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1
Introduction

This thesis comprises of four chapters related to stability and (obviously) strategy-proofness in matching theory. A brief

introduction of the chapters is provided below.

1.1 Obviously Strategy-proof Implementation of Assignment Rules: A NewCharacteriza-

tion

In this chapter, we consider assignment problems where individuals are to be assigned at most one indivisible object and

monetary transfers are not allowed. We provide a characterization of assignment rules that are Pareto efficient, non-bossy,

and implementable in obviously strategy-proof (OSP)mechanisms. As corollaries of our result, we obtain a characterization

ofOSP-implementable fixed priority top trading cycles (FPTTC) rules, hierarchical exchange rules, and trading cycles rules.

Troyan (2019) provides a characterization ofOSP-implementable FPTTC rules when there are equal number of individuals

and objects. Our result generalizes this for arbitrary values of those.

1



1.2 OnObviouslyStrategy-proof ImplementationofFixedPriorityTopTradingCycleswith

Outside Options

In this chapter, we study the implementation of a fixed priority top trading cycles (FPTTC) rule via an obviously strategy-

proof (OSP) mechanism (Li, 2017) in the context of assignment problems with outside options, where agents are to be

assigned at most one indivisible object and monetary transfers are not allowed. In a model without outside options, Troyan

(2019) gives a sufficient (but not necessary) and Mandal & Roy (2020) give a necessary and sufficient condition for an

FPTTC rule to be OSP-implementable. This paper shows that in a model with outside options, the two conditions (in

Troyan (2019) and Mandal & Roy (2020)) are equivalent for an FPTTC rule, and each of them is necessary and sufficient

for an FPTTC rule to be OSP-implementable.

1.3 Strategy-proof Allocation of Indivisible Goods when Preferences are Single-peaked

In this chapter, we consider assignment problems where heterogeneous indivisible goods are to be assigned to individuals

so that each individual receives at most one good. Individuals have single-peaked preferences over the goods. In this setting,

first we show that there is no strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-proof assignment

rule on a minimally rich single-peaked domain when there are at least three individuals and at least three objects in the

market. Next, we characterize all strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-

proof assignment rules on a minimally rich single-peaked domain as hierarchical exchange rules. We additionally show that

strategy-proofness and non-bossiness together are equivalent to group strategy-proofness on aminimally rich single-peaked

domain, and every hierarchical exchange rule satisfies group-wise reallocation-proofness on a minimally rich single-peaked

domain.

1.4 Matchings under Stability, Minimum Regret, and Forced and Forbidden Pairs in Mar-

riage Problem

In this chapter, we provide a class of algorithms, called men-women proposing deferred acceptance (MWPDA) algorithms,

that can produce all stable matchings at every preference profile for the marriage problem. Next, we provide an algorithm

that produces aminimumregret stablematching at every preference profile. We also show that its outcome is alwayswomen-

optimal in the set of all minimum regret stable matchings. Finally, we provide an algorithm that produces a stable matching

with given sets of forced and forbidden pairs at every preference profile, whenever such a matching exists. As before, here

too we show that the outcome of the said algorithm is women-optimal in the set of all stable matchings with given sets of

2



forced and forbidden pairs.

3



2
Obviously Strategy-proof Implementation of

Assignment Rules: A New Characterization

2.1 Introduction

We consider the problem where a set of objects are to be allocated over a set of individuals based on the individuals’ pref-

erences over the objects. Each individual can receive at most one object. An assignment rule selects an allocation (of the

objects over the individuals) at every collection of preferences of the individuals.

Pareto efficiency, non-bossiness, and (group) strategy-proofness are standard requirements of an assignment rule.1 Pareto

efficiency ensures that there is nootherway to allocate the objects so that each individual isweakly better-off (andhence some

individual is strictly better-off). Non-bossiness says that an individual cannot change the assignment of another onewithout

changing her own assignment. Strategy-proofness ensures that no individual can be strictly better-off by misreporting her

1The concept of non-bossiness is due to Satterthwaite & Sonnenschein (1981).
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(true) preference. Group strategy-proofness ensures the same for every group of individuals, that is, no group of individuals

can be better-off by misreporting their preferences. Here, we say a group of individuals is better-off if each member in it is

weakly better-off and some member is strictly better-off.

Pápai (2000) showed that an assignment rule is strategy-proof, non-bossy, Pareto efficient, and reallocation-proof if and

only if it is a hierarchical exchange rule. A hierarchical exchange rule works in stages. In each stage, the objects (available in

that stage) are owned by certain individuals who then trade their objects by forming top trading cycles.2 Ownership of the

objects at the start of each stage is determined by a collection of trees, called inheritance trees in Pápai (2000). As observed

in Troyan (2019), the use of hierarchical exchange rules in practice is rare as participating individuals find it difficult to

understand them, particularly the fact that these rules are strategy-proof.3

Obvious strategy-proofness (Li, 2017) came to the literature as a remedy by strengthening strategy-proofness in a way so

that it becomes transparent to the participating individuals that a rule is not manipulable. The concept of obvious strategy-

proofness is based on the notion of obvious dominance in an extensive-form game. A strategy si of an individual i in an

extensive-form game is obviously dominant if, for any deviating strategy s′i, starting from any earliest information set where

si and s′i diverge, the best possible outcome from s′i is no better than the worst possible outcome from si. An assignment rule

is obviously strategy-proof (OSP) if one can construct an extensive-form game that has an equilibrium in obviously dominant

strategies. By construction, OSP depends on the extensive-form game, so two games with the same normal formmay differ

on this criterion.4

This chapter characterizes the structure of OSP-implementable assignment rules subject to Pareto efficiency and non-

bossiness. We introduce the notion of dual ownership for this purpose. A hierarchical exchange rule satisfies dual ownership

if for each preference profile and each stage of the hierarchical exchange rule at that preference profile, there are at most two

individuals who own all the objects available in that stage.5 Thus, the dual ownership property makes it very simple for

the (at most two) owners in any stage to trade: they only interchange their favorite objects. In contrast, for an arbitrary

hierarchical exchange rule, there might be arbitrary number of individuals trading their favorite objects in a stage, which

makes it harder to asses what would happen if they do not do this truthfully.

We show that an assignment rule is OSP-implementable, Pareto efficient, and non-bossy if and only if it is a hierarchical

exchange rule satisfying dual ownership (Theorem 2.4.1). Since strategy-proofness and non-bossiness together are equiva-

2Top trading cycle (TTC) is due to David Gale and discussed in Shapley & Scarf (1974).
3Similar phenomena is also observed in other settings, see Chen & Sönmez (2006), Hassidim et al. (2016), Hassidim et al. (2017),

Rees-Jones (2018), and Shorrer & Sóvágó (2018) for details.
4This verbal description of obvious strategy-proofness is adapted from Li (2017).
5Ehlers (2002) characterizes a class of assignment rules called mixed dictator-pairwise-exchange rules as the unique class of assign-

ment rules that satisfy efficiency and coalitional strategy-proofness on the unique maximal domain (for which the mentioned axioms are
compatible). These rules resemble the hierarchical exchange rules satisfying dual ownership.
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lent to group strategy-proofness (see Pápai, 2000 for details), Theorem 2.4.1 can be reformulated in terms of group strategy-

proofness (Corollary 2.4.1). We also show that a hierarchical exchange rule is OSP-implementable if and only if it satisfies

dual ownership, and a trading cycles rule is OSP-implementable if and only if it is a hierarchical exchange rule satisfying dual

ownership.6

Troyan (2019) introduces the notion of dual dictatorship in the context of fixed priority top trading cycles (FPTTC)

rules.7 It follows from Theorem 1 and Theorem 2 of his paper that dual dictatorship is both necessary and sufficient con-

dition for an FPTTC rule to be OSP-implementable. However, there is a mistake in his characterization–although dual

dictatorship is a sufficient condition for OSP-implementability of an FPTTC rule, it is not necessary.8 Since FPTTC rules

are special cases of hierarchical exchange rules (see Pápai, 2000 for details), we obtain as a corollary (Corollary 2.5.2) of our

result that dual ownership is a necessary and sufficient condition for OSP-implementability of an FPTTC rule. It is worth

mentioning that Troyan (2019) assumes that the number of individuals is the same as the number of objects, whereas we

derive our results for arbitrary values of those.

As we have mentioned earlier, Pápai (2000) characterized hierarchical exchange rules as the only assignment rules satis-

fying strategy-proofness, non-bossiness, Pareto efficiency and reallocation-proofness. Our results complement hers in two

ways. Firstly, whereas strategy-proofness, non-bossiness, and Pareto efficiency are desirable, reallocation-proofness is not

that desirable. So, replacing strategy-proofness and reallocation-proofness by OSP-implementability, and characterizing

the relevant class of hierarchical exchange rules is a significant contribution in our opinion. Secondly, hierarchical exchange

rules are somewhat complicated for participants to understand. So, finding the class of such rules that can be implemented

by obviously strategy-proof mechanisms is important for their application. Nevertheless, OSP-implementability is a desir-

able criteria on its own.

2.1.1 Related literature

Obvious strategy-proofness is introduced by Li (2017), who studies this property extensively for both the scenarios where

monetary transfers are allowed and not allowed. Whenmonetary transfers are not allowed, he analyses the implementability

of serial dictatorship and top trading cycles rules under obvious strategy-proofness. Bade & Gonczarowski (2017) con-

structively characterize Pareto-efficient social choice rules that admit obviously strategy-proof implementations in popular

domains (object assignment, single-peaked preferences, and combinatorial auctions). Pycia & Troyan (2019) characterize

6Trading cycles rules are introduced in Pycia & Ünver (2017) as generalization of hierarchical exchange rules. They show that an
assignment rule is strategy-proof, non-bossy, and Pareto efficient if and only if it is a trading cycles rule.

7Troyan (2019) uses the term “TTC rule” to refer to an FPTTC rule in his paper.
8Theorem 2 in Troyan (2019) states that “weak acyclicity” and dual dictatorship are equivalent properties of an FPTTC rule. This

result is correct on its own, however, because of the mistake in Theorem 1, it is not correct that an FPTTC rule is OSP-implementable
if and only if it satisfies dual dictatorship.
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the full class of obviously strategy-proof mechanisms in environments without transfers. They also introduce a natural

strengthening of obvious strategy-proofness called strong obvious strategy-proofness to characterize the well-known random

priority mechanism as the unique mechanism that is efficient and fair. Ashlagi & Gonczarowski (2018) consider two-sided

matching with one strategic side and show that for general preferences, no mechanism that implements the men-optimal

stable matching (or any other stable matching) is obviously strategy-proof for men. They also provide a sufficient condi-

tion for a deferred acceptance rule to be OSP-implementable. Later, Thomas (2020) provides a necessary and sufficient

condition for the same.

2.1.2 Organization of the chapter

The organization of this chapter is as follows. In Section 2.2, we introduce basic notions and notations that we use through-

out the chapter, define assignment rules and discuss their standard properties, and introduce the notion of obvious strategy-

proofness. Section 2.3 introduces the notion of hierarchical exchange rules. In Section 2.4, we introduce the dual ownership

property of a hierarchical exchange rule and present our main result (characterization of all OSP-implementable, Pareto ef-

ficient, and non-bossy assignment rules). In Section 2.5, we present a characterization of OSP-implementable hierarchical

exchange rules, a characterization ofOSP-implementable trading cycles rules, and a characterization ofOSP-implementable

FPTTC rules. We further discuss the relation between our result regarding FPTTC rules and that of Troyan (2019).

2.2 Preliminaries

2.2.1 Basic notions and notations

Let N = {1, . . . , n} be a (finite) set of individuals and A be a (non-empty and finite) set of objects. An allocation is a

function μ : N → A ∪ {∅} such that |μ−1(x)| ≤ 1 for all x ∈ A. Here, μ(i) = xmeans individual i is assigned object

x under μ, and μ(i) = ∅ means individual i is not assigned any object under μ. We denote byM the set of all allocations.

ForN′ ⊆ N, A′ ⊆ A such that |N′| = |A′| ̸= 0, letM(N′,A′) denote the set of all bijections fromN′ to A′.

Let L(A) denote the set of all strict linear orders over A.9 An element of L(A) is called a preference over A. For a

preference P, letR denote the weak part of P, that is, for all x, y ∈ A, xRy if and only if
[
xPy or x = y

]
. We assume that the

set of admissible preferences of each individual is L(A). An element PN = (P1, . . . ,Pn) of Ln(A) is called a preference

profile. Given a preference profile PN, we denote by (P′i,P−i) the preference profile obtained from PN by changing the

preference of individual i from Pi to P′i and keeping all other preferences unchanged. For P ∈ L(A) and non-empty

9A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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A′ ⊆ A, let τ(P,A′) denote the most-preferred object inA′ according to P, that is, τ(P,A′) = x if and only if
[
x ∈ A′ and

xPy for all y ∈ A′ \ {x}
]
. For ease of presentation, we denote τ(P,A) by τ(P).

For ease of presentation we use the following convention throughout the chapter: for a set {1, . . . , g} of integers, when-

ever we refer to the number g+ 1, we mean 1. For instance, if we write st ≥ rt+1 for all t = 1, . . . , g, we mean s1 ≥ r2, . . . ,

sg−1 ≥ rg, and sg ≥ r1.

2.2.2 Assignment rules and their standard properties

An assignment rule is a function f : Ln(A) → M. For an assignment rule f : Ln(A) → M and a preference profile

PN ∈ Ln(A), let fi(PN) denote the assignment of individual i by f at PN.

An allocation μ Pareto dominates another allocation ν at a preference profile PN if μ(i)Riν(i) for all i ∈ N and

μ(j)Pjν(j) for some j ∈ N. An assignment rule f : Ln(A) → M is called Pareto efficient at a preference profile

PN ∈ Ln(A) if there is no allocation that Pareto dominates f(PN) at PN, and it is called Pareto efficient if it is Pareto

efficient at every preference profile in Ln(A).

Non-bossiness is a standard notion in matching theory which says that if an individual misreports her preference and

her assignment does not change by the same, then the assignment of any other individual cannot change. Formally, an

assignment rule f : Ln(A) → M is non-bossy if for all PN ∈ Ln(A), all i ∈ N, and all P̃i ∈ L(A), fi(PN) = fi(P̃i,P−i)

implies f(PN) = f(P̃i,P−i).

An individual i manipulates an assignment rule f : Ln(A) → M at a preference profile PN ∈ Ln(A) via a preference

P̃i ∈ L(A) if fi(P̃i,P−i)Pifi(PN). An assignment rule f : Ln(A) → M is strategy-proof if no individual canmanipulate

it at any preference profile.

Group strategy-proofness says that no group of individuals will have an incentive to misreport their preferences. More

formally, a group of individualsN′ ⊆ Nmanipulates an assignment rule f : Ln(A) → M at a preference profile PN ∈

Ln(A) via a collection of preferences P̃N′ ∈ L|N′|(A) if fi(P̃N′ ,P−N′)Rifi(PN) for all i ∈ N′ and fj(P̃N′ ,P−N′)Pjfj(PN)

for some j ∈ N′. An assignment rule f : Ln(A) → M is group strategy-proof if no group of individuals can manipulate

it at any preference profile.

2.2.3 Obviously strategy-proof assignment rules

Li (2017) introduces the notion of obviously strategy-proof implementation. We use the following notions and notations to

present it.

We denote a rooted (directed) tree by T. For a tree T, we denote its set of nodes by V(T), set of all edges by E(T), root
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by r(T), and set of leaves (terminal nodes) by L(T). For a node v ∈ V(T), we denote the set of all outgoing edges from v

by Eout(v). For an edge e ∈ E(T), we denote its source node by s(e). A path in a tree is a sequence of nodes such that every

two consecutive nodes form an edge.

A leaves-to-allocations function ηLA : L(T) → M assigns an allocation to each leaf of T, and a nodes-to-individuals

function ηNI : V(T) \ L(T) → N assigns an individual to each internal node of T. An edges-to-preferences function

ηEP : E(T) → 2L(A) \ {∅} assigns each edge a subset of preferences satisfying the following criteria:

(i) for all distinct e, e′ ∈ E(T) such that s(e) = s(e′), we have ηEP(e) ∩ ηEP(e′) = ∅, and

(ii) for any v ∈ V(T) \ L(T),

(a) if there exists a path (v1, . . . , vt) from r(T) to v and some 1 ≤ r < t such that ηNI(vr) = ηNI(v) and

ηNI(vs) ̸= ηNI(v) for all s = r+ 1, . . . , t− 1, then ∪
e∈Eout(v)

ηEP(e) = ηEP(vr, vr+1), and

(b) if there is no such path, then ∪
e∈Eout(v)

ηEP(e) = L(A).

An extensive-form assignment mechanism is defined as a tuple G = ⟨T, ηLA, ηNI, ηEP⟩, where T is a rooted tree, ηLA

is a leaves-to-allocations function, ηNI is a nodes-to-individuals function, and ηEP is an edges-to-preferences function.

Note that for a given extensive-form assignment mechanismG, every preference profile PN identifies a unique path from

the root to some leaf in T in the following manner: for each node v, follow the outgoing edge e from v such that ηEP(e)

contains the preference PηNI(v). If a node v lies in such a path, then we say that the preference profile PN passes through the

node v. Furthermore, we say two preferencesPi andP′i of some individual i diverge at a node v ∈ V(T) \L(T) if ηNI(v) = i

and there are two distinct outgoing edges e and e′ in Eout(v) such that Pi ∈ ηEP(e) and P′i ∈ ηEP(e′).

For a given extensive-form assignment mechanism G, the extensive-form assignment rule fG implemented by G is de-

fined as follows: for all preference profiles PN, fG(PN) = ηLA(l), where l is the leaf that appears at the end of the unique

path characterized by PN.

In what follows, we define the notion of obvious strategy-proofness.

Definition 2.2.1. An extensive-form assignment mechanism G is Obviously Strategy-Proof (OSP) if for all i ∈ N, all

nodes v such that ηNI(v) = i, and all PN, P̃N ∈ Ln(A) passing through v such that Pi and P̃i diverge at v, we have

fGi (PN)RifGi (P̃N).

An assignment rule f : Ln(A) → M isOSP-implementable if there exists anOSPmechanismG such that f = fG.10,11

Remark 2.2.1. Every OSP-implementable assignment rule is strategy-proof (see Li, 2017 for details).
10Definition 2.2.1 is taken fromTroyan (2019). However, his definition has a typo as it does not mention that PN and P̃N must pass

through v. We have corrected it here.
11An extensive-form assignment mechanism is called anOSP mechanism if it is OSP.
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2.3 Hierarchical exchange rules

The notion of hierarchical exchange rules is introduced in Pápai (2000). We explain how such a rule works by means of an

example.12

We begin with the notion of a TTC procedure with respect to a given endowments of the objects over the individuals.

Suppose that each object is owned by exactly one individual (an individual may own more than one objects). A directed

graph is constructed in the following manner. The set of nodes is the same as the set of individuals. There is a directed edge

from individual i to individual j if and only if individual j owns individual i’s most-preferred object. Note that such a graph

will have exactly one outgoing edge from every node (though possibly many incoming edges to a node). Further, there may

be an edge from a node to itself. It is clear that such a graph will always have a cycle. This cycle is called a top trading cycle

(TTC). After forming a TTC, the individuals in the TTC are assigned their most-preferred objects.

Example 2.3.1. Suppose N = {1, 2, 3} and A = {x1, x2, x3, x4}. A hierarchical exchange rule is based on a collection

of inheritance trees, one tree for each object.13 Figure 2.1 presents a collection of inheritance trees Γx1 , . . . , Γx4 . Consider

Γx1 to have an understanding of their structure. Each maximal path of this tree has min{|N|, |A|} − 1 = 2 edges. In any

maximal path, each individual appears at most once at the nodes. For instance, individuals 1, 2 and 3 appear at the nodes

(in that order) in the left most path of Γx1 . Each object other than x1 appears exactly once at the outgoing edges from the

root (thus there are three edges from the root). For every subsequent node which is not the end node of a maximal path,

each object other than x1, that has not already appeared in the path from the root to that node, appears exactly once at the

outgoing edges from that node. For instance, consider the node marked with 2 in the left most path of Γx1 . Since this node

is not the end node of the left most maximal path and object x2 has already appeared at the edge from the root to this node,

objects x3 and x4 appear exactly once at the outgoing edges from this node. Thus, each object other than x1 appears at most

once at the edges in any maximal path of Γx1 . For instance, objects x2 and x3 appear at the edges (in that order) in the left

most path of Γx1 . It can be verified that other inheritance trees have the same structure.

12See Pápai (2000) for an intuitive explanation of these rules.
13We define this notion formally in Section 2.3.1.
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Figure 2.1: Inheritance trees for Example 2.3.1

Consider the hierarchical exchange rule based on the collection of inheritance trees given in Figure 2.1 and consider the

preference profilePN such that x2P1x1P1x3P1x4, x1P2x2P2x3P2x4, and x1P3x2P3x3P3x4. The outcome is computed through

a number of stages. In each stage, endowments of the individuals are determined bymeans of the inheritance trees, andTTC

procedure is performed with respect to the endowments.

Stage 1. In Stage 1, the “owner” of an object x is the individual who is assigned to the root-node of the inheritance tree Γx.

Thus, object x1 is owned by individual 1, objects x2 and x3 are owned by individual 2, and object x4 is owned by individual

3. TTC procedure is performed with respect to these endowments to decide the outcome of Stage 1. Individuals who

are assigned some object in Stage 1 leave the market with the corresponding objects. It can be verified that for the given

preference profile PN, individual 1 gets object x2 and individual 2 gets object x1. So, individuals 1 and 2 leave the market

with objects x2 and x1, respectively.

Stage 2. As in Stage 1, the endowments of the individuals are decided first and then TTC procedure is performed with

respect to the endowments. To decide the owner of a (remaining) object x, look at the root of the inheritance tree Γx. If

the individual who appears there, say individual i, is remained in the market, then i becomes the owner of x. Otherwise,

that is, if i is assigned an object in Stage 1, say y, then follow the edge from the root that is marked with y. If the individual

appearing at the node following this edge, say j, is remained in themarket, then j becomes the owner of x. Otherwise, that is,

if j is assigned an object in Stage 1, say z, then follow the edge that is marked with z from the current node. As before, check

whether the individual appearing at the end of this edge is remained in the market or not. Continue in this manner until an

individual is found in the particular path who is not already assigned an object and decide that individual as the owner of x.

For the example at hand, the remainingmarket in Stage 2 consists of objects x3 and x4, and individual 3. Consider object

x3. Individual 2 appears at the root of Γx3 . Since individual 2 is assigned object x1 in Stage 1, we follow the edge from the

root that is marked with x1 and come to individual 1. Since individual 1 is assigned object x2, we follow the edge marked

with x2 from this node and come to individual 3. Since individual 3 is remained in the market, she becomes the owner of

11



x3. For object x4, individual 3 appears at the root of Γx4 and she is remained in the market. So, individual 3 becomes the

owner of x4 in Stage 2. To emphasize the process of deciding the owner of an object, we have highlighted the node in red in

the corresponding inheritance tree in Figure 2.2.
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Figure 2.2: Stage 2

Once the endowments are decided for Stage 2, TTC procedure is performed with respect to the endowments to decide

the outcome of this stage. As in Stage 1, individuals who are assigned some object in Stage 2 leave the market with the

corresponding objects. It can be verified that for the current example, individual 3 gets object x3 in this stage. So, individual

3 leave the market with objects x3.

Stage 3 is followed on the remaining market in a similar way as Stage 2. For the current example, everybody is assigned

some object by the end of Stage 2 and hence the algorithm stops in this stage. Thus, individuals 1, 2, and 3 get objects x2,

x1, and x3, respectively, at the outcome of the hierarchical exchange rule.

In what follows, we present a formal description of hierarchical exchange rules.

2.3.1 Inheritance trees

For a rooted tree T, the level of a node v ∈ V(T) is defined as the number of edges appearing in the (unique) path from

r(T) to v.

Definition 2.3.1. For an object x ∈ A, an inheritance tree for x ∈ A is defined as a tuple Γx = ⟨Tx, ζNI
x , ζEOx ⟩, where

(i) Tx is a rooted tree with

(a) max
v∈V(Tx)

level(v) = min{|N|, |A|} − 1, and

(b) |Eout(v)| = |A| − level(v)− 1 for all v ∈ V(Tx) with level(v) < min{|N|, |A|} − 1,

(ii) ζNI
x : V(Tx) → N is a nodes-to-individuals function with ζNI

x (v) ̸= ζNI
x (ṽ) for all distinct v, ṽ ∈ V(Tx) that appear

in same path, and
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(iii) ζEOx : E(Tx) → A \ {x} is an edges-to-objects function with ζEOx (e) ̸= ζEOx (ẽ) for all distinct e, ẽ ∈ E(Tx) that

appear in same path or have same source node (that is, s(e) = s(ẽ)).

2.3.2 Endowments

A hierarchical exchange rule works in several stages and in each stage, endowments of individuals are determined by using a

(fixed) collection of inheritance trees.

Given a collection of inheritance trees Γ = (Γx)x∈A, one for each object x ∈ A, we define a class of endowments EΓ as

follows:

(i) The initial endowment EΓ
i (∅) of individual i is given by

EΓ
i (∅) = {x ∈ A | ζNI

x (r(Tx)) = i}.

(ii) For all N′ ⊆ N \ {i} and A′ ⊆ A with |N′| = |A′| ̸= 0, and all μ′ ∈ M(N′,A′), the endowment EΓ
i (μ′) of

individual i is given by

EΓ
i (μ′) ={x ∈ A \ A′ | ζNI

x (r(Tx)) = i, or

there exists a path (v1x, . . . , vrxx ) from r(Tx) to vrxx in Γx such that ζNI
x (vrxx ) = i

and for all s = 1, . . . , rx − 1, we have ζNI
x (vsx) ∈ N′ and μ′(ζNI

x (vsx)) = ζEOx (vsx, vs+1
x )}.

2.3.3 Iterative procedure to compute the outcome of a hierarchical exchange rule

For a given collection of inheritance trees Γ = (Γx)x∈A, the hierarchical exchange rule fΓ associated with Γ is defined by

an iterative procedure with at most min{|N|, |A|} number of stages. Consider a preference profile PN ∈ Ln(A).

Stage 1.

Hierarchical Endowments (Initial Endowments): For all i ∈ N, E1(i,PN) = EΓ
i (∅).

Top Choices: For all i ∈ N, T1(i,PN) = τ(Pi).
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Trading Cycles: For all i ∈ N,

C1(i,PN) =



{j1, . . . , jg} if there exist j1, . . . , jg ∈ N such that

for all s = 1, . . . , g,T1(js,PN) ∈ E1(js+1,PN), and

for some ŝ = 1, . . . , g, jŝ = i;

∅ otherwise.

Since each individual can be in at most one trading cycle, C1(i,PN) is well-defined for all i ∈ N. Furthermore, since both

the number of individuals and the number of objects are finite, there is always at least one trading cycle. Note that C1(i,

PN) = {i} if T1(i,PN) ∈ E1(i,PN).

Assigned Individuals: N1(PN) = {i | C1(i,PN) ̸= ∅}.

Assignments: For all i ∈ N1(PN), fΓi (PN) = T1(i,PN).

Assigned Objects: A1(PN) = {T1(i,PN) | i ∈ N1(PN)}.

This procedure is repeated iteratively in the remaining reduced market. For each stage t, defineNt(PN) =
t
∪
u=1

Nu(PN)

and At(PN) =
t
∪
u=1

Au(PN). In what follows, we present Stage t+ 1 of fΓ.

Stage t+ 1.

Hierarchical Endowments (Non-initial Endowments): Let μt ∈ M(Nt(PN),At(PN)) such that for all i ∈ Nt(PN),

μt(i) = fΓi (PN).

For all i ∈ N \Nt(PN), Et+1(i,PN) = EΓ
i (μt).

Top Choices: For all i ∈ N \Nt(PN), Tt+1(i,PN) = τ(Pi,A \ At(PN)).

Trading Cycles: For all i ∈ N \Nt(PN),

Ct+1(i,PN) =



{j1, . . . , jg} if there exist j1, . . . , jg ∈ N \Nt(PN) such that

for all s = 1, . . . , g,Tt+1(js,PN) ∈ Et+1(js+1,PN), and

for some ŝ = 1, . . . , g, jŝ = i;

∅ otherwise.

Assigned Individuals: Nt+1(PN) = {i | Ct+1(i,PN) ̸= ∅}.
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Assignments: For all i ∈ Nt+1(PN), fΓi (PN) = Tt+1(i,PN).

Assigned Objects: At+1(PN) = {Tt+1(i,PN) | i ∈ Nt+1(PN)}.

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned. The hierarchical

exchange rule fΓ associated with Γ is defined as follows. For all i ∈ N,

fΓi (PN) =


Tt(i,PN) if i ∈ Nt(PN) for some stage t;

∅ otherwise.

Since for every preference profile PN and every individual i, there exists at most one stage t such that i ∈ Nt(PN), fΓ is

well-defined.

Remark 2.3.1. Note that a collection of inheritance trees do not uniquely identify a hierarchical exchange rule. More

formally, two different collections of inheritance trees Γ and Γ may give rise to the same hierarchical exchange rule, that is,

fΓ ≡ fΓ.

2.4 A characterization of OSP-implementable assignment rules

In this section, we introduce a property called dual ownership of a hierarchical exchange rule and provide a characterization

of OSP-implementable, Pareto efficient, and non-bossy assignment rules by means of this property. We also explain the

practical usefulness of the dual ownership property.

2.4.1 Dual ownership

Troyan (2019) introduces the notion of dual dictatorship in the context of fixed priority top trading cycles (FPTTC) rules.14

We introduce a closely related notion for hierarchical exchange rules which we call dual ownership. A hierarchical exchange

rule satisfies dual ownership if for any preference profile and any stage of the hierarchical exchange rule at that preference

profile, there are at most two individuals who own all the objects that remain in the reduced market in that stage.

14Troyan (2019) uses the term “TTC rule” to refer to an FPTTC rule. In Section 2.5.2, we provide a formal description of FPTTC
rules.
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2.4.2 The characterization result

In this section, we provide a characterization of OSP-implementable assignment rules under two mild and desirable prop-

erties, namely Pareto efficiency and non-bossiness.15

Theorem 2.4.1. An assignment rule f : Ln(A) → M is OSP-implementable, Pareto efficient and non-bossy if and only if f

is a hierarchical exchange rule satisfying dual ownership.

The proof of this theorem is relegated to Section 2.7.

SinceOSP-implementability implies strategy-proofness (see Remark 2.2.1) and group strategy-proofness is equivalent to

strategy-proofness and non-bossiness (see Pápai, 2000 for details), we obtain the following corollary from Theorem 2.4.1.

Corollary 2.4.1. A group strategy-proof and Pareto efficient assignment rule f : Ln(A) → M is OSP-implementable if and

only if f is a hierarchical exchange rule satisfying dual ownership.

It is worth mentioning that OSP-implementability and non-bossiness together do not imply Pareto efficiency. For in-

stance, any constant assignment rule satisfies the former two properties, but does not satisfy the latter. Furthermore, it

follows from Pápai (2000) that non-bossiness and Pareto efficiency together do not imply strategy-proofness. Since OSP-

implementability is stronger than strategy-proofness (by Remark 2.2.1), non-bossiness and Pareto efficiency cannot imply

it either. Example 2.4.1 shows that OSP-implementability and Pareto efficiency together do not imply non-bossiness.

Example 2.4.1. Consider an allocation problem with three individualsN = {1, 2, 3} and three objects A = {x1, x2, x3}.

Consider the assignment rule f such that

f =


Serial dictatorship with priority (1 ≻ 2 ≻ 3) if x2P1x3

Serial dictatorship with priority (1 ≻ 3 ≻ 2) if x3P1x2

Consider the preference profiles PN = (x1x2x3, x1x2x3, x1x2x3) and P̃N = (x1x3x2, x1x2x3, x1x2x3).16 Note that only

individual 1 changes her preference from PN to P̃N. This, together with the facts f(PN) = [(1, x1), (2, x2), (3, x3)] and

f(P̃N) = [(1, x1), (2, x3), (3, x2)], implies f violates non-bossiness. However, theOSPmechanism inFigure 2.3 implements

f.17

15Bade&Gonczarowski (2017) characterize OSP-implementable and Pareto efficient assignment rules as the ones that can be imple-
mented via a mechanism they call sequential barter with lurkers. Sequential barter with lurkers violates non-bossiness in general, and
we do not see any obvious way to relate their result to ours.

16Here, we denote by (x1x2x3, x2x3x1, x3x2x1) a preference profile where individuals 1, 2 and 3 have preferences x1x2x3, x2x3x1, and
x3x2x1, respectively.

17We use the following notation in Figure 2.3: by x1x2 we denote the set of preferences where x1 is preferred to x2 and we denote an
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Figure 2.3: Tree Representation for Example 2.4.1

2.4.3 Advantageofusinghierarchical exchangerules satisfyingdualownership property

In this section, we show how a hierarchical exchange rule satisfying the dual ownership property can be explained to the

participating individuals andhowthe explanationhelps in convincing individuals that such rules are indeed strategy-proof.18

In Stage 1:

(1) We call at most two individuals who will be the owners in this stage.

(2) We tell them their endowed sets.

