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Abstract

In this literature we present an algorithm for automatic classification of IIF
images of HEp-2 cells into relevant classes. Our algorithm is majorly based on the
“Dictionary Learning” algorithm and we have redefined it’s objective function to suit
our purpose. The major difficulty in HEp-2 cell image classification lies in it’s low
inter-class variability and substantial intra-class variations. To address these issues,
we have modified the objective function of “Dictionary Learning” to learn inter-class
features. Moreover, we used a local feature extractor based pre-processing stage
and also a “spatial decomposition” classifier set-up for better classifying test images.
We evaluated our algorithm on three most widely accepted bamechmark data-sets
for HEp-2 cell classification, ICPR 2012, ICIP 2013 and SNP data-sets. Proposed
algorithm has achieved superior results than other popular dictionary learning al-
gorithms for HEp-2 cell classification. Moreover, when comparing with other algo-
rithms for HEp-2 cell classification, including the winners of ICPR 2012, ICIP 2013
and SNP data-set, we show that proposed algorithm reports very competitive result.
Though our proposed algorithm is designed to be application specific to HEp-2 cell,
still we evaluated its performance on another popular benchmark data-set, “Diabetic
Retinopathy” data-set. Our algorithm provided higher accuarcy than other state-of-
the-art algorithms on that data-set too.

Keywords: Dictionary Learning, Indirect Immuno-fluorescence Image,Cell Classi-
fication, Human Epithelial Cell-2, Diabetic Retinopathy
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Chapter 1

Introduction

The circulatory system in the human body transports micro-particles
to facilitate a wide spectrum of functions. The immunity system defends our body
by detecting foreign pathogens and attacking the invasions. Immunity in human
mainly work through two pathways, internal and externally initiated processes. The
body’s inherent self-defence mechanism comprises of native micro-organisms, which
counters pathogens, without presence of any external aid. On the other hand, humans
also acquire the ability to defend against pathogens, as the body learns to counter
infections and develops antibodies against the pathogens.

This acquired form of immunity, is sometimes an imperfect process
and might occasionally learn to incorrectly identify our body’s own cells as germ
and generate antibodies to defend against these native cells. Such situations are
identified as “auto-immune diseases”. These antibodies specifically attack body cell’s
nucleus. So they are termed Antinuclear Auto-antibodies (ANAs). This produces
some common illness and are characterized by a chronic inflammation in different
organs.

The common tests used for detecting and quantifying ANAs are indirect
Immune-Fluorescence (IIF) and Enzyme Linked Immunosorbent Assay (ELISA) tests.
The IIF test is preferred and recommended as the ELISA test has limited detection
application scope [28].

HEp-2 cells are available at inner cell linings of human larynx. It bonds
with serum antibody forming a molecular complex. This complex then reacts with
human immunoglobulin, and bonds with added fluoro-chrome. Fluoro-chrome makes
it visible under a fluorescence microscope. This image, when observed under micro-
scope reveals the antigen-antibody patterns. Medical experts examine the images and
classify the staining patterns for each cell into different classes of interest. The com-
puter aided automated recognition of these classes is a “pattern recognition” problem
and is the key to an efficient and automatic diagnosis of patients with these ailment.
For a more detailed description the readers can go through [14].
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However, the manual classification of cells using IIF method suffers from
few drawbacks. The major disadvantages are: the low level of standardization, the
inter-observer variability, which reduces reproducibility of reports. Also there is lack
of resources and experinced physicians. Another problem reported is the similarity
between some classes, which causes the interpretational errors. The computer aided
automatic classification of HEp-2 cells can pave the way for more elegant solution to
these problems.

In recent years, many researchers tried with different approaches for
HEp 2 cell classification. In this article, we have proposed to classify the HEp-2 cell
images using “Dictionary Learning”. However, as already mentioned, major difficulty
in HEp-2 image classification is due to a low inter-class variation and also a substantial
intra-class variation. Moreover, number of patients is not same from all the classes
of ailment. So in many cases, biomedical image data set,including this HEp-2 data-
set, suffers from class imbalance. To circumvent these issues, we have modified the
objective function of “Dictionary Learning” to incorporate inter-class dependency.
Moreover, we used a local feature extractor based pre-processing stage and also a
SVM based “spatial decomposition” classