝑉 = 𝐻ℎ(𝑇 ||𝑀2)⊕𝑀1 ⊕ 𝐸𝐾
(︁
𝐻ℎ(𝑇 ||𝑀2)⊕𝑀1

)︁
,

𝐶2 = 𝐸𝐾(𝐼𝑉 ⊕ 1)⊕𝑀2,

𝐶1 = 𝐸𝐾
(︁
𝐻ℎ(𝑇 ||𝑀2)

)︁
⊕𝐻ℎ(𝑇 ||𝐶2).

Attack in 𝑄2 Model.

In 𝑄2 model, quantum superposition queries can be made to HCTR oracle. 𝑥||𝑀2 is

queried with tweak 𝑇0, 𝑇1 and output 𝐶2 is used to construct 𝑔(𝑥).

𝑔(𝑥) = Π2
(︂
𝐻𝐶𝑇𝑅𝑇0

𝐾 (𝑥||𝑀2)
)︂
⊕ Π2

(︂
𝐻𝐶𝑇𝑅𝑇1

𝐾 (𝑥||𝑀2)
)︂

= 𝐸𝐾

(︂
𝐻ℎ(𝑇0||𝑀2)⊕ 𝑥⊕ 𝐸𝐾

(︁
𝐻ℎ(𝑇0||𝑀2)⊕ 𝑥

)︁
⊕ 1

)︂
⊕ 𝐸𝐾

(︂
𝐻ℎ(𝑇1||𝑀2)⊕ 𝑥⊕ 𝐸𝐾

(︁
𝐻ℎ(𝑇1||𝑀2)⊕ 𝑥

)︁
⊕ 1

)︂ (7.3)

172

Clearly, 𝑔(𝑥) is a periodic function with period 𝐻ℎ(𝑇0||𝑀2)⊕𝐻ℎ(𝑇1||𝑀2) and it can be

recovered by applying Simon’s algorithm on 𝑔(𝑥) by making 𝑂(𝑛) queries. Therefore,

𝑔(𝑥) = 𝑔(𝑥⊕𝐻ℎ(𝑇0||𝑀2)⊕𝐻ℎ(𝑇1||𝑀2)).

So,

Π2
(︂
𝐻𝐶𝑇𝑅𝑇1

𝐾 (𝑥⊕ 𝑠||𝑀2)
)︂
⊕ Π2

(︂
𝐻𝐶𝑇𝑅𝑇0

𝐾 (𝑥⊕ 𝑠||𝑀2)
)︂

⊕ Π2
(︂
𝐻𝐶𝑇𝑅𝑇1

𝐾 (𝑥||𝑀2)
)︂
⊕ Π2

(︂
𝐻𝐶𝑇𝑅𝑇0

𝐾 (𝑥||𝑀2)
)︂

= 0,

where 𝑠 = 𝐻ℎ(𝑇0||𝑀2) ⊕ 𝐻ℎ(𝑇1||𝑀2). For a random function, Simon’s algorithm

outputs zero, as it is the trivial period for such cases. In case of HCTR, Simon’s

algorithm outputs a non-zero value which clearly distinguishes HCTR. Figure 7-3

shows how the Simon function 𝑔(𝑥) is constructed. As shown in Equation 7.3, the

message block 𝑥||𝑀2 is queried to quantum 𝐻𝐶𝑇𝑅 oracle using the tweaks 𝑇0 and 𝑇1

respectively; and the second ciphertext block of the corresponding outputs are XOR-

ed to construct the required Simon function 𝑔(𝑥). Π2(𝐻𝐶𝑇𝑅) returns the second

ciphertext block for the corresponding message blocks that are queried to the oracle.

As discussed in Section 7.1, given a quantum oracle access to HCTR, Π2(𝐻𝐶𝑇𝑅) can

be constructed.

Attack in 𝑄1 Model.

In the𝑄1 model, a quantum superposition state is formed from classical oracle queries.

While mounting such kind of attacks, the enciphering scheme needed to be reduced to

Problem 3. 𝑔(𝑥) can be classically queried (online) to obtain |𝜓𝑔⟩ and then 𝑓𝑖⊕ 𝑔 can

be tested offline whether periodic or not using Simon’s and Grover’s search algorithm.

As mentioned in [66], instead of querying the whole classical codebook, the advantage

of algebraic structures have been taken into account while mounting the attack.

173

Figure 7-3: Simon function for 𝐻𝐶𝑇𝑅. In the figure, Π2(𝐻𝐶𝑇𝑅) truncates the
ciphertext block 𝐶2 and it is constructed by following the approach in Section 7.1.
Note that, input and output lines corresponding to 𝐶1 are not shown.

Attack Description. Like previous attack, here also two message blocks have been

considered. The last message block and last (𝑛 − 𝑢) bits of first message block are

kept constant. The queries to the oracle is of the form (𝑥||0𝑛−𝑢)||𝑀2, where 𝑥||0𝑛−𝑢

and 𝑀2 are the first and second message block respectively and 0 ≤ 𝑢 ≤ 𝑛. For

constructing a periodic function, the second ciphertext block 𝐶2 is considered. The

value of 𝑀2 is fixed and by varying the value of 𝑥, 2𝑢 classical queries are made to

HCTR oracle to form |𝜓𝑔⟩. Define 𝐹 : {0, 1}𝑚+𝑛−𝑢 × {0, 1}𝑢 ↦→ {0, 1}𝑛 by

𝐹 (𝑖||𝑗, 𝑥) = 𝑓𝑖||𝑗(𝑥) = 𝐸𝑖
(︁
𝑥||𝑗 ⊕ 𝐸𝑖(𝑥||𝑗 ⊕ 1)

)︁

for 𝑖 ∈ {0, 1}𝑚, 𝑗 ∈ {0, 1}𝑛−𝑢 and define 𝑔 : {0, 1}𝑢 → {0, 1}𝑛 by

𝑔(𝑥) = Π2
(︁
𝐻𝐶𝑇𝑅𝑇

𝐾((𝑥||0𝑛−𝑢)||𝑀2)
)︁
.

Then,

𝑔(𝑥) = Π2
(︁
𝐻𝐶𝑇𝑅𝑇

𝐾((𝑥||0𝑛−𝑢)||𝑀2)
)︁

= 𝐸𝐾

(︂
𝐻ℎ(𝑇 ||𝑀2)⊕ (𝑥||0𝑛−𝑢)⊕ 𝐸𝐾

(︁
𝐻ℎ(𝑇 ||𝑀2)⊕ (𝑥||0𝑛−𝑢)

)︁
⊕ 1

)︂
.

(7.4)

Let the first 𝑢 bits of 𝐻ℎ(𝑇 ||𝑀2) be denoted by 𝑙(1) and last 𝑛−𝑢 bits are denoted

174

by 𝑙(2). Then 𝑔(𝑥) can be rewritten as

𝑔(𝑥) = 𝐸𝐾

(︂
(𝑙(1)||𝑙(2))⊕ (𝑥||0𝑛−𝑢)⊕ 𝐸𝐾

(︁
(𝑙(1)||𝑙(2))⊕ (𝑥||0𝑛−𝑢)⊕ 1

)︁)︂
= 𝐸𝐾

(︂
(𝑙(1) ⊕ 𝑥)||𝑙(2) ⊕ 𝐸𝐾

(︁
(𝑙(1) ⊕ 𝑥)||𝑙(2) ⊕ 1

)︁)︂
.

(7.5)

Consider the function 𝐹 (𝑖||𝑗, 𝑥)⊕ 𝑔(𝑥). It has a hidden period 𝑙(1) for 𝐹 (𝐾||𝑙(2), 𝑥)⊕

𝑔(𝑥). The attack steps are listed below.

1. Alg-ExpQ1 is run for 𝐹 and 𝑔 to recover 𝐾 and 𝑙(2).

2. Alg-SimQ1 is run on 𝑓𝐾||𝑙(2) ⊕ 𝑔 to recover 𝑙(1).

Note that, by the above approach key of the underlying block cipher can be

recovered. Although, it is unable to recover hash key ℎ, but using 𝑙(1) and 𝑙(2),

𝐻ℎ(𝑇 ||𝑀2) can be constructed. The attack can be extended for an arbitrary number

of message blocks.

Analysis. The analysis of the attack is similar to the analysis of the attack on

Even-Mansour cipher in [66]. First, it is assumed that the size of keyspace of the

underlying block cipher is in 𝑂(𝑛). In the attack, if 𝑢 is kept too small, although

too few queries are required to construct |𝜓𝑔⟩, the cost of Grover’s search increases

significantly. Under the constraints that 𝑢 is not too small and 𝐸 is a secure block

cipher, we can assume that

max
𝑡∈{0,1}𝑢∖{0𝑢},
𝑥←{0,1}𝑢

𝑃𝑟𝑥[(𝑓𝑖||𝑗 ⊕ 𝑔)(𝑥⊕ 𝑡) = (𝑓𝑖||𝑗 ⊕ 𝑔)(𝑥)] ≤ 1
2

holds for (𝑖||𝑗) ̸= (𝐾||𝑙(2)). By virtue of this, Proposition 2 and Proposition 3 hold for

Alg-ExpQ1 and Alg-SimQ1 respectively. Overall, the key of underlying block cipher

and 𝑙(1)||𝑙(2) is recovered by following this attack using 𝐷 = 𝑂(2𝑢) classical queries

to 𝐻𝐶𝑇𝑅𝑇
𝐾 and performing 𝑇 = 𝑂(𝑛32𝑚+𝑛−𝑢

2) offline computations. Here, it is also

assumed that one evaluation of 𝐹 is in 𝑂(1) which makes 𝑇𝐹 = 𝑂(1). The trade-off

𝐷𝑇 2 = 𝑛32𝑚+𝑛 is applied; data and time complexity balances at 𝐷 = 𝑂(2𝑚+𝑛
3) and

𝑇 = 𝑂(𝑛32𝑚+𝑛
3). As mentioned in [66], by construction of Alg-ExpQ1 and Alg-SimQ1

175

our attack uses qubits in the order of polynomial and negligible classical bits. Note

that, generic attacks takes 𝑂(2𝑚
2) time. So, this attack is better than generic attacks

when 𝑛32𝑚+𝑛
3 < 2𝑚

2 =⇒ 𝑚 > 6 log2(𝑛32𝑛
3).

7.2.2 Attack on Tweakable-HCTR

Tweakable-HCTR or 𝐻𝐶𝑇𝑅 was proposed by Dutta and Nandi [102] which is a

variant of HCTR where each block cipher call is replaced by tweakable block cipher

(TBC). Another major difference between HCTR and 𝐻𝐶𝑇𝑅 is the use of tweak. In

Figure 7-4: Construction of 𝐻𝐶𝑇𝑅

𝐻𝐶𝑇𝑅 instead of using the tweak in upper and lower hash functions, it is used in

an independent keyed (𝑛+ 𝑡)-bit hash function 𝐻 ′𝐿. The output of 𝐻 ′𝐿 is divided into

two parts: 𝑛-bit 𝐻1 which is masked with the input and the output of leftmost TBC

176

and 𝑡-bit 𝐻2 which acts as a tweak for the underlying TBC. Underlying TBC

̃︀𝐸 : {0, 1}𝑚 × {0, 1}𝑡 × {0, 1}𝑛 → {0, 1}𝑛

is denoted by ̃︀𝐸𝐻2
𝐾 where 𝐾 is 𝑚-bit key and 𝐻2 is 𝑡-bit tweak. Let 𝑀1||𝑀2|| · · · ||𝑀𝑟

is encrypted by 𝐻𝐶𝑇𝑅 to obtain 𝐶1||𝐶2|| · · · ||𝐶𝑟, then

𝐶1||𝐶2|| · · · ||𝐶𝑟 = 𝐻𝐶𝑇𝑅
𝑇

𝐾(𝑀1||𝑀2|| · · · ||𝑀𝑟),

where 𝑇 ∈ {0, 1}* is a tweak and 𝐾 ∈ {0, 1}𝑚 is the key of underlying block cipher.

Figure 7-4 shows the construction of 𝐻𝐶𝑇𝑅.

The 𝑄1 and 𝑄2 attacks for 𝐻𝐶𝑇𝑅 are quite similar to the attacks on HCTR.

For the sake of simplicity, only corresponding periodic functions are mentioned here.

Consider the encryption of two 𝑛-bit message blocks. Then

𝐼𝑉 = ̃︀𝐸𝐻2
𝐾

(︁
𝐻𝐾ℎ

(𝑀2)⊕𝑀1 ⊕𝐻1
)︁
⊕𝐻𝐾ℎ

(𝑀2)⊕𝑀1 ⊕𝐻1, (7.6)

𝐶2 = ̃︀𝐸𝐻2
𝐾 (𝐼𝑉 ⊕ 1)⊕𝑀2. (7.7)

Attack in 𝑄2 Model.

Consider the function 𝑔(𝑥) constructed from second ciphertext block and 𝐻 ′𝐿(𝑇) =

(𝐻1, 𝐻2).

𝑔(𝑥) = Π2
(︁
𝐻𝐶𝑇𝑅

𝑇

𝐾(𝑥||𝑀2)
)︁
⊕ Π2

(︁
𝐻𝐶𝑇𝑅

𝑇

𝐾(𝑥||𝑀 ′
2)
)︁

= ̃︀𝐸𝐻2
𝐾

(︂ ̃︀𝐸𝐻2
𝐾

(︁
𝐻𝐾ℎ

(𝑀2)⊕ 𝑥⊕𝐻1
)︁
⊕𝐻𝐾ℎ

(𝑀2)⊕ 𝑥⊕𝐻1

)︂
⊕ ̃︀𝐸𝐻2

𝐾

(︂ ̃︀𝐸𝐻2
𝐾

(︁
𝐻𝐾ℎ

(𝑀 ′
2)⊕ 𝑥⊕𝐻1

)︁
⊕𝐻𝐾ℎ

(𝑀 ′
2)⊕ 𝑥⊕𝐻1

)︂
⊕𝑀2 ⊕𝑀 ′

2

(7.8)

7.2.3 Attack on HCH

Another variant of HCTR is HCH or Hash-Counter-Hash, proposed by Chakraborty

and Sarkar which is based on hash-encrypt-hash paradigm [79]. In HCH, tweak 𝑇

177

is not directly used by the polynomial hash; instead it is encrypted twice to obtain

𝑅 and 𝑄 which are used with the hash function 𝐻 (In HCH, the hash function

is denoted by 𝐻𝑅,𝑄). Figure 7-5 shows the construction of HCH. In the attacks

presented, as generation of 𝑅 and 𝑄 is not used, the fact that for a fixed 𝑇 , 𝑅

and 𝑄 remains fixed is considered. In the counter-mode, instead of 𝐼𝑉 , 𝑆 is used

for initialization which is obtained by encrypting the input and output of leftmost

block cipher. If 𝑀1||𝑀2|| · · · ||𝑀𝑟 (|𝑀𝑖| = 𝑛) is encrypted using HCH to obtain

𝐶1||𝐶2|| · · · ||𝐶𝑟 (|𝐶𝑖| = 𝑛), then

𝐶1||𝐶2|| · · · ||𝐶𝑟 = 𝐻𝐶𝐻𝑇
𝐾(𝑀1||𝑀2|| · · · ||𝑀𝑟),

where 𝐾 is the key of underlying block cipher 𝐸 : {0, 1}𝑚×{0, 1}𝑛 → {0, 1}𝑛 denoted

by 𝐸𝐾(.) and 𝑇 is the tweak. Our attack is based on the second ciphertext block,

which is given as

𝐶2 = 𝐸𝐾(𝑆)⊕𝑀2 (7.9)

where

𝑆 = 𝐸𝐾

(︂
𝐸𝐾

(︁
𝐻𝑅,𝑄(𝑀2)⊕𝑀1

)︁
⊕𝐻𝑅,𝑄(𝑀2)⊕𝑀1

)︂
. (7.10)

In the following attacks, only the periodic functions are mentioned as the attacks are

almost same as the attacks on HCTR.

Attack in 𝑄2 Model.

Consider the function 𝑔(𝑥) constructed from second ciphertext block.

𝑔(𝑥) = Π2
(︁
𝐻𝐶𝐻𝑇

𝐾(𝑥||𝑀2)
)︁
⊕ Π2

(︁
𝐻𝐶𝐻𝑇

𝐾(𝑥||𝑀 ′
2)
)︁

= 𝐸𝐾

(︃
𝐸𝐾

(︂
𝐸𝐾

(︁
𝐻𝑅,𝑄(𝑀2)⊕ 𝑥

)︁
⊕𝐻𝑅,𝑄(𝑀2)⊕ 𝑥

)︂)︃

⊕𝐸𝐾
(︃
𝐸𝐾

(︂
𝐸𝐾

(︁
𝐻𝑅,𝑄(𝑀 ′

2)⊕ 𝑥
)︁
⊕𝐻𝑅,𝑄(𝑀 ′

2)⊕ 𝑥
)︂)︃
⊕𝑀2 ⊕𝑀 ′

2

(7.11)

Note that, 𝑔(𝑥⊕𝐻𝑅,𝑄(𝑀2)⊕𝐻𝑅,𝑄(𝑀 ′
2)) = 𝑔(𝑥). So, period is 𝐻𝑅,𝑄(𝑀2)⊕𝐻𝑅,𝑄(𝑀 ′

2).

Applying Simon’s algorithm on 𝑔(𝑥) recovers the period in 𝑂(𝑛) queries. Figure 7-6

178

Figure 7-5: Construction of 𝐻𝐶𝐻

shows the process of generating 𝑔(𝑥).

Attack in 𝑄1 Model.

Let 𝑢 be a integer and 0 ≤ 𝑢 ≤ 𝑛. Define 𝐹 : {0, 1}𝑚+𝑛−𝑢 × {0, 1}𝑢 → {0, 1}𝑛 by

𝐹 (𝑖||𝑗, 𝑥) = 𝑓𝑖||𝑗(𝑥) = 𝐸𝑖

(︃
𝐸𝑖

(︂
𝐸𝑖
(︁
𝑥||𝑗

)︁
⊕ 𝑥||𝑗

)︂)︃
(7.12)

179

Figure 7-6: Simon function for 𝐻𝐶𝐻. In the figure, Π2(𝐻𝐶𝐻) truncates the cipher-
text block 𝐶2.

and define 𝑔 : {0, 1}𝑢 → {0, 1}𝑛 by

𝑔(𝑥) = Π2
(︂
𝐻𝐶𝐻𝑇

𝐾

(︁
(𝑥||0𝑛−𝑢)||𝑀2

)︁)︂
.

Then

𝑔(𝑥) = 𝐸𝐾

(︃
𝐸𝐾

(︂
𝐸𝐾

(︁
𝐻𝑅,𝑄(𝑀2)⊕ (𝑥||0𝑛−𝑢)

)︁
⊕𝐻𝑅,𝑄(𝑀2)⊕ (𝑥||0𝑛−𝑢)

)︂)︃
⊕𝑀2.

Let first 𝑢 bits of 𝐻𝑅,𝑄(𝑀2) be 𝑙(1) and last (𝑛− 𝑢) bits be 𝑙(2). Then

𝑔(𝑥) = 𝐸𝐾

(︃
𝐸𝐾

(︂
𝐸𝐾

(︁
𝑙(1)||𝑙(2) ⊕ (𝑥||0𝑛−𝑢)

)︁
⊕ 𝑙(1)||𝑙(2) ⊕ (𝑥||0𝑛−𝑢)

)︂)︃
⊕𝑀2

= 𝐸𝐾

(︃
𝐸𝐾

(︂
𝐸𝐾

(︁
(𝑙(1) ⊕ 𝑥)||𝑙(2)

)︁
⊕ (𝑙(1) ⊕ 𝑥)||𝑙(2)

)︂)︃
⊕𝑀2.

Consider the function 𝑓𝑖||𝑗(𝑥)⊕ 𝑔(𝑥). The function 𝑓𝐾||𝑙(2) ⊕ 𝑔(𝑥) is periodic with

period 𝑙(1).

The analysis of this attack is similar to the analysis of the attack on HCTR and

hence the details are omitted. The data and time complexity of this attack is 𝑂(2𝑚+𝑛
3)

and 𝑂(𝑛32𝑚+𝑛
3) respectively.

180

7.3 Chapter Summary

In this chapter, we analyzed the HCTR, Tweakable-HCTR and HCH in the quantum

adversarial model. The work presented here develops upon the previous works in [134,

66, 151]. All our attacks have made use of encryption oracle only. This arises a

question of whether the availability of decryption oracle can make a significant benefit

in terms of the complexity of mounting such attacks.

181

182

8
QUANTUM RESOURCE ESTIMATION

Contents
8.1 Design Rationale . 185

8.2 Grover on Katan: Resource Estimation 188

8.3 Grover on Present: Resource Estimation 197

8.4 Chapter Summary . 210

Recent progress in the area of development of viable quantum computers has

threatened the security of existing cryptographic schemes. Introduction of Shor’s

algorithm [188, 187] has put those public key schemes at risk which are designed con-

sidering the hardness to solve the integer-factorization and discrete-logarithm prob-

lem. For symmetric-key schemes, threat due to generic attack using the Grover’s

algorithm [120] is considered only for a long time [211]. However, this vulnerability

can be defended by doubling the key length and achieving the same security as be-

fore. Later on, the introduction of quantum attacks using Simon’s algorithm [189]

on even-mansour cipher [146], 3-round feistel cipher [145], encryption schemes [134],

HCTR-based schemes [175] has unveiled the facade of resistance of such schemes

against quantum attacks. Based on computation power, quantum adversarial models

are also developed [214]. With ever-increasing chance of compromise of the security of

cryptographic schemes with the progress towards the development of quantum com-

puters and the difficulty of the transition to quantum-secure cryptographic schemes,

183

the National Institute of Standards and Technology (NIST) put forth the proposal

for standardization of post-quantum cryptographic (PQC) schemes [171].

Why Resource Estimation?

As the computing power of future quantum machines can not be predicted accurately,

the security of post-quantum schemes can not be estimated with certainty based on

the current scenarios. Thus NIST proposes to measure the security strengths in terms

of computational resources rather than "bits of security" [171]. These computational

resources can be measured in terms of the number of elementary operations, circuit

size, etc. Resource estimation gives a quantitative measure of the complexity of the

circuit. It provides a comparative filter between two competing design or attack

implementations. As KATAN [91] is classically not broken and till now, generic

quantum attack using Grover’s algorithm [120] is the only way to break the cipher,

resource estimation of Grover’s attack on KATAN shows the efficiency of the attack

in the current scenario. Recently, a lot of works explored the resource estimation

of different quantum attacks on cryptographic schemes, such as resource estimation

of Grover’s search on symmetric-key primitives [119, 148, 15, 18, 128, 129], resource

estimation for computing discrete logarithms on binary elliptic curves [26], resource

estimation of pre-image attacks using Grover’s search on hash functions [17], etc. In

addition, study regarding the resource estimation of fault-tolerant quantum random-

access memory (qRAM) are also conducted [160].

Grover’s attack on symmetric-key schemes is mostly defined in terms of "bits

of security". However, NIST’s proposal has prompted redefining security in terms

of computational resources. Earlier, Grassl 𝑒𝑡 𝑎𝑙. has estimated the computational

resources of mounting Grover’s attack on Advanced Encryption Standard (AES) [119].

Later on, Langenberg 𝑒𝑡 𝑎𝑙. [148] and Almazrooie 𝑒𝑡 𝑎𝑙. [15] further reduces the cost

of implementing AES using quantum gates and qubits. These analyses are based on

reducing the number of qubits. In Eurocrypt 2020, Jaques 𝑒𝑡 𝑎𝑙. studied the cost

of implementing Grover’s attack on AES by focusing on minimizing the depth of the

circuit rather than the width [130]. Apart from AES, resource estimation for Grover’s

184

attack is also studied for feedback shift register-based schemes [18], Speck [128] and

GIFT [129].

The chapter is organized as follows. Section 8.1 gives an overview regarding the

design rationale of the quantum circuits. In Section 8.2, the resource requirement

for mounting Grover’s attack on Katan is estimated. Section 8.3 studies the cost

of mounting Grover on Present block cipher. Finally, the chapter is summarized in

Section 8.4.

8.1 Design Rationale

Here, the insights behind designing the circuits in this chapter are discussed. The

designs in this work consider security strength defined in NIST’s proposal for post-

quantum cryptography (PQC) standardization, the efficiency in implementing Grover’s

algorithm.

8.1.1 NIST PQC Standardization

Constructing a combinatorial circuit by optimizing the depth, the number of gates

is an intractable problem. Although Boyar 𝑒𝑡 𝑎𝑙. have proposed heuristics-based

methods to construct low-depth circuits [75], the gate cost of the circuit increases

significantly when restrictions on the depth are more tightened. NIST has put a

restriction on the circuit depth to match the time-boundness; however, there is no

restriction on the number of qubits to be used. Owing to this factor, the quantum cir-

cuits in this work are designed to minimize the overall depth; whereas no restrictions

are put in using the ancillary qubits.

8.1.2 Implementation Issues of the Grover’s Algorithm

Depth Constraints In the standardization process of Post Quantum Cryptogra-

phy [171], NIST introduces a parameter MAXDEPTH owing to the difficulty in running

long serial computations. Thus the resources of a quantum adversary are bounded

185

by the maximum depth of a circuit. Once this MAXDEPTH is reached, multiple in-

stances of Grover’s algorithm are needed to run in parallel. The permissible values of

MAXDEPTH ranges from 240 to 296. Jaques 𝑒𝑡 𝑎𝑙. concludes that if the limits of resources

in terms of depth, width and gate count are fixed, then to mount an optimal attack

the depth should be fully utilized and parallelization should be minimized as much

as possible [130].

Parallelization The efficiency of Grover’s algorithm reduces significantly if par-

allelization is considered and thus parallelization inside the oracle circuit is advan-

tageous. The study regarding the parallelization of Grover’s algorithm is studied

in [36, 35, 213]. Zalka reports that using 𝑆 quantum machines a factor of
√
𝑆 can

be gained irrespective of the case of running full Grover’s algorithm on 𝑆 identical

quantum machines or partitioning the entire search space into 𝑆 parts and assigning

each part to each of the 𝑆 identical machines and concludes that it is more advanta-

geous to parallelize quantum searching algorithms by dividing the search space and

assigning each space to different independent quantum machines [213]. Kim 𝑒𝑡 𝑎𝑙. for-

mally defines the notion of these two settings as outer and inner parallelization[138].

In outer parallelization, Grover’s algorithm is run on the entire search space on 𝑆

identical machines; whereas in inner parallelization the search space is divided into 𝑆

parts and Grover’s algorithm is run on each part on 𝑆 identical machines. In both,

the cases required the number of iterations is less than that of running only a single

instance of Grover’s algorithm, as in outer parallelization the success of recovering

the right key depends on the success of any one of the 𝑆 machines which reduce the

required number of iterations; whereas for inner parallelization required number of it-

erations is reduced for a smaller search space. However, by using inner parallelization

the probability of obtaining spurious keys is reduced and thus inner parallelization is

more preferable to the outer one.

186

8.1.3 Cost Metrics.

For cost analysis of mounting Grover’s attack, two cost metrics proposed in [131]

are considered. Consider a quantum circuit that has a depth and width of 𝐷 and

𝑊 and consists of 𝐺 quantum gates. The two cost metrics are 𝐺-cost metric which

considers Θ(𝐺) RAM operations and 𝐷𝑊 -cost metric which considers Θ(𝐷𝑊) RAM

operations. It is shown by Jaques 𝑒𝑡 𝑎𝑙. that 𝐺-cost and 𝐷𝑊 -cost is minimized by

minimizing the number of parallel machines [130].

8.1.4 Automated Resource Estimation.

In this work, the circuits for Grover oracle of Present are designed and implemented in

ProjectQ [191, 122] framework. ProjectQ provides a module for automated estimation

of required resources in terms of gate counts, circuit depth and width. In general, it is

considered that for fault-tolerant quantum computation, clifford + 𝑇 gate set forms

a good universal gate [77]. Thus the circuits are designed using clifford + 𝑇 gate set

only. Logical 𝑇 gates are considered more expensive than the clifford gates [108] and

thus along with normal depth, 𝑇 -depth is also considered as a viable cost function.

𝑇 -depth was first considered as a cost function by Amy 𝑒𝑡 𝑎𝑙. [16]. However, till now

ProjectQ does not estimate the 𝑇 -depth of a circuit. Previous works regarding the

resource estimation for mounting Grover attack on several ciphers considered 𝑇 -depth

as a resource contraint [15, 148, 119, 130, 18]. While measuring 𝑇 -depth, all gates

apart from the 𝑇 gates are ignored. In the case of measuring total depth, all gates

are assigned a weight of 1. Like previous works, uncontrolled SWAP operations are

regarded as free.

8.1.5 Realization of Classical ‘AND’ Operation in Quantum

Circuits

The AND operations in KATAN can be replaced with CCNOT gates in quantum

circuits. However, CCNOT gate is not a basic gate operation and thus instead of

applying it directly its decomposition into clifford+𝑇 set is considered. Resource

187

estimation of the proposed design is compared in terms of the cost metrics and thus

several decompositions of CCNOT gates are considered to compare the corresponding

cost metrics. As the codes for resource estimation are run on the ProjectQ framework,

the default decomposition of CCNOT gates in that framework is considered initially.

This decomposition has 𝑇 -count 7, has 𝑇 -depth 4 and is shown in Fig. 8-1.

Figure 8-1: Decomposition of toffoli Gate into clifford + 𝑇 set with 𝑇 -depth 4.

There are two more decompositions of CCNOT/toffoli gate into clifford+𝑇 set.

The decomposition proposed by Amy 𝑒𝑡 𝑎𝑙. has 𝑇 -depth 3 and does not use any

ancillary qubit [16]. Selinger proposed another decomposition which uses 4 ancillary

qubits and has 𝑇 -depth 1. Both decompositions are considered in our design and

computational resources are estimated for the reversible quantum circuit of KATAN

based on those decompositions.

Another design is considered where instead of using CCNOT gate, an AND gate is

used which has 𝑇 -depth 1. This AND gate is designed by Mathias Soeken [130] and is

based on the work of Selinger [183] and Jones [133]. Fig. 8-2 shows the design of the

AND gate used in this work.

8.2 Grover on Katan: Resource Estimation

KATAN, introduced in CHES 2009, is a family of lightweight block ciphers fulfilling

the essential criteria to run in resource-constrained devices [91]. It is a hardware-

oriented cipher specially designed for sensor networks, RFID tags and Internet-of-

188

Figure 8-2: Design of AND gate.

things [91, 20]. Over the years, extensive cryptanalysis on KATAN is done, like,

differential attacks [13], conditional differential cryptanalysis [139, 140], meet-in-the-

middle attacks [218, 124, 109, 63], related-key boomerang attacks [123, 80], cube

attack [12], subkey recovery attack [125], linear hull cryptanalysis [186], MILP-aided

division property based analysis [193], etc. All these attacks are on the round-reduced

versions of KATAN. Instead of having a relatively small key length (80-bit), till now,

there is no such attack that penetrates all rounds of KATAN. This motivates us to

analyze KATAN against the generic attack using Grover’s algorithm. As a general

rule of thumb, 80-bit security of KATAN against quantum adversary can be achieved

by doubling the key length. However, extending the key length of non-linear feedback

shift register-based block cipher is not straightforward and the results in this chapter

might provide insights in designing an extended version of KATAN. To the best of

our knowledge, till now no study is conducted regarding the concrete cost analysis

about the Grover’s key search on KATAN.

8.2.1 Resource Estimation of KATAN Implementation

Here, first of all, a reversible quantum circuit for KATAN using quantum gates and

qubits is designed. The construction of the complete block cipher is composed of

designing the round operations and designing the key scheduling operations. Then

the cost analysis for the designed circuit is estimated.

189

Designing the Key Schedule

The key scheduling algorithm of KATAN consists of XOR operations for generating a

key bit and thus its equivalent quantum circuit can be realized easily by using CNOT

gates in place of the XOR operations. All variants of KATAN have 254 rounds in total

and in each round two key qubits are required. Therefore, in total 254× 2 = 508 key

qubits are required. Among these 508 key qubits, 80 qubits are initially given and

hence (508-80)=428 qubits are required to be generated. In the proposed design, four

CNOT gates are required to generate a qubit and thus 428× 4 = 1712 CNOT gates

and 428 ancillary qubits are required for generating all the necessary key qubits. To

construct the reversible circuit, all these operations are uncomputed after the full run

of the KATAN block cipher.

Designing the Round Operation

Designing of the round operations mainly involves the realization of the non-linear

feedback functions 𝑓𝑎(·) and 𝑓𝑏(·) using quantum gates and qubits. Both the func-

tions are composed of AND operations and XOR operations. The XOR operation can

be realized using the CNOT gate; whereas the AND operation can be realized using

the CCNOT gate. After the round operations, to store the new feedback qubit, an

ancillary qubit is used. In each round, 𝑓𝑎(·) and 𝑓𝑏(·) are computed once, twice and

thrice for KATAN32, KATAN48 and KATAN64 respectively. So, the number of new

qubits in each round for KATAN32, KATAN48 and KATAN64 is 2, 4 and 6 respec-

tively and thus the total number of ancillary qubits are used for implementing 𝑓𝑎(·)

and 𝑓𝑏(·) is 508, 1016 and 1524 respectively. After the completion of 254 rounds,

the qubits corresponding to the ciphertext are fanned out to a quantum register and

the round operations are uncomputed to realize the reversible circuit. The design of

the reversible quantum circuit for KATAN is described in Algorithm 12. Note that,

𝐶(𝑎, 𝑡) refers to the application of CNOT gate on target qubit 𝑡 with control qubit 𝑎

and 𝑇𝑜𝑓(𝑎, 𝑏, 𝑐) refers to the application of CCNOT/toffoli gate on target qubit 𝑡 with

control qubits 𝑎 and 𝑏. The values 𝑥𝑖 and 𝑦𝑖 corresponds to the values in Table 2.2.

190

Algorithm 12 Quantum Circuit for Round Operation of KATAN
INPUT: Message register ℳ, ciphertext register 𝒞, key register 𝒦

1. 𝑛𝑢𝑚𝑅𝑜𝑢𝑛𝑑𝑠 ← 254 and 𝑖𝑡𝑒𝑟 ← 𝑐 (The value of 𝑐 is 1, 2 and 3 for KATAN32,
KATAN48 and KATAN64 respectively.)

2. Initialize a register ℐ with the round values of the irreducible polynomial IR.

3. ℳ is divided into 𝐿1 and 𝐿2.

4. 𝑛𝑢𝑚𝐴𝑄 ← 𝑛𝑢𝑚𝑅𝑜𝑢𝑛𝑑𝑠 × 𝑖𝑡𝑒𝑟. 𝑛𝑢𝑚𝐴𝑄 ancillary qubits are added to 𝐿1 and
𝐿2.

5. (2× 𝑛𝑢𝑚𝑅𝑜𝑢𝑛𝑑𝑠-80) ancillary qubits are added to 𝒦.

6. Compute the new 428 key qubits and store them in the ancillary qubits of 𝒦.

7. For 0 ≤ 𝑗 ≤ 𝑛𝑢𝑚𝑅𝑜𝑢𝑛𝑑𝑠 perform the following operations-

(a) 𝐶(𝐿2[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑦1], 𝐿1[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(b) 𝐶(𝐿2[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑦2], 𝐿1[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(c) 𝑇𝑜𝑓(𝐿2[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑦3], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑦4], 𝐿1[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(d) 𝑇𝑜𝑓(𝐿2[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑦5], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑦6], 𝐿1[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(e) 𝐶(𝒦[2 * 𝑗 + 1], 𝐿1[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(f) 𝐶(𝐿1[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑥1], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(g) 𝐶(𝐿1[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑥2], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(h) 𝑇𝑜𝑓(𝐿1[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑥3], 𝐿1[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑥4], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])
(i) if(ℐ[𝑗]=1)

𝐶(𝐿1[𝑛𝑢𝑚𝐴𝑄− 𝑗 + 𝑥5], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])

(j) 𝐶(𝒦[𝑠2 * 𝑗], 𝐿2[𝑛𝑢𝑚𝐴𝑄− 1− 𝑗])

8. Fan out the qubits correspnding to the ciphertext to 𝒞

9. Uncompute the operations in Step 6 and Step 7.

Table 8.1 lists the resource estimation for designing the KATAN cipher with the

decomposition provided in ProjectQ.

Resource estimation using the decomposition of toffolli gate having 𝑇 -depth 3 and

𝑇 -depth 1 are listed in Table 8.2 and Table 8.3 respectively.

Table 8.4 lists the cost estimates of implementing the quantum reversible circuit

191

Table 8.1: Resource Estimation for Reversible Quantum Circuit of Katan Block Ci-
pher using a decomposition of Toffoli gate with 𝑇 -depth 4

Variant #CNOT #1qCliff #𝑇 #𝑀 𝑇 -Depth 𝐷 𝑊

KATAN32 13870 2032 10668 32 1654 4461 1080
KATAN48 26332 4064 21336 48 2058 6253 1620
KATAN64 38794 6096 31944 64 1836 5752 2160

Table 8.2: Resource Estimation for Reversible Quantum Circuit of Katan Block Ci-
pher using a decomposition of Toffoli gate with 𝑇 -depth 3

Variant #CNOT #1qCliff #𝑇 #𝑀 𝑇 -Depth 𝐷 𝑊

KATAN32 15394 3556 10668 32 1651 4071 1080
KATAN48 29380 7112 21336 48 1858 5825 1620
KATAN64 43366 10668 32004 64 1722 5367 2160

Table 8.3: Resource Estimation for Reversible Quantum Circuit of Katan Block Ci-
pher using a decomposition of Toffoli gate with 𝑇 -depth 1

Variant #CNOT #1qCliff #𝑇 #𝑀 𝑇 -Depth 𝐷 𝑊

KATAN32 29110 2032 10668 32 508 3055 7176
KATAN48 56812 4064 21336 48 584 4661 13812
KATAN64 84514 6096 32004 64 536 4295 20448

using AND gate for the variants of KATAN block cipher.

Table 8.4: Resource Estimation for Reversible Quantum Circuit of KATAN Block
Cipher using AND gate.

Variant #CNOT #1qCliff #𝑇 #𝑀 𝑇 -Depth 𝐷 𝑊

KATAN32 16918 4572 6096 32 636 3315 2604
KATAN48 32428 9144 12192 48 779 4467 4668
KATAN64 47938 13716 18288 64 694 4075 6732

Cost Metrics of the Designs

Now, the cost metrics of the several designs are compared. As NIST puts no bound

on the width of the circuit, so instead of the 𝐷𝑊 -cost metric only the depth of the

192

circuit is compared here. Table 8.5 compares the 𝐺 cost and depth of various designs

of the KATAN block cipher. From the table, it is evident that designs based on AND

gate and 𝑇 -depth one toffoli/CCNOT gate have comparatively lower depth. Hence,

for constructing the Grover oracle these two designs are considered.

Table 8.5: Comparison of 𝐺-cost metric and Depth of the Designs.

Design/

Decomposition

KATAN32 KATAN48 KATAN64

𝐺 𝐷 𝐺 𝐷 𝐺 𝐷

𝑇 -depth 4 214.7 212.12 215.66 212.61 216.23 212.49

𝑇 -depth 3 214.86 211.99 215.82 212.51 216.39 212.39

𝑇 -depth 1 215.35 211.58 216.33 212.19 216.9 212.09

AND gate 214.75 211.69 215.72 212.13 216.29 211.99

8.2.2 Quantum Resource Estimation of Grover on KATAN

Now, the resource requirement of Grover’s oracle and Grover’s search on KATAN is

estimated. Initially, no parallelization is considered and it is assumed that the Grover

operator is running in serial. Later, NIST’s MAXDEPTH is considered and resource

requirement based on MAXDEPTH is estimated. The reversible quantum circuits based

on 𝑇 -depth one tofolli gate and AND gate are used to estimate the resources for Grover’s

search on KATAN.

Resource Estimation of Grover’s Oracle

Consider a block cipher with a block length of 𝑛-bit and a key length of 𝑘-bit. For such

a block cipher, the probability of finding a unique key using 𝑟 plaintext-ciphertext

pairs is 𝑒−2𝑘−𝑟𝑛 [130]. As discussed in § 8.1.2, the value of 𝑟 should be at least

⌈𝑛
𝑘
⌉ to uniquely identify the correct key. These ⌈ 𝑘

𝑛
⌉ number of encryptions can be

implemented in Grover oracle in parallel. The key length for all variants of KATAN

is 80 bits. Based on the value of 𝑛, the value of 𝑟 and the corresponding success

probabilities are determined.

193

For KATAN32, 𝑛 = 32 and 𝑘 = 80; therefore 𝑟 should be ⌈80
32⌉ = 3 and the

probability of finding a unique key is approximately 0.99. Fig. 8-3 shows the Grover

oracle for KATAN32. The value of 𝑟 is set to 2 for KATAN48 and KATAN64 to recover

a unique key with overwhelming probability. Grover oracle for KATAN48/KATAN64

is shown in Fig. 8-4. The estimated resources for implementing the Grover oracle for

KATAN bock cipher is listed in Table 8.6.

Figure 8-3: Grover Oracle of KATAN32

Cost Estimation of Grover’s Search

For implementing the Grover’s search, the Grover operator 𝐺 needs to be applied

⌊𝜋4 2𝑘/2⌋ times (See § 2.6.2). For estimating the cost of Grover’s search, cost related

194

Figure 8-4: Grover Oracle of KATAN48/KATAN64

Table 8.6: Resource Estimation for Grover Oracle of Katan Block Cipher

Design Variant #CNOT #1qCliff #𝑇 𝑇 -Depth 𝐷 𝑊

𝑇 -depth 1

CCNOT

KATAN32 175556 12352 64630 1006 6052 42688

KATAN48 227696 16304 85680 1160 9262 54944

KATAN64 338600 24448 128464 1066 8548 81440

AND

Gate

KATAN32 102404 27592 37248 1259 6560 15256

KATAN48 130160 36624 49104 1546 8872 18368

KATAN64 192296 54928 73600 1379 8104 26576

to 𝑈𝑓 is considered; the cost of 𝑈Ψ⊥ is ignored. It is assumed that no parallelization

is used and thus all the resources (except width) are increased by a factor of ⌊𝜋4 2𝑘/2⌋.

Table 8.7 lists the cost estimation of implementing Grover’s search on KATAN without

parallelization.

195

Table 8.7: Resource Estimation for Grover’s Search on Katan Block Cipher

Design Variant #CNOT #1qCliff #𝑇 𝑇 -Depth 𝐷 𝑊

𝑇 -depth 1

CCNOT

KATAN32 257.07 253.24 255.63 249.63 252.21 255.03

KATAN48 257.45 253.64 256.04 249.83 252.83 255.4

KATAN64 258.02 254.23 256.62 249.71 252.71 255.96

AND

Gate

KATAN32 256.29 254.4 254.84 249.95 252.33 253.54

KATAN48 256.64 254.81 255.23 250.25 252.77 253.82

KATAN64 257.2 255.4 255.82 250.08 252.64 254.35

Cost Estimation under a Depth Limit

Cost estimation in Table 8.7 is listed without considering parallelization. However, to

respect a depth limit parallelization becomes inevitable. In the call of the proposal for

post-quantum cryptography standardization, NIST has put a restriction on the depth

limit [171]. The depth limit is referred to as MAXDEPTH and its value can range from

240 to 296. This forces to mount the attack using parallelization of Grover’s search

algorithm. As discussed in Section 8.1.2, it is assumed that inner parallelization is

used to respect the depth limit.

