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Introduction

This thesis comprises of four chapters related to stability and (obviously) strategy-proofness in matching theory. A brief

introduction of the chapters is provided below.

1.1 OBVIOUSLY STRATEGY-PROOF IMPLEMENTATION OF ASSIGNMENT RULES: A NEw CHARACTERIZA-

TION

In this chapter, we consider assignment problems where individuals are to be assigned at most one indivisible object and
monetary transfers are not allowed. We provide a characterization of assignment rules that are Pareto efficient, non-bossy,
and implementable in obviously strategy-proof (OSP) mechanisms. As corollaries of our result, we obtain a characterization
of OSP-implementable fixed priority top trading cycles (FPTTC) rules, hierarchical exchange rules, and trading cycles rules.
Troyan (2019) provides a characterization of OSP-implementable FPTTC rules when there are equal number of individuals

and objects. Our result generalizes this for arbitrary values of those.



1.2 ONOBVIOUSLY STRATEGY-PROOF IMPLEMENTATION OF FIXED PRIORITY TOP TRADING CYCLES WITH

OUuTSIDE OPTIONS

In this chapter, we study the implementation of a fixed priority top trading cycles (FPTTC) rule via an obviously strategy-
proof (OSP) mechanism (Li, 2017) in the context of assignment problems with outside options, where agents are to be
assigned at most one indivisible object and monetary transfers are not allowed. In a model without outside options, Troyan
(2019) gives a sufficient (but not necessary) and Mandal & Roy (2020) give a necessary and sufficient condition for an
FPTTC rule to be OSP-implementable. This paper shows that in a model with outside options, the two conditions (in
Troyan (2019) and Mandal & Roy (2020)) are equivalent for an FPTTC rule, and each of them is necessary and sufficient

for an FPTTC rule to be OSP-implementable.

1.3 STRATEGY-PROOF ALLOCATION OF INDIVISIBLE GOODS WHEN PREFERENCES ARE SINGLE-PEAKED

In this chapter, we consider assignment problems where heterogeneous indivisible goods are to be assigned to individuals
so that each individual receives at most one good. Individuals have single-peaked preferences over the goods. In this setting,
first we show that there is no strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-proof assignment
rule on a minimally rich single-peaked domain when there are at least three individuals and at least three objects in the
market. Next, we characterize all strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-
proof assignment rules on a minimally rich single-peaked domain as hierarchical exchange rules. We additionally show that
strategy-proofness and non-bossiness together are equivalent to group strategy-proofness on a minimally rich single-peaked
domain, and every hierarchical exchange rule satisfies group-wise reallocation-proofness on a minimally rich single-peaked

domain.

1.4 MATCHINGS UNDER STABILITY, MINIMUM REGRET, AND FORCED AND FORBIDDEN PAIRS IN MAR-

RIAGE PROBLEM

In this chapter, we provide a class of algorithms, called men-women proposing deferred acceptance (MWPDA) algorithms,
that can produce all stable matchings at every preference profile for the marriage problem. Next, we provide an algorithm
that produces a minimum regret stable matching at every preference profile. We also show that its outcome is always women-
optimal in the set of all minimum regret stable matchings. Finally, we provide an algorithm that produces a stable matching
with given sets of forced and forbidden pairs at every preference profile, whenever such a matching exists. As before, here

too we show that the outcome of the said algorithm is women-optimal in the set of all stable matchings with given sets of



forced and forbidden pairs.



Obviously Strategy-proof Implementation of

Assignment Rules: A New Characterization

2.1 INTRODUCTION

We consider the problem where a set of objects are to be allocated over a set of individuals based on the individuals’ pref-
erences over the objects. Each individual can receive at most one object. An assignment rule selects an allocation (of the
objects over the individuals) at every collection of preferences of the individuals.

Pareto efficiency, non-bossiness, and (group) strategy-proofness are standard requirements of an assignment rule." Pareto
efficiency ensures that there is no other way to allocate the objects so that each individual is weakly better-off (and hence some
individual is strictly better-oft). Non-bossiness says that an individual cannot change the assignment of another one without

changing her own assignment. Strategy-proofness ensures that no individual can be strictly better-oft by misreporting her

"The concept of non-bossiness is due to Satterthwaite & Sonnenschein (1981).



(true) preference. Group strategy-proofness ensures the same for every group of individuals, that is, no group of individuals
can be better-off by misreporting their preferences. Here, we say a group of individuals is better-oft if each member in it is
weakly better-off and some member is strictly better-off.

Pépai (2000) showed that an assignment rule is strategy-proof, non-bossy, Pareto efficient, and reallocation-proof if and
only if it is a hierarchical exchange rule. A hierarchical exchange rule works in stages. In each stage, the objects (available in
that stage) are owned by certain individuals who then trade their objects by forming top trading cycles.* Ownership of the
objects at the start of each stage is determined by a collection of trees, called inberitance trees in Pipai (2000). As observed
in Troyan (2019), the use of hierarchical exchange rules in practice is rare as participating individuals find it difficult to
understand them, particularly the fact that these rules are strategy-proof.?

Obvious strategy-proofness (Li, 2017) came to the literature as a remedy by strengthening strategy-proofness in a way so
that it becomes transparent to the participating individuals that a rule is not manipulable. The concept of obvious strategy-
proofness is based on the notion of obvions dominance in an extensive-form game. A strategy s; of an individual 7 in an
extensive-form game is obviously dominant if, for any deviating strategy s/, starting from any earliest information set where
5; and s, diverge, the best possible outcome from s} is no better than the worst possible outcome from s;. An assignment rule
is obviously strategy-proof (OSP) if one can construct an extensive-form game that has an equilibrium in obviously dominant
strategies. By construction, OSP depends on the extensive-form game, so two games with the same normal form may differ
on this criterion.*

This chapter characterizes the structure of OSP-implementable assignment rules subject to Pareto efficiency and non-
bossiness. We introduce the notion of dual ownership for this purpose. A hierarchical exchange rule satisfies dual ownership
if for each preference profile and each stage of the hierarchical exchange rule at that preference profile, there are at most two
individuals who own all the objects available in that stage.> Thus, the dual ownership property makes it very simple for
the (at most two) owners in any stage to trade: they only interchange their favorite objects. In contrast, for an arbitrary
hierarchical exchange rule, there might be arbitrary number of individuals trading their favorite objects in a stage, which
makes it harder to asses what would happen if they do not do this truthfully.

We show that an assignment rule is OSP-implementable, Pareto efficient, and non-bossy if and only if it is a hierarchical

exchange rule satisfying dual ownership (Theorem 2.4.1). Since strategy-proofness and non-bossiness together are equiva-

*Top trading cycle (TTC) is due to David Gale and discussed in Shapley & Scarf (1974).

3Similar phenomena is also observed in other settings, see Chen & Sénmez (2006), Hassidim et al. (2016), Hassidim et al. (2017),
Rees-Jones (2018), and Shorrer & Sévigé (2018) for details.

#This verbal description of obvious strategy-proofness is adapted from Li (2017).

SEhlers (2002) characterizes a class of assignment rules called mixed dictator-pairwise-exchange rules as the unique class of assign-
ment rules that satisfy efficiency and coalitional strategy-proofness on the unique maximal domain (for which the mentioned axioms are
compatible). These rules resemble the hierarchical exchange rules satisfying dual ownership.



lent to group strategy-proofness (see Pépai, 2000 for details), Theorem 2.4.1 can be reformulated in terms of group strategy-
proofness (Corollary 2.4.1). We also show that a hierarchical exchange rule is OSP-implementable if and only if it satisfies
dual ownership, and a trading cycles rule is OSP-implementable if and only if it is a hierarchical exchange rule satisfying dual
ownership.®

Troyan (2019) introduces the notion of dual dictatorship in the context of fixed priority top trading cycles (FPTTC)
rules.” It follows from Theorem 1 and Theorem 2 of his paper that dual dictatorship is both necessary and sufficient con-
dition for an FPTTC rule to be OSP-implementable. However, there is a mistake in his characterization—although dual
dictatorship is a sufficient condition for OSP-implementability of an FPTTC rule, it is oz necessary.8 Since FPTTC rules
are special cases of hierarchical exchange rules (see Pépai, 2000 for details), we obtain as a corollary (Corollary 2.5.2) of our
result that dual ownership is a necessary and sufficient condition for OSP-implementability of an FPTTC rule. It is worth
mentioning that Troyan (2019) assumes that the number of individuals is the same as the number of objects, whereas we
derive our results for arbitrary values of those.

As we have mentioned earlier, Pipai (2000) characterized hierarchical exchange rules as the only assignment rules satis-
tying strategy-proofness, non-bossiness, Pareto efficiency and reallocation-proofness. Our results complement hers in two
ways. Firstly, whereas strategy-proofness, non-bossiness, and Pareto efficiency are desirable, reallocation-proofness is not
that desirable. So, replacing strategy-proofness and reallocation-proofness by OSP-implementability, and characterizing
the relevant class of hierarchical exchange rules is a significant contribution in our opinion. Secondly, hierarchical exchange
rules are somewhat complicated for participants to understand. So, finding the class of such rules that can be implemented
by obviously strategy-proof mechanisms is important for their application. Nevertheless, OSP-implementability is a desir-

able criteria on its own.

2.1.1 RELATED LITERATURE

Obvious strategy-proofness is introduced by Li (2017), who studies this property extensively for both the scenarios where
monetary transfers are allowed and not allowed. When monetary transfers are not allowed, he analyses the implementability
of serial dictatorship and top trading cycles rules under obvious strategy-proofness. Bade & Gonczarowski (2017) con-
structively characterize Pareto-efficient social choice rules that admit obviously strategy-proof implementations in popular

domains (object assignment, single-peaked preferences, and combinatorial auctions). Pycia & Troyan (2019) characterize

®Trading cycles rules are introduced in Pycia & Unver (2017) as generalization of hierarchical exchange rules. They show that an
assignment rule is strategy-proof, non-bossy, and Pareto efficient if and only if it is a trading cycles rule.

7Troyan (2019) uses the term “TTC rule” to refer to an FPTTC rule in his paper.

8Theorem 2 in Troyan (2019) states that “weak acyclicity” and dual dictatorship are equivalent properties of an FPTTC rule. This
result is correct on its own, however, because of the mistake in Theorem 1, it is not correct that an FPTTC rule is OSP-implementable
if and only if it satisfies dual dictatorship.



the full class of obviously strategy-proof mechanisms in environments without transfers. They also introduce a natural
strengthening of obvious strategy-proofness called strong obvious strategy-proofness to characterize the well-known random
priority mechanism as the unique mechanism that is efficient and fair. Ashlagi & Gonczarowski (2018) consider two-sided
matching with one strategic side and show that for general preferences, no mechanism that implements the men-optimal
stable matching (or any other stable matching) is obviously strategy-proof for men. They also provide a sufficient condi-
tion for a deferred acceptance rule to be OSP-implementable. Later, Thomas (2020) provides a necessary and sufficient

condition for the same.

2.1.2 ORGANIZATION OF THE CHAPTER

The organization of this chapter is as follows. In Section 2.2, we introduce basic notions and notations that we use through-
out the chapter, define assignment rules and discuss their standard properties, and introduce the notion of obvious strategy-
proofness. Section 2.3 introduces the notion of hierarchical exchange rules. In Section 2.4, we introduce the dual ownership
property of a hierarchical exchange rule and present our main result (characterization of all OSP-implementable, Pareto ef-
ficient, and non-bossy assignment rules). In Section 2.5, we present a characterization of OSP-implementable hierarchical
exchange rules, a characterization of OSP-implementable trading cycles rules, and a characterization of OSP-implementable

FPTTC rules. We further discuss the relation between our result regarding FPTTC rules and that of Troyan (2019).

2.2 PRELIMINARIES

2.2.1 BASIC NOTIONS AND NOTATIONS

Let N = {1,...,n} be a (finite) set of individuals and 4 be a (non-empty and finite) set of objects. An allocation is a
function g : N — A U {@} such that |z (x)| < 1forallx € 4. Here, u(¢) = x means individual 7 is assigned object
wunder , and z(#) = @ means individual #is not assigned any object under . We denote by M the set of all allocations.
For N C N, 4" C Asuchthat [N'| = [4'] # 0,1let M (N, 4") denote the set of all bijections from N’ to 4’

Let IL(4) denote the set of all strict lincar orders over 4.2 An clement of I (4) is called a preference over A. For a
preference P, let R denote the weak part of P, that s, for all x, y € 4, xRy if and only if [xPy orx = y} . We assume that the
set of admissible preferences of cach individual is L(4). An element Py = (P, ..., P,) of L*(4) is called a preference
profile. Given a preference profile Py, we denote by (P, P—;) the preference profile obtained from Py by changing the

preference of individual 7 from P; to P} and keeping all other preferences unchanged. For P € IL(4) and non-empty

oA strict linear order is a semiconnex, asymmetric, and transitive binary relation.



A" C A4,let (P, A") denote the most-preferred object in A according to P, that s, 7(P,A") = xifand only if [x € A and
xPyforally € 4"\ {x}]. For ease of presentation, we denote 7(P, 4) by 7(P).

For ease of presentation we use the following convention throughout the chapter: for a set {1,..., g} of integers, when-
ever we refer to the number ¢ + 1, we mean 1. For instance, if we write s, > 7,4 forallz =1,..., ¢, wemeans; > r,,...,

Sg—1 = Tg and S¢ 2 71

2.2.2  ASSIGNMENT RULES AND THEIR STANDARD PROPERTIES

An assignment rule is a function f : IL”(4) — M. For an assignment rule £ : IL”(4) — M and a preference profile
Py € L7(A), let £(Py) denote the assignment of individual 7 by fat Py

An allocation y Pareto dominates another allocation » at a preference profile Py if u()Rv(7) for alli € N and
©(j)Pp(j) for some j € N. Anassignment rule f : IL”(4) — M is called Pareto efficient at a preference profile
Py € IL"(A) if there is no allocation that Pareto dominates f{Px) at Py, and it is called Pareto efficient if it is Pareto
efficient at every preference profile in IL” (4).

Non-bossiness is a standard notion in matching theory which says that if an individual misreports her preference and
her assignment does not change by the same, then the assignment of any other individual cannot change. Formally, an
assignment rule 2 L7 (4) — M is non-bossy if for all Py € L(4), all i € Nyand all B, € IL(4), £,(Px) = £(P,, P_.)
implies A Pn) = AP;, P—;).

An individual 7 manipulates an assignment rule £: IL”(4) — M at a preference profile Py € IL"(A) via a preference
P; € IL(A) iff:(P;, P—;) Pfi(Pn). Anassignmentrule £ : IL”(A4) — M is strategy-proof if no individual can manipulate
it at any preference profile.

Group strategy-proofness says that no group of individuals will have an incentive to misreport their preferences. More
formally, a group of individuals N' C N manipulates an assignment rule f : IL”(4) — M at a preference profile Py €
IL"(A) via a collection of preferences Py € LIN'1(4) if £;(Par, P— ) Rifi(Py) forall i € N and fi(Pay, P— ) Pifi(Px)
forsomej € N'. Anassignment rule f: IL”(4) — M is group strategy-proof if no group of individuals can manipulate

it at any preference profile.

2.2.3 OBVIOUSLY STRATEGY-PROOF ASSIGNMENT RULES

Li (2017) introduces the notion of obviously strategy-proof implementation. We use the following notions and notations to
present it.

We denote a rooted (directed) tree by 7. For a tree 7, we denote its set of nodes by (T, set of all edges by E(T), root



by (7)), and set of leaves (terminal nodes) by L( 7). For anode v € V(T), we denote the set of all outgoing edges from v
by E”“(v). For an edge ¢ € E(T), we denote its source node by s(¢). A path in a tree is a sequence of nodes such that every
two consecutive nodes form an edge.

A leaves-to-allocations function 4 : L(T) — M assigns an allocation to each leaf of T, and a nodes-to-individuals
function »™ : V(T) \ L(T) — N assigns an individual to each internal node of 7. An edges-to-preferences function

7P E(T) — 224\ {@} assigns each edge a subset of preferences satisfying the following criteria:
(i) foralldistincte, ¢ € E(T) such thats(e) = s(¢'), we have y2(e) N #**(¢') = @, and
(ii) foranyo € V(7)\ L(7),

(a) if there exists a path (¢, ...,¢") from 7(7) to v and some 1 < » < ¢such that M (v) = ™ (v) and

M(v) # N (v) foralls = r+1,...,¢t — 1, then U( )yEp(e) = 7(v",v"1), and
e€ B (v

(b) if thereis no such path, then U ( )}7EP(£’) =1L(4).
e€ Bt (v

LA NI EP

An extensive-form assignment mechanism is defined as a tuple G = (T, 7™, 7™, #*""), where T'is a rooted tree, ;71“4

NT is 2 nodes-to-individuals function, and 77EP is an edges-to-preferences function.

is a leaves-to-allocations function, 7

Note that for a given extensive-form assignment mechanism G, every preference profile Py identifies a unique path from
the root to some leaf in 7'in the following manner: for each node o, follow the outgoing edge ¢ from v such that 77(¢)
contains the preference P ni(,). If a node v lies in such a path, then we say that the preference profile Py passes through the
node v. Furthermore, we say two preferences P and P of some individual  diverge at a nodev € V(T) \ L(T) if 7 (v) = i
and there are two distinct outgoing edges ¢ and ¢’ in £/ () such that P; € 57(¢) and P, € 57(¢').

For a given extensive-form assignment mechanism G, the extensive-form assignment rule f° implemented by G is de-
fined as follows: for all preference profiles Py, f¢(Py) = 74(1), where / is the leaf that appears at the end of the unique
path characterized by Py.

In what follows, we define the notion of obvious strategy-proofness.

Definition 2.2.1. An extensive-form assignment mechanism G is Obviously Strategy-Proof (OSP) if for all i € N, all

nodes v such that »™(v) = 7, and all Py, Py € IL”(4) passing through v such that P; and P; diverge at v, we have

JE(Pa)RfF (P).

An assignmentrule : L (4) — M is OSP-implementable if there exists an OSP mechanism G such that f = f¢.1o/11

Remark 2.2.1. Every OSP-implementable assignment rule is strategy-proof (see Li, 2017 for details).

°Definition 2.2.1 is taken from Troyan (2019). However, his definition has a typo as it does not mention that Ppyand Py must pass
through ». We have corrected it here.
"' An extensive-form assignment mechanism is called an OSP mechanism if it is OSP.



2.3 HIERARCHICAL EXCHANGE RULES

The notion of hierarchical exchange rules is introduced in Pipai (2000). We explain how such a rule works by means of an
example.'*

We begin with the notion of a TTC procedure with respect to a given endowments of the objects over the individuals.
Suppose that each object is owned by exactly one individual (an individual may own more than one objects). A directed
graph is constructed in the following manner. The set of nodes is the same as the set of individuals. There is a directed edge
from individual 7 to individual j if and only if individual f owns individual ’s most-preferred object. Note that such a graph
will have exactly one outgoing edge from every node (though possibly many incoming edges to a node). Further, there may
be an edge from a node to itself. It is clear that such a graph will always have a cycle. This cycle is called a zop trading cycle

(TTC). After forming a TTC, the individuals in the TTC are assigned their most-preferred objects.

Example 2.3.1. Suppose N = {1,2,3} and 4 = {x1,x2,%3,%4}. A hierarchical exchange rule is based on a collection
of inbheritance trees, one tree for each object.® Figure 2.1 presents a collection of inheritance trees I'y , .. ., Iy,. Consider

Ly

, to have an understanding of their structure. Each maximal path of this tree has min{|N], | 4|} —1 = 2 edges. In any

maximal path, each individual appears a# most once at the nodes. For instance, individuals 1,2 and 3 appear at the nodes
(in that order) in the left most path of T,. Each object other than x; appears exactly once at the outgoing edges from the
root (thus there are three edges from the root). For every subsequent node which is not the end node of a maximal path,
each object other than x;, that has oz already appeared in the path from the root to that node, appears exactly once at the
outgoing edges from that node. For instance, consider the node marked with 2 in the left most path of Ty,. Since this node
is not the end node of the left most maximal path and object x, has already appeared at the edge from the root to this node,
objects x3 and x4 appear exactly once at the outgoing edges from this node. Thus, each object other than x; appears az most
once at the edges in any maximal path of I'y,. For instance, objects x> and x3 appear at the edges (in that order) in the left

most path of I, . It can be verified that other inheritance trees have the same structure.

'>See Pépai (2000) for an intuitive explanation of these rules.
'3 We define this notion formally in Section 2.3.1.
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X3 X4 X2 X4 X2 X3 X3 X4 X1 X4 X1 X3 X Xi X1

ol0

(a) rxl (b) rxz (C) rxs

X4 X1 X2 X2

Figure 2.1: Inheritance trees for Example 2.3.1

Consider the hierarchical exchange rule based on the collection of inheritance trees given in Figure 2.1 and consider the
preference profile Py such that x; Pyxy Pixs Prxg, x1 Poxy Pax3 Poxy, and x1 P3x; P33 P3x4. The outcome is computed through
anumber of stages. In each stage, endowments of the individuals are determined by means of the inheritance trees,and TTC

procedure is performed with respect to the endowments.

Stage 1. In Stage 1, the “owner” of an object x is the individual who is assigned to the root-node of the inheritance tree I'y.
Thus, object x; is owned by individual 1, objects x, and x3 are owned by individual 2, and object x4 is owned by individual
3. TTC procedure is performed with respect to these endowments to decide the outcome of Stage 1. Individuals who
are assigned some object in Stage 1 leave the market with the corresponding objects. It can be verified that for the given
preference profile Py, individual 1 gets object x, and individual 2 gets object x;. So, individuals 1 and 2 leave the market

with objects x, and x, respectively.

Stage 2. As in Stage 1, the endowments of the individuals are decided first and then TTC procedure is performed with
respect to the endowments. To decide the owner of a (remaining) object x, look at the root of the inheritance tree I'. If
the individual who appears there, say individual 7, is remained in the market, then 7 becomes the owner of x. Otherwise,
that is, if 7 is assigned an object in Stage 1, say y, then follow the edge from the root that is marked with y. If the individual
appearing at the node following this edge, say 7, is remained in the market, then j becomes the owner of x. Otherwise, that s,
if 7 is assigned an object in Stage 1, say z, then follow the edge that is marked with z from the current node. As before, check
whether the individual appearing at the end of this edge is remained in the market or not. Continue in this manner until an
individual is found in the particular path who is not already assigned an object and decide that individual as the owner of x.

For the example at hand, the remaining market in Stage 2 consists of objects x3 and x4, and individual 3. Consider object
x3. Individual 2 appears at the root of T,. Since individual 2 is assigned object x; in Stage 1, we follow the edge from the
root that is marked with x; and come to individual 1. Since individual 1 is assigned object x,, we follow the edge marked

with x, from this node and come to individual 3. Since individual 3 is remained in the market, she becomes the owner of

II



x3. For object x4, individual 3 appears at the root of Iy, and she is remained in the market. So, individual 3 becomes the
owner of x4 in Stage 2. To emphasize the process of deciding the owner of an object, we have highlighted the node in red in

the corresponding inheritance tree in Figure 2.2.

Figure 2.2: Stage 2

Once the endowments are decided for Stage 2, TTC procedure is performed with respect to the endowments to decide
the outcome of this stage. As in Stage 1, individuals who are assigned some object in Stage 2 leave the market with the
corresponding objects. It can be verified that for the current example, individual 3 gets object x3 in this stage. So, individual

3 leave the market with objects x3.

Stage 3 is followed on the remaining market in a similar way as Stage 2. For the current example, everybody is assigned
some object by the end of Stage 2 and hence the algorithm stops in this stage. Thus, individuals 1, 2, and 3 get objects x»,
x1, and x3, respectively, at the outcome of the hierarchical exchange rule.

In what follows, we present a formal description of hierarchical exchange rules.

2.3.1 INHERITANCE TREES

For a rooted tree T, the level of anode v € V(7) is defined as the number of edges appearing in the (unique) path from
7(T) to .
Definition 2.3.1. For an object x € A4, an inberitance tree for x € A is defined as a tuple T, = (T, 27, Z£9), where
(i) 7,isarooted tree with
(a) max level(v) = min{|N]|, |4|} — 1, and
veV(Ty)

(b) |E™(v)| = |A4| — level(v) — 1forallv € V(T) with level(v) < min{|N]|,|4|} — 1,

(ii) &7 V(T,) — Nisanodes-to-individuals function with {27 (v) # {2 (%) for all distinct v, 5 € V(T}) that appear

in same path, and
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(iii) Z‘fo : E(T,) — A\ {x} is an edges-to-objects function with Zfo(e) # ZfO(E) for all distinct ¢,z € E(T}) that

appear in same path or have same source node (that s, s(¢) = 5()).

2.3.2 ENDOWMENTS

A hierarchical exchange rule works in several stages and in each stage, endowments of individuals are determined by using a

(fixed) collection of inheritance trees.

Given a collection of inheritance trees I' = (I'y)c4, one for each object x € A, we define a class of endowments £ P

follows:

(i) The initial endowment EF (D) of individual 7 is given by
E(@) ={xe 4| &"(H(T2)) = i}.

(i) Foral N' C N\ {7} and 4" C 4 with [N'| = |4'| # 0,and all/ € M(N', A’), the endowment E (') of

individual 7 is given by

(W) ={x e a\d"| 7 (H(T.) = iyor
there exists a path (¢}, ..., o) from (T} to ¢/* in T, such that & (o) = 7

andforalls =1,...,7, — 1, wehave 27(v) € N and /(2 (v)) = £O(v, o)},

2.3.3 ITERATIVE PROCEDURE TO COMPUTE THE OUTCOME OF A HIERARCHICAL EXCHANGE RULE

For a given collection of inheritance trees I' = (I') e, the hierarchical exchange rule f* associated with T is defined by

an iterative procedure with at most min{|N|, | 4|} number of stages. Consider a preference profile Py € IL”(A4).

Stage 1.

Hierarchical Endowments (Initial Endowments): Foralli € N, Ey(i, Py) = E} (D).

Top Choices: Foralli € N, T (i, Pn) = 7(P).
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Trading Cycles: Foralli € N,

(

{1 jgt  ifthereexistsi, ..., 7, € Nsuch that
foralls =1,...,¢ T1(j;, Pn) € Ei(js+1, Pn), and
Cl (Z‘/ PN) =

forsomes =1,...,g,7; = i;

%) otherwise.

Since each individual can be in at most one trading cycle, C; (7, Pn) is well-defined for all 7 € N. Furthermore, since both

the number of individuals and the number of objects are finite, there is always at least one trading cycle. Note that C; (7,
Pn) = {i}if T1(4, Pn) € Ei(7, Pn).

Assigned Individuals: Ni(Py) = {7 | Ci(i, Py) # D}.

Assignments: Foralli € Ni(Pn),f (Pn) = Ti(4, Py).

Assigned Objects: Ay(Pn) = {T1(z,Pn) | i € Ni(Pn)}.

t
This procedure is repeated iteratively in the remaining reduced market. For each stage #, define N*(Py) = U N, (Pn)

and 4'(Py) = LtJlA «(Pn). In what follows, we present Stage # + 1 of /1.
u=

Stager+ 1.
Hierarchical Endowments (Non-initial Endowments): Let ' € M(N'(Pn), A*(Py)) such that forall 7 € N'(Py),

¢ (@) = 1i (P).

Foralli € N\ N'(Py), Es+1(7, Pn) = EF ().
Top Choices: Foralli € N\ N'(Pn), Ty41(7, Pn) = 7(Pr, A\ A'(Pn)).

Trading Cycles: Foralli € N\ N'(Py),

(

{i, .- ,jg} if there exist i, ..., j; € N\ N'(Py) such that

foralls=1,... & TH—I(]‘:/PN) € E;+1(]}+1,PN), and
Crr1(Z, Pn) =

forsomes =1,...,¢,5 =17

%) otherwise.
\

Assigned Individuals: Nywi(Pn) = {7 | Coy1(7, Pn) # D}
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Assignments: Foralli € Nyyq (Pn), _/‘Zr (Pn) = Ty41(2, Pn).

Assigned Objects: Ay 1 (Pn) = {Tr1(4, Pn) | 7 € N1 (Pn) }-

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned. The hierarchical

exchange rule fr associated with I is defined as follows. For all 7 € N,

T,(i, PN)  if7 € N,(Pn) for some stage ¢;
fi(Pn) =

%) otherwise.

Since for every preference profile Py and every individual 7, there exists at most one stage # such that 7 € N;(Py), ]d“ is

well-defined.

Remark 2.3.1. Note that a collection of inheritance trees do not uniquely identify a hierarchical exchange rule. More

formally, two different collections of inheritance trees I and T may give rise to the same hierarchical exchange rule, that is,

2.4 A CHARACTERIZATION OF OSP-IMPLEMENTABLE ASSIGNMENT RULES

In this section, we introduce a property called dual ownership of a hierarchical exchange rule and provide a characterization
of OSP-implementable, Pareto efficient, and non-bossy assignment rules by means of this property. We also explain the

practical usefulness of the dual ownership property.

2.4.1 DUAL OWNERSHIP

Troyan (2019) introduces the notion of dual dictatorship in the context of fixed priority top trading cycles (FPTTC) rules."*
We introduce a closely related notion for hierarchical exchange rules which we call dual ownership. A hierarchical exchange
rule satisfies dual ownership if for any preference profile and any stage of the hierarchical exchange rule at that preference

profile, there are at most two individuals who own all the objects that remain in the reduced market in that stage.

"4Troyan (2019) uses the term “T'TC rule” to refer to an FPTTC rule. In Section 2.5.2, we provide a formal description of FPTTC
rules.
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2.4.2 THE CHARACTERIZATION RESULT

In this section, we provide a characterization of OSP-implementable assignment rules under two mild and desirable prop-

erties, namely Pareto efficiency and non-bossiness. "’

Theorem 2.4.1. An assignment rule f: L (4) — M is OSP-implementable, Pareto efficient and non-bossy if and only if f

is a hierarchical exchange rule satisfying dual ownership.

The proof of this theorem is relegated to Section 2.7.
Since OSP-implementability implies strategy-proofness (see Remark 2.2.1) and group strategy-proofness is equivalent to

strategy-proofness and non-bossiness (see Pipai, 2000 for details), we obtain the following corollary from Theorem 2.4.1.

Corollary 2.4.1. A group strategy-proof and Pareto efficient assignment rule f 2 1" (A) — M is OSP-implementable if and

only if fis a bierarchical exchange rule satisfying dual ownership.

It is worth mentioning that OSP-implementability and non-bossiness together do not imply Pareto efficiency. For in-
stance, any constant assignment rule satisfies the former two properties, but does not satisty the latter. Furthermore, it
follows from Pépai (2000) that non-bossiness and Pareto efficiency together do not imply strategy-proofness. Since OSP-
implementability is stronger than strategy-proofness (by Remark 2.2.1), non-bossiness and Pareto efficiency cannot imply

it either. Example 2.4.1 shows that OSP-implementability and Pareto efficiency together do not imply non-bossiness.

Example 2.4.1. Consider an allocation problem with three individuals N' = {1,2,3} and three objects 4 = {21, 22,23}

Consider the assignment rule f'such that

Serial dictatorship with priority (1 = 2 > 3)  ifx,Pyx3
f:
Serial dictatorship with priority (1 = 3 > 2)  ifx3Px;
Consider the preference profiles Py = (x10003, x1200%63, %1562%63 ) and Py = (310350, %10203, %1003 ). "¢ Note that only

individual 1 changes her preference from Py to Py. This, together with the facts ﬂPN) = [(L,x1),(2,%2), (3,x3)] and

APy) = [(1,2), (2,x3), (3, x2)], implies fviolates non-bossiness. However, the OSP mechanism in Figure 2.3 implements

fr7

5 Bade & Gonczarowski (2017) characterize OSP-implementable and Pareto efficient assignment rules as the ones that can be imple-
mented via a mechanism they call sequential barter with lurkers. Sequential barter with lurkers violates non-bossiness in general, and
we do not see any obvious way to relate their result to ours.

16Here, we denote by (x102x3, x2263%1, X3x2%1 ) a preference profile where individuals 1, 2 and 3 have preferences xjx2x3, x2x3%1, and
X321, respectively.
'7We use the following notation in Figure 2.3: by x1x, we denote the set of preferences where x1 is preferred to x, and we denote an
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X2X3 X3X2 X2X3 X3X2 X1X3 X3X1 X1X2 X2X1

X1 X1 X1 X1 X2 X2 X3 X3
X2 X3 X3 X2 X1 X3 X2 X1
X3 X2 X2 X3 X3 X1 X1 X2

Figure 2.3: Tree Representation for Example 2.4.1

2.4.3 ADVANTAGE OF USING HIERARCHICAL EXCHANGE RULES SATISFYING DUAL OWNERSHIP PROPERTY

In this section, we show how a hierarchical exchange rule satisfying the dual ownership property can be explained to the

participating individuals and how the explanation helps in convincing individuals that such rules are indeed strategy-proof.*®
In Stage 1:

(1) We call at most two individuals who will be the owners in this stage.
(2) We tell them their endowed sets.

(3) We tell them that each of them can “take” something from her endowed set (and leave the market), or “wait” to see
if she gets something better. We additionally mention that if someone chooses to “wait”, she can leave the market

anytime in the future with an object from her current endowment set.
To see that the owners will act truthfully in (3), first note that the owners are asked to choose between “take” or

“wait”, in particular, they are not asked to reveal their top choices. Therefore,

(a) if any of the owners has her favorite object in her endowment, then she will “take” that object and leave the

market, and

allocation [(1,x1), (2,%2), (3,x3)] by
X1
X2
X3

8 This explanation does not highlight many of the key features of hierarchical exchange rules satisfying the dual ownership property.
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b) if any of the owners does not have her favorite object in her endowment, then she will “wait” as she can leave
y ) >

the market anytime in the future with an object from her current endowment set.

(4) (i) Ifany of the owners chooses to “take” in (3). We get a submarket.

(i) On the other hand, if both of them choose to “wait”, we tell each of them to “take” something from other’s
endowment and leave the market, and again we get a submarket. Clearly, there is no question of manipulation

for an individual at this step as she will simply take her favorite object from other’s endowment.

In Stage 2:

(1) We call at most two individuals who will be the owners in this stage. If one of the owners in Stage 1 remains in the

reduced market in Stage 2, we make her one of the owners in Stage 2.

(2) We tell them their endowed sets. If one of the owners in Stage 2 was also an owner in Stage 1, all the objects in her

endowment in Stage 1 must be included in her endowment in Stage 2.

(3) Same as Stage 1. For the same reason as we have discussed in (3) of Stage 1, individuals will act truthfully at this step

of Stage 2.

(4) Same as Stage 1.

We continue this procedure until everyone is assigned or all objects are assigned.

The main reason why a hierarchical exchange rule satistying dual ownership is simpler than an arbitrary hierarchical
exchange rule is as follows. The dual ownership property ensures that at most two individuals will get to act in each stage.
Therefore, the only way they can trade is to interchange their favorite objects. This makes it easy to see that they cannot
strictly benefit by misreporting. For an arbitrary hierarchical exchange rule, there might be a lot more individuals acting in

a stage, and consequently it may become harder for an individual to see the consequences of all possible misreports.

2.5 Discussion

2.5.1 OSP-IMPLEMENTABILITY OF HIERARCHICAL EXCHANGE RULES AND TRADING CYCLES RULES

In this section, we provide a necessary and sufficient condition for a hierarchical exchange rule and a trading cycles rule to

be OSP-implementable.

"“Note that both owners in Stage 1 can not remain in the reduced market in Stage 2.
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Proposition 2.5.1. A hierarchical exchange rule is OSP-implementable if and only if it satisfies dual ownership.

The proof of this proposition is relegated to Section 2.6.>°
Pycia & Unver (2017) introduce a general version of hierarchical exchange rules which they call trading cycles rules. They
show that an assignment rule is group strategy-proof and Pareto efficient if and only if it is a trading cycles rule. Combining

this result with Corollary 2.4.1, we obtain the following corollary.

Corollary 2.5.1. A trading cycles rule is OSP-implementable if and only if it is a bierarchical exchange rule satisfying dual

ownership.

2.5.2  OSP-IMPLEMENTABILITY OF FPTTC RULES

In this section, we discuss OSP-implementability of FPTTC rules. FPTTC rules are well-known in the literature; we present
a brief description for the sake of completeness.

For each object x € A, we define the priority of x as a “preference” >, over N.** We call a collection > 4:= (>4)veq 2
priority structure. For a given priority structure >4, the FPTTC rule T4 associated with - 4 is defined by an iterative

procedure as follows. Consider an arbitrary preference profile Py € IL”(4).

Step 1. Each object x is owned by the individual who has the highest priority according to >, that is, the most-preferred
individual of . TTC procedure is performed with respect to these endowments. Individuals who are assigned some object

leave the market with their assigned objects.

This procedure is repeated iteratively in the remaining reduced market. We present a general step of 77 4.

Step t. Consider the reduced market with the remaining individuals and objects. Each remaining object x is owned by
the individual who has the highest priority among the remaining individuals according to >, that is, the individual who
is remained in the reduced market at this step and is preferred to every other remaining individual according to .. TTC
procedure is performed on the reduced market with respect to these endowments, and individuals who are assigned some

object at this step leave the market.**

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned. The final outcome

is obtained by combining all the assignments at all steps. This completes the description of an FPTTC rule.

*°Proposition 2.5.1 follows as a corollary of Theorem 2.4.1. However, we do not present it as a corollary as we use this proposition
in the proof of Theorem 2.4.1.

2'Thatis, >=,€ L(N).

**In this TTC procedure, an individual 7 point to an individual / if / owns #’s most-preferred object among the remaining objects.
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Since FPTTC rules are special cases of hierarchical exchange rules (see Pipai, 2000 for details), the dual ownership prop-
erty of FPTTC rules implies the following: for any preference profile and any step of the FPTTC rule at that preference
profile, there are at most two individuals who own all the objects that remain in the reduced market at that step. This yields

the following corollary from Proposition 2.5.1.
Corollary 2.5.2. An FPTTC rule is OSP-implementable if and only if it satisfies dual ownership.

Now, we discuss the relation between dual dictatorship (Troyan, 2019) and dual ownership of FPTTC rules. It follows
from Theorem 1 and Theorem 2 in Troyan (2019) that an FPTTC rule is OSP-implementable if and only if it satisfies dual
dictatorship, whereas Corollary 2.5.2 of our chapter says that an FPTTC rule is OSP-implementable if and only if it satisfies
dual ownership. In what follows, we clarify the difference between these two (conflicting) results and conclude that while
dual dictatorship is a sufficient condition for an FPTTC rule to be OSP-implementable, it is oz necessary.*?

Dual dictatorship property of an FPTTC rule requires that in any submarket, at most two individuals will own all the
objects in the submarket. In contrast, dual ownership property of an FPTTC rule requires that for every preference profile
and every step of that FPTTC rule at that preference profile, at most two individuals will own all the objects that will remain
in the reduced market at that step. The difference between these two properties arises from the fact that zot every submarket
arises at some step at some preference profile of an FPTTC rule. In other words, dual dictatorship is stronger than dual

ownership. In Section 2.8, we clarify this fact by means of an example.

2.6 PROOF OF PROPOSITION 2.5.1

Before we formally start proving Proposition 2.5.1, to facilitate the proof we introduce the notion of a reduced tree structure

and make two observations.

2.6.1 REDUCED TREE STRUCTURE

For an inheritance tree T, = (7,27, {2°) and an edge (v, v') € E(T,), we say thatan inheritance tree T, = (7}, Zf:”, Zfo>

is obtained by collapsing the edge (v,V') if
(i) "(T,) =V(T,)\ ({u} U{v" | thereexists a path in 7}, from v to v which does not contain v/}) ,

(i) E(T,) = (E(Td) N (N(Ty) x V(i;))) U {(5, ')}, where 3 is the parent node of v in Ty. If v = #(T},), then

does not exist, and consequently, we take {(3,/)} =2,

*3In order to prove the “only-if” part of Theorem 1, Troyan (2019) reduces the whole problem to a restricted domain and uses a
result from Li (2017). However, for the purpose of Troyan (2019), this reduction step is 7ot correct.
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(i) 27 (v) = 2% (v) forallv € V(T,,), and
iv) 29 ¢) foralle € ( (T,) N (N(T,) % V(i;))) and 200, o) = {293, 0).

For an inheritance tree T, = (7,22, {£°) and an edge (v, ') € E(T,), we say that an inheritance tree T, = (7}, Ziv !

7Y is obtained by dropping the edge (v, 0') if
(i) V(T,) = V(T,)\ {¢" | there existsa path in 7, from v to "’ which contains ¢/},
(i) E(T,) = E(T,)n ("(T,) x N(T,)),
(i) 27 (0) = 2 (0) forallv € ¥(T,), and
(iv) 2%(e) = £9(e) forall e € E(T,).

Foraninheritance treeI', = <T4,§Z\U, gfo>,we denote an edge (v,0') € E(T, by i,x 1fZN[ = z'andgfo(v, V) =x
in T,. By the construction of T, 229 (s,v') = ximplies 2 # .
For a pair (7,x) € N X A4 and a collection of inheritance trees I' = (I'y)c 4, we define the reduced collection T \ (7, x)

as follows:
(i) Ifa = x, then drop the inheritance tree I',.
(ii) Ifz # xand 27(+(T,)) = i, then T, \ (4, x) is obtained by collapsing the edge (7, x) in I,.**

(iii) Ifz # xand &7 (#(T,)) # i, then T, \ (7, x) is obtained by collapsing all edges (z, x) and dropping all edges (j, x)
withj # 7inT,.
For ( (/ y € N X A4 and a collection of inheritance trees I' = (T),c4, we denote the reduced collection (r \ (7,

@)\(pwbyr\an@,uyn.

Remark 2.6.1. For (7,x),(j,y) € N X 4 and a collection of inheritance trees I' = (I')yc4, we have I' \ ((z‘, x), (j,
) =1\ (Go) ).

Example 2.6.1. Suppose N = {1,2,3,4,5} and 4 = {x1, %, x3, x4 }. Consider the collection of inheritance trees I given

in Figure 2..4.

*4Note that in this case, there is only one such edge (7, x).
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. /x/x3 \

X2 X3 X3 X4 X X.

1 4
X4 X3 X4 X1 X

(b) I,

/x/xz \ X k%) X3

X1 X3

3 X1

X X4 X1 X4 X1 X2 k%) X3 X1 X3 X1 X2
X4 X2 X2 X1 X2 X3 X1
(C) rx3 (d) rx4

Figure 2.4: Collection of inheritance trees I for Example 2.6.1

Consider the pair (1,x1) € N X A. The reduced collectionI"\ (1, ;) is given in Figure 2.s.
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X4 X3
(@) T, \ (1,1)
X2 X3
X3 X2
(C) rx4 \ (1/ xl)

Figure 2.5: Reduced collection I \ (L)

2.6.2 TwWO OBSERVATIONS

Let T(T) = {7 | 2 (#(T,)) = iforsomex € A} be the set of individuals who appear at the root-node of some inheri-
tance tree in the collection of inheritance trees I'. We now make two observations. The first observation is straightforward,

and see Step 2.a in the “Necessity Proof” of Pipai (2000) for the second observation.
Observation 2.6.1. Suppose f* satisfies dual ownership. Then, | T (T)| < 2.

Observation 2.6.2. Suppose 2 (#(Ty,)) = i for some x € A and some i € N. Then, for all Py € 1" (4), f£ (Pn) Rix.

2.6.3 THE PROOF

(If part) Suppose {1 satisfies dual ownership. We show that /& is OSP-implementable by using induction on the number of

individuals, which we refer to as the size of the market.

Base Case: Suppose | N| = 1.3 The following extensive-form assignment mechanism, labeled as G', implements /"
Step 1. Ask the (only) individual which object is her top choice and assign her that object.

It is simple to check that the extensive-form assignment mechanism G! is OSP. Since the OSP mechanism G' implements
p g p

-, it follows that /1 is OSP-implementable. Now, we proceed to prove the induction step.

*5With only one individual, fr trivially satisfies dual ownership.
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Induction Hypothesis: Assume that /1 is OSP-implementable for |N| < . We show ! is OSP-implementable for |[N| =

m + 1. Since /! satisfies dual ownership, by Observation 2.6.1, we have |7 (T')| < 2. We distinguish the following two
cases.
CasE A: Suppose | T (I')| = 1.

Let 7 (T) = {}. Define the extensive-form assignment mechanism G”** as follows:
Step 1. Ask individual 7 which object is her top choice and assign her that object, say x.

Step 2. Consider the reduced market (N'\ {7}, 4 \ {x}) where individual 7 is removed from the market together with the

object x she is assigned. This reduced market (N'\ {7}, 4 \ {x}) is of size m.

Claim 2.6.1. //\0%) satisfies dual ownership on the reduced marker (N\ {i}, 4\ {x}).>¢

By the induction hypothesis and Claim 2.6.1, it follows that there exists an OSP mechanism G” that implements
A\E) on the reduced market (N'\ {i},4 \ {x}). Run the extensive-form assignment mechanism G” on the
reduced market (N'\ {7}, 4 \ {x}).

By definition, the extensive-form assignment mechanism G™*! implements _}‘r . This extensive-form assignment mech-
anism is OSP for individual 7 since she receives her top choice. For every other individual, her first decision node comes
after 7 has been assigned, and hence, her strategic decision is equivalent to that under the OSP mechanism that implements

/" restricted to the corresponding reduced market. Thus, the above extensive-form assignment mechanism is OSP for all

individuals, and hence, jf is OSP-implementable.

Cask B: Suppose | T (T)| = 2.

Let T(I) = {7} Letd; = {x € 4 | &(#(T3)) = i}and 4; = {y € 4 | éjw(r(Ty)) = ;}. Define the

extensive-form assignment mechanism G 11 as follows:

Step 1. For each x € A;, ask 7 if her top choice is x. If 7 answers “Yes” for some x, assign her this x, and go to Step 1(a).

Otherwise, jump to Step 2.
Step 1(a). We now have a reduced market (N'\ {7}, 4 \ {x}) of size m.

Claim 2.6.2. /\U%) satisfies dual ownership on the reduced market (N\ {i}, 4\ {x}).>7

26The proof of Claim 2..6.1 is relegated to Section 2.6.4.

*7The proof of Claim 2..6.2 follows by using similar logic as for the proof of Claim 2.6.1. The only adjustment needed for the proof
of Claim 2.6.2 over the proof of Claim 2.6.1 is that instead of 7 (I') = {7} (which is an assumption of Case A) meaning that individual
7is assigned to the root-node of every inheritance tree, we need to consider x € A; (which is an assumption of Step 1 in Case B) meaning
that individual 7 is assigned to the root-node of the inheritance tree for x.
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By the induction hypothesis and Claim 2.6.2, it follows that there exists an OSP mechanism G” that imple-
ments £ \%%) on the reduced market (N'\ {7}, 4 \ {x}). Run the extensive-form assignment mechanism

G™ on the reduced market (N'\ {7}, 4 \ {x}).

Step 2. For eachy € Aj, ask jif her top choice is y. If / answers “Yes” for some y, assign her this y, and go to Step 2(a).

Otherwise, jump to Step 3.

Step 2(a). We now have a reduced market (N'\ {7}, 4 \ {y}) of size m. Similar to Claim 2.6.2, we have the following

claim.
Claim 2.6.3. /1\U?) satisfies dual ownership on the reduced market (N\ {7}, 4\ {y}).

By the induction hypothesis and Claim 2.6.3, it follows that there exists an OSP mechanism G” that imple-
ments £ \U2) on the reduced market (N'\ {j},4 \ {y}). Run the extensive-form assignment mechanism

G” on the reduced market (N'\ {/},4 \ {y}).

Step 3. If the answers to both Step 1 and Step 2 are “No”, then 7’s top choice belongs to 4;, and /’s top choice belongs to

A;. Ask i for her top choice x, and 7 for her top choice y. Assign x to 7 and y to 7, and go to Step 3(a).

Step 3(a). We now have a reduced market (N'\ {7,7},4 \ {x,y}) of size m — 1.
Claim 2.6.4. A \U2) satisfies dual ownership on the reduced marker (N\ {z,7}, 4\ {x,7}).>*

By the induction hypothesis and Claim 2.6.4, it follows that there exists an OSP mechanism G ! that im-
plements £ \((29)02)) on the reduced market (N'\ {7,}, 4 \ {x,7}). Run the extensive-form assignment

mechanism G” ! on the reduced market (N'\ {7,7}, 4 \ {x,7}).

By definition, the extensive-form assignment mechanism G” 1 implements 1. We show that G”* is OSP for all indi-
viduals by showing it for the case where |N| = 4. The proof for other cases is similar.

Consider an allocation problem with four individuals N = {7, 72, 73,74 } and five objects 4 = {1, x5, x3, x4, %5 }. Let
I be a collection of inheritance trees such that 7 (I') = {7,742}, 4;, = {x1,x2},and 4;, = {x3, x4, x5 }. In Figure 2.6, we

provide the structure of the extensive-form assignment mechanism G* which implements the hierarchical exchange rule /.

8The proof of Claim 2.6.4 is relegated to Section 2.6.5.
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o T — e I —

Use induction on Use induction on Use induction on Use induction on

(N\A{a, 22}, A\ {x,%3}) || (N\ {1, 22}, 4\ {x2,%3}) (N\A{a, a2}, A\ {x, x5 }) || (N\ {1, 22}, 4\ {x2,%5})

Figure 2.6: Structure of G*

In Figure 2.6, node v; (which is the root-node of G*) is assigned to individual 7; and there are |4, | + 1 outgoing edges
from this node, node v, is assigned to individual 7, and there are |4;,| +1 outgoing edges from this node, and node v is
assigned to individual 7; and there are |4;, | outgoing edges from this node. Nodes vy, vs, and vg are assigned to individual
i, and there are |4}, | outgoing edges from each of these nodes.

It follows from the definition of G* and Observation 2.6.2 that G* satisfies the OSP property at node v; (for individual
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71). We distinguish two cases.

(i) Suppose 7(P;) € {x1,x2}.
Individual 7; receives her top choice. The first decision node of every other individual comes after 7; has been assigned,
and hence, their strategic decisions are equivalent to that under the OSP mechanism that implements £ restricted

to the reduced market.

(ii) Suppose 7(Py) € {x3,%4,%5}.
It follows from the definition of G* and Observation 2.6.2 that G* satisfies the OSP property at node v, (for indi-

vidual 7).

(a) Suppose 7(P;,) € {x3,x4, x5 }. Individual 7 receives her top choice. For every other individual, her strategic

decision is equivalent to that under the OSP mechanism that implements /* restricted to the reduced market.

(b) Suppose 7(P;,) € {x1,%,}. Both 7] and 7, receive their top choices. The first decision node of every other
individual comes after 7; and 7, have been assigned, and hence, their strategic decisions are equivalent to that

under the OSP mechanism that implements jf restricted to the reduced market.

Since Cases (i) and (ii) are exhaustive, it follows that the extensive-form assignment mechanism G* is OSP for all individuals,
g

and hence, fr is OSP-implementable for this particular instance.

Since Case A and Case B are exhaustive, it follows that /1 is OSP-implementable for |[N| = m + 1. This completes the

proof of the induction step, and thereby completes the proof of the “if” part of Proposition 2.5.1.

(Only-if part) Suppose £ does not satisfy dual ownership. We show that /1 is not OSP-implementable. Since / does not
satisfy dual ownership, there exist a preference profile P\;and a stage 5™ of fr at P),; such that there are three individuals
71,12, 13 and three objects x1, x2, x3 in the reduced market in Stage s* with the property that for all » = 1, 2, 3, individual 7,
owns the object x, in Stage s*.

Note that if an assignment rule £ IL” (4) — M is not OSP-implementable on some restricted domain Py C IL7(4),
then fis not OSP-implementable on the whole domain IL” (4) (see Li, 2017 for details). We distinguish the following two

cases.

Cask A: Suppose 5™ = 1.
Consider the restricted domain Py defined as follows. Each / € N\ {1,373} has only one (admissible) preference

P}, and each individual in {7, 72,73} has two preferences, defined as follows (the dots indicate that all preferences for the
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corresponding parts are irrelevant and can be chosen arbitrarily).*

Individual 74 Individual 7, Individual 73

X2X3X] - . . X3X1X2 . . . X1X2X3 . . .

X3X2X1 .+ .« X1X3X2 . . . X2X1X3 « ..

Table 2.1: Admissible preferences of individuals 7, 75, and 73

In Table 2.2, we present some facts regarding the outcome of jf on the restricted domain Pp. These facts are deduced

by the construction of Py along with the assumptions for Case A.

Preference profile | Individual 71 Individual 7, Individual 73 f;rl flr2 fg
j)lN X2X3X1 - - - X3X1X2 . . . X1X2X3 . . . X2 X3 Xl
13]2\] X2X3X] « « » X1X3X2 .« .« X1X2X3 « .« X2 X1 X3
133\[ X2X3X1 . - - X3X1X2 . . . X2X1X3 . . . X1 X3 X2
]3;}\[ X2X3X1 « .« X1X3X2 . . . X2X1X3 « .. X2 X1 X3
j)?\f X3X2X] « « » X3X1X2 « « » X1X2X3 « .« X3 X2 X1
]3?\] X3X2X1 - - - X1X3X2 . . . X1X2X3 . . . X3 X2 Xl
P}Z\] X3X2X] « « X3X1X2 « .« X2X1X3 « .o X1 X3 X2
IN)A?V X3X2X1 . . - X1X3X2 . . . X2X1X3 . . . X3 X1 X2

Table 2.2: Partial outcome of ]d‘ on Py

Assume for contradiction that fr is OSP-implementable on Px. So, there exists an OSP mechanism G that implements
/ on Py. Note that since £ (PY;) # £ (BS,), there exists a node in the OSP mechanism G that has at least two edges.
Also, note that since each individual / € N'\ {7}, 75, 73 } has exactly one preference in P,, whenever there are more than one
outgoing edges from a node, the node must be assigned to some individual in {71, 4,,43}. Consider the first node (from the
root) v that has two edges and, without loss of generality, assume 77N1 (v) = 71. Consider the preference profiles .73]3\[ and .7)?\].
Note that both of them pass through the node » at which pz31 and 7)15«1 diverge. Further note that x37 X1 flr1 (P3;) = x1,and
S (P) = x3. However, the facts that 532 v, /1 (P3,) = x1, and 1 (P};) = 3 together contradict OSP-implementability
of fr on Py.

CasE B: Suppose s* > 1.

**For instance, x1x2x3 . . . indicates (any) preference that ranks x; first, x, second, and x3 third.

2.8



Recall that for the preference profile Py, AJMI(P'N) is the set of assigned objects up to Stage s* — 1 (including Stage
s* — 1) of /" at P),. Fix a preference P € IL(4° ~1(P);)) over these objects.
Consider the restricted domain P defined as follows. Each/ € N \ {7, 72,73} has only one (admissible) preference P,

and each individual in {7, 72, 73 } has two preferences, defined as follows.°

Individual 71 Individual 7, Individual 73

Px2x3x1 N Px3x1x2 N lexe_v, NN
Pxsxoxy ... Pxixzxn... Pxoxixs. ..

Table 2.3: Admissible preferences of individuals 71, 75, and 73

In Table 2.4, we present some facts regarding the outcome of / on the restricted domain P that can be deduced by the

construction of the restricted domain Py along with the assumptions for Case B. The verification of these facts is left to the

reader.
Preference profile | Individual 77 Individual 7, Individual 73 ffl ﬂ; ﬁ;
]~31N ]A)xzxycl N ]A)x_o,xlxz NN j)xlex3 NN X2 X3 X1
j)zzv j’x2x3x1 e j)xlxgxz “e i)xlxzx3 ce X2 X1 X3
]3?\, j)xzx3x1 .. j)xgxlxz . j)xlex3 e | X1 X3 X
P?\] j)xzx3x1 ce j)xlx3x2 ce j)xlex3 NN X2 X1 X3
IN);[ j)x3x2x1 . j)x3x1x2 .. j)xlxzx3 R I T 7 - 4 |
j)?\f j)xg.xle NN px1x3x2 NN j)xlexg NN X3 X2 X1
PZ\] j’x3x2x1 e j)x3x1x2 “e IA)xlexg, ce X1 X3 X2
]~)8N j)xgxle .. j)xlx3x2 . j)xlex3 R I T B )

Table 2.4: Partial outcome of jr on Py

Using a similar argumentas for Case A, it follows from Table 2.4 that ]’I is not OSP-implementable on P This completes

the proof of the “only-if” part of Proposition 2.5.1. |

. 2 . . * — . 2
3°For instance, Pxjx2x3 . . . denotes a preference where objects in A4’ 1(P'N) are ranked at the top according to the preference 2,
objects x1, x2, and x3 are ranked consecutively after that (in that order), and the ranking of the rest of the objects is arbitrarily.
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2.6.4 PRrOOF OF CLAIM 2.6.1

Assume for contradiction that f/\%) does not satisfy dual ownership on the submarket (N'\ {7}, 4\ {x}). Then, there
exist Py ;3 € LM (4\ {x}) and a stage s of 1\) at Py, 14 such that there are three individuals 71, 7, 73 and three
objects x1, x, x3 in the reduced market in Stage s* of \(**) at Py (1 with the property that for all b = 1,2, 3, individual
iy owns the object v in Stage s* of A\ at Py, (5.

Consider the preference profile Py € IL”(4) such that 7(P;) = xand P, = xP; forallk € N\ {7}.3' By the
assumption of Case A, 7 (I') = {7}, which implies that individual 7 is assigned to the root-node of T'. This, together
with the construction of Py and the definition of /7, implies that individuals 71, 72, and 73 own the objects x1, %2, and 3,
respectively, in Stage s* + 1 of /1 at Py, a contradiction to the fact that /' satisfies dual ownership. This completes the proof

of Claim 2.6.1. O

2.6.5 PrROOF OF CLAIM 2.6.4

Assume for contradiction that /£ \((79):02)) does not satisfy dual ownership on the submarket (N\ {z,j}, 4\ {x,7}). Then,
there exist Py, ;1 € LNV (4\ {x,5}) and a stage s* of \(»)2) ax Py 1, v such that there are three individuals
i1, 7, #3 and three objects x1, x, x3 in the reduced market in Stage 5* of 1\ (")) at Py, 1, 1 with the property that for all
b = 1,2, 3, individual 7, owns the object x, in Stage s* of A \(<)U2) ac Py, (5.

Consider the preference profile Py € IL”(4) such that 7(P;) = x,7(P;) = yand P, = xyD; forallk € N\ {,7}.3* By
the assumption of Step 3 in Case B, x € 4;and y € 4;, which imply that individuals 7 and 7 are assigned to the root-nodes
of T yyand Iy, respectively. This, together with the construction of Pnyand the definition of fr , implies that individuals 71, 72,
and 73 own the objects x1, x2, and x3, respectively, in Stage s* + 1 of /1 at Py, a contradiction to the fact that /& satisfies dual

ownership. This completes the proof of Claim 2.6.4. O

2.7 PROOF OF THEOREM 2.4.1

We use Proposition 2.5.1 (which is presented after Theorem 2.4.1) in the proof of Theorem 2.4.1. Therefore, we have
already presented the proof of Proposition 2.5.1 in Section 2.6.

We first prove a lemma which says that every OSP-implementable, non-bossy, and Pareto efficient assignment rule is
reallocation-proof. Next, we combine this lemma with Proposition 2.5.1 and two results of Pépai (2000) to complete the

proof of Theorem 2.4.1.

31xPy, denotes the preference that ranks x first, and follows P, for the ranking of the rest of the objects.
32xy73/€ denotes the preference that ranks x first, y second, and follows D, for the ranking of the rest of the objects.

30



2.7.1  LEMMA 2.7.1 AND ITS PROOF
Lemma 2.7.1 involves the notion of reallocation-proof assignment rules, which we present first.

Definition 2.7.1 (Pipai, 2000). An assignment rule f : IL”(4) — M is manipulable through reallocation if there exist

Py € IL"(4), distinct individuals 7,7 € N, and P; € IL(4), P; € IL(4) such that
(i) fi(Por By P—ij) Rifi(Prv),

(i) fi(P;, Py, P—i;) Pfi(Pn), and

(iii) fi(Pn) = fi(P;y P-i) # fi(Pi, By, P—iy) and f;(Pn) = f;(By, P—;) # [;(Pi, B, Psy).
An assignment rule is 7eallocation-proof if it is not manipulable through reallocation.

Lemma 2.7.1. Suppose an assignment rule f: L (A) — M is OSP-implementable, non-bossy, and Pareto efficient. Then, f

is reallocation-proof.

Proof of Lemma 2.7.1. Since fis OSP-implementable, by Remark 2..2.1, fis strategy-proof. Assume for contradiction that
fis not reallocation-proof. Then, there exist Py € IL”(A), distinct individuals 7,7 € N, and P; € IL(4), j’] € IL(A4) such

that

(@) fi(Pe By Pij) Rfi(Prv),

(i) fi( Py, Py, P—ij) Pyf;(Pn), and
(iii) ﬁ(PN) :fl‘(j)irp—i) #ﬁ(j)”])] P—l]) andf(PN) f( ) #f( j)j P—Z’J)'

Using non-bossiness, /;(Pn) = f;(P;, P—;) implies f{Pn) = AP, P—;), and f;(Pn) = f;(P;, P—;) implies A{Px) =

f(j)j, P_;). Combining the facts that f{Py) = AP, P_;) and A(Py) = f(j)j, P_;), we have
APN) =AP;, P_;) = AP, P_)). (2.1)

Claim 2.7.5. {£i(Pn), fi(PN).fi(Bsy By i) fi(Py By Piy) ) € 4

Proof of Claim 2.7.1. Assume for contradiction that f;(Py) = @. By (2.1), we have f;(Px) = fi(P;, P—;). Because
fi(Pn) = D and f;(Pn) = fi(P;, P—;), we have f;(P;, P_;) = @. Since fis strategy-proof, f;(D;, P—;) = @ implies £;( P,
D, P_;;) = @. However, as f;(Px) = @and f;(P;, P, P_;;) = @, we have a contradiction to f;(Px) # fi(P;, Py, P—.y).