(3) We tell them that each of them can “take” something from her endowed set (and leave the market), or “wait” to see

if she gets something better. We additionally mention that if someone chooses to “wait”, she can leave the market

anytime in the future with an object from her current endowment set.

To see that the owners will act truthfully in (3), first note that the owners are asked to choose between “take” or

“wait”, in particular, they are not asked to reveal their top choices. Therefore,

(a) if any of the owners has her favorite object in her endowment, then she will “take” that object and leave the

market, and

allocation [(1, x1), (2, x2), (3, x3)] by x1
x2
x3

 .

18This explanation does not highlight many of the key features of hierarchical exchange rules satisfying the dual ownership property.
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(b) if any of the owners does not have her favorite object in her endowment, then she will “wait” as she can leave

the market anytime in the future with an object from her current endowment set.

(4) (i) If any of the owners chooses to “take” in (3). We get a submarket.

(ii) On the other hand, if both of them choose to “wait”, we tell each of them to “take” something from other’s

endowment and leave themarket, and againwe get a submarket. Clearly, there is no question ofmanipulation

for an individual at this step as she will simply take her favorite object from other’s endowment.

In Stage 2:

(1) We call at most two individuals who will be the owners in this stage. If one of the owners in Stage 1 remains in the

reduced market in Stage 2, we make her one of the owners in Stage 2.19

(2) We tell them their endowed sets. If one of the owners in Stage 2 was also an owner in Stage 1, all the objects in her

endowment in Stage 1 must be included in her endowment in Stage 2.

(3) Same as Stage 1. For the same reason as we have discussed in (3) of Stage 1, individuals will act truthfully at this step

of Stage 2.

(4) Same as Stage 1.

We continue this procedure until everyone is assigned or all objects are assigned.

The main reason why a hierarchical exchange rule satisfying dual ownership is simpler than an arbitrary hierarchical

exchange rule is as follows. The dual ownership property ensures that at most two individuals will get to act in each stage.

Therefore, the only way they can trade is to interchange their favorite objects. This makes it easy to see that they cannot

strictly benefit by misreporting. For an arbitrary hierarchical exchange rule, there might be a lot more individuals acting in

a stage, and consequently it may become harder for an individual to see the consequences of all possible misreports.

2.5 Discussion

2.5.1 OSP-implementability of hierarchical exchange rules and trading cycles rules

In this section, we provide a necessary and sufficient condition for a hierarchical exchange rule and a trading cycles rule to

be OSP-implementable.

19Note that both owners in Stage 1 can not remain in the reduced market in Stage 2.

18



Proposition 2.5.1. A hierarchical exchange rule is OSP-implementable if and only if it satisfies dual ownership.

The proof of this proposition is relegated to Section 2.6.20

Pycia &Ünver (2017) introduce a general version of hierarchical exchange rules which they call trading cycles rules. They

show that an assignment rule is group strategy-proof and Pareto efficient if and only if it is a trading cycles rule. Combining

this result with Corollary 2.4.1, we obtain the following corollary.

Corollary 2.5.1. A trading cycles rule is OSP-implementable if and only if it is a hierarchical exchange rule satisfying dual

ownership.

2.5.2 OSP-implementability of FPTTC rules

In this section, we discussOSP-implementability of FPTTCrules. FPTTCrules arewell-known in the literature; we present

a brief description for the sake of completeness.

For each object x ∈ A, we define the priority of x as a “preference”≻x overN.21 We call a collection≻A:= (≻x)x∈A a

priority structure. For a given priority structure≻A, the FPTTC rule T≻A associated with ≻A is defined by an iterative

procedure as follows. Consider an arbitrary preference profile PN ∈ Ln(A).

Step 1. Each object x is owned by the individual who has the highest priority according to≻x, that is, the most-preferred

individual of≻x. TTCprocedure is performedwith respect to these endowments. Individualswho are assigned someobject

leave the market with their assigned objects.

This procedure is repeated iteratively in the remaining reduced market. We present a general step of T≻A .

Step t. Consider the reduced market with the remaining individuals and objects. Each remaining object x is owned by

the individual who has the highest priority among the remaining individuals according to ≻x, that is, the individual who

is remained in the reduced market at this step and is preferred to every other remaining individual according to≻x. TTC

procedure is performed on the reduced market with respect to these endowments, and individuals who are assigned some

object at this step leave the market.22

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned. The final outcome

is obtained by combining all the assignments at all steps. This completes the description of an FPTTC rule.

20Proposition 2.5.1 follows as a corollary of Theorem 2.4.1. However, we do not present it as a corollary as we use this proposition
in the proof of Theorem 2.4.1.

21That is,≻x∈ L(N).
22In this TTC procedure, an individual i point to an individual j if j owns i’s most-preferred object among the remaining objects.
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Since FPTTC rules are special cases of hierarchical exchange rules (see Pápai, 2000 for details), the dual ownership prop-

erty of FPTTC rules implies the following: for any preference profile and any step of the FPTTC rule at that preference

profile, there are at most two individuals who own all the objects that remain in the reducedmarket at that step. This yields

the following corollary from Proposition 2.5.1.

Corollary 2.5.2. An FPTTC rule is OSP-implementable if and only if it satisfies dual ownership.

Now, we discuss the relation between dual dictatorship (Troyan, 2019) and dual ownership of FPTTC rules. It follows

from Theorem 1 and Theorem 2 in Troyan (2019) that an FPTTC rule is OSP-implementable if and only if it satisfies dual

dictatorship, whereas Corollary 2.5.2 of our chapter says that an FPTTC rule is OSP-implementable if and only if it satisfies

dual ownership. In what follows, we clarify the difference between these two (conflicting) results and conclude that while

dual dictatorship is a sufficient condition for an FPTTC rule to be OSP-implementable, it is not necessary.23

Dual dictatorship property of an FPTTC rule requires that in any submarket, at most two individuals will own all the

objects in the submarket. In contrast, dual ownership property of an FPTTC rule requires that for every preference profile

and every step of that FPTTC rule at that preference profile, atmost two individuals will own all the objects that will remain

in the reducedmarket at that step. The difference between these two properties arises from the fact that not every submarket

arises at some step at some preference profile of an FPTTC rule. In other words, dual dictatorship is stronger than dual

ownership. In Section 2.8, we clarify this fact by means of an example.

2.6 Proof of Proposition 2.5.1

Beforewe formally start proving Proposition 2.5.1, to facilitate the proofwe introduce the notion of a reduced tree structure

and make two observations.

2.6.1 Reduced tree structure

For an inheritance tree Γa = ⟨Ta, ζNI
a , ζEOa ⟩ and an edge (v, v′) ∈ E(Ta), we say that an inheritance tree Γ̃a = ⟨T̃a, ζ̃NI

a , ζ̃EOa ⟩

is obtained by collapsing the edge (v, v′) if

(i) V(T̃a) = V(Ta) \
(
{v} ∪ {v′′ | there exists a path in Ta from v to v′′ which does not contain v′}

)
,

(ii) E(T̃a) =
(
E(Ta) ∩

(
V(T̃a)× V(T̃a)

))
∪ {(v̂, v′)}, where v̂ is the parent node of v in Ta. If v = r(Ta), then v̂

does not exist, and consequently, we take {(v̂, v′)} = ∅,

23In order to prove the “only-if” part of Theorem 1, Troyan (2019) reduces the whole problem to a restricted domain and uses a
result from Li (2017). However, for the purpose of Troyan (2019), this reduction step is not correct.
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(iii) ζ̃NI
a (v) = ζNI

a (v) for all v ∈ V(T̃a), and

(iv) ζ̃EOa (e) = ζEOa (e) for all e ∈
(
E(Ta) ∩

(
V(T̃a)× V(T̃a)

))
and ζ̃EOa (v̂, v′) = ζEOa (v̂, v).

For an inheritance tree Γa = ⟨Ta, ζNI
a , ζEOa ⟩ and an edge (v, v′) ∈ E(Ta), we say that an inheritance tree Γ̃a = ⟨T̃a, ζ̃NI

a ,

ζ̃EOa ⟩ is obtained by dropping the edge (v, v′) if

(i) V(T̃a) = V(Ta) \ {v′′ | there exists a path in Ta from v to v′′ which contains v′},

(ii) E(T̃a) = E(Ta) ∩
(
V(T̃a)× V(T̃a)

)
,

(iii) ζ̃NI
a (v) = ζNI

a (v) for all v ∈ V(T̃a), and

(iv) ζ̃EOa (e) = ζEOa (e) for all e ∈ E(T̃a).

For an inheritance tree Γa = ⟨Ta, ζNI
a , ζEOa ⟩, we denote an edge (v, v′) ∈ E(Ta) by (i, x) if ζNI

a (v) = i and ζEOa (v, v′) = x

in Γa. By the construction of Γa, ζEOa (v, v′) = x implies a ̸= x.

For a pair (i, x) ∈ N× A and a collection of inheritance trees Γ = (Γx)x∈A, we define the reduced collection Γ \ (i, x)

as follows:

(i) If a = x, then drop the inheritance tree Γa.

(ii) If a ̸= x and ζNI
a (r(Ta)) = i, then Γa \ (i, x) is obtained by collapsing the edge (i, x) in Γa.24

(iii) If a ̸= x and ζNI
a (r(Ta)) ̸= i, then Γa \ (i, x) is obtained by collapsing all edges (i, x) and dropping all edges (j, x)

with j ̸= i in Γa.

For (i, x), (j, y) ∈ N× A and a collection of inheritance trees Γ = (Γx)x∈A, we denote the reduced collection
(
Γ \ (i,

x)
)
\ (j, y) by Γ \

(
(i, x), (j, y)

)
.

Remark 2.6.1. For (i, x), (j, y) ∈ N × A and a collection of inheritance trees Γ = (Γx)x∈A, we have Γ \
(
(i, x), (j,

y)
)
= Γ \

(
(j, y), (i, x)

)
.

Example 2.6.1. SupposeN = {1, 2, 3, 4, 5} andA = {x1, x2, x3, x4}. Consider the collection of inheritance trees Γ given

in Figure 2.4.

24Note that in this case, there is only one such edge (i, x).
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Figure 2.4: Collection of inheritance trees Γ for Example 2.6.1

Consider the pair (1, x1) ∈ N× A. The reduced collection Γ \ (1, x1) is given in Figure 2.5.
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Figure 2.5: Reduced collection Γ \ (1, x1)

2.6.2 Two observations

Let T (Γ) = {i | ζNI
x (r(Tx)) = i for some x ∈ A} be the set of individuals who appear at the root-node of some inheri-

tance tree in the collection of inheritance trees Γ. We nowmake two observations. The first observation is straightforward,

and see Step 2.a in the “Necessity Proof” of Pápai (2000) for the second observation.

Observation 2.6.1. Suppose fΓ satisfies dual ownership. Then, |T (Γ)| ≤ 2.

Observation 2.6.2. Suppose ζNI
x (r(Tx)) = i for some x ∈ A and some i ∈ N. Then, for all PN ∈ Ln(A), fΓi (PN)Rix.

2.6.3 The proof

(If part) Suppose fΓ satisfies dual ownership. We show that fΓ is OSP-implementable by using induction on the number of

individuals, which we refer to as the size of the market.

Base Case: Suppose |N| = 1.25 The following extensive-form assignment mechanism, labeled asG1, implements fΓ.

Step 1. Ask the (only) individual which object is her top choice and assign her that object.

It is simple to check that the extensive-form assignmentmechanismG1 is OSP. Since theOSPmechanismG1 implements

fΓ, it follows that fΓ is OSP-implementable. Now, we proceed to prove the induction step.

25With only one individual, fΓ trivially satisfies dual ownership.
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InductionHypothesis: Assume that fΓ is OSP-implementable for |N| ≤ m. We show fΓ is OSP-implementable for |N| =

m+ 1. Since fΓ satisfies dual ownership, by Observation 2.6.1, we have |T (Γ)| ≤ 2. We distinguish the following two

cases.

Case A: Suppose |T (Γ)| = 1.

Let T (Γ) = {i}. Define the extensive-form assignment mechanismGm+1 as follows:

Step 1. Ask individual iwhich object is her top choice and assign her that object, say x.

Step 2. Consider the reducedmarket (N \ {i},A \ {x})where individual i is removed from themarket together with the

object x she is assigned. This reduced market (N \ {i},A \ {x}) is of sizem.

Claim 2.6.1. fΓ\(i,x) satisfies dual ownership on the reduced market (N \ {i},A \ {x}).26

By the induction hypothesis and Claim 2.6.1, it follows that there exists an OSP mechanismGm that implements

fΓ\(i,x) on the reduced market (N \ {i},A \ {x}). Run the extensive-form assignment mechanism Gm on the

reduced market (N \ {i},A \ {x}).

By definition, the extensive-form assignment mechanism Gm+1 implements fΓ. This extensive-form assignment mech-

anism is OSP for individual i since she receives her top choice. For every other individual, her first decision node comes

after i has been assigned, and hence, her strategic decision is equivalent to that under the OSP mechanism that implements

fΓ restricted to the corresponding reduced market. Thus, the above extensive-form assignment mechanism is OSP for all

individuals, and hence, fΓ is OSP-implementable.

Case B: Suppose |T (Γ)| = 2.

Let T (Γ) = {i, j}. Let Ai = {x ∈ A | ζNI
x (r(Tx)) = i} and Aj = {y ∈ A | ζNI

y (r(Ty)) = j}. Define the

extensive-form assignment mechanismGm+1 as follows:

Step 1. For each x ∈ Ai, ask i if her top choice is x. If i answers “Yes” for some x, assign her this x, and go to Step 1(a).

Otherwise, jump to Step 2.

Step 1(a). We now have a reduced market (N \ {i},A \ {x}) of sizem.

Claim 2.6.2. fΓ\(i,x) satisfies dual ownership on the reduced market (N \ {i},A \ {x}).27

26The proof of Claim 2.6.1 is relegated to Section 2.6.4.
27The proof of Claim 2.6.2 follows by using similar logic as for the proof of Claim 2.6.1. The only adjustment needed for the proof

of Claim 2.6.2 over the proof of Claim 2.6.1 is that instead of T (Γ) = {i} (which is an assumption ofCase A)meaning that individual
i is assigned to the root-node of every inheritance tree, we need to consider x ∈ Ai (which is an assumption of Step 1 inCase B)meaning
that individual i is assigned to the root-node of the inheritance tree for x.
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By the induction hypothesis and Claim 2.6.2, it follows that there exists an OSPmechanismGm that imple-

ments fΓ\(i,x) on the reduced market (N \ {i},A \ {x}). Run the extensive-form assignment mechanism

Gm on the reduced market (N \ {i},A \ {x}).

Step 2. For each y ∈ Aj, ask j if her top choice is y. If j answers “Yes” for some y, assign her this y, and go to Step 2(a).

Otherwise, jump to Step 3.

Step 2(a). We now have a reduced market (N \ {j},A \ {y}) of sizem. Similar to Claim 2.6.2, we have the following

claim.

Claim 2.6.3. fΓ\(j,y) satisfies dual ownership on the reduced market (N \ {j},A \ {y}).

By the induction hypothesis and Claim 2.6.3, it follows that there exists an OSPmechanismGm that imple-

ments fΓ\(j,y) on the reduced market (N \ {j},A \ {y}). Run the extensive-form assignment mechanism

Gm on the reduced market (N \ {j},A \ {y}).

Step 3. If the answers to both Step 1 and Step 2 are “No”, then i’s top choice belongs to Aj, and j’s top choice belongs to

Ai. Ask i for her top choice x, and j for her top choice y. Assign x to i and y to j, and go to Step 3(a).

Step 3(a). We now have a reduced market (N \ {i, j},A \ {x, y}) of sizem− 1.

Claim 2.6.4. fΓ\((i,x),(j,y)) satisfies dual ownership on the reduced market (N \ {i, j},A \ {x, y}).28

By the induction hypothesis and Claim 2.6.4, it follows that there exists an OSPmechanismGm−1 that im-

plements fΓ\((i,x),(j,y)) on the reduced market (N \ {i, j},A \ {x, y}). Run the extensive-form assignment

mechanismGm−1 on the reduced market (N \ {i, j},A \ {x, y}).

By definition, the extensive-form assignment mechanism Gm+1 implements fΓ. We show that Gm+1 is OSP for all indi-

viduals by showing it for the case where |N| = 4. The proof for other cases is similar.

Consider an allocation problem with four individualsN = {i1, i2, i3, i4} and five objects A = {x1, x2, x3, x4, x5}. Let

Γ be a collection of inheritance trees such that T (Γ) = {i1, i2}, Ai1 = {x1, x2}, and Ai2 = {x3, x4, x5}. In Figure 2.6, we

provide the structure of the extensive-form assignment mechanismG4 which implements the hierarchical exchange rule fΓ.

28The proof of Claim 2.6.4 is relegated to Section 2.6.5.

25



v1 : i1

fΓi1 = x1,

Use induction on

(N \ {i1},A \ {x1})

τ(Pi1) = x1
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Figure 2.6: Structure ofG4

In Figure 2.6, node v1 (which is the root-node of G4) is assigned to individual i1 and there are |Ai1 |+ 1 outgoing edges

from this node, node v2 is assigned to individual i2 and there are |Ai2 |+ 1 outgoing edges from this node, and node v3 is

assigned to individual i1 and there are |Ai2 | outgoing edges from this node. Nodes v4, v5, and v6 are assigned to individual

i2 and there are |Ai1 | outgoing edges from each of these nodes.

It follows from the definition of G4 and Observation 2.6.2 that G4 satisfies the OSP property at node v1 (for individual
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i1). We distinguish two cases.

(i) Suppose τ(Pi1) ∈ {x1, x2}.

Individual i1 receives her top choice. Thefirst decisionnodeof every other individual comes after i1 has been assigned,

and hence, their strategic decisions are equivalent to that under the OSP mechanism that implements fΓ restricted

to the reduced market.

(ii) Suppose τ(Pi1) ∈ {x3, x4, x5}.

It follows from the definition of G4 and Observation 2.6.2 that G4 satisfies the OSP property at node v2 (for indi-

vidual i2).

(a) Suppose τ(Pi2) ∈ {x3, x4, x5}. Individual i2 receives her top choice. For every other individual, her strategic

decision is equivalent to that under the OSPmechanism that implements fΓ restricted to the reduced market.

(b) Suppose τ(Pi2) ∈ {x1, x2}. Both i1 and i2 receive their top choices. The first decision node of every other

individual comes after i1 and i2 have been assigned, and hence, their strategic decisions are equivalent to that

under the OSP mechanism that implements fΓ restricted to the reduced market.

SinceCases (i) and (ii) are exhaustive, it follows that the extensive-form assignmentmechanismG4 is OSP for all individuals,

and hence, fΓ is OSP-implementable for this particular instance.

Since Case A and Case B are exhaustive, it follows that fΓ is OSP-implementable for |N| = m+ 1. This completes the

proof of the induction step, and thereby completes the proof of the “if” part of Proposition 2.5.1.

(Only-if part) Suppose fΓ does not satisfy dual ownership. We show that fΓ is not OSP-implementable. Since fΓ does not

satisfy dual ownership, there exist a preference profile P′N and a stage s∗ of fΓ at P′N such that there are three individuals

i1, i2, i3 and three objects x1, x2, x3 in the reduced market in Stage s∗ with the property that for all h = 1, 2, 3, individual ih

owns the object xh in Stage s∗.

Note that if an assignment rule f : Ln(A) → M is not OSP-implementable on some restricted domain P̃N ⊆ Ln(A),

then f is not OSP-implementable on the whole domain Ln(A) (see Li, 2017 for details). We distinguish the following two

cases.

Case A: Suppose s∗ = 1.

Consider the restricted domain P̃N defined as follows. Each l ∈ N \ {i1, i2, i3} has only one (admissible) preference

P′l, and each individual in {i1, i2, i3} has two preferences, defined as follows (the dots indicate that all preferences for the
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corresponding parts are irrelevant and can be chosen arbitrarily).29

Individual i1 Individual i2 Individual i3

x2x3x1 . . . x3x1x2 . . . x1x2x3 . . .

x3x2x1 . . . x1x3x2 . . . x2x1x3 . . .

Table 2.1: Admissible preferences of individuals i1, i2, and i3

In Table 2.2, we present some facts regarding the outcome of fΓ on the restricted domain P̃N. These facts are deduced

by the construction of P̃N along with the assumptions for Case A.

Preference profile Individual i1 Individual i2 Individual i3 fΓi1 fΓi2 fΓi3

P̃1N x2x3x1 . . . x3x1x2 . . . x1x2x3 . . . x2 x3 x1

P̃2N x2x3x1 . . . x1x3x2 . . . x1x2x3 . . . x2 x1 x3

P̃3N x2x3x1 . . . x3x1x2 . . . x2x1x3 . . . x1 x3 x2

P̃4N x2x3x1 . . . x1x3x2 . . . x2x1x3 . . . x2 x1 x3

P̃5N x3x2x1 . . . x3x1x2 . . . x1x2x3 . . . x3 x2 x1

P̃6N x3x2x1 . . . x1x3x2 . . . x1x2x3 . . . x3 x2 x1

P̃7N x3x2x1 . . . x3x1x2 . . . x2x1x3 . . . x1 x3 x2

P̃8N x3x2x1 . . . x1x3x2 . . . x2x1x3 . . . x3 x1 x2

Table 2.2: Partial outcome of fΓ on P̃N

Assume for contradiction that fΓ is OSP-implementable on P̃N. So, there exists an OSP mechanism G̃ that implements

fΓ on P̃N. Note that since fΓ(P̃1N) ̸= fΓ(P̃8N), there exists a node in the OSP mechanism G̃ that has at least two edges.

Also, note that since each individual l ∈ N \ {i1, i2, i3} has exactly one preference in P̃l, whenever there are more than one

outgoing edges from a node, the node must be assigned to some individual in {i1, i2, i3}. Consider the first node (from the

root) v that has two edges and, without loss of generality, assume ηNI(v) = i1. Consider the preference profiles P̃3N and P̃5N.

Note that both of them pass through the node v at which P̃3i1 and P̃
5
i1 diverge. Further note that x3P̃

3
i1x1, f

Γ
i1(P̃

3
N) = x1, and

fΓi1(P̃
5
N) = x3. However, the facts that x3P̃3i1x1, f

Γ
i1(P̃

3
N) = x1, and fΓi1(P̃

5
N) = x3 together contradict OSP-implementability

of fΓ on P̃N.

Case B: Suppose s∗ > 1.
29For instance, x1x2x3 . . . indicates (any) preference that ranks x1 first, x2 second, and x3 third.
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Recall that for the preference profile P′N, As∗−1(P′N) is the set of assigned objects up to Stage s∗ − 1 (including Stage

s∗ − 1) of fΓ at P′N. Fix a preference P̂ ∈ L(As∗−1(P′N)) over these objects.

Consider the restricted domain P̃N defined as follows. Each l ∈ N \ {i1, i2, i3} has only one (admissible) preference P′l,

and each individual in {i1, i2, i3} has two preferences, defined as follows.30

Individual i1 Individual i2 Individual i3

P̂x2x3x1 . . . P̂x3x1x2 . . . P̂x1x2x3 . . .

P̂x3x2x1 . . . P̂x1x3x2 . . . P̂x2x1x3 . . .

Table 2.3: Admissible preferences of individuals i1, i2, and i3

In Table 2.4, we present some facts regarding the outcome of fΓ on the restricted domain P̃N that can be deduced by the

construction of the restricted domain P̃N along with the assumptions for Case B. The verification of these facts is left to the

reader.

Preference profile Individual i1 Individual i2 Individual i3 fΓi1 fΓi2 fΓi3

P̃1N P̂x2x3x1 . . . P̂x3x1x2 . . . P̂x1x2x3 . . . x2 x3 x1

P̃2N P̂x2x3x1 . . . P̂x1x3x2 . . . P̂x1x2x3 . . . x2 x1 x3

P̃3N P̂x2x3x1 . . . P̂x3x1x2 . . . P̂x2x1x3 . . . x1 x3 x2

P̃4N P̂x2x3x1 . . . P̂x1x3x2 . . . P̂x2x1x3 . . . x2 x1 x3

P̃5N P̂x3x2x1 . . . P̂x3x1x2 . . . P̂x1x2x3 . . . x3 x2 x1

P̃6N P̂x3x2x1 . . . P̂x1x3x2 . . . P̂x1x2x3 . . . x3 x2 x1

P̃7N P̂x3x2x1 . . . P̂x3x1x2 . . . P̂x2x1x3 . . . x1 x3 x2

P̃8N P̂x3x2x1 . . . P̂x1x3x2 . . . P̂x2x1x3 . . . x3 x1 x2

Table 2.4: Partial outcome of fΓ on P̃N

Using a similar argument as forCaseA, it follows fromTable 2.4 that fΓ is notOSP-implementable on P̃N. This completes

the proof of the “only-if” part of Proposition 2.5.1. ■
30For instance, P̂x1x2x3 . . . denotes a preference where objects in As∗−1(P′N) are ranked at the top according to the preference P̂,

objects x1, x2, and x3 are ranked consecutively after that (in that order), and the ranking of the rest of the objects is arbitrarily.
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2.6.4 Proof of Claim 2.6.1

Assume for contradiction that fΓ\(i,x) does not satisfy dual ownership on the submarket (N \ {i},A \ {x}). Then, there

exist P̃N\{i} ∈ L|N\{i}|(A \ {x}) and a stage s∗ of fΓ\(i,x) at P̃N\{i} such that there are three individuals i1, i2, i3 and three

objects x1, x2, x3 in the reduced market in Stage s∗ of fΓ\(i,x) at P̃N\{i} with the property that for all h = 1, 2, 3, individual

ih owns the object xh in Stage s∗ of fΓ\(i,x) at P̃N\{i}.

Consider the preference profile PN ∈ Ln(A) such that τ(Pi) = x and Pk = xP̃k for all k ∈ N \ {i}.31 By the

assumption of Case A, T (Γ) = {i}, which implies that individual i is assigned to the root-node of Γx. This, together

with the construction of PN and the definition of fΓ, implies that individuals i1, i2, and i3 own the objects x1, x2, and x3,

respectively, in Stage s∗ + 1 of fΓ at PN, a contradiction to the fact that fΓ satisfies dual ownership. This completes the proof

of Claim 2.6.1. □

2.6.5 Proof of Claim 2.6.4

Assume for contradiction that fΓ\((i,x),(j,y)) doesnot satisfy dual ownershipon the submarket (N\ {i, j},A\ {x, y}). Then,

there exist P̃N\{i,j} ∈ L|N\{i,j}|(A \ {x, y}) and a stage s∗ of fΓ\((i,x),(j,y)) at P̃N\{i,j} such that there are three individuals

i1, i2, i3 and three objects x1, x2, x3 in the reducedmarket in Stage s∗ of fΓ\((i,x),(j,y)) at P̃N\{i,j} with the property that for all

h = 1, 2, 3, individual ih owns the object xh in Stage s∗ of fΓ\((i,x),(j,y)) at P̃N\{i,j}.

Consider the preference profilePN ∈ Ln(A) such that τ(Pi) = x, τ(Pj) = y andPk = xyP̃k for all k ∈ N \ {i, j}.32 By

the assumption of Step 3 in Case B, x ∈ Aj and y ∈ Ai, which imply that individuals i and j are assigned to the root-nodes

of Γy and Γx, respectively. This, together with the construction of PN and the definition of fΓ, implies that individuals i1, i2,

and i3 own the objects x1, x2, and x3, respectively, in Stage s∗ + 1 of fΓ at PN, a contradiction to the fact that fΓ satisfies dual

ownership. This completes the proof of Claim 2.6.4. □

2.7 Proof of Theorem 2.4.1

We use Proposition 2.5.1 (which is presented after Theorem 2.4.1) in the proof of Theorem 2.4.1. Therefore, we have

already presented the proof of Proposition 2.5.1 in Section 2.6.

We first prove a lemma which says that every OSP-implementable, non-bossy, and Pareto efficient assignment rule is

reallocation-proof. Next, we combine this lemma with Proposition 2.5.1 and two results of Pápai (2000) to complete the

proof of Theorem 2.4.1.

31xP̃k denotes the preference that ranks x first, and follows P̃k for the ranking of the rest of the objects.
32xyP̃k denotes the preference that ranks x first, y second, and follows P̃k for the ranking of the rest of the objects.
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2.7.1 Lemma 2.7.1 and its proof

Lemma 2.7.1 involves the notion of reallocation-proof assignment rules, which we present first.

Definition 2.7.1 (Pápai, 2000). An assignment rule f : Ln(A) → M is manipulable through reallocation if there exist

PN ∈ Ln(A), distinct individuals i, j ∈ N, and P̃i ∈ L(A), P̃j ∈ L(A) such that

(i) fj(P̃i, P̃j,P−i,j)Rifi(PN),

(ii) fi(P̃i, P̃j,P−i,j)Pjfj(PN), and

(iii) fi(PN) = fi(P̃i,P−i) ̸= fi(P̃i, P̃j,P−i,j) and fj(PN) = fj(P̃j,P−j) ̸= fj(P̃i, P̃j,P−i,j).

An assignment rule is reallocation-proof if it is not manipulable through reallocation.

Lemma 2.7.1. Suppose an assignment rule f : Ln(A) → M is OSP-implementable, non-bossy, and Pareto efficient. Then, f

is reallocation-proof.

Proof of Lemma 2.7.1. Since f isOSP-implementable, byRemark 2.2.1, f is strategy-proof. Assume for contradiction that

f is not reallocation-proof. Then, there exist PN ∈ Ln(A), distinct individuals i, j ∈ N, and P̃i ∈ L(A), P̃j ∈ L(A) such

that

(i) fj(P̃i, P̃j,P−i,j)Rifi(PN),

(ii) fi(P̃i, P̃j,P−i,j)Pjfj(PN), and

(iii) fi(PN) = fi(P̃i,P−i) ̸= fi(P̃i, P̃j,P−i,j) and fj(PN) = fj(P̃j,P−j) ̸= fj(P̃i, P̃j,P−i,j).

Using non-bossiness, fi(PN) = fi(P̃i,P−i) implies f(PN) = f(P̃i,P−i), and fj(PN) = fj(P̃j,P−j) implies f(PN) =

f(P̃j,P−j). Combining the facts that f(PN) = f(P̃i,P−i) and f(PN) = f(P̃j,P−j), we have

f(PN) = f(P̃i,P−i) = f(P̃j,P−j). (2.1)

Claim 2.7.1.
{
fi(PN), fj(PN), fi(P̃i, P̃j,P−i,j), fj(P̃i, P̃j,P−i,j)

}
⊆ A.

Proof of Claim 2.7.1. Assume for contradiction that fi(PN) = ∅. By (2.1), we have fi(PN) = fi(P̃j,P−j). Because

fi(PN) = ∅ and fi(PN) = fi(P̃j,P−j), we have fi(P̃j,P−j) = ∅. Since f is strategy-proof, fi(P̃j,P−j) = ∅ implies fi(P̃i,

P̃j,P−i,j) = ∅. However, as fi(PN) = ∅ and fi(P̃i, P̃j,P−i,j) = ∅, we have a contradiction to fi(PN) ̸= fi(P̃i, P̃j,P−i,j).

So, it must be that

fi(PN) ̸= ∅. (2.2)
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Using a similar argument, we have

fj(PN) ̸= ∅. (2.3)

Since fi(P̃i, P̃j,P−i,j)Pjfj(PN), (2.3) implies fi(P̃i, P̃j,P−i,j) ̸= ∅. Also, the fact fj(P̃i, P̃j,P−i,j)Rifi(PN), together with

(2.2), implies fj(P̃i, P̃j,P−i,j) ̸= ∅. This completes the proof of Claim 2.7.1. □

Claim 2.7.2. fi(PN) = fj(P̃i, P̃j,P−i,j).

Proof of Claim 2.7.2. Assume for contradiction that fi(PN) ̸= fj(P̃i, P̃j,P−i,j). Let fi(PN) = w, fj(PN) = x, fi(P̃i, P̃j,

P−i,j) = y, and fj(P̃i, P̃j,P−i,j) = z. By Claim 2.7.1, we have w, x, y, z ̸= ∅. Since fi(PN) = w and fj(PN) = x, we have

w ̸= x. Similarly, fi(P̃i, P̃j,P−i,j) = y and fj(P̃i, P̃j,P−i,j) = z together imply y ̸= z. Since fi(PN) ̸= fi(P̃i, P̃j,P−i,j), we

have w ̸= y. Similarly fj(PN) ̸= fj(P̃i, P̃j,P−i,j) implies x ̸= z, and fi(PN) ̸= fj(P̃i, P̃j,P−i,j) implies w ̸= z. Moreover,

fi(P̃i, P̃j,P−i,j)Pjfj(PN) implies x ̸= y. However, the facts w, x, y, z ̸= ∅, w ̸= x, y ̸= z, w ̸= y, x ̸= z, w ̸= z, and x ̸= y

together imply w, x, y, and z are all distinct objects.

Since fi(PN) ̸= fj(P̃i, P̃j,P−i,j), fj(P̃i, P̃j,P−i,j)Rifi(PN) implies fj(P̃i, P̃j,P−i,j)Pifi(PN). The facts fi(PN) = w, fj(P̃i,

P̃j,P−i,j) = z, and fj(P̃i, P̃j,P−i,j)Pifi(PN) together imply zPiw. Since zPiw and fi(PN) = w, by strategy-proofness, we

have

fi(P′i,P−i) ̸= z for all P′i ∈ L(A). (2.4)

By (2.1) we have fi(PN) = fi(P̃j,P−j). This, along with the fact that fi(PN) = w, yields fi(P̃j,P−j) = w. Since f is

strategy-proof, the facts fi(P̃i, P̃j,P−i,j) = y and fi(P̃j,P−j) = w together imply yR̃iw, which, along with the fact that

w ̸= y, yields yP̃iw. Also, combining the facts that fi(PN) = w and fi(PN) = fi(P̃i,P−i), we have fi(P̃i,P−i) = w. Since

yP̃iw and fi(P̃i,P−i) = w, by strategy-proofness, we have

fi(P′i,P−i) ̸= y for all P′i ∈ L(A). (2.5)

Moreover, since zPiw and fi(P̃j,P−j) = w, by strategy-proofness, we have

fi(P′i, P̃j,P−i,j) ̸= z for all P′i ∈ L(A). (2.6)

Let P̂i rank z first, y second, and w third. Since f is strategy-proof and non-bossy, the fact fi(P̃i, P̃j,P−i,j) = y and (2.6)

imply

f(P̂i, P̃j,P−i,j) = f(P̃i, P̃j,P−i,j). (2.7)
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Similarly, by strategy-proofness and non-bossiness, the fact that fi(PN) = w along with (2.4) and (2.5), yields

f(P̂i,P−i) = f(PN). (2.8)

By (2.8) we have fj(P̂i,P−i) = fj(PN). This, along with the fact fj(PN) = x, yields fj(P̂i,P−i) = x. Also, the facts

fj(PN) = x, fi(P̃i, P̃j,P−i,j) = y, and fi(P̃i, P̃j,P−i,j)Pjfj(PN) together imply yPjx. Since yPjx and fj(P̂i,P−i) = x, by

strategy-proofness, we have

fj(P̂i,P′j ,P−i,j) ̸= y for all P′j ∈ L(A). (2.9)

Let P̂j rank y first and z second. By (2.7) we have fj(P̂i, P̃j,P−i,j) = fj(P̃i, P̃j,P−i,j). This, along with the fact fj(P̃i, P̃j,

P−i,j) = z, yields fj(P̂i, P̃j,P−i,j) = z. Since f is strategy-proof and non-bossy, the fact fj(P̂i, P̃j,P−i,j) = z and (2.9) imply

f(P̂i, P̂j,P−i,j) = f(P̂i, P̃j,P−i,j). This, along with (2.7), yields

f(P̂i, P̂j,P−i,j) = f(P̃i, P̃j,P−i,j). (2.10)

Because fi(P̃i, P̃j,P−i,j) = y and fj(P̃i, P̃j,P−i,j) = z, (2.10) implies fi(P̂i, P̂j,P−i,j) = y and fj(P̂i, P̂j,P−i,j) = z.

However, since zP̂iy and yP̂jz, the facts fi(P̂i, P̂j,P−i,j) = y and fj(P̂i, P̂j,P−i,j) = z together contradict Pareto efficiency.

So, it must be that fi(PN) = fj(P̃i, P̃j,P−i,j). This completes the proof of Claim 2.7.2. □

Since f is Pareto efficient, fi(P̃i, P̃j,P−i,j)Pjfj(PN) implies that there exists k ∈ N \ {j} such that fk(PN) = fi(P̃i, P̃j,

P−i,j). Also, the facts fk(PN) = fi(P̃i, P̃j,P−i,j) and fi(PN) ̸= fi(P̃i, P̃j,P−i,j) together imply k ̸= i. Let fi(PN) = a,

fj(PN) = b, and fk(PN) = c. Combining the facts that fk(PN) = fi(P̃i, P̃j,P−i,j) and fk(PN) = c, we have fi(P̃i, P̃j,

P−i,j) = c. Also the fact fi(PN) = a along with Claim 2.7.2, implies fj(P̃i, P̃j,P−i,j) = a. Let fk(P̃i, P̃j,P−i,j) = d.

Claim 2.7.3. a, b, and c are distinct objects, d ∈ A, and a, c, and d are distinct objects.

Proof of Claim 2.7.3. Since fi(PN) = a, fj(PN) = b, and fi(P̃i, P̃j,P−i,j) = c, by Claim 2.7.1, we have a ̸= ∅, b ̸= ∅,

and c ̸= ∅. Moreover, since fi(PN) = a, fj(PN) = b, and fk(PN) = c, it follows that a, b, and c are all distinct objects.

Now, we show d ∈ A. Assume for contradiction that d = ∅. Consider the preference profiles presented in Table

2.5. In addition to the structure provided in the table, suppose that P1j = P3j , P2j = P4j , and P1k = P2k . Here, l denotes

an individual (might be empty) other than i, j, k. Note that such an individual does not change her preference across the

mentioned preference profiles.
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Preference profiles Individual i Individual j Individual k . . . Individual l

P1N P̃i ca . . . bc . . . . . . Pl

P2N P̃i cba . . . bc . . . . . . Pl

P3N P̃i ca . . . Pk . . . Pl

P4N P̃i cba . . . Pk . . . Pl

Table 2.5: Preference profiles for Claim 2.7.3

The facts fj(PN) = b, fi(P̃i, P̃j,P−i,j) = c, and fi(P̃i, P̃j,P−i,j)Pjfj(PN) together imply cPjb. Moreover, fj(PN) = b and

(2.1) yield fj(P̃i,P−i) = b. Since cPjb and fj(P̃i,P−i) = b, by strategy-proofness, we have

fj(P̃i,P′j ,P−i,j) ̸= c for all P′j ∈ L(A). (2.11)

By strategy-proofness and non-bossiness, the fact fj(P̃i, P̃j,P−i,j) = a and (2.11) imply

f(P3N) = f(P̃i, P̃j,P−i,j). (2.12)

The facts fk(P̃i, P̃j,P−i,j) = d and d = ∅ together imply fk(P̃i, P̃j,P−i,j) = ∅. Moreover, fk(P̃i, P̃j,P−i,j) = ∅ and

(2.12) imply fk(P3N) = ∅. Since f is strategy-proof and non-bossy, fk(P3N) = ∅ yields f(P1N) = f(P3N). This, together

with (2.12), implies

f(P1N) = f(P̃i, P̃j,P−i,j). (2.13)

Similarly, by strategy-proofness and non-bossiness, the fact fj(P̃i,P−i) = b and (2.11) imply f(P4N) = f(P̃i,P−i). This,

along with (2.1), yields

f(P4N) = f(PN). (2.14)

Since fj(PN) = b and fk(PN) = c, by (2.14) we have fj(P4N) = b and fk(P4N) = c. By strategy-proofness, fk(P4N) = c

implies fk(P2N) ∈ {b, c}. Suppose fk(P2N) = c. Since fk(P2N) = c and fk(P4N) = c, by non-bossiness and the fact that

fj(P4N) = b, we have fj(P2N) = b. However, fj(P2N) = b and fk(P2N) = c together contradict Pareto efficiency. So, it must

be that

fk(P2N) = b. (2.15)

Since fj(P̃i, P̃j,P−i,j) = a, by (2.13) we have fj(P1N) = a. Also, by (2.15) we have fj(P2N) ̸= b. By strategy-proofness, the
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facts fj(P1N) = a and fj(P2N) ̸= b imply fj(P2N) = a. Since fj(P1N) = a and fj(P2N) = a, by non-bossiness and (2.13), we

have

f(P2N) = f(P̃i, P̃j,P−i,j). (2.16)

However, since fk(P̃i, P̃j,P−i,j) = ∅, by (2.16) we have fk(P2N) = ∅, a contradiction to (2.15). So, it must be that

d ∈ A. (2.17)

Since fi(P̃i, P̃j,P−i,j) = c, fj(P̃i, P̃j,P−i,j) = a, and fk(P̃i, P̃j,P−i,j) = d, it follows that a, c, and d are all distinct objects.

This completes the proof of Claim 2.7.3. □

Claim 2.7.4. cPkd.

Proof of Claim 2.7.4. Assume for contradiction that dRkc. By Claim 2.7.3, this means dPkc. Suppose b = d. Because

dPkc, this implies bPkc. Also, the facts fj(PN) = b, fi(P̃i, P̃j,P−i,j) = c, and fi(P̃i, P̃j,P−i,j)Pjfj(PN) together imply cPjb.

However, since cPjb and bPkc, the facts fj(PN) = b and fk(PN) = c together contradict Pareto efficiency. So, it must be

that b ̸= d. This, along with Claim 2.7.3, yields that a, b, c, and d are all distinct objects.

Consider the preference profiles presented in Table 2.6. In addition to the structure provided in the table, suppose P1j =

P3j , P2j = P4j , and P1k = P2k .

Preference profiles Individual i Individual j Individual k . . . Individual l

P1N P̃i ca . . . dbc . . . . . . Pl

P2N P̃i cba . . . dbc . . . . . . Pl

P3N P̃i ca . . . Pk . . . Pl

P4N P̃i cba . . . Pk . . . Pl

Table 2.6: Preference profiles for Claim 2.7.4

The fact fj(PN) = b and (2.1) yield fj(P̃i,P−i) = b. Moreover, the facts fj(PN) = b, fi(P̃i, P̃j,P−i,j) = c, and

fi(P̃i, P̃j,P−i,j)Pjfj(PN) together imply cPjb. Since cPjb and fj(P̃i,P−i) = b, by strategy-proofness, we have

fj(P̃i,P′j ,P−i,j) ̸= c for all P′j ∈ L(A). (2.18)
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By strategy-proofness and non-bossiness, the fact fj(P̃i, P̃j,P−i,j) = a and (2.18) imply

f(P3N) = f(P̃i, P̃j,P−i,j). (2.19)

The fact fk(P̃i, P̃j,P−i,j) = d and (2.19) imply fk(P3N) = d. Since f is strategy-proof and non-bossy, fk(P3N) = d yields

f(P1N) = f(P3N). This, together with (2.19), implies

f(P1N) = f(P̃i, P̃j,P−i,j). (2.20)

Similarly, by strategy-proofness and non-bossiness, the fact fj(P̃i,P−i) = b and (2.18) imply f(P4N) = f(P̃i,P−i). This,

along with (2.1), yields

f(P4N) = f(PN). (2.21)

Since fj(PN) = b and fk(PN) = c, by (2.21) we have fj(P4N) = b and fk(P4N) = c. By strategy-proofness, dPkc and

fk(P4N) = c together imply fk(P2N) ∈ {b, c}. Suppose fk(P2N) = c. Since fk(P2N) = c and fk(P4N) = c, by non-bossiness

and the fact that fj(P4N) = b, we have fj(P2N) = b. However, fj(P2N) = b and fk(P2N) = c together contradict Pareto

efficiency. So, it must be that

fk(P2N) = b. (2.22)

Since fj(P̃i, P̃j,P−i,j) = a, by (2.20) we have fj(P1N) = a. Also, by (2.22) we have fj(P2N) ̸= b. By strategy-proofness, the

facts fj(P1N) = a and fj(P2N) ̸= b together imply fj(P2N) = a. Since fj(P1N) = a and fj(P2N) = a, by non-bossiness and

(2.20), we have

f(P2N) = f(P̃i, P̃j,P−i,j). (2.23)

However, since fk(P̃i, P̃j,P−i,j) = d, by (2.23) we have fk(P2N) = d, a contradiction to (2.22). This completes the proof

of Claim 2.7.4. □

Fix a preference P̂ ∈ L(A \ {a, b, c}) over the objects in A \ {a, b, c}. Consider the preference profiles presented in

Table 2.7. Assume that P5k = P10k = P11k .
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Preference profiles Individual i Individual j Individual k . . . Individual l

P1N abcP̂ cabP̂ acbP̂ . . . Pl

P2N abcP̂ cbaP̂ acbP̂ . . . Pl

P3N acbP̂ cabP̂ acbP̂ . . . Pl

P4N acbP̂ cabP̂ cabP̂ . . . Pl

P5N acbP̂ cabP̂ cd . . . . . . Pl

P6N bcaP̂ cbaP̂ acbP̂ . . . Pl

P7N bcaP̂ cbaP̂ cabP̂ . . . Pl

P8N cabP̂ cabP̂ cabP̂ . . . Pl

P9N cabP̂ cbaP̂ cabP̂ . . . Pl

P10N cabP̂ cabP̂ cd . . . . . . Pl

P11N cabP̂ cbaP̂ cd . . . . . . Pl

P12N cbaP̂ cabP̂ acbP̂ . . . Pl

P13N cbaP̂ cbaP̂ acbP̂ . . . Pl

P14N cbaP̂ cabP̂ cabP̂ . . . Pl

P15N cbaP̂ cbaP̂ cabP̂ . . . Pl

Table 2.7: Preference profiles for Lemma 2.7.1

The facts fj(PN) = b, fi(P̃i, P̃j,P−i,j) = c, and fi(P̃i, P̃j,P−i,j)Pjfj(PN) together imply cPjb. Since cPjb and fj(PN) = b,

by strategy-proofness, we have

fj(P′j ,P−j) ̸= c for all P′j ∈ L(A). (2.24)

Combining the fact fj(PN) = b with (2.1), we have fj(P̃i,P−i) = fj(P̃j,P−j) = b. Since f is strategy-proof, the facts

fj(P̃i, P̃j,P−i,j) = a and fj(P̃i,P−i) = b together imply aR̃jb, which along with Claim 2.7.3, yields aP̃jb. Since aP̃jb and

fj(P̃j,P−j) = b, by strategy-proofness, we have

fj(P′j ,P−j) ̸= a for all P′j ∈ L(A). (2.25)

However, since fj(P̃j,P−j) = b, by strategy-proofness and non-bossiness along with (2.24) and (2.25), we have f(P5j ,
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P−j) = f(P̃j,P−j). By (2.1), this, in particular, means

fi(P5j ,P−j) = a, fj(P5j ,P−j) = b, and fk(P5j ,P−j) = c. (2.26)

By moving the preferences of the individuals l ∈ {i, k} from Pl to P5l one by one, and by applying strategy-proofness and

non-bossiness on (2.26) each time, we conclude

fi(P5N) = a, fj(P5N) = b, and fk(P5N) = c. (2.27)

Using strategy-proofness and non-bossiness, we obtain from (2.27) that

fi(P4N) = a, fj(P4N) = b, and fk(P4N) = c. (2.28)

By strategy-proofness, the facts cPjb and fj(P̃i,P−i) = b together imply

fj(P̃i,P′j ,P−i,j) ̸= c for all P′j ∈ L(A). (2.29)

Since f is strategy-proof, the fact fj(P̃i,P−i) = b and (2.29) imply fj(P̃i,P11j ,P−i,j) = b. Moreover, since fj(P̃i,P−i) = b

and fj(P̃i,P11j ,P−i,j) = b, by non-bossiness, we have f(P̃i,P11j ,P−i,j) = f(P̃i,P−i). This, together with (2.1), yields

f(P̃i,P11j ,P−i,j) = f(PN). (2.30)

By (2.1) we have fi(PN) = fi(P̃j,P−j). This, along with the fact that fi(PN) = a, yields fi(P̃j,P−j) = a. Since f is strategy-

proof, the facts fi(P̃i, P̃j,P−i,j) = c and fi(P̃j,P−j) = a together imply cR̃ia, which along with Claim 2.7.3, yields cP̃ia.

Also, the fact fi(PN) = a, together with (2.30), implies fi(P̃i,P11j ,P−i,j) = a. Since cP̃ia and fi(P̃i,P11j ,P−i,j) = a, by

strategy-proofness, we have fi(P11i ,P11j ,P−i,j) = a. Moreover, since fi(P̃i,P11j ,P−i,j) = a and fi(P11i ,P11j ,P−i,j) = a, by

non-bossiness, we have f(P11i ,P11j ,P−i,j) = fi(P̃i,P11j ,P−i,j). This, together with (2.30), implies

fi(P11i ,P11j ,P−i,j) = a, fj(P11i ,P11j ,P−i,j) = b, and fk(P11i ,P11j ,P−i,j) = c. (2.31)

Using strategy-proofness and non-bossiness, we obtain from (2.31) that

fi(P11N) = a, fj(P11N) = b, and fk(P11N) = c. (2.32)
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Again, using strategy-proofness and non-bossiness, we obtain from (2.32) that

fi(P9N) = a, fj(P9N) = b, and fk(P9N) = c. (2.33)

Since f is strategy-proof, the fact fj(P̃i, P̃j,P−i,j) = a and (2.29) imply fj(P̃i,P10j ,P−i,j) = a. Since fj(P̃i, P̃j,P−i,j) = a

and fj(P̃i,P10j ,P−i,j) = a, by non-bossiness, we have f(P̃i,P10j ,P−i,j) = f(P̃i, P̃j,P−i,j). This, in particular, means

fi(P̃i,P10j ,P−i,j) = c, fj(P̃i,P10j ,P−i,j) = a, and fk(P̃i,P10j ,P−i,j) = d. (2.34)

From Claim 2.7.4, we have cPkd. Since f is strategy-proof and cPkd, (2.34) implies fk(P̃i,P10j ,P10k ,P−i,j,k) = d. Moreover,

since fk(P̃i,P10j ,P−i,j) = d and fk(P̃i,P10j ,P10k ,P−i,j,k) = d, by non-bossiness, (2.34) implies

fi(P̃i,P10j ,P10k ,P−i,j,k) = c, fj(P̃i,P10j ,P10k ,P−i,j,k) = a, and fk(P̃i,P10j ,P10k ,P−i,j,k) = d. (2.35)

Using strategy-proofness and non-bossiness, we obtain from (2.35) that

fi(P10N ) = c, fj(P10N ) = a, and fk(P10N ) = d. (2.36)

By strategy-proofness, (2.33) implies fj(P8N) ∈ {a, b}. Suppose fj(P8N) = b. Since fj(P8N) = b and fj(P9N) = b, by

non-bossiness, (2.33) implies fk(P8N) = c. However, since fk(P8N) = c, (2.36) contradicts strategy-proofness. So, it must be

that fj(P8N) = a. By strategy-proofness, (2.28) implies fi(P8N) ∈ {a, c}. This, along with the fact that fj(P8N) = a, yields

fi(P8N) = c and fj(P8N) = a. (2.37)

Using strategy-proofness and non-bossiness, we obtain from (2.37) that

fi(P14N ) = c and fj(P14N ) = a. (2.38)

By strategy-proofness, (2.38) implies fj(P15N ) ∈ {a, b}. Suppose fj(P15N ) = a. Since fj(P14N ) = a and fj(P15N ) = a, by

non-bossiness and (2.38), we have fi(P15N ) = c. However, since fi(P15N ) = c, (2.33) contradicts strategy-proofness. So, it

must be that fj(P15N ) = b. By strategy-proofness, (2.33) implies fi(P15N ) ∈ {a, b}. This, alongwith the fact that fj(P15N ) = b,
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yields fi(P15N ) = a. By non-bossiness, this and (2.33) imply

fi(P15N ) = a, fj(P15N ) = b, and fk(P15N ) = c. (2.39)

Using strategy-proofness and non-bossiness, we obtain from (2.39) that

fi(P7N) = a, fj(P7N) = b, and fk(P7N) = c. (2.40)

By (2.38) we have fk(P14N ) /∈ {a, c}. By strategy-proofness, the fact fk(P14N ) /∈ {a, c} implies fk(P12N ) = fk(P14N ). This,

by non-bossiness and (2.38), implies

fi(P12N ) = c and fj(P12N ) = a. (2.41)

By strategy-proofness, (2.41) implies fi(P3N) ∈ {a, c}. Suppose fi(P3N) = c. Since fi(P12N ) = c and fi(P3N) = c, by non-

bossiness and (2.41), we have fj(P3N) = a. However, fi(P3N) = c and fj(P3N) = a together contradict Pareto efficiency.

So, it must be that fi(P3N) = a. By strategy-proofness, (2.27) implies fk(P3N) ∈ {a, c}. This, along with the fact that

fi(P3N) = a, yields

fi(P3N) = a and fk(P3N) = c. (2.42)

Using strategy-proofness and non-bossiness, we obtain from (2.42) that

fi(P1N) = a and fk(P1N) = c. (2.43)

By (2.43) we have fj(P1N) /∈ {a, c}. By strategy-proofness, fj(P1N) /∈ {a, c} implies fj(P2N) = fj(P1N). This, by non-

bossiness and (2.43), implies

fi(P2N) = a and fk(P2N) = c. (2.44)

By (2.39) we have fi(P15N ) = a and fk(P15N ) = c. By strategy-proofness, fk(P15N ) = c implies fk(P13N ) ∈ {a, c}. Suppose

fk(P13N ) = c. Since fk(P15N ) = c and fk(P13N ) = c, by non-bossiness and the fact that fi(P15N ) = a, we have fi(P13N ) = a.

However, fi(P13N ) = a and fk(P13N ) = c together contradict Pareto efficiency. So, it must be that fk(P13N ) = a. By strategy-

proofness, (2.41) implies fj(P13N ) ∈ {a, b}. This, along with the fact that fk(P13N ) = a, yields fj(P13N ) = b. By strategy-

proofness, (2.44) implies fi(P13N ) ∈ {a, b, c}. This, together with the facts that fj(P13N ) = b and fk(P13N ) = a, implies

fi(P13N ) = c, fj(P13N ) = b, and fk(P13N ) = a. (2.45)
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By strategy-proofness, (2.40) implies fk(P6N) ∈ {a, c}. Suppose fk(P6N) = c. Since fk(P7N) = c and fk(P6N) = c, by

non-bossiness and (2.40), we have fi(P6N) = a. However, fi(P6N) = a and fk(P6N) = c together contradict Pareto efficiency.

So, it must be that fk(P6N) = a. Also, by (2.45) we have fi(P13N ) = c and fj(P13N ) = b. By strategy-proofness, fi(P13N ) = c

implies fi(P6N) ∈ {b, c}. Suppose fi(P6N) = c. Since fi(P13N ) = c and fi(P6N) = c, by non-bossiness and the fact that

fj(P13N ) = b, we have fj(P6N) = b. However, fi(P6N) = c and fj(P6N) = b together contradict Pareto efficiency. So, it must

be that fi(P6N) = b. Combining the facts that fi(P6N) = b and fk(P6N) = a, we have

fi(P6N) = b and fk(P6N) = a. (2.46)

Now we complete the proof of Lemma 2.7.1. Consider the restricted domain P̃N ⊆ Ln(A) with only three preference

profiles as follows.

Preference profiles Individual i Individual j Individual k . . . Individual l

P6N bcaP̂ cbaP̂ acbP̂ . . . Pl

P7N bcaP̂ cbaP̂ cabP̂ . . . Pl

P14N cbaP̂ cabP̂ cabP̂ . . . Pl

Table 2.8: Preference profiles of P̃N

By (2.38), (2.40), and (2.46), we have

Preference profiles fi(PN) fj(PN) fk(PN)

P6N b a

P7N a b c

P14N c a

Table 2.9: Partial outcome of f on P̃N

Since f is OSP-implementable onLn(A), it must beOSP-implementable on the restricted domain P̃N. Let G̃ be anOSP

mechanism that implements f on P̃N.

Note that since f(P6N) ̸= f(P7N), there exists a node in the OSPmechanism G̃ that has at least two edges. Also, note that

since each individual l ∈ N \ {i, j, k} has exactly one preference in P̃l, whenever there are at least two outgoing edges from

a node, that node must be assigned to some individual in {i, j, k}. Consider the first node (from the root) v that has two

edges.

41



Suppose ηNI(v) = i. Consider the preference profiles P7N and P14N . Note that both of them pass through the node v at

which P7i and P14i diverge. Further note that cP7i a, fi(P7N) = a, and fi(P14N ) = c. However, the facts that cP7i a, fi(P7N) = a,

and fi(P14N ) = c together contradict OSP-implementability of f on P̃N. So, it must be that ηNI(v) ̸= i.

Suppose ηNI(v) = k. Consider the preference profiles P6N and P14N . Note that both of them pass through the node v at

which P6k and P
14
k diverge. Further note that fk(P6N) = a, fk(P14N ) /∈ {a, c}, and aP14k x for all x ∈ A \ {a, c}. Since aP14k x

for all x ∈ A \ {a, c}, the facts that fk(P6N) = a and fk(P14N ) /∈ {a, c} together contradict OSP-implementability of f on

P̃N. So, it must be that ηNI(v) ̸= k.

Since ηNI(v) ̸= i and ηNI(v) ̸= k, it must be that ηNI(v) = j. We distinguish the following two cases.

Case 1: fj(P6N) = c.

Consider the preference profilesP6N andP14N . Note that both of thempass through the node v atwhichP6j andP14j diverge.

Further note that cP14j a, fj(P6N) = c, and fj(P14N ) = a. However, the facts that cP14j a, fj(P6N) = c, and fj(P14N ) = a together

contradict OSP-implementability of f on P̃N.

Case 2: fj(P6N) ̸= c.

Consider the preference profilesP6N andP14N . Note that both of thempass through the node v atwhichP6j andP14j diverge.

Further note that fj(P6N) /∈ {a, b, c}, fj(P14N ) = a, and aP6j x for all x ∈ A \ {a, b, c}. Since aP6j x for all x ∈ A \ {a, b, c},

the facts that fj(P6N) /∈ {a, b, c} and fj(P14N ) = a together contradict OSP-implementability of f on P̃N. This completes

the proof of Lemma 2.7.1. ■

2.7.2 Completion of the proof of Theorem 2.4.1

We present two results from Pápai (2000), which we use to complete the proof of Theorem 2.4.1.

Theorem 2.7.1 (Main theorem in Pápai, 2000). An assignment rule f : Ln(A) → M is group strategy-proof, Pareto

efficient, and reallocation-proof if and only if f is a hierarchical exchange rule.

Lemma 2.7.2 (Lemma 1 in Pápai, 2000). An assignment rule f : Ln(A) → M is group strategy-proof if and only if it is

strategy-proof and non-bossy.

Proof of Theorem 2.4.1. (If part) Let f be a hierarchical exchange rule satisfying dual ownership. By Proposition 2.5.1,

f is OSP-implementable. Moreover, since f is a hierarchical exchange rule, by Theorem 2.7.1, f is group strategy-proof and

Pareto efficient. The fact that f is group strategy-proof along with Lemma 2.7.2, implies f is non-bossy. This completes the

proof of the “if” part of Theorem 2.4.1.

(Only-if part) Let f be an OSP-implementable, non-bossy, and Pareto efficient assignment rule. By Lemma 2.7.1, f is
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reallocation-proof. Since f is OSP-implementable, by Remark 2.2.1, f is strategy-proof. This, together with Lemma 2.7.2

and the fact that f is non-bossy, implies f is group strategy-proof. Since f is group strategy-proof, Pareto efficient, and

reallocation-proof, by Theorem 2.7.1, f is a hierarchical exchange rule. Moreover, since f is an OSP-implementable hier-

archical exchange rule, by Proposition 2.5.1, f is a hierarchical exchange rule satisfying dual ownership. This completes the

proof of the “only-if” part of Theorem 2.4.1. ■

2.8 Example to clarify the difference between dual dictatorship (Troyan, 2019) and dual

ownership of FPTTC rules

Troyan (2019) deals with the case where |N| = |A|. Therefore, we explain the difference between dual dictatorship and

dual ownership of FPTTC rules for this case only.

Example 2.8.1. Consider an allocation problem with four individualsN = {i, j, k, l} and four objects A = {w, x, y, z}.

Let≻A be as follows:

≻w ≻x ≻y ≻z

i i l l

j j j k

k k k j

l l i i

Table 2.10: Priority structure for Example 2.8.1

Consider the FPTTC rule T≻A associated with the priority structure given in Table 2.10. First, we argue that it satisfies

dual ownership. Since either individual i or individual l appears at the top position in each priority, it follows that for

any preference profile, individuals i and l will own all the objects at Step 1 of T≻A . Moreover, since there are only four

individuals in the original market, for any preference profile, at any step from Step 3 onward of T≻A , there will remain at

most two individuals in the corresponding submarket andhence dual ownershipwill be vacuously satisfied. Inwhat follows,

we show that dual ownership will also be satisfied at Step 2 for any preference profile. We distinguish three cases based on

the possible assignments at Step 1.

(i) Suppose only individual i is assigned some object at Step 1. No matter whether individual i is assigned object w or

object x, individuals j and lwill own all the objects at Step 2.
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(ii) Suppose only individual l is assigned some object at Step 1.

(a) If l is assigned object y, then individuals i and kwill own all the objects at Step 2.

(b) If l is assigned object z, then individuals i and jwill own all the objects at Step 2.

(iii) Suppose both i and l are assigned some objects at Step 1. Since there are only four individuals in the original market,

only two individuals will remain in the reduced market at Step 2.

Since Cases (i), (ii), and (iii) are exhaustive, it follows that T≻A satisfies dual ownership. We now proceed to show that it

does not satisfy dual dictatorship. Consider the submarket consisting of individuals i, j, and k and objects x, y, and z. Here,

individuals i, j, and kwill own objects x, y, and z, respectively, and henceT≻A under consideration violates dual dictatorship.
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3
OnObviously Strategy-proof Implementation of

Fixed Priority Top Trading Cycles with Outside

Options

3.1 Introduction

Theobjective ofmechanismdesign is to implementdesirable outcomeswhenparticipating agents are strategic. The standard

notion of strategy-proofness requires truth-telling to be a dominant strategy. However, the structure of such incentive

compatiblemechanisms are at times quite involved, and consequently, agents are not convinced that they are indeed strategy-

proof. The notion of obvious strategy-proofness (OSP) (Li, 2017) has emerged to resolve this issue.33

33There is a rapidly growing body of work onOSP-implementability in variety of settings; see Bade&Gonczarowski (2017), Ashlagi
& Gonczarowski (2018), Bade (2019), Pycia & Troyan (2019), Arribillaga et al. (2020), Mackenzie (2020).
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We consider the problem of OSP-implementability of fixed priority top trading cycles (FPTTC) rules when outside op-

tions are available, that is, each object need not be “acceptable” to an agent. Troyan (2019) and Mandal & Roy (2020)

deal with OSP-implementability of FPTTC rules when outside options are not available.34 Troyan (2019) introduces the

notion of dual dictatorship and shows that it is both necessary and sufficient condition for an FPTTC rule to be OSP-

implementable when there are equal number of agents and objects.35,36 Later, Mandal & Roy (2020) point out that while

dual dictatorship is a sufficient condition for the same, it is not necessary. They consequently introduce the notion of dual

ownership (a weaker condition than dual dictatorship) and show that it is both necessary and sufficient condition for an

FPTTC rule to be OSP-implementable.37

In a model with outside options, we show that dual dictatorship and dual ownership are equivalent properties of an

FPTTC rule (Theorem 3.4.1), and dual ownership is a necessary and sufficient condition for an FPTTC rule to be OSP-

implementable (Theorem 3.4.2). It is worth mentioning that we consider arbitrary (not necessarily equal) values of the

number of agents and the number of objects.

3.2 Preliminaries

3.2.1 Model

LetN = {1, . . . , n} be a finite set of agents andA be a finite set of objects. Let a0 denote the outside option. An allocation

is a function μ : N → A ∪ {a0} such that |μ−1(a)| ≤ 1 for all a ∈ A. Here, μ(i) = ameans agent i is assigned object a

under μ, and μ(i) = a0 means agent i is not assigned any object. We denote byM the set of all allocations.

Let L(A ∪ {a0}) denote the set of all strict linear orders over A ∪ {a0}.38 An element of L(A ∪ {a0}) is called a

preference over A ∪ {a0}. For a preference P, let R denote the weak part of P.39 An element PN = (P1, . . . ,Pn) of

Ln(A∪ {a0}) is called a profile.

An assignment rule is a function f : Ln(A∪ {a0}) → M. Let fi(PN) denote the assignment of agent i by f at PN.

34Troyan (2019) uses the term “TTC rule” to refer to an FPTTC rule in his paper.
35See Theorem 1 and Theorem 2 in Troyan (2019) for details.
36Kesten (2006) introduces the notion of acyclicity, and shows that an FPTTC rule is stable if and only if it is acyclic. It can be verified

that acyclic FPTTC rules satisfy dual dictatorship.
37See Corollary 5.2 in Mandal & Roy (2020) for details.
38A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
39For all a, b ∈ A∪ {a0}, aRb if and only if

[
aPb or a = b

]
.
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3.2.2 Obviously strategy-proof implementation

The notion of obviously strategy-proof implementation is introduced by Li (2017). We use the following notions and

notations to present it. For a rooted tree T, we denote its set of nodes by V(T), set of edges by E(T), root by r(T), and set

of leaves (terminal nodes) by L(T). For a node v ∈ V(T), let Eout(v) denote the set of outgoing edges from v. For an edge

e ∈ E(T), let s(e) denote its source node. A path in a tree is a sequence of nodes such that every two consecutive nodes form

an edge.

Definition 3.2.1. Amechanism is defined as a tupleG = ⟨T, ηLA, ηNI, ηEP⟩, where

(i) T is a rooted tree,

(ii) ηLA : L(T) → M is a leaves-to-allocations function,

(iii) ηNI : V(T) \ L(T) → N is a nodes-to-agents function,

(iv) ηEP : E(T) → 2L(A∪{a0}) \ {∅} is an edges-to-preferences function such that

(a) for all distinct e, e′ ∈ E(T) with s(e) = s(e′), ηEP(e) ∩ ηEP(e′) = ∅,

(b) for any v ∈ V(T) \ L(T),

(1) if there exists a path (v1, . . . , vt) from r(T) to v and some 1 ≤ r < t such that ηNI(vr) = ηNI(v) and

ηNI(vs) ̸= ηNI(v) for all s = r+ 1, . . . , t− 1, then ∪
e∈Eout(v)

ηEP(e) = ηEP(vr, vr+1),

(2) if there is no such path, then ∪
e∈Eout(v)

ηEP(e) = L(A∪ {a0}).

For a mechanism G, every profile PN identifies a unique path from the root to some leaf in T in the following manner:

from each node v, follow the outgoing edge e from v such that ηEP(e) contains the preference PηNI(v). If a node v lies in such

a path, thenwe say that the profilePN passes through the node v. Furthermore, we say two preferencesPi andP′i of some agent

i diverge at a node v ∈ V(T) \ L(T) if ηNI(v) = i and there are two distinct edges e and e′ in Eout(v) such that Pi ∈ ηEP(e)

and P′i ∈ ηEP(e′).

For a mechanism G, the assignment rule fG implemented by G is defined as follows: for all profiles PN, fG(PN) =

ηLA(l), where l is the leaf that appears at the end of the unique path characterized by PN.

Definition 3.2.2. Amechanism G is Obviously Strategy-Proof (OSP) if for all i ∈ N, all nodes v such that ηNI(v) = i,

and all PN, P̃N ∈ Ln(A∪ {a0}) passing through v such that Pi and P̃i diverge at v, we have fGi (PN)RifGi (P̃N).

An assignment rule f : Ln(A ∪ {a0}) → M is OSP-implementable if there exists an OSP mechanism G such that

f = fG.
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3.3 Fixed priority top trading cycles (FPTTC) rules

For each object a ∈ A, we define the priority of a as a “preference” ≻a over N. We call a collection ≻A:= (≻a)a∈A

a priority structure. For a priority structure ≻A, the FPTTC rule T≻A associated with ≻A is defined by an iterative

procedure as follows. Consider a profile PN ∈ Ln(A∪ {a0}).

Step t. Let Nt(PN) ⊆ N be the set of agents that remain after Step t− 1 and At(PN) ⊆ A be the set of objects that

remain after Step t− 1.40

We construct a (directed) graph with the set of nodesNt(PN) ∪ At(PN) ∪ {a0}. Each agent i ∈ Nt(PN) points

to her most-preferred element of At(PN) ∪ {a0}. Each object a ∈ At(PN) points to its most-preferred agent in

Nt(PN). The outside option a0 points to each agent inNt(PN).

There is at least one cycle.41 Each agent in a cycle is assigned the element she is pointing to (the element might be

some object or the outside option). Remove all agents and objects that appear in some cycle.

This procedure is repeated iteratively until either all agents are assigned or all objects are assigned.

The following remarks say that the assignment of an agent under an FPTTC rule will be as good as the outside option,

as well as, any object for which she has the top-priority. Let≻A∈ L|A|(N) be a priority structure.

Remark 3.3.1. For all PN ∈ Ln(A∪ {a0}) and all i ∈ N, T≻A
i (PN)Ria0.

Remark 3.3.2. Suppose τ(≻a) = i for some a ∈ A and some i ∈ N. Then, for all PN ∈ Ln(A∪ {a0}), T≻A
i (PN)Ria.

3.4 Results

For≻∈ L(N) andN′ ⊆ N, let τ(≻,N′) denote the most-preferred agent inN′ according to≻. For ease of presentation,

we denote τ(≻,N) by τ(≻). For≻∈ L(N) and i ∈ N, let U(i,≻) denote the upper contour set {j ∈ N | j ≻ i} of i at

≻. For P ∈ L(A∪ {a0}), let τ(P) denote the most-preferred element of A∪ {a0} according to P.

LetN′ ⊆ N, A′ ⊆ A, and≻A be a priority structure. The reduced priority structure≻N′
A′ is the collection (≻N′

a )a∈A′

such that for all a ∈ A′, (i) ≻N′
a ∈ L(N′) and (ii) for all i, j ∈ N′, i ≻N′

a j if and only if i ≻a j. Thus, the reduced

priority structure ≻N′
A′ is the restriction of ≻A to the submarket (N′,A′).42 Furthermore, let T (≻N′

A′ ) = {i | τ(≻a,

N′) = i for some a ∈ A′}.
40Note that for all PN ∈ Ln(A∪ {a0}),N1(PN) = N and A1(PN) = A.
41All the cycles we consider in this chapter are assumed to be “minimal”, that is, no subset of nodes of such a cycle forms another

cycle. In the model without outside options, trading cycles are always minimal. However, since there can be multiple outgoing edges
from the outside option a0, non-minimal trading cycles may appear in the model with outside options.

42Thus,≻N
A=≻A.
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Definition 3.4.1. (Troyan, 2019) The FPTTC ruleT≻A satisfies dual dictatorship if for allN′ ⊆ N andA′ ⊆ A, we have

|T (≻N′
A′ )| ≤ 2.

Remark 3.4.1. If T≻A satisfies dual dictatorship, then T≻N′
A′ satisfies dual dictatorship on the submarket (N′,A′) for all

N′ ⊆ N and all A′ ⊆ A.

Recall the definitions ofNs(PN) and As(PN) given in Section 3.3.

Definition 3.4.2. (Mandal & Roy, 2020) For a domain of profiles PN ⊆ Ln(A ∪ {a0}), the FPTTC rule T≻A satisfies

dual ownership onPN if for all PN ∈ PN, we have |T (≻Ns(PN)
As(PN)

)| ≤ 2 for all s.

Note 3.4.1. For an arbitrary domain of profilesPN, the set of FPTTC rules satisfying dual ownership is a superset of those

satisfying dual dictatorship. Example 3.4.1 presents a domain of profiles on which the former set is a strict superset of the

latter. This clarifies that the notions of dual dictatorship and dual ownership are different.

Example 3.4.1. Consider an allocation problem with four individualsN = {i, j, k, l} and four objects A = {w, x, y, z}.

Let P = {P ∈ L(A ∪ {a0}) | aPa0 for some a ∈ A} be the set of preferences where the outside option is never the

most-preferred choice. Let≻A be as follows:

≻w ≻x ≻y ≻z

i i l l

j j j k

k k k j

l l i i

Table 3.1: Priority structure for Example 3.4.1

Using similar arguments as for Example C.1 inMandal & Roy (2020), it follows that the FPTTC rule T≻A satisfies dual

ownership onP4 but does not satisfy dual dictatorship.

Theorem 3.4.1. An FPTTC rule on Ln(A∪ {a0}) satisfies dual dictatorship if and only if it satisfies dual ownership.

Proof of Theorem 3.4.1. The “only-if” part of the theorem follows from respective definitions, we proceed to prove the

“if” part. Assume for contradiction that T≻A does not satisfy dual dictatorship. Then, there exist N′ ⊆ N and A′ ⊆ A

such that |T (≻N′
A′ )| > 2. This implies that there exist three agents i1, i2, i3 ∈ N′ and three objects a1, a2, a3 ∈ A′ such

that τ(≻ah ,N′) = ih for all h = 1, 2, 3. We distinguish the following two cases.
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Case A: Suppose
3⋃

h=1
U(ih,≻ah) = ∅.

Since
3⋃

h=1
U(ih,≻ah) = ∅, we have τ(≻ah) = ih for all h = 1, 2, 3. Fix a profile PN ∈ Ln(A ∪ {a0}). By the

definition of T≻A , it follows thatN1(PN) = N and A1(PN) = A (see Footnote 40). Since τ(≻ah) = ih for all h = 1, 2, 3,

N1(PN) = N, andA1(PN) = A, we have {i1, i2, i3} ⊆ T (≻N1(PN)
A1(PN)

). This implies |T (≻N1(PN)
A1(PN)

)| > 2, a contradiction to

the fact that T≻A satisfies dual ownership.

Case B: Suppose
3⋃

h=1
U(ih,≻ah) ̸= ∅.

Since
3⋃

h=1
U(ih,≻ah) ̸= ∅, without loss of generality, assume U(i1,≻a1) ̸= ∅. The facts U(i1,≻a1) ̸= ∅ and τ(≻a1 ,

N′) = i1 together imply τ(≻a1) /∈ N′. Consider the profile PN such that τ(Pi) = a1 for all i ∈ N′ and τ(Pi) = a0 for

all i /∈ N′. Since τ(≻a1) /∈ N′, it follows from the construction of PN and the definition of T≻A thatN2(PN) = N′ and

A2(PN) = A. The facts N2(PN) = N′, A2(PN) = A, and τ(≻ah ,N′) = ih for all h = 1, 2, 3 together imply {i1, i2,

i3} ⊆ T (≻N2(PN)
A2(PN)

). This implies |T (≻N2(PN)
A2(PN)

)| > 2, a contradiction to the fact that T≻A satisfies dual ownership. ■

Our next theorem provides a characterization of OSP-implementable FPTTC rules.

Theorem 3.4.2. An FPTTC rule on Ln(A∪ {a0}) is OSP-implementable if and only if it satisfies dual ownership.

Proof of Theorem 3.4.2. (If part) Suppose T≻A satisfies dual ownership. By Theorem 3.4.1, T≻A satisfies dual dictator-

ship. We show that T≻A is OSP-implementable by using induction on |N|, which we refer to as the size of the market.

Base Case: Suppose |N| = 1.43 The following mechanism, labeled asG1, implements T≻A .

Step 1. Assign the (only) agent her most-preferred element of A∪ {a0}.

It is simple to check thatG1 isOSP. Since theOSPmechanismG1 implementsT≻A , it follows thatT≻A isOSP-implementable.

Now, we proceed to prove the induction step.

Induction Hypothesis: Assume that T≻A is OSP-implementable for |N| ≤ m. We show T≻A is OSP-implementable for

|N| = m+ 1. Since T≻A satisfies dual dictatorship, by definition, we have |T (≻A)| ≤ 2. We distinguish the following

two cases.

Case A: Suppose |T (≻A)| = 1.

Let T (≻A) = {i}. Define the mechanismGm+1 as follows:

Step 1. Assign agent i her most-preferred element of A∪ {a0}, say a.
43With only one agent, T≻A vacuously satisfies dual dictatorship.
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Step 2. We have a submarket (N \ {i},A \ {a}) of sizem. By Remark 3.4.1, T≻N\{i}
A\{a} satisfies dual dictatorship. By the

induction hypothesis, there exists an OSP mechanism Gm that implements T≻N\{i}
A\{a} on the submarket (N \ {i},

A \ {a}). RunGm on the submarket (N \ {i},A \ {a}).

Clearly, Gm+1 implements T≻A . The mechanism Gm+1 is OSP for agent i since she receives her top choice. For every

other agent, her first decision node comes after i has been assigned, and hence, her strategic decision is equivalent to that

under the OSP mechanism that implements T≻A restricted to the corresponding submarket. Thus, Gm+1 is OSP for all

agents.

Case B: Suppose |T (≻A)| = 2.

Let T (≻A) = {i, j}. Let Ai = {x ∈ A | τ(≻x) = i} and Aj = {x ∈ A | τ(≻x) = j}. Define the mechanismGm+1

as follows:

Step 1. For each a ∈ Ai ∪ {a0}, ask i if her top choice is a. If i answers “Yes” for some a, assign her a, and go to Step 1(a).

Otherwise, jump to Step 2.

Step 1(a). We have a submarket (N \ {i},A \ {a}) of sizem. By Remark 3.4.1,T≻N\{i}
A\{a} satisfies dual dictatorship. By

the induction hypothesis, there exists an OSP mechanism Gm that implements T≻N\{i}
A\{a} on the submarket

(N \ {i},A \ {a}). RunGm on the submarket (N \ {i},A \ {a}).

Step 2. For each b ∈ Aj ∪ {a0}, ask j if her top choice is b. If j answers “Yes” for some b, assign her b, and go to Step 2(a).

Otherwise, jump to Step 3.

Step 2(a). We have a submarket (N \ {j},A \ {b}) of sizem. By Remark 3.4.1, T≻N\{j}
A\{b} satisfies dual dictatorship. By

the induction hypothesis, there exists an OSP mechanism Gm that implements T≻N\{j}
A\{b} on the submarket

(N \ {j},A \ {b}). RunGm on the submarket (N \ {j},A \ {b}).

Step 3. If the answers to both Step 1 and Step 2 are “No”, then i’s top choice belongs to Aj, and j’s top choice belongs to

Ai. Ask i for her top choice a, and j for her top choice b. Assign a to i and b to j, and go to Step 3(a).

Step 3(a). We have a submarket (N \ {i, j},A \ {a, b}) of sizem− 1. By Remark 3.4.1, T≻N\{i,j}
A\{a,b} satisfies dual dicta-

torship. By the induction hypothesis, there exists an OSP mechanism Gm−1 that implements T≻N\{i,j}
A\{a,b} on

the submarket (N \ {i, j},A \ {a, b}). RunGm−1 on the submarket (N \ {i, j},A \ {a, b}).

By definition, Gm+1 implements T≻A . Using a similar argument as for Case A, it follows from Remark 3.3.1, Remark

3.3.2, and the construction ofGm+1 thatGm+1 is OSP.
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Since Case A and Case B are exhaustive, it follows that T≻A is OSP-implementable for |N| = m+ 1.

(Only-if part) The proof of the “only-if” part follows by using similar arguments as for the proof of the “only-if” part of

Proposition 5.1 in Mandal & Roy (2020). ■
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4
Strategy-proof Allocation of Indivisible Goods when

Preferences are Single-peaked

4.1 Introduction

We consider the well-known assignment problem where heterogeneous indivisible goods are to be assigned to individuals

so that each individual receives at most one good. Such problems arise when, for instance, the Government wants to assign

houses to the citizens, or hospitals to doctors, or a manager wants to allocate offices to employees, or tasks to workers, or

a professor wants to assign projects to students. Individuals are asked to report their preferences over the goods and the

designer decides the allocation based on these reports. We analyze the structure of such decision process satisfying some de-

sirable properties such as (group) strategy-proofness, efficiency, non-bossiness, (top-)envy-proofness, and (pairwise/group-

wise) reallocation-proofness.

(Group) strategy-proofness ensures that a (a group of) dishonest individual(s) cannot improve her (their) assignment(s)
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by misreporting her (their) preference(s).44 Efficiency says that the assignments cannot be improved in the sense of Pareto

(that is, everyone is weakly better off and someone is strictly better off). Non-bossiness says that a person cannot change

the assignment of any other person without changing her own assignment. Envy-proofness says that if an individual is

envious at another individual (that is, if she strictly prefers the assignment of the individual to her own assignment), then

she cannot harm the individual by misreporting her preference. Top-envy-proofness, in a sense, can be viewed as envy-

proofness with respect to the top-ranked object of the envious individual. Pairwise/group-wise reallocation-proofness rules

out the possibility of an obvious case of manipulation where a pair/group of individuals misreport their preferences and

become better off by redistributing the objects they obtain at the misreported profile.

Svensson (1999) shows that the set of strategy-proof, non-bossy, and neutral assignment rules on the unrestricted do-

main is the set of serial dictatorships, if every individual is assumed to be assigned an object.45,46 Pápai (2000) characterizes

strategy-proof, Pareto efficient, non-bossy, and reallocation-proof assignment rules on the unrestricted domain as hierarchi-

cal exchange rules. These rules can be regarded as generalizations ofGale’s well-known top trading cycle (TTC) procedure.47

Pycia &Ünver (2017) characterizes strategy-proof, Pareto efficient, and non-bossy assignment rules on the unrestricted do-

main as trading cycles rules.48

4.1.1 Our motivation and contribution

As we have mentioned, Svensson (1999), Pápai (2000), and Pycia & Ünver (2017) assume that the individuals can have

arbitrary preferences over the goods. However, it is well-known that in many circumstances preferences of individuals are

restricted in a particular way. Single-peakedness is known as one of the most common such restrictions. It arises when

goods can be ordered based on certain criteria and individuals’ preferences respect that ordering in the sense that as one

moves away from her top-ranked (peak) good, her preference declines. For instance, in the problem of assigning hospitals

(houses) to doctors (citizens), hospitals (houses) can be ordered based on their locations on a street and an individual may

like to be assigned as close as possible to her favorite location, in the problem of assigning tasks to students, tasks can be

ordered based on their technical difficulties and an individual may like to get a task that she is technically more comfortable

with, etc. This motivates us to explore the structure of strategy-proof assignment rules when individuals have single-peaked

44A group of individuals improve their assignments if each member in it is weakly better-off and some member is strictly better-off.
45An assignment rule is neutral if its outcomes do not depend on the identities of the objects.
46Whenever it is clear from the context, we use the term “domain” to refer to a set of preferences or a set of preference profiles.
47Top trading cycle (TTC) is due to David Gale and discussed in Shapley & Scarf (1974).
48Ergin (2000) shows that an assignment rule satisfies Pareto efficiency, neutrality, and consistency if and only if it is a simple se-

rial dictatorship rule (he uses somewhat weaker properties to show his result). Ehlers & Klaus (2006) characterize all Pareto efficient,
strategy-proof, and reallocation-consistent assignment rules as efficient priority rules. Later, Ehlers & Klaus (2007) and Velez (2014)
characterize a slightly larger class of assignment rules by weakening these characterizing properties. Karakaya et al. (2019) analyze TTC
rules in the context of house allocation problem with existing tenants.
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preferences. Instead of focusing only on the maximal single-peaked domain, we do our analysis on a class of single-peaked

domains that we call minimally rich. A single-peaked domain is minimally rich if it contains all left single-peaked and all

right single-peaked preferences.49

There are two main results in this chapter. The first one says that there is no strategy-proof, non-bossy, Pareto efficient,

and strongly pairwise reallocation-proof assignment rule on a minimally rich single-peaked domain, when there are at least

three individuals and three objects in the market (Theorem 4.5.1). The second result characterizes all strategy-proof, Pareto

efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rules on a minimally rich single-peaked

domain as hierarchical exchange rules (Theorem 4.7.1). We additionally show that strategy-proofness and non-bossiness to-

gether are equivalent to group strategy-proofness on a minimally rich single-peaked domain (Proposition 4.4.1), and every

hierarchical exchange rule satisfies group-wise reallocation-proofness on a minimally rich single-peaked domain (Proposi-

tion 4.7.1).50

Ours is not the first paper to deal with single-peaked domains, Damamme et al. (2015), Ehlers (2018), and Bade (2019)

consider single-peaked domains in the context of housing markets.51 Damamme et al. (2015) provide an algorithm which

is Pareto efficient on a single-peaked domain. Ehlers (2018) shows that a Pareto efficient, strategy-proof, and individually

rational rule on themaximal single-peaked domain does not necessarily coincidewithGale’s TTC.52 Bade (2019) introduces

the notion of the crawler algorithm and shows that it is Pareto efficient, strategy-proof, and individually rational on the

maximal single-peaked domain.53 To the best of our knowledge, the present chapter is the first paper to analyze the structure

of assignment rules on the single-peaked domains.

4.1.2 Organization of the chapter

The organization of this chapter is as follows. In Section 4.2, we introduce basic notions and notations that we use through-

out the chapter. In Section 4.3, we define domains and discuss their properties. In Section 4.4, we define assignment rules

and discuss their standard properties. We present an impossibility result (non-existence of strategy-proof, non-bossy, Pareto

efficient, and strongly pairwise reallocation-proof assignment rules on a minimally rich single-peaked domain) in Section

4.5. Section 4.6 introduces the notion of hierarchical exchange rules. In Section 4.7, we present ourmain result: a character-

49A single-peaked preference is left (right) if every alternative on the left (right) of the peak is preferred to every alternative on the
right (left) of the peak.

50This, in particular, implies that if we replace pairwise reallocation-proofness by its stronger version group-wise reallocation-
proofness, the conclusion of Theorem 4.7.1 does not change.

51Shapley & Scarf (1974) introduce the housing market, a model (with equal number of individuals and objects) in which each
individual owns a unique indivisible object (a house) initially.

52Gale’s TTC is the unique rule to satisfy Pareto efficiency, strategy-proofness, and individual rationality on the unrestricted domain
in the context of housing markets (see Ma (1994)).

53In fact, Bade (2019) shows that the crawler algorithm satisfies a stronger version of strategy-proofness calledOSP-implementability.
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ization of all strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rules

on a minimally rich single-peaked domain as hierarchical exchange rules, and in Section 4.8, we discuss the independence

of these characterizing properties.

4.2 Basic notions and notations

LetN = {1, . . . , n} be a (finite) set of individuals andA be a (non-empty and finite) set of objects. We denote the set of all

strict linear orders over the elements ofA by L(A).54 An element P of L(A) is called a preference overA. For a preference

P ∈ L(A), by R we denote the weak part of P, that is, for all a, b ∈ A, aRb if and only if
[
aPb or a = b

]
. For P ∈ L(A)

and non-empty B ⊆ A, we define τ(P,B) = a if and only if a ∈ B and aPb for all b ∈ B \ {a}. For ease of presentation,

we denote τ(P,A) by τ(P).

We introduce the notion of an allocation of a (non-empty) set of objects B⊆ A over a (non-empty) set of individuals

S ⊆ N. If |S| ≤ |B|, then an allocation assigns a unique object to each individual (some objects will be left unassigned

if |S| < |B|). More formally, an allocation in this scenario is a one-to-one function μ : S → B. On the other hand, if

|B| < |S|, then an allocation assigns each object to a unique individual (some individuals will not be assigned any object).

More formally, an allocation in this scenario is an onto function μ : S → B ∪ {∅} such that μ−1(a) is singleton for all

a ∈ B.

Here, μ(i) = a for some element a of A means individual i is assigned object a in allocation μ, and μ(i) = ∅ means

individual i is not assigned any object in μ. For S ⊆ N and B ⊆ A with |S|, |B| ̸= 0, we denote byM(S,B) the set of all

allocations of B over S. For ease of presentation, we denoteM(N,A) byM.

For ease of presentation we use the following convention throughout the chapter: for a set {1, . . . , g} of integers, when-

ever we refer to the number g+ 1, we mean 1. For instance, if we write st ≥ rt+1 for all t = 1, . . . , g, we mean s1 ≥ r2, . . . ,

sg−1 ≥ rg, and sg ≥ r1.

4.3 Domains and their properties

Each i ∈ N has a preferencePi ∈ L(A) overA. We denote byPi ⊆ L(A) the set of all admissible preferences of individual

i, and by PN = (P1, . . . ,Pn) a n-vector of all the individuals’ preferences, which will be referred to as a preference profile.

ByPN =
n
∏
i=1

Pi we denote the set of all admissible preference profiles.

Given a preference profilePN, we denote by (P′i,P−i) the preference profile obtained fromPN by changing the preference

of individual i from Pi to P′i and keeping all other preferences unchanged.

54A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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Definition 4.3.1. A preference P ∈ L(A) is called single-peaked with respect to an ordering≺∈ L(A) if

(i) for all aj, ak ∈ Awith aj ≺ ak ≺ τ(P), we have akPaj, and

(ii) for all aj, ak ∈ Awith τ(P) ≺ aj ≺ ak, we have ajPak.

A single-peaked preference (with respect to ≺) is called left (right) single-peaked if for all aj, ak ∈ A, aj ≺ τ(P) ≺ ak

implies ajPak (akPaj). A domain of preferences is called single-peaked (with respect to≺) if each preference in it is single-

peaked. A single-peaked domain of preferences is called minimally rich if it contains all left single-peaked and all right

single-peaked preferences.

In the rest of the chapter we assume that for all i ∈ N,Pi is a minimally rich single-peaked domain (with respect to some

(fixed) ordering≺).

4.4 Assignment rules and their properties

In this section, we introduce the notion of assignment rules and discuss a few properties of those.

Definition 4.4.1. A function f : PN → M is called an assignment rule onPN.

For an assignment rule f : PN → M and a preference profile PN ∈ PN, we denote by fi(PN) the object that is assigned

to individual i by the assignment rule f at PN.

An allocation μ Pareto dominates another allocation ν at a preference profile PN if μ(i)Riν(i) for all i ∈ N and

μ(j)Pjν(j) for some j ∈ N.

Definition 4.4.2. An assignment rule f : PN → M is called Pareto efficient at a preference profile PN ∈ PN if there is

no allocation that Pareto dominates f(PN) at PN, and it is called Pareto efficient if it is Pareto efficient at every preference

profile inPN.

Remark 4.4.1. If an assignment rule f : PN → M satisfies Pareto efficiency, then τ(Pj) ∈ ∪
i∈N

{fi(PN)} for all j ∈ N.

In other words, every object that is ranked at the top position by some individual must not be left unassigned. To see this,

note that if τ(Pj) /∈ ∪
i∈N

{fi(PN)} for some j ∈ N, then the allocation μ defined by μ(j) = τ(Pj) and μ(k) = fk(PN) for

all k ̸= j Pareto dominates f(PN) at PN.

Non-bossiness is a standard notion inmatching theory which says that if an individual misreports her preference and her

assignment does not change by the same, then the assignment of any other individual cannot change.55

55The concept of non-bossiness is due to Satterthwaite & Sonnenschein (1981).
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Definition 4.4.3. An assignment rule f : PN → M is non-bossy if for all PN ∈ PN, all i ∈ N, and all P̃i ∈ Pi,

fi(PN) = fi(P̃i,P−i) implies f(PN) = f(P̃i,P−i).

Definition 4.4.4. An assignment rule f : PN → M is strategy-proof if for all PN ∈ PN, all i ∈ N and all P̃i ∈ Pi, we

have fi(PN)Rifi(P̃i,P−i).

Note that if an assignment rule f : PN → M is not strategy-proof, then there exist PN ∈ PN, i ∈ N and P̃i ∈ Pi such

that fi(P̃i,P−i)Pifi(PN). In such cases, we say that the individual i manipulates f at PN via P̃i.

Definition 4.4.5. An assignment rule f : PN → M is group strategy-proof if for all PN ∈ PN, there do not exist a set

of individuals S ⊆ N, and a preference profile P̃S of the individuals in S such that fi(P̃S,P−S)Rifi(PN) for all i ∈ S and

fj(P̃S,P−S)Pjfj(PN) for some j ∈ S.

Proposition 4.4.1. An assignment rule f : PN → M is group strategy-proof if and only if it is strategy-proof and non-bossy.

The proof of this proposition is relegated to Section 4.10.

4.5 An impossibility result

We introduce the notion of strongly pairwise reallocation-proof assignment rules. It says that no pair of individuals can

misreport their preferences and be better off redistributing their assignments ex post.56

Definition 4.5.1. An assignment rule f : PN → M is weakly manipulable through pairwise reallocation if there exist

PN ∈ PN, distinct individuals i, j ∈ N, and P̃i ∈ Pi, P̃j ∈ Pj such that

(i) fj(P̃i, P̃j,P−i,j)Rifi(PN), and

(ii) fi(P̃i, P̃j,P−i,j)Pjfj(PN).

An assignment rule is strongly pairwise reallocation-proof if it is notweaklymanipulable throughpairwise reallocation.

Pápai (2000) mentions that there is no strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-

proof assignment rule on the unrestricted domain, where there are at least three individuals and three objects. Our next

result says that the result holds if we restrict the domain to be minimally rich single-peaked.

Theorem 4.5.1. Suppose |N| ≥ 3 and |A| ≥ 3. Then, there does not exist a strategy-proof, non-bossy, Pareto efficient, and

strongly pairwise reallocation-proof assignment rule onPN.

56Here, we say a group of individuals is better-off if each member in it is weakly better-off and some member is strictly better-off.
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The proof of this theorem is relegated to Section 4.11.

Since group strategy-proofness is equivalent to strategy-proofness and non-bossiness (see Proposition 4.4.1), we obtain

the following corollary from Theorem 4.5.1.

Corollary 4.5.1. Suppose |N| ≥ 3 and |A| ≥ 3. Then, there does not exist a group strategy-proof, Pareto efficient, and

strongly pairwise reallocation-proof assignment rule onPN.

4.6 Hierarchical exchange rules

We introduce the notion of hierarchical exchange rules in this section. These rules are introduced in Pápai (2000) and are

well-known in the literature. We present a description of these rules for the sake of completeness. The description in Section

4.6 is taken fromMandal & Roy (2020).

We introduce some basic definitions from graph theory which we will use in defining hierarchical exchange rules. We

denote a rooted (directed) tree by T. For a tree T, we denote its set of nodes by V(T), set of all edges by E(T), and root by

r(T). For a node v ∈ V(T), we denote the set of all outgoing edges from v by Eout(v). For an edge e ∈ E(T), we denote its

source node by s(e). A path in a tree is a sequence of nodes such that every two consecutive nodes form an edge.

First we explain the notion of a TTC procedure with respect to a given endowments of the objects over the individuals.

Suppose that each object is owned by exactly one individual. Note that an individual may own more than one objects. A

directed graph is constructed in the following manner. The set of nodes is the same as the set of individuals. There is a

directed edge from individual i to individual j if and only if individual j owns individual i’s most preferred object. Note

that such a graph will have exactly one outgoing edge from every node (though possibly many incoming edges to a node).

Further, there may be an edge from a node to itself. It is clear that such a graph will always have a cycle. This cycle is called

a top trading cycle (TTC). After forming a TTC, the individuals in the TTC are assigned their most preferred objects.

4.6.1 Verbal description of hierarchical exchange rules

The following verbal description of hierarchical exchange rules is taken from Pápai (2000). The allocation obtained by

a hierarchical exchange rule can be described by the following iterative procedure. Individuals have an initial individual

“endowment” of objects such that each object is exactly one individual’s endowment. It is important to note that some

individuals may not be endowed with any objects. Now apply the TTC procedure to this market with individual endow-

ments. Notice that individuals who don’t have endowments cannot be part of a top trading cycle, since nobody points to

them, and therefore they need not point. Given that multiple endowments are allowed, after the individuals in top trading

cycles leave the market with their most preferred objects, unassigned objects in the initial endowment sets of individuals
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who received their assignment may be left behind. These objects are reassigned as endowments to individuals who are still

in the market, that is, they are “inherited” by individuals who have not yet received their assignments. Furthermore, the

objects in the initial endowment sets of individuals who are still in the market remain the individual endowments of these

individuals. Thus, notice that each unassigned object is the endowment of exactly one individual who is still in the market.

Now apply the TTC procedure to this reduced market with the new endowments.57 Repeat this procedure until every in-

dividual has her assignment or all the objects are assigned. Since there exists at least one top trading cycle in every stage, this

procedure leads to an allocation of the objects in a finite number of stages. In particular, there are at most as many stages as

there are individuals or objects, whichever number is smaller, since in each stage at least one person receives her assignment.

Furthermore, for any strict preferences of the individuals, the resulting allocation is unique.

Ahierarchical exchange rule is determined by the initial endowments and the hierarchical endowment inheritance in later

stages. While the initial endowment sets are given a priori, the hierarchical endowment inheritance may be endogenous. In

particular, the inheritance of endowments may depend on the assignments made in earlier stages.

We explain how a hierarchical exchange rule works by means of the following example.

Example 4.6.1. SupposeN = {1, 2, 3} and A = {a1, a2, a3, a4} with a prior order a1 ≺ a2 ≺ a3 ≺ a4. A hierarchical

exchange rule is based on a collection of inheritance trees, one tree for each object. Wewill define this notion formally; for the

time being we explain it through the current example. Figure 4.1 presents a collection of inheritance trees Γa1 , . . . , Γa4 . To

understand their structure, let us look at one of them, say Γa1 . Each maximal path of this tree has min{|N|, |A|} − 1 = 2

edges. In any maximal path, each individual appears at most once at the nodes. For instance, individuals 1, 2 and 3 appear

at the nodes (in that order) in the left most path of Γa1 . Each object other than a1 appears exactly once at the outgoing edges

from the root (thus there are three edges from the root). For every subsequent node which is not the end node of a maximal

path, each object other than a1, that has not already appeared in the path from the root to that node, appears exactly once

at the outgoing edges from that node. For instance, consider the node marked with 2 in the left most path of Γa1 . Since this

node is not the end node of the left most maximal path and object a2 has already appeared at the edge from the root to this

node, objects a3 and a4 appear exactly once at the outgoing edges from this node. Thus, each object other than a1 appears

at most once at the edges in any maximal path of Γa1 . For instance, objects a2 and a3 appear at the edges (in that order) in

the left most path of Γa1 . It can be verified that other inheritance trees have the same structure.

57In this TTC procedure, an individual i point to an individual j if j owns i’s most preferred object among the remaining objects.
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Figure 4.1: Inheritance trees for Example 4.6.1

Consider the hierarchical exchange rule based on the collection of inheritance trees given in Figure 4.1. We explain how

to compute the outcome of the rule at a given preference profile. Consider the preference profile PN as given below:

P1 P2 P3

a2 a1 a1

a1 a2 a2

a3 a3 a3

a4 a4 a4

Table 4.1: Preference profile for Example 4.6.1

The outcome is computed through a number of stages. In each stage, endowments of the individuals are determined by

means of the inheritance trees and TTC procedure is performed with respect to the endowments.

Stage 1.

In Stage 1, the “owner” of an object a is the individual who is assigned to the root-node of the inheritance tree Γa. Thus,

object a1 is owned by individual 1, objects a2 and a3 are owned by individual 2, and object a4 is owned by individual 3.
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Once the endowments of the individuals are decided, TTC procedure is performed with respect to the endowments to

decide the outcome of Stage 1. Individuals who are assigned some object in Stage 1 leave themarket with the corresponding

objects. It can be verified that for the preference profile PN given in Table 4.1, individual 1 gets object a2 and individual 2

gets object a1 at the outcome of TTC procedure in this stage. So, individuals 1 and 2 leave the market with objects a2 and

a1, respectively.

Stage 2.

As in Stage 1, the endowments of the individuals are decided first and then TTC procedure is performed with respect to

the endowments. To decide the owner of a (remaining) object a, look at the root of the inheritance tree Γa. If the individual

who appears there, say individual i, is remained in the market, then i becomes the owner of a. Otherwise, that is, if i is

assigned an object in Stage 1, say b, then follow the edge from the root that is marked with b. If the individual appearing at

the node following this edge, say j, is remained in themarket, then jbecomes the owner of a. Otherwise, that is, if j is assigned

an object in Stage 1, say c, then follow the edge that is marked with c from the current node. As before, check whether the

individual appearing at the end of this edge is remained in the market or not. Continue in this manner until an individual

is found in the particular path who is not already assigned an object and decide that individual as the owner of a.

For the example at hand, the remainingmarket in Stage 2 consists of objects a3 and a4, and individual 3. Consider object

a3. Individual 2 appears at the root of Γa3 . Since individual 2 is assigned object a1 in Stage 1, we follow the edge from the

root that is marked with a1 and come to individual 1. Since individual 1 is assigned object a2, we follow the edge marked

with a2 from this node and come to individual 3. Since individual 3 is remained in the market, she becomes the owner of

a3. For object a4, individual 3 appears at the root of Γa4 and she is remained in the market. So, individual 3 becomes the

owner of a4 in Stage 2. To emphasize the process of deciding the owner of an object, we have highlighted the node in red in

the corresponding inheritance tree in Figure 4.2.
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Figure 4.2: Stage 2

Once the endowments are decided for Stage 2, TTC procedure is performed with respect to the endowments to decide
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the outcome of this stage. As in Stage 1, individuals who are assigned some object in Stage 2 leave the market with the

corresponding objects. It can be verified that for the current example, individual 3 gets object a3 in this stage. So, individual

3 leave the market with objects a3.

Stage 3 is followed on the remaining market in a similar way as Stage 2. For the current example, everybody is assigned

some object by the end of Stage 2 and hence the algorithm stops in this stage. Thus, individuals 1, 2, and 3 get objects a2,

a1, and a3, respectively, at the outcome of the hierarchical exchange rule.

4.6.2 Formal definition of hierarchical exchange rules

In what follows, we present a formal description of hierarchical exchange rules.

Inheritance trees

For a rooted tree T, the level of a node v ∈ V(T) is defined as the number of edges appearing in the (unique) path from

r(T) to v.

Definition 4.6.1. For an object a ∈ A, an inheritance tree for a ∈ A is defined as a tuple Γa = ⟨Ta, ζNI
a , ζEOa ⟩, where

(i) Ta is a rooted tree with

(a) max
v∈V(Ta)

level(v) = min{|N|, |A|} − 1, and

(b) |Eout(v)| = |A| − level(v)− 1 for all v ∈ V(Ta) with level(v) < min{|N|, |A|} − 1,

(ii) ζNI
a : V(Ta) → N is a nodes-to-individuals function with ζNI

a (v) ̸= ζNI
a (ṽ) for all distinct v, ṽ ∈ V(Ta) that appear

in same path, and

(iii) ζEOa : E(Ta) → A \ {a} is an edges-to-objects function with ζEOa (e) ̸= ζEOa (ẽ) for all distinct e, ẽ ∈ E(Ta) that

appear in same path or have same source node (that is, s(e) = s(ẽ)).

In what follows, we provide two examples (for two different scenarios) of inheritance trees.

Example 4.6.2. SupposeN = {1, 2, 3} and A = {a1, a2, a3, a4} with a prior order a1 ≺ a2 ≺ a3 ≺ a4.58 Figure 4.3

presents an example of Γa1 .

58The ordering≺ over A does not play any role in the definition of an inheritance tree.
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Figure 4.3: Example of Γa1

Example 4.6.3. Suppose N = {1, 2, 3, 4} and A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Figure 4.4 presents

another example of Γa1 .
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Figure 4.4: Example of Γa1

Endowments

A hierarchical exchange rule works in several stages and in each stage, endowments of individuals are determined by using a

(fixed) collection of inheritance trees.

Given a collection of inheritance trees Γ = (Γa)a∈A, one for each object a ∈ A, we define a class of endowments EΓ as

follows:

(i) The initial endowment EΓ
i (∅) of individual i is given by

EΓ
i (∅) = {a ∈ A | ζNI

a (r(Ta)) = i}.

(ii) For all S ⊆ N \ {i} and B ⊆ A with |S| = |B| ̸= 0, and all μ̂ ∈ M(S,B), the endowment EΓ
i (μ̂) of individual i
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is given by

EΓ
i (μ̂) ={a ∈ A \ B | ζNI

a (r(Ta)) = i, or

there exists a path (v1a, . . . , vraa ) from r(Ta) to vraa in Γa such that ζNI
a (vraa ) = i

and for all s = 1, . . . , ra − 1, we have ζNI
a (vsa) ∈ S and μ̂(ζNI

a (vsa)) = ζEOa (vsa, vs+1
a )}.

Iterative procedure to compute the outcome of a hierarchical exchange rule

For a given collection of inheritance trees Γ = (Γa)a∈A, the hierarchical exchange rule fΓ associated with Γ is defined by

an iterative procedure with at most min{|N|, |A|} number of stages. Consider a preference profile PN ∈ PN.

Stage 1.

Hierarchical Endowments (Initial Endowments): For all i ∈ N, E1(i,PN) = EΓ
i (∅).

Top Choices: For all i ∈ N, T1(i,PN) = τ(Pi).

Trading Cycles: For all i ∈ N,

C1(i,PN) =



{j1, . . . , jg} if there exist j1, . . . , jg ∈ N such that

for all s = 1, . . . , g, T1(js,PN) ∈ E1(js+1,PN), and

for some ŝ = 1, . . . , g, jŝ = i;

∅ otherwise.

Since each individual can be in at most one trading cycle, C1(i,PN) is well-defined for all i ∈ N. Furthermore, since both

the number of individuals and the number of objects are finite, there is always at least one trading cycle. Note that C1(i,

PN) = {i} if T1(i,PN) ∈ E1(i,PN).

Assigned Individuals: W1(PN) = {i | C1(i,PN) ̸= ∅}.

Assignments: For all i ∈ W1(PN), fΓi (PN) = T1(i,PN).

Assigned Objects: F1(PN) = {T1(i,PN) | i ∈ W1(PN)}.

...

This procedure is repeated iteratively in the remaining reducedmarket. For each stage t, defineWt(PN) =
t
∪
u=1

Wu(PN)

and Ft(PN) =
t
∪
u=1

Fu(PN). In what follows, we present Stage t+ 1 of fΓ.
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Stage t+ 1.

Hierarchical Endowments (Non-initial Endowments): Let μt ∈ M(Wt(PN), Ft(PN)) such that for all i ∈ Wt(PN),

μt(i) = fΓi (PN).

For all i ∈ N \Wt(PN), Et+1(i,PN) = EΓ
i (μt).

Top Choices: For all i ∈ N \Wt(PN), Tt+1(i,PN) = τ(Pi,A \ Ft(PN)).

Trading Cycles: For all i ∈ N \Wt(PN),

Ct+1(i,PN) =



{j1, . . . , jg} if there exist j1, . . . , jg ∈ N \Wt(PN) such that

for all s = 1, . . . , g, Tt+1(js,PN) ∈ Et+1(js+1,PN), and

for some ŝ = 1, . . . , g, jŝ = i;

∅ otherwise.

Assigned Individuals: Wt+1(PN) = {i | Ct+1(i,PN) ̸= ∅}.

Assignments: For all i ∈ Wt+1(PN), fΓi (PN) = Tt+1(i,PN).

Assigned Objects: Ft+1(PN) = {Tt+1(i,PN) | i ∈ Wt+1(PN)}.

...

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned. The hierarchical

exchange rule fΓ associated with Γ is defined as follows. For all i ∈ N,

fΓi (PN) =


Tt(i,PN) if i ∈ Wt(PN) for some stage t;

∅ otherwise.

Since for every preference profile PN and every individual i, there exists at most one stage t such that i ∈ Wt(PN), fΓ is

well-defined.

Remark 4.6.1. Note that a collection of inheritance trees do not uniquely identify a hierarchical exchange rule. More

formally, two different collections of inheritance trees Γ and Γ may give rise to the same hierarchical exchange rule, that is,

fΓ ≡ fΓ.
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4.7 A characterization of hierarchical exchange rules

We introduce the notion of top-envy-proofness for an assignment rule. It says that if an individual i is assigned the most

preferred object of another individual j, then no matter how the individual j misreports her preference, individual i can-

not be worse-off.59 Thus, if an individual (here, j) is envious at another individual (here, i) for getting her (here, j’s) top-

ranked object, then the former one can never harm the latter. As the name suggests, top-envy-proofness is weaker than

envy-proofness (that is, envy-proofness implies top-envy-proofness).60 Loosely speaking, top-envy-proofness can be viewed

as envy-proofness with respect to the top-ranked object of the envious individual.

Definition 4.7.1. An assignment rule f : PN → M satisfies top-envy-proofness condition if for all PN ∈ PN and all

distinct i, j ∈ N, τ(Pj) = fi(PN) implies fi(P̃j,P−j)Rifi(PN) for all P̃j ∈ Pj.

Next, we introduce the notion of an assignment rule beingmanipulable through pairwise reallocation. It captures the idea

of manipulation where two individuals simultaneously misreport their preferences and finally benefit (with respect to their

original assignments) by reshuffling their assignments that they obtain at the misreported preference profile. It further says

that if any one of the two individuals misreports her preference as “planned”, then her assignment will not depend whether

the other individual misreports her preference as planned or reports truthfully.

Definition 4.7.2. An assignment rule f : PN → M ismanipulable through pairwise reallocation if there exist PN ∈ PN,

individuals i, j ∈ N; i ̸= j, and P̃i ∈ Pi, P̃j ∈ Pj such that

(i) fj(P̃i, P̃j,P−i,j)Rifi(PN),

(ii) fi(P̃i, P̃j,P−i,j)Pjfj(PN), and

(iii) fi(P̃i, P̃j,P−i,j) = fi(P̃i,Pj,P−i,j) and fj(P̃i, P̃j,P−i,j) = fj(Pi, P̃j,P−i,j).

An assignment rule is pairwise reallocation-proof if it is not manipulable through pairwise reallocation.

Our next result provides a characterization of hierarchical exchange rules.

Theorem 4.7.1. An assignment rule f : PN → M is strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise

reallocation-proof if and only if it is a hierarchical exchange rule.

59Svensson & Larsson (2005) introduce the notion of implicit property rights of an assignment rule. It can be verified that a strategy-
proof and Pareto efficient assignment rule reveals implicit property rights if it satisfies top-envy-proofness.

60An assignment rule f : PN → M satisfies envy-proofness condition if for all PN ∈ PN and all distinct i, j ∈ N, fi(PN)Pjfj(PN)
implies fi(P̃j,P−j)Rifi(PN) for all P̃j ∈ Pj.
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The proof of this theorem is relegated to Section 4.12.

Since group strategy-proofness is equivalent to strategy-proofness and non-bossiness (see Proposition 4.4.1), we obtain

the following corollary from Theorem 4.7.1.

Corollary 4.7.1. An assignment rule f : PN → M is group strategy-proof, Pareto efficient, top-envy-proof, and pairwise

reallocation-proof if and only if it is a hierarchical exchange rule.

We now strengthen the notion of pairwise reallocation-proof by group-wise reallocation-proof. As the name suggests,

instead of a pair of individuals, arbitrary groups of individuals are considered in group-wise reallocation-proof. Thus,

group-wise reallocation-proof ensures that no group of individuals can be better off by misreporting their preferences and

redistributing the objects they obtain at the misreported preference profile. Condition (iii) in Definition 4.7.2 is suitably

modified for group of individuals.

To ease our presentation, for an assignment rule f, a preference profilePN, and a set of individuals S, we denote by fS(PN)

the allocation over S according to f(PN). More formally, fS(PN) is the allocation μ over S such that μ(i) = fi(PN) for all

i ∈ S. With slight abuse of notation, by {fS(PN)} we denote the set of objects which are assigned to the individuals in S at

PN, that is, {fS(PN)} := {a ∈ A | fi(PN) = a for some i ∈ S}.

Definition 4.7.3. An assignment rule f : PN → M ismanipulable through group-wise reallocation if there existPN ∈ PN,

a set of individuals S ⊆ N, a preference profile P̃S of the individuals in S, and an allocation μ̂ of {fS(P̃S,P−S)} over Swhere

μ̂ ̸= fS(P̃S,P−S) such that

(i) μ̂(i)Rifi(PN) for all i ∈ S,

(ii) μ̂(j)Pjfj(PN) for some j ∈ S, and

(iii) fi(P̃i, P̃S\{i},P−S) = fi(P̃i,PS\{i},P−S) for all i ∈ S.

An assignment rule is group-wise reallocation-proof if it is not manipulable through group-wise reallocation.

Proposition 4.7.1. Every hierarchical exchange rule satisfies group-wise reallocation-proofness.

The proof of this proposition is relegated to Section 4.13.

We obtain the following corollary from Theorem 4.7.1 and Proposition 4.7.1.

Corollary 4.7.2. An assignment rule f : PN → M is strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and group-

wise reallocation-proof if and only if it is a hierarchical exchange rule.

The next corollary is obtained by combining Corollary 4.7.1 and Proposition 4.7.1.
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Corollary 4.7.3. An assignment rule f : PN → M is group strategy-proof, Pareto efficient, top-envy-proof, and group-wise

reallocation-proof if and only if it is a hierarchical exchange rule.

4.8 Independence of the conditions in Theorem 4.7.1

In this section,we showthat strategy-proofness, Pareto efficiency, top-envy-proofness, non-bossiness andpairwise reallocation-

proofness are all independent for a hierarchical exchange rule. In particular, we show that no four of those conditions imply

the fifth one.

Example 4.8.1. In this example,we showthatPareto efficiency, top-envy-proofness, non-bossiness, andpairwise reallocation-

proofness do not imply strategy-proofness. Consider an allocation problemwith three individualsN = {1, 2, 3} and three

objects A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Consider the assignment rule f such that

f =


Serial dictatorship with priority (1 ≻ 3 ≻ 2) if τ(P1) = τ(P2) = a1, and τ(P3) = a2;

Serial dictatorship with priority (1 ≻ 2 ≻ 3) otherwise.

Consider the preference profiles PN = (a1a2a3, a1a2a3, a2a1a3) and P̃N = (a1a2a3, a2a1a3, a2a1a3).61 Note that only

individual 2 changes her preference from PN to P̃N. This, together with the facts f2(PN) = a3, f2(P̃N) = a2, and a2P2a3,

implies f is not strategy-proof. It can be easily verified that f is Pareto efficient, top-envy-proof, non-bossy, and pairwise

reallocation-proof.

Example 4.8.2. In this example,we showthat strategy-proofness, top-envy-proofness, non-bossiness, andpairwise reallocation-

proofness do not imply Pareto efficiency. Define f such that fi(PN) = ∅ for all i ∈ N and all PN. It is easy to verify that

f satisfies strategy-proofness, top-envy-proofness, non-bossiness, and pairwise reallocation-proofness. However, from Re-

mark 4.4.1, it follows that f does not satisfy Pareto efficiency.

Example 4.8.3. In this example,we showthat strategy-proofness, Pareto efficiency, non-bossiness, andpairwise reallocation-

proofness donot imply top-envy-proofness condition. Consider an allocationproblemwith three individualsN = {1, 2, 3}

and four objects A = {a1, a2, a3, a4} with a prior order a1 ≺ a2 ≺ a3 ≺ a4. Consider the assignment rule f such that

f =


Serial dictatorship with priority (2 ≻ 1 ≻ 3) if τ(P1) = τ(P2) = a1, and τ(P3) = a4;

Serial dictatorship with priority (1 ≻ 2 ≻ 3) otherwise.

Consider the preference profiles PN = (a1a2a3a4, a1a2a3a4, a1a2a3a4) and P̃N = (a1a2a3a4, a1a2a3a4, a4a3a2a1).

Note that only individual 3 changes her preference from PN to P̃N. This, together with the facts f1(PN) = a1, τ(P3) = a1,

61Here, we denote by (a1a2a3, a2a3a1, a3a2a1) a preference profile where individuals 1, 2 and 3 have preferences a1a2a3, a2a3a1,
and a3a2a1, respectively.
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f1(P̃N) = a2, and a1P1a2, implies f is not top-envy-proof. It can be easily verified that f is strategy-proof, Pareto efficient,

non-bossy, and pairwise reallocation-proof.

Example 4.8.4. In this example,we showthat strategy-proofness, Pareto efficiency, top-envy-proofness, andpairwise reallocation-

proofness do not imply non-bossiness. Consider an allocation problem with three individuals N = {1, 2, 3} and three

objects A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Consider the assignment rule f such that

f =


Serial dictatorship with priority (1 ≻ 2 ≻ 3) if a1P1a3;

Serial dictatorship with priority (1 ≻ 3 ≻ 2) if a3P1a1.

Consider the preference profiles PN = (a2a1a3, a2a1a3, a2a1a3) and P̃N = (a2a3a1, a2a1a3, a2a1a3). Note that only

individual 1 changes her preference from PN to P̃N. This, together with the facts f(PN) = [(1, a2), (2, a1), (3, a3)] and

f(P̃N) = [(1, a2), (2, a3), (3, a1)], implies f is not non-bossy. It is easy to verify that f is strategy-proof, Pareto efficient,

top-envy-proof, and pairwise reallocation-proof.

Example 4.8.5. In this example, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, and non-bossiness

do not imply pairwise reallocation-proofness. Consider an allocation problem with three individuals N = {1, 2, 3} and

three objects A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Consider the hierarchical exchange rule fΓ based on the

collection of inheritance trees given in Figure 4.5. Consider the assignment rule f such that

f =


Serial dictatorship with priority (2 ≻ 1 ≻ 3) if τ(P1) = τ(P2) = a3, and τ(P3) = a1;

fΓ otherwise.

Consider the preference profile PN = (a3a2a1, a3a2a1, a1a2a3) and the preferences P̃1 ∈ P1, P̃3 ∈ P3 such that

τ(P̃1) = a1 and τ(P̃3) = a3. It follows from the construction of f that f(PN) = [(1, a2), (2, a3), (3, a1)], f1(P̃1,P2,

P̃3) = f1(P̃1,P2,P3) = a1, f3(P̃1,P2, P̃3) = f3(P1,P2, P̃3) = a3. These facts, along with the fact a3P1a2, together imply

f is not pairwise reallocation-proof. It can be easily verified that f is strategy-proof, Pareto efficient, top-envy-proof, and

non-bossy.
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Figure 4.5: Inheritance trees for Example 4.8.5

Remark 4.8.1. The examples in this section also demonstrate that strategy-proofness, Pareto efficiency, top-envy-proofness,

non-bossiness, and group-wise reallocation-proofness are all independent for a hierarchical exchange rule. To see this note

that except for Example 4.8.2, all other examples deal with three individuals, and Pareto efficiency and pairwise reallocation-

proofness together imply group-wise reallocation-proofness in such cases. The fact that the assignment rule in Example

4.8.2 satisfies group-wise reallocation-proofness is straightforward, and the assignment rule in Example 4.8.5 is not pairwise

reallocation-proof (while being strategy-proof, Pareto efficient, top-envy-proof, and non-bossy), so it will not be group-wise

reallocation-proof either.

4.9 Preliminaries for the proofs

For a, b ∈ A, let P(a;b) be a single-peaked preference (with respect to the given ordering≺) such that

(i) τ(P(a;b)) = a, and

(ii) P(a;b) is a left (right) single-peaked preference if b ⪯ a (a ≺ b).62

Remark 4.9.1. Since Pi is minimally rich single-peaked domain of preferences (with respect to the given ordering≺) for

all i ∈ N, we have P(a;b) ∈ Pi for all i ∈ N and all a, b ∈ A.
62By⪯ we denote the weak part of≺, that is, for all a, b ∈ A, a ⪯ b if and only if

[
a ≺ b or a = b

]
.
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4.10 Proof of Proposition 4.4.1

(If part)Assume for contradiction that f is not group strategy-proof. Since f is not group strategy-proof, there exist PN ∈

PN, S ⊆ N, andP′S ∈ ∏
i∈S

Pi such that fi(P′S,P−S)Rifi(PN) for all i ∈ S and fj(P′S,P−S)Pjfj(PN) for some j ∈ S. Consider

the profile of preferences P̃S ∈ ∏
i∈S

Pi such that for all i ∈ S,

P̃i =


P(fi(P′S,P−S);fi(PN)) if fi(PN) ̸= ∅;

P′i if fi(PN) = ∅.

It follows from the construction of P̃S and Remark 4.9.1 that P̃S is well-defined.

First, we show that f(P̃S,P−S) = f(PN). Fix j ∈ S.

Claim 4.10.1. f(P̃j,P−j) = f(PN).

Proof of Claim 4.10.1. Suppose fj(PN) = ∅. Then, by strategy-proofness, we have fj(P̃j,P−j) = ∅. Since fj(PN) = ∅

and fj(P̃j,P−j) = ∅, by non-bossiness, we have

f(P̃j,P−j) = f(PN). (4.1)

Now, suppose fj(PN) ̸= ∅. Then, by strategy-proofness, we have fj(P̃j,P−j)R̃jfj(PN). Suppose fj(P̃j,P−j)P̃jfj(PN).

Since fj(P̃j,P−j)P̃jfj(PN), it follows from the construction of P̃j that

fj(P′S,P−S) ̸= fj(PN), and (4.2a)

fj(P′S,P−S) ⪯ fj(P̃j,P−j) ≺ fj(PN) or fj(PN) ≺ fj(P̃j,P−j) ⪯ fj(P′S,P−S). (4.2b)

Since fi(P′S,P−S)Rifi(PN) for all i ∈ S, by (4.2a) we have fj(P′S,P−S)Pjfj(PN). This, together with (4.2b), implies fj(P̃j,

P−j)Pjfj(PN), a contradiction to strategy-proofness. So, it must be that fj(P̃j,P−j) = fj(PN). By non-bossiness, the fact

fj(P̃j,P−j) = fj(PN) implies

f(P̃j,P−j) = f(PN). (4.3)

(4.1) and (4.3) together complete the proof of Claim 4.10.1. □

Continuing in this manner, we canmove the preferences of all individuals j ∈ S, from the preference Pj to P̃j one by one

and obtain

f(P̃S,P−S) = f(PN). (4.4)
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Next, we show that f(P̃S,P−S) = f(P′S,P−S). Fix j ∈ S. By strategy-proofness, we have fj(P̃j,P′S\{j},P−S)R̃jfj(P′S,

P−S). Moreover, it follows from the construction of P̃j that either τ(P̃j) = fj(P′S,P−S) or P̃j = P′j . This, together with the

fact fj(P̃j,P′S\{j},P−S)R̃jfj(P′S,P−S), implies fj(P̃j,P′S\{j},P−S) = fj(P′S,P−S). By non-bossiness, the fact fj(P̃j,P′S\{j},

P−S) = fj(P′S,P−S) implies

f(P̃j,P′S\{j},P−S) = f(P′S,P−S).

Continuing in this manner, we can move the preferences of all individuals j ∈ S, from the preference P′j to P̃j one by one

and obtain

f(P̃S,P−S) = f(P′S,P−S). (4.5)

However, (4.4) and (4.5) together imply f(P′S,P−S) = f(PN), a contradiction to the fact that fj(P′S,P−S)Pjfj(PN) for

some j ∈ S. This completes the proof of the “if” part of Proposition 4.4.1.

(Only-if part) It is obvious that group strategy-proofness implies strategy-proofness and non-bossiness. ■

4.11 Proof of Theorem 4.5.1

Suppose A = {a1, a2, . . . , am} with a prior order a1 ≺ a2 ≺ · · · ≺ am, wherem ≥ 3. Assume for contradiction that

there exists a strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-proof assignment rule f on PN.

SincePi is minimally rich for all i ∈ N, there exists a preference profile P1N ∈ PN such that P1i = a2a1a3 . . . for all i ∈ N.

Since |N| ≥ 3, by Pareto efficiency, we have {a1, a2, a3} ⊆ ∪
i∈N

{fi(P1N)}. Without loss of generality, assume f1(P1N) = a1,

f2(P1N) = a2, and f3(P1N) = a3.

SincePi is minimally rich for all i ∈ N, we can construct the preference profiles presented in Table 4.2. Here, l denotes

an individual other than 1, 2, 3 (if any). Note that such an individual does not change her preference across the mentioned

preference profiles.

Preference profiles Individual 1 Individual 2 Individual 3 . . . Individual l

P2N a2 . . . ama1 a1a2a3 . . . a2a1a3 . . . . . . a2a1a3 . . .

P3N a2 . . . ama1 a2a1a3 . . . a2a1a3 . . . . . . a2a1a3 . . .

Table 4.2: Preference profiles for Theorem 4.5.1

Since f1(P1N) = a1 and f2(P1N) = a2, it follows from strong pairwise reallocation-proofness of f that

f1(P2N) = a2 and f2(P2N) = a1. (4.6)
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By (4.6) we have f2(P2N) = a1. This, together with strategy-proofness of f, implies f2(P3N) ∈ {a1, a2}. Suppose

f2(P3N) = a1. Since f2(P2N) = a1 and f2(P3N) = a1, by non-bossiness and (4.6), we have f1(P3N) = a2. However,

since a2P11a1, the facts f1(P1N) = a1 and f1(P3N) = a2 together contradict strategy-proofness of f. So, it must be that

f2(P3N) = a2. (4.7)

Since f1(P1N) = a1 and f3(P1N) = a3, (4.7) together with strong pairwise reallocation-proofness of f, implies that

f1(P3N) = a3, f2(P3N) = a2, and f3(P3N) = a1. (4.8)

By (4.8) we have f2(P3N) = a2 and f3(P3N) = a1. Combining these facts with strong pairwise reallocation-proofness of

f, we have f2(P2N) = a1 and f3(P2N) = a2. However, the fact that f3(P2N) = a2 contradicts (4.6). This completes the proof

of Theorem 4.5.1. ■

4.12 Proof of Theorem 4.7.1

To prove Theorem 4.7.1, we use the notations introduced in Section 4.6. Furthermore, for a preference profile PN ∈ PN

and a hierarchical exchange rule, we assume F0(PN) = ∅ andW0(PN) = ∅.

The following lemma is taken fromPápai (2000). She proves this lemma for the unrestricted domain. SincePN is a subset

of the unrestricted domain, the result holds forPN as well.

Lemma 4.12.1 (Lemma 4 in Pápai (2000)). Let fΓ be a hierarchical exchange rule, PN ∈ PN, and i, j ∈ N. Suppose

i ∈ Ws(PN) and fΓj (PN) ̸= fΓj (P̃i,P−i) for some P̃i ∈ Pi. Then, either j ∈ Cs(i,PN) or j /∈ Ws(PN).

We obtain the following lemma from Lemma 4.12.1.

Lemma 4.12.2. Let fΓ be a hierarchical exchange rule and PN ∈ PN. Suppose i ∈ Wsi(PN), j ∈ Wsj(PN) and si < sj.

Then, fΓi (P̄j,P−j) = fΓi (PN) for all P̄j ∈ Pj.

Lemma 4.12.3 establishes a property which says that if an individual j prefers the assignment of another individual i of a

hierarchical exchange rule, then it must be that i is assigned before j.

Lemma 4.12.3. Let fΓ be a hierarchical exchange rule and PN ∈ PN. Suppose i ∈ Wsi(PN) and j ∈ Wsj(PN) such that

fΓi (PN)PjfΓj (PN). Then, si < sj.
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Proof of Lemma 4.12.3. Assume for contradiction that sj ≤ si. Since j ∈ Wsj(PN), by the definition of fΓ, we have

fΓj (PN) = τ(Pj,A \ Fsj−1(PN)). Furthermore, the fact i ∈ Wsi(PN) together with the definition of fΓ, implies that

fΓi (PN) ∈ A \ Fsi−1(PN). This, together with the fact sj ≤ si, yields fΓi (PN) ∈ A \ Fsj−1(PN). However, the facts that

fΓj (PN) = τ(Pj,A \ Fsj−1(PN)) and fΓi (PN) ∈ A \ Fsj−1(PN) together contradict the fact fΓi (PN)PjfΓj (PN). This completes

the proof of Lemma 4.12.3. ■

4.12.1 Proof of the “if” part of Theorem 4.7.1

It follows from Pápai (2000) that every hierarchical exchange rule satisfies strategy-proofness, Pareto efficiency, top-envy-

proofness, and non-bossiness on the unrestricted domain.63 Since PN is a subset of the unrestricted domain, it follows

that every hierarchical exchange rule satisfies strategy-proofness, Pareto efficiency, top-envy-proofness, and non-bossiness

onPN. In what follows, we show that every hierarchical exchange rule satisfies pairwise reallocation-proofness onPN.

Let fΓ be a hierarchical exchange rule on PN. Assume for contradiction that fΓ does not satisfy pairwise reallocation-

proofness. Then, there must exist PN ∈ PN, distinct i, j ∈ N, and P̃i ∈ Pi, P̃j ∈ Pj such that

(i) fΓj (P̃i, P̃j,P−i,j)RifΓi (PN),

(ii) fΓi (P̃i, P̃j,P−i,j)PjfΓj (PN), and

(iii) fΓi (P̃i, P̃j,P−i,j) = fΓi (P̃i,P−i) and fΓj (P̃i, P̃j,P−i,j) = fΓj (P̃j,P−j).

Claim 4.12.1. fΓi (PN) and fΓj (PN) are distinct objects.

Proof of Claim 4.12.1. Suppose fΓi (PN) = ∅. Since fΓ is strategy-proof, fΓi (PN) = ∅ implies fΓi (P̃i,P−i) = ∅. How-

ever, the facts that fΓi (P̃i,P−i) = ∅ and fΓi (P̃i, P̃j,P−i,j) = fΓi (P̃i,P−i) together imply fΓi (P̃i, P̃j,P−i,j) = ∅, a contradic-

tion to the fact fΓi (P̃i, P̃j,P−i,j)PjfΓj (P). So, it must be that

fΓi (PN) ̸= ∅. (4.9)

Since fΓj (P̃i, P̃j,P−i,j)RifΓi (PN), (4.9) implies fΓj (P̃i, P̃j,P−i,j) ̸= ∅. This, together with the fact fΓj (P̃i, P̃j,P−i,j) =

fΓj (P̃j,P−j), implies fΓj (P̃j,P−j) ̸= ∅. Since fΓ is strategy-proof, fΓj (P̃j,P−j) ̸= ∅ implies

fΓj (PN) ̸= ∅. (4.10)

(4.9) and (4.10) together complete the proof of Claim 4.12.1. □
63For details see Lemma 1, Lemma 7, and the main theorem of Pápai (2000).
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It follows from Claim 4.12.1 that there exist stages si and sj of fΓ at PN such that i ∈ Wsi(PN) and j ∈ Wsj(PN). Now,

we complete the proof by distinguishing two cases.

Case 1: Suppose sj ≤ si.

Since fΓ is Pareto efficient, fΓi (P̃i, P̃j,P−i,j)PjfΓj (PN) implies that there exists k ∈ N \ {j} such that fΓk(PN) = fΓi (P̃i, P̃j,

P−i,j). The facts fΓi (P̃i, P̃j,P−i,j)PjfΓj (PN) and fΓk(PN) = fΓi (P̃i, P̃j,P−i,j) together imply fΓk(PN)Pjf
Γ
j (PN) and fΓk(PN) ∈

A. It follows from the fact fΓk(PN) ∈ A that there exists a stage sk of fΓ at PN such that k ∈ Wsk(PN). Since j ∈ Wsj(PN),

k ∈ Wsk(PN), and fΓk(PN)Pjf
Γ
j (PN), by Lemma 4.12.3, we have sk < sj. This, together with the fact sj ≤ si, implies sk < si.

Since i ∈ Wsi(PN), k ∈ Wsk(PN), and sk < si, by Lemma 4.12.2, we have

fΓk(PN) = fΓk(P̃i,P−i). (4.11)

Furthermore, the facts i ∈ Wsi(PN), k ∈ Wsk(PN), and sk < si together imply i ̸= k. Since fΓk(PN) ∈ A and i ̸= k,

(4.11) implies

fΓk(PN) ̸= fΓi (P̃i,P−i). (4.12)

However, the facts fΓi (P̃i, P̃j,P−i,j) = fΓi (P̃i,P−i) and fΓk(PN) = fΓi (P̃i, P̃j,P−i,j) together contradict (4.12).

Case 2: Suppose si < sj.

If fΓj (P̃i, P̃j,P−i,j)PifΓi (PN), then the proof follows using a similar logic as for Case 1. Since fΓj (P̃i, P̃j,P−i,j)RifΓi (PN), let

us assume

fΓj (P̃i, P̃j,P−i,j) = fΓi (PN). (4.13)

Since i ∈ Wsi(PN), j ∈ Wsj(PN), and si < sj, by Lemma 4.12.2, we have

fΓi (P̃j,P−j) = fΓi (PN). (4.14)

Furthermore, since fΓj (P̃j,P−j) = fΓj (P̃i, P̃j,P−i,j), by (4.13) and (4.14), we have

fΓi (P̃j,P−j) = fΓj (P̃j,P−j) = fΓi (PN). (4.15)

However, by Claim 4.12.1, we have fΓi (PN) ∈ A. Since fΓi (PN) ∈ A and i ̸= j, (4.15) implies that fΓ(P̃j,P−j) is not an

allocation, a contradiction.

Since Cases 1 and 2 are exhaustive, it follows that fΓ satisfies pairwise reallocation-proofness onPN.
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4.12.2 Proof of the “only-if” part of Theorem 4.7.1

Let f be a strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rule. We

will show that f is a hierarchical exchange rule.

Construction of the inheritance trees based on f

Fix a ∈ A. We proceed to construct an inheritance tree Γa = ⟨Ta, ζNI
a , ζEOa ⟩ for a ∈ A. Let Ta be a rooted tree that satisfies

Condition (i) of Definition 4.6.1. Let ζEOa : E(Ta) → A \ {a} be an edges-to-objects function that satisfies Condition

(iii) of Definition 4.6.1. We will define ζNI
a : V(Ta) → N, a nodes-to-individuals function, in accordance with property

Condition (ii) of Definition 4.6.1 based on f.

LetP0
N ⊆ PN be the set of all preference profiles PN such that τ(Pi) = a for all i ∈ N.

Lemma 4.12.4. There exists k ∈ N such that fk(PN) = a for all PN ∈ P0
N.

Proof of Lemma 4.12.4. ByRemark 4.4.1, for every givenPN ∈ P0
N, there exists an individual k ∈ N such that fk(PN) =

a. It remains to show that this individual is unique for all preference profile in P0
N, that is, fk(PN) = fk(P′N) = a for all

PN,P′N ∈ P0
N. Assume for contradiction that fj(PN) = fj′(P′N) = a for some PN,P′N ∈ P0

N and j, j′ ∈ N such that

j ̸= j′.

Since fj(PN) = a, τ(Pj) = a, and aPkfk(PN) for all k ̸= j, by moving the preferences of the individuals k ̸= j one by

one from Pk to P′k, and by applying top-envy-proofness condition every time, we obtain fj(Pj,P′−j) = a. Moreover, since

fj′(P′N) = a and j ̸= j′, we have fj(P′N) ̸= a. This, together with the fact τ(P′j) = a, implies aP′jfj(P′N). However, the facts

fj(Pj,P′−j) = a and aP′jfj(P′N) together contradict strategy-proofness of f. This completes the proof of Lemma 4.12.4. ■

By Lemma 4.12.4, there exists i1 ∈ N such that fi1(PN) = a for all PN ∈ P0
N. Define ζNI

a (v1a) = i1 where v1a is the

root-node ofTa. Let (v1a, . . . , vra)with r ≥ 2 be a path from v1a to vra inTa. We define ζNI
a on {vsa | 1 ≤ s ≤ r} in a recursive

manner.

Assume that ζNI
a is defined on {vsa | 1 ≤ s ≤ r− 1}. Let ζNI

a (vsa) = is for all s = 1, . . . , r− 1. We proceed to define ζNI
a

on vra. Let P r−1
N ⊆ PN be the set of all preference profiles PN such that Pis = P(ζ

EO
a (vsa,vs+1

a );a) for all s = 1, . . . , r− 1, and

τ(Pi) = a otherwise. Note that for all PN ∈ P r−1
N and all s, s′ ∈ {1, . . . , r− 1}, τ(Pis) ̸= τ(Pis′ ) if s ̸= s′.

Lemma 4.12.5. There exists k ∈ N \ {i1, . . . , ir−1} such that fk(PN) = a for all PN ∈ P r−1
N .

Proof of Lemma 4.12.5. We first prove two claims that we will use to complete the proof of Lemma 4.12.5.
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Claim 4.12.2. Let S = {h1, . . . , hm} ⊊ N be a set of distinct individuals with m < |A| and let {b1, . . . , bm} ∈ A \ {a}

be a set of distinct objects. Consider the preference profile PN such that τ(Phu) = bu for all u = 1, . . . ,m and τ(Pi) = a for

all i /∈ S. Then, there exists j ∈ N \ S such that fj(PN) = a.

Proof of Claim 4.12.2. By Remark 4.4.1, for all c ∈ {a, b1, . . . , bm}, there exists jc ∈ N such that fjc(PN) = c. It

remains to show ja /∈ S. Assume for contradiction that ja ∈ S. Let {j1, . . . , jt−1} ⊆ S and jt /∈ S be such that j1 = ja,

fjs+1(PN) = τ(Pjs) for all 1 ≤ s ≤ t − 1. Since S is finite, to show such a sequence must exist, it is sufficient to show

that j1, . . . , jt−1 are all distinct. We show this in what follows. Assume for contradiction that l is the first index in the

ordering 1, . . . , t− 1 for which there exists l < l′ ≤ t− 1 such that jl = jl′ . Suppose l = 1. The facts l = 1, jl = jl′ ,

j1 = ja, fja(PN) = a and fjl′ (PN) = τ(Pjl′−1
) together imply τ(Pjl′−1

) = a. This is a contradiction since jl′−1 ∈ S, which in

particularmeans τ(Pjl′−1
) ∈ {b1, . . . , bm}. Now, suppose l > 1. Then jl = jl′ , fjl(PN) = τ(Pjl−1) and fjl′ (PN) = τ(Pjl′−1

)

together imply

τ(Pjl−1) = τ(Pjl′−1
). (4.16)

However, by our assumption on l, jl−1 ̸= jl′−1. Because jl−1, jl′−1 ∈ S and jl−1 ̸= jl′−1, by the construction of PN,

τ(Pjl−1) ̸= τ(Pjl′−1
), a contradiction to (4.16). This shows that j1, . . . , jt−1 are all distinct.

By the construction of {j1, . . . , jt}, {fjs(PN) | s = 1, . . . , t} = {τ(Pjs) | s = 1, . . . , t}. Define the allocation μ such

that μ(i) = τ(Pi) for all i ∈ {j1, . . . , jt} and μ(i) = fi(PN) for all i ∈ N \ {j1, . . . , jt}. Clearly μ Pareto dominates f(PN)

at PN, which violates Pareto efficiency of f at PN. This completes the proof of Claim 4.12.2. □

Claim 4.12.3. For all PN ∈ P r−1
N and all s = 1, . . . , r− 1, we have fis(PN) = τ(Pis).

Proof of Claim 4.12.3. Fix PN ∈ P r−1
N . We prove this in two steps.

Step 1. In this step, we show that fis(PN)Pisa for all s = 1, . . . , r− 1. Assume for contradiction that aRis∗ fis∗ (PN) for

some s∗ ∈ {1, . . . , r− 1}. Consider the preference profile P̃N such that P̃it = Pit for all t = 1, . . . , s∗ − 1 and τ(P̃i) = a,

otherwise. By the recursive definition of ζNI
a ,

fis∗ (P̃N) = a. (4.17)

Since τ(P̃i) = a for all i ∈ N \ {i1, . . . , is∗−1}, (4.17) implies that fis∗ (P̃N) = τ(P̃is∗ ) and fis∗ (P̃N)P̃ifi(P̃N) for all

i ∈ N \ {i1, . . . , is∗}. Therefore, by moving the preferences of all the individuals i ∈ N \ {i1, . . . , is∗} from P̃i to Pi, and

by applying top-envy-proofness condition every time, it follows from the construction of P̃N that

fis∗ (P̃is∗ ,P−is∗ ) = a. (4.18)
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By strategy-proofness, (4.18) implies

fis∗ (PN)Ris∗a. (4.19)

By Claim 4.12.2, there exists j ∈ N \ {i1, . . . , ir−1} such that fj(PN) = a. Since j ∈ N \ {i1, . . . , ir−1} and fj(PN) = a,

(4.19) implies fis∗ (PN)Pis∗a, a contradiction to our assumption. This proves fis(PN)Pisa for all s = 1, . . . , r− 1.

Step 2. In this step, we show that fis(PN) = τ(Pis) for all s = 1, . . . , r− 1. Assume for contradiction that fis1 (PN) ̸=

τ(Pis1 ) for some s1 ∈ {1, . . . , r − 1}. Let s1, . . . , su be the maximal sequence of distinct elements such that {s1, . . . ,

su} ⊆ {1, . . . , r− 1} and fist+1
(PN) = τ(Pist ) for all t = 1, . . . , u− 1. Let j ∈ N be such that fj(PN) = τ(Pisu ). By the

maximality assumption of s1, . . . , su, either j ∈ N \ {i1, . . . , ir−1} or j = is1 . We distinguish the following two cases.

Case 1: Suppose j ∈ N \ {i1, . . . , ir−1}.

By the construction of su, we have fisu (PN) ̸= τ(Pisu ). Also, since su ∈ {1, . . . , r− 1}, by Step 1, fisu (PN)Pisua. Com-

bining the facts fisu (PN) ̸= τ(Pisu ) and fisu (PN)Pisua, we have

τ(Pisu ) Pisu fisu (PN) Pisu a. (4.20)

Also, since su ∈ {1, . . . , r− 1}, by the construction of PN, we have Pisu = P(τ(Pisu );a). This, together with (4.20), implies

τ(Pisu ) ≺ fisu (PN) ≺ a or a ≺ fisu (PN) ≺ τ(Pisu ). (4.21)

Since j ∈ N \ {i1, . . . , ir−1}, by the construction of PN, we have τ(Pj) = a. This, together with (4.21), implies

a Pj fisu (PN) Pj τ(Pisu ). (4.22)

Since fj(PN) = τ(Pisu ), (4.20) implies fj(PN)Pisu fisu (PN). Furthermore, since fj(PN) = τ(Pisu ), (4.22) implies fisu (PN) Pj fj(PN).

However, the facts fj(PN)Pisu fisu (PN) and fisu (PN) Pj fj(PN) together contradict Pareto efficiency of f at PN.

Case 2: Suppose j = is1 .

By the construction of {s1, . . . , su} and j, we have {fist (PN) | t = 1, . . . , u} = {τ(Pist ) | t = 1, . . . , u}. Let μ be the

allocation such that μ(i) = τ(Pi) for all i ∈ {ist | t = 1, . . . , u} and μ(i) = fi(PN) for all i ∈ N \ {ist | t = 1, . . . , u}.

Clearly, μ Pareto dominates f(PN) at PN, which violates Pareto efficiency of f at PN.

Case 1 and Case 2 together complete Step 2, and Step 1 and Step 2 together complete the proof of Claim 4.12.3. □

Now we complete the proof of Lemma 4.12.5. By Claim 4.12.2, for every given PN ∈ P r−1
N , there exists an individual
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k ∈ N \ {i1, . . . , ir−1} such that fk(PN) = a. It remains to show that this individual is unique for all preference profile

in P r−1
N , that is, fk(PN) = fk(P̃N) = a for all PN, P̃N ∈ P r−1

N . Assume for contradiction that fj(PN) = fj̃(P̃N) = a for

some PN, P̃N ∈ P r−1
N and j, j̃ ∈ N \ {i1, . . . , ir−1} such that j ̸= j̃.

Consider the preference profile (P̃i1 ,P−i1) ∈ P r−1
N . Since PN, (P̃i1 ,P−i1) ∈ P r−1

N , by Claim 4.12.3, we have fi1(PN) =

fi1(P̃i1 ,P−i1). Using non-bossiness, fi1(PN) = fi1(P̃i1 ,P−i1) implies

f(PN) = f(P̃i1 ,P−i1).

Continuing in this manner, we can move the preferences of all individuals is, s = 0, . . . , r− 1, from the preference Pis to

P̃is one by one and obtain

f(PN) = f(P̃i1 , . . . , P̃ir−1 ,P−{i1,...,ir−1}). (4.23)

The fact fj(PN) = a, together with (4.23), implies fj(P̃i1 , . . . , P̃ir−1 ,P−{i1,...,ir−1}) = a. Since j ∈ N \ {i1, . . . ir−1} and

τ(Pi) = a for all i ∈ N \ {i1, . . . ir−1}, it follows from the fact fj(P̃i1 , . . . , P̃ir−1 ,P−{i1,...,ir−1}) = a that fj(P̃i1 , . . . , P̃ir−1 ,

P−{i1,...,ir−1}) = τ(Pj) and fj(P̃i1 , . . . , P̃ir−1 ,P−{i1,...,ir−1})Pifi(P̃i1 , . . . , P̃ir−1 ,P−{i1,...,ir−1}) for all i ∈ N \ {i1, . . . ir−1, j}.

Therefore, by moving the preferences of all the individuals i ∈ N \ {i1, . . . ir−1, j} from Pi to P̃i, and by applying top-

envy-proofness condition every time, we obtain

fj(Pj, P̃−j) = a. (4.24)

Since fj̃(P̃N) = a and j ̸= j̃, we have fj(P̃N) ̸= a. Moreover, j ∈ N \ {i1, . . . ir−1} implies τ(P̃j) = a. Combining the

facts fj(P̃N) ̸= a and τ(P̃j) = a, we obtain aP̃jfj(P̃N). However, this, together with (4.24), contradicts strategy-proofness

of f. This completes the proof of Lemma 4.12.5. ■

By Lemma 4.12.5, there exists ir ∈ N \ {i1, . . . ir−1} such that fir(PN) = a for all PN ∈ P r−1
N . Define ζNI

a (vra) = ir.

This completes the recursive definition of ζNI
a , and thereby completes the construction of Γa.

Similarly for each object, an inheritance tree is constructed. Thus, we have constructed a collection of inheritance trees

Γ, based on the assignment rule f.

Now, we prove f(PN) = fΓ(PN) for all PN ∈ PN, where fΓ is the hierarchical exchange rule associated with Γ.

f(PN) = fΓ(PN) for all PN ∈ PN

Fix PN ∈ PN. We show f(PN) = fΓ(PN). We prove this by induction on the stages of fΓ at PN.

Base Case: Assignments in Stage 1.
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(i) fi(PN) = fΓi (PN) for all i ∈ W1(PN), and

(ii) fi(P′N) = fi(PN) for all i ∈ W1(PN), where P′N ∈ PN is such that for all i ∈ W1(PN) either τ(P′i) = fi(PN) or

P′i = Pi.

Proof of the Base Case. First, we prove a claim that we use in the proof of the Base Case.

Claim 4.12.4. Let i ∈ N and let a ∈ E1(i,PN). Suppose P̃N ∈ PN is such that τ(P̃i) = a. Then fi(P̃N) = a.

Proof of Claim 4.12.4. By the definition of fΓ, a ∈ E1(i,PN) implies ζNI
a (v1a) = i where v1a is the root-node of Ta.64 By

the construction of Γa, ζNI
a (v1a) = i implies that

fi(P̄N) = a for all P̄N ∈ PN with τ(P̄j) = a for all j ∈ N. (4.25)

Now we show fi(P̃N) = a for all P̃N with τ(P̃i) = a. Consider the preference profile (P̃i, P̂−i) such that τ(P̂j) = a

for all j ̸= i. By (4.25), we have fi(P̃i, P̂−i) = a. Since τ(P̃i) = a, fi(P̃i, P̂−i) = a, and τ(P̂j) = a for all j ̸= i, we have

fi(P̃i, P̂−i) = τ(P̃i) and fi(P̃i, P̂−i)P̂jfj(P̃i, P̂−i) for all j ̸= i. Therefore, by moving the preferences of all the individuals

j ̸= i from P̂j to P̃j, and by applying top-envy-proofness condition every time, we have fi(P̃N) = a. This completes the

proof of Claim 4.12.4. □

Now, we proceed to prove the Base Case. First we show (i) of the Base Case. Fix i ∈ W1(PN). We complete the proof

for (i) of the Base Case by using another level of induction on the number of individuals in C1(i,PN).

Base Case (for (i) of the Base Case). Suppose |C1(i,PN)| = 1. It follows from the definition of fΓ thatT1(i,PN) ∈ E1(i,

PN) and T1(i,PN) = τ(Pi). Therefore, by Claim 4.12.4, we have

fi(PN) = T1(i,PN). (4.26)

By the definition of fΓ, |C1(i,PN)| = 1 means

fΓi (PN) = T1(i,PN). (4.27)

By (4.26) and (4.27), we have fi(PN) = fΓi (PN). This completes the proof of Base Case (for (i) of the Base Case). Note

that since PN ∈ PN and i ∈ W1(PN) are chosen arbitrarily, using similar logic as above, we have fj(P̃N) = fΓj (P̃N) for all

P̃N ∈ PN and all j ∈ W1(P̃N) with |C1(j, P̃N)| = 1.

64Recall that Γa = ⟨Ta, ζNI
a , ζEOa ⟩.
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Induction Hypothesis (for (i) of the Base Case). Let u ≥ 2. Assume that fi(PN) = fΓi (PN) for |C1(i,PN)| = u− 1.

Assume, furthermore, that for all P̃N ∈ PN and all j ∈ W1(P̃N) such that |C1(j, P̃N)| = u− 1, we have fj(P̃N) = fΓj (P̃N).

We show fi(PN) = fΓi (PN) for |C1(i,PN)| = u. Let C1(i,PN) = {j1, . . . , ju} such that for all l = 1, . . . , u, T1(jl,

PN) ∈ E1(jl+1,PN), where i = j1. Assume for contradiction that fj1(PN) ̸= fΓj1(PN).

Take P̂j1 = Pju and P̂ju = Pj1 . By the construction of P̂j1 and the definition of fΓ, it follows that τ(P̂j1) ∈ E1(j1,PN).

Since τ(P̂j1) ∈ E1(j1,PN), by Claim 4.12.4, we have

fj1(P̂j1 , P̂ju ,P−j1,ju) = fj1(P̂j1 ,P−j1) = τ(P̂j1). (4.28)

By thedefinitionofC1(i,PN) and the constructionof P̂ju , it follows that |C1(ju, (P̂j1 , P̂ju ,P−j1,ju))| = |C1(ju, (P̂ju ,P−ju))| =

u− 1. Therefore, by Induction Hypothesis (for (i) of the Base Case), we have

fju(P̂j1 , P̂ju ,P−j1,ju) = fΓju(P̂j1 , P̂ju ,P−j1,ju), and (4.29a)

fju(P̂ju ,P−ju) = fΓju(P̂ju ,P−ju). (4.29b)

By the definition of fΓ, we have

fΓj1(PN) = τ(Pj1), and (4.30a)

fΓju(P̂j1 , P̂ju ,P−j1,ju) = fΓju(P̂ju ,P−ju) = τ(P̂ju). (4.30b)

Since P̂ju = Pj1 , combining (4.29) and (4.30b), we obtain

fju(P̂j1 , P̂ju ,P−j1,ju) = fju(P̂ju ,P−ju) = τ(Pj1). (4.31)

Since fj1(PN) ̸= fΓj1(PN) by our assumption, (4.30a) and (4.31) together imply

fju(P̂j1 , P̂ju ,P−j1,ju)Pj1fj1(PN). (4.32)

By (4.28) and (4.31), we have

fh(P̂j1 , P̂ju ,P−j1,ju) = fh(P̂h,P−h) for all h = j1, ju. (4.33)
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Since P̂j1 = Pju , by (4.28), we have fj1(P̂j1 , P̂ju ,P−j1,ju) = τ(Pju), which in particular means

fj1(P̂j1 , P̂ju ,P−j1,ju)Rjufju(PN). (4.34)

However, (4.32), (4.33) and (4.34) together contradict pairwise reallocation-proofness of f. This completes the proof of (i)

of the Base Case. Note, furthermore, that since PN ∈ PN and i ∈ W1(PN) are chosen arbitrarily, using similar logic as

above, we have

fj(P̃N) = fΓj (P̃N) for all P̃N ∈ PN and all j ∈ W1(P̃N). (4.35)

Now we show (ii) of the Base Case. Fix P′N ∈ PN such that for all i ∈ W1(PN) either τ(P′i) = fi(PN) or P′i = Pi.

From (i) of the Base Case, we have fi(PN) = fΓi (PN) for all i ∈ W1(PN). This, together with the definition of fΓ, implies

fi(PN) = τ(Pi) for all i ∈ W1(PN). (4.36)

It follows from the constructionofP′N and (4.36) that τ(P′i) = τ(Pi) for all i ∈ W1(PN). This, togetherwith the definition

of fΓ, implies

W1(PN) ⊆ W1(P′N), and (4.37a)

fΓi (P′N) = fΓi (PN) for all i ∈ W1(PN). (4.37b)

(4.37) and (4.35) together complete the proof of (ii) of the Base Case. This completes the proof of the Base Case. □

Now, we proceed to prove the induction step.

Induction Hypothesis: Fix a stage t ≥ 2. Assume that

(i) fi(PN) = fΓi (PN) for all i ∈ Wt−1(PN), and

(ii) fi(P′N) = fi(PN) for all i ∈ Wt−1(PN), where P′N is such that for all i ∈ Wt−1(PN) either τ(P′i) = fi(PN) or

P′i = Pi.

We show

(i) fi(PN) = fΓi (PN) for all i ∈ Wt(PN), and

(ii) fi(P′N) = fi(PN) for all i ∈ Wt(PN), where P′N is such that for all i ∈ Wt(PN) either τ(P′i) = fi(PN) or P′i = Pi.

First, we prove a claim.
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Claim 4.12.5. Let i ∈ N \Wt−1(PN) and let a ∈ Et(i,PN). Suppose P̃N ∈ PN is such that P̃j = Pj for all j ∈ Wt−1(PN)

and τ(P̃i,A \ Ft−1(PN)) = a. Then, fi(P̃N) = a.

Proof of Claim 4.12.5. Since i ∈ N \Wt−1(PN) and a ∈ Et(i,PN), it follows from the definition of fΓ that there exists

r ≥ 1 such that there is a path (v1a, . . . , vra) in Ta from v1a (root-node of Ta) to vra such that ζ
NI
a (vra) = i and for all s = 1,

. . . , r− 1, we have ζNI
a (vsa) ∈ Wt−1(PN) and fΓζNI

a (vsa)
(PN) = ζEOa (vsa, vs+1

a ). Note that for all s = 1, . . . , r− 1, by (i) of the

Induction Hypothesis, fζNI
a (vsa)

(PN) = fΓζNI
a (vsa)

(PN).

First, we show that fi(P̄N) = a for all P̄N ∈ PN such that P̄j = Pj for all j ∈ Wt−1(PN) and τ(P̄j) = a for all

j ∈ N \Wt−1(PN). Fix P̄N ∈ PN such that P̄j = Pj for all j ∈ Wt−1(PN) and τ(P̄j) = a for all j ∈ N \Wt−1(PN). If

r = 1, then a ∈ E1(i,PN), and hence by Claim 4.12.4, we have fi(P̄N) = a. Suppose r > 1. Let S = {ζNI
a (vsa) | s = 1,

. . . , r− 1}. By construction, S ⊆ Wt−1(PN). Consider the preference profile P̂N such that P̂j = P(fj(PN);a) for all j ∈ S,

τ(P̂j) = a for all j ∈ Wt−1(PN) \ S, and P̂j = P̄j for all j ∈ N \Wt−1(PN). Since fΓζNI
a (vsa)

(PN) = ζEOa (vsa, vs+1
a ) and

fζNI
a (vsa)

(PN) = fΓζNI
a (vsa)

(PN), by the construction of Γa, we have

fi(P̂N) = a. (4.38)

By the construction of P̂N, τ(P̂j) = a for all j ∈ N \ S. Since i ∈ N \Wt−1(PN), S ⊆ Wt−1(PN), and τ(P̂j) = a for

all j ∈ N \ S, by (4.38), we have fi(P̂N) = τ(P̂i) and fi(P̂N)P̂jfj(P̂N) for all j ∈ Wt−1(PN) \ S. Therefore, by moving

the preferences of all the individuals j ∈ Wt−1(PN) \ S from P̂j to Pj, and by applying top-envy-proofness condition every

time, we have

fi(PN) = a, (4.39)

where Pj = P̂j for all j /∈ Wt−1(PN) \ S and Pj = Pj for all j ∈ Wt−1(PN) \ S. By the construction of PN, for all

j ∈ Wt−1(PN), either τ(Pj) = fj(PN) or Pj = Pj. Therefore, by (ii) of the Induction Hypothesis, we obtain

fj(PN) = fj(PN) for all j ∈ Wt−1(PN). (4.40)

Take j ∈ S. Consider the preference profile P′′N, where P′′j = Pj and P′′k = Pk for all k ̸= j. Since for all k ∈ Wt−1(PN),

either τ(P′′k ) = fk(PN) or Pk = Pk, by (ii) of the InductionHypothesis, fj(P′′N) = fj(PN). By (4.40), this means fj(P′′N) =

fj(PN). Since only individual j changes her preference from PN to P′′N and fj(P′′N) = fj(PN), by non-bossiness, we have

f(P′′N) = f(PN). By moving the preferences of all individuals j ∈ S from Pj to Pj one by one and every time applying a

similar logic, we conclude

f(P̄N) = f(PN). (4.41)
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Combining (4.39) and (4.41), we have

fi(P̄N) = a. (4.42)

Nowwecomplete theproofofClaim4.12.5. Take P̃N such that P̃j = Pj for all j ∈ Wt−1(PN) and τ(P̃i,A\Ft−1(PN)) =

a. By (4.42) and the construction of P̄N, we have fi(P̄N) = τ(P̄i) and fi(P̄N)P̄jfj(P̄N) for all j /∈ Wt−1(PN) ∪ {i}.

Therefore, by moving the preferences of all the individuals j /∈ Wt−1(PN) ∪ {i} from P̄j to P̃j, and by applying top-envy-

proofness condition every time, we obtain

fi(P̄i, P̃−i) = a. (4.43)

Since f is strategy-proof, (4.43) implies

fi(P̃N)R̃ia. (4.44)

By the choice of P̃N, we have P̃j = Pj for all j ∈ Wt−1(PN). By (ii) of the Induction Hypothesis

fj(P̃N) = fj(PN) for all j ∈ Wt−1(PN). (4.45)

Since τ(P̃i,A \ Ft−1(PN)) = a, (4.44) and (4.45) together imply fi(P̃N) = a. This completes the proof of Claim 4.12.5.

□

Now the proof of the induction step follows by using similar logic as for the proof of the Base Case with Claim 4.12.5 in

place of Claim 4.12.4. ■

4.13 Proof of Proposition 4.7.1

Let fΓ be a hierarchical exchange rule on PN. Assume for contradiction that fΓ does not satisfy group-wise reallocation-

proofness. Then, there must exist PN ∈ PN, a set of individuals S ⊆ N, a preference profile P̃S of the individuals in S, and

an allocation μ̂ of {fΓS(P̃S,P−S)} over Swhere μ̂ ̸= fΓS(P̃S,P−S) such that

(i) μ̂(i)RifΓi (PN) for all i ∈ S,

(ii) μ̂(j)PjfΓj (PN) for some j ∈ S, and

(iii) fΓi (P̃i, P̃S\{i},P−S) = fΓi (P̃i,PS\{i},P−S) for all i ∈ S.

Condition (ii) implies that there exists i∗ ∈ S such that μ̂(i∗)Pi∗ fΓi∗(PN). Moreover, it follows from the definition of

μ̂ that there exists a set of individuals {i1 = i∗, . . . , im} ⊆ S such that μ̂(ih) = fΓih+1
(P̃S,P−S) for all h = 1, . . . ,m.
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Since μ̂(i∗)Pi∗ fΓi∗(PN), this, together withCondition (iii) and strategy-proofness of fΓ, impliesm ≥ 2. Combining all these

observations with Condition (i), we have

fΓih+1
(P̃S,P−S)Rihf

Γ
ih(PN) for all h = 2, . . . ,m, and (4.46a)

fΓi2(P̃S,P−S)Pi1f
Γ
i1(PN). (4.46b)

Claim 4.13.1. fΓih(PN) ∈ A for all h = 1, . . . ,m.

Proof of Claim 4.13.1. Suppose fΓi2(PN) = ∅. Since fΓ is strategy-proof, fΓi2(PN) = ∅ implies fΓi2(P̃i2 ,P−i2) = ∅. This,

together with Condition (iii), yields fΓi2(P̃S,P−S) = ∅, a contradiction to (4.46b). So, it must be that

fΓi2(PN) ̸= ∅. (4.47)

Combining (4.46a) and (4.47), we have fΓi3(P̃S,P−S) ̸= ∅. This, together with Condition (iii), yields fΓi3(P̃i3 ,P−i3) ̸= ∅.

Since fΓ is strategy-proof, fΓi3(P̃i3 ,P−i3) ̸= ∅ implies

fΓi3(PN) ̸= ∅. (4.48)

Continuing in this manner, we obtain

fΓih(PN) ̸= ∅ for all h = 1, . . . ,m. (4.49)

(4.49) completes the proof of Claim 4.13.1. □

It follows from Claim 4.13.1 that for all h = 1, . . . ,m, there exists a stage sh of fΓ at PN such that ih ∈ Wsh(PN).

Claim 4.13.2. sh+1 ≤ sh for all h = 2, . . . ,m.

Proof of Claim 4.13.2. Assume for contradiction that there exists a h∗ ∈ {2, . . . ,m} such that sh∗ < sh∗+1. By (4.46a),

we have fΓih∗+1
(P̃S,P−S)Rih∗ f

Γ
ih∗ (PN). We complete the proof of Claim 4.13.2 by distinguishing two cases.

Case 1: Suppose fΓih∗+1
(P̃S,P−S)Pih∗ f

Γ
ih∗ (PN).

Since fΓ is Pareto efficient, fΓih∗+1
(P̃S,P−S)Pih∗ f

Γ
ih∗ (PN) implies that there exists k ∈ N \ {ih∗} such that fΓk(PN) =

fΓih∗+1
(P̃S,P−S). The facts fΓih∗+1

(P̃S,P−S)Pih∗ f
Γ
ih∗ (PN) and f

Γ
k(PN) = fΓih∗+1

(P̃S,P−S) together imply fΓk(PN)Pih∗ f
Γ
ih∗ (PN)

and fΓk(PN) ∈ A. It follows from the fact fΓk(PN) ∈ A that there exists a stage sk of fΓ at PN such that k ∈ Wsk(PN). Since

ih∗ ∈ Wsh∗ (PN), k ∈ Wsk(PN), and fΓk(PN)Pih∗ f
Γ
ih∗ (PN), by Lemma 4.12.3, we have sk < sh∗ . This, together with the fact
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that sh∗ < sh∗+1, implies sk < sh∗+1. Since ih∗+1 ∈ Wsh∗+1(PN), k ∈ Wsk(PN), and sk < sh∗+1, by Lemma 4.12.2, we have

fΓk(PN) = fΓk(P̃ih∗+1 ,P−ih∗+1). (4.50)

Furthermore, the facts ih∗+1 ∈ Wsh∗+1(PN), k ∈ Wsk(PN), and sk < sh∗+1 together imply ih∗+1 ̸= k. Since fΓk(PN) ∈ A

and ih∗+1 ̸= k, (4.50) implies

fΓk(PN) ̸= fΓih∗+1
(P̃ih∗+1 ,P−ih∗+1). (4.51)

However, the fact fΓk(PN) = fΓih∗+1
(P̃S,P−S) and Condition (iii) together contradict (4.51).

Case 2: Suppose fΓih∗+1
(P̃S,P−S) = fΓih∗ (PN).

Since ih∗ ∈ Wsh∗ (PN), ih∗+1 ∈ Wsh∗+1(PN), and sh∗ < sh∗+1, by Lemma 4.12.2, we have

fΓih∗ (P̃ih∗+1 ,P−ih∗+1) = fΓih∗ (PN). (4.52)

Furthermore, since fΓih∗+1
(P̃S,P−S) = fΓih∗ (PN), Condition (iii) and (4.52) together imply

fΓih∗ (P̃ih∗+1 ,P−ih∗+1) = fΓih∗+1
(P̃ih∗+1 ,P−ih∗+1) = fΓih∗ (PN). (4.53)

However, by Claim 4.13.1, we have fΓih∗ (PN) ∈ A. Since fΓih∗ (PN) ∈ A and ih∗ ̸= ih∗+1, (4.53) implies that fΓ(P̃ih∗+1 ,

P−ih∗+1) is not an allocation, a contradiction.

Since Cases 1 and 2 are exhaustive, this completes the proof of Claim 4.13.2. □

Now, we complete the proof of Proposition 4.7.1. By Claim 4.13.2, we have s1 ≤ s2. Moreover, by (4.46b), we have

fΓi2(P̃S,P−S)Pi1fΓi1(PN). Since s1 ≤ s2 and fΓi2(P̃S,P−S)Pi1fΓi1(PN), using a similar logic as for Case 1 in Claim 4.13.2, we get

a contradiction. This completes the proof of Proposition 4.7.1. ■
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5
Matchings under Stability, MinimumRegret, and

Forced and Forbidden Pairs in Marriage Problem

5.1 Introduction

This chapter explores the possibilities of designing mechanisms satisfying properties such as (pairwise) stability, minimum

regret, and forced and forbidden pairs in case of two-sided one-to-one matching problem (marriage problem).

(Pairwise) stability is a well-known property of a matching. Gale & Shapley (1962) provide an algorithm called men-

proposing/women-proposing deferred acceptance (MPDA/WPDA) algorithm that produces a stable matching at every pref-

erence profile. It is well-known that the outcome of theMPDA (WPDA) algorithm is (i) men-maximal (women-maximal),

that is, such an outcome maximizes the match of each man (woman) over all stable matchings, and (ii) women-pessimal

(men-pessimal), that is, such an outcome minimizes the match of each woman (man) over all stable matchings.65

65See Gale & Shapley (1962), McVitie &Wilson (1971), Knuth (1976), and Abdulkadiroglu & Sönmez (2013) for details.
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The main motivation of this chapter is to provide an algorithmic characterization of all stable matchings at every pref-

erence profile. The other motivation is to provide algorithms to construct stable matchings with additional desirable prop-

erties such as minimum regret and forced/forbidden pairs. The importance of a characterization of all stable matchings is

well-established in the literature. McVitie &Wilson (1971) provide an iterative procedure to compute all stable matchings

for the marriage problem and Martınez et al. (2004) extend that algorithm to two-sided many-to-many matching problem

with substitutable preferences.66 Irving & Leather (1986) provide an alternative method of computing all stable matchings

for the marriage problem by using the lattice structure of the set of stable matchings. To the best of our knowledge, apart

fromGale-Shapley algorithm, no direct algorithm that produces stablematching is introduced to the literature.67 However,

as discussed earlier, stable matchings produced by Gale-Shapley algorithm (Gale & Shapley, 1962) suffer from the problem

that they are either extremely biased against men (in case of WPDA algorithm) or that towards women (in case of MPDA

algorithm).

We present a class of algorithms that we callmen-women proposing deferred acceptance (MWPDA) algorithms which can

produce all stablematchings at everypreferenceprofile. Such an algorithm is basedon a given collectionof cut-offparameters

one for each man. A cut-off parameter κm for a man m is an arbitrary integer between 1 and the number of women plus

one. For a given collection of cut-off parameters the algorithm works in a sequence of stages as follows. At the beginning

of Stage 1, each manm proposes each acceptable woman who appears in top κm positions according to his preference, and

thenWPDA algorithm is performed with respect to the proposals that the women receive. From a given stage we go to the

subsequent stage if there is a man who (i) has not yet proposed all acceptable women according to his preference, and (ii) is

unmatched at that given stage. Moreover, in any stage, if a manmwas matched in the previous stage, then he proposes the

same set of women as he did in the previous stage, otherwise he proposes the remaining set of acceptable women (that is,

the acceptable women who do not appear in top κm positions according to his preference).

Theorem 5.3.1 of this chapter shows that the outcome of anMWPDA algorithm is stable at every preference profile for

any cut-off vector. Theorem 5.3.2 shows that for any stable matching at a preference profile, there is a cut-off vector such

that the MWPDA algorithm with respect to it will produce that stable matching. Theorem 5.3.3 provides a necessary and

sufficient condition on the cut-off vectors so that the MWPDA algorithms with those cut-off vectors will converge at the

first stage. We also discuss that these algorithms can be extended to produce all stable matchings in a two-sidedmany-to-one

66Kelso Jr & Crawford (1982) are the first to use the substitutability property to show the existence of stable matchings in a many-
to-one model with money.

67McVitie & Wilson (1971) provide a method to compute all stable matchings at a preference profile. However, their method is
lengthy in the sense that every time one needs to produce some particular stable matching, he/she has to start from the men-maximal
(or women-maximal) stable matching and keep on producing all stable matchings that come in the process before he/she arrives at the
intended stable matching. Another problem with this method is that it is not structured enough to produce stable matching with
additional desirable properties.
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matching problem (college admissions problem) in a way mentioned in Roth & Sotomayor (1989).

The notion ofminimum regret under stability is introduced in Knuth (1976). It captures the idea of a Rawlsian welfare

function. The regret of an agent in a matching is defined as the rank of his/her match according to his/her preference,

and the regret of a matching is defined as the highest regret (over all agents) at that matching. A stable matching satisfies

minimum regret stable property at a preference profile if it has the minimum regret among all the stable matchings at that

preference profile.68 Both MPDA and WPDA algorithms are far from satisfying the minimum regret under stability as

their outcomes are either women-pessimal or men-pessimal. We provide a direct algorithm called the sequential MWPDA

algorithm that produces aminimum regret stablematching at every preference profile.69 We further show that the outcome

of the sequential MWPDA algorithm is women-optimal in the set of all minimum regret stable matchings.

For practical reasons, sometimes one needs to construct stable matching with additional constraints. The notion of

stable matching with forced pairs is introduced in Knuth (1976), and that with forbidden pairs is introduced in Dias et al.

(2003). To the best of our knowledge, there is no direct algorithm that produces stable matching with these properties.70

Weprovide an algorithm called the conditionalMWPDAalgorithm that produces stablematchingwith given sets of forced

and forbidden pairs, whenever such amatching exists. We further show that whenever the conditionalMWPDA algorithm

produces such a matching, the outcome is women-optimal in the set of all stable matchings with given sets of forced and

forbidden pairs.

5.1.1 Organization of the chapter

The chapter is organized as follows. Themarriage problem framework is presented in Section 5.2. In Section 5.3, we present

MWPDA algorithms and show that they produce all stable matchings at every preference profile for the marriage problem.

We also provide a necessary and sufficient condition for the convergence of these algorithms at the first stage, and discuss

how these algorithms can be used to construct all stable matchings for the college admissions problem. In Section 5.4, we

present an algorithm that produces a minimum regret stable matching at every preference profile, and in Section 5.5, we

present an algorithm that produces a stable matching with given sets of forced and forbidden pairs.

68Note that the regret of an unstable matching can be strictly less than the minimum regret under stability.
69Knuth (1976) provides an algorithm with runtime of the order O(n4) to find a minimum regret stable matching where n is the

number of men, as well as the number of women. The algorithm given in Knuth (1976) is attributed to Alan Selkow. Later, Gusfield
(1987) provide an algorithm that terminates inO(n2) time.

70Knuth (1976) provides an algorithm that produces a stable matching with a given set of forced pairs or reports that none exists, in
O(n2) time, where n is the number ofmen, as well as the number of women. Later, Gusfield& Irving (1989) provide an algorithm that
terminates inO(|Q1|2) time, after pre-processing the preference lists inO(n4) time, whereQ1 is the set of given forced pairs. Dias et al.
(2003) provide a computer algorithm that produces a stable matching with a given set of forced pairs Q1 and a given set of forbidden
pairsQ2 inO((|Q1|+ |Q2|)2) time, after pre-processing the preference lists inO(n4) time.
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5.2 Model

For a finite set A, let L(A) denote the set of all strict linear orders over A.71 An element P of L(A) is called a preference

over A. For a preference P ∈ L(A), let R denote the weak part of P, that is, for all a, b ∈ A, aRb if and only if
[
aPb or

a = b
]
.

For P ∈ L(A) and 1 ≤ k ≤ |A|, we define Tk(P) := {b ∈ A : |{a : aRb}| ≤ k}. So, Tk(P) is the set of top k

elements ofA according to P. Moreover, for P ∈ L(A) and a ∈ A, we define rank(P, a) = k if
∣∣{b ∈ A : bPa}

∣∣ = k− 1.

We introduce a specialized model of the two-sided matching problem, which will turn out to be sufficiently general to

explore the general problem. The simplest two-sidedmatching problem tomodel is the “marriage problem”, which consists

of two (finite) sets of agents M = {m1, . . . ,mp} and W = {w1, . . . ,wq} (“men” and “women”). Throughout this

chapter, we assume p, q ≥ 2. We denote by N = M ∪W. Each m ∈ M has a preference Pm ∈ L(W ∪ {∅}) and

each w ∈ W has a preference Pw ∈ L(M ∪ {∅}). A man m (woman w) is called acceptable for a woman w (man m)

at a preference Pw (Pm) if mPw∅ (wPm∅). For m ∈ M (w ∈ W), we denote by A(Pm) (A(Pw)) the set of acceptable

women (men) for m (w) at a preference Pm (Pw). By PN = (Pm1 , . . . ,Pmp ,Pw1 , . . . Pwq), we denote a vector of all the

agents’ preferences, which will be referred to as a preference profile.

Definition 5.2.1. Amatching betweenM andW is a function μ : N → N∪ {∅} such that

(i) μ(m) ∈ W∪ {∅} for allm ∈ M,

(ii) μ(w) ∈ M∪ {∅} for all w ∈ W, and

(iii) μ(m) = w if and only if μ(w) = m.

Definition 5.2.2. Amatching μ : N → N ∪ {∅} is individually rational at a preference profile PN if μ(a)Ra∅ for all

a ∈ N.

Definition 5.2.3. A pair (m,w) ∈ M×W is called a blocking pair of a matching μ : N → N ∪ {∅} at a preference

profile PN if wPmμ(m) andmPwμ(w).

A matching μ : N → N ∪ {∅} is called pairwise stable at a preference profile PN if it is individually rational and has

no blocking pairs at PN.

Definition 5.2.4. A coalitionN′ ⊆ N is called a blocking coalition of amatching μ : N → N∪ {∅} at a preference profile

PN if there exists another matching μ′ : N → N∪ {∅} such that
71A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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(i) μ′(a) ∈ N′ ∪ {∅} for all a ∈ N′, and

(ii) μ′(a)Paμ(a) for all a ∈ N′.

If a matching μ : N → N∪ {∅} has no blocking coalition at a preference profile PN, then it is called stable at PN.

Remark 5.2.1. It is well-known that pairwise stability and stability are equivalent.72 For this reason, we will say amatching

is stable at a preference profile if and only if it is pairwise stable at that preference profile.

We denote by C(PN) the set of all stable matchings at a preference profile PN. It is well-known that C(PN) ̸= ∅ for

every preference profile PN (see Gale & Shapley (1962) for details).

Definition 5.2.5. For a preference profile PN and a set of matchingsM, a matching μ ∈ M iswomen-optimal inM at

PN if μ(w)Rwμ′(w) for all w ∈ W and all μ′ ∈ M. Similarly, one can define the notion a men-optimal matching in a set

of matchings.73

Amatchingμ ∈ C(PN) ismen-optimal (women-optimal) stablematching atPN ifμ ismen-optimal (women-optimal)

in C(PN) at PN.

It is well-known that amen-optimal (women-optimal) stablematching exists at every preference profile (seeGale& Shap-

ley (1962) for details).

5.3 Algorithms for producing all stable matchings at a preference profile

An algorithm is a procedure that produces a matching at any preference profile. In this section, we provide a class of

algorithms, called men-women proposing deferred acceptance (MWPDA) algorithms, which can produce every stable

matching at a preference profile. These algorithms are built on well-known deferred acceptance (DA) algorithms. For the

sake of completeness, we begin with a description (that is suitable for our purpose) of DA algorithms.

5.3.1 Deferred Acceptance algorithm

There are two types of deferred acceptance algorithms: women-proposingdeferred acceptance (WPDA) andmen-proposing

deferred acceptance (MPDA). In the following, we provide a description of theWPDA algorithm at a preference profilePN.

The same of theMPDA algorithm can be obtained by interchanging the roles of women andmen in theWPDA algorithm.

72See Roth & Sotomayor (1992) for details.
73Women-optimal (men-optimal) matching in an arbitrary set of matchings may not exist.
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Step 1. Everywomanw proposes her top-ranked acceptableman according toPw74. Then, everymanmwhohas at least one

proposal keeps (tentatively) the top acceptable woman according to Pm among these proposals and rejects the rest. Denote

the tentative matching thus obtained by μ1.

Step 2. Every woman w who was rejected in the previous step, proposes the top acceptable man among those men who

have not rejected her in earlier steps. Then, every manm who has at least one proposal, including any proposal tentatively

kept from earlier steps, keeps (tentatively) the top acceptable woman among these proposals and rejects the rest. Denote the

tentative matching thus obtained by μ2.

...

The process is then repeated fromStep 2 till a step such that for eachwoman one of the following twohappens: (i) she has

proposed all acceptable men, (ii) she is accepted by someman who is acceptable to her. At this point, the tentative proposal

accepted by a man becomes permanent. Call this the outcome of the WPDA algorithm at PN.

Remark 5.3.1. Gale & Shapley (1962) show that at every preference profile PN, there exists a unique men-optimal stable

matching that is produced by the MPDA algorithm and a unique women-optimal stable matching that is produced by the

WPDA algorithm.

Throughout this chapter, we denote the men-optimal and the women-optimal stable matching at a preference profile

PN by μM(PN) and μW(PN), respectively. Moreover, whenever the preference profile PN is clear from the context, we drop

it from these notations, that is, we write μM for μM(PN), etc.

Remark 5.3.2. For all μ ∈ C(PN), μM(m)Rmμ(m)RmμW(m) for all m ∈ M, and μW(w)Rwμ(w)RwμM(w) for all

w ∈ W.75

5.3.2 MWPDA algorithms

We begin with introducing a piece of notation that will simplify the presentation of our algorithm. For a preference Pw ∈

L(M∪ {∅}) andM′ ⊆ M, define PM′
w as the preference that is obtained bymoving the elements ofM′ ∪ {∅} to the top

of Pw maintaining their relative ordering. More formally, PM′
w is such that (i) for all x, y ∈ M′ ∪ {∅}, xPM′

w y if and only if

xPwy, and (ii) for all x ∈ M′ ∪ {∅} and y ∈ M \M′, we have xPM′
w y.76

74That is, if the top-ranked man of a woman is acceptable, then she proposes him, otherwise she does not propose anybody.
75See Gale & Shapley (1962), McVitie &Wilson (1971), Knuth (1976), and Abdulkadiroglu & Sönmez (2013) for details.
76Note that such a preference PM′

w may not be unique since it does not specify the relative ranking of the elements ofM \M′.
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AnMWPDA algorithm is parameterized by a cut-off vector. A cut-off vector is defined as κ = (κm1 , . . . , κmp), where for

allm ∈ M, κm ∈ {1, . . . , q+ 1} is the cut-off parameter of manm. AnMWPDA algorithm involves a sequence of stages.

At the beginning of a stage, say Stage s, each man m proposes a set of women (which is determined by the parameters).

We denote this set byWs(m). The set of proposals that each w ∈ W receives in that stage is denoted byMs(w), that is,

Ms(w) = {m : w ∈ Ws(m)}.

Below, we present a detailed description (using the notations introduced above) of the MWPDA algorithm with cut-off

vector κ at a preference profile PN.

Stage 1. Take W1(m) = Tκm(Pm) ∩ A(Pm) for all m ∈ M. Perform the WPDA algorithm at the preference profile

(Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). Let μ1 be the outcome. IfW1(m) = A(Pm) for all m ∈ M with μ1(m) = ∅,

then conclude that the algorithm converges and define μ1 as the outcome of the algorithm. Otherwise, go to Stage 2.

Stage 2. For allm ∈ M, takeW2(m) such that

W2(m) =



W1(m) if μ1(m) ̸= ∅;

A(Pm) \W1(m) if μ1(m) = ∅ andW1(m) ⊊ A(Pm);

∅ if μ1(m) = ∅ andW1(m) = A(Pm).77

Perform the WPDA algorithm at the preference profile (Pm1 , . . . ,Pmp ,P
M2(w1)
w1 , . . . ,PM

2(wq)
wq ). Let μ2 be the outcome. If

W1(m) ∪W2(m) = A(Pm) for allm ∈ Mwith μ2(m) = ∅, then conclude that the algorithm converges and define μ2

as the outcome of the algorithm. Otherwise, go to Stage 3.

Stage 3. For allm ∈ M, takeW3(m) such that

W3(m) =



W2(m) if μ2(m) ̸= ∅;

A(Pm) \
(
∪
s≤2

Ws(m)
)

if μ2(m) = ∅ and ∪
s≤2

Ws(m) ⊊ A(Pm);

∅ if μ2(m) = ∅ and ∪
s≤2

Ws(m) = A(Pm).

Perform the WPDA algorithm at the preference profile (Pm1 , . . . ,Pmp ,P
M3(w1)
w1 , . . . ,PM

3(wq)
wq ). Let μ3 be the outcome. If

∪
s≤3

Ws(m) = A(Pm) for allm ∈ M with μ3(m) = ∅, then conclude that the algorithm converges and define μ3 as the

outcome of the algorithm. Otherwise, go to Stage 4.

77It follows from the definition ofW1(m) thatW1(m) ⊆ A(Pm) for allm ∈ M. Therefore, the cases considered in this definition
are exhaustive.
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...

We continue this till a stage t∗ such that ∪
s≤t∗

Ws(m) = A(Pm) for allm ∈ Mwith μt∗(m) = ∅. Since both the number

ofmen and the number of women are finite, such a stage t∗ must exist. At this stage, define thematching μt∗ as the outcome

the algorithm.

Remark 5.3.3. If κm = q+ 1 for allm ∈ M, then the MWPDA algorithm with κ boils down to theWPDA algorithm.

We illustrate MWPDA algorithm by means of the following example.

Example 5.3.1. LetM = {m1,m2,m3,m4,m5} andW = {w1,w2,w3,w4,w5}. Consider the preference profile PN as

given below:

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4 Pw5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4

Table 5.1: Preference profile for Example 5.3.1

Let the cut-off vector κ be such that κm1 = 2, κm2 = 4, κm3 = 3, κm4 = 1 and κm5 = 2. TheMWPDA algorithmwith

κ at the preference profile PN given in Table 5.1 works as follows.

Stage 1. Perform the WPDA algorithm at the preference profile (Pm1 , . . . ,Pm5 ,P
M1(w1)
w1 , . . . ,PM

1(w5)
w5 ) given in Table 5.2.

The dots in Table 5.2 indicate that all preferences for the corresponding parts are irrelevant and can be chosen arbitrarily.

To emphasize the process at Stage 1, for eachmanmwe have highlighted the women in Pm in blue thatm proposes, and for

each woman wwe have highlighted the men in Pw in blue who propose her.
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Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4 Pw5 PM
1(w1)

w1 PM
1(w2)

w2 PM
1(w3)

w3 PM
1(w4)

w4 PM
1(w5)

w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m5 m2 m2 ∅

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 m5 m2 m3 ∅
...

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5 m1 m1 ∅
...

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅ ∅ m3
...

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2 m3 ∅

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4 m4
...

Table 5.2: Updated preference profile at Stage 1

The outcome of theWPDA algorithm at Stage 1 is [(m1, ∅), (m2,w1), (m3,w3), (m4, ∅), (m5,w2)]. Since μ1(m1) =

∅ withW1(m1) ⊊ A(Pm1), we go to Stage 2.

Stage 2. Perform theWPDA algorithm at the preference profile (Pm1 , . . . ,Pm5 ,P
M2(w1)
w1 , . . . ,PM

2(w5)
w5 ) given in Table 5.3.

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4 Pw5 PM
2(w1)

w1 PM
2(w2)

w2 PM
2(w3)

w3 PM
2(w4)

w4 PM
2(w5)

w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m4 m2 m2 m1

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 m5 m5 m4 m1 ∅

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5 ∅ m2 m3 m4 m4

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅ m3 m3 ∅ ∅
...

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2
... ∅ m1

...

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4
...

...

Table 5.3: Updated preference profile at Stage 2

The outcome of theWPDAalgorithm at Stage 2 is [(m1,w4), (m2,w1), (m3,w3), (m4,w2), (m5, ∅)]. Since μ2(m5) =

∅ withW1(m5) ∪W2(m5) ⊊ A(Pm5), we go to Stage 3.

Stage 3. Perform theWPDA algorithm at the preference profile (Pm1 , . . . ,Pm5 ,P
M3(w1)
w1 , . . . ,PM

3(w5)
w5 ) given in Table 5.4.
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Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4 Pw5 PM
3(w1)

w1 PM
3(w2)

w2 PM
3(w3)

w3 PM
3(w4)

w4 PM
3(w5)

w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m4 m5 m2 m1

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 ∅ m2 m2 m1 m5

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5 m3 m3 m4 m5 ∅

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅
... ∅ m3 m4 m4

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2
... ∅ ∅

...

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4 m1
...

Table 5.4: Updated preference profile at Stage 3

The outcome of theWPDAalgorithm at Stage 3 is [(m1,w4), (m2,w1), (m3, ∅), (m4,w2), (m5,w3)]. Since μ3(m3) =

∅ withW1(m3) ∪W2(m3) ∪W3(m3) ⊊ A(Pm3), we go to Stage 4.

Stage 4. Perform theWPDA algorithm at the preference profile (Pm1 , . . . ,Pm5 ,P
M4(w1)
w1 , . . . ,PM

4(w5)
w5 ) given in Table 5.5.

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4 Pw5 PM
3(w1)

w1 PM
3(w2)

w2 PM
3(w3)

w3 PM
3(w4)

w4 PM
3(w5)

w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m4 m5 m2 m3

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 ∅ m2 m2 m3 m1

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5
... ∅ m4 m1 m5

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅
... ∅ m5 ∅

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2 m1 m4 m4

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4
... ∅

...

Table 5.5: Updated preference profile at Stage 4

The outcome of theWPDA algorithm at Stage 4 is [(m1,w5), (m2,w1), (m3,w4), (m4,w2), (m5,w3)]. Since μ4(m) ̸=

∅ for allm ∈ M, the outcome ofMWPDA algorithmwith the cut-off vector κ is [(m1,w5), (m2,w1), (m3,w4), (m4,w2),

(m5,w3)].

5.3.3 MWPDA algorithms produce all stable matchings

In this section, we explore the stability of the outcome of an MWPDA algorithm. We also provide a sufficient condition

on an MWPDA algorithm to produce a specific stable matching at the first step of the WPDA algorithm at Stage 1 of the
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mentioned MWPDA algorithm. Our next theorem shows that the outcome of an MWPDA algorithm at any preference

profile and with any cut-off vector is stable.

Theorem 5.3.1. For every preference profile PN and every cut-off vector κ, the MWPDA algorithm with κ produces a stable

matching at PN.

The proof of this theorem is relegated to Section 5.6; here we provide the idea of it. By Observation 5.6.1, the match of

each man (weakly) improves (according to his preference) over the steps of the WPDA algorithm at any given stage. Next,

we show the match of each woman (weakly) improves over the stages (Lemma 5.6.1). Finally, we combine these two facts

to prove Theorem 5.3.1.

Now, we present the main result of this section. It says that every stable matching at any preference profile can be pro-

duced by an MWPDA algorithm with some cut-off vector. However, we prove a stronger version of this, which says that

every stable matching at a preference profile can be produced at the first step of the WPDA algorithm at Stage 1 of an

MWPDA algorithm by using a suitable cut-off vector.

Theorem 5.3.2. Let PN be a preference profile and let μ ∈ C(PN). Suppose the cut-off vector κ is such that κm = rank(Pm,

μ(m)) for all m ∈ M. Then, the MWPDA algorithm with cut-off vector κ produces μ at PN. Furthermore, μ is produced at

the first step of theWPDA algorithm at Stage 1 (of the mentionedMWPDA algorithm).

The proof of this theorem is relegated to Section 5.7.2. It is worth mentioning that the cut-off vector κ defined in Theo-

rem 5.3.2 is not the unique cut-off vector that produces μ at the first step of the WPDA algorithm at Stage 1.

In view of Theorem 5.3.2, one may think that if every stable matching can be produced at the first step of the WPDA

algorithm at Stage 1 of an MWPDA algorithm, then why do we need a sequence of stages and a sequence of steps of the

WPDA algorithm at each stage? The answer to this question is as follows. As it is evident fromTheorem 5.3.2, the ‘suitable‘

cut-off vector for a given stable matching that produces it at the first step of the WPDA algorithm at the first stage cannot

be identified without using complete knowledge of that stable matching. Thus, in order to find all stable matchings at

a preference profile, one needs to use MWPDA algorithm with arbitrary cut-off vectors (and consequently needs to go

through several stages).

5.3.4 Convergence ofMWPDA algorithms at the first stage

In this section, we discuss the convergence of an MWPDA algorithm. As we have mentioned in Section 5.3.3, for every

stablematching there exists a cut-off vector so that theMWPDAalgorithmwith that converges at the first step of theWPDA

algorithmat Stage 1producing the stablematching. However, identifying such a cut-offvector requires complete knowledge
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of the stable matching. In view of this, we provide a necessary and sufficient condition on the cut-off vectors so that the

MWPDA algorithms with those cut-off vectors converge at the first stage.

Recall that, we denote the men-optimal stable matching at a preference profile PN by μM(PN). Moreover, whenever the

preference profile PN is clear from the context, we drop it from this notation, that is, we write μM for μM(PN).

Theorem 5.3.3. Let PN be a preference profile. TheMWPDA algorithm with a cut-off vector κ at PN converges at Stage 1 if

and only if κm ≥ min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
for all m ∈ M.

The proof of this theorem is relegated to Section 5.7.1.

Remark 5.3.4. A cut-off vector κ with κm ≥ min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
for all m ∈ M does not

guarantee the convergence of theMWPDA algorithm at the first step of theWPDA algorithm at the first stage, it might take

several steps to converge.

5.3.5 Application to the college admissions problem

The “college admissions problem” is a many-to-one generalization of the marriage problem.78 Every (many-to-one) stable

matching in the college admissions problemwhere colleges’ preferences satisfy responsiveness can be obtained fromTheorem

5.3.2 in the following way.79

(i) Construct a marriage problem for the given college admissions problem (see Roth (1985) and Roth & Sotomayor

(1989) for details on how to construct a related marriage problem).

(ii) Apply MWPDA algorithms to obtain all (one-to-one) stable matchings of the marriage problem.

(iii) Transform all (one-to-one) stable matchings of the marriage problem to their many-to-one versions by using a trans-

formation as defined in Roth & Sotomayor (1989).

It follows fromLemma1 inRoth&Sotomayor (1989) that themany-to-onematchings of the college admissions problem

constructed in thismannerwill be the only pairwise stablematchings, and fromProposition 1 inRoth&Sotomayor (1989),

that they will also be the only stable matchings.

5.4 A minimum regret stable algorithm

In this section, we present an algorithm which produces a stable matching at every preference profile with an additional

desirable property, namely minimum regret. As we havementioned in Remark 5.3.1, the outcome of theWPDA algorithm
78See Abdulkadiroglu & Sönmez (2013) for a formal description of the college admissions problem.
79The notion of responsiveness is due to Roth (1985), see Abdulkadiroglu & Sönmez (2013) for a formal definition of the same.
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is women-optimal stable matching and that of theMPDA algorithm is men-optimal stable matching. In other words, both

these algorithms are extremely biased.80 However, as the following example demonstrates, MWPDA algorithms with suit-

able cut-off vectors can produce stable matchings that are not so biased.

Example 5.4.1. LetM = {m1,m2,m3} andW = {w1,w2,w3}. Consider the preference profile PN given in Table 5.6.

Pm1 Pm2 Pm3 Pw1 Pw2 Pw3

w1 w2 w3 m2 m3 m1

w2 w3 w1 m3 m1 m2

w3 w1 w2 m1 m2 m3

∅ ∅ ∅ ∅ ∅ ∅

Table 5.6: Preference profile for Example 5.4.1

The outcome of the MPDA algorithm at PN is

μM = [(m1,w1), (m2,w2), (m3,w3)],

and that of the WPDA algorithm is

μW = [(m1,w3), (m2,w1), (m3,w2)].

However, the outcome of the MWPDA algorithm with κ = (2, 2, 2) is

μ = [(m1,w2), (m2,w3), (m3,w1)].

Note that in μM, each man gets his best choice whereas each woman gets her worst, and conversely, in μW, each woman

gets her best choice whereas each man gets his worst. However, in μ, all men and women get their second-best choices.

In view of this example, we define the notion of minimum regret under stability. This notion is introduced in Knuth

(1976) as a desirable property of a matching.

Definition 5.4.1. Let PN be a preference profile and let μ be a matching at PN. Then, the regret of μ at PN is defined as

α(μ,PN) = max
a∈N

rank(Pa, μ(a)).

Theminimum regret under stability at PN is defined as α(PN) = min
μ∈C(PN)

α(μ,PN).

80See Remark 5.3.2 for details.
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It isworthmentioning that the regret of anunstablematching canbe strictly less than theminimumregret under stability.

Definition 5.4.2. (Knuth, 1976) A matching μ∗ isminimum regret stable at a preference profile PN if it is stable at PN

and its regret is same as minimum regret under stability at PN, that is, α(μ∗,PN) = α(PN).

An algorithm is called minimum regret stable if it produces a minimum regret stable matching at every preference

profile.

It is worth noting that the minimum regret property has a close resemblance with a Rawlsian welfare function. Roughly

speaking, this property tries to improve the outcome of the ‘poorest of the poor’ agent. Clearly, both WPDA and MPDA

algorithms do not satisfy this property in general since these algorithms always maximize the matches of one side of the

market (women or men), and consequently maximizes the regret of the other side. For instance, consider Example 5.4.1.

The regret of the both outcomes of the WPDA and MPDA algorithms is 3. However, the same of the outcome of the

MWPDA algorithm with κ = (2, 2, 2) is 2.

5.4.1 SequentialMWPDA algorithm

In this section, we present an algorithm that is minimum regret stable. We call this the sequential MWPDA algorithm. It

involves a sequence of rounds. At every round, it performs anMWPDA algorithmwith a cut-off vector. Below, we present

a formal description of this algorithm at a preference profile PN. Let κ∗ = max
m∈M

rank(Pm, μM(m)).

Round 1. Perform the MWPDA algorithm with κ such that κm = κ∗ for all m ∈ M. Let μ∗1 be the outcome of the

MWPDA algorithm at Round 1. If rank(Pm, ∅) ≤ κ∗ for all m ∈ M or rank(Pw, μ∗1 (w)) ≤ κ∗ for all w ∈ W, then

conclude that the algorithm converges and define μ∗1 as the outcome of the sequential MWPDA algorithm. Else, go to

Round 2.

Round 2. Perform the MWPDA algorithm with κ such that κm = κ∗ + 1 for allm ∈ M. Let μ∗2 be the outcome of the

MWPDA algorithm at Round 2. If rank(Pm, ∅) ≤ κ∗ + 1 for allm ∈ M or rank(Pw, μ∗2(w)) ≤ κ∗ + 1 for all w ∈ W,

then conclude that the algorithm converges and define μ∗2 as the outcome of the sequential MWPDA algorithm. Else, go to

Round 3.

...

Continue this till a round k such that either we have rank(Pm, ∅) ≤ κ∗ + k− 1 for allm ∈ M or rank(Pw, μ∗k (w)) ≤

κ∗ + k− 1 for all w ∈ W for the first time at Round k.81 In other words, k is such that for all round l < k, there exists

81Since κm cannot be bigger than q+ 1, such a round must exist.
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m ∈ M with rank(Pm, ∅) > κ∗ + l− 1 and w ∈ W with rank(Pw, μ∗l (w)) > κ∗ + l− 1. Define μ∗k as the outcome of

the sequential MWPDA algorithm.

Remark 5.4.1. It is worth noting that in order to execute the sequential MWPDA algorithm at a preference profile PN,

first one needs to compute the men-optimal stable matching at PN.

Remark 5.4.2. By Theorem 5.3.3, the MWPDA algorithm used at every round of the sequential MWPDA algorithm

converges at Stage 1. This ensures quick convergence of the sequential MWPDA algorithm.

Our next result says that the sequential MWPDA algorithm produces the women-optimal matching in the set of all

minimum regret stable matchings.

Theorem 5.4.1. The sequential MWPDA algorithm is minimum regret stable. Furthermore, the outcome of the sequential

MWPDA algorithm is women-optimal in the set of all minimum regret stable matchings.

The proof of this theorem is relegated to Section 5.8.

5.5 Stable matchingwith forced and forbidden pairs

The notion of stable matching with forced pairs is introduced in Knuth (1976), and that with forbidden pairs is introduced

inDias et al. (2003). In this section, we provide an algorithm that produces stablematchingwith forced and forbidden pairs,

whenever such a matching exists.

Definition 5.5.1. Given a set of pairs Q1 ⊆ M×W, we say a matching μ is with forced pairs Q1 if every pair in Q1 is

matched in μ, that is, μ(m) = w for all (m,w) ∈ Q1.

Definition 5.5.2. Given a set of pairs Q2 ⊆ M×W, we say a matching μ is with forbidden pairs Q2 if no pair in Q2 is

matched in μ, that is, μ(m) ̸= w for all (m,w) ∈ Q2.

5.5.1 ConditionalMWPDA algorithm

Consider a preference profile PN and letQ1 be a set of forced pairs andQ2 be a set of forbidden pairs. Note that for all (m,

w), (m′,w′) ∈ Q1 with (m,w) ̸= (m′,w′), we havem ̸= m′ and w ̸= w′.82 Form ∈ M, with slight abuse of notation,

we saym ∈ Q1, if there exists w ∈ W such that (m,w) ∈ Q1.

In what follows, we present an algorithm, called conditional MWPDA algorithm given (Q1,Q2), that produces a

stable matching with forced pairs Q1 and forbidden pairs Q2, whenever such a matching exists. The algorithm involves a

82Otherwise there will be no stable matching with forced pairsQ1.
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sequence of rounds. At every round, anMWPDA algorithm is performedwith a cut-vector κ such that κm = rank(Pm,w)

for allm ∈ Q1 with (m,w) ∈ Q1. The cut-off parameters for other men may change over rounds; they are defined at the

beginning of each round of the conditional MWPDA algorithm.