To estimate the gate cost by considering the depth limit, a formula is provided

by NIST. Consider a circuit that runs non-parallel Grover’s search with depth 𝐷

and total gates 𝐺 where 𝐷 = 𝑑×MAXDEPTH for some 𝑑 ≥ 1. Now, to mount an

attack by achieving the same success probability as before while fitting the depth

limit MAXDEPTH, 𝑑2 parallel machines are required where each machine with gate

cost of 𝐺/𝑑 run for 1/𝑑 fraction of the total time. Hence, the total gate cost is

(𝐺/𝑑)×𝑑2 = 𝐺𝐷/MAXDEPTH. Based on this formula, gate costs for mounting Grover’s

attack under the constraint of different plausible values of MAXDEPTH are listed in

Table 8.8.

196

Table 8.8: Resource Estimation for Grover’s Search on Katan Block Cipher with
Depth Limit

Design Variant GD
MAXDEPTH

240 264 296

𝑇 -depth 1

CCNOT

KATAN32 2109.8 269.8 245.8 213.8

KATAN48 2110.81 270.81 246.81 214.81

KATAN64 2111.27 271.27 247.27 215.27

AND

Gate

KATAN32 2109.33 269.33 245.33 213.33

KATAN48 2110.14 270.14 246.14 214.14

KATAN64 2110.58 270.58 246.58 214.58

8.3 Grover on Present: Resource Estimation

Present [62] is an ultra-lightweight hardware-optimized block cipher specifically de-

signed for area-constrained and power-constrained devices. Over the years, its efficient

hardware performance along with strong security has prompted researchers to per-

form a lot of security analysis. There are several analysis on its round-reduced version;

like, linear cryptanalysis [81, 172, 84, 68, 150, 10, 78, 149, 156, 155], differential crypt-

analysis [196, 197, 154, 59, 204, 205], improbable differential attack [195], related-key

differential attack [173, 105], algebraic cryptanalysis [147], fault attacks [158, 24, 202],

differential power analysis [215], side channel cube attacks [212, 217], biclique crypt-

analysis [184, 152, 11], integral attack [208], deep learning based distinguishers [127],

known-key distinguishers [61], truncated differential attack [60], etc. However, ex-

cept for the known key distinguisher, full Present block cipher is still impregnable

to classical attacks. This motivates us to analyze the security of Present against

quantum attacks. Like all other block ciphers, Present is also susceptible to Grover’s

attack; but, it does not provide any concrete idea regarding the security of Present

in the post-quantum world. Hence, estimating the resources for mounting Grover’s

attack on Present helps us to analyze its security more appropriately against quantum

adversaries.

197

8.3.1 A Quantum Circuit on Present

The implementation of Present in ProjectQ is discussed in this section. First of all,

reversible quantum circuit for round operations (AddRoundKey, pLayer, sBoxLayer)

and key scheduling algorithm are designed. Then this circuits are combined together

to obtain a reversible quantum circuit for Present block cipher.

Decomposition of Toffoli Gate

For a fair comparison with other related works, the quantum circuits are required to

be designed using Clifford+𝑇 gate set. However, in several occasions in this work,

toffoli gates are used to realize the quantum circuits. In such cases, decomposition

of the toffoli gates using Clifford+𝑇 gate set becomes necessary. For that purpose,

three decompositions are followed in this work.

First, the default decomposition of toffoli gates into Clifford+𝑇 set employed in

ProjectQ framework is considered. This decomposition uses seven 𝑇 gates, three

1-qubit clifford gates and three qubits.

Figure 8-5: Decomposition of Toffoli gate into Clifford+𝑇 Set with 𝑇 -depth of 4

Next, consider the decomposition of toffoli gate into Clifford+𝑇 gate set provided

by Amy 𝑒𝑡 𝑎𝑙. [16] shown in Fig 8-6. This decomposition uses 6 CNOT gates, 7 𝑇

gates, 3 clifford gates and its 𝑇 -depth is 3. It is conjectured that 𝑇 -depth of 3 is

optimal for quantum circuits without ancillas obtained through the decomposition of

toffoli gate [16].

198

Figure 8-6: Decomposition of toffoli gate into Clifford+𝑇 Set with 𝑇 -depth of 3

Selinger gives a representation of toffoli gate using clifford + 𝑇 gate of 𝑇 -depth

1 [183] which is shown in Fig. 8-7. Along with lower 𝑇 -depth, this representation has

lower depth than the representation in Fig. 8-6 but it uses some ancilla qubits; hence

the width is increased.

Figure 8-7: Decomposition of toffoli gate into Clifford+𝑇 Set with 𝑇 -depth 1

199

Designing the Round Operations

Each round of Present is constituted of three operations, namely, AddRoundKey,

pLayer and sBoxLayer and the complete Present block cipher is comprised of 31 such

rounds. For both variant of Present the block length is 64 bits. Hence, same quantum

circuit for operation is valid for both variants. Here, a reversible quantum circuit for

each round operation is provided.

AddRoundKey. This operation consists of XOR-ing of a 64-bit round key to the

internal state of Present. This operation can be realized in the quantum circuit by

using 64 CNOT gates where the key bits acts as control bits and internal state bits

are target bits.

pLayer. This operation is a linear permutation of the state bits which can be real-

ized using SWAP gates. However, in ProjectQ, we explicitly do not use SWAP gates

to implement the pLayer; instead input to each s-box is maintained based on the

output of pLayer and ProjectQ internally use SWAP gates to bring inputs to each

s-box to a neighborhood. Thus pLayer is implicitly realized in the implementation.

sBoxLayer. Present uses 4 × 4-bit s-box. The input and output of the s-box are

shown in Table 2.4. Revkit [7] is integrated into ProjectQ to find reversible logic

by using automated synthesis routines. PermutationOracle operation of the Revkit

library is used to synthesis a reversible circuit for a permutation. As the s-box of

Present is permutation over 24 elements, PermutationOracle automatically finds a

reversible circuit over 4 qubits to realize the permutation. The circuit is generated us-

ing toffoli gates, CNOT gates and NOT gates. However, instead of using toffoli gates,

its equivalent decomposition using 1-qubit clifford + 𝑇 set is considered. Quantum

circuit of the s-box using toffoli gates is shown in Algorithm 13. Note that, 𝑇𝑜𝑓(𝑎, 𝑏, 𝑐)

denotes the application of tofolli gate on target qubit 𝑐 using the control qubit 𝑎 and

𝑏; 𝐶𝑁𝑂𝑇 (𝑎, 𝑏) denotes application of CNOT gate on target qubit 𝑏 using the control

qubit 𝑎; and 𝑋(𝑎) denotes the application of NOT gate on qubit 𝑎. Fig. 8-8 shows

200

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

Figure 8-8: Quantum Circuit for Present S-box using toffoli Gate

the circuit of Present s-box using toffoli gates. This s-box circuit uses 19 toffoli gates,

5 CNOT gates and 2 NOT gates. However, to realize the circuits using 1-qubit clif-

ford + 𝑇 set, CNOT gates and NOT gates, several decompositions of toffoli gates

(discussed in Section 8.3.1) are considered.

In Table 8.9, resource requirement for Present s-box under various decompositions

are listed. It is clearly evident that by using toffoli gate of 𝑇 -depth 1, 𝑇 -depth as well

as overall depth of the circuit decreases significantly; whereas the width of the circuit

also increases significantly. As restrictions on width are not considered in NIST’s call

for proposal for post-quantum cryptography [171, §4.A.5], decomposition of the s-box

using toffoli gate of depth 1 become interesting, in particular, for its lower depth. The

quantum circuits for the s-box are unit tested in ProjectQ for its correctness.

Designing the Key Scheduling Algorithm.

There are two variants of Present block cipher on the basis of key size- 80-bit key

and 128-bit key. Round operation of KSA of both the variant consists of a rotation

operation, XOR-ing of a 5-bit round counter and application of s-box to some bits.

For the 80-bit variant, in each round a single s-box is applied; whereas two s-boxes

201

Algorithm 13 Quantum Circuit for S-box of Present
INPUT: Qubits: 𝑞0, 𝑞1, 𝑞2, 𝑞3 where 𝑞3 is the most significant qubit and 𝑞0 is the
least sigificant qubit

1. Initialize an ancillary register 𝐴𝑁𝐶 with 4 qubits

2. 𝑇𝑜𝑓(𝑞0, 𝑞1, 𝐴𝑁𝐶[0])

3. 𝑇𝑜𝑓(𝐴𝑁𝐶[0], 𝑞3, 𝑞1)

4. 𝑇𝑜𝑓(𝑞0, 𝑞2, 𝐴𝑁𝐶[0]) and then 𝑇𝑜𝑓(𝑞0, 𝑞1, 𝐴𝑁𝐶[1])

5. 𝑇𝑜𝑓(𝑞2, 𝐴𝑁𝐶[1], 𝑞3) and then 𝑇𝑜𝑓(𝑞0, 𝑞1, 𝐴𝑁𝐶[1])

6. 𝐶𝑁𝑂𝑇 (𝑞3, 𝑞2)

7. 𝑇𝑜𝑓(𝑞0, 𝑞3, 𝑞1)

8. 𝑇𝑜𝑓(𝑞0, 𝑞2, 𝐴𝑁𝐶[2]) and then 𝑇𝑜𝑓(𝐴𝑁𝐶[2], 𝑞3, 𝑞1)

9. 𝑇𝑜𝑓(𝑞0, 𝑞2, 𝐴𝑁𝐶[2]) and then 𝑇𝑜𝑓(𝑞0, 𝑞1, 𝐴𝑁𝐶[3])

10. 𝑇𝑜𝑓(𝐴𝑁𝐶[3], 𝑞3, 𝑞2) and then 𝑇𝑜𝑓(𝑞0, 𝑞1, 𝐴𝑁𝐶[3])

11. 𝑇𝑜𝑓(𝑞3, 𝑞2, 𝑞0)

12. 𝑇𝑜𝑓(𝑞3, 𝑞2, 𝑞1)

13. 𝑇𝑜𝑓(𝑞3, 𝑞1, 𝑞2)

14. 𝑇𝑜𝑓(𝑞3, 𝑞2, 𝑞1)

15. 𝑇𝑜𝑓(𝑞2, 𝑞1, 𝑞0)

16. 𝐶𝑁𝑂𝑇 (𝑞2, 𝑞0)

17. 𝐶𝑁𝑂𝑇 (𝑞2, 𝑞3)

18. 𝑇𝑜𝑓(𝑞0, 𝑞1, 𝑞2)

19. 𝐶𝑁𝑂𝑇 (𝑞1, 𝑞3)

20. 𝐶𝑁𝑂𝑇 (𝑞0, 𝑞3)

21. 𝑋(𝑞2) and 𝑋(𝑞3)

22. Measure 𝑞3, 𝑞2, 𝑞1, 𝑞0 for the output of the s-box

are applied on 8 bits for the 128-bit variant. For designing the quantum circuit,

XOR-ing of round counter can be realized by using the CNOT gate where counter

202

-

Decomposition #CNOT #1qCliff #T #M 𝑇 -Depth Full Depth Width

𝑇 -Depth 4 119 36 133 4 63 190 8

𝑇 -Depth 3 138 59 133 4 34 177 8

𝑇 -Depth 1 309 36 133 4 19 139 84

Table 8.9: Quantum Resources Required for Present S-box for Several Decompositions

bits are the control bits and corresponding key bits acts as target. In ProjectQ,

XOR-ing of round counter is realized by using AddConstant operation. The rotation

operation is not explicitly implemented; rather application of s-box and XOR-ing of

round counter on corresponding qubits are controlled. ProjectQ internally uses SWAP

gate to realize the rotation operation. Fig.8-9 shows the quantum circuit for the KSA

of 80-bit key. In terms of resource requirement, 128-bit KSA is quite similar with

the 80-bit KSA; only difference is the extra usage of a s-box in each round of 128-bit

KSA. Resource requirement for realisation of KSA in quantum circuit under several

kind of synthesis is listed in Table 8.10. In quantum circuit for KSA, 𝑇 gates are

required only for designing the s-box. As the number of s-boxes used in 128-bit KSA

is twice the number of s-boxes used in 80-bit KSA, the number of 𝑇 -gates is double

for 128-bit KSA with respect to 80-bit KSA when similar decomposition of toffoli

gate is cosidered.

Implementation of Full Present

Now, a reversible quantum circuit for full Present is designed. Quantum circuits for

round operations and key scheduling algorithm are combined to obtain the quantum

circuit for the complete Present block cipher. The resource estimation for the re-

versible circuit considering the different decompositions of the toffoli gate are listed

in Table 8.11.

203

S-BOX

XOR-ing
Round
Counter

Figure 8-9: Present Key Scheduling Function of 80-bit Key

Comparison using Cost Metrics

The proposed designs can be compared using the cost metrics discussed in Sec-

tion 8.1.3. Along with the 𝐺-cost and 𝐷𝑊 -cost, the full depth of all the proposed

quantum circuits for Present are listed in Table 8.12. Although, the circuits designed

using the toffoli gates of 𝑇 -depth 1 have lowest depth, but their 𝐺-cost and 𝐷𝑊 -cost

is the highest among all the designs. In comparison to toffoli gates of 𝑇 -depth 4, the

overall depth of toffoli gates of 𝑇 -depth 3 is lower without using any ancillary qubits

at the expense of using more quantum gates. And thus the circuits designed using

toffoli gates of 𝑇 -depth 3 have lowest 𝐷𝑊 -cost; whereas the circuits designed using

the toffoli gates of 𝑇 -depth 4 have lowest 𝐺-cost. Toffoli gates of 𝑇 -depth 1 uses more

qubits and gates to reduce the depth and 𝑇 -depth; and thus the 𝐺-cost and 𝐷𝑊 -cost

of the corresponding quantum circuits of Present are high.