So, it must be that

fi(Pn) # @. (2.2)
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Using a similar argument, we have

fi(Pn) # @. (23)
Since f5(Py, P, P—;;) Pif;(Pn), (2.3) implies f;(P;, Py, P—;;) 7 @. Also, the fact f5(P;, Pj, P—;;) Rf;(Pn), together with
(2.2), impliesf}(Pi, ]~)j~, P_lj) # @. This completes the proofof Claim 2.7.1. O

Claim 2.7.2. f;(Px) = f;(P;, Py, P—;).

Proof of Claim 2.7.2. Assume for contradiction that £;(Pn) # f;(P;, Py, P—;;). Let fi(Pn) = w, f;(Pn) = x,£(P;, P,
P) = yand fi(P, B, P_;;) = z. By Claim 2.7.1, we have w,x,7,2 # @. Since fi(Py) = wand f(PN) = x, we have
w £ v Simibarly, (B, B, P) = yand (B, By P;) = 2 togerher implyy # 2. Since fi(Px) £ fi(By By P_y), we
have w # y. Similarly f;(Pn) # ﬁ(PZ-, Pj, P_;;) implies x # z,and f;(Py) # ];-(P,', P]-, P_,;;) implies w # z. Moreover,
£(P, ]NDJ, P_;;)Pifi(Pn) implies x # y. However, the facts w, x,y,2 # O, w # %,y # z,w # y,x # 2z, w # z,andx # y

together imply w, x, y, and 2 are all distinct objects.

Since f;(Pn) #f( P_l]) f(PZ,P],P_Zj)Rf(PN) 1mphesf( ]3]., P_l;j)Pl]”i(PN). The facts f;(Pn) = w,ﬁ(j),',
]3]-, P_;;) = z and ﬁ(PZ-, Pj, P_;;) P;f;(Py) together imply zP;w. Since zP;w and f;(Py) = w, by strategy-proofness, we
have

[P, P_;) # zforall P, € IL(A). (2.4)

By (2.1) we have f;(Pn) = f;(P;, P—;). This, along with the fact that f;(Px) = w, yields f;(P;, P—;) = w. Since fis

strategy-proof, the facts f; ( P, P ) = yand f; (P~, P_j) = w together imply ykiw, which, along with the fact that
w # y, yields yP;w. Also, combining the facts that /;(Pn) = wand f;(Pn) = f;(P;, P—;), we have f;(P;, P_;) = w. Since

yPZ~w and fl-(i)l-, P_;) =w, by strategy-proofness, we have

f,(P:, P_;) # yfor all P, € IL(A4). (2.5)

Moreover, since 2P;w and f; (]3], P j) = w, by strategy-proofness, we have

fi(P, B, P_;;) # zforall P, € IL(4). (2.6)

4 ]l

Let P; rank z first, y second, and w third. Since fis strategy-proof and non-bossy, the fact fl~(1~)l-, ]~)]~, P_l;j) = yand (2.6)
imply
ﬂj)z'/ j)j/ sz',j) :f(j)z'r j)j/ sz',j)' (2'7)



Similarly, by strategy-proofness and non-bossiness, the fact that £(Py) = w along with (2.4) and (2.5), yields

AP, P-;) = fiPy). (2.8)

By (2.8) we have f]‘»(]A)i, P_;) = f(PN). This, along with the fact f]'»(PN) = x, yields ﬁ(j)l‘, P_;) = x. Also, the facts

fi(Pn) = % (P, P, P_;;) =y, and £(P;, Py, P_;;) Pifi(Pn) together imply yPx. Since yPx andﬁ(j)l-, P_;) = x, by

strategy-proofness, we have

N

ﬁ(P[, PJ/-, P,,-,j) # y for allP;'- eL(4). (2.9)

Let ]3‘ rank y first and z second. By (2.7) we havef(f’l-, P, P,l-,j) = f(j’ T3J ) This, along with the factf( i P,
P_j) =3 yleldsf( 3 ],P_,]) = z. Since fis strategy-proof and non-bossy, the factf( 13/-, P_;;) = zand (2.9) imply

AP, 13], P_;) = AP, Pj, P_,;). This, along with (2.7), yields

f(j)l'/ j?j/ P—l',j) :f(j)i/ ]N?j/ P—ZJ) (2"10)
Because f5(P;, Py, P—;;) = yand f;(P, ]/P—z]> =z, (2.10) 1mpllesf( by, B, P_yy) = yand fi(P, B, P-ij) = =

However, since zPly and yP 2, the facts f; ( i Py P ) = yand f ( i Py P j) = g together contradict Pareto efficiency.

So, it must be that f;(Py) = _]‘}(7);«, P;, P_; ;). This completes the proof of Claim 2.7.2. O

z'/j’}'/
i Py, P—;;) and f;(Py) # (P, P, P P_;;) together imply & # 7. Let f;(Py) = a4,

Since fis Pareto efficient, £;(P;, P, P_; j)Pf (Pn) implies that there exists # € N\ {;} such that ,(Pn) = fi(
fi(P 7
£i(Pn) = b,and fi(Pn) = ¢. Combining the facts that ;(Pn) = fi(P;, P, P—;;) and f(Pn) = ¢, we have f;(P;, P,

P_;;). Also, the facts £ (Pn) =

P_;;) = c. Also the fact f;(Pn) = a along with Claim 2.7.2, impliesﬁ(f’l-,])j- P_,j) = a. Let /.(P;, ],P_Z]) d.

Claim 2.7.3. a, b, and c are distinct objects, d € A, and a, ¢, and d are distinct objects.

Proof of Claim 2.7.3. Since f;(Pn) = a,f;(Pn) = b,and f;(P;, P, P—;;) = ¢, by Claim 2.7.1, we have a # @, b # @,
and ¢ # @. Moreover, since f;(Pn) = a,f;(Pn) = b,and fi(Pn) = ¢, it follows that 4, b, and ¢ are all distinct objects.
Now, we show d € A. Assume for contradiction thatd = . Consider the preference profiles presented in Table
2.5. In addition to the structure provided in the table, suppose that P]1 = Pj’, P]2 = P;*, and P,le = Pi Here, / denotes
an individual (might be empty) other than 7,7, . Note that such an individual does not change her preference across the

mentioned preference profiles.
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Preference profiles | Individual 7 Individual; Individualk ... Individual/
P, p; ... be. .. P
P 2 cha . .. be. .. P
P, P, @a... P, P
Pj*\[ D cha. .. P, e Py

Table 2.5: Preference profiles for Claim 2.7.3

The facts f;(Pn) = b,f;(P;, Py, P—;;) = ¢, and f;(P;, P, P—; ;) Pyf;( P) together imply cP;b. Moreover, f;(Px) = band
(2.1 yleldf( P, P_;) = b. Since cP;b andf( P, P_;) = b,

by strategy-proofness, we have

(P, P, P_;)) # cforall]’}’- e L(4). (2.11)

124 ]I

By strategy-proofness and non-bossiness, the fact f; (E, ]3]', P_; J) = g and (2.11) imply
f(PaN) :ﬂj)z‘/ sz P—z‘d‘)- (2.12)

The facts (2, ],P_l]) = dandd = @ together imply £;.(P;, P_lj) = @. Moreover, f;(?; I~)]~, P_;;) = @and
(2.12) imply 4(P,) = @. Since fis strategy-proof and non-bossy, £ (P3,) = @ yields APY;) = AIP%). This, together
with (2.12), implies

APN) = AP, By, Pyj). (2.13)

Similarly, by strategy-proofness and non-bossiness, the fact £;(P;, P—;) = band (2.11) imply A{PY) = AP, P,). This,
along with (2.1), yields
APy) = APx). (2.14)

Since ;(Pn) = band f;(Pn) = ¢ by (2.14) we have £;(Py) = band fi(P}) = c. By strategy-proofness, f3(Py) = ¢
implies £ (P%;) € {&,c}. Suppose f3(P%) = c. Since f(P%;) = cand fi(P4) = ¢, by non-bossiness and the fact that
F(PY) = b,wehave f;(P%;) = b. However, £;(P%,) = band f;(P%;) = c together contradict Pareto efficiency. So, it must

be that
fi(PY) = b. (2.15)

Sinceﬁ(j),», 7)]«, P_;;) = a,by(2.13) we havej}(P1 ) = a. Also, by (2.15) we havef( %1) 7 b. By strategy-proofness, the
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factsﬁ(Pl ) =a andf( %) F b 1mplyf( %) = a. Sinceﬁ(PlN) =a andﬁ(P]Zv) = a, by non-bossiness and (2.13), we
have

.f(PJZ\[) :f(j)l'lpj/ P—z’,j)- (2.16)

However, since f;,(P;, ]~)j, P_;;) = D, by (2.16) we have £, (P%;) = @, a contradiction to (2.15). So, it must be that
deA. (2.17)

Slncef( i P, _,j) = c,ﬁ(j)l', I~)j, P_iJ') = a,and f;, (E, ]3]», P_Z'J») = d, it follows that z, ¢, and d are all distinct objects.

This completes the proof of Claim 2.7.3. [
Claim 2.7.4. cPd.

Proof of Claim 2.7.4. Assume for contradiction that dRyc. By Claim 2.7.3, this means dPyc. Suppose b = d. Because
dPye, this implies bPyec. Also, the facts f;(Px) = b, f; (2, J,P ij) = ¢ and £(2, T)J-, P_;;) Pif;(Pn) together imply cPjb.
However, since cPb and bPc, the facts f;(Py) = band f;(Py) = c together contradict Pareto efficiency. So, it must be
that b # d. This, along with Claim 2.7.3, yields that 4, b, ¢, and d are all distinct objects.

Consider the preference profiles presented in Table 2.6. In addition to the structure provided in the table, suppose P]1 =

P},PJ2 = P;‘,andPi = Pz

Preference profiles | Individual 7 Individual; Individual# ... Individual/
P D ... dbc. .. Py
P P, cha ... dbc. .. D
P, P; @a... P, P
Pj‘v D cha. .. P, . P

Table 2.6: Preference profiles for Claim 2.7.4

The fact /(Py) = band (z.l)yieldﬁ(E,P,i) = b. Moreover, the facts f;(Pn) = b , (P, ],P ij) = ¢ and

fi(P;, By, P—; ;) Pif5(Pn) together imply cPjb. Since cPib and f5(P;, P—;) = b, by strategy-proofness, we have

(P, P, P_;;) # cfor allP]’. e L(4). (2.18)

124 ]/
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By strategy-proofness and non-bossiness, the fact f; (E, j)]», P J) = a and (2.18) imply

f(P?v) :f(j)l', I~)j, P_Z‘J'). (2.19)

The fact fk( ) I~)j, P_; J) = dand (2.19) imply fk(P?\[) = d. Since fis strategy-proof and non-bossy, fk(])?\[) = dyields
APY,) = APS,). This, together with (2.19), implies

APY) = AP, D, P_)). (2.20)

Similarly, by strategy-proofness and non-bossiness, the fact £;(P;, P—;) = band (2.18) imply A{P%) = AP, P,). This,
along with (2.1), yields
AP) = flP). (2a)

Since f;(Pn) = band fi(Pxn) = ¢ by (2.21) we have £;(P}) = band f;(P}) = c. By strategy-proofness, dPjc and
fi(PY) = ctogether imply £4.(P%,) € {b,c}. Suppose f4(P%;) = c. Since f3(P%) = cand f;(P4;) = ¢, by non-bossiness
and the fact that £;(Py) = b, we have f;(P}) = b. However, f;(P}) = band f;(P}) = c together contradict Pareto

efficiency. So, it must be that

AlPy) = . (222)

Since ﬁ(])l-, INJJ, P_;;) = a, by (2.20) we have f(Py) = a. Also, by (2.22) we have f;(P%,) # b. By strategy-proofness, the
facts f;(Py) = aand f;(P}) # b together imply £;(P,) = a. Since f;(Py) = a and f;(P}) = a, by non-bossiness and
(2.20), we have

ﬂpzz\l) :f( i/pjrpfz}j)' (2.23)

However, since f} (]3,-, 13]-, P,l-,j) = d, by (2.23) we have f; (P%\[) = d, a contradiction to (2.22). This completes the proof

of Claim 2.7.4. m

Fix a preference P € IL(4 \ {4, b,c}) over the objects in 4 \ {4, 4,c}. Consider the preference profiles presented in

Table 2.7. Assume that Pz =P =pL
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Preference profiles | Individual 7 Individual; Individualk ... Individual/
P, abcP cabP achP e P
P abeP cbal achP . Py
PJS\J achP cabP achP e Py
Pj‘v acbP cabP cabP . P
P?V acbP cabP ... . P
s beal cbal achP e P
P]7\[ beal cbal cabP . P
P]gv cabP cabP cabP e Py
P?v cabP cbal cabP e P
P cabP cabP ... e Py

N cabP cbal ... . P
P2 cbal cabP acbP . Py
Pljs cbal cbal achP . P

]\/} cbal cablP cabP . P
P1A5, cbal cbal cabP e Py

Table 2.7: Preference profiles for Lemma 2.7.1

The facts f;(Pn) = b, f(2, j)j, P_;;) = ¢;and £(2, j)j, P_;;) Pifi(Pn) together imply cP;b. Since cP;b and f;(Pn) = b,
by strategy-proofness, we have

fi(P, P_;) # cfor allP]'» e L(4). (2.24)

Combining the fact f;(Py) = b with (2.1), we have f;(P;, P—;) = f;(P;, P—;) = b. Since fis strategy-proof, the facts

fi(P, P, P_;;) = aand ];-(13,», P_;) = btogether imply a]?jb, which along with Claim 2.7.3, yields aj)jb. Since ﬂj)]‘b and
fi(P;, P_;) = b, by strategy-proofness, we have
(P, P_;) # afor aHP]’» e L(4). (2.25)

J

However, since ﬁ(pj, P_;) = b, by strategy-proofness and non-bossiness along with (2.24) and (2.25), we have AP,
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P_j) :ﬂp P_j). By (2.1), this, in particular, means

B P) = af(PP ) = b and fi(B,P) = (226)

By moving the preferences of the individuals / € {i, k} from P, to PZS one by one, and by applying strategy-proofness and

non-bossiness on (2.26) each time, we conclude

fz‘(PSN) = 4,ﬁ.(p5N) =b, andf/e(PSN) = (2.27)

Using strategy-proofness and non-bossiness, we obtain from (2.27) that

fi(Px) = a,f{(Px) = b, and fi(Py) = c. (228)

By strategy-proofness, the facts cPb and f;(P;, P—;) = b together imply

S (2, Pj'-,P,,-J-) # cfor allP]'- eL(4). (2.29)

Since fis strategy—proof, the fact fj(P;, P—;) = band (2.29) imply £;(P;, P, P—;;) = b. Moreover, since f;(P;, P—;) = b
and f; (P;, P1,P_; ;) = b, by non-bossiness, we have f(Pl, ,P_)) = AP, P—,). This, together with (2.1), yields

ﬂj)l'/ 1?]1‘11 P—l‘,j) :ﬂPN) (2"30)

By (2.1) we have /;(Py) = f;(P;, P—;). This, along with the fact that ;(Px) = a, yields f;(P;, P—;) = a. Since fis strategy-
proof, the facts /;(P;, B, P—;;) = cand f;(P;, P_;) = a together imply cR;a, which along with Claim 2.7.3, yields cP;a.
Also, the fact f;(Px) = 4, together with (2.30), implies f;(P;, P}', P—;;) = a. Since cPa and fi(P;, P}, P—;;) = a, by
strategy-proofness, we have f; (P, Pi', P—;;) = a. Moreover, since f;(P;, Pi', P—;;) = aand f;(P}', P}', P—_;;) = a, by

non-bossiness, we haveﬂP}l, le.l, P,l»,j) :f;'(piz P]u, sz',j)- This, together with (2.30), implies
fl-(P}l, P}I,P,Z-,J) f(PZH,P]u,P lj) = b, andﬁ(P}l,P}l,P,l-J) = (2.31)
Using strategy-proofness and non-bossiness, we obtain from (2.31) that

fi(PR) = 4, fi(PR) = b, and fi(Py) = c. (2.32)
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Again, using strategy-proofness and non-bossiness, we obtain from (2.32) that

£(PX) = a,f(Py) = b, and fi(PY) = c. (2.33)

Slncefls strategy-proof, the factf( , P, _zj) = zand (2.29) implyﬁ(i’i,l)}o,P_iJ) = a. Sincef]‘»(j)i, I~)j, P_Z‘J') =a

and (B, P, P_,;) = a, by non-bossiness, we have f{B;, P, P_;,) = AP, B, P_,;). This, in particular, means
Fi(Py, PP, Poyy) = ¢ fi(Dy, P°, P—yj) = @, and fi(P;, P}°, Pyj) = d. (2.34)
From Claim 2.7.4, we have cPud. Since flS strategy-proof and cPyd, (2.34) implies f3(B;, P, P, P_, 1) = d. Moreover,
since £ (2, P_l]) dand f;(P;, P°, P, P_; ;) = d, by non-bossiness, (2.34) 1mphes
FBy PO, PO, P ) = 6 fi(Py PO, PO, Py) = a, and fu( B, PO, PO, P_y) = d. (2.35)

Using strategy-proofness and non-bossiness, we obtain from (2.3) that

fi(PR) = . fi(PN) = a, and fi(PY) = d. (2:36)

By strategy-proofness, (2.33) impliesﬁ(]’?\[) € {a,b}. Supposeﬁ(P?\]) = b. Sinceﬁ(]’?v) =0 andﬁ-(P?\[) = b, by
non-bossiness, (2.33) implies /3 (P%;) = ¢. However, since 3 (P%;) = ¢, (2.36) contradicts strategy-proofness. So, it must be

that ;(P;) = a. By strategy-proofness, (2.28) implies £;(P%,) € {a, c}. This, along with the fact that £;(P};) = 4, yields
fi(PN) = cand fi(Py) = a. (237)
Using strategy-proofness and non-bossiness, we obtain from (2.37) that
fi(PR) = cand fi(PR) = a. (2.38)
By strategy-proofness, (2.38) implies /;(Py) € {a,b}. Suppose f;(Py) = a. Since f;(Py) = a and f;(Py) = a, by

non-bossiness and (2.38), we have £;(P%) = ¢. However, since /;(PY) = ¢, (2.33) contradicts strategy-proofness. So, it

must be that /;(Ply) = b. By strategy-proofness, (2.33) implies £;(Py) € {4, b}. This, along with the fact that £;(P) = b,
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yields /;(PY) = a. By non-bossiness, this and (2.33) imply

fi(PR) = a,fi(PR) = b, and fi(PY) =« (2:39)

Using strategy-proofness and non-bossiness, we obtain from (2.39) that

fi(Py) = a,fi(Py) = b, and fi(Py) = c. (2.40)

By (2.38) we have f; (Plj\/}) ¢ {a,c}. By strategy-proofness, the fact f; (Pl]\/}) ¢ {a,c} implies f;, (PIA%) = fk(PlAZ}) This,

by non-bossiness and (2.38), implies

fi(PR) = cand f(PR) = a. (2.41)

By strategy-proofness, (2.41) implies £(P3;) € {a,c}. Suppose £;(P3;) = c. Since f;(P}3) = cand ;(P;) = ¢, by non-
bossiness and (2.41), we have f;(P})) = a. However, f;(P}) = cand f;(P}) = a together contradict Pareto efficiency.
So, it must be that £;(P3;) = a. By strategy-proofness, (2.27) implies 4(P3,) € {4,c}. This, along with the fact that
F(P) = ayields

F(P) = amd fi(P) = (242

Using strategy-proofness and non-bossiness, we obtain from (2.42) that

F(Py) = aand fi(Py) = c. (2.43)

By (2.43) we have £;(Py) € {a,c}. By strategy-proofness, f;(Py) € {a,c} implies f;(P%;) = f;(P)). This, by non-

bossiness and (2.43), implies

F(PY) = aand f(PR) = ¢ (2.44)

By (2.39) we have £;(PY) = 2 and f;(PY) = c. By strategy-proofness, f;(Py) = cimplies £ (P3) € {4, c}. Suppose
A(P2) = c. Since f(P5) = cand fi(P2) = ¢, by non-bossiness and the fact that £i(PS) = 4, we have fi(P2) = a.
However, ;(P%) = a and f;,(PY) = c together contradict Pareto efficiency. So, it must be that f;(P%) = 4. By strategy-
proofness, (2.41) implies f;(Py) € {a,b}. This, along with the fact that £ (P}}) = 4, yields f;(Py) = &. By strategy-
proofness, (2.44) implies ;(P3) € {4, b, c}. This, together with the facts that £;(P}}) = band f(P}) = a, implies

£(PR) = ¢, f(PR) = b, and fi(PR) = a. (2.45)
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By strategy-proofness, (2.40) implies 4,(P%;) € {a,c}. Suppose fi(PS) = c. Since f(P};) = cand f(P,) = ¢ by
non-bossiness and (2.40), we have f; (7%;) = a. However, £;(P%;) = aand f;,(P%;) = ctogether contradict Pareto efficiency.
So, it must be that f3(P%) = a. Also, by (2.45) we have £;(Py) = cand f;(P}) = b. By strategy-proofness, f;(Piy) = ¢
implics £,(P%,) € {b,c}. Suppose fi(P%) = c. Since £(P3) = cand fi(P%) = ¢ by non-bossiness and the fact that
£(PR) = b, we have f;(P};) = b. However, f;(1%;) = cand f;(P;) = b together contradict Pareto efficiency. So, it must
be that £(P%,) = b. Combining the facts that £,(P%,) = band fo(P%,) = , we have

AP = band fi(P%) = a. (2.46)

Now we complete the proof of Lemma 2.7.1. Consider the restricted domain Py C IL”(A4) with only three preference

profiles as follows.

Preference profiles | Individual 7 Individual; Individualk ... Individual/
P?V beal cbal acbP . Py
P?\z beal cbal cabP . P
PIAZ; cbal cabP cabP . P

Table 2.8: Preference profiles of 208

By (2.38), (2.40), and (2.46), we have

Preference profiles | ;(Pn) fi(Pn) fi(Pn)
I s b a
Py a b ¢
P ¢ a

Table 2.9: Partial outcome of fon 208

Since fis OSP-implementable on IL” (A4), it must be OSP-implementable on the restricted domain Px. Let Gbe an OSP
mechanism that implements fon Px.

Note that since /{P%;) # f{P}), there exists a node in the OSP mechanism G that has at least two edges. Also, note that
since each individual / € N\ {7,, k} has exactly one preference in 7}, whenever there are at least two outgoing edges from
a node, that node must be assigned to some individual in {7, /, #}. Consider the first node (from the root) v that has two

edges.
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Suppose 77/ (v) = 7. Consider the preference profiles P}, and P. Note that both of them pass through the node v at
which P/ and P* diverge. Further note that cP/a, ;(P},) = a,and f;(P}¢) = . However, the facts that cP/a, £;(P,) = a,
and £;(P}§) = c together contradict OSP-implementability of fon Py So, it must be that 7™V (v) # i.

Suppose 7/ (v) = k. Consider the preference profiles %, and Pt. Note that both of them pass through the node v at
which P and P}* diverge. Further note that f,(7%,) = 4, /i (Px) ¢ {a,c},andaP*xforallx € 4\ {a,c}. Since aP}x
forallx € A\ {a,c}, the facts that £,(P%,) = aand f;(P%¢) & {a,c} together contradict OSP-implementability of fon
Pn. So, it must be that ™ (v) # k.

Since 7™ (v) # 7and ™ (v) # k, it must be that /¥ (v) = /. We distinguish the following two cases.
Case 1: f;(P5) =c.

Consider the preference profiles 4;and P. Note that both of them pass through the node v at which P]6 and P]l-4 diverge.
Further note that 61)11-44, £(P%) = ;and f;(Py) = a. However, the facts that 613]1-44, F(P%) = ¢, and f;(Py;) = a together
contradict OSP-implementability of fon Py.

Cask 2: f;(I%) # c.
Consider the preference profiles 4;and P}i. Note that both of them pass through the node v at which PJ6 and P}4 diverge.

Further note that f;(P%,) & {4, 6,c}, f;(Py) = a,and aPixforallx € 4\ {a,b,c}. Since aPxforallx € 4\ {a,6,c},
the facts that £;(P%,) & {4, b,c} and f;(P¥) = a together contradict OSP-implementability of fon Py. This completes

the proof of Lemma 2.7.1. |

2.7.2 COMPLETION OF THE PROOF OF THEOREM 2.4.1
We present two results from Pépai (2000), which we use to complete the proof of Theorem 2.4.1.

Theorem 2.7.1 (Main theorem in Pépai, 2000). An assignment rule f : L*(A) — M is group strategy-proof; Pareto

efficient, and reallocation-proof if and only if f is a hierarchical exchange rule.

Lemma 2.7.2 (Lemma 1 in Pépai, 2000). An assignment rule f : 1" (A) — M is group strategy-proof if and only if it is

strategy-proof and non-bossy.

Proof of Theorem 2.4.1. (If part) Let fbe a hierarchical exchange rule satistying dual ownership. By Proposition 2.5.1,
fis OSP-implementable. Moreover, since fis a hierarchical exchange rule, by Theorem 2.7.1, fis group strategy-proof and
Pareto efficient. The fact that fis group strategy-proof along with Lemma 2.7.2, implies fis non-bossy. This completes the

proof of the “if” part of Theorem 2.4.1.

(Only-if part) Let f be an OSP-implementable, non-bossy, and Pareto efficient assignment rule. By Lemma 2.7.1, f'is
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reallocation-proof. Since fis OSP-implementable, by Remark 2.2.1, f'is strategy-proof. This, together with Lemma 2.7.2
and the fact that f'is non-bossy, implies /'is group strategy-proof. Since f'is group strategy-proof, Pareto efficient, and
reallocation-proof, by Theorem 2.7.1, fis a hierarchical exchange rule. Moreover, since f'is an OSP-implementable hier-
archical exchange rule, by Proposition 2.5.1, fis a hierarchical exchange rule satistying dual ownership. This completes the

proof of the “only-if” part of Theorem 2.4.1. |

2.8 EXAMPLE TO CLARIFY THE DIFFERENCE BETWEEN DUAL DICTATORSHIP (TROYAN, 2019) AND DUAL

OWNERSHIP OF FPTTC RULES

Troyan (2019) deals with the case where |N| = |4|. Therefore, we explain the difference between dual dictatorship and

dual ownership of FPTTC rules for this case only.

Example 2.8.1. Consider an allocation problem with four individuals N = {7,/, k,/} and four objects 4 = {w, x,y,z}.

Let > 4 be as follows:

i i / /
o7k
k k k7
/ / i i

Table 2.10: Priority structure for Example 2.8.1

Consider the FPTTC rule 774 associated with the priority structure given in Table 2.10. First, we argue that it satisfies
dual ownership. Since either individual 7 or individual / appears at the top position in each priority, it follows that for
any preference profile, individuals 7 and / will own all the objects at Step 1 of 774. Moreover, since there are only four
individuals in the original market, for any preference profile, at any step from Step 3 onward of 774, there will remain at
most two individuals in the corresponding submarket and hence dual ownership will be vacuously satisfied. In what follows,
we show that dual ownership will also be satisfied at Step 2 for any preference profile. We distinguish three cases based on

the possible assignments at Step 1.

(i) Suppose only individual 7 is assigned some object at Step 1. No matter whether individual 7 is assigned object w or

object x, individuals j and / will own all the objects at Step 2.
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(i) Suppose only individual / is assigned some object at Step 1.

(a) Ifis assigned object y, then individuals 7 and & will own all the objects at Step 2.

(b) If/is assigned object 2, then individuals 7 and j will own all the objects at Step 2.

(iii) Suppose both 7and /are assigned some objects at Step 1. Since there are only four individuals in the original market,

only two individuals will remain in the reduced market at Step 2.

Since Cases (i), (ii), and (iii) are exhaustive, it follows that 774 satisfies dual ownership. We now proceed to show that it
does not satisfy dual dictatorship. Consider the submarket consisting of individuals 7, 7, and £ and objects x, y, and z. Here,

individuals 7, /, and & will own objects x, , and z, respectively, and hence 74 under consideration violates dual dictatorship.
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On Obviously Strategy-proof Implementation of
Fixed Priority Top Trading Cycles with Outside
Options

3.1 INTRODUCTION

The objective of mechanism design is to implement desirable outcomes when participating agents are strategic. The standard
notion of strategy-proofness requires truth-telling to be a dominant strategy. However, the structure of such incentive
compatible mechanisms are at times quite involved, and consequently, agents are not convinced that they are indeed strategy-

proof. The notion of obvious strategy-proofness (OSP) (Li, 2017) has emerged to resolve this issue.??

33There is a rapidly growing body of work on OSP-implementability in variety of settings; see Bade & Gonczarowski (2017), Ashlagi
& Gonczarowski (2018), Bade (2019), Pycia & Troyan (2019), Arribillaga et al. (2020), Mackenzie (2020).
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We consider the problem of OSP-implementability of fixed priority top trading cycles (FPTTC) rules when outside op-
tions are available, that is, each object need not be “acceptable” to an agent. Troyan (2019) and Mandal & Roy (2020)
deal with OSP-implementability of FPTTC rules when outside options are zot available.>* Troyan (2019) introduces the
notion of dual dictatorship and shows that it is both necessary and sufficient condition for an FPTTC rule to be OSP-
implementable when there are equal number of agents and objects.35/3¢ Later, Mandal & Roy (2020) point out that while
dual dictatorship is a sufficient condition for the same, it is zof necessary. They consequently introduce the notion of dual
ownership (a weaker condition than dual dictatorship) and show that it is both necessary and sufficient condition for an
FPTTC rule to be OSP-implementable.3”

In a model with outside options, we show that dual dictatorship and dual ownership are equivalent properties of an
FPTTC rule (Theorem 3.4.1), and dual ownership is a necessary and sufficient condition for an FPTTC rule to be OSP-
implementable (Theorem 3.4.2). It is worth mentioning that we consider arbitrary (not necessarily equal) values of the

number of agents and the number of objects.

3.2 PRELIMINARIES

3.2.1 MODEL

Let N = {1,...,n} beafinite set of agents and 4 be a finite set of objects. Let 2o denote the outside option. An allocation
isa function x : N — 4 U {ao} such that |z ()| < 1foralla € 4. Here, (i) = a means agent 7 is assigned object
under ¢, and p(7) = 4o means agent 7 is not assigned any object. We denote by M the set of all allocations.

Let IL(A4 U {40}) denote the set of all strict linear orders over 4 U {a0}.3® An element of IL(4 U {ao}) is called a
preference over A U {ap}. For a preference P, let R denote the weak part of P.3° An element Py = (P,...,P,) of
L"(A4 U {ao}) is called a profile.

An assignment rule is a function f: IL” (4 U {a¢}) — M. Let ;(Pn) denote the assignment of agent 7 by fat Py.