Round 1. Define κ1 such that for allm /∈ Q1, κ1m = rank(Pm, ∅). Perform theMWPDA algorithmwith κ1. Let μ∗1 be the

outcome of the MWPDA algorithm at Round 1.

(i) If μ∗1 is with forced pairsQ1 and forbidden pairsQ2, then conclude that the algorithm converges and define μ∗1 as the

outcome of the algorithm.

(ii) Else, if there exists a pair (m,w) ∈ Q1 such that μ∗1 (m) ̸= w, then conclude that the algorithm STOPS.

(iii) Else, go to Round 2.

Round 2. Define κ2 such that for allm /∈ Q1,

κ2m =


rank(Pm, μ∗1 (m)) if (m, μ∗1 (m)) /∈ Q2;

rank(Pm, μ∗1 (m))− 1 if (m, μ∗1 (m)) ∈ Q2.

Perform theMWPDA algorithm with κ2. Let μ∗2 be the outcome of the MWPDA algorithm at Round 2.

(i) If μ∗2 is with forced pairsQ1 and forbidden pairsQ2, then conclude that the algorithm converges and define μ∗2 as the

outcome of the algorithm.

(ii) Else, if there exists a pair (m,w) ∈ Q1 such that μ∗2(m) ̸= w or if there existsm ∈ M such that rank(Pm, μ∗2(m)) >

κ2m, then conclude that the algorithm STOPS.

(iii) Else, go to Round 3.

...

Note that for any two consecutive rounds r and r+ 1, for eachm /∈ Q1, we have κrm ≤ κr+1
m , and for at least onem /∈ Q1,

we have κrm < κr+1
m . Therefore, if the algorithm does not converge or STOP at any round, then there will come a round r

where somem /∈ Q1 will have κrm = 0. In that case too, conclude that the algorithm STOPS.
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5.5.2 Conditional MWPDA algorithm produces stable matching with forced and forbid-

den pairs

The following result says that a stablematchingwith given forced and forbidden pairs exists at a preference profile only if the

conditionalMWPDAalgorithmconverges at that preference profile. It further says thatwhenever the conditionalMWPDA

algorithm converges, it produces a stable matching with given forced and forbidden pairs, which is also women-optimal in

the set of all stable matchings with the given forced and forbidden pairs. Thus, if at a preference profile, the conditional

MWPDA algorithm STOPS at any round, then it must be that there is no stable matching with the corresponding forced

and forbidden pairs at that preference profile.

Theorem 5.5.1. A stable matching with forced pairs Q1 and forbidden pairs Q2 exists at a preference profile PN if and only if

the conditionalMWPDA algorithm given (Q1,Q2) converges at PN. Further, whenever this algorithm converges, the outcome

is women-optimal in the set of all stable matchings with forced pairs Q1 and forbidden pairs Q2.

The proof of this theorem is relegated to Section 5.9.

By the construction of the conditional MWPDA algorithm, we obtain the following corollary from Theorem 5.5.1. It

says that whenever there is no forbidden pair, the conditional MWPDA algorithm will come to a conclusion at the first

round itself: either it will converge or it will STOP. If it converges at this round, then a stable matching with given forced

pairs is produced as the outcomewhich is also women-optimal in the set of all such stable matchings. If it STOPS, then that

means there is no such a stable matching.

Corollary 5.5.1. Let PN be a preference profile and let Q1 be a set of forced pairs.

(i) If there exists a stable matching with forced pairs Q1 at PN, then the conditional MWPDA algorithm given (Q1, ∅)

at PN converges at Round 1. Furthermore, the outcome is women-optimal in the set of all stable matchings with forced

pairs Q1.

(ii) If there is no stable matching with forced pairs Q1 at PN, then the conditional MWPDA algorithm given (Q1, ∅) at

PN STOPS at Round 1.

5.6 Proof of Theorem 5.3.1

In all our proofs, for a given MWPDA algorithm at a preference profile PN, we use the notation μsk to denote the outcome

obtained at Step k of the WPDA algorithm at Stage s of the given MWPDA algorithm, and the notation t∗ to denote the

last stage of the MWPDA algorithm. We make two observations which we will use in our proofs.
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Observation 5.6.1. Consider a stage, say s, and two steps l andkwith l ≤ k of theWPDAalgorithmat Stage s of anMWPDA

algorithm at a preference profile PN. Then, it follows from the property of theWPDA algorithm that for all m ∈ M, we have

μsk(m)Rmμsl(m).

Observation 5.6.2. Consider a stage, say s, of anMWPDA algorithm at a preference profile PN. It follows from the property

of theWPDA algorithm that μs is stable at the preference profile (Pm1 , . . . ,Pmp ,P
Ms(w1)
w1 , . . . ,PM

s(wq)
wq ).83

Fix a preference profile PN. Take an arbitrary cut-off vector κ and consider the MWPDA algorithm with κ at PN. First,

we prove a lemma that says that the match of a woman gets better over stages.

Lemma 5.6.1. For all r ≤ s≤ t∗ and all w ∈ W, μs(w)Rwμr(w).

Proof of Lemma 5.6.1. By the definition of the MWPDA algorithm, we have μs(w)RMs(w)
w ∅ for all w ∈ W. This, to-

gether with the construction ofMs(w), implies that μs(w)Rw∅ for all w ∈ W. So, if μr(w) = ∅ for some w ∈ W, then

there is nothing to show for that w. Take w ∈ W such that μr(w) = m ∈ M and take r < t∗. It is enough to show that

μr+1(w)Rwμr(w). Assume for contradiction thatmPwμr+1(w).

Because μr(m) = w, by the definition of the MWPDA algorithm, we haveWr(m) = Wr+1(m) and w ∈ Wr(m).

Combining all these, we have w ∈ Wr+1(m), which impliesm ∈ Mr+1(w). SincemPwμr+1(w) andm ∈ Mr+1(w), we

havemPM
r+1(w)

w μr+1(w). By the definition of the MWPDA algorithm, there must be some step l of the WPDA algorithm

at Stage r+ 1 wherem rejects w to be tentatively matched with some w′ ∈ Wr+1(m) whom he prefers to w. This means

w′Pmw, and (5.1a)

mPM
r+1(w′)

w′ ∅. (5.1b)

Moreover, since w′ ∈ Wr+1(m) andWr(m) = Wr+1(m), we have w′ ∈ Wr(m).

Assume that Step l of theWPDA algorithm at Stage r+ 1 has the property that there is no ŵ ∈ Wwith μr(ŵ) ̸= ∅ and

μr(ŵ)Pŵμr+1(ŵ) such that man μr(ŵ) rejects woman ŵ at some step l′ < l of the WPDA algorithm at Stage r+ 1. This is

without loss of generality because, if there is such woman ŵ, then we can take w = ŵ.

SupposemPw′μr(w′). Because w′ ∈ Wr(m), we havem ∈ Mr(w′). SincemPw′μr(w′) andm ∈ Mr(w′), it follows

from the construction of PM
r(w′)

w′ that mPM
r(w′)

w′ μr(w′). This, together with (5.1a) and the fact μr(m) = w, implies that

(m,w′) blocks μr at (Pm1 , . . . ,Pmp ,P
Mr(w1)
w1 , . . . ,PM

r(wq)
wq ), which is a contradiction to Observation 5.6.2. So, it must be

that μr(w′)Rw′m. Because μr(w) = m, w ̸= w′, and μr(w′)Rw′m, we have μr(w′)Pw′m. Moreover, it follows from (5.1b)

83See Section 5.3.2 for the definition of the notation PM
s(w)

w .
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and the construction of PM
r+1(w′)

w′ thatmPw′∅. Combining the facts that μr(w′)Pw′m andmPw′∅, we have

μr(w′)Pw′mPw′∅. (5.2)

Now, we complete the proof of the lemma. Because w′ ∈ Wr+1(m), we have m ∈ Mr+1(w′). Furthermore, (5.2)

implies μr(w′) ∈ M. This, together with the definition of the MWPDA algorithm, yields μr(w′) ∈ Mr+1(w′). Since

m, μr(w′) ∈ Mr+1(w′), it follows from (5.2) that μr(w′)PM
r+1(w′)

w′ mPM
r+1(w′)

w′ ∅. This, together with the fact that woman

w′ is tentatively matched withmanm at Step l of theWPDA algorithm at Stage r+ 1, implies that μr(w′) rejectsw′ at some

step l′ < l of the WPDA algorithm at Stage r + 1. However, this contradicts our assumption on Step l of the WPDA

algorithm at Stage r+ 1, which completes the proof of Lemma 5.6.1. ■

Completion of the proof of Theorem5.3.1. In viewofRemark 5.2.1, we show that the outcomeof theMWPDAalgorithm

is pairwise stable. Note that by the definition of the MWPDA algorithm, its outcome is always individually rational. We

show that no pair can block its outcome. Let μ be the outcome of the MWPDA algorithm. Assume for contradiction that

a pair (m,w) ∈ M×W blocks μ at PN.

Sinceμ is individually rational atPN and (m,w) is a blocking pair ofμ atPN, we havewPmμ(m)Rm∅ andmPwμ(w)Rw∅.

Because wPmμ(m), there must be some stage, say r∗, at which m proposes w for the first time. If μr∗(w)Rwm, then by

Lemma 5.6.1, we have μ(w)Rwm, which contradicts the factmPwμ(w)Rw∅. So, assumemPwμr
∗
(w). Since w ∈ Wr∗(m)

andmPwμr
∗
(w), w proposesm and gets rejected at some step, say l, of the WPDA algorithm at Stage r∗. Since wPm∅, by

Observation 5.6.1, this means

μr
∗
(m)PmwPm∅. (5.3)

If r∗ = t∗, then (5.3) implies μ(m)Pmw, which contradicts the fact wPmμ(m)Rm∅. So, assume r∗ < t∗. By (5.3), we

have μr∗(m) ̸= ∅. Since r∗ < t∗ and μr∗(m) ̸= ∅,m proposes the women inWr∗(m) at the beginning of Stage r∗ + 1.

Then, using a similar argument as for the derivation of (5.3), we have μr∗+1(m)PmwPm∅. Continuing in this manner, it

follows that μ(m)PmwPm∅, which contradicts the fact wPmμ(m)Rm∅. This completes the proof of Theorem 5.3.1. ■

5.7 Proofs of Theorem 5.3.2 and Theorem 5.3.3

In this section, we prove Theorem 5.3.2 and Theorem 5.3.3. We prove Theorem 5.3.3 first since we use that in the proof of

Theorem 5.3.2.
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5.7.1 Proof of Theorem 5.3.3

We prove Theorem 5.3.3 using the following lemmas. Our first lemma is taken fromMcVitie &Wilson (1970). It says that

the set of unmatched men or women stays the same in all stable matchings.

Lemma 5.7.1. (McVitie & Wilson, 1970) Let PN be a preference profile and let μ, μ′ ∈ C(PN). Then, for all a ∈ N,

μ(a) = ∅ implies μ′(a) = ∅.

Our next lemma provides a sufficient condition on κ such that a given stable matching at a preference profile PN remains

stable at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ).

Lemma 5.7.2. Let PN be a preference profile and let μ ∈ C(PN). Then, μ is stable at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq )

if κm ≥ min
{
rank(Pm, μ(m)),max

{
|A(Pm)|, 1

}}
for all m ∈ M.

Proof of Lemma 5.7.2. Suppose κm ≥ min
{
rank(Pm, μ(m)),max

{
|A(Pm)|, 1

}}
for allm ∈ M. In view of Remark

5.2.1, we show that μ is pairwise stable at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). First note that since κm ≥ min

{
rank(Pm,

μ(m)),max
{
|A(Pm)|, 1

}}
for all m ∈ M, we have μ(w) ∈ M1(w) ∪ {∅} for all w ∈ W. Moreover, since μ(w) ∈

M1(w) ∪ {∅} for all w ∈ W, we have for all w ∈ W and allm ∈ M,mRM1(w)
w μ(w) impliesmRwμ(w). Further note that

the preferences of the men are unchanged from PN to (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). Therefore, if (m,w) blocks μ

at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ), then they also block μ at PN contradicting the fact that μ is stable at PN. Hence, μ

cannot have a blocking pair at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). Using a similar logic, it follows that μ is individually

rational at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). ■

Completion of the proof of Theorem 5.3.3. (If part) Take a cut-off vector κ such that κm ≥ min
{
rank(Pm, μM(m)),

max
{
|A(Pm)|, 1

}}
for all m ∈ M. We show the MWPDA algorithm with κ at PN converges at Stage 1. By the defi-

nition of the algorithm, it converges at Stage 1 if W1(m) = A(Pm) for all m ∈ M with μ1(m) = ∅. Take m ∈ M.

If μM(m) = ∅, then by the definition of κ, m proposes all acceptable women at the beginning of Stage 1, and hence

W1(m) = A(Pm). Suppose μM(m) ̸= ∅. It is enough to show that μ1(m) ̸= ∅. Because κm ≥ min
{
rank(Pm,

μM(m)),max
{
|A(Pm)|, 1

}}
for all m ∈ M, by Lemma 5.7.2, μM is stable at (Pm1 , . . . ,Pmp ,P

M1(w1)
w1 , . . . ,PM

1(wq)
wq ).

Furthermore, by Observation 5.6.2, μ1 is stable at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). Since μ1 and μM both are stable at

(Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ), by Lemma 5.7.1, we have μ1(m) ̸= ∅.

(Only-if part) Take a cut-off vector κ such that κm < min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
for somem ∈ M.

Assume for contradiction that the MWPDA algorithm with κ at PN converges at Stage 1. Since κm < min
{
rank(Pm,

μM(m)),max
{
|A(Pm)|, 1

}}
, this means μ1(m) ̸= ∅ and rank(Pm, μ1(m)) ≤ κm. Combining the facts rank(Pm,

μ1(m)) ≤ κm andκm < min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
, wehave rank(Pm, μ1(m)) < rank(Pm, μM(m)).
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This, along with Remark 5.3.2, implies μ1 is not stable at PN, which contradicts Theorem 5.3.1. This completes the proof

of Theorem 5.3.3. ■

5.7.2 Proof of Theorem 5.3.2

Let μM be the men-optimal stable matching at PN. Because μ ∈ C(PN), by Remark 5.3.2, we have rank(Pm, μ(m)) ≥

rank(Pm, μM(m)) for allm ∈ M. This, together with the fact that κm = rank(Pm, μ(m)) for allm ∈ M, means κm ≥

min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
for all m ∈ M. Therefore, by Theorem 5.3.3, the MWPDA algorithm

with κ converges at Stage 1.

Now, we show μ1 = μ. Since κm = rank(Pm, μ(m)) for all m ∈ M, we have κm ≥ min
{
rank(Pm, μ(m)),

max
{
|A(Pm)|, 1

}}
for allm ∈ M. This, together with Lemma 5.7.2, implies that μ is stable at (Pm1 , . . . ,Pmp ,P

M1(w1)
w1 ,

. . . ,PM
1(wq)

wq ). Moreover, by the definition of the MWPDA algorithm, μ1 is women-optimal stable matching at (Pm1 , . . . ,

Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). Since μ ∈ C(Pm1 , . . . ,Pmp ,P

M1(w1)
w1 , . . . ,PM

1(wq)
wq ) and μ1 is women-optimal stable matching

at (Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ), by Remark 5.3.2, it follows that

μ(m)Rmμ1(m) for allm ∈ M. (5.4)

Since μ, μ1 ∈ C(Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ), by Lemma 5.7.1, we have

μ1(m) = μ(m) for allm ∈ Mwith μ1(m) = ∅. (5.5)

By the definition of the MWPDA algorithm, rank(Pm, μ1(m)) ≤ κm for all m ∈ M with μ1(m) ̸= ∅. This, together

with definition of κ and (5.4), implies that

μ1(m) = μ(m) for allm ∈ Mwith μ1(m) ̸= ∅. (5.6)

(5.5) and (5.6) together imply μ1 = μ.

It remains to show that the MWPDA algorithm with κ converges at the first step of the WPDA algorithm at Stage 1.

Suppose not. Then, there exists a pair (m,w) such that at the first step of the WPDA algorithm at Stage 1, w proposesm

and gets rejected. By the definition of the MWPDA algorithm, this means w ∈ W1(m) and mPM
1(w)

w μ1(w). Moreover,

since μ1 = μ andmPM
1(w)

w μ1(w), we have μ(m) ̸= w. The facts κm = rank(Pm, μ(m)), w ∈ W1(m), and w ̸= μ(m)

together imply wPmμ(m). Because μ1 = μ, this, together with the factmPM
1(w)

w μ1(w), implies (m,w) blocks μ1 at (Pm1 ,

. . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ), a contradiction to Observation 5.6.2. This completes the proof of Theorem 5.3.2. ■
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5.8 Proof of Theorem 5.4.1

We prove a sequence of lemmas that we use in the proof of Theorem 5.4.1.

Lemma 5.8.1. Let PN be a preference profile and let κ be such that κm ≥ rank(Pm, μM(m)) for all m ∈ M. Suppose μ is the

outcome of theMWPDA algorithm with κ at PN. Then, rank(Pm, μ(m)) ≤ κm for all m ∈ M.

Proof of Lemma 5.8.1. ByTheorem5.3.1, μ ∈ C(PN). Sinceμ, μM ∈ C(PN), byLemma5.7.1,wehaveμ(m) = μM(m)

for allm ∈ Mwith μ(m) = ∅. This, together with the definition of κ, implies

rank(Pm, μ(m)) ≤ κm for allm ∈ Mwith μ(m) = ∅. (5.7)

By the definition of κ, we have κm ≥ min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
for allm ∈ M. Therefore, by Theo-

rem 5.3.3, theMWPDA algorithm with κ at PN converges at Stage 1 producing μ. This, together with the definition of the

MWPDA algorithm, implies

rank(Pm, μ(m)) ≤ κm for allm ∈ Mwith μ(m) ̸= ∅. (5.8)

The proof of Lemma 5.8.1 follows from (5.7) and (5.8). ■

The implication of our next lemma is as follows. Let μ be the outcome of the MWPDA algorithm with cut-off vector κ

where κ is such that every man gets to propose the woman (together with other women) who he would be matched with in

themen-optimal stablematching (if aman is unmatched in themen-optimal stablematching, thenheproposes all acceptable

women). Let μ′ be another stable matching where the rank of the match of every manm (the matchmight be some woman

or ∅) according to Pm is less than or equal to κm. Then, for every woman, the match in μmust be at least as good as that in

μ′.

Lemma 5.8.2. Let PN be a preference profile and let κ be such that κm ≥ rank(Pm, μM(m)) for all m ∈ M. Let μ be the

outcome of theMWPDA algorithm with κ at PN. Suppose μ′ ∈ C(PN) is such that rank(Pm, μ′(m)) ≤ κm for all m ∈ M.

Then, μ(w)Rwμ′(w) for all w ∈ W.

Proof of Lemma 5.8.2. Suppose μ and μ′ are as defined in Lemma 5.8.2. Since κm ≥ rank(Pm, μM(m)) for allm ∈ M,

we have κm ≥ min
{
rank(Pm, μM(m)),max

{
|A(Pm)|, 1

}}
for all m ∈ M. This, along with Theorem 5.3.3, implies

that the MWPDA algorithm with κ at PN converges at Stage 1 producing μ. By Observation 5.6.2, this means μ is stable at
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(Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ). Also, since rank(Pm, μ′(m)) ≤ κm for allm ∈ M, we have κm ≥ min

{
rank(Pm,

μ′(m)),max
{
|A(Pm)|, 1

}}
for all m ∈ M. This, along with Lemma 5.7.2, implies that μ′ is stable at (Pm1 , . . . ,Pmp ,

PM
1(w1)

w1 , . . . ,PM
1(wq)

wq ). Because μ, μ′ ∈ C(Pm1 , . . . ,Pmp ,P
M1(w1)
w1 , . . . ,PM

1(wq)
wq ) and μ is the outcome of the WPDA algo-

rithm at Stage 1 of the MWPDA algorithm, by Remark 5.3.2, we have μ(w)RM1(w)
w μ′(w) for all w ∈ W. By the definition

of the MWPDA algorithm, μ(w) ∈ M1(w) ∪ {∅}. As rank(Pm, μ′(m)) ≤ κm for all m ∈ M, we have μ′(w) ∈

M1(w) ∪ {∅} for all w ∈ W. Since for all w ∈ W, we have μ(w), μ′(w) ∈ M1(w) ∪ {∅} and μ(w)RM1(w)
w μ′(w), by the

construction of PM
1(w)

w , we have μ(w)Rwμ′(w) for all w ∈ W. This completes the proof of Lemma 5.8.2. ■

Completion of the proof of Theorem5.4.1. ByTheorem5.3.1, it is straightforward that the sequentialMWPDAalgorithm

is stable. We proceed to show that the sequential MWPDA algorithm produces a minimum regret stable matching at every

preferenceprofile. Take a preference profilePN. Letκ be the cut-off vector that is used at the terminal roundof the sequential

MWPDA algorithm atPN and μ be the outcome of the sequentialMWPDA algorithm atPN. It follows from the definition

of the sequential MWPDA algorithm that κm ≥ rank(Pm, μM(m)) for all m ∈ M. Therefore, by Lemma 5.8.1 along

with the definition of the sequential MWPDA algorithm, we have

rank(Pm, μ(m)) ≤ κm for allm ∈ M. (5.9)

Claim 5.8.1. κm ≤ α(PN) for all m ∈ M.

Proof of Claim 5.8.1. Assume for contradiction that κm > α(PN) for some (and hence, all) m ∈ M. Consider the

round of the sequential MWPDA algorithm where the MWPDA algorithm is performed with κ̂ where κ̂m = α(PN) for

all m ∈ M. Let μ̂ be the outcome of that round. By the definition of α(PN), there must exist μ′ ∈ C(PN) such that

α(μ′,PN) = α(PN). Because α(μ′,PN) = α(PN), we have rank(Pm, μ′(m)) ≤ α(PN) for all m ∈ M. By Lemma

5.8.2, this means μ̂(w)Rwμ′(w) for all w ∈ W. Therefore, max
w∈W

rank(Pw, μ̂(w)) ≤ max
w∈W

rank(Pw, μ′(w)) ≤ α(PN).

By the definition of the sequential MWPDA algorithm, this means that the algorithm cannot go for another round, which

contradicts the fact that κm > α(PN) for allm ∈ M. This completes the proof of Claim 5.8.1. □

Since κ is the cut-off vector that is used at the terminal round of the sequential MWPDA algorithm at PN and μ is the

outcome of the sequential MWPDA algorithm at PN, one of the following two statements must hold.

(1) rank(Pm, ∅) ≤ κm for allm ∈ M.

(2) rank(Pw, μ(w)) ≤ κm for all w ∈ W and for some (and hence, all)m ∈ M.

We distinguish the following two cases.
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Case 1: Suppose rank(Pm, ∅) ≤ κm for allm ∈ M.

Since rank(Pm, ∅) ≤ κm for all m ∈ M and μ is the outcome of the sequential MWPDA, it is easy to verify that μ

is the women-optimal stable matching at PN. By the definition of α(PN), there must exist μ′ ∈ C(PN) such that α(μ′,

PN) = α(PN). Since μ is the women-optimal stable matching, we have rank(Pw, μ(w)) ≤ rank(Pw, μ′(w)) ≤ α(PN) for

all w ∈ W. Moreover, by Claim 5.8.1 along with (5.9), we have rank(Pm, μ(m)) ≤ α(PN) for allm ∈ M. Combining

the facts that rank(Pm, μ(m)) ≤ α(PN) for all m ∈ M and rank(Pw, μ(w)) ≤ α(PN) for all w ∈ W, we have α(μ,

PN) ≤ α(PN). By the definition of α(PN), this means α(μ,PN) = α(PN). So, μ is a minimum regret stable matching at

PN. Because μ is the women-optimal stable matching at PN, this implies that μ is women-optimal in the set of all minimum

regret stable matchings at PN.

Case 2: Suppose rank(Pw, μ(w)) ≤ κm for all w ∈ W and for some (and hence, all)m ∈ M.

Since rank(Pw, μ(w)) ≤ κm for allw ∈ W and for somem ∈ M, it follows from (5.9) and the definition of the sequential

MWPDA algorithm that α(μ,PN) ≤ κm for allm ∈ M. This, together with Claim 5.8.1, implies that α(μ,PN) ≤ κm ≤

α(PN) for allm ∈ M. By the definition of α(PN), this means

α(μ,PN) = κm = α(PN) for allm ∈ M. (5.10)

By (5.10), we have α(μ,PN) = α(PN). So, μ is a minimum regret stable matching at PN.

Let μ′ be a minimum regret stable matching at PN. Clearly, rank(Pm, μ′(m)) ≤ α(PN) for allm ∈ M. This, together

with (5.10), implies that rank(Pm, μ′(m)) ≤ κm for all m ∈ M. Furthermore, it follows from the definition of the

sequential MWPDA algorithm that μ is the outcome of the MWPDA algorithm with κ at PN. Since κm ≥ rank(Pm,

μM(m)) for all m ∈ M, μ is the outcome of the MWPDA algorithm with κ, and μ′ is a stable matching with rank(Pm,

μ′(m)) ≤ κm for allm ∈ M, by Lemma 5.8.2, we have μ(w)Rwμ′(w) for all w ∈ W. Since μ is a minimum regret stable

matching at PN, this implies that μ is women-optimal in the set of all minimum regret stable matchings at PN.

Since Case 1 and Case 2 are exhaustive, it follows that the outcome of the sequential MWPDA algorithm is women-

optimal in the set of all minimum regret stable matchings. This completes the proof of Theorem 5.4.1. ■

5.9 Proof of Theorem 5.5.1

The following lemma follows from Lemma 1 in Gale & Sotomayor (1985), which establishes a relationship between two

stable matchings at a preference profile.
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Lemma 5.9.1. Let PN be a preference profile and let μ, μ′ ∈ C(PN). Then, μ(m)Rmμ′(m) for all m ∈ M if and only if

μ′(w)Rwμ(w) for all w ∈ W.

Let us first recall someof thenotations used in the context of the conditionalMWPDAalgorithm. For a preference profile

PN, a set of forced pairsQ1, and a set of forbidden pairsQ2, κr is the cut-off vector associatedwith theMWPDAalgorithm at

Round r of the conditionalMWPDA algorithm given (Q1,Q2) and μ∗r is the outcome of theMWPDA algorithm at Round

r.

Completion of the proof of Theorem 5.5.1. It is obvious that if the conditional MWPDA algorithm given (Q1,Q2) con-

verges at PN, then there exists a stable matching with forced pairs Q1 and forbidden pairs Q2. We proceed to prove the rest

of the theorem. Suppose there exists a stable matching with forced pairsQ1 and forbidden pairsQ2 at PN. Let C̄(PN) be the

set of all stable matchings at PN with forced pairs Q1 and forbidden pairs Q2. Clearly, C̄(PN) ̸= ∅. Define the mapping

μ∗ : N → N∪ {∅} such that

(i) for all m ∈ M, μ∗(m) = x if and only if there exists a μ ∈ C̄(PN) such that μ(m) = x and μ′(m)Rmx for all

μ′ ∈ C̄(PN), and

(ii) for all w ∈ W, μ∗(w) = y if and only if there exists a μ ∈ C̄(PN) such that μ(w) = y and yRwμ′(w) for all

μ′ ∈ C̄(PN).

It follows from the construction of μ∗ that it is women-optimal in C̄(PN) (see Knuth (1976) for details). We show that the

conditional MWPDA algorithm given (Q1,Q2) converges at PN producing μ∗ as the outcome.

If μ∗1 = μ∗, then we are done. Suppose μ∗1 ̸= μ∗.

Claim 5.9.1. For all m ∈ M, we have

(i) rank(Pm, μ∗1 (m)) ≤ κ1m, and

(ii) μ∗(m)Rmμ∗1 (m).

Proof of Claim 5.9.1. By the definition of κ1, we have κ1m ≥ rank(Pm, μ∗(m)) for allm ∈ M. Since μ∗ ∈ C(PN), by

Remark 5.3.2, we have rank(Pm, μ∗(m)) ≥ rank(Pm, μM(m)) for allm ∈ M. Combining the facts that κ1m ≥ rank(Pm,

μ∗(m)) for allm ∈ M and rank(Pm, μ∗(m)) ≥ rank(Pm, μM(m)) for allm ∈ M, we have κ1m ≥ rank(Pm, μM(m)) for

allm ∈ M. Therefore, by Lemma 5.8.1, rank(Pm, μ∗1 (m)) ≤ κ1m for allm ∈ M. This proves (i) in Claim 5.9.1.

By Lemma 5.8.2, κ1m ≥ rank(Pm, μ∗(m)) for allm ∈ M implies μ∗1 (w)Rwμ∗(w) for all w ∈ W. By Lemma 5.9.1, this

implies μ∗(m)Rmμ∗1 (m) for allm ∈ M. This proves (ii) in Claim 5.9.1. □
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Claim 5.9.2. μ∗1 (m) = μ∗(m) = w for all (m,w) ∈ Q1.

Proof of Claim 5.9.2. Since κ1m = rank(Pm,w) for all (m,w) ∈ Q1, μ∗(m) = w for all (m,w) ∈ Q1, by Claim 5.9.1,

we have μ∗1 (m) = w for all (m,w) ∈ Q1, which completes the proof of Claim 5.9.2. □

ByClaim 5.9.2, it follows that the conditionalMWPDA algorithm given (Q1,Q2)will not stop at Round 1, and because

it does not converge either at Round 1, it will go to Round 2.

Claim 5.9.3. κ2m ≥ rank(Pm, μ∗(m)) for all m ∈ M.

Proof of Claim 5.9.3. By the definition of κ2, we have κ2m = rank(Pm, μ∗(m)) for all m ∈ Q1. Take m /∈ Q1. If (m,

μ∗1 (m)) /∈ Q2, then by the definition of κ2 and (ii) in Claim 5.9.1, we have κ2m ≥ rank(Pm, μ∗(m)). On the other hand, if

(m, μ∗1 (m)) ∈ Q2, which inparticularmeansμ∗(m) ̸= μ∗1 (m), thenby (ii) inClaim5.9.1, itmust be thatμ∗(m)Pmμ∗1 (m).

Therefore, by the definition of κ2 and (ii) in Claim 5.9.1, we have κ2m ≥ rank(Pm, μ∗(m)). This completes the proof of

Claim 5.9.3. □

Using similar logic as for Claims 5.9.1 and 5.9.2, it follows that

rank(Pm, μ∗2(m)) ≤ κ2m for allm ∈ M, (5.11a)

μ∗(m)Rmμ∗2(m) for allm ∈ M, and (5.11b)

μ∗2(m) = μ∗(m) = w for all (m,w) ∈ Q1. (5.11c)

Claim 5.9.4. μ∗2(m)Rmμ∗1 (m) for all m ∈ Mand there exists m′ /∈ Q1 such that μ∗2(m
′)Pm′μ∗1 (m

′).

Proof of Claim 5.9.4. By the definition of κ2, (5.11a) implies μ∗2(m)Rmμ∗1 (m) for all m /∈ M. Moreover, as μ∗1 ̸= μ∗,

there must exist m′ /∈ Q1 such that (m′, μ∗1 (m
′)) ∈ Q2. This, together with the definition of κ2 and (5.11a), yields

μ∗2(m
′)Pm′μ∗1 (m

′). □

By Claim 5.9.4, (5.11a), and (5.11c), it follows that the conditional MWPDA algorithm given (Q1,Q2) either converges

at Round 2 or goes to Round 3. If it goes to Round 3, then using similar logic as for Claim 5.9.2, we have μ∗3(m) =

μ∗(m) = w for all (m,w) ∈ Q1, and that for Claim 5.9.4, we have μ∗3(m)Rmμ∗2(m) for allm ∈ M and there exists m̄ /∈ Q1

such that μ∗3(m̄)Pm̄μ∗2(m̄).

We argue that the conditional MWPDA algorithm given (Q1,Q2)must converge at some round.84 Suppose not. Then,

we will get a sequence of stable matchings μ∗1 , μ∗2 , . . . such that μ∗(m)Rm . . .Rmμ∗2(m)Rmμ∗1 (m) for allm ∈ M. Because
84Recall that the conditional MWPDA algorithm always terminates, that is, either converges or STOPS at every preference profile

(see Section 5.5.1 for details).
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μ∗1 , μ∗2 , . . . are all distinct and the number of stable matchings is finite, it follows that there must be a round where μ∗ will

be produced, and hence the conditional MWPDA algorithm will converge.

Now, we show that the outcome of the conditional MWPDA algorithm given (Q1,Q2) is always μ∗. Let r̃ be the

terminal round of the conditional MWPDA algorithm given (Q1,Q2). Using similar logic as for Claim 5.9.1, we have

μ∗(m)Rmμ∗r̃ (m) for allm ∈ M. Since μ∗, μ∗r̃ ∈ C(PN), by Lemma 5.9.1, μ∗r̃ (w)Rwμ∗(w) for all w ∈ W. Moreover, since

the conditional MWPDA algorithm converges, it must be that μ∗r̃ ∈ C̄(PN). Since μ∗r̃ ∈ C̄(PN) and μ∗r̃ (w)Rwμ∗(w) for

all w ∈ W, by the definition of μ∗, we have μ∗ = μ∗r̃ . This completes the proof of Theorem 5.5.1. ■
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