8.3.2 Quantum Resource Estimation of Grover on Present

Now, using the proposed quantum circuit of Present, a concrete resource estimation

is conducted for mounting Grover’s attack on Present block cipher. First, Grover

oracle is designed for Present to mount grover search. Then, based on the design

204

Key

Size

Decomposition of

Toffoli Gate
#CNOT #1qCliff #𝑇 𝑇 -Depth Full Depth Width

80-bit

𝑇 -Depth 4 119 71 133 63 189 148

𝑇 -Depth 3 138 90 133 57 176 164

𝑇 -Depth 1 309 71 133 19 138 224

128-bit

𝑇 -Depth 4 238 107 266 65 189 200

𝑇 -Depth 3 276 145 266 57 176 200

𝑇 -Depth 1 618 107 266 19 138 352

Table 8.10: Resource Estimation for Key Scheduling Algorithm of Present

Key

Size

Decomposition of

Toffoli Gate
#CNOT #1qCliff #𝑇 𝑇 -Depth Full Depth Width

80-bit

𝑇 -Depth 4 64761 19912 70091 2010 6004 2316

𝑇 -Depth 3 74774 29925 70091 1818 5619 2316

𝑇 -Depth 1 164891 19912 70091 606 4407 42368

128-bit

𝑇 -Depth 4 68450 21028 74214 2015 5833 2488

𝑇 -Depth 3 79052 31630 74214 1767 5461 2488

𝑇 -Depth 1 174470 21028 74214 589 4283 44896

Table 8.11: Resource Estimation for Reversible Quantum Circuit of Present

Decomposition of

Toffoli Gate

Present-80 Present-128

𝐷 𝐺 𝐷𝑊 𝐷 𝐺 𝐷𝑊

𝑇 -depth 4 212.55 217.24 223.73 212.51 217.32 223.79

𝑇 -depth 3 212.46 217.42 223.63 212.41 217.5 223.7

𝑇 -depth 1 212.11 217.96 227.48 212.06 218.04 227.52

Table 8.12: Comparison of Reversible Quantum Circuit of Present using𝐺-cost Metric
and 𝐷𝑊 -cost Metric

of Grover oracle, resources required to perform a key recovery attack on Present is

205

estimated. Finally, due to NIST’s restriction on depth-limit, cost-estimation under

depth restrictions is conducted.

Resource Estimation of Grover Oracle

Here, quantum circuit for Grover oracle of Present is designed. While designing the

Grover oracle, the number of plaintext-ciphertext pairs are required to recover the

right key uniquely needs to be determined. Jaques 𝑒𝑡 𝑎𝑙. shows that for a block cipher

with block length of 𝑛-bit and key length of 𝑘-bit, if 𝑟 plaintext-ciphertext pairs are

used, then 𝑟 ≥ ⌈ 𝑘
𝑛
⌉ [130]. In such case, then the probability of uniquely recovering

the correct key is 𝑒−2𝑘−𝑟𝑛 [130].

Present-80 Present-80

Present-80 Present-80

Figure 8-10: Grover Oracle for Present-80

For Present-80, 𝑛 = 64 and 𝑘 = 80; thus 𝑟 ≥ ⌈80
64⌉ =⇒ 𝑟 ≥ 2 and the probability

of finding a unique key is 0.99 for 𝑟 = 2. For Present-128, 𝑛 = 64 and 𝑘 = 128; so,

𝑟 ≥ 2 and the success probability is 0.36 for 𝑟 = 2. For 𝑟 = 3, the success probability

for Present-128 is 0.99. Grover oracle for Present-80 and Present-128 is shown in

Fig. 8-10 and Fig. 8-11 respectively. Table 8.13 lists the resources required to design

206

Present-128 Present-128

Present-128 Present-128

Present-128 Present-128

Figure 8-11: Grover Oracle for Present-128

the Grover oracle with their corresponding success probabilities.

Resource Estimation of Grover’s Search

To mount key recovery attack on a block cipher using Grover’s search, ⌊𝜋4 2𝑘/2⌋ itera-

tions of Grover operator 𝐺 is required. While estimating the resources, cost incurred

by the operator 𝑈𝑓 is considered only; cost imposed by the operator 𝑈𝜓⊥ is ignored.

In this case, no restriction on depth limit is considered and assumed that Grover

operator is applied in serial. Hence, to estimate the resources of mounting Grover’s

search, the resources (except width) in Table 8.13 are multiplied by ⌊𝜋4 2𝑘/2⌋. As it is

assumed that no parallelization is involved, so width remains the same as in Grover

207

Key

Size
𝑟 𝑝𝑠

Decomposition of

Toffoli Gate
#CNOT #1qCliff #𝑇

𝑇 -

Depth

Full

Depth
Width

80-bit 2 0.99

𝑇 -depth 4 259588 79712 280812 4049 11999 8912

𝑇 -depth 3 299640 99242 300838 4120 11248 8912

𝑇 -depth 1 660108 79712 280812 1216 8824 169120

128-bit 2 0.36

𝑇 -depth 4 274248 84136 297248 3941 11673 9448

𝑇 -depth 3 316656 105344 318448 4003 10932 9448

𝑇 -depth 1 698392 84152 297304 1182 8576 179080

128-bit 3 0.99

𝑇 -depth 4 412020 126428 446544 3948 11694 14176

𝑇 -depth 3 475632 158240 478344 4010 10953 14176

𝑇 -depth 1 1048236 126452 446628 1189 8597 268624

Table 8.13: Resource Estimation for Grover Oracle of Present. 𝑝𝑠 denotes the Success
Probability of Recovering the Right Key Uniquely.

Key

Size
𝑟 𝑝𝑠

Decomposition

of Toffoli Gate
#CNOT #1qCliff #𝑇

𝑇 -

Depth

Full

Depth
Width

80-bit 2 0.99
𝑇 -depth 4 257.64 255.93 257.75 251.63 253.2 213.12

𝑇 -depth 3 257.84 256.25 257.85 251.66 253.11 213.12

𝑇 -depth 1 258.98 255.93 257.75 249.9 252.76 217.37

128-bit 2 0.36
𝑇 -depth 4 281.72 280.01 281.83 275.6 277.16 213.21

𝑇 -depth 3 281.92 280.34 281.93 275.62 277.07 213.21

𝑇 -depth 1 283.06 280.01 281.83 273.86 276.72 217.45

128-bit 3 0.99
𝑇 -depth 4 282.3 280.6 282.42 275.6 277.16 213.79

𝑇 -depth 3 282.51 280.92 282.52 275.62 277.07 213.79

𝑇 -depth 1 283.65 280.6 282.42 273.87 276.72 218.04

Table 8.14: Resource Estimation for Grover Search on Present

oracle. Resource estimation for mounting Grover’s search is listed in Table 8.14.

Table 8.15 compares between the circuits used for mounting Grover’s search on

208

Decomposition of

Toffoli Gate

Present-80, 𝑟=2 Present-128, 𝑟=2 Present-128, 𝑟=3

𝐷 𝐺 𝐷𝑊 𝐷 𝐺 𝐷𝑊 𝐷 𝐺 𝐷𝑊

𝑇 -depth 4 253.2 258.89 266.32 277.16 282.97 290.37 277.16 283.56 290.95

𝑇 -depth 3 253.11 259.07 266.33 277.07 283.15 290.28 277.07 283.74 290.86

𝑇 -depth 1 252.76 259.61 270.13 276.72 283.69 294.17 276.72 284.28 294.76

Table 8.15: Comparison of Quantum Circuit for Grover Search on Present using
𝐺-cost Metric and 𝐷𝑊 -cost Metric

Decomposition of

Toffoli Gate
Variant 𝑟 GD

MAXDEPTH

240 264 296

𝑇 -depth 4

Present-80 2 2112.09 272.09 248.09 216.09

Present-128 2 2160.13 2120.13 296.13 264.13

Present-128 3 2160.72 2120.72 296.72 264.72

𝑇 -depth 3

Present-80 2 2112.18 272.18 248.18 216.18

Present-128 2 2160.22 2120.22 296.22 264.22

Present-128 2 2160.81 2120.81 296.81 264.81

𝑇 -depth 1

Present-80 2 2112.37 272.37 248.37 216.37

Present-128 2 2160.41 2120.41 296.41 264.41

Present-128 2 2161 2121 297 265

Table 8.16: Gate Cost for Grover’s Search on Present with Depth Limit

Present proposed in this chapter. It can be concluded from the table that using

low-depth toffoli gate is a costly affair for mounting key recovery attack on Present.

Cost Estimation under a Depth Limit

In Table 8.14, the values are computed without considering any restriction on the

depth of the circuit. However, NIST has put restriction on the maximum depth of

the circuit (MAXDEPTH) in its call for the proposal for post-quantum cryptography

standardization [171]. The minimum and maximum plausible value of MAXDEPTH is

240 and 296 respectively. The restriction on depth-limit alters the total gate cost of

209

mounting key search. Consider, a non-parallel circuit for Grover’s search have 𝐺 gate

cost and 𝐷 depth. If Grover’s search is parallelized by restricting the depth-limit to

MAXDEPTH, then the modified gate cost is 𝐺𝐷/MAXDEPTH [171]. Table 8.16 lists the

gate cost of Grover’s search under the depth restriction.

8.4 Chapter Summary

Resource estimation for Grover’s key search on the family of KATAN block cipher and

Present is explored with respecting the NIST’s MAXDEPTH depth restrictions. Several

designs of the reversible quantum circuit for both the block ciphers are proposed

focusing on minimizing the depth. Design based on AND gates produce relatively low

depth circuits for KATAN48 and KATAN64; whereas for KATAN32 design based

on 𝑇 -depth one toffoli gate produce shallow circuit. For Present, circuits for Grover

oracle designed using toffoli gates of 𝑇 -depth 4 has the lowest 𝐺-cost; whereas Grover

oracle for Present-128 designed using toffoli gates of 𝑇 -depth 3 have lowest 𝐷𝑊 -cost.

210

9
CONCLUSION

Contents
9.1 Summary . 211

9.2 Open Problems . 212

The main topic of the thesis is cryptanalysis of symmetric key schemes. Our main

results are included in Chapter 3, 4, 5, 6, 7 and 8.

9.1 Summary

In the first contributory work, we report iterated truncated differential based attacks

on the internal keyed permutation of FlexAEAD. These attacks are further modified

to key recovery attacks and applied on the nonce-based sequence number generator

to mount forgery attack on FlexAEAD.

Next, we have applied the yoyo attack on the internal keyed permutation of Flex-

AEAD to devise deterministic distinguishers. In doing so, we have identified the

underlying Super-Sbox constructions of these keyed permutations. These attacks are

also exploited to recover the secret key.

Then, we analyze the impact of yoyo attack on some AES-based public permuta-

tions. We proposed new cryptanalytic techniques by augmenting yoyo with classical,

improbable and impossible differentials. To show the effectiveness of the proposed

techniques, several attacks are mounted on the round-reduced version of AESQ and

211

AES in the known key model.

We presented another new cryptanalytic technique by embedding the yoyo within

boomerang and named it as boomeyong. The proposed strategy is used to devise key

recovery attacks for 5-round and 6-round AES. To show the versatility of the technique,

round-reduced version of AES-based block cipher Pholkos is also shown vulnerable to

the proposed attack.

Next, we mount quantum attacks on HCTR, Tweakable-HCTR and HCH. We

have shown that all the three schemes are susceptible to attacks in the 𝑄2 model

whereas HCTR and HCH are also vulnerable in the 𝑄1 model.

Finally, we study the resource estimation for mounting Grover’s attack on KATAN

and Present. We proposed reversible quantum circuits for both the block ciphers

which are used to concretize the resource estimation.

9.2 Open Problems

Based on the work in the thesis, some interesting open problems can be considered

as future work. We list them as below.

1. In Chapter 5, yoyo game is used to mount attacks on AESQ permutation and on

AES in the known key setting. It would be interesting to find out other ways to

extend the yoyo game to mount attacks on public permutations.

2. In Chapter 5 and Chapter 6, new cryptanalytic techniques improbable differ-

ential yoyo, impossible differential yoyo, impossible differential bi-directional

yoyo and boomeyong are introduced. Finding additional application of these

techniques would be an interesting research area.

3. In Chapter 5, the extension of yoyo attacks on substitution-permutation net-

works depend on the 𝑀𝐶 operation. An interesting problem needs to be inves-

tigated is which type of linear layers can resist such kind of attacks.

4. In Chapter 4, we have applied the existing result of yoyo attack on generic

2-round substitution-permutation networks. Whether the yoyo attack can be

212

extended for generic 3-round substitution-permutation networks is an interest-

ing question worthy of further investigation.

5. In Chapter 8, we have provided resource estimation for mounting Grover’s at-

tack on Present and Katan. Investigation regarding the development of a tool

to automate the resource estimation of such kind of ciphers is quite interesting.

213

214

A
SAMPLE TRAIL FOR 5-ROUND AES-128

Here, a trail for 5-round AES-128 as claimed in Section 6.2.1 is provided as an il-

lustration. Note that, the trail is searched using only 223 encryptions and checking

whether the six specific bytes in the intermediate state after 4 rounds of encryp-

tion are inactive or not. The existence of such trails strengthens the validity of the

attacks on 5-round and 6-round AES discussed in this Chapter 6. The pair of plain-

texts 𝑝1, 𝑝2, the 𝑘𝑒𝑦 and other intermediate states are stipulated in hexadecimal form.

𝑝1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E8 0 0 0

0 77 0 0

0 0 91 0

0 0 0 BF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑝2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

AC 0 0 0

0 7D 0 0

0 0 18 0

0 0 0 3F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑘𝑒𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 85 AF 1B

39 9C 95 4B

79 29 EB 60

34 7E D7 8A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Initial difference of 𝑝1 and 𝑝2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

44 0 0 0

0 0A 0 0

0 0 89 0

0 0 0 80

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
215

• Difference of intermediate states after 4 rounds of encryption (excluding the last

mixcolumns operation).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

61 B5 EB 16

E7 7E 0 0

37 0 2C 0

0 79 17 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Difference of ciphertexts after 5 rounds of encryption.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

79 96 BE 76

B1 96 DE F7

E3 4B 1A 64

68 11 02 56

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Difference of states after swapping the last column between ciphertexts and

subsequent 5 rounds of decryption.
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6A 0 0 0

0 5D 0 0

0 0 A4 0

0 0 0 12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

216

BIBLIOGRAPHY

[1] CAESAR Competition. https://competitions.cr.yp.to/caesar.html.

[2] eSTREAM: the ECRYPT Stream Cipher Project. https://www.ecrypt.eu.
org/stream/.

[3] National Institute of Standards and Technology (NIST): AES Development
(1997). https://www.cosic.esat.kuleuven.be/nessie/.

[4] National Institute of Standards and Technology (NIST): Lightweight cryp- tog-
raphy standardization process (2019). https://csrc.nist.gov/projects/
lightweight-cryptography.

[5] National Institute of Standards and Technology (NIST): SHA-3 Standardiza-
tion Process (2007). https://csrc.nist.gov/projects/hash-functions/
sha-3-project.

[6] New European Schemes for Signatures, Integrity, and En-
cryption (NESSIE). https://csrc.nist.gov/projects/
cryptographic-standards-and-guidelines/archived-crypto-projects/
aes-development.

[7] Revkit. https://msoeken.github.io/revkit.html.

[8] Specification for the Advanced Encryption Standard (AES). Federal Informa-
tion Processing Standards Publication 197, 2001.

[9] Biryukov A and Khovratovich D. PAEQ v1. http://competitions.cr.yp.
to/round1/paeqv1.pdf, 2014.

[10] Mohamed Ahmed Abdelraheem. Estimating the Probabilities of Low-Weight
Differential and Linear Approximations on PRESENT-Like Ciphers. In Taeky-
oung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, Information Security
and Cryptology – ICISC 2012, pages 368–382, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

217

https://competitions.cr.yp.to/caesar.html
https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://www.cosic.esat.kuleuven.be/nessie/
https://csrc.nist.gov/projects/ lightweight-cryptography
https://csrc.nist.gov/projects/ lightweight-cryptography
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://msoeken.github.io/revkit.html
http:// competitions.cr.yp.to/round1/paeqv1.pdf
http:// competitions.cr.yp.to/round1/paeqv1.pdf

[11] Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel.
Biclique Cryptanalysis Of PRESENT, LED, And KLEIN. Cryptology ePrint
Archive, Report 2012/591, 2012. https://eprint.iacr.org/2012/591.

[12] Zahra Ahmadian, Shahram Rasoolzadeh, Mahmoud Salmasizadeh, and Mo-
hammad Reza Aref. Automated Dynamic Cube Attack on Block Ciphers:
Cryptanalysis of SIMON and KATAN. IACR Cryptology ePrint Archive,
2015:40, 2015.

[13] Martin R. Albrecht and Gregor Leander. An All-In-One Approach to Differen-
tial Cryptanalysis for Small Block Ciphers. In Lars R. Knudsen and Huapeng
Wu, editors, Selected Areas in Cryptography, pages 1–15, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[14] Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON
Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.
https://eprint.iacr.org/2013/543.

[15] Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mutter.
Quantum Reversible Circuit of AES-128. Quantum Information Processing,
17(5):1–30, May 2018.

[16] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A Meet-in-the-Middle
Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32(6):818–830, Jun 2013.

[17] Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Par-
ent, and John Schanck. Estimating the Cost of Generic Quantum Pre-image
Attacks on SHA-2 and SHA-3. In Roberto Avanzi and Howard Heys, editors, Se-
lected Areas in Cryptography – SAC 2016, pages 317–337, Cham, 2017. Springer
International Publishing.

[18] Ravi Anand, Subhamoy Maitra, Arpita Maitra, Chandra Sekhar Mukher-
jee, and Sourav Mukhopadhyay. Resource Estimation of Grovers-kind Quan-
tum Cryptanalysis against FSR based Symmetric Ciphers. Cryptology ePrint
Archive, Report 2020/1438, 2020. https://eprint.iacr.org/2020/1438.

[19] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards Understand-
ing the Known-Key Security of Block Ciphers. In Fast Software Encryption -
20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, pages 348–366, 2013.

[20] Michael Appel, Andreas Bossert, Steven Cooper, Tobias Kußmaul, Johannes
Löffler, Christof Pauer, and Alexander Wiesmaier. Block ciphers for the iot–
simon, speck, katan, led, tea, present, and sea compared.

218

https://eprint.iacr.org/2012/591
https://eprint.iacr.org/2013/543
https://eprint.iacr.org/2020/1438

[21] Jean-Philippe Aumasson. Serious Cryptography: A Practical Introduction to
Modern Encryption. No Starch Press, USA, 2017.

[22] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. NIST mailing list,
2009. http://www.131002.net/data/papers/AM09.pdf.

[23] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions
With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency
S-Boxes. IACR Transactions on Symmetric Cryptology, 2017(1):4–44, Mar.
2017.

[24] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New differential fault
analysis on PRESENT. EURASIP Journal on Advances in Signal Processing,
2013(1):145, Sep 2013.

[25] Nasour Bagheri, Florian Mendel, and Yu Sasaki. Improved Rebound Attacks on
AESQ: Core Permutation of CAESAR Candidate PAEQ. In Proceedings, Part
II, of the 21st Australasian Conference on Information Security and Privacy -
Volume 9723, pages 301–316, New York, NY, USA, 2016. Springer-Verlag New
York, Inc.

[26] Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof, and Tanja Lange. Con-
crete Quantum Cryptanalysis of Binary Elliptic Curves. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(1):451–472, Dec. 2020.

[27] Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks, Willi
Meier, Mostafizar Rahman, Dhiman Saha, and Yu Sasaki. Cryptanalysis of
ForkAES. In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and
Moti Yung, editors, Applied Cryptography and Network Security, pages 43–63,
Cham, 2019. Springer International Publishing.

[28] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards Reaching
the Limit of Lightweight Encryption. In CHES, 2017.

[29] Zhenzhen Bao, Jian Guo, and Eik List. Extended Truncated-differential Distin-
guishers on Round-reduced AES. IACR Transactions on Symmetric Cryptology,
2020(3):197–261, Sep. 2020.

[30] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.
Improved Key Recovery Attacks on Reduced-Round AES with Practical Data
and Memory Complexities. In Hovav Shacham and Alexandra Boldyreva, ed-
itors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part II, volume 10992 of LNCS, pages 185–212. Springer, 2018.

219

http://www.131002.net/data/papers/AM09.pdf

[31] Navid Ghaedi Bardeh. A Key-Independent Distinguisher for 6-round AES in an
Adaptive Setting. Cryptology ePrint Archive, Report 2019/945, 2019. https:
//ia.cr/2019/945.

[32] Navid Ghaedi Bardeh and Sondre Rønjom. Practical Attacks on Reduced-
Round AES. In Johannes Buchmann, Abderrahmane Nitaj, and Tajjeeddine
Rachidi, editors, Progress in Cryptology – AFRICACRYPT 2019, pages 297–
310, Cham, 2019. Springer International Publishing.

[33] Navid Ghaedi Bardeh and Sondre Rønjom. The Exchange Attack: How to
Distinguish Six Rounds of AES with 2ˆ88.2 Chosen Plaintexts. In Steven D.
Galbraith and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part III, volume 11923 of Lecture Notes in Computer Science, pages 347–370.
Springer, 2019.

[34] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In CRYPTO,
2016.

[35] Daniel J. Bernstein and Bo-Yin Yang. Asymptotically Faster Quantum Al-
gorithms to Solve Multivariate Quadratic Equations. In Tanja Lange and
Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th International
Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Pro-
ceedings, volume 10786 of Lecture Notes in Computer Science, pages 487–506.
Springer, 2018.

[36] D.J. Bernstein and T. Lange. Post-quantum cryptography. Nature,
549(7671):188–194, September 2017.

[37] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. J. Cryp-
tol., 7(4):229–246, December 1994.

[38] Eli Biham, Alex Biryukov, Orr Dunkelman, Eran Richardson, and Adi Shamir.
Initial Observations on Skipjack: Cryptanalysis of Skipjack-3XOR. In Stafford
Tavares and Henk Meijer, editors, Selected Areas in Cryptography, pages 362–
375, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[39] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Differentials. In Jacques Stern, editor,
EUROCRYPT, volume 1592 of LNCS, pages 12–23. Springer, 1999.

[40] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the Middle Attacks on
IDEA and Khufu. In Lars Knudsen, editor, Fast Software Encryption, pages
124–138, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

220

https://ia.cr/2019/945
https://ia.cr/2019/945

[41] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Differentials. J. Cryptol., 18(4):291–311,
September 2005.

[42] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques: Advances in Cryptology,
EUROCRYPT ’01, page 340–357, Berlin, Heidelberg, 2001. Springer-Verlag.

[43] Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang and
Rectangle Attacks. In Joan Daemen and Vincent Rijmen, editors, Fast Software
Encryption, pages 1–16, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[44] Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rectangle
Attack on the Full KASUMI. In Bimal Roy, editor, Advances in Cryptology -
ASIACRYPT 2005, pages 443–461, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[45] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and
Rectangle Attacks. In Ronald Cramer, editor, Advances in Cryptology – EU-
ROCRYPT 2005, pages 507–525, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[46] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Impossible Dif-
ferential Attacks on 8-Round AES-192. In David Pointcheval, editor, Topics
in Cryptology – CT-RSA 2006, pages 21–33, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[47] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology
- CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 2–21. Springer, 1990.

[48] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptol., 4(1):3–72, 1991.

[49] Eli Biham and Adi Shamir. Differential Cryptanalysis of Feal and N-Hash. In
Donald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91, Work-
shop on the Theory and Application of of Cryptographic Techniques, Brighton,
UK, April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer
Science, pages 1–16. Springer, 1991.

[50] Eli Biham and Adi Shamir. Differential Cryptanalysis of Snefru, Khafre,
REDOC-II, LOKI and Lucifer. In Joan Feigenbaum, editor, Advances in Cryp-
tology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of Lec-
ture Notes in Computer Science, pages 156–171. Springer, 1991.

221

[51] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-Round
DES. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer
Science, pages 487–496. Springer, 1992.

[52] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[53] Alex Biryukov. The Boomerang Attack on 5 and 6-Round Reduced AES. In
Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors, Advanced En-
cryption Standard – AES, pages 11–15, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[54] Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanaly-
sis of SAFER++. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 195–211. Springer, 2003.

[55] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the
Full AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology
– ASIACRYPT 2009, pages 1–18, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[56] Alex Biryukov and Dmitry Khovratovich. PAEQ: Parallelizable Permutation-
Based Authenticated Encryption. In Sherman S. M. Chow, Jan Camenisch,
Lucas C. K. Hui, and Siu Ming Yiu, editors, Information Security, pages 72–
89, Cham, 2014. Springer International Publishing.

[57] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and
Related-Key Attack on the Full AES-256. In Shai Halevi, editor, Advances in
Cryptology - CRYPTO 2009, pages 231–249, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[58] Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of Feistel Net-
works with Secret Round Functions. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography – SAC 2015, pages 102–121, Cham,
2016. Springer International Publishing.

[59] C. Blondeau. B.: Links between theoretical and effective differential probabili-
ties: Experiments on present. In In: TOOLS’10. (2010).

[60] Céline Blondeau and Kaisa Nyberg. Links between Truncated Differential and
Multidimensional Linear Properties of Block Ciphers and Underlying Attack
Complexities. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology – EUROCRYPT 2014, pages 165–182, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

222

[61] Céline Blondeau, Thomas Peyrin, and Lei Wang. Known-Key Distinguisher
on Full PRESENT. In Rosario Gennaro and Matthew Robshaw, editors, Ad-
vances in Cryptology – CRYPTO 2015, pages 455–474, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[62] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block
Cipher. In Proceedings of the 9th International Workshop on Cryptographic
Hardware and Embedded Systems, CHES ’07, page 450–466, Berlin, Heidelberg,
2007. Springer-Verlag.

[63] Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle
attack: Cryptanalysis of the lightweight block cipher ktantan. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography,
pages 229–240, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[64] Dan Boneh and Mark Zhandry. Quantum-Secure Message Authentication
Codes. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryp-
tology – EUROCRYPT 2013, pages 592–608, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[65] Dan Boneh and Mark Zhandry. Secure Signatures and Chosen Ciphertext Se-
curity in a Quantum Computing World. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, pages 361–379, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg.

[66] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki, and
André Schrottenloher. Quantum Attacks Without Superposition Queries: The
Offline Simon’s Algorithm. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference
on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part I, volume 11921 of Lecture Notes
in Computer Science, pages 552–583. Springer, 2019.

[67] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum
Security Analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–93,
2019.

[68] Julia Borghoff, Lars R. Knudsen, Gregor Leander, and Søren S. Thomsen.
Cryptanalysis of PRESENT-Like Ciphers with Secret S-Boxes. In Antoine
Joux, editor, Fast Software Encryption, pages 270–289, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[69] Johan Borst, Lars R. Knudsen, and Vincent Rijmen. Two Attacks on Reduced
IDEA. In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97,
pages 1–13, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

223

[70] Jannis Bossert, Eik List, Stefan Lucks, and Sebastian Schmitz. Pholkos – Ef-
ficient Large-state Tweakable Block Ciphers from the AES Round Function.
Cryptology ePrint Archive, Report 2020/275, 2020. https://eprint.iacr.
org/2020/275.

[71] Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and Marine
Minier. On the Feistel Counterpart of the Boomerang Connectivity Table:
Introduction and Analysis of the FBCT. IACR Transactions on Symmetric
Cryptology, 2020(1):331–362, May 2020.

[72] Christina Boura and Anne Canteaut. On the Boomerang Uniformity of Cryp-
tographic Sboxes. IACR Trans. Symmetric Cryptol., 2018(3):290–310, 2018.

[73] Christina Boura, Marine Minier, María Naya-Plasencia, and Valentin Suder.
Improved Impossible Differential Attacks against Round-Reduced LBlock. Re-
search Report 2014/279, IACR Cryptology ePrint Archive, April 2014.

[74] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and
Improving Impossible Differential Attacks: Applications to CLEFIA, Camel-
lia, LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology – ASIACRYPT 2014, pages 179–199, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[75] Joan Boyar, Magnus Find, and Rene Peralta. Small Low-Depth Circuits for
Cryptographic Applications. 2018-03-24 2018.

[76] Michel Boyer, Gilles Brassard, Peter Hoyer, and Alain Tapp. Tight Bounds on
Quantum Searching. Technical report, 1996.

[77] Harry Buhrman, Richard Cleve, Monique Laurent, Noah Linden, Alexander
Schrijver, and Falk Unger. New Limits on Fault-Tolerant Quantum Compu-
tation. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 411–419, 2006.

[78] Stanislav Bulygin. More on linear hulls of PRESENT-like ciphers and a crypt-
analysis of full-round EPCBC-96. Cryptology ePrint Archive, Report 2013/028,
2013. https://eprint.iacr.org/2013/028.

[79] Debrup Chakraborty and Palash Sarkar. HCH: A New Tweakable Enciphering
Scheme Using the Hash-Encrypt-Hash Approach. In Rana Barua and Tanja
Lange, editors, Progress in Cryptology - INDOCRYPT 2006, pages 287–302,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[80] Jiageng Chen, Je Sen Teh, Chunhua Su, Azman Samsudin, and Junbin Fang.
Improved (related-key) Attacks on Round-Reduced KATAN-32/48/64 Based
on the Extended Boomerang Framework. In Joseph K. Liu and Ron Steinfeld,
editors, Information Security and Privacy, pages 333–346, Cham, 2016. Springer
International Publishing.

224

https://eprint.iacr.org/2020/275
https://eprint.iacr.org/2020/275
https://eprint.iacr.org/2013/028

[81] Joo Yeon Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In Josef
Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, pages 302–317, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[82] C. Cid, S. Murphy, and M. J. B. Robshaw. Small Scale Variants of the AES. In
Henri Gilbert and Helena Handschuh, editors, Fast Software Encryption, pages
145–162, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[83] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
Connectivity Table: A New Cryptanalysis Tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT II, volume 10821 of LNCS, pages 683–
714. Springer, 2018.