3#Troyan (2019) uses the term “TTC rule” to refer to an FPTTC rule in his paper.

35See Theorem 1 and Theorem 2 in Troyan (2019) for details.

36Kesten (2006) introduces the notion of acyclicity, and shows that an FPTTC rule is stable if and only if it is acyclic. It can be verified
that acyclic FPTTC rules satisfy dual dictatorship.

37See Corollary 5.2 in Mandal & Roy (2020) for details.

38 A strict linear order is a semiconnex, asymmetric, and transitive binary relation.

MForalla, b € AU {ap},aRbifand only if [an ora = b} .
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3.2.2 OBVIOUSLY STRATEGY-PROOF IMPLEMENTATION

The notion of obviously strategy-proof implementation is introduced by Li (2017). We use the following notions and
notations to present it. For a rooted tree 7} we denote its set of nodes by ¥(7), set of edges by E(T), root by (7)), and set
of leaves (terminal nodes) by L( 7). Foranode v € V(T), let E”“*(v) denote the set of outgoing edges from v. For an edge
¢ € E(T),lets(e) denote its source node. A path in a tree is a sequence of nodes such that every two consecutive nodes form

an edge.
Definition 3.2.1. A mechanism is defined as a tuple G = (T, %4, ™, y£), where
(i) Tisarooted tree,
(i) #* : L(T) — M is aleaves-to-allocations function,
(i) 7™ : V(T)\ L(T) — Nis a nodes-to-agents function,
(iv) 777 E(T) — 2MY1e0b) \ (@} is an edges-to-preferences function such that

(a) foralldistincte, ¢ € E(T) withs(e) = s(¢'), 752(e) N4 (¢) = @,
(b) foranyv € V(T)\ L(T),

(1) if there exists a path (¢!, ..., ") from #(7) to v and some 1 < 7 < ¢such that ™ (v") = 5™ (v) and
pN(v) #£ N (v) foralls = r+1,...,¢ — 1, then EGE%(U) Ple) = 42 (v, 1Y),
(2) if there is no such path, then CEE%(U)yEP(e) =L(4U{a0}).

For a mechanism G, every profile Py identifies a unique path from the root to some leaf in 7"in the following manner:
from each node v, follow the outgoing edge ¢ from v such that 7°7'(¢) contains the preference P i(y). If anode vlies in such
a path, then we say that the profile Px passes through the node v. Furthermore, we say two preferences £; and Pl.of some agent
idivergeat anodev € V(T) \ L(T) if 5™ (v) = 7and there are two distinct edges e and ¢ in £”¢(v) such that P; € 757(e)
and P, € 0(¢).

For a mechanism G, the assignment rule f© implemented by G is defined as follows: for all profiles P, /°(Pyn) =

754 (1), where / is the leaf that appears at the end of the unique path characterized by Py.

Definition 3.2.2. A mechanism G is Obviously Strategy-Proof (OSP) if for all i € N, all nodes v such that ™ (v) = 4,
and all Py, Py € IL*(A4 U {ao}) passing through v such that P; and P; diverge at v, we have /% (Pn) R;f% (Pn).

An assignment rule £ : IL”(4 U {ao}) — M is OSP-implementable if there exists an OSP mechanism G such that
F=r
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3.3 FIXED PRIORITY TOP TRADING CYCLES (FPTTC) RULES

For each object 2 € A, we define the priority of a as a “preference” >, over N. We call a collection > 4:= (>2)aca
a priority structure. For a priority structure >4, the FPTTC rule T"4 associated with > 4 is defined by an iterative

procedure as follows. Consider a profile Py € IL”(4 U {ao}).

Stept. Let N;(Py) C N be the set of agents that remain after Step # — 1 and 4,(Py) C A be the set of objects that

remain after Step # — 1.4°

We construct a (directed) graph with the set of nodes N,(Pn) U 4,(Pn) U {ao}. Each agent i € N,(Px) points
to her most-preferred element of 4,(Py) U {40 }. Each object 2 € A,(Py) points to its most-preferred agent in

N;(Pn). The outside option 4 points to each agent in N;(Py).

There is at least one cycle.** Each agent in a cycle is assigned the element she is pointing to (the element might be

some object or the outside option). Remove all agents and objects that appear in some cycle.

This procedure is repeated iteratively until either all agents are assigned or all objects are assigned.
The following remarks say that the assignment of an agent under an FPTTC rule will be as good as the outside option,

as well as, any object for which she has the top-priority. Let > 4€ LMl (N) be a priority structure.
Remark 3.3.1. Forall Py € IL”(4 U {a¢}) and all i € N, T} “(Pn)Rao.

Remark 3.3.2. Suppose 7(~,) = 7forsomea € 4 and some i € N. Then, forall Py € L*(4 U {ao}), T; *(Px)R;a.

3.4 RESULTS

For =€ IL(N) and N’ C N, let (=, N') denote the most-preferred agent in N according to >. For ease of presentation,
we denote 7(>, N) by 7(>). For =€ IL(N) and 7 € N, let U(7, =) denote the upper contour set {j € N | j > i} of 7 at
>.For P € IL(4 U {ao}), let 7(P) denote the most-preferred element of 4 U {4 } according to P.

Let N C N, 4" C 4, and 4 be a priority structure. The reduced priority structure >f}7,’ is the collection (>£]{ )acar
such that forallz € 4/, (i) =N € IL(N') and (ii) forall 7,7 € N',7 =N jifand only if / >, j. Thus, the reduced
priority structure =2 is the restriction of 4 to the submarket (N', 4").#* Furthermore, let T (=) = {i | 7(>,,

N') = iforsomea € A'}.

4°Note that forall Py € L” (4 U {ao}), Ni(Pn) = Nand 4, (Pyn) = 4.

41 All the cycles we consider in this chapter are assumed to be “minimal”, that is, no subset of nodes of such a cycle forms another
cycle. In the model without outside options, trading cycles are always minimal. However, since there can be multiple outgoing edges
from the outside option ¢, non-minimal trading cycles may appear in the model with outside options.

4 Thus, >f¥= 4.
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Definition 3.4.1. (Troyan, 2019) The FPTTC rule 7" satisfies dual dictatorship if for all N' C Nand A" C A, we have

T(-3) <2

N
Remark 3.4.1. If 774 satisfies dual dictatorship, then 7" #' satisfies dual dictatorship on the submarket (N, 4") for all

N C Nandall4’' C 4.
Recall the definitions of N;(Py) and 4,(Py) given in Section 3.3.

Definition 3.4.2. (Mandal & Roy, 2020) For a domain of profiles Py C IL”(A4 U {a¢}), the FPTTC rule 77 satisfies

dual ownership on Py if for all Px € Py, we have | T ( >1]f((£1‘:)) )| < 2foralls.

Note 3.4.1. Foran arbitrary domain of profiles Py, the set of FPTTC rules satisfying dual ownership is a superset of those
satisfying dual dictatorship. Example 3.4.1 presents a domain of profiles on which the former set is a strict superset of the

latter. This clarifies that the notions of dual dictatorship and dual ownership are different.

Example 3.4.1. Consider an allocation problem with four individuals N = {7,}, £,/} and four objects 4 = {w, x, 7, 2}.
Let P = {P € L(AU{ap}) | aPagforsomea € A} be the set of preferences where the outside option is never the

most-preferred choice. Let > 4 be as follows:

) i / /
;oo 7k
k k k
/ / ) )

Table 3.1: Priority structure for Example 3.4.1

Using similar arguments as for Example C.1 in Mandal & Roy (2020), it follows that the FPTTC rule 774 satisfies dual

ownership on P*# but does not satisfy dual dictatorship.
Theorem 3.4.1. An FPTTC rule on 1L (A U {ag }) satisfies dual dictatorship if and only if it satisfies dual ownership.

Proof of Theorem 3.4.1. The “only-if” part of the theorem follows from respective definitions, we proceed to prove the
“if” part. Assume for contradiction that 774 does not satisfy dual dictatorship. Then, there exist N' C Nand 4" C 4
such that | 7 ( >—/1¥,{) | > 2. This implies that there exist three agents 7, 7,73 € N and three objects a1, 45,43 € A’ such

that 7(>,,, N') = 7, forall h = 1,2, 3. We distinguish the following two cases.
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3
Cask A: Suppose |J U(7y, >,,) = @.
h=1

3
Since U Uiy, =,,) = @, we have 7(>-,,) = i, forall h = 1,2,3. Fix a profile Py € IL*(4 U {ao}). By the
h=1

definition of 7774, it follows that Ny (Py) = Nand 4;(Py) = 4 (see Footnote 40). Since 7( >ﬂh) =g, forallh =1,2,3,

Ni(Pn)

4(Py) )| > 2,acontradiction to

Ni(Pn) = Nyand 4 (Pn) = A, wehave {71,i2,i3} C T ( >2]11((11))§))) This implies | 7 (>~

the fact that 774 satisfies dual ownership.
3
Cask B: Suppose U U(ip, >,,) # @.
h=1

Since L3J Ulip, >a,) # @, without loss of generality, assume U(#1, >,,) # @. The facts U(i1, =,,) # @ and 7(>,,,
N) = z’f ;gether imply 7(>,,) ¢ N'. Consider the profile Py such that 7(P;) = 4, forall7 € N' and 7(P;) = ay for
all7 ¢ N'. Since 7(>-,,) ¢ N/, it follows from the construction of Py and the definition of 774 that N> (Py) = N’ and
A3 (Py) = A. The facts Ny (Py) = N/, A2(Py) = A, and 7(,,, N') = 7 forall b = 1,2, 3 together imply {71, 22,

i3} C T(}IZ;ZZZ((II;]‘:)) ). This implies |7 ( >—1];]22((11j§)) )| > 2, a contradiction to the fact that 774 satisfies dual ownership. W
Our next theorem provides a characterization of OSP-implementable FPTTC rules.

Theorem 3.4.2. An FPTTC rule on 1" (A U {ao }) is OSP-implementable if and only if it satisfies dual ownership.

Proof of Theorem 3.4.2. (If part) Suppose T" 4 satisfies dual ownership. By Theorem 3.4.1, 774 satisfies dual dictator-

ship. We show that 774 is OSP-implementable by using induction on ||, which we refer to as the size of the market.

Base Case: Suppose | N| = 1.4 The following mechanism, labeled as G', implements 7.
Step 1. Assign the (only) agent her most-preferred element of 4 U {0 }.

Itis simple to check that G is OSP. Since the OSP mechanism G! implements 774, it follows that 7”4 is OSP-implementable.

Now, we proceed to prove the induction step.

Induction Hypothesis: Assume that 774 is OSP-implementable for |[N| < m. We show 774 is OSP-implementable for
|N| = m + 1. Since 774 satisfies dual dictatorship, by definition, we have |7 (>4)| < 2. We distinguish the following

twO cases.

CasE A: Suppose | T (>-4)| = 1.

Let T (>=4) = {}. Define the mechanism G as follows:

Step 1. Assign agent 7 her most-preferred element of 4 U {4y }, say a.

+3With only one agent, 774 vacuously satisfies dual dictatorship.
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N\{7}
Step 2. We have a submarket (N'\ {7}, 4\ {4}) of size m. By Remark 3.4.1, T 4\4} satisfies dual dictatorship. By the
M
induction hypothesis, there exists an OSP mechanism G” that implements 7 #\+} on the submarket (N'\ {},

A\ {a}). Run G” on the submarket (N'\ {7}, 4\ {a}).

Clearly, Gntl implements 77 4. The mechanism G”11 is OSP for agent 7 since she receives her top choice. For every
other agent, her first decision node comes after 7 has been assigned, and hence, her strategic decision is equivalent to that
under the OSP mechanism that implements 774 restricted to the corresponding submarket. Thus, G”* is OSP for all

agents.

Caske B: Suppose | T (>4)| = 2.
Let T (>=4) = {47} Letd, = {x € 4| 7(=,) = i} and 4; = {x € 4 | 7(~) = j}. Define the mechanism Gt

as follows:

Step 1. Foreacha € A4; U {ao},ask7if her top choice is 4. If 7 answers “Yes” for some 4, assign her 2, and go to Step 1(a).
Otherwise, jump to Step 2.
N\{i}

Step 1(a). We have a submarket (N'\ {7},4\ {2}) of size m. By Remark 3.4.1, T 4\l«} satisfies dual dictatorship. By

M)
the induction hypothesis, there exists an OSP mechanism G” that implements T 4\e} on the submarket

(N\ {7},4\ {a}). Run G” on the submarket (N \ {7}, 4\ {a}).

Step 2. Foreachb € A;U {ag}, askjif her top choice is b. If j answers “Yes” for some b, assign her b, and go to Step 2(a).

Otherwise, jump to Step 3.

N\{j}
Step 2(a). We have a submarket (N'\ {j},4\ {b}) of size m. By Remark 3.4.1, T 4\l¥} satisfies dual dictatorship. By
N7}
the induction hypothesis, there exists an OSP mechanism G” that implements T4\ on the submarket

(N\ {/},4\ {¢}). Run G” on the submarket (N'\ {}, 4\ {&}).

Step 3. If the answers to both Step 1 and Step 2 are “No”, then #’s top choice belongs to 4, and ;s top choice belongs to
A;. Ask 7 for her top choice 4, and j for her top choice 4. Assign 4 to 7 and 4 to 7, and go to Step 3(a).
N\{iz}
Step 3(a). We have a submarket (N\ {7,/}, 4\ {2,b}) of size m — 1. By Remark 3.4.1, T #\+/} satisfies dual dicta-
N\{i}
torship. By the induction hypothesis, there exists an OSP mechanism G" ! that implements T A\ab} on

the submarket (N'\ {7,/},4 \ {4, 6}). Run G ! on the submarket (N \ {7,/},4 \ {4, 6}).

By definition, G”*! implements 774. Using a similar argument as for Case A, it follows from Remark 3.3.1, Remark

3.3.2, and the construction of G that G is OSP.
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Since Case A and Case B are exhaustive, it follows that 774 is OSP-implementable for IN| =m + 1.

(Only-if part) The proof of the “only-if” part follows by using similar arguments as for the proof of the “only-if” part of

Proposition 5.1 in Mandal & Roy (2020). |
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Strategy-proof Allocation of Indivisible Goods when

Preferences are Single-peaked

4.1  INTRODUCTION

We consider the well-known assignment problem where heterogeneous indivisible goods are to be assigned to individuals
so that each individual receives at most one good. Such problems arise when, for instance, the Government wants to assign
houses to the citizens, or hospitals to doctors, or a manager wants to allocate offices to employees, or tasks to workers, or
a professor wants to assign projects to students. Individuals are asked to report their preferences over the goods and the
designer decides the allocation based on these reports. We analyze the structure of such decision process satisfying some de-
sirable properties such as (group) strategy-proofness, efficiency, non-bossiness, (top-)envy-proofness, and (pairwise/group-
wise) reallocation-proofness.

(Group) strategy-proofness ensures that a (a group of) dishonest individual(s) cannot improve her (their) assignment(s)
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by misreporting her (their) preference(s).#* Efficiency says that the assignments cannot be improved in the sense of Pareto
(that is, everyone is weakly better off and someone is strictly better off). Non-bossiness says that a person cannot change
the assignment of any other person without changing her own assignment. Envy-proofness says that if an individual is
envious at another individual (that is, if she strictly prefers the assignment of the individual to her own assignment), then
she cannot harm the individual by misreporting her preference. Top-envy-proofness, in a sense, can be viewed as envy-
proofness with respect to the top-ranked object of the envious individual. Pairwise/group-wise reallocation-proofness rules
out the possibility of an obvious case of manipulation where a pair/group of individuals misreport their preferences and
become better off by redistributing the objects they obtain at the misreported profile.

Svensson (1999) shows that the set of strategy-proof, non-bossy, and neutral assignment rules on the unrestricted do-
main is the set of serial dictatorships, if every individual is assumed to be assigned an object.*5#¢ Pipai (2000) characterizes
strategy-proof, Pareto efficient, non-bossy, and reallocation-proof assignment rules on the unrestricted domain as hzerarchi-
cal exchange rules. These rules can be regarded as generalizations of Gale’s well-known top trading cycle (TTC) procedure.*”
Pycia & Unver (2017) characterizes strategy-proof, Pareto efficient, and non-bossy assignment rules on the unrestricted do-

main as trading cycles rules.*®

4.1.1 OUR MOTIVATION AND CONTRIBUTION

As we have mentioned, Svensson (1999), Pipai (2000), and Pycia & Unver (2017) assume that the individuals can have
arbitrary preferences over the goods. However, it is well-known that in many circumstances preferences of individuals are
restricted in a particular way. Single-peakedness is known as one of the most common such restrictions. It arises when
goods can be ordered based on certain criteria and individuals® preferences respect that ordering in the sense that as one
moves away from her top-ranked (peak) good, her preference declines. For instance, in the problem of assigning hospitals
(houses) to doctors (citizens), hospitals (houses) can be ordered based on their locations on a street and an individual may
like to be assigned as close as possible to her favorite location, in the problem of assigning tasks to students, tasks can be
ordered based on their technical difficulties and an individual may like to get a task that she is technically more comfortable

with, etc. This motivates us to explore the structure of strategy-proof assignment rules when individuals have single-peaked

44 A group of individuals improve their assignments if each member in it is weakly better-off and some member is strictly better-off.

45 An assignment rule is neutral if its outcomes do not depend on the identities of the objects.

46Whenever it is clear from the context, we use the term “domain” to refer to a set of preferences or a set of preference profiles.

47Top trading cycle (TTC) is due to David Gale and discussed in Shapley & Scarf (1974).

#Ergin (2000) shows that an assignment rule satisfies Pareto efficiency, neutrality, and consistency if and only if it is a simple se-
rial dictatorship rule (he uses somewhat weaker properties to show his result). Ehlers & Klaus (2006) characterize all Pareto efficient,
strategy-proof, and reallocation-consistent assignment rules as efficient priority rules. Later, Ehlers & Klaus (2007) and Velez (2014)
characterize a slightly larger class of assignment rules by weakening these characterizing properties. Karakaya et al. (2019) analyze TTC
rules in the context of house allocation problem with existing tenants.
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preferences. Instead of focusing only on the maximal single-peaked domain, we do our analysis on a class of single-peaked
domains that we call minimally rich. A single-peaked domain is minimally rich if it contains all left single-peaked and all
right single-peaked preferences.*’

There are two main results in this chapter. The first one says that there is no strategy-proof, non-bossy, Pareto efficient,
and strongly pairwise reallocation-proof assignment rule on a minimally rich single-peaked domain, when there are at least
three individuals and three objects in the market (Theorem 4.5.1). The second result characterizes all strategy-proof, Pareto
efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rules on a minimally rich single-peaked
domain as hierarchical exchange rules (Theorem 4.7.1). We additionally show that strategy-proofness and non-bossiness to-
gether are equivalent to group strategy-proofness on a minimally rich single-peaked domain (Proposition 4.4.1), and every
hierarchical exchange rule satisfies group-wise reallocation-proofness on a minimally rich single-peaked domain (Proposi-
tion 4.7.1).5°

Ours is not the first paper to deal with single-peaked domains, Damamme et al. (2015), Ehlers (2018), and Bade (2019)
consider single-peaked domains in the context of housing markets.’" Damamme et al. (2015) provide an algorithm which
is Pareto efficient on a single-peaked domain. Ehlers (2018) shows that a Pareto efficient, strategy-proof, and individually
rational rule on the maximal single-peaked domain does not necessarily coincide with Gale’s TTC.5* Bade (2019) introduces
the notion of the crawler algorithm and shows that it is Pareto efficient, strategy-proof, and individually rational on the
maximal single-peaked domain.5? To the best of our knowledge, the present chapter is the first paper to analyze the structure

of assignment rules on the single-peaked domains.

4.1.2 ORGANIZATION OF THE CHAPTER

The organization of this chapter is as follows. In Section 4.2, we introduce basic notions and notations that we use through-
out the chapter. In Section 4.3, we define domains and discuss their properties. In Section 4.4, we define assignment rules
and discuss their standard properties. We present an impossibility result (non-existence of strategy-proof, non-bossy, Pareto
efficient, and strongly pairwise reallocation-proof assignment rules on a minimally rich single-peaked domain) in Section

4.5. Section 4.6 introduces the notion of hierarchical exchange rules. In Section 4.7, we present our main result: a character-

49 A single-peaked preference is left (right) if every alternative on the left (right) of the peak is preferred to every alternative on the
right (left) of the peak.

5°This, in particular, implies that if we replace pairwise reallocation-proofness by its stronger version group-wise reallocation-
proofness, the conclusion of Theorem 4.7.1 does not change.

5tShapley & Scarf (1974) introduce the housing market, a model (with equal number of individuals and objects) in which each
individual owns a unique indivisible object (a house) initially.

52Gale’s TTC is the unique rule to satisfy Pareto efficiency, strategy-proofness, and individual rationality on the unrestricted domain
in the context of housing markets (see Ma (1994)).

53In fact, Bade (2019) shows that the crawler algorithm satisfies a stronger version of strategy-proofness called OSP-implementability.
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ization of all strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rules
on a minimally rich single-peaked domain as hierarchical exchange rules, and in Section 4.8, we discuss the independence

of these characterizing properties.

4.2 BASIC NOTIONS AND NOTATIONS

Let N = {1,...,n} be a(finite) set of individuals and 4 be a (non-empty and finite) set of objects. We denote the set of all
strict linear orders over the elements of 4 by IL(4).5* An element Pof IL(4) is called a preference over A. For a preference
P € 1L(4), by R we denote the weak part of P, that s, forall 2, b € 4, aRbif and only if [an ora = b] .ForP € IL(4)
and non-empty B C A4, we define 7(P,B) = aifand onlyifa € BandaPbforallb € B\ {a}. For ease of presentation,
we denote 7(P, 4) by 7(P).

We introduce the notion of an allocation of a (non-empty) set of objects B C A over a (non-empty) set of individuals
S C N. If|S| < |B|, then an allocation assigns a unique object to each individual (some objects will be left unassigned
if |S| < |B|). More formally, an allocation in this scenario is a one-to-one function z : S — B. On the other hand, if
|B| < |S|, then an allocation assigns each object to a unique individual (some individuals will not be assigned any object).
More formally, an allocation in this scenario is an onto function z : § — B U {@} such that #~!(«) is singleton for all
a € B.

Here, 4(7) = a for some element 4 of 4 means individual 7 is assigned object z in allocation g, and (i) = @ means
individual 7 is not assigned any object in . For S C Nand B C 4 with S|, |B| # 0, we denote by M (S, B) the set of all
allocations of B over S. For ease of presentation, we denote M (N, 4) by M.

For ease of presentation we use the following convention throughout the chapter: foraset {1, ..., g} of integers, when-
ever we refer to the number ¢ + 1, we mean 1. For instance, if we writes, > 7,41 forallz =1,..., ¢, wemeans; > r,,.. .,

Se-1 2 T andsg > .

4.3 DOMAINS AND THEIR PROPERTIES

Each7 € Nhasapreference P; € IL(A) over 4. We denote by P; C IL(A) the set of all admissible preferences of individual
i,and by Py = (Py, ..., P,) a n-vector of all the individuals’ preferences, which will be referred to as a preference profile.
By Pn = ﬁ P; we denote the set of all admissible preference profiles.

=1

Given a preference profile P, we denote by (P}, P_;) the preference profile obtained from Py by changing the preference

of individual 7 from P; to P; and keeping all other preferences unchanged.

54 A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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Definition 4.3.1. A preference P € IL(4) is called single-peaked with respect to an ordering <€ IL(4) if
(i) forallaj,a; € A witha; < a; < 7(P), we have a;Paj, and
(i) forallaj,a; € A withz(P) < a; < a4, we have a,Pay.

A single-peaked preference (with respect to <) is called left (right) single-peaked if for all 2;, 4, € A, a; < 7(P) <
implies 4;Pay (a;Pa;). A domain of preferences is called single-peaked (with respect to <) if each preference in it is single-
peaked. A single-peaked domain of preferences is called minimally rich if it contains a/l left single-peaked and all right

single-peaked preferences.

In the rest of the chapter we assume that for all 7 € N, P; is a minimally rich single-peaked domain (with respect to some

(fixed) ordering <).

4.4 ASSIGNMENT RULES AND THEIR PROPERTIES

In this section, we introduce the notion of assignment rules and discuss a few properties of those.
Definition 4.4.1. A function f: Pn — M is called an assignment rule on Py

For an assignment rule /1 Py — M and a preference profile Py € Pn;, we denote by f;(Py) the object that is assigned
to individual 7 by the assignment rule fat Py.
An allocation u Pareto dominates another allocation » at a preference profile Py if u(7)Rv(7) for alli € N and

©(7)P(j) for some; € N.

Definition 4.4.2. An assignment rule  : Py — M is called Pareto efficient at a preference profile P € Py if there is
no allocation that Pareto dominates f{ Py ) at Py, and it is called Pareto efficient if it is Pareto efficient at every preference

profile in Ph.

Remark 4.4.1. If an assignment rule £ : Py — M satisfies Pareto efficiency, then 7(P)) € ‘gN{f"(PN)} forall; € N.
In other words, every object that is ranked at the top position by some individual must not be left unassigned. To see this,
note that if 7(2;) ¢ éJN{f, (Pn)} for somej € N, then the allocation g defined by u(;) = 7(P;) and u(k) = fi(Pn) for

all k # j Pareto dominates f{ Py) at Px:.

Non-bossiness is a standard notion in matching theory which says that if an individual misreports her preference and her

assignment does not change by the same, then the assignment of any other individual cannot change.’$

55 The concept of non-bossiness is due to Satterthwaite & Sonnenschein (1981).
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Definition 4.4.3. An assignment rule  : Py — M is non-bossy if for all Py € Py alli € N, and all 2, € P,

f(Pn) = f:(P;, P—;) implies APy) = AP;, P_;).

Definition 4.4.4. An assignment rule 1 Py — M is strategy-proof if for all Py € Py, alli € Nandall B; € P;, we

have £;(Pn) R f:(P;, P—;).

Note that if an assignment rule /': Py — M is not strategy-proof, then there exist Py € Py, 7 € Nand P, € P, such

that ﬁ(j),», P_l~)Plﬁ(PN). In such cases, we say that the individual { manipulates f at Pn via D,

Definition 4.4.5. An assignmentrule /' : Py — M is group strategy-proof if for all Py € Pp;, there do not exist a set

of individuals § C N, and a preference profile Ps of the individuals in S such that f;(Ps, P_g) Rf;(Py) foralli € Sand

Fi(Ps, P_s) Pif;(P) for somej € S.
Proposition 4.4.1. An assignment rule f: Py — M is group strategy-proof if and only if it is strategy-proof and non-bossy.

The proof of this proposition is relegated to Section 4.10.

4.5 AN IMPOSSIBILITY RESULT

We introduce the notion of strongly pairwise reallocation-proof assignment rules. It says that no pair of individuals can

misreport their preferences and be better off redistributing their assignments ex post.5®

Definition 4.5.1. An assignment rule f : Py — M is weakly manipulable through pairwise reallocation if there exist

Py € Py, distinct individuals 7,/ € N, and P ep, 13] € P;such that
(i) £(P;, By, P—;j)Rifi(Pn), and
(i) fi(Ps By Pij) Pfj (Prv).
Anassignment rule is strongly pairwise reallocation-proof it itis not weakly manipulable through pairwise reallocation.

Pépai (2000) mentions that there is no strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-
proof assignment rule on the unrestricted domain, where there are at least three individuals and three objects. Our next

result says that the result holds if we restrict the domain to be minimally rich single-peaked.

Theorem 4.5.1. Suppose ‘N ’ > 3and ]A | > 3. Then, there does not exist a strategy-proof, non-bossy, Pareto efficient, and

strongly pairwise reallocation-proof assignment rule on Py.
gLy 24

5¢Here, we say a group of individuals is better-off if each member in it is weakly better-oft and some member is strictly better-oft.
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The proof of this theorem is relegated to Section 4.11.
Since group strategy-proofness is equivalent to strategy-proofness and non-bossiness (see Proposition 4.4.1), we obtain

the following corollary from Theorem 4.5.1.

Corollary 4.5.1. Suppose |N| > 3 and |A| > 3. Then, there does not exist a group strategy-proof, Pareto cfficient, and

strongly pairwise reallocation-proof assignment rule on Py

4.6 HIERARCHICAL EXCHANGE RULES

We introduce the notion of hierarchical exchange rules in this section. These rules are introduced in Pépai (2000) and are
well-known in the literature. We present a description of these rules for the sake of completeness. The description in Section
4.6 is taken from Mandal & Roy (2020).

We introduce some basic definitions from graph theory which we will use in defining hierarchical exchange rules. We
denote a rooted (directed) tree by 7' For a tree 7, we denote its set of nodes by V(7), set of all edges by £(T), and root by
7(T). Foranodev € V(T), we denote the set of all outgoing edges from v by £”/(v). For an edge ¢ € E(T), we denote its
source node by s(¢). A path in a tree is a sequence of nodes such that every two consecutive nodes form an edge.

First we explain the notion of a TTC procedure with respect to a given endowments of the objects over the individuals.
Suppose that each object is owned by exactly one individual. Note that an individual may own more than one objects. A
directed graph is constructed in the following manner. The set of nodes is the same as the set of individuals. There is a
directed edge from individual 7 to individual ; if and only if individual ; owns individual z’s most preferred object. Note
that such a graph will have exactly one outgoing edge from every node (though possibly many incoming edges to a node).
Further, there may be an edge from a node to itself. It is clear that such a graph will always have a cycle. This cycle is called

a top trading cycle (TTC). After forming a TTC, the individuals in the TTC are assigned their most preferred objects.

4.6.1 VERBAL DESCRIPTION OF HIERARCHICAL EXCHANGE RULES

The following verbal description of hierarchical exchange rules is taken from Pipai (2000). The allocation obtained by
a hierarchical exchange rule can be described by the following iterative procedure. Individuals have an initial individual
“endowment” of objects such that each object is exactly one individual’s endowment. It is important to note that some
individuals may not be endowed with any objects. Now apply the TTC procedure to this market with individual endow-
ments. Notice that individuals who don’t have endowments cannot be part of a top trading cycle, since nobody points to
them, and therefore they need not point. Given that multiple endowments are allowed, after the individuals in top trading

cycles leave the market with their most preferred objects, unassigned objects in the initial endowment sets of individuals
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who received their assignment may be left behind. These objects are reassigned as endowments to individuals who are still
in the market, that is, they are “inherited” by individuals who have not yet received their assignments. Furthermore, the
objects in the initial endowment sets of individuals who are still in the market remain the individual endowments of these
individuals. Thus, notice that each unassigned object is the endowment of exactly one individual who is still in the market.
Now apply the TTC procedure to this reduced market with the new endowments.” Repeat this procedure until every in-
dividual has her assignment or all the objects are assigned. Since there exists at least one top trading cycle in every stage, this
procedure leads to an allocation of the objects in a finite number of stages. In particular, there are at most as many stages as
there are individuals or objects, whichever number is smaller, since in each stage at least one person receives her assignment.
Furthermore, for any strict preferences of the individuals, the resulting allocation is unique.

A hierarchical exchange rule is determined by the initial endowments and the hierarchical endowment inheritance in later
stages. While the initial endowment sets are given a priori, the hierarchical endowment inheritance may be endogenous. In
particular, the inheritance of endowments may depend on the assignments made in earlier stages.

We explain how a hierarchical exchange rule works by means of the following example.

Example 4.6.1. Suppose N = {1,2,3} and 4 = {a1,42,43, a4} witha prior order a1 < a5 < a3 < a4. Ahierarchical
exchange rule is based on a collection of znberitance trees, one tree for each object. We will define this notion formally; for the
time being we explain it through the current example. Figure 4.1 presents a collection of inheritance trees I, . .., I';,. To
understand their structure, let us look at one of them, say I';,. Each maximal path of this tree has min{|N|, [4|} —1 =2
edges. In any maximal path, each individual appears 4z most once at the nodes. For instance, individuals 1, 2 and 3 appear
at the nodes (in that order) in the left most path of I',,. Each object other than 4; appears exactly once at the outgoing edges
from the root (thus there are three edges from the root). For every subsequent node which is not the end node of a maximal
path, each object other than 4y, that has not already appeared in the path from the root to that node, appears exactly once
at the outgoing edges from that node. For instance, consider the node marked with 2 in the left most path of T';, . Since this
node is not the end node of the left most maximal path and object 4 has already appeared at the edge from the root to this
node, objects 23 and a4 appear exactly once at the outgoing edges from this node. Thus, each object other than 4; appears
at most once at the edges in any maximal path of T;,. For instance, objects 2, and 43 appear at the edges (in that order) in

the left most path of T;,. It can be verified that other inheritance trees have the same structure.

57In this TTC procedure, an individual 7 point to an individual 7 if f owns 7’s most preferred object among the remaining objects.
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a3 a4 a) a4 a) a3 as a4 ai a4 a] as

a] a) a)

Figure 4.1: Inheritance trees for Example 4.6.1

Consider the hierarchical exchange rule based on the collection of inheritance trees given in Figure 4.1. We explain how

to compute the outcome of the rule at a given preference profile. Consider the preference profile Py as given below:

Py P, P
a) ai ail
ar a4y ap
a3 a3 aj
a4 d4 A4

Table 4.1: Preference profile for Example 4.6.1

The outcome is computed through a number of stages. In each stage, endowments of the individuals are determined by

means of the inheritance trees and TTC procedure is performed with respect to the endowments.

Stage 1.
In Stage 1, the “owner” of an object z is the individual who is assigned to the root-node of the inheritance tree I',. Thus,

object 21 is owned by individual 1, objects 2, and 43 are owned by individual 2, and object 24 is owned by individual 3.
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Once the endowments of the individuals are decided, TTC procedure is performed with respect to the endowments to
decide the outcome of Stage 1. Individuals who are assigned some object in Stage 1 leave the market with the corresponding
objects. It can be verified that for the preference profile Py given in Table 4.1, individual 1 gets object 4, and individual 2
gets object 21 at the outcome of TTC procedure in this stage. So, individuals 1 and 2 leave the market with objects 5 and

ay, respectively.

Stage 2.

Asin Stage 1, the endowments of the individuals are decided first and then TTC procedure is performed with respect to
the endowments. To decide the owner of a (remaining) object &, look at the root of the inheritance tree I,. If the individual
who appears there, say individual 7, is remained in the market, then 7 becomes the owner of 2. Otherwise, that is, if 7 is
assigned an object in Stage 1, say &, then follow the edge from the root that is marked with &. If the individual appearing at
the node following this edge, say 7, is remained in the market, then jbecomes the owner of 2. Otherwise, thatis, if j is assigned
an object in Stage 1, say ¢, then follow the edge that is marked with ¢ from the current node. As before, check whether the
individual appearing at the end of this edge is remained in the market or not. Continue in this manner until an individual
is found in the particular path who is not already assigned an object and decide that individual as the owner of 4.

For the example at hand, the remaining market in Stage 2 consists of objects #3 and 44, and individual 3. Consider object
a3. Individual 2 appears at the root of I',,. Since individual 2 is assigned object #; in Stage 1, we follow the edge from the
root that is marked with ; and come to individual 1. Since individual 1 is assigned object 5, we follow the edge marked
with 4, from this node and come to individual 3. Since individual 3 is remained in the market, she becomes the owner of
a3. For object a4, individual 3 appears at the root of I, and she is remained in the market. So, individual 3 becomes the
owner of 24 in Stage 2. To emphasize the process of deciding the owner of an object, we have highlighted the node in red in

the corresponding inheritance tree in Figure 4.2.

/T\
A A K

(a) Fa3 (b) L,

Figure 4.2: Stage 2

Once the endowments are decided for Stage 2, TTC procedure is performed with respect to the endowments to decide
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the outcome of this stage. As in Stage 1, individuals who are assigned some object in Stage 2 leave the market with the
corresponding objects. It can be verified that for the current example, individual 3 gets object 43 in this stage. So, individual

3 leave the market with objects 3.

Stage 3 is followed on the remaining market in a similar way as Stage 2. For the current example, everybody is assigned
some object by the end of Stage 2 and hence the algorithm stops in this stage. Thus, individuals 1, 2, and 3 get objects 45,

a1, and a3, respectively, at the outcome of the hierarchical exchange rule.

4.6.2 FORMAL DEFINITION OF HIERARCHICAL EXCHANGE RULES

In what follows, we present a formal description of hierarchical exchange rules.

INHERITANCE TREES

For a rooted tree 7, the Jevel of anode v € V(T) is defined as the number of edges appearing in the (unique) path from

7(T) to .
Definition 4.6.1. For an object 2 € 4, an inheritance tree for a € A is defined asa tuple T, = (T, 227, {£°), where
(i) T,isarooted tree with

level(v) = min{|N], |4]} —1,and
(@) max level(v) = min{|N], |[} —1,an

(b) |E™(v)| = |4| — level(v) — 1forallv € V(T,) with level(v) < min{|N]|, |4|} — 1,

(i) &7 V(T,) — Nisanodes-to-individuals function with £27 (0) # 2 (3) for all distinct v, 5 € V(T},) that appear

in same path, and

(iii) {£9 ¢ E(T,) — A4\ {a} is an edges-to-objects function with Z£°(¢) # ££9(2) for all distinct ¢, € E(T},) that

appear in same path or have same source node (that is, s(¢) = 5(2)).
In what follows, we provide two examples (for two different scenarios) of inheritance trees.

Example 4.6.2. Suppose N = {1,2,3} and 4 = {a1, 42, 43,44} with a prior order a; < a3 < a3 < a4.5® Figure 4.3

presents an example of T,.

$8The ordering < over 4 does not play any role in the definition of an inheritance tree.
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/4/43\

a3 a4 an as a) a3

Figure 4.3: Example of ',

Example 4.6.3. Suppose N = {1,2,3,4} and 4 = {41, 42,43} with a prior order 2; < a5 < a3. Figure 4.4 presents

another example of I,

Figure 4.4: Example of T,

ENDOWMENTS

A hierarchical exchange rule works in several stages and in each stage, endowments of individuals are determined by using a
(fixed) collection of inheritance trees.
Given a collection of inheritance trees I' = (I;) .4, one for each object 2 € A, we define a class of endowments £ Tas

follows:

(i) The initial endowment EF (D) of individual 7 is given by
E(@)={acd| &' (H10) =1}

(ii) ForallS C N\ {7} and B C 4 with |S| = |B| # 0,and all 2 € M(S, B), the endowment E} (%) of individual 7
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is given by

& (2) ={a € A\B| & (n(T2)) = i,or
there exists a path (o), ..., ) from 7(T,) to v* in T, such that Q’,W(UZ") —;

andforalls = 1,...,7, — 1, wehave 2 (v)) € Sand 2(2(v)) = O, i)}

ITERATIVE PROCEDURE TO COMPUTE THE OUTCOME OF A HIERARCHICAL EXCHANGE RULE

For a given collection of inheritance trees I' = (T,)ac4, the bierarchical exchange rule fr associated with T is defined by

an iterative procedure with at most min{ ||, | 4|} number of stages. Consider a preference profile P € Py.
Stage 1.

Hierarchical Endowments (Initial Endowments): Foralli € N, Ey(i, Py) = E} (D).

Top Choices: Foralli € N, T (7, Pn) = 7(P).

Trading Cycles: Foralli € N,

o] if there exist 71, ...,7, € Nsuch that
Jg J Jg

foralls=1,...,¢, Ti(j, Pn) € Ei(jit1, Pn), and
Cl<l‘1 PN) =

forsomes =1,...,¢, i = £

%) otherwise.
\

Since each individual can be in at most one trading cycle, Cy (7, Py) is well-defined for all 7 € N. Furthermore, since both

the number of individuals and the number of objects are finite, there is always at least one trading cycle. Note that C; (7,
Pn) = {i}if 11(, PN) € Ei(7, Py).

Assigned Individuals: W1 (Px) = {7 | C1(i, Px) # D}.

Assignments: Foralli € Wi (Py), £ (Pn) = Ti(i, Pn).

Assigned Objects: Fi(Py) = {T1(i, Pn) | 1 € W1(Pn)}.

t
This procedure is repeated iteratively in the remaining reduced market. For each stage #, define W*(Py) = U W (Pn)
u=

and F(Py) = QIF,, (Pn). In what follows, we present Stage £ + 1 of /1.
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Staget + 1.

Hierarchical Endowments (Non-initial Endowments): Let i € M(W*(Py), F(Pn)) such that forall7 € W (Py),

¢ (&) = fi (Pn).-

Foralli € N\ W*(Pn), E+1(i, Pn) = EF ().
Top Choices: Foralli € N\ W' (Px), Ti41(7, Pn) = 7(P;, 4\ F(Pn)).

Trading Cycles: Foralli € N\ W*(Py),

7

{/’1, .. .,];g} if there exist i, . . Jg € N\ W*(Py) such that

foralls=1,...,¢, Tr41(j, Pn) € Er1(jit1, Pn), and
Ct+1 (l'/ PN) =

forsomes =1,...,¢, i = £

(%) otherwise.

Assigned Individuals: Wi1(Pn) = {7 | Cos1(7, Pn) # D}
Assignments: Foralli € W1(Pn), £ (Pn) = Tr1(i, Pn).

Assigned Objects: Fyy1(Pn) = {T+1(5,Pn) | i € Wi (Pn) }-

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned. The hierarchical

exchange rule fr associated with I' is defined as follows. Forall 7 € N,

T:(i, Pn)  ifi € W,(Py) for some stage ;
Ji (Pn) =

%) otherwise.

Since for every preference profile Py and every individual 7, there exists at most one stage ¢ such that i € W,(Py), £ is

well-defined.

Remark 4.6.1. Note that a collection of inheritance trees do not uniquely identify a hierarchical exchange rule. More

formally, two difterent collections of inheritance trees I" and T may give rise to the same hierarchical exchange rule, that is,
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4.7 A CHARACTERIZATION OF HIERARCHICAL EXCHANGE RULES

We introduce the notion of top-envy-proofness for an assignment rule. It says that if an individual 7 is assigned the most
preferred object of another individual /, then no matter how the individual j misreports her preference, individual 7 can-
not be worse-oft.5 Thus, if an individual (here, ;) is envious at another individual (here, 7) for getting her (here, ;’s) top-
ranked object, then the former one can never harm the latter. As the name suggests, top-envy-proofness is weaker than
envy-proofness (that is, envy-proofness implies top-envy-proofness).® Loosely speaking, top-envy-proofness can be viewed

as envy-proofness with respect to the top-ranked object of the envious individual.

Definition 4.7.1. An assignment rule /' : Pn — M satisfies top-envy-proofness condition if for all Py € Py and all

distinct 7,7 € N, 7(P;) = f;(Pn) implies ;(P;, P—;) Rif;(Pn) forall Py € P;.

Next, we introduce the notion of an assignment rule being manipulable through pairwise reallocation. It captures the idea
of manipulation where two individuals simultaneously misreport their preferences and finally benefit (with respect to their
original assignments) by reshuffling their assignments that they obtain at the misreported preference profile. It further says
that if any one of the two individuals misreports her preference as “planned”, then her assignment will not depend whether

the other individual misreports her preference as planned or reports truthfully.

Definition 4.7.2. An assignment rule /1 Py — M is manipulable through pairwise reallocation if there exist Py € P,

individuals 7,/ € N;7i # j,and P; € P, PJ € P;such that
(@) (o By Pi) Rifi(Prv),
(i) fi(P;, Py, P—;;) Pifi(Pn), and
(iii) f;(P;, Py, P—ij) = fi(Py, Py, P—yj) and f;( Py, Py, Py j) = f;( Py, Py, Py ).
An assignment rule is pairwise reallocation-proof if it is not manipulable through pairwise reallocation.
Our next result provides a characterization of hierarchical exchange rules.

Theorem 4.7.1. An assignment rule [ : Pn — M is strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise

reallocation-proof if and only if it is a hierarchical exchange rule.

59Svensson & Larsson (2005 ) introduce the notion of implicit property rights of an assignment rule. It can be verified that a strategy-
proof and Pareto efficient assignment rule reveals implicit property rights if it satisfies top-envy-proofness.

tAn assignment rule /1 Py — M satisfies envy-proofuness condition if for all Py € Py and all distinct 7,7 € N, ﬁ(PN)Plfj(PN)
impliesﬁ(j)j, P,]-)le,-(PN) for all ]3] € P
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The proof of this theorem is relegated to Section 4.12.
Since group strategy-proofness is equivalent to strategy-proofness and non-bossiness (see Proposition 4.4.1), we obtain

the following corollary from Theorem 4.7.1.

Corollary 4.7.1. An assignment rule f © Pn — M is group strategy-proof, Pareto efficient, top-envy-proof, and pairwise

reallocation-proof if and only if it is a hierarchical exchange rule.

We now strengthen the notion of pairwise reallocation-proof by group-wise reallocation-proof. As the name suggests,
instead of a pair of individuals, arbitrary groups of individuals are considered in group-wise reallocation-proof. Thus,
group-wise reallocation-proof ensures that no group of individuals can be better off by misreporting their preferences and
redistributing the objects they obtain at the misreported preference profile. Condition (jii) in Definition 4.7.2 is suitably
modified for group of individuals.

To ease our presentation, for an assignment rule £; a preference profile Py, and a set of individuals S, we denote by fS(PN)
the allocation over S according to f{ Py). More formally, £5(Py) is the allocation x over S such that x(7) = £;(Py) for all
i € S. With slight abuse of notation, by {fs(Px) } we denote the set of objects which are assigned to the individuals in S at

P, thatis, {fs(Pn)} :={a € 4 | fi(Py) = aforsomei € S}.

Definition 4.7.3. Anassignmentrule f': Py — M is manipulable through group-wise reallocation if there exist Py € Ph;,
asetof individuals § C IV, a preference profile Ds of the individuals in S, and an allocation fof {}%(135, P_g) } over S where

it # fs(Ps, P—s) such that
(i) p(9)Rfi(Py) foralli € S,
(ii) 2(7)Pf;(Pn) for some; € S, and
(iii) fi(2s, Py g5y, P-s) = fi(Py, Ps\ 3, P—s) foralli € 8.
An assignment rule is group-wise reallocation-proof if it is not manipulable through group-wise reallocation.
Proposition 4.7.1. Every hierarchical exchange rule satisfies group-wise reallocation-proofness.

The proof of this proposition is relegated to Section 4.13.

We obtain the following corollary from Theorem 4.7.1 and Proposition 4.7.1.

Corollary 4.7.2. An assignment rule f : Pn — M is strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and group-

wise reallocation-proof if and only if it is a hierarchical exchange rule.

The next corollary is obtained by combining Corollary 4.7.1 and Proposition 4.7.1.
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Corollary 4.7.3. An assignment rule f : Py — M is group strategy-proof, Pareto efficient, top-envy-proof, and group-wise

reallocation-proof if and only if it is a bierarchical exchange rule.

4.8 INDEPENDENCE OF THE CONDITIONS IN THEOREM 4.7.1

In this section, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, non-bossiness and pairwise reallocation-

proofness are all independent for a hierarchical exchange rule. In particular, we show that no four of those conditions imply

the fifth one.

Example 4.8.1. In thisexample, we show that Pareto efficiency, top-envy-proofness, non-bossiness, and pairwise reallocation-
proofness do zot imply strategy-proofness. Consider an allocation problem with three individuals N = {1,2,3} and three

objects 4 = {41, a2, a3} with a prior order 2; < @ < a3. Consider the assignment rule fsuch that

Serial dictatorship with priority (1 > 3 > 2)  if7(P) = 7(P2) = a1, and 7(P3) = a»;
f:

Serial dictatorship with priority (1 > 2 > 3)  otherwise.
Consider the preference profiles Py = (414243, a1a2a3, ara1a3) and Py = (a1a2a3, aya143, aa143).°* Note that only
individual 2 changes her preference from Py to Py. This, together with the facts /5 (Py) = a3, f2(Pn) = a2, and a5 Pras,
implies f'is not strategy-proof. It can be easily verified that fis Pareto efficient, top-envy-proof, non-bossy, and pairwise

reallocation-proof.

Example 4.8.2. In thisexample, we show that strategy-proofness, top-envy-proofness, non-bossiness, and pairwise reallocation-
proofness do 7ot imply Pareto efficiency. Define f'such that f;(Py) = @ foralli € Nand all Py. Itis easy to verify that
[ satisfies strategy-proofness, top-envy-proofness, non-bossiness, and pairwise reallocation-proofness. However, from Re-

mark 4.4.1, it follows that £ does nor satisfy Pareto efficiency.

Example 4.8.3. In thisexample, we show that strategy-proofness, Pareto efficiency, non-bossiness, and pairwise reallocation-
proofness do 7ot imply top-envy-proofness condition. Consider an allocation problem with three individuals N = {1, 2, 3}

and four objects 4 = {a1,a2, 43,44} witha prior order 41 < a2 < a3 < a4. Consider the assignment rule f'such that

Serial dictatorship with priority (2 = 1> 3)  if7(P) = 7(P2) = a1, and 7(P3) = a4;
f:
Serial dictatorship with priority (1 > 2 > 3)  otherwise.

Consider the preference profiles Py = (a142a3a4, a1ara3as, ajazazas) and Py = (a1a2a3as, ajarazas, asazaray).

Note that only individual 3 changes her preference from Py to Py. This, together with the facts £ (Pn) = a1, 7(P3) = a1,

6THere, we denote by (14243, a2a3a1,a3a2a1) a preference profile where individuals 1, 2 and 3 have preferences 214243, 224341,
and a3aza;, respectively.
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f (PN) = a4, and a1 P1a;, implies fis not top-envy-proof. It can be easily verified that fis strategy-proof, Pareto efhicient,

non-bossy, and pairwise reallocation-proof.

Example 4.8.4. In thisexample, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, and pairwise reallocation-
proofness do zot imply non-bossiness. Consider an allocation problem with three individuals N = {1,2,3} and three

objects 4 = {ay, a2, a3} witha prior order 21 < 2, < a3. Consider the assignment rule f'such that

f Serial dictatorship with priority (1 > 2 > 3)  if a1 Pya3;
Serial dictatorship with priority (1 > 3 = 2)  ifa3Pay.
Consider the preference profiles Py = (axa143, araras, araraz) and Py = (azaszar, araias, azaias). Note that only
individual 1 changes her preference from Py to Py. This, together with the facts A{Py) = [(1,42), (2,41), (3,43)] and
APy) = [(La2),(2,a3),(3,41)], implies fis not non-bossy. It is easy to verify that fis strategy-proof, Pareto efficient,

top-envy-proof, and pairwise reallocation-proof.

Example 4.8.5. In this example, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, and non-bossiness
do not imply pairwise reallocation-proofness. Consider an allocation problem with three individuals N = {1,2,3} and
three objects 4 = {a1,a2,a3} with a prior order 41 < a2 < 3. Consider the hierarchical exchange rulefr based on the

collection of inheritance trees given in Figure 4.5. Consider the assignment rule f'such that

Serial dictatorship with priority (2 = 1> 3)  if7(P) = 7(P2) = a3, and 7(P3) = ay;
f =
Ve otherwise.

Consider the preference profile Py = (a3a2a1,a3a2a1, a1a243) and the preferences P € Py, P3 € Pj such that
7(P1) = a3 and 7(P;) = a3. It follows from the construction of fthat APx) = [(1,42),(2,43),(3,a1)], (D1, Pa,
7)3) =Ah (131, P, P;) = an f3 (]31, P, 133) =f3 (Py, Py, P3) = a3. These facts, along with the fact 23 P45, together imply
fis not pairwise reallocation-proof. It can be easily verified that f'is strategy-proof, Pareto efficient, top-envy-proof, and

non-bossy.
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(c) L

Figure 4.5: Inheritance trees for Example 4.8.5

Remark 4.8.1. The examples in this section also demonstrate that strategy-proofness, Pareto efficiency, top-envy-proofness,
non-bossiness, and group-wise reallocation-proofness are all independent for a hierarchical exchange rule. To see this note
that except for Example 4.8.2, all other examples deal with three individuals, and Pareto efficiency and pairwise reallocation-
proofness together imply group-wise reallocation-proofness in such cases. The fact that the assignment rule in Example
4.8.2 satisfies group-wise reallocation-proofness is straightforward, and the assignment rule in Example 4.8.5 is 7oz pairwise
reallocation-proof (while being strategy-proof, Pareto efficient, top-envy-proof, and non-bossy), so it will not be group-wise

reallocation-proof either.

4.9 PRELIMINARIES FOR THE PROOFS

Fora,b € 4, let P1%") be a single-peaked preference (with respect to the given ordering <) such that
(i) #(P?)) = 4,and
(ii) P4 is a left (right) single-peaked preference if b < a (4 < b).*

Remark 4.9.1. Since P; is minimally rich single-peaked domain of preferences (with respect to the given ordering <) for

all 7 € N, we have Pl4%) € P, foralli € Nandalla, b € 4.

GZBy =< we denote the weak part of <, thatis, forallz, b € 4,4 < bif and only if [a < bora= b] .
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4.10  PROOF OF PROPOSITION 4.4.1

(If part) Assume for contradiction that £is not group strategy-proof. Since fis not group strategy-proof, there exist Py €

Pn,S € N,and P € T] P;such thatf;( P, P_s)Rif;(Py) foralli € Sand f;(Pg, P—g) Pf;(Pn) forsome; € S. Consider
€S
the profile of preferences Ps € [ P; such that forall 7 € S,
ISAY
PUEPP-s)fi(P0) i £(Py) # @;
P =
P, if f;(Pn) = .

z

It follows from the construction of Pg and Remark 4.9.1 that Py is well-defined.

First, we show that A Ps, P_s) = A(Px). Fixj € S.
Claim 4.10.1. AP;, P_;) = f{Py).
Proof of Claim 4.10.1. Suppose f;(Py) = @. Then, by strategy-proofness, we have ;( P, P_;) = @. Since f;(Pn) = @
and ﬁ(pj, P_;) = @, by non-bossiness, we have

AP, P.,) = fiPw). (+1)

Now, suppose f;(Pn) 7 @. Then, by strategy-proofness, we have £;(P;, P—_;) R;f;(Pn). Suppose f;(P;, P—;) Pf;(P).
Since ﬁ(ﬁj, P_j)PH?(PN), it follows from the construction of j)] that

[i(P5, P—s) # f;(Pn), and (4.22)

[i(Ps, P_s) 2 fi(B, P—j) < fi(Pn) or fi(Pn) < fi(B;, P—;) = fi(P§, P-s). (4.2b)

Since f3(Pg, P—s)Rf;(Pn) forall i € S, by (4.2a) we have (P, P—_s) P;f;(Pn). This, together with (4.2b), implies ﬁ(j)j,
P_;)Pf;(Pn), a contradiction to strategy-proofness. So, it must be that f;(P;, P—;) = f;(Pn). By non-bossiness, the fact
F(B, ) = (P implics

AP, Pj) = fP). (4-3)

(4.1) and (4.3) together complete the proof of Claim 4.10.1. U

Continuing in this manner, we can move the preferences of all individuals / € S, from the preference P; to P; one by one

and obtain

ADPs, P_s) = f(Pn). (4.4)
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Next, we show that A{Ps, P_s) = AP, P_s). Fixj € S. By strategy-proofness, we have ﬁ(j)j, Pg,\ {],},P_ S)Rﬂ‘}(P_,gz
P_g). Moreover, it follows from the construction of P; thateither 7(P;) = f;(P%, P—s) or P; = P;. This, together with the
factﬁ-(pj, Pg\{].}, P_S)Rjﬁ(]{'g, P_g), impliesﬁ(j)j, Pg\{/}, P_g) = ﬁ(Pfg, P_g). By non-bossiness, the factﬁ(j)j, Pg\{].},
P_y) zfj(Pfg, P_g) implies

AP, Pg\{/}, P_g) = AP, P_s).

Continuing in this manner, we can move the preferences of all individuals j € S, from the preference Pj' to ]3] one by one

and obtain

APs, P_g) = AP, P_s). (4-5)

However, (4.4) and (4.5) together imply f{P;, P_s) = f(Pn), a contradiction to the fact that f;( P, P_s) Pf;( Py) for

some; € S. This completes the proof of the “if” part of Proposition 4.4.1.

(Only-if part) It is obvious that group strategy-proofness implies strategy-proofness and non-bossiness. |

4.11  PROOF OF THEOREM 4.5.1

Suppose A = {ay,az,...,4,,} witha priorordera; < 4, < -+ < a,,, where m > 3. Assume for contradiction that
there exists a strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-proof assignment rule fon Py
Since P; is minimally rich for all 7 € N, there exists a preference profile Py, € Py such that P = ayayas . .. foralli € N.
Since |[N| > 3, by Pareto efficiency, we have {a1,a2,a3} C z‘gN {fZ(PlN) }. Without loss of generality, assume f; (PIN) = ay,
fZ(PlN) = a2 andﬁ(PlN) = 4a3.

Since P; is minimally rich for all 7 € NN, we can construct the preference profiles presented in Table 4.2. Here, / denotes
an individual other than 1, 2, 3 (if any). Note that such an individual does not change her preference across the mentioned

preference profiles.

Preference profiles | Individual 1 Individual 2 Individual 3 ... Individual/
P ay...4mdl  A1d2d3 . .. arads ... ... drxdd3...
P]3\1 ap ...a,a]1 axraiaz ... axraiaz ... N axraiaz ...

Table 4.2: Preference profiles for Theorem 4.5.1

Since fi(PY,) = a1 and f,(PL;) = ay, it follows from strong pairwise reallocation-proofness of £ that

APY) = azand fo(Py) = av. (4.6)
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By (4.6) we havefz(P]Z\[) = a;. This, together with strategy-proofness of f, impliesfz(P?v) IS {41,42}. Suppose
H(PY) = a1 Since o(PX) = a1 and f5(PY;) = a1, by non-bossiness and (4.6), we have fi(P};) = a». However,

since 2, Play, the facts fi(Py,) = a1 and fi(P3;) = a5 together contradict strategy-proofness of . So, it must be that

AP = as. (4.7)

Since fi(PY,) = a1 and f3(PY;) = a3, (4.7) together with strong pairwise reallocation-proofness of £, implies that

APY) = a3,/2(PY) = a2, and f3(PY) = a1, (4.8)

By (4.8) we have /> (P3;) = a2 and f5(P3;) = a1. Combining these facts with strong pairwise reallocation-proofness of
fiwehave f5(P3;) = a1 and f5(P%;) = a». However, the fact that f5(P%;) = a5 contradicts (4.6). This completes the proof

of Theorem 4.5.1. |

4.12  PROOF OF THEOREM 4.7.1

To prove Theorem 4.7.1, we use the notations introduced in Section 4.6. Furthermore, for a preference profile Py € Py
and a hierarchical exchange rule, we assume F°(Py) = @ and W°(Py) = @.
The following lemma is taken from Pépai (2000). She proves this lemma for the unrestricted domain. Since Pyyisa subset

of the unrestricted domain, the result holds for Pp; as well.

Lemma 4.12.1 (Lemma 4 in Pipai (2000)). Let £ be a hierarchical exchange rule, Py € Py, and i,j € N. Suppose

i€ W,(Py) andﬁ(PN) #fjr(j)i, P_,) forsome P; € P;. Then, citherj € Cy(i, Px) orj & W (Py).
We obtain the following lemma from Lemma 4.12.1.

Lemma 4.12.2. Let /' be a hicrarchical exchange rule and Py € Pn. Supposei € W, (Pn),j € %(PN) and 5; < ;.

Then, f+ (P, P—;) = f+ (Pn) forall P; € P;.

Lemma 4.12.3 establishes a property which says that if an individual j prefers the assignment of another individual 7 of a

hierarchical exchange rule, then it must be that 7 is assigned before ;.

Lemma 4.12.3. Let f* be a hierarchical exchange rule and Pn € Py. Supposei € W, (Py) andj € W, (Pn) such that

A (PN)Pﬂ?r (PN). Then, s; < s;.
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Proof of Lemma 4.12.3. Assume for contradiction thats; < ;. Sincej € VK,(PN), by the definition of jf , we have
f]f (Pn) = 7(P, 4\ F/'(Px)). Furthermore, the fact i € W, (Py) together with the definition of £, implies that
£ (Pn) € 4\ PY(Py). This, together with the facts; < s, yields £ (Py) € 4\ P (Py). However, the facts that

S (Pn) = (P, A\ P71 (Pn)) and i (Pn) € A\ F/~'(Py) together contradict the fact /£ (Pn) Pyf} (P). This completes

the proof of Lemma 4.12.3. |

4.12.1 PROOF OF THE “IF” PART OF THEOREM 4.7.1

It follows from Pdpai (2000) that every hierarchical exchange rule satisfies strategy-proofness, Pareto efficiency, top-envy-
proofness, and non-bossiness on the unrestricted domain.®® Since Py is a subset of the unrestricted domain, it follows
that every hierarchical exchange rule satisfies strategy-proofness, Pareto efficiency, top-envy-proofness, and non-bossiness
on Py. In what follows, we show that every hierarchical exchange rule satisfies pairwise reallocation-proofness on P

Let /1 be a hierarchical exchange rule on Py. Assume for contradiction that ' does not satisfy pairwise reallocation-

proofness. Then, there must exist Py € Py, distinct 7,7 € N, and P; € 731, ; € P; such that
(i) f; (Py, By, P—ij)Rifs (Pn),
(ii) /3 (P;, By, P—ij) Pift (Pn), and

5 P-iy) = fi (P, P—;) and f} (P;, By, P—ij) = fi (Bj, P—j).

‘ﬁl

(iii) £ (P,
Claim 4.12.1. /2 (Py) and ﬁ" (Pn) are distinct objects.

Proof of Claim 4.12.1. Suppose £ (Py) = @. Since f is strategy-proof, £ (Px) = @ implies £ (P;, P_;) = @. How-
ever, the facts that jlI (P;,P_;) = @and flf (P, j)j, P_,»,j) = flr (P;, P_,) together imply flr (P, Pj, P, J~) = @, a contradic-
tion to the fact £ (P;, 13j, D_; J)PI/‘]r (P). So, it must be that

£ (Pn) # @. (4.9)

Smcefr(Pl,PJ, Z-J)lelr(PN), (4.9) impliesff( Py, P_;;) # @. This, together with the factfr WP, P;) =
f]f (P, P—;), implies fr B, P_;) # @. Since f* is strategy-proof, fr P, P_;) # @ implies

£ (Pn) #@. (4.10)

(4.9) and (4.10) together complete the proof of Claim 4.12.1. O

%3 For details see Lemma 1, Lemma 7, and the main theorem of Pdpai (2000).
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It follows from Claim 4.12.1 that there exist stages s; and s; of ]’I at Py such that7 € W, (Py)and; € VV;}(PN). Now,

we complete the proof by distinguishing two cases.

CasE 1: Suppose s; < ;.
Since ! is Pareto efficient, £ (P, pj, P_; J')Pﬂir (PN) implies that there exists £ € N\ {j} such that fg (Pn) = £ (P, ]3].,
Dy Py Pf Py) and 4 (Px) = £+ (P;, P, P_,;;) together implyjd/;(PN)Pﬁ(PN) and f} (Pn) €

A. It follows from the fact ﬂ Py) € A that there exists a stage s; of fr at Pysuch thatk € W, (Py). Since j € %.(PN),

P_;;). The facts /£ (P,

k€ W, (Pn),and f£ (Pn) PI]‘]r (Pn), by Lemma 4.12.3, we have s, < s;. This, together with the facts; < s;, implies s < s;.

Since7 € W, (Pn), k € ws, (Pn),and s, < s, by Lemma 4.12.2, we have

fi/e-(PN) :f};(j),»,P_i), (4.11)

Furthermore, the facts i € W,,(Pn), k € W, (Py),and s, < s; together imply 7 # . Since £} (Pn) € A and 7 # &,
(4.11) implies

JA/;(PN) #]{(R-,P_l-). (4.12)

However, the facts flr (13,», ]~)j, P, J) = flf (E, P_;)and fz (Py) fr (]3 P, P j) together contradict (4.12).

CASE 2: Suppose s; < 5;.

Ifﬁ (P;, Py, P_; ;) Pyft (Pn), then the proof follows using a similar logic as for Case 1. Sinceﬁ( , Dy, P_i ;) Rif (Pn), let

us assume

i (P By Piy) = fi (Pn). (4.13)
Since 7 € W,,(Pn),j € VKJ.(PN), and s; < 5, by Lemma 4.12.2, we have
) =) »
Furthermore, since jjr (P, P—;) fr (P, By, P—;;), by (4.13) and (4.14), we have
1i (B Py) = £, (B, P;) = f; (Pn). (4.15)

However, by Claim 4.12.1, we havefr (PN) € 4. Slncefr (Pn) € Aand 7 # j, (4.15) implies thatfr ) is not an

allocation, a contradiction.

Since Cases 1 and 2 are exhaustive, it follows that fr satisfies pairwise reallocation-proofness on Py:.
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4.12.2 PROOF OF THE “ONLY-IF” PART OF HEOREM 4.7.1

Let fbe a strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rule. We

will show that fis a hierarchical exchange rule.

CONSTRUCTION OF THE INHERITANCE TREES BASED ONf

Fixa € A. We proceed to construct an inheritance tree I, = (7, Zi\[ 1, §f O> fora € A. Let T, be a rooted tree that satisfies
Condition (i) of Definition 4.6.1. Let {£° : E(T,) — A\ {4} be an edges-to-objects function that satisfies Condition
(iii) of Definition 4.6.1. We will define 2 : V(T,) — N, a nodes-to-individuals function, in accordance with property
Condition (ii) of Definition 4.6.1 based on f.

Let Py, C Pn be the set of all preference profiles Py such that 7(?;) = a foralli € N.
Lemma 4.12.4. There exists k € Nsuch that f,(Py) = a for all Py € P

Proof of Lemma 4.12.4. By Remark 4.4.1, for every given Py € P, there exists an individual # € N'such that f,(Py) =
4. Tt remains to show that this individual is unique for all preference profile in PY, thatis, f(Px) = fi(Py) = a forall
Py, Py € PY,. Assume for contradiction that fi(Pn) = Jr (Py) = a forsome Py, Py, € PYandj,j/ € Nsuch that
i#T

Since £(Px) = 4, 7(P;) = a,and aPyfy (Py) for all k # /, by moving the preferences of the individuals k # / one by
one from P}, to P), and by applying top-envy-proofness condition every time, we obtain f;( 7, P’_j) = 4. Moreover, since
£(Py) = aand; # ', wehave fi(Py) # a. This, together with the fact 7( 7)) = a, impliesaPf;(Pl). However, the facts

fi(B;, P_;) = aand aP/f;( P)y) together contradict strategy-proofness of . This completes the proof of Lemma 4.12.4. W

By Lemma 4.12.4, there exists 71 € N such that f; (Py) = a for all Py € PY. Define &2 (v}) = i; where ! is the
root-node of 7. Let (4}, ..., ) with» > 2bea path from ¢}, to ¢/; in 7,. We define 27 on {v, | 1 <5 <r}inarecursive

manner.

Assume that 7 is defined on {¢/, | 1 < s < r—1}. Let 2 (0) = 4. foralls = 1,...,7 — 1. We proceed to define o
onv,. Let 73;\]_1 C P be the set of all preference profiles Pnr such that P;, = P ™) for all s = 1,...,r—1,and

7(P;) = a otherwise. Note that forall Py € Py tandalls, s/ € {1,...,r—1},7(P,) # 7(P;,) ifs # 5.
Lemma 4.12.5. Thereexistsk € N\ {1, ..., i1} such that fi,(Pn) = a for all Py € 73]’\[_1.

Proof of Lemma 4.12.5. We first prove two claims that we will use to complete the proof of Lemma 4.12.5.
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Claim 4.12.2. Let S = {h1,..., b} S Nbeaset of distinct individuals with m < |4| and let {by, ..., b,} € A\ {a}
be a set of distinct objects. Consider the preference profile Py such that ©(Py, ) = b, forallu = 1,...,mand v(P;) = a for

alli & S. Then, there existsj € N\ S such that f;(Py) = a.

Proof of Claim 4.12.2. By Remark 4.4.1, forallc € {a,by,...,b,}, there exists j. € N such that fj (Pn) = ¢ It
remains to show j, € S. Assume for contradiction that j, € S. Let {]'1,..., ]}_1} C Sandj, € Sbesuch thatj; = j,,
fin(Pn) = #(P;) foralll < s < r— 1. Since S is finite, to show such a sequence must exist, it is sufficient to show
that ji, ..., j,—1 are all distinct. We show this in what follows. Assume for contradiction that / is the first index in the
ordering 1, ..., ¢ — 1 for which there exists / < // < t — 1such thatj; = jy. Suppose/ = 1. The facts/ = 1,5 = jy,
Jt = jar 7, (Pn) = aandf;, (Px) = (P, ) togetherimply 7(2;, ) = 4. Thisisa contradictionsincejy_; € S, whichin
particular means (P, ) € {b1,...,by}. Now,suppose/ > 1. Thenj; = jy,f;;(Pn) = #(P;_,) andfj, (Pn) = 7(P;, )
together imply

o(Py,) = 7(P,_,)- (4.16)

However, by our assumption on /, j_; # jy_i. Because ji_1,jy—1 € Sandji_; # jy_1, by the construction of Py,
o(P,) # r(le,_l ), a contradiction to (4.16). This shows thati, . . ., j,— are all distinct.

By the construction of {71,...,7:}, {f;,(Pn) | s = 1,...,¢} = {#(P,) | s = 1,...,¢}. Define the allocation y such
that u(7) = 7(P;) foralls € {1, ...,/ } and u(7) = fi(Pn) foralli € N\ {i,...,j:}. Clearly u Pareto dominates f{ Py)

at Py, which violates Pareto efficiency of fat Py. This completes the proof of Claim 4.12..2. O
Claim 4.12.3. Forall Py € Py andalls =1,...,r — 1, we have f; (Pn) = 7(P;,).

Proof of Claim 4.12.3. Fix Py € P}y ', We prove this in two steps.

Step 1. In this step, we show that f; (Py)P;a foralls = 1,...,7 — 1. Assume for contradiction that aR;f;. (Py) for
somes* € {1,...,7— 1}. Consider the preference profile Py such that P, = P;, forallz =1,...,s* —land 7(P;) = 4,

otherwise. By the recursive definition of a7

fin(PN) = a. (4.17)

Since 7(P;) = aforalli € N\ {#,...,i-—1}, (4.17) implies that ;. (Py) = 7(P;.) and f;, (Pn)Pifi(Py) for all
i€ N\ {d,...,i+}. Therefore, by moving the preferences of all the individuals 7 € N \{7,..., i} from D; to P;, and

by applying top-envy-proofness condition every time, it follows from the construction of Py that

fiw (P, P—i,) = a. (4.18)
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By strategy-proofness, (4.18) implies

ﬂ}* (PN)sz*ﬂ (4.19)

By Claim 4.12.2, there existsj € N\ {1, ..., 71} such that f;(Py) = a. Sincej € N\ {z1,..., 71} and fj(Pn) = a4,
(4.19) implies £, (PN)P,’:*éZ, a contradiction to our assumption. This proves f; (Pn)Piaforalls=1,...,r—1
Step 2. In this step, we show that f; (Py) = 7(P,,) foralls = 1,...,» — 1. Assume for contradiction that f;, (Pn) #

T(Pl}l) for some s; € {1,...,7r—1}. Letsy,...,s, be the maximal sequence of distinct elements such that {s1,.--,

sef ©{L...,r—1}andf; (Pn) = 7(P;)forallz =1,...,u — 1. Letj € Nbesuch thatf;(Pn) = 7(P;,). By the
maximality assumption of 51, . . ., 5, eitherj € N\{d,..., 5,1} orj = £;. We distinguish the following two cases.
CasE 1: Supposej € N\ {#,..., -1}

By the construction of s,, we have f; (Py) # T(Pl}u ). Also, sinces, € {1,...,r—1}, by Step 1, f;

L5,

(Pn)P;, a. Com-

bining the facts f;, (Pn) # 7(P;, ) and f;, (Pn)P;, a, we have

o(P;,) Pi, [, (Pn) P, a. (4.20)

Also, sinces, € {1,...,7— 1}, by the construction of Py, we have P, = PPy, )ia), This, together with (4.20), implies

o(P,) <fi, (Pn) =a or a=<f (Pn)<7(P). (4.21)

Sincej € N\ {z,...,%—1}, by the construction of Py, we have 7(P;) = a. This, together with (4.21), implies
a ijz,, (Pn) P T(Pz;u ) (4.22)

Sinceﬁ(PN) =7(P;, ), (4.zo)impliesﬁ(PN)PZ}$ﬂ}u (Py). Furthermore, sinceﬁ(PN) = T(Pl-m ) (4.22)impliesf; (Pyn) P]ﬁ(PN)

Su

However, the facts /;(Pn) P, f;, (Pn) and f;, (Pn) P; f;(Pn) together contradict Pareto efficiency of fat Py.
CAsE 2: Supposej = ;.

By the construction of {s1,...,s5,} andj, wehave {f; (Pn) | £ =1,...,u} = {z(P;,) |t =1,...,u}. Let p be the
allocation such that u(7) = 7(P;) foralli € {i, |t =1,...,u} and u(i) = fi(Pn) foralli € N\ {z, |t =1,...,u}.

Clearly, # Pareto dominates f(PN) at Pp;, which violates Pareto efficiency of fat Py

Case 1 and Case 2 together complete Step 2, and Step 1 and Step 2 together complete the proof of Claim 4.12.3. U

Now we complete the proof of Lemma 4.12.5. By Claim 4.12.2, for every given Py € P there exists an individual

79



ke N \ {1'1, e, z'r_l} such that f; (PN) = a. It remains to show that this individual is unique for all preference profile
in 'P]’V_l, thatis, / (Pn) = fo(Pn) = aforall Py, Py € Py 1 Assume for contradiction that fi(Pn) = ﬁ(PN) = 4 for
some Py, Py € 77]’;[71 andj,j € N\ {#,...,i—1} such thatj # ;.

Consider the preference profile (2, P—;) € Py . Since Py, (P;, P—;) € P ', by Claim 4.12.3, we have f;, (Pn) =

i (P, P_j)). Using non-bossiness, f;, (Pn) = f, (P, P—;,) implies

ﬂPN) :ﬂpﬁlp*il)'

Continuing in this manner, we can move the preferences of all individuals z, s = 0,..., 7 — 1, from the preference P;, to

P;, one by one and obtain

ﬂPN) :f(j)l'lf"'/pl'r—llp—{il ..... z‘r,l})' (4-23)

The fact f;(Pn) = 4, together with (4.23), implies f;(Py,, ..., P\, Py, ;. \y) = 4. Sincej € N\ {1,... 4,1} and
7(P;) = aforalli € N\ {7,... 7,_1}, it follows from the factﬁ(j)l‘l, e, EH,P,{l-lm_,l»rfl}) =a thatﬁ(j)il, R
Pty i) =7(P)andfi(Py, ..., Py Pogyy s ) Pfi(Payee o Py Py o) foralli € N\ {4, ... i,/}.
Therefore, by moving the preferences of all the individuals i € N\ {i, ... 5,_1,;} from P; to B;, and by applying top-
envy-proofness condition every time, we obtain

[Py Py) = a. (4.24)

Since f5(Pn) = a andj # j, we have fi(Py) # a. Moreover,j € N\ {#, ... &1} implies 7(P;) = 4. Combining the
facts f;(Pn) # a and 7(P;) = a, we obtain aP;f;(Py). However, this, together with (4.24), contradicts strategy-proofness

of £. This completes the proof of Lemma 4.12.5. |

By Lemma 4.12.5, there exists 7, € N\ {7, ... i1 } such that f; (Py) = a forall Py € P L. Define 27(v) = 7.
This completes the recursive definition of 22, and thereby completes the construction of T.

Similarly for each object, an inheritance tree is constructed. Thus, we have constructed a collection of inheritance trees
I, based on the assignment rule .

Now, we prove f{Py) = fr (Py) forall Py € Pn, where fr is the hierarchical exchange rule associated with I'.

APn) = A (Pyn) FOR ALL Py € Py
Fix Py € Pp. We show APx) = £ (Pn). We prove this by induction on the stages of /£ at Py.

Base Case: Assignments in Stage 1.
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(i) ﬁ(PN) :ﬁ(PN) forall7 € W(PN>, and
(ii) £(Py) = fi(Pn) foralli € W'(Py), where Py, € Py is such that forall i € W (Py) either 7(P;) = f;(Py) or
P.= P,
Proof of the Base Case. First, we prove a claim that we use in the proof of the Base Case.

Claim 4.12.4. Leti € Nand leta € Ey(i, Py). Suppose Py € Py is such that (D) = a. Then f;(Pn) = a.

Proof of Claim 4.12.4. By the definition of £, & € E; (7, Py) implies 27 (v}) = 7 where o, is the root-node of 7,.% By

the construction of T, £ (v1) = 7 implies that

fi(Pn) = aforall Py € Py with T(p]) = aforallj € N. (4.25)

Now we show f5(Py) = 4 for all Py with 7(B;) = a. Consider the preference profile (P, P_;) such that #(B)) =
forallj # 7. By (4.25), we have £;(P;, P_;) = a. Since 7(P;) = a, f;(P;, P_;) = a,and 7(P;) = aforallj # i, we have
Fi(By B_)) = o(B,) and fi(B;, P_) Bfi(B, B_,) forallj # i. Therefore, by moving the preferences of all the individuals
j # ifrom D to P, and by applying top-envy-proofness condition every time, we have £;(Py) = 4. This completes the

proof of Claim 4.12.4. ]

Now, we proceed to prove the Base Case. First we show (i) of the Base Case. Fix i € W' (Py). We complete the proof

for (i) of the Base Case by using another level of induction on the number of individuals in C; (7, Py).

Base Case (for (i) of the Base Case). Suppose |C (7, Px)| = 1. Itfollows from the definition of £ that 71(7, Py) € Ei (7,

Py) and T1(7, Pn) = 7(P;). Therefore, by Claim 4.12.4, we have

fi(Pn) = T1(s, Pn). (4-26)
By the definition of /£, |Cy (7, Px)| = 1 means

fi(Pn) = Ti(3, ). (427)

By (4.26) and (4.27), we have f;(Py) = flr(PN). This completes the proof of Base Case (for (i) of the Base Case). Note
that since Py € Pyand 7 € W*(Py) are chosen arbitrarily, using similar logic as above, we have f;(Px) = f} (Py) forall

Py € Pyandallj € W(Py) with |C1(f, Py)| = 1.

®4Recall that T, = (T, éfz\”, §fO>~
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Induction Hypotbesis (for (i) of the Base Case). Let u > 2. Assume that £;(Py) = £ (Py) for |Ci(i, Pn)| = u — 1.
Assume, furthermore, that forall Py € Pyandallj € W (Py) such that |C;(f, Py)| = # — 1, we have ﬁ(PN) = jjr (Pn).

We show f;(Pn) = fr(PN) for |C1(7, Pn)| = . Let C1(4,Pn) = {j1,...,ju} suchthatforall/ = 1,...,u, T1(j,
Pn) € Ei(jiy1, Pn), where 7 = 1. Assume for contradiction that f; (Py) # jﬁrl (Pn).

Take j)jl = P;, and IA)ju = P;. By the construction of j)jl and the definition of £, it follows that z'(j)jl) € Ei(f1, Pn).

Since 7(131'1) € Ei(j1, Pn), by Claim 4.12.4, we have

ﬁl <j)j'1/j)J P_]I]u) f (lefp— ) = T(j)jl)' (4-28)

N

By the definition of C; (7, P) and the construction of 2, , it follows that |Ci (7, (2, 2;,, P—;, j.))| = |Ci (s (P, P—;,))| =

# — 1. Therefore, by Induction Hypothesis (for (i) of the Base Case), we have

5By, By Pji) = £, (P, B, P—jyy,), and (4-292)
ﬁu (j)]u’ Pﬁ]u) :j]i; (j?/u’ Piju)' (4‘2’9b)
By the definition of fr , we have
jji; (Pn) = (P, ), and (4.302)
f]i;(j)fl’j)j p_]l]u) .f};(j)ju’])_ju) = T(j)]u) (4.30b)

Since j)ju = P, combining (4.29) and (4.30b), we obtain

ﬁu (j)]'l/j)]u P_]I]u) :fu (j)]ulp_]u) = 7(1)]'1)' (431)

Since f;, (Pn) # f},(Pn) by our assumption, (4.30a) and (4.31) together imply

.f]"u(j)]i/j)] P—j1]u)Pj jl(PN)' (4-32)
By (4.28) and (4.31), we have
Fo(Bi, By P—jig) = fo(Py, P-y) forall b = i, ji. (433)
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Since ]A)jl = P;,, by (4.28), we have £, (IA)jl, ]A)j”, P—ju’u) = T<1)ju ), which in particular means
Jii B By P—jij )Ry S (Pr).- (4-34)

However, (4.32), (4.33) and (4.34) together contradict pairwise reallocation-proofness of . This completes the proof of (i)
of the Base Case. Note, furthermore, that since Py € Py and 7 € W1 (Px) are chosen arbitrarily, using similar logic as

above, we have

Si(Pn) :]‘E(PN) forall Py € Pyandall;j € W (Py). (435)

Now we show (ii) of the Base Case. Fix Pj, € Py such that forall 7 € W (Py) either 7(P:) = f;(Pn) or P, = P;.

From (i) of the Base Case, we have f;(Pn) = £ (Py) forall7 € W(Py). This, together with the definition of £, implies
£(Py) = 7(P;) forall i € W (Py). (4.36)

It follows from the construction of Py and (4.36) that 7(P}) = 7(P;) foralli € W (Py). This, together with the definition

of _}‘f , implies

W (Py) C W(Py), and (4.372)
£ (Py) = £ (Py) forall i € W (Py). (4.37b)
(4.37) and (4.35) together complete the proof of (ii) of the Base Case. This completes the proof of the Base Case. O

Now, we proceed to prove the induction step.

Induction Hypothesis: Fix a stage # > 2. Assume that
(i) £(Pn) =f (Py) foralli € W (Py), and

(ii) £(Py) = f:(Py) foralls € W (Py), where P), is such that for all / € W~ 1(Py) either 7(P) = f;(Pn) or
]); - P[.

We show
(i) £(Pn) =/f (Py) foralli € W*(Py), and
(i) £(Py) = fi(Pn) foralli € W*(Py), where P),is such that forall 7 € W*(Py) either 7(P}) = f;(Pn) or P, = P;.

First, we prove a claim.
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Claim 4.12.5. Leti € N\ W'Y (Py) and let a € E,(i, Pn). Suppose Py € Py is such tbatj)j = Piforallj € w(Py)
and v(P;, A\ P71 (PN)) = a. Then, f:(Py) = a.

Proof of Claim 4.12.5. Sincei € N\ W' }(Py) and 2 € E,(7, Py), it follows from the definition of / that there exists
7 > 1such that there is a path (v}, ..., ¢/) in T, from o} (root-node of T}) to v/, such that 227 (v/;) = 7and foralls = 1,
— 1L wehave 27 (7)) € W' (Py) andférM (o) (PN) = = 29(v}, v5™). Note that foralls = 1,..., » — 1, by (i) of the
Induction Hypothesis, fv(,,  (Pn) = f;ﬂw(%)(PN).
First, we show that f;(Py) = a forall Py € Py such that P; = Piforallj € W '(Py) and 7(P;) = a forall
j € N\ W (Py). Fix Py € Pysuch that P; = P;forallj € W' (Py) and 7(P)) = aforallj € N\ W '(Py). If
r = 1,thena € F(i, Py), and hence by Claim 4.12.4, we have f;(Py) = a. Suppose » > 1. Let S = {£27(v) | s = 1,
.., 7 —1}. By construction, S C W !(Py). Consider the preference profile Py such that f)] = pUi(Px)ia) for a1l jES,
7(13]-) = aforallj € W (Py) \ S,and By = P forallj € N\ W} (Py). Since fo | (Pr) = £°(eh, 051) and

f?iVI( f;w (Pn), by the construction of T,, we have
fi(PN) = a. (4.38)

By the construction of Py, 7(P;) = aforallj € N\ S. Sincei € N\ W} (Py),S € W' (Py), and 7(P;) = a for
allj € N\ S, by (4.38), we have £;(Pn) = 7(?;) and f;(Pn) Pif;(Pn) forallj € W1 (Py) \ S. Therefore, by moving
the preferences of all the individuals j € W*~!(Py) \ S from 2; to P}, and by applying top-envy-proofness condition every

time, we have

fi(Py) = a, (4.39)

where P; = j’] forall; ¢ W' '(Py) \ Sand P, = Piforallj € W'1(Pxn) \ S. By the construction of Py, for all

j € W(Py), either 7(P)) = f;(Py) or P;

) P Therefore, by (ii) of the Induction Hypothesis, we obtain

ﬁ(BN) :ﬁ(PN) forallj € Wl (Pn). (4.40)

Takej € S. Consider the preference profile Py, where P’-’ = Pjand P} = Py forallk # j. Since forall k € w1 Py),
cither 7(P)') = fy(Px) or P = Py, by (ii) of the Induction Hypothesis, £(P) = £(Px). By (4.40), this means £,(P) =
Ji(Py). Since only individual j changes her preference from Py to Py and f;(Py;) = f;(Py), by non-bossiness, we have
APY) = flPy). By moving the preferences of all individuals ; € S from 2; to P; one by one and every time applying a

similar logic, we conclude

APN) = fAly). (4.41)
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Combining (4.39) and (4.41), we have

ﬁ(PN) =a. (4.42)

Now we complete the proof of Claim 4.12.5. Take Pysuch that P; = Piforall; € W*~!(Py)and 7(P;, A\ P! (Pn)) =
a. By (4.42) and the construction of Py, we have £(Py) = 7(P;) and f;(Pn)Pf;(Py) forallj ¢ W '(Pn) U {i}.
Therefore, by moving the preferences of all the individuals j ¢ W*~(Py) U {7} from P; to P;, and by applying top-envy-
proofness condition every time, we obtain

fi(Py, P_;) = a. (4.43)

Since fis strategy-proof, (4.43) implies

Ji(Px)Ria. (4-44)

By the choice of Py, we have P] = Ptorallj € W'=1(Py). By (ii) of the Induction Hypothesis

£ (Pn) = f(Pn) forallj € W™ (Py). (4-45)

Since 7(P;, A\ F~Y(Pxn)) = a, (4.44) and (4.45) together imply f; (Pn) = a. This completes the proof of Claim 4.12.5.
O

Now the proof of the induction step follows by using similar logic as for the proof of the Base Case with Claim 4.12.5 in

place of Claim 4.12.4. n

4.13 PROOF OF PROPOSITION 4.7.1

Let /1 be a hierarchical exchange rule on Py. Assume for contradiction that /' does not satisfy group-wise reallocation-
proofness. Then, there must exist Py € Py, a set of individuals S C N, a preference profile Ds of the individuals in .S, and

an allocation 2 of {£4(Ps, P_s) } over S where iz # f1(Ps, P_s) such that
(i) 2()RA (Py) foralli € S,
(ii) 2(7)Pyf; (Pn) for somej € S, and
(iii) /7 (Py, Ps\ 3, P—s) = fi (Pi, Ps\ 3, P—s) forall i € 8.
Condition (ii) implies that there exists 7* € S such that 2(7*) P»f%. (Px). Moreover, it follows from the definition of

{2 that there exists a set of individuals {7; = *,...,7,,} C Ssuch that 2(i,) = f};ﬂ (PS, P_g)foralh =1,...,m.
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Since 2(7*) P/~ (Pn), this, together with Condition (iii) and strategy-proofness of /, implies 7 > 2. Combining all these

observations with Condition (i), we have
flr»b+1 (Ps, P—s5)R f (Py) forallh=2,...,m, and (4.462)

£ (Ps, P_g) Py fs (Pn). (4.46b)
Claim 4.13.1. f;rb(PN) €Aforallhb=1,...,m
Proof of Claim 4.13.1. Suppose 1 (Pn) = @. Since /! is strategy-proof, £ (Pn) = @ implies £ (P;,, P—;,) = . This,

together with Condition (iii), yields flrz (Ps, P_s) = @, a contradiction to (4.46b). So, it must be that

7, (Pn) # @. (4.47)

Combining (4.46a) and (4.47), we have fg (Ps, P_s) # @. This, together with Condition (iii), yields fg (P, P_y) # @.

Since /! is strategy-proof, £ (P;,, P—1,) # @ implies
fi(Pn) # ©. (4-48)

Continuing in this manner, we obtain

f};(PN) # Qforalh=1,...,m. (4.49)

(4.49) completes the proof of Claim 4.13.1. ]

It follows from Claim 4.13.1 thatforall » = 1,. .., m, there exists a stage 5, offr at Py such that 7, € W, (Py).
Claim 4.13.2. 5,44 < s, forallh=2,...,m

Proof of Claim 4.13.2. Assume for contradiction that there existsa b* € {2,...,m} such thats;» < 5;-41. By (4.46a),

we have ]‘Z . (PS, P—S)Rz',,* ﬂ; . (Pn). We complete the proof of Claim 4.13.2 by distinguishing two cases.

CASE 1: Supposefr*+1 Ds, P lb*frh* PN

Since fr is Pareto efficient, f}; . PS, P, fr .(Pyn) implies that there exists £ € N \ {#p} such that fr (Py) =
fr* (PS, P_g). The factsfgj*+1 (]35, P_g) lb*fr;,* Py) andfr (Pn) = ﬂ;*ﬂ (PS, P_y) together implyfg (Pn) Zwf% Py)
andfl/; Py) € A. It follows from the factfr (Pn) € A that there exists a stage s offr at Py such thatk € W, (Py). Since

iy € Wy, (Pn),k € W, (Pn), andjz (Pn) lb*jfh* Py ), by Lemma 4.12.3, we have s; < 5;+. This, together with the fact
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that sy < sp 11, implies sp < sp41. Since s € W, (Pn), k € Wy, (Pn),and s, < sp+41, by Lemma 4.12.2, we have

ﬁ(PN) :j{(ch*+lzP—z,,* )- (4.50)

Furthermore, the facts 7y € W,,., (Pn), k € W,,(Py),and s < sp-yq together imply 7, 11 # k. Since f(Pn) € 4
and 711 # k, (4.50) implies

fr PN 7&]&; lh*+1’P—l‘h*+1)' (4'51)
However, the fact /; (Py) = ﬁ; - (Ps, P_s) and Condition (iii) together contradict (4.5 1).

CASE 2: SupposefF (Ps, P—5) :jlf»h* (Pn).

b*+1

Since 7+ € W,

Sh*

(Pn), iyl € Wi (Pn),and sp+ < sp41, by Lemma 4.12.2, we have

_ff*(ch*H/P*zbmrl) :_ﬂ;* (PN) (452)

Furthermore, since f;, . | (Ps, P_s) = f. . (Pn), Condition (iif) and (4.52) together imply

Foe Py P ) = fir (P P ) = fi, (D) (4.53)

However, by Claim 4.13.1, we havef};* (Pn) € A. Sincefll-;* (Pn) € Aand iy # ijey1, (4.53) implies thsttfr (INDZ-})*H,

P, +1) is not an allocation, a contradiction.

Since Cases 1 and 2 are exhaustive, this completes the proof of Claim 4.13.2. O

Now, we complete the proof of Proposition 4.7.1. By Claim 4.13.2, we have s; < s5,. Moreover, by (4.46b), we have
fr (PS, Pf (Py). Sinces; < s, andff PS, )Piﬁ (Pyn), using a similar logic as for Case 1 in Claim 4.13.2, we get

a contradiction. This completes the proof of Proposition 4.7.1. [ |
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Matchings under Stability, Minimum Regret, and

Forced and Forbidden Pairs in Marriage Problem

5.1 INTRODUCTION

This chapter explores the possibilities of designing mechanisms satisfying properties such as (pairwise) stability, minimum
regret, and forced and forbidden pairs in case of two-sided one-to-one matching problem (marriage problem).

(Pairwise) stability is a well-known property of a matching. Gale & Shapley (1962) provide an algorithm called men-
proposing/women-proposing deferred acceptance (MPDA/WPDA) algorithm that produces a stable matching at every pref-
erence profile. It is well-known that the outcome of the MPDA (WPDA) algorithm is (i) men-maximal (women-maximal),
that is, such an outcome maximizes the match of each man (woman) over all stable matchings, and (ii) women-pessimal

(men-pessimal), that is, such an outcome minimizes the match of each woman (man) over all stable matchings.®s

65 See Gale & Shapley (1962), McVitie & Wilson (1971), Knuth (1976), and Abdulkadiroglu & Sénmez (2013) for details.
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The main motivation of this chapter is to provide an algorithmic characterization of all stable matchings at every pref-
erence profile. The other motivation is to provide algorithms to construct stable matchings with additional desirable prop-
erties such as minimum regret and forced/forbidden pairs. The importance of a characterization of all stable matchings is
well-established in the literature. McVitie & Wilson (1971) provide an iterative procedure to compute all stable matchings
for the marriage problem and Martinez et al. (2004) extend that algorithm to two-sided many-to-many matching problem
with substitutable preferences.®® Irving & Leather (1986) provide an alternative method of computing all stable matchings
for the marriage problem by using the lattice structure of the set of stable matchings. To the best of our knowledge, apart
trom Gale-Shapley algorithm, no direct algorithm that produces stable matching is introduced to the literature.”” However,
as discussed earlier, stable matchings produced by Gale-Shapley algorithm (Gale & Shapley, 1962) suffer from the problem
that they are either extremely biased against men (in case of WPDA algorithm) or that towards women (in case of MPDA
algorithm).

We present a class of algorithms that we call men-women proposing deferred acceptance (MW PDA) algorithms which can
produce all stable matchings at every preference profile. Such an algorithm is based on a given collection of cut-oft parameters
one for each man. A cut-off parameter «,, for a man 2 is an arbitrary integer between 1 and the number of women plus
one. For a given collection of cut-off parameters the algorithm works in a sequence of stages as follows. At the beginning
of Stage 1, each man m proposes each acceptable woman who appears in top %, positions according to his preference, and
then WPDA algorithm is performed with respect to the proposals that the women receive. From a given stage we go to the
subsequent stage if there is a man who (i) has not yet proposed all acceptable women according to his preference, and (ii) is
unmatched at that given stage. Moreover, in any stage, if a man 7 was matched in the previous stage, then he proposes the
same set of women as he did in the previous stage, otherwise he proposes the remaining set of acceptable women (that is,
the acceptable women who do not appear in top «,, positions according to his preference).

Theorem s.3.1 of this chapter shows that the outcome of an MWPDA algorithm is stable at every preference profile for
any cut-off vector. Theorem s.3.2 shows that for any stable matching at a preference profile, there is a cut-off vector such
that the MWPDA algorithm with respect to it will produce that stable matching. Theorem s.3.3 provides a necessary and
sufficient condition on the cut-oft vectors so that the MWPDA algorithms with those cut-off vectors will converge at the

first stage. We also discuss that these algorithms can be extended to produce all stable matchings in a two-sided many-to-one

60Kelso Jr & Crawford (1982) are the first to use the substitutability property to show the existence of stable matchings in a many-
to-one model with money.

7McVitie & Wilson (1971) provide a method to compute all stable matchings at a preference profile. However, their method is
lengthy in the sense that every time one needs to produce some particular stable matching, he/she has to start from the men-maximal
(or women-maximal) stable matching and keep on producing all stable matchings that come in the process before he/she arrives at the
intended stable matching. Another problem with this method is that it is not structured enough to produce stable matching with
additional desirable properties.
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matching problem (college admissions problem) in a way mentioned in Roth & Sotomayor (1989).

The notion of minimum regret under stability is introduced in Knuth (1976). It captures the idea of a Rawlsian welfare
function. The regret of an agent in a matching is defined as the rank of his/her match according to his/her preference,
and the regret of a matching is defined as the highest regret (over all agents) at that matching. A stable matching satisfies
minimum regret stable property at a preference profile if it has the minimum regret among all the stable matchings at that
preference profile.®® Both MPDA and WPDA algorithms are far from satisfying the minimum regret under stability as
their outcomes are either women-pessimal or men-pessimal. We provide a direct algorithm called the sequential MIWPDA
algorithm that produces a minimum regret stable matching at every preference profile.®> We further show that the outcome
of the sequential MWPDA algorithm is women-optimal in the set of all minimum regret stable matchings.

For practical reasons, sometimes one needs to construct stable matching with additional constraints. The notion of
stable matching with forced pairs is introduced in Knuth (1976), and that with forbidden pairs is introduced in Dias et al.
(2003). To the best of our knowledge, there is no direct algorithm that produces stable matching with these properties.”®
We provide an algorithm called the conditional MW PDA algorithm that produces stable matching with given sets of forced
and forbidden pairs, whenever such a matching exists. We further show that whenever the conditional MWPDA algorithm
produces such a matching, the outcome is women-optimal in the set of all stable matchings with given sets of forced and

forbidden pairs.

5.1.1 ORGANIZATION OF THE CHAPTER

The chapter is organized as follows. The marriage problem framework is presented in Section s.2. In Section 5.3, we present
MWDPDA algorithms and show that they produce all stable matchings at every preference profile for the marriage problem.
We also provide a necessary and sufficient condition for the convergence of these algorithms at the first stage, and discuss
how these algorithms can be used to construct all stable matchings for the college admissions problem. In Section 5.4, we
present an algorithm that produces a minimum regret stable matching at every preference profile, and in Section 5.5, we

present an algorithm that produces a stable matching with given sets of forced and forbidden pairs.

8 Note that the regret of an unstable matching can be strictly less than the minimum regret under stability.

®9Knuth (1976) provides an algorithm with runtime of the order O(%*) to find a minimum regret stable matching where 7 is the
number of men, as well as the number of women. The algorithm given in Knuth (1976) is attributed to Alan Selkow. Later, Gusfield
(1987) provide an algorithm that terminates in O(%?) time.

7°Knuth (1976) provides an algorithm that produces a stable matching with a given set of forced pairs or reports that none exists, in
O(nz) time, where 7 is the number of men, as well as the number of women. Later, Gusfield & Irving (1989) provide an algorithm that
terminates in O(|Qy |2) time, after pre-processing the preference lists in O(n4) time, where Q is the set of given forced pairs. Dias et al.
(2003) provide a computer algorithm that produces a stable matching with a given set of forced pairs Q; and a given set of forbidden
pairs Q2 in O((|Q1| + |Q2])?) time, after pre-processing the preference lists in O(z*) time.

90



5.2 MODEL

For a finite set 4, let IL(4) denote the set of all strict linear orders over 4.7" An element P of IL(A4) is called a preference
over A. For a preference P € IL(4), let R denote the weak part of P, that s, forall 2,6 € A, aRb if and only if [de or
a=1b.

ForP € L(4)and1 < k < |4|, wedefine T}(P) := {b € 4 : |{a : aRb}| < k}. So, T}(P) is the set of top &
elements of 4 according to 2. Moreover, for P € IL(4) and a € A, we define rank(P,a) = kif |[{b € 4 : bPa}| =k —1.

We introduce a specialized model of the two-sided matching problem, which will turn out to be sufficiently general to
explore the general problem. The simplest two-sided matching problem to model is the “marriage problem”, which consists
of two (finite) sets of agents M = {my,...,my} and W = {wy,...,w,} (“men” and “women”). Throughout this
chapter, we assume 5,4 > 2. We denote by N = M U I, Each m € M has a preference P,, € L(1WU {@}) and
each w € W hasa preference P, € L(M U {D}). A man m (woman w) is called acceptable for a woman w (man )
at a preference Py, (Py,) if mP,D (wP,,D). Form € M (w € W), we denote by A(P,,) (A(P,)) the set of acceptable
women (men) for 7 () at a preference Py (Py). By Pyy = (Pss-- Py, Pan, - P, ), we denote a vector of all the

agents’ preferences, which will be referred to as a preference profile.
Definition s.2.1. A matching between M and Wisa functionz : N — NU {@} such that
(i) u(m) € WU{QD} forallm € M,
(i) u(w) € MU{D} forallw € W, and
(iii) x(m) = wifand onlyif u(w) = m.

Definition 5.2.2. A matchingx : N — NU {Q@} is individually rational at a preference profile Py if u(a) R, for all

a € N.

Definition 5.2.3. A pair (m,w) € M x Wis called a blocking pair of a matchingu : N — NU {@} at a preference
profile Py if me/z(m) and me‘u(w).
A matching x : N — NU {Q} is called pairwise stable at a preference profile Py if it is individually rational and has

no blocking pairs at Py

Definition 5.2.4. A coalition N' C Nis called a blocking coalition of a matching u : N — NU {Q@} at a preference profile

Py if there exists another matching ¢/ : N — NU {@} such that

7' A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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(i) ¢/ (a) € NU{QD} forallz € N',and
(i) #'(a)P,u(a)foralla € N'.
If a matching z : N — N'U {@} has no blocking coalition at a preference profile Py, then it is called szable at Py.

Remark s.2.1. Itis well-known that pairwise stability and stability are equivalent.”* For this reason, we will say a matching

is stable at a preference profile if and only if it is pairwise stable at that preference profile.

We denote by C(Py) the set of all stable matchings at a preference profile Py. It is well-known that C(Py) # @ for

every preference profile Py (see Gale & Shapley (1962) for details).

Definition s.2.5. For a preference profile Py and a set of matchings M, a matching x € M is women-optimal in M at
Py if u(w)Ryp (w) forall w € Wandall' € M. Similarly, one can define the notion a men-optimal matching in a set
of matchings.”?

A matchingu € C(Py) is men-optimal (women-optimal) stable matching at Py if 1 is men-optimal (women-optimal)

in C(PN) at PN.

Itis well-known that a men-optimal (women-optimal) stable matching exists at every preference profile (see Gale & Shap-

ley (1962) for details).

5.3 ALGORITHMS FOR PRODUCING ALL STABLE MATCHINGS AT A PREFERENCE PROFILE

An algorithm is a procedure that produces a matching at any preference profile. In this section, we provide a class of
algorithms, called men-women proposing deferred acceptance (MWPDA) algorithms, which can produce every stable
matching at a preference profile. These algorithms are built on well-known deferred acceptance (DA) algorithms. For the

sake of completeness, we begin with a description (that is suitable for our purpose) of DA algorithms.

5.3.1 DEFERRED ACCEPTANCE ALGORITHM

There are two types of deferred acceptance algorithms: women-proposing deferred acceptance (WPDA) and men-proposing
deferred acceptance (MPDA). In the following, we provide a description of the WPDA algorithm at a preference profile Py.

The same of the MPDA algorithm can be obtained by interchanging the roles of women and men in the WPDA algorithm.

7*See Roth & Sotomayor (1992) for details.
73Women-optimal (men-optimal) matching in an arbitrary set of matchings may not exist.
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Step 1. Every woman w proposes her top-ranked acceptable man according to P,,7#. Then, every man 7 who has at least one
proposal keeps (tentatively) the top acceptable woman according to 2, among these proposals and rejects the rest. Denote

the tentative matching thus obtained by ;.

Step 2. Every woman w who was rejected in the previous step, proposes the top acceptable man among those men who
have not rejected her in earlier steps. Then, every man 7 who has at least one proposal, including any proposal tentatively
kept from earlier steps, keeps (tentatively) the top acceptable woman among these proposals and rejects the rest. Denote the

tentative matching thus obtained by u,.

The process is then repeated from Step 2 till a step such that for each woman one of the following two happens: (i) she has
proposed all acceptable men, (ii) she is accepted by some man who is acceptable to her. At this point, the tentative proposal

accepted by a man becomes permanent. Call this the outcome of the WPDA algorithm at Py.

Remark s5.3.1. Gale & Shapley (1962) show that at every preference profile Py, there exists a unique men-optimal stable
matching that is produced by the MPDA algorithm and a unique women-optimal stable matching that is produced by the

WDPDA algorithm.

Throughout this chapter, we denote the men-optimal and the women-optimal stable matching at a preference profile
Pn by p,,(Pn) and g1, Pr), respectively. Moreover, whenever the preference profile Py is clear from the context, we drop

it from these notations, that is, we write z,, for « M(PN), etc.

Remark s.3.2. Forallp € C(Pn), py;(m)Roupu(m)Roppery(m) for all m € M, and p;p(w) Ryu(w) Ry, (w) for all

we W7s

5.3.2 MWPDA ALGORITHMS

We begin with introducing a piece of notation that will simplify the presentation of our algorithm. For a preference P, €
L(MU{@})and M’ C M, define P as the preference that is obtained by moving the elements of 24" U {®} to the top
of P,, maintaining their relative ordering. More formally, PM"is such that (i) for all x, y € M' U {@}, xP y if and only if

xP,y, and (i) forall x € M’ U {@} and y € M\ M’, we have xP .76

7#That s, if the top-ranked man of a woman is acceptable, then she proposes him, otherwise she does not propose anybody.
75See Gale & Shapley (1962), McVitie & Wilson (1971), Knuth (1976), and Abdulkadiroglu & Sénmez (2013) for details.

!
76Note that such a preference vaw may not be unique since it does not specify the relative ranking of the elements of M \ A1’ ’,
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An MWPDA algorithm is parameterized by a cuz-off vector. A cut-off vector is defined as x = (Kmys -1 Km ) ), where for
allm € M, x,, € {1,...,9+ 1} is the cut-off parameter of man 7. An MWPDA algorithm involves a sequence of stages.
At the beginning of a stage, say Stage s, each man m proposes a set of women (which is determined by the parameters).
We denote this set by 177 (). The set of proposals that each w € ¥ receives in that stage is denoted by A4°(w), that is,
M (w) = {m:we W (m)}.

Below, we present a detailed description (using the notations introduced above) of the MWPDA algorithm with cut-oft

vector « at a preference profile Py.

Stage 1. Take W (m) = Ty, (Py) N A(P,) forall m € M. Perform the WPDA algorithm at the preference profile
(Py, - - .,Pmp,Pf,,Vfl(wl), .. .,Pz\; (wq)). Let ¢! be the outcome. If W(m) = A(P,,) forall m € M with u!(m) = @,

then conclude that the algorithm converges and define [ul as the outcome of the algorithm. Otherwise, go to Stage 2.

Stage 2. For all m € M, take W?(m) such that

WA (m) if gl (m) # Q;
W2 (m) = 3 A(P,) \ W'(m)  if (m) = @and W (m) C A(P,);

%) if !(m) = @and W' (m) = A(Py).77

2
Perform the WPDA algorithm at the preference profile (P, ..., Py, 1){0"112(’”1), ., Pfg (wq)), Let ¢* be the outcome. If
Wh(m) U W?(m) = A(Py,) forallm € M with u*(m) = @, then conclude that the algorithm converges and define p*

as the outcome of the algorithm. Otherwise, go to Stage 3.

Stage 3. For all m € M, take W3 (m) such that

3 w,
Perform the WPDA algorithm at the preference profile (P, . .., Py, » P{Z[E(wl), ..., PZ 2 ). Let ¢ be the outcome. If

% Ww*(m) = A(P,,) forallm € M with u®>(m) = @, then conclude that the algorithm converges and define 2 as the

outcome of the algorithm. Otherwise, go to Stage 4.

771t follows from the definition of 7! (m) that wh (m) C A(P,,) forallm € M. Therefore, the cases considered in this definition
are exhaustive.
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We continue this till a stage #* such that y W (m) = A(P,,) forallm € Mwithu" (m) = @. Since both the number
s<t*
of men and the number of women are finite, such a stage #* must exist. At this stage, define the matching //* as the outcome

the algorithm.
Remark s.3.3. Ifx,, = g + 1forall m € M, then the MWPDA algorithm with x boils down to the WPDA algorithm.
We illustrate MWPDA algorithm by means of the following example.

Example s5.3.1. Let M = {my, my, m3, mg, ms} and W = {wy, wa, w3, ws, ws }. Consider the preference profile Py as

given below:

Ppy Puy Puy Puy Ppg | Py Pu, Py Py, Py

w1 w1 wy w1 w1 my m4 ms my ms3
wy w3 w1 wy wy mis ms my ms3 nm1
w3 wy w3 ws w3 mi ) m4 i ms
wy wig owsg o wsy o wsg | D omy omz oms D
ws ws ws w3 ws ms3 ms3 @ ms4 my

o © O O O |\myi O m D my

Table 5.1: Preference profile for Example 5.3.1

Let the cut-off vector x be such that x,,, = 2, x,,, = 4, %, = 3,%,,, = land x,,,;, = 2. The MWPDA algorithm with

x at the preference profile Py given in Table 5.1 works as follows.

. PMl(wl) I)ZWI(LUS) . .
Stage 1. Perform the WPDA algorithm at the preference profile (P, . .., P, Puy -~ s+ -+, Pu ) given in Table 5.2.
The dots in Table 5.2 indicate that all preferences for the corresponding parts are irrelevant and can be chosen arbitrarily.
To emphasize the process at Stage 1, for each man 7 we have highlighted the women in P, in blue that 7 proposes, and for

each woman w we have highlighted the men in P, in blue who propose her.
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Prs Py Puy Py Puy | Puy Puy Puy Puy Py | Pal@) phfle) phfiws) phfilws) - phlilus)
w1 w1 wy w1 w1 my ms4 mis my ms3 %) ms my my @
wy w3 w1 wy wy mis ms my ms3 m1 mis nmy ms3 %)

w3 wo w3 ws w3 ma my M4 mi ms mi nm1 @

ws wsg wsg o wig o owsg | D omy omy oms D %) m3

ws ws ws w3 ws ms3 ms3 @) m4 my ms3 @

o © O O QO |\mi D@ m D my My

Table 5.2: Updated preference profile at Stage 1

The outcome of the WPDA algorithm at Stage 1 is [(m1, D), (m2, w1), (m3,w3), (m4, D), (ms, w,)]. Since ¢! (my) =

@ with W (m;) C A(P,,), we go to Stage 2.

Stage 2. Perform the WPDA algorithm at the preference profile (P, . .

.,PmS,P%Z(wl),. .. ,P{Zz(ws ) given in Table s.3.

%(

)

Pui Pry Py Pui Pus | Py Puy Puy Puy Puy | P plf(m) pEw)  phws) - phf(ws)
wy wy wy wi wi my M4 Ms My M3 >y M4 %) m>y m1
wy w3 w1 wy wy ms mis my ms3 nmq mis ms m4 mi @
w3 wy w3 ws w3 mi my M4 mi s @ my ms3 M4 m4
W4 W4 W4 W4 W4 D m1 ms3 ms %) ms3 ms3 %) D

ws ws ws ws ws | my mz D my my @ m

%) %) %) %) D |\my @ m D iy

The outcome of the WPDA algorithm at Stage 2 is [ (721, ws), (m2, w1), (m3, w3), (ms, w2), (ms, D)]. Since u? (ms)

@ with W (ms) U W?*(ms) C A(P,,), we go to Stage 3.

Stage 3. Perform the WPDA algorithm at the preference profile (P, . . ., Py, P,i,vlﬁ(wl), ..
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Poi Puy Py Puy Prs | Puy Puy Puy Py Puy | P ) piPwal i) phlw) - phf(s)
w1 w1 wy w1 w1 my m4 mis my ms3 my M4 ms my mi
wy w3 w1 wy wy mis ms my ms3 m1 %) my ny nm1 ms
w3 wy w3 ws w3 i my ms4 3 ms ms3 ms3 my4 ms @
wsy  wsg  owsg o owig o owsg | D omy my oms D : D ms3 N N
ws ws ws w3 ws ms3 ms3 @) m4 my @ @

o © O O QO |\mi D m D my my

Table 5.4: Updated preference profile at Stage 3

The outcome of the WPDA algorithm at Stage 3 is [ (721, ws), (m2, w1), (m3, D), (m4, w2), (ms, ws3)). Since p® (m3) =

@ with W (m3) U W?(m3) U W3 (m3) C A(Py,), we go to Stage 4.

. 4(wy) (ws)y . .
Stage 4. Perform the WPDA algorithm at the preference profile (P -+ s Prns, P% Leee, P{Z ) given in Table s.5.

P Puy Py Puy Puy | Py Puy Py Py Py | Pl pifwal pAflwa) phlus) - phws)
wy wy wy wi wy my M4 Ms My M3 my M4 ms my ms3
wy w3 w1 wy wy mis ms nmy ms3 mi %) my my ms3 mi
w3 wy w3 ws w3 m1 my M4 nm1 ms @ 4 m1 ms
W4 W4 W4 W4 Wy D m1 ms3 ms %) %) ms %)
ws ws ws ws ws | my mz D my  my m my my
o © O O O |\mi O m D my : %)

Table 5.5: Updated preference profile at Stage 4

The outcome of the WPDA algorithm at Stage 4 is [ (21, ws ), (m2, w1), (m3, ws), (ms, w2), (ms, w3))]. Since u* (m) #
@ forallm € M, the outcome of MWPDA algorithm with the cut-off vector « is [(my, ws), (ma2, wr), (m3, ws), (ms, w2),
(ms, w3)].
5.3.3 MWPDA ALGORITHMS PRODUCE ALL STABLE MATCHINGS

In this section, we explore the stability of the outcome of an MWPDA algorithm. We also provide a sufficient condition

on an MWPDA algorithm to produce a specific stable matching at the first step of the WPDA algorithm at Stage 1 of the
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mentioned MWPDA algorithm. Our next theorem shows that the outcome of an MWPDA algorithm at any preference

profile and with any cut-off vector is stable.

Theorem s.3.1. For every preference profile Py and every cut-off vector x, the MW PDA algorithm with x produces a stable

matching at Py

The proof of this theorem is relegated to Section 5.6; here we provide the idea of it. By Observation s5.6.1, the match of
each man (weakly) improves (according to his preference) over the steps of the WPDA algorithm at any given stage. Next,
we show the match of each woman (weakly) improves over the stages (Lemma 5.6.1). Finally, we combine these two facts
to prove Theorem s.3.1.

Now, we present the main result of this section. It says that every stable matching at any preference profile can be pro-
duced by an MWPDA algorithm with some cut-oft vector. However, we prove a stronger version of this, which says that
every stable matching at a preference profile can be produced at the first step of the WPDA algorithm at Stage 1 of an

MWPDA algorithm by using a suztable cut-oft vector.

Theorem s.3.2. Let Py be a preference profile and let p € C(Py). Suppose the cut-off vector x is such that x,, = rank(P,,
u(m)) forall m € M. Then, the MW PDA algorithm with cut-off vector x produces u at Pn. Furthermore, u is produced at

the first step of the WPDA algorithm at Stage 1 (of the mentioned MWPDA algorithm,).

The proof of this theorem is relegated to Section s5.7.2. It is worth mentioning that the cut-off vector x defined in Theo-
rem 5.3.2 is zot the unique cut-off vector that produces y at the first step of the WPDA algorithm at Stage 1.

In view of Theorem s.3.2, one may think that if every stable matching can be produced at the first step of the WPDA
algorithm at Stage 1 of an MWPDA algorithm, then why do we need a sequence of stages and a sequence of steps of the
WDPDA algorithm at each stage? The answer to this question is as follows. Asitis evident from Theorem s.3.2, the ‘suitable’
cut-off vector for a given stable matching that produces it at the first step of the WPDA algorithm at the first stage cannot
be identified without using complete knowledge of that stable matching. Thus, in order to find 4// stable matchings at
a preference profile, one needs to use MWPDA algorithm with arbitrary cut-off vectors (and consequently needs to go

through several stages).

5.3.4 CONVERGENCE OF MWPDA ALGORITHMS AT THE FIRST STAGE

In this section, we discuss the convergence of an MWPDA algorithm. As we have mentioned in Section s5.3.3, for every
stable matching there exists a cut-off vector so that the MWPDA algorithm with that converges at the first step of the WPDA

algorithm at Stage 1 producing the stable matching. However, identifying such a cut-off vector requires complete knowledge
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of the stable matching. In view of this, we provide a necessary and sufficient condition on the cut-off vectors so that the
MWPDA algorithms with those cut-off vectors converge at the first stage.
Recall that, we denote the men-optimal stable matching at a preference profile Py by ¢,,(Pn). Moreover, whenever the

preference profile Py is clear from the context, we drop it from this notation, that is, we write u,  for u; , (Pn).

Theorem s.3.3. Let P be a preference profile. The MW PDA algorithm with a cut-off vector x at Pr converges at Stage 1 if
and only if x,, > min {mnle(Pm,yM(m)), max {|A(P,)|,1} }ﬁ)rdll m € M.

The proof of this theorem is relegated to Section 5.7.1.

Remark 5.3.4. A cut-off vector x with x,, > min {mn/e(Pm,[uM(m)),max {|A(P)], 1}} for all m € M does not
guarantee the convergence of the MWPDA algorithm at the first step of the WPDA algorithm at the first stage, it might take

several SthS to COHVCI‘gC.

5-3.5 APPLICATION TO THE COLLEGE ADMISSIONS PROBLEM

The “college admissions problem” is a many-to-one generalization of the marriage problem.”® Every (many-to-one) stable
matching in the college admissions problem where colleges’ preferences satisty responsiveness can be obtained from Theorem

5.3.2 in the following way.”?

(i) Construct a marriage problem for the given college admissions problem (see Roth (1985) and Roth & Sotomayor

(1989) for details on how to construct a related marriage problem).
gep
(i) Apply MWPDA algorithms to obtain all (one-to-one) stable matchings of the marriage problem.

(iti) Transform all (one-to-one) stable matchings of the marriage problem to their many-to-one versions by using a trans-

formation as defined in Roth & Sotomayor (1989).

It follows from Lemma 1 in Roth & Sotomayor (1989) that the many-to-one matchings of the college admissions problem
constructed in this manner will be the only pairwise stable matchings, and from Proposition 1 in Roth & Sotomayor (1989),

that they will also be the only stable matchings.

S-4 A MINIMUM REGRET STABLE ALGORITHM

In this section, we present an algorithm which produces a stable matching at every preference profile with an additional

desirable property, namely minimum regret. As we have mentioned in Remark s.3.1, the outcome of the WPDA algorithm

78See Abdulkadiroglu & Sonmez (2013) for a formal description of the college admissions problem.
79The notion of responsiveness is due to Roth (1985), see Abdulkadiroglu & Sénmez (2013) for a formal definition of the same.
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is women-optimal stable matching and that of the MPDA algorithm is men-optimal stable matching. In other words, both
these algorithms are extremely biased.®> However, as the following example demonstrates, MWPDA algorithms with suit-

able cut-oft vectors can produce stable matchings that are not so biased.

Example s.4.1. Let M = {my, ma, m3} and W = {wy, ws, w3 }. Consider the preference profile Py given in Table 5.6.

Pumi Pmy Py | Py Py, P

w1 w2 w3y | my m3 M
wy w3 w1 ms3 m1 my
w3 w1 wy i my m3

o o 0|0 © O

Table 5.6: Preference profile for Example 5.4.1

The outcome of the MPDA algorithm at Py is

Bar = [(ml,wl), (m2/ wz), (Wl3, w3)],
and that of the WPDA algorithm is
Ky = [(mlr w3>, (WZz, wi), (M3, wz)]

However, the outcome of the MWPDA algorithm with x = (2,2,2) is

= [(mi, wr), (ma, w3), (m3,w)].

Note that in ¢, each man gets his best choice whereas each woman gets her worst, and conversely, in «;,, each woman

gets her best choice whereas each man gets his worst. However, in , all men and women get their second-best choices.

In view of this example, we define the notion of minimum regret under stability. This notion is introduced in Knuth

(1976) as a desirable property of a matching.

Definition s.4.1. Let Py be a preference profile and let x be a matching at Py.. Then, the regret of p at Py is defined as
a(p, Pn) = max rank(P,, u(a)).

The minimum regret under stability at Py is defined as 2(Py) = rgén )a(‘u, Py).
‘ue PN

80See Remark s.3.2 for details.
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Itis worth mentioning that the regret of an unstable matching can be strictly less than the minimum regret under stability.

Definition s.4.2. (Knuth, 1976) A matching p* is ménimum regret stable at a preference profile Py if it is stable at Py
and its regret is same as minimum regret under stability at Py, thatis, «(u*, Pn) = a(Pn).
An algorithm is called minimum regret stable if it produces a minimum regret stable matching at every preference

profile.

It is worth noting that the minimum regret property has a close resemblance with a Rawlsian welfare function. Roughly
speaking, this property tries to improve the outcome of the ‘poorest of the poor’ agent. Clearly, both WPDA and MPDA
algorithms do not satisfy this property in general since these algorithms always maximize the matches of one side of the
market (women or men), and consequently maximizes the regret of the other side. For instance, consider Example 5.4.1.
The regret of the both outcomes of the WPDA and MPDA algorithms is 3. However, the same of the outcome of the

MWPDA algorithm with x = (2,2,2) is 2.

5.4.1 SEQUENTIAL MWPDA ALGORITHM

In this section, we present an algorithm that is minimum regret stable. We call this the sequential MW PDA algorithm. It
involves a sequence of rounds. At every round, it performs an MWPDA algorithm with a cut-off vector. Below, we present

a formal description of this algorithm at a preference profile Py. Let «* = mé);] rank(Py,, u M(m) ).

Round 1. Perform the MWPDA algorithm with x such that x,, = «* forall m € M. Let ¢ be the outcome of the
MWPDA algorithm at Round 1. If rank(P,,, @) < «* forallm € M or rank(P,, “ (w)) < x* forallw € W, then
conclude that the algorithm converges and define ] as the outcome of the sequential MWPDA algorithm. Else, go to

Round 2.

Round 2. Perform the MWPDA algorithm with x such that x,, = «* + 1forall m € M. Let i be the outcome of the
MWPDA algorithm at Round 2. If rank(P,,, @) < x* + 1forall m € M or rank(Py, u;(w)) < x* + 1forallw € W,
then conclude that the algorithm converges and define «5 as the outcome of the sequential MWPDA algorithm. Else, go to

Round 3.

Continue this till a round # such that cither we have rank(P,,, @) < &* 4k — 1forallm € M or rank(P,, 1 (w)) <

x* +k —1forallw € W for the first time at Round k.37 In other words, % is such that for all round / < £, there exists

81Since «,, cannot be bigger than g + 1, such a round must exist.
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m € M with rank(P,, D) > x* +1—1and w € W with Vdnk(Pw,y;‘(w)) > «* + [ — 1. Define g}, as the outcome of

the sequential MWPDA algorithm.

Remark 5.4.1. It is worth noting that in order to execute the sequential MWPDA algorithm at a preference profile Py,

first one needs to compute the men-optimal stable matching at Py:.

Remark s.4.2. By Theorem 5.3.3, the MWPDA algorithm used at every round of the sequential MWPDA algorithm

converges at Stage 1. This ensures quick convergence of the sequential MWPDA algorithm.

Our next result says that the sequential MWPDA algorithm produces the women-optimal matching in the set of all

minimum regret stable matchings.

Theorem s.4.1. The sequential MVWPDA algorithm is minimum regret stable. Furthermore, the outcome of the sequential

MWPDA algorithm is women-optimal in the set of all minimum regret stable matchings.

The proof of this theorem is relegated to Section s.8.

5.5 STABLE MATCHING WITH FORCED AND FORBIDDEN PAIRS

The notion of stable matching with forced pairs is introduced in Knuth (1976), and that with forbidden pairs is introduced
in Dias etal. (2003). In this section, we provide an algorithm that produces stable matching with forced and forbidden pairs,

whenever such a matching exists.

Definition s.5.1. Given a set of pairs Q1 € M X ¥, we say a matching x is with forced pairs Q if every pair in Q) is

matched in g, thatis, u(m) = wforall (m, w) € Q.