[84] B. Collard and F. X. Standaert. A Statistical Saturation Attack against the
Block Cipher PRESENT. In Marc Fischlin, editor, Topics in Cryptology – CT-
RSA 2009, pages 195–210, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[85] D. Coppersmith. The Data Encryption Standard (DES) and its strength against
attacks. IBM J. Res. Dev., 38:243–250, 1994.

[86] Joan Daemen, Mario Lamberger, Norbert Pramstaller, Vincent Rijmen, Fred-
erik Vercauteren, Esat Cosic, K U Leuven, Louvain , and Belgium . Com-
putational aspects of the expected differential probability of 4-round AES and
AES-like ciphers. 85:85–104, 06 2009.

[87] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag,
Berlin, Heidelberg, 2002.

[88] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Springer, 2002.

[89] Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials
in AES. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of
LNCS, pages 78–94. Springer, 2006.

[90] Ivan Damgård, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Super-
position Attacks on Cryptographic Protocols. In Carles Padró, editor, Infor-
mation Theoretic Security, pages 142–161, Cham, 2014. Springer International
Publishing.

[91] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN
and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, pages 272–288, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[92] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the Fastest
Boomerangs: Application to SKINNY. IACR Transactions on Symmetric Cryp-
tology, 2020(4):104–129, Dec. 2020.

225

[93] Rishi Dewan. Advanced-Encryption-Standard-Algorithm. https://github.
com/rishidewan33/Advanced-Encryption-Standard-Algorithm.

[94] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. A Flexible
Authenticated Lightweight Cipher using Even-Mansour Construction. In IEEE
International Conference on Communications, ICC 2017, Paris, France, May
21-25, 2017, pages 1–6, 2017.

[95] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. A
Lightweight Cipher with Integrated Authentication. In CONCURSO DE
TESES E DISSERTAÇÕES - SIMPÓSIO BRASILEIRO EM SEGURANÇA
DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 18.,
2018, 2018.

[96] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. Flex-
AEAD -A Lightweight Cipher with Integrated Authentication. https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/FlexAEAD-spec.pdf, 2019.

[97] E.M. do Nascimento. Algoritmo de Criptografia Leve com Utilização de Auten-
ticação. PhD thesis, Instituto Militar de Engenharia, Rio de Janeiro, 2017.

[98] Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei. Unaligned Rebound
Attack: Application to Keccak. In Anne Canteaut, editor, Fast Software En-
cryption, pages 402–421, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[99] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The Retracing
Boomerang Attack. In EUROCRYPT (1), volume 12105 of Lecture Notes in
Computer Science, pages 280–309. Springer, 2020.

[100] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-
Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages 393–410,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[101] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-
Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony.
J. Cryptology, 27(4):824–849, 2014.

[102] Avijit Dutta and Mridul Nandi. Tweakable HCTR: A BBB Secure Tweakable
Enciphering Scheme. In Debrup Chakraborty and Tetsu Iwata, editors, Progress
in Cryptology – INDOCRYPT 2018, pages 47–69, Cham, 2018. Springer Inter-
national Publishing.

[103] Maria Eichlseder, Daniel Kales, and Markus Schofnegger. Forgery Attacks on
FlexAE and FlexAEAD. Cryptology ePrint Archive, Report 2019/679, 2019.
https://eprint.iacr.org/2019/679.

226

https://github.com/rishidewan33/Advanced-Encryption-Standard-Algorithm
https://github.com/rishidewan33/Advanced-Encryption-Standard-Algorithm
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://eprint.iacr.org/2019/679

[104] Maria Eichlseder, Daniel Kales, and Markus Schofnegger. Official Comment:
FleaxAEAD. Posting on the NIST LWC mailing list, 2019.

[105] Sareh Emami, San Ling, Ivica Nikolić, Josef Pieprzyk, and Huaxiong Wang. The
resistance of present-80 against related-key differential attacks. Cryptography
and Communications, 6(3):171–187, Sep 2014.

[106] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David
Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In Gerhard
Goos, Juris Hartmanis, Jan van Leeuwen, and Bruce Schneier, editors, Fast
Software Encryption, pages 213–230, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[107] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Attacking 9 and 10
Rounds of AES-256. In Colin Boyd and Juan González Nieto, editors, Infor-
mation Security and Privacy, pages 60–72, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[108] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cle-
land. Surface codes: Towards practical large-scale quantum computation. Phys-
ical Review A, 86(3), Sep 2012.

[109] Thomas Fuhr and Brice Minaud. Match Box Meet-in-the-Middle Attack
Against KATAN. In Carlos Cid and Christian Rechberger, editors, Fast Soft-
ware Encryption, pages 61–81, Berlin, Heidelberg, 2015. Springer Berlin Hei-
delberg.

[110] Tommaso Gagliardoni. Quantum Security of Cryptographic Primitives. CoRR,
abs/1705.02417, 2017.

[111] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Semantic
Security and Indistinguishability in the Quantum World. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, pages
60–89, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[112] Sebati Ghosh and Palash Sarkar. Breaking Tweakable Enciphering Schemes
using Simon’s Algorithm. Des. Codes Cryptogr., 89(8):1907–1926, 2021.

[113] Henri Gilbert. A Simplified Representation of AES. In Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, pages 200–222, 2014.

[114] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved At-
tacks for AES-Like Permutations. In Fast Software Encryption, 17th Interna-
tional Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Se-
lected Papers, pages 365–383, 2010.

227

[115] Michael Gorski and Stefan Lucks. New Related-Key Boomerang Attacks on
AES . In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors,
Progress in Cryptology - INDOCRYPT 2008, pages 266–278, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[116] Lorenzo Grassi. Mixture Differential Cryptanalysis: A New Approach to Distin-
guishers and Attacks on round-reduced AES. IACR Trans. Symmetric Cryptol.,
2018(2):133–160, 2018.

[117] Lorenzo Grassi and Christian Rechberger. New and Old Limits for AES Known-
Key Distinguishers. Cryptology ePrint Archive, Report 2017/255, 2017. https:
//eprint.iacr.org/2017/255.

[118] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail
Cryptanalysis and its Applications to AES. IACR Transactions on Symmetric
Cryptology, 2016(2):192–225, Feb. 2017.

[119] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grover’s Algorithm to AES: Quantum Resource Estimates.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography, pages 29–43, Cham,
2016. Springer International Publishing.

[120] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Association
for Computing Machinery.

[121] Akinori Hosoyamada and Yu Sasaki. Quantum Demiric-Selçuk Meet-in-the-
Middle Attacks: Applications to 6-Round Generic Feistel Constructions. In:
Catalano D., De Prisco R. (eds) Security and Cryptography for Networks. SCN
2018. Lecture Notes in Computer Science, vol 11035. Springer, Cham, 2018,
2018.

[122] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. A Soft-
ware Methodology for Compiling Quantum Programs. Quantum Science and
Technology, 3(2):020501, Feb 2018.

[123] Takanori Isobe, Yu Sasaki, and Jiageng Chen. Related-Key Boomerang Attacks
on KATAN32/48/64. In Colin Boyd and Leonie Simpson, editors, Information
Security and Privacy, pages 268–285, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[124] Takanori Isobe and Kyoji Shibutani. All Subkeys Recovery Attack on Block
Ciphers: Extending Meet-in-the-Middle Approach. In Lars R. Knudsen and
Huapeng Wu, editors, Selected Areas in Cryptography, pages 202–221, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

228

https://eprint.iacr.org/2017/255
https://eprint.iacr.org/2017/255

[125] Takanori Isobe and Kyoji Shibutani. Improved All-Subkeys Recovery Attacks
on FOX, KATAN and SHACAL-2 Block Ciphers. In Carlos Cid and Christian
Rechberger, editors, Fast Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume 8540
of Lecture Notes in Computer Science, pages 104–126. Springer, 2014.

[126] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. Quantum Chosen-Ciphertext Attacks against Feistel Ciphers. In Topics
in Cryptology - CT-RSA 2019 - The Cryptographers’ Track at the RSA Con-
ference 2019, San Francisco, CA, USA, March 4-8, 2019, Proceedings, pages
391–411, 2019.

[127] Aayush Jain, Varun Kohli, and Girish Mishra. Deep Learning based Differential
Distinguisher for Lightweight Cipher PRESENT. Cryptology ePrint Archive,
Report 2020/846, 2020. https://eprint.iacr.org/2020/846.

[128] Kyoungbae Jang, Seungju Choi, Hyeokdong Kwon, Hyunji Kim, Jaehoon Park,
and Hwajeong Seo. Grover on Korean Block Ciphers. Applied Sciences, 10(18),
2020.

[129] Kyoungbae Jang, Hyunjun Kim, Siwoo Eum, and Hwajeong Seo. Grover on
gift. Cryptology ePrint Archive, Report 2020/1405, 2020. https://eprint.
iacr.org/2020/1405.

[130] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Im-
plementing Grover Oracles for Quantum Key Search on AES and LowMC. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, pages 280–310, Cham, 2020. Springer International Publishing.

[131] Samuel Jaques and John M. Schanck. Quantum Cryptanalysis in the RAM
Model: Claw-Finding Attacks on SIKE. 11692:32–61, 2019.

[132] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Multiple Limited-
Birthday Distinguishers and Applications. In Selected Areas in Cryptography
- SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August
14-16, 2013, Revised Selected Papers, pages 533–550, 2013.

[133] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate.
Phys. Rev. A, 87:022328, Feb 2013.

[134] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking Symmetric Cryptosystems Using Quantum Period Finding. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, pages 207–237, Berlin, Heidelberg, 2016. Springer Berlin Hei-
delberg.

[135] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Quantum Differential and Linear Cryptanalysis. IACR Trans. Symmetric Cryp-
tol., 2016(1):71–94, 2016.

229

https://eprint.iacr.org/2020/846
https://eprint.iacr.org/2020/1405
https://eprint.iacr.org/2020/1405

[136] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang
Attacks Against Reduced-Round MARS and Serpent. In Proceedings of the
7th International Workshop on Fast Software Encryption, FSE ’00, page 75–93,
Berlin, Heidelberg, 2000. Springer-Verlag.

[137] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong. The
Related-Key Rectangle Attack – Application to SHACAL-1. In Huaxiong Wang,
Josef Pieprzyk, and Vijay Varadharajan, editors, Information Security and Pri-
vacy, pages 123–136, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[138] Panjin Kim, Daewan Han, and Kyung Chul Jeong. Time–space Complexity
of Quantum Search Algorithms in Symmetric Cryptanalysis: Applying to AES
and SHA-2. Quantum Information Processing, 17(12), Oct 2018.

[139] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differen-
tial Cryptanalysis of NLFSR-Based Cryptosystems. In Masayuki Abe, editor,
Advances in Cryptology - ASIACRYPT 2010, pages 130–145, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[140] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differen-
tial Cryptanalysis of Trivium and KATAN. In Ali Miri and Serge Vaudenay, ed-
itors, Selected Areas in Cryptography, pages 200–212, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[141] Lars R Knudsen. Truncated and higher order differentials. In International
Workshop on Fast Software Encryption, pages 196–211. Springer, 1994.

[142] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, pages 315–324,
2007.

[143] Lars R. Knudsen and Matthew J. B. Robshaw. The Block Cipher Companion.
Springer Publishing Company, Incorporated, 2011.

[144] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - Efficient Short-Input Hashing for Post-Quantum Applications.
Cryptology ePrint Archive, Report 2016/098, 2016. https://eprint.iacr.
org/2016/098.

[145] H. Kuwakado and M. Morii. Quantum Distinguisher between the 3-round Feistel
cipher and the Random Permutation. In 2010 IEEE International Symposium
on Information Theory, pages 2682–2685, 2010.

[146] H. Kuwakado and M. Morii. Security on the quantum-type Even-Mansour
cipher. In 2012 International Symposium on Information Theory and its Ap-
plications, pages 312–316, Oct 2012.

230

https://eprint.iacr.org/2016/098
https://eprint.iacr.org/2016/098

[147] Lucia Lacko-Bartošová. Algebraic Cryptanalysis of Present Based on the
Method of Syllogisms. Tatra Mountains Mathematical Publications, 53(1):201–
212, 2013.

[148] B. Langenberg, H. Pham, and R. Steinwandt. Reducing the Cost of Implement-
ing the Advanced Encryption Standard as a Quantum Circuit. IEEE Transac-
tions on Quantum Engineering, 1:1–12, 2020.

[149] Martin M. Lauridsen and Christian Rechberger. Linear Distinguishers in the
Key-less Setting: Application to PRESENT. In Gregor Leander, editor, Fast
Software Encryption, pages 217–240, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[150] Gregor Leander. On Linear Hulls, Statistical Saturation Attacks, PRESENT
and a Cryptanalysis of PUFFIN. In Kenneth G. Paterson, editor, Advances
in Cryptology – EUROCRYPT 2011, pages 303–322, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[151] Gregor Leander and Alexander May. Grover Meets Simon – Quantumly At-
tacking the FX-construction. In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, Advances in Cryptology – ASIACRYPT 2017, pages 161–178, Cham, 2017.
Springer International Publishing.

[152] Changhoon Lee. Biclique Cryptanalysis of PRESENT-80 and PRESENT-128.
J. Supercomput., 70(1):95–103, October 2014.

[153] Li Lin, Wenling Wu, and Yafei Zheng. Improved Meet-in-the-Middle Distin-
guisher on Feistel Schemes. In Selected Areas in Cryptography - SAC 2015 -
22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, pages 122–142, 2015.

[154] Guo-Qiang Liu and Chen-Hui Jin. Differential cryptanalysis of PRESENT-like
cipher. Designs, Codes and Cryptography, 76(3):385–408, Sep 2015.

[155] Guo-Qiang Liu and Chen-Hui Jin. Linear Cryptanalysis of PRESENT-like
Ciphers with Secret Permutation. The Computer Journal, 59(4):549–558, 09
2015.

[156] Guoqiang Liu, Chenhui Jin, and Zhiyin Kong. Key recovery attack for present
using slender-set linear cryptanalysis. Science China Information Sciences,
59(3):32110, Jan 2016.

[157] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossible
Differential Attacks on AES. In Dipanwita Roy Chowdhury, Vincent Rijmen,
and Abhijit Das, editors, Progress in Cryptology - INDOCRYPT 2008, pages
279–293, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

231

[158] Haoxiang Luo, Weijian Chen, Xinyue Ming, and Yifan Wu. General differential
fault attack on present and gift cipher with nibble. IEEE Access, 9:37697–37706,
2021.

[159] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helle-
seth, editor, Advances in Cryptology — EUROCRYPT ’93, pages 386–397,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[160] Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca. Fault-Tolerant Re-
source Estimation of Quantum Random-Access Memories. IEEE Transactions
on Quantum Engineering, 1:1–13, 2020.

[161] Alexandre Mege. Official Comment: FLEXAEAD. Posting on the NIST LWC
mailing list, 2019.

[162] Willi Meier. On the Security of the IDEA Block Cipher. In Tor Helleseth,
editor, Advances in Cryptology — EUROCRYPT ’93, pages 371–385, Berlin,
Heidelberg, 1994. Springer Berlin Heidelberg.

[163] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thom-
sen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl.
In Orr Dunkelman, editor, Fast Software Encryption, pages 260–276, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[164] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Rebound Attacks on the Reduced Grøstl Hash Function. In Josef Pieprzyk,
editor, Topics in Cryptology - CT-RSA 2010, pages 350–365, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[165] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., USA, 1st edition, 1996.

[166] Bart Mennink and Bart Preneel. On the Impact of Known-Key Attacks on Hash
Functions. In Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Se-
curity, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part II, pages 59–84, 2015.

[167] Marine Minier. Improving Impossible-Differential Attacks against Rijndael-160
and Rijndael-224. Designs, Codes and Cryptography, 82(1):117–129, Jan 2017.

[168] Sean Murphy. The Return of the Cryptographic Boomerang. IEEE Trans.
Information Theory, 57(4):2517–2521, 2011.

[169] National Institute of Standards and Technology. FIPS 197. National Institute
of Standards and Technology, November, pages 1–51, 2001.

232

[170] National Institute of Standards and Technology. SHA-3 : Cryptographic hash
algorithm competition. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html.

[171] National Institute of Standards and Technology. Submis-
sion Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process, 2016. https:
//csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/evaluation-criteria/
security-(evaluation-criteria)#FN3.

[172] Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanal-
ysis. In Michael J. Jacobson, Vincent Rijmen, and Reihaneh Safavi-Naini, ed-
itors, Selected Areas in Cryptography, pages 249–265, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[173] Onur Özen, Kerem Varıcı, Cihangir Tezcan, and Çelebi Kocair. Lightweight
Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and
HIGHT. In Colin Boyd and Juan González Nieto, editors, Information Se-
curity and Privacy, pages 90–107, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[174] Goutam Paul and Souvik Ray. On data complexity of distinguishing attacks
versus message recovery attacks on stream ciphers. Des. Codes Cryptogr.,
86(6):1211–1247, 2018.

[175] Mostafizar Rahman and Goutam Paul. Quantum Attacks on HCTR and its
Variants. IEEE Transactions on Quantum Engineering, 2020.

[176] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo Tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptol-
ogy – ASIACRYPT 2017, pages 217–243, Cham, 2017. Springer International
Publishing.

[177] Dhiman Saha. Slides on New Yoyo Tricks with AES-based Permutations, 2018.

[178] Dhiman Saha. Lecture Slides on Cryptography, IIT Bhilai, 2020.

[179] Dhiman Saha, Sourya Kakarla, Srinath Mandava, and Dipanwita Roy Chowd-
hury. Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ. In
Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Pri-
vacy, and Applied Cryptography Engineering, pages 194–210, Cham, 2016.
Springer International Publishing.

[180] Dhiman Saha, Mostafizar Rahman, and Goutam Paul. New Yoyo Tricks
with AES-based Permutations. IACR Transactions on Symmetric Cryptology,
2018(4):102–127, Dec. 2018.

233

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)#FN3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)#FN3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)#FN3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)#FN3

[181] Kazuo Sakiyama, Yu Sasaki, and Yang Li. Security of Block Ciphers: From
Algorithm Design to Hardware Implementation. Wiley Publishing, 1st edition,
2015.

[182] Ali Aydın Selçuk. On Probability of Success in Linear and Differential Crypt-
analysis. Journal of Cryptology, 21(1):131–147, Jan 2008.

[183] Peter Selinger. Quantum circuits of T-depth one. Physical Review A, 87(4),
Apr 2013.

[184] Mohammad Hossein Faghihi Sereshgi, Mohammad Dakhilalian, and Mohsen
Shakiba. Biclique cryptanalysis of mibs-80 and present-80. Cryptology ePrint
Archive, Report 2015/393, 2015. https://eprint.iacr.org/2015/393.

[185] C. E. Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, 1949.

[186] Danping Shi, Lei Hu, Siwei Sun, and Ling Song. Linear(hull) cryptanalysis
of round-reduced versions of katan. In Proceedings of the 2nd International
Conference on Information Systems Security and Privacy - Volume 1: ICISSP,,
pages 364–371. INSTICC, SciTePress, 2016.

[187] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509,
October 1997.

[188] P.W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, 1994.

[189] Daniel R. Simon. On the Power of Quantum Computation. SIAM J. Comput.,
26(5):1474–1483, October 1997.

[190] H. Soleimany, A. Sharifi, and M. Aref. Improved Related-Key Boomerang
Cryptanalysis of AES-256. In 2010 International Conference on Information
Science and Applications, pages 1–7, April 2010.

[191] Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: An Open
Source Software Framework for Quantum Computing. Quantum, 2:49, Jan
2018.

[192] Bing Sun, Meicheng Liu, Jian Guo, Longjiang Qu, and Vincent Rijmen. New
Insights on AES-Like SPN Ciphers. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, pages 605–624, Berlin, Hei-
delberg, 2016. Springer Berlin Heidelberg.

[193] Ling Sun, Wei Wang, Ru Liu, and Meiqin Wang. MILP-aided bit-based division
property for ARX ciphers. Science China Information Sciences, 61(11):1–3,
2018.

234

https://eprint.iacr.org/2015/393

[194] Cihangir Tezcan. The Improbable Differential Attack: Cryptanalysis of Re-
duced Round CLEFIA. In Guang Gong and Kishan Chand Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010, pages 197–209, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[195] Cihangir Tezcan. Improbable differential attacks on Present using undisturbed
bits. J. Computational Applied Mathematics, 259:503–511, 2014.

[196] Cihangir Tezcan. Differential Factors Revisited: Corrected Attacks on
PRESENT and SERPENT. In Tim Güneysu, Gregor Leander, and Amir
Moradi, editors, Lightweight Cryptography for Security and Privacy, pages 21–
33, Cham, 2016. Springer International Publishing.

[197] Cihangir Tezcan, Galip Oral Okan, Asuman Şenol, Erol Doğan, Furkan Yüce-
baş, and Nazife Baykal. Differential Attacks on Lightweight Block Ciphers
PRESENT, PRIDE, and RECTANGLE Revisited. In Andrey Bogdanov, ed-
itor, Lightweight Cryptography for Security and Privacy, pages 18–32, Cham,
2017. Springer International Publishing.

[198] Cihangir Tezcan and Ali Aydin Selçuk. Improved Improbable Differential At-
tacks on ISO Standard CLEFIA: Expansion Technique Revisited. Inf. Process.
Lett., 116:136–143, 2016.

[199] Tyge Tiessen, Lars R. Knudsen, Stefan Kölbl, and Martin M. Lauridsen. Secu-
rity of the AES with a Secret S-Box. In Gregor Leander, editor, Fast Software
Encryption, pages 175–189, Berlin, Heidelberg, 2015. Springer Berlin Heidel-
berg.

[200] Michael Tunstall. Improved "Partial Sums"-based Square Attack on AES. In
Pierangela Samarati, Wenjing Lou, and Jianying Zhou, editors, SECRYPT 2012
- Proceedings of the International Conference on Security and Cryptography,
Rome, Italy, 24-27 July, 2012, SECRYPT is part of ICETE - The Interna-
tional Joint Conference on e-Business and Telecommunications, pages 25–34.
SciTePress, 2012.

[201] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

[202] Gaoli Wang and Shaohui Wang. Differential Fault Analysis on PRESENT Key
Schedule. In 2010 International Conference on Computational Intelligence and
Security, pages 362–366, 2010.

[203] Haoyang Wang and Thomas Peyrin. Boomerang Switch in Multiple Rounds.
Application to AES Variants and Deoxys. IACR Trans. Symmetric Cryptol.,
2019(1):142–169, 2019.

[204] Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In
Serge Vaudenay, editor, Progress in Cryptology – AFRICACRYPT 2008, pages
40–49, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

235

[205] Meiqin Wang, Yue Sun, Elmar Tischhauser, and Bart Preneel. A Model for
Structure Attacks, with Applications to PRESENT and Serpent. In Anne Can-
teaut, editor, Fast Software Encryption, pages 49–68, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[206] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A Variable-Input-Length
Enciphering Mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
Information Security and Cryptology, pages 175–188, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[207] John Watrous. Introduction to Quantum Computing, 2005.

[208] Shengbao Wu and Mingsheng Wang. Integral Attacks on Reduced-Round
PRESENT. In Sihan Qing, Jianying Zhou, and Dongmei Liu, editors, Infor-
mation and Communications Security, pages 331–345, Cham, 2013. Springer
International Publishing.

[209] Wen-Ling Wu, Wen-Tao Zhang, and Deng-Guo Feng. Impossible Differential
Cryptanalysis of Reduced-Round ARIA and Camellia. J. Comput. Sci. Tech-
nol., 22(3):449–456, May 2007.

[210] Wenling Wu, Lei Zhang, and Wentao Zhang. Improved Impossible Differential
Cryptanalysis of Reduced-Round Camellia. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, pages
442–456, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[211] Akihiro Yamamura and Hirokazu Ishizuka. Quantum Cryptanalysis of Block
Ciphers (Algebraic Systems, Formal Languages and Computations.). Technical
report, 2000.

[212] Lin Yang, Meiqin Wang, and Siyuan Qiao. Side Channel Cube Attack on
PRESENT. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, Cryp-
tology and Network Security, pages 379–391, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[213] Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical
Review A, 60(4):2746–2751, Oct 1999.

[214] Mark Zhandry. How to Construct Quantum Random Functions. In 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science, pages 679–687,
2012.

[215] Jing Zhang, Dawu Gu, Zheng Guo, and Lei Zhang. Differential power cryptanal-
ysis attacks against PRESENT implementation. In 2010 3rd International Con-
ference on Advanced Computer Theory and Engineering(ICACTE), volume 6,
pages V6–61–V6–65, 2010.

236

[216] Wentao Zhang, Wenling Wu, and Dengguo Feng. New Results on Impossible
Differential Cryptanalysis of Reduced AES. In Kil-Hyun Nam and Gwangsoo
Rhee, editors, Information Security and Cryptology - ICISC 2007, pages 239–
250, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[217] XinJie Zhao, Tao Wang, and ShiZe Guo. Improved Side Channel Cube Attacks
on PRESENT. Cryptology ePrint Archive, Report 2011/165, 2011. https:
//eprint.iacr.org/2011/165.

[218] Bo Zhu and Guang Gong. Multidimensional Meet-in-the-middle Attack and its
Applications to KATAN32/48/64. Cryptogr. Commun., 6(4):313–333, 2014.

237

https://eprint.iacr.org/2011/165
https://eprint.iacr.org/2011/165

238

	Introduction
	Motivation
	Symmetric Key Algorithms
	Cryptanalysis
	Speeding up the Attacks using Quantum Algorithms

	Outline and Contribution

	Background
	Block Cipher Primitives
	AES: The Advanced Encryption Standard
	Internal keyed Permutation (PFk) of FlexAEAD
	AESQ Permutation
	Katan Block Cipher
	Present

	Some Interesting Underlying Constructions in Block Ciphers and Permutations
	Super-Sbox
	MegaSbox

	Mode of Operations
	Cryptanalysis Basics
	Attack Goals
	Classical Attack Models
	Quantum Attack Models
	Complexity of Cryptanalysis.

	Classical Cryptanalysis Techniques
	Boomerang Attack
	Yoyo Attack
	Yoyo Analysis for Two Generic SP-Rounds

	Quantum Cryptanalysis Tools
	Simon's Algorithm
	Grover's Algorithm
	Simon's Algorithm with Asymmetric Queries

	Other Tools
	Data Complexity and Success Probability
	Signal-to-Noise Ratio and Ranking Test

	Differential Attacks on
	Iterated Truncated Differential Attacks on PFk
	One Round Probabilistic Iterated Truncated Differential
	Key Recovery Using Iterated Truncated Differential
	Complexity Evaluation
	Experimental Verification

	Forgery Attacks on
	Differential Characteristics in Sequence Generation

	Chapter Summary

	Yoyo Attacks on Internal Keyed Permutation of
	Yoyo Attacks on PFk
	Super-Sbox of PFk
	Deterministic Distinguisher for r-round Flex-x
	Key Recovery for (r+1)-round Flex-x

	Success Probability of Distinguishing Attacks
	Chapter Summary

	Yoyo Attacks on AES-based Designs
	Distinguishers using Direct Yoyo on AESQ
	Distinguisher for 8 Rounds
	Extension to 9-round AESQ

	Improbable Differential Yoyo
	The Inside-Out Technique
	Improbable Differential Yoyo Distinguisher for 9-round and 10-round AESQ

	Impossible Differential Yoyo
	Impossible Differential Yoyo Distinguisher for 12-round AESQ
	Impossible Differential Bi-directional Yoyo Distinguisher for 16-round AESQ

	Applications to AES in the Known-Key Setting
	Practical Verification
	Discussion
	Experimental Verification
	Success Probability

	Chapter Summary

	Boomeyong Attacks on AES-based Designs
	Boomeyong: Embedding Yoyo within Boomerang
	Boomeyong Attacks on AES
	Distinguishing and Key Recovery Attacks on 5-round AES
	Key Recovery Attack on 6-round AES
	Experimental Verification on 64-bit AES

	Boomeyong Attack on Pholkos
	Specification of Pholkos
	Key Recovery Attack on 10-round Pholkos

	Attacks on AES-256
	Relation with Retracing Boomerang Attack
	Chapter Summary

	Quantum Attacks on Symmetric Designs beyond Grover's Search
	Output Truncation of Quantum Oracles
	Attacks
	Attack on HCTR
	Attack on Tweakable-HCTR
	Attack on HCH

	Chapter Summary

	Quantum Resource Estimation
	Design Rationale
	NIST PQC Standardization
	Implementation Issues of the Grover's Algorithm
	Cost Metrics.
	Automated Resource Estimation.
	Realization of Classical `AND' Operation in Quantum Circuits

	Grover on Katan: Resource Estimation
	Resource Estimation of KATAN Implementation
	Quantum Resource Estimation of Grover on KATAN

	Grover on Present: Resource Estimation
	A Quantum Circuit on Present
	Quantum Resource Estimation of Grover on Present

	Chapter Summary

	Conclusion
	Summary
	Open Problems

	Sample Trail for 5-round AES-128