Definition s5.5.2. Given a set of pairs Q; C A X W, we say a matching u is with forbidden pairs Q, if no pair in Q, is

matched in g, thatis, (m) # wforall (m, w) € Q,.

5.5.1 CoNDITIONAL MWPDA ALGORITHM

Consider a preference profile Py and let Q; be a set of forced pairs and Q be a set of forbidden pairs. Note that for all (2,
w), (m',w') € Qywith (m,w) # (m',w'), wehave m # m’ andw # w'.3* For m € M, with slight abuse of notation,
we say m € Qy, if there exists w € W such that (m, w) € Q.

In what follows, we present an algorithm, called conditional MWPDA algorithm given (Q1,Q2), that produces a

stable matching with forced pairs Q; and forbidden pairs Q,, whenever such a matching exists. The algorithm involves a

82 therwise there will be no stable matching with forced pairs Q.
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sequence of rounds. At every round, an MWPDA algorithm is performed with a cut-vector x such that x,, = rank (P, w)
forallm € Q with (m,w) € Qy. The cut-off parameters for other men may change over rounds; they are defined at the

beginning of each round of the conditional MWPDA algorithm.

Round 1. Define x' such that forall m ¢ Q, xl,, = rank(P,,, D). Perform the MWPDA algorithm with x'. Let x} be the
outcome of the MWPDA algorithm at Round 1.

(i) If g is with forced pairs Q; and forbidden pairs Q», then conclude that the algorithm converges and define x as the

outcome of the algorithm.
(i) Else, if there exists a pair (72, w) € Q such that 4] (m) # w, then conclude that the algorithm STOPS.
(iii) Else, go to Round 2.

Round 2. Define x* such that forall m ¢ Qy,

rank(Py, i (m)) if (m, 1 (m)) & Qo;
rank(Pr, i (m)) — 1 if (m, 1 (m)) € Q.
Perform the MWPDA algorithm with x?. Let z; be the outcome of the MWPDA algorithm at Round 2.

(i) If &5 is with forced pairs Q; and forbidden pairs Q», then conclude that the algorithm converges and define ¢ as the

outcome of the algorithm.

(i) Else, if there exists a pair (7, w) € Qy such thaty}(m) # worif there exists m € M such that rank(P,,, u;(m)) >

x2,, then conclude that the algorithm STOPS.

(iii) Else, go to Round 3.

Note that for any two consecutive rounds 7and » + 1, for each m & Qy, we have ], < K};:_l, and foratleastone m ¢ Q;,
we have x7, < /1. Therefore, if the algorithm does not converge or STOP at any round, then there will come a round

where some 7 € Q; will have x,, = 0. In that case too, conclude that the algorithm STOPS.
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5.5.2 CoNDITIONAL MWPDA ALGORITHM PRODUCES STABLE MATCHING WITH FORCED AND FORBID-

DEN PAIRS

The following result says that a stable matching with given forced and forbidden pairs exists at a preference profile only if the
conditional MWPDA algorithm converges at that preference profile. It further says that whenever the conditional MWPDA
algorithm converges, it produces a stable matching with given forced and forbidden pairs, which is also women-optimal in
the set of all stable matchings with the given forced and forbidden pairs. Thus, if at a preference profile, the conditional
MWDPDA algorithm STOPS at any round, then it must be that there is no stable matching with the corresponding forced

and forbidden pairs at that preference profile.

Theorem s.5.1. A stable matching with forced pairs Qi and forbidden pairs Q, exists at a preference profile Py if and only if
the conditional MW PDA algorithm given ( Q1 QZ) converges at Pn. Further, whenever this algorithm converges, the outcome

is women-optimal in the set of all stable matchings with forced pairs Qi and forbidden pairs Q.

The proof of this theorem is relegated to Section s.9.

By the construction of the conditional MWPDA algorithm, we obtain the following corollary from Theorem s.5.1. It
says that whenever there is no forbidden pair, the conditional MWPDA algorithm will come to a conclusion at the first
round itself: either it will converge or it will STOP. If it converges at this round, then a stable matching with given forced
pairs is produced as the outcome which is also women-optimal in the set of all such stable matchings. If it STOPS, then that

means there is no such a stable matching.
Corollary s.5.x. Let P be a preference profile and let Qy be a set of forced pairs.

(z) If there exists a stable matching with forced pairs Qy at Py, then the conditional MW PDA algorithm given (Q1,2)

at Pn converges at Round 1. Furthermore, the outcome is women-optimal in the set of all stable matchings with forced

pairs Q1.

(i7) If there is no stable matching with forced pairs Qi at Py, then the conditional MW PDA algorithm given (Q1,D) at

Pp STOPS at Round 1.

5.6 PROOF OF THEOREM §.3.1

In all our proofs, for a given MWPDA algorithm at a preference profile Py, we use the notation g, to denote the outcome
obtained at Step £ of the WPDA algorithm at Stage s of the given MWPDA algorithm, and the notation ¢ to denote the

last stage of the MWPDA algorithm. We make two observations which we will use in our proofs.

104



Observation 5.6.1. Consider a stage, say s, and two steps Land k withl < kofthe WPDA algorithm at Stage s of an MW PDA

algorithm at a preference profile Pn. Then, it follows from the property of the WPDA algorithm that for all m € M, we have

(2, (m) Ry (m).

Observation 5.6.2. Consider a stage, say s, of an MWPDA algorithm at a preference profile P. It follows from the property

of the WPDA algorithm that i’ is stable at the preference profile (P, . . ., Py, P%J(wl), .., Pif(w”’) )83

Fix a preference profile Py. Take an arbitrary cut-off vector x and consider the MWPDA algorithm with x at Py. First,

we prove a lemma that says that the match of a woman gets better over stages.
Lemma s5.6.1. Forallr < s< t* andallw € W, u'(w) R, (w).

Proof of Lemma 5.6.1. By the definition of the MWPDA algorithm, we have ‘u‘(w)Ri,W(w)@ forallw € W. This, to-
gether with the construction of M (w), implies that ¢’ (w)R,@ forall w € W. So, if ¢’ (w) = @ for some w € W, then
there is nothing to show for that w. Take w € W such that ¢/ (w) = m € M and take » < ¢*. It is enough to show that
£ (w) Ry (w). Assume for contradiction that mPyp ! (w).

Because &’ (m) = w, by the definition of the MWPDA algorithm, we have W (m) = W (m) andw € W (m).
Combining all these, we have w € W (m), which implies m € M (w). Since mP,p/ ™ (w) and m € M+ (w), we
have mPl Tw ¢ 1 (w). By the definition of the MWPDA algorithm, there must be some step / of the WPDA algorithm

at Stage » + 1 where m rejects w to be tentatively matched with some &’ € W71 (m) whom he prefers to w. This means

w'P,,w, and (5.12)

P, (5.1b)

Moreover, since w' € W (m) and W (m) = Wt (m), we havew' € W (m).

Assume that Step / of the WPDA algorithm at Stage  + 1 has the property that thereisno & € W with /(@) # @ and
Y (@) Pyp” 1 (@) such that man &/ (#) rejects woman @ at some step / < / of the WPDA algorithm at Stage » + 1. This is
without loss of generality because, if there is such woman @, then we can take w = .

Suppose mP, ¢’ (w'). Because w' € W (m), we have m € M (w'). Since mPyp’(w') and m € M ('), it follows
from the construction of P?U/,F ) that mPT,T (w,)[u’(w' ). This, together with (s.1a) and the fact ¢”(m) = w, implies that
(m, w'") blocks Zat (Lo, ..., Pmp, P,/K(wl), ey, P%r(wq)), which is a contradiction to Observation 5.6.2. So, it must be

that " (w') Rym. Because ¢ (w) = m, w # w', and ¢’ (') R ym, we have p" (w') P,ym. Moreover, it follows from (5.1b)

83See Section 5.3.2 for the definition of the notation Pf,,w (w).
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and the construction of Pid,v ) that mP,;@. Combining the facts that ¢"(w') P,y m and m P,y D, we have
¢ (w')PymPyD. (5.2)

Now, we complete the proof of the lemma. Because w' € W '!(m), we have m € M+ (w'). Furthermore, (5.2)
implies #”(w') € M. This, together with the definition of the MWPDA algorithm, yields & (w') € M («'). Since
m,w (w') € M (w), it follows from (s.2) that & («/ )Pff m ) 7}1]3'2)4,T "W, This, together with the fact that woman
' is tentatively matched with man 7 at Step / of the WPDA algorithm at Stage » + 1, implies that & (w') rejects ' at some
step // < [ of the WPDA algorithm at Stage » + 1. However, this contradicts our assumption on Step / of the WPDA

algorithm at Stage » + 1, which completes the proof of Lemma 5.6.1. n

Completion of the proof of Theorem s.3.1. Inview of Remark 5.2.1, we show that the outcome of the MWPDA algorithm
is pairwise stable. Note that by the definition of the MWPDA algorithm, its outcome is always individually rational. We
show that no pair can block its outcome. Let ¢ be the outcome of the MWPDA algorithm. Assume for contradiction that
a pair (m, w) € M x W blocks u at Py

Since xis individually rational at Pxyand (m, w) is a blocking pair of ¢ at Py, we have wP,,u(m)R,, @ and mPyu(w) R ,D.
Because wP,,u(m), there must be some stage, say 7, at which m proposes w for the first time. If &’ (w)R,,m, then by
Lemma 5.6.1, we have u(w)R,,m, which contradicts the fact mP,u(w)R,D. So, assume mepV* (w). Sincew € W (m)
and me[u’* (w), w proposes 7 and gets rejected at some step, say /, of the WPDA algorithm at Stage 7*. Since wP,,@, by
Observation 5.6.1, this means

¢ (m) PPy @. (5-3)

If 7 = ¢*, then (s.3) implies #() P,,w, which contradicts the fact wP,,u(m)R,,D. So, assume * < ¢*. By (5.3), we
have & (m) # @. Since 7* < ¢* and " (m) # @, m proposes the women in 17" (m) at the beginning of Stage »* + 1.
Then, using a similar argument as for the derivation of (5.3), we have M*H (m)P,wP,,@. Continuing in this manner, it

follows that u(m) P,,wP,, @, which contradicts the fact wP,,u(m)R,,D. This completes the proof of Theorem 5.3.1. W

5.7 PROOFS OF THEOREM §.3.2 AND THEOREM 5.3.3

In this section, we prove Theorem s.3.2 and Theorem s.3.3. We prove Theorem s5.3.3 first since we use that in the proof of

Theorem 5.3.2.
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5.7.1 PROOF OF THEOREM 5.3.3

We prove Theorem s.3.3 using the following lemmas. Our first lemma is taken from McVitie & Wilson (1970). It says that

the set of unmatched men or women stays the same in all stable matchings.

Lemma s.7.1. (McVitie € Wilson, 1970) Let P be a preference profile and let u, i/ € C(Pn). Then, foralla € N,
u(a) = D implies ' (a) = @.

Our next lemma provides a sufficient condition on « such that a given stable matching at a preference profile Py remains

stable at (P, . . ,,pmwp{uvlﬂ(wl)/ N -,PZI(M))-

1 w,
Lemma s.7.2. Let Py be a preference profile and let p € C(Py). Then, u is stable at (Py,, . . .,Pmplpl’”"lﬂ(wl), . .,Pi/[ ( q))

.
if iy > min {rﬂnk(Pm,y(m)),max{\.A(Pm)\,l}}forﬂllm €M

Proof of Lemma 5.7.2. Suppose x,, > min {mn/e(Pm, w(m)), max {|A(P,)], 1}} forall m € M. In view of Remark
5.2.1, we show that ¢ is pairwise stable at (P, . . ., Py, P;,Vl[l(wl), o, PZZI (1) ). First note that since x,, > min {mnk(Pm,
u(m)), max {|A(P,)], 1}} forall m € M, we have u(w) € M (w) U {@} forallw € W. Moreover, since u(w) €
M (w) U{QD} forallw € W, wehaveforallw € Wandallm € M, mR{,l,/Il(w)[u(w) implies 7R ,u(w). Further note that
the preferences of the men are unchanged from Py to (P, - -, Py, Pht ), ., Pl 4)) Thetefore, if (m, w) blocks
at (P, -y Py, P{Zf l(wl), o, Pf,f(w") ), then they also block y at Py contradicting the fact that g is stable at Py. Hence, u
cannot have a blocking pair at (P, - . ., Py, P ), .., Pt ). Using a similar logic, it follows that ¢ is individually
rational at (P, . . .,Pmp,]f,fl(wl), .. .,P%l(wq)). [ |

Completion of the proof of Theorem 5.3.5. (If part) Take a cutoff vector i such that x, > min { rank(Pyu g2y, (m)),
max {|A(P,)|, 1} } for all m € M. We show the MWPDA algorithm with x at Py converges at Stage 1. By the defi-
nition of the algorithm, it converges at Stage 1 if W (m) = A(P,,) forall m € M with g!(m) = @. Take m € M.
If u,,(m) = @, then by the definition of x, 7 proposes all acceptable women at the beginning of Stage 1, and hence
WA(m) = A(P,). Suppose i, (m) # @. Itis enough to show that z!(m) # @. Because x,, > min {mnk(Pm,
tpy(m)), max { |.A(Pm)\,1}} forall m € M, by Lemma 5.7.2, 1, is stable at (P,,, ... ,PmP,P%(wl), . .,P{U\;ﬂ(wq)).
Furthermore, by Observation 5.6.2, ¢! is stable at (Py, . .., Py, P ), ., Ft )Y Since 1 and g, both are stable at
Py Py, P D)) by Lemma s.7.1, we have 1 () # @,

(Only-if part) Take a cut-off vector x such that x,, < min {mnk(Pm,/zM(m) ), max {|A(P,)|,1} } for some m € M.
Assume for contradiction that the MWPDA algorithm with x at Py converges at Stage 1. Since x, < min {mnk(Pm,
tay(m)), max {|A(P,)|,1} }, this means ¢! (m) # @ and rank(P,,, ¢'(m)) < x,,. Combining the facts rank(P,,,

©(m)) < x,andx,, < min {mnk(Pm,/zM(m)),max{|.A(Pm)|,1}},wehavemn/e(Pm,‘ul(m)) < rank(Py, y,(m)).
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This, along with Remark s.3.2, implies /zl is not stable at Py, which contradicts Theorem s.3.1. This completes the proof

of Theorem 5.3.3. |

5.7.2 PROOF OF THEOREM §.3.2

Let 42, be the men-optimal stable matching at Py. Because u € C(Py), by Remark s5.3.2, we have rank(P,,, u(m)) >
rank(Pyy,, u,,(m)) forall m € M. This, together with the fact that «,, = rank(P,,, u(m)) forall m € M, means x,, >
min {mnk(Pm,[uM(m)), max {|A(P,)|, 1}} for all m € M. Therefore, by Theorem 5.3.3, the MWPDA algorithm
with x converges at Stage 1.

Now, we show ¢! = u. Since x,, = rank(P,,u(m)) for all m € M, we have x,, > min {rﬂn/e(Pm,pe(m)),
max { [A(P,)], 1}} forall m € M. This, together with Lemma 5.7.2, implies that g is stable at (P - -, pmﬂ Pifl(M)'
el P{Z (wq)). Moreover, by the definition of the MWPDA algorithm, [ul is women-optimal stable matching at (2, ...,

1 (w w (w . . .
PmP,P% (wl), .. .,P%( q)). Sincex € C(Pyy, - - - ,PmP,I%III( ), .. .,Pf,,l/q[ ( 7)) and ¢! is women-optimal stable matching

1
at (P, . . .,Pmp,]),i,vfl(wl), . ,Pf,;[ (wq)), by Remark s.3.2, it follows that
p(m) Rt (m) forall m € M. (5-4)

1
Since x, u! € C(Pyy, - - .,Pmp,P{UVfl(wl), .. .,P{UM (w,,))’ by Lemma 5.7.1, we have

9

©(m) = u(m) forallm € Mwith &' (m) = @. (5-5)

By the definition of the MWPDA algorithm, rank(P,,, 4 (m)) < x,, forall m € M with p'(m) # @. This, together

with definition of x and (5.4), implies that
¢ (m) = u(m) forallm € Mwith &' (m) # @. (5.6)

(s.5) and (5.6) together imply u! = 4.

It remains to show that the MWPDA algorithm with x converges at the first step of the WPDA algorithm at Stage 1.
Suppose not. Then, there exists a pair (72, w) such that at the first step of the WPDA algorithm at Stage 1, w proposes m
and gets rejected. By the definition of the MWPDA algorithm, this means w € W (m) and mPA ™ 4} (). Moreover,
since ¢! = g and mP ) 41 (), we have w(m) # w. The facts x,n = rank(Py, w(m)), w € W(m), and w # u(m)
together imply wP,,(m). Because #' = g, this, together with the fact mPj ) ' (w), implies (72, w) blocks p! at (P,,,,

1 1
coos Py, Pi/f (wl), een, Piz (1) ), a contradiction to Observation 5.6.2. This completes the proof of Theorem s.3.2. |
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5.8 PROOF OF THEOREM §.4.1

We prove a sequence of lemmas that we use in the proof of Theorem s.4.1.

Lemma s5.8.1. Let Py be a preference profile and let x be such that x,, > rank(Py,, u,,(m)) forall m € M. Suppose v is the

outcome of the MW PDA algorithm with x at Py. Then, rank(Py,, u(m)) < &, forallm € M.

Proof of Lemma 5.8.1. By Theorems.3.1,u € C(Py). Sincey, t,, € C(Pn),by Lemmas.7.1, wehaveu(m) = p,,(m)

forall m € M with u(m) = @. This, together with the definition of x, implies
rank(Py,, u(m)) < x,, forallm € M with u(m) = @. (5.7)

By the definition of x, we have x,, > min {rﬂnk(Pm,yM(m) ), max {| A(P,)|,1} } forall m € M. Therefore, by Theo-
rem 5.3.3, the MWPDA algorithm with x at Py converges at Stage 1 producing u. This, together with the definition of the

MWPDA algorithm, implies
rank(Py,, u(m)) < x,, forallm € M with u(m) # @. (5.8)

The proof of Lemma 5.8.1 follows from (5.7) and (5.8). |

The implication of our next lemma is as follows. Let u be the outcome of the MWPDA algorithm with cut-off vector «
where « is such that every man gets to propose the woman (together with other women) who he would be matched with in
the men-optimal stable matching (if a man is unmatched in the men-optimal stable matching, then he proposes all acceptable
women). Let 2 be another stable matching where the rank of the match of every man 7 (the match might be some woman

or @) according to P, is less than or equal to x,,. Then, for every woman, the match in z must be at least as good as that in

/

M-

Lemma §.8.2. Let P be a preference profile and let « be such that x,, > rank(Pp, p,(m)) for all m € M. Let v be the
outcome of the MWPDA algorithm with x at Pn. Suppose i € C(Py) is such that rank(Py, ' (m)) < x,, for all m € M.

Then, u(w) Ryt (w) forallw € W.

Proof of Lemma 5.8.2. Suppose uand ¢’ are as defined in Lemma 5.8.2. Since «,, > rank(P,,, 1y, (m)) forall m € M,
we have x,, > min {rﬂnk(Pm,yM(m)),max {1A(P)], 1}} forall m € M. This, along with Theorem s.3.3, implies

that the MWPDA algorithm with x at Py converges at Stage 1 producing . By Observation 5.6.2, this means y is stable at
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Py Py, P P Ao, since rank (P, i () < %, for all m € M, we have x,, > min {mnk(Pm,
y’(m)),max{]A(Pm)Ll}} forall m € M. This, along with Lemma s.7.2, implies that ¢ is stable at (P, .-, Py,
P ) Because gy € C(Pouy - Py, PV, ., B 1)) and e is the outcome of the WPDA algo-
rithm at Stage 1 of the MWPDA algorithm, by Remark 5.3.2, we have ()R )/ (1) for all w € W. By the definition
of the MWPDA algorithm, p(w) € M'(w) U{D}. As rank(Py, ¢/ (m)) < x,, forallm € M, we have i/ (w) €
M () U {@} forallw € W. Since forall w € W, we have (), ' (w) € M (w) U {@} and u(w)RA ™) 4/ (1), by the

construction of Py l(w), we have u(w) R, ¢/ (w) forall w € W. This completes the proof of Lemma s.8.2. [

Completion of the proof of Theorem 5.4.1. By Theorem s.3.1, itis straightforward that the sequential MWPDA algorithm
is stable. We proceed to show that the sequential MWPDA algorithm produces a minimum regret stable matching at every
preference profile. Take a preference profile Py. Let x be the cut-off vector that is used at the terminal round of the sequential
MWDPDA algorithm at Py and ¢ be the outcome of the sequential MWPDA algorithm at Py. It follows from the definition
of the sequential MWPDA algorithm that x,, > rank(P,,, 1, (m)) for all m € M. Therefore, by Lemma 5.8.1 along

with the definition of the sequential MWPDA algorithm, we have
rank( Py, u(m)) < x,, forallm € M. (5.9)

Claim 5.8.1. x,, < a(Px) forallm € M.

Proof of Claim 5.8.1. Assume for contradiction that x,, > «(Py) for some (and hence, all) m € M. Consider the
round of the sequential MWPDA algorithm where the MWPDA algorithm is performed with & where &, = a(Py) for
all m € M. Let 2 be the outcome of that round. By the definition of 2(Py), there must exist z’ € C(Py) such that
a(¢,Pn) = a(Py). Because a4/, Pn) = a(Pn), we have rank(P,,, ¢ (m)) < a(Py) forallm € M. By Lemma
5.8.2, this means 2(w) R, ' (w) for all w € W. Therefore, max rank(Py, 2(w)) < max rank(Py, ¢ (w)) < a(Pn).
By the definition of the sequential MWPDA algorithm, this means that the algorithm cannot go for another round, which

contradicts the fact that x,,, > a(Py) forall m € M. This completes the proof of Claim 5.8.1. O

Since « is the cut-oft vector that is used at the terminal round of the sequential MWPDA algorithm at P and g is the

outcome of the sequential MWPDA algorithm at Py;, one of the following two statements must hold.
(1) rank(P,, D) < x,, forallm € M.
(2) rank(Py,u(w)) < x,, forallw € W and for some (and hence, all) m € M.

We distinguish the following two cases.



CasE 1: Suppose rank(P,,, D) < x,, forallm € M.

Since rank(P,,, D) < x,, forall m € M and y is the outcome of the sequential MWPDA, it is easy to verify that
is the women-optimal stable matching at Py. By the definition of «(Py), there must exist ¢/ € C(Py) such that a(4/,
Pn) = a(Py). Since u is the women-optimal stable matching, we have rank(P,, u(w)) < rank(P,, ¢ (w)) < a(Py) for
all w € W. Moreover, by Claim s5.8.1 along with (5.9), we have rank(P,,, u(m)) < a(Py) forallm € M. Combining
the facts that rank(P,,, u(m)) < a(Py) forallm € M and rank(P,, u(w)) < a(Py) forallw € W, we have a(g,
Pn) < a(Py). By the definition of «(Px), this means (¢, Pn) = a(Py). So, # is a minimum regret stable matching at
Ppy. Because p is the women-optimal stable matching at Py, this implies that ¢ is women-optimal in the set of all minimum

regret stable matchings at Py.

CasE 2: Suppose rank(P,,, u(w)) < x,, forallw € W and for some (and hence, all) m € M.
Since rank( Py, u(w)) < x,, forallw € W and for some m € M, it follows from (5.9) and the definition of the sequential
MWDPDA algorithm that zx(y, Pn) < x,, forallm € M. This, together with Claim s.8.1, implies that a([u, Py) <%, <

a(Py) forall m € M. By the definition of 2(Py), this means

a(u, Pn) = x,, = a(Py) forallm € M. (5.10)

By (5.10), we have 2(¢, Pn) = a(Pn). So, ¢ is a minimum regret stable matching at Py.

Let ¢/ be a minimum regret stable matching at Py. Clearly, rank(P,,, ¢/ (m)) < a(Px) forall m € M. This, together
with (s.10), implies that rank (P, y/(m)) < «k,, forall m € M. Furthermore, it follows from the definition of the
sequential MWPDA algorithm that x is the outcome of the MWPDA algorithm with x at Px. Since x,, > rank(P,,
ty(m)) forallm € M, uis the outcome of the MWPDA algorithm with «, and ¢ is a stable matching with rank(P,,,
Y (m)) < ky, forall m € M, by Lemma 5.8.2, we have u(w)R ¢ (w) for allw € W. Since x is a minimum regret stable

matching at Py, this implies that z is women-optimal in the set of all minimum regret stable matchings at Py.

Since Case 1 and Case 2 are exhaustive, it follows that the outcome of the sequential MWPDA algorithm is women-

optimal in the set of all minimum regret stable matchings. This completes the proof of Theorem s.4.1. n

5.9 PROOF OF THEOREM §.5.1

The following lemma follows from Lemma 1 in Gale & Sotomayor (1985), which establishes a relationship between two

stable matchings at a preference profile.



Lemma s.9.1. Let Py be a preference profile and let ¢, € C(Py). Then, pr(m) Ryt () for all m € M if and only if
Y (w)Ryu(w) forallw € W.

Let us first recall some of the notations used in the context of the conditional MWPDA algorithm. For a preference profile
Py, aset of forced pairs Qy, and a set of forbidden pairs Q», x” is the cut-off vector associated with the MWPDA algorithm at
Round 7 of the conditional MWPDA algorithm given (Q;, Q») and ¢ is the outcome of the MWPDA algorithm at Round

7.

Completion of the proof of Theorem 5.5.1. It is obvious that if the conditional MWPDA algorithm given (Q1, Q>) con-
verges at Py, then there exists a stable matching with forced pairs Q; and forbidden pairs Q. We proceed to prove the rest
of the theorem. Suppose there exists a stable matching with forced pairs Q; and forbidden pairs Q, at Py. Let C(Py) be the
set of all stable matchings at Py with forced pairs Q; and forbidden pairs Q5. Clearly, C(Py) # @. Define the mapping

¢t N — NU{D} such that

(i) forall m € M, u*(m) = xif and only if there exists a g € C(Py) such that u(m) = xand &' (m)R,,x for all
‘u' € C(PN), and

(ii) forallw € W, u*(w) = yif and only if there exists a ¢ € C(Py) such that u(w) = y and yR ¢ (w) for all

/,4, € C_(PN).

It follows from the construction of ¢* that it is women-optimal in C (Py) (see Knuth (1976) for details). We show that the
conditional MWPDA algorithm given (0Q1,02) converges at Py producing ¢* as the outcome.

If ¢ = p*, then we are done. Suppose u # p*.
Claim s.9.1. Forallm € M, we have

(i) rank(Py,uf(m)) < x,, and

(i) @ (m) Ry (m).

Proof of Claim 5.9.1. By the definition of x', we have x},, > rank(P,,, u*(m)) forallm € M. Since u* € C(Py), by
Remark 5.3.2, we have rank (P, 1" (m)) > rank(Poy 1y, (m)) forall m € M. Combining the facts that i, > rank(P,,
@ (m)) forallm € Mand rank(P,,, u*(m)) > rank(Py, py,(m)) forallm € M, we have k},, > rank(Py, p,,(m)) for
all m € M. Therefore, by Lemma 5.8.1, 7ank(P,,, 1} (m)) < x, forall m € M. This proves (i) in Claim 5.9.1.

By Lemma 5.8.2, ), > rank(P,,, u*(m)) for all m € M implies zf (w)R,p* (w) forall w € W. By Lemma 5.9.1, this

implies ¢* (72) Rt} (m) for all m € M. This proves (ii) in Claim 5.9.1. O



Claim 5.9.2. u (m) = u*(m) = w for all (m,w) € Q.
Proof of Claim 5.9.2. Since k', = rank(P,,, w) forall (m,w) € Qi, u*(m) = wforall (m,w) € Qy, by Claim s5.9.1,

we have u} (m) = wforall (m,w) € Qy, which completes the proof of Claim s5.9.2. O

By Claim 5.9.2, it follows that the conditional MWPDA algorithm given (Q1, Q) will not stop at Round 1, and because

it does not converge either at Round 1, it will go to Round 2.
Claim 5.9.3. 2, > rank(P,,, u*(m)) forall m € M.

Proof of Claim 5.9.3. By the definition of x?, we have 2, = rank(P,,, u*(m)) forallm € Q. Takem ¢ Q1. If (m,
1£(m)) & Qz, then by the definition of x and (if) in Claim 5.9.1, we have k2, > rank(Py, i* (m)). On the other hand, if
(m, u; (m)) € Q», whichin particular means z*(m) # u; (m), thenby (ii) in Claim 5.9.1, it must be that * (m2) P,,1 (m).
Therefore, by the definition of x* and (ii) in Claim 5.9.1, we have k2, > rank(P,,, #*(m)). This completes the proof of

Claim 5.9.3. [

Using similar logic as for Claims 5.9.1 and 5.9.2, it follows that

rank(Py, 1y (m)) < x2 forallm € M, (s.112)
@ (m) R, (m) forall m € M, and (s.11b)
@y (m) = p*(m) = wiorall (m,w) € Q. (s.110)

Claim 5.9.4. 15 (m) R, (m) forall m € M and there exists m' & Qy such that i (m') Py (m”).

Proof of Claim 5.9.4. By the definition of k2, (5.11a) implies 5 () R,u} (m) for all m ¢ M. Moreover, as uf # u*,
there must exist 72/ ¢ Qy such that (m/, 4} (m')) € Q. This, together with the definition of ¥* and (5.11a), yields

5 (m') Py (m). O

By Claim 5.9.4, (5.112), and (5.11¢), it follows that the conditional MWPDA algorithm given (Q;, Q> ) either converges
at Round 2 or goes to Round 3. If it goes to Round 3, then using similar logic as for Claim 5.9.2, we have z; (m) =
¢ (m) = wforall (m,w) € Qy,and that for Claim 5.9.4, we have i (72) R 15 (m) for all m € M and there exists 72 & Q1
such that & () Py ().

We argue that the conditional MWPDA algorithm given (Q;, Q») must converge at some round.** Suppose not. Then,

we will get a sequence of stable matchings u, ¢, . . . such that g* (m)R,, . .. Ryt (m) R,y (m) for all m € M. Because

84R ecall that the conditional MWPDA algorithm always terminates, that is, either converges or STOPS at every preference profile
(see Section 5.5.1 for details).
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Ui, 45, - . . are all distinct and the number of stable matchings is finite, it follows that there must be a round where ¢* will
be produced, and hence the conditional MWPDA algorithm will converge.

Now, we show that the outcome of the conditional MWPDA algorithm given (Q1,Q,) is always ©*. Let 7 be the
terminal round of the conditional MWPDA algorithm given (Q1, Q2). Using similar logic as for Claim 5.9.1, we have
¢ (m)Ryps(m) forallm € M. Since u*, it € C(Py), by Lemma 5.9.1, ¢ (w) Ryu* (w) for allw € W. Moreover, since
the conditional MWPDA algorithm converges, it must be that z € C(Py). Since ¢ € C(Pn) and ¢k (w)R,p* (w) for

allw € W, by the definition of ¢*, we have * = (. This completes the proof of Theorem s.5.1. |
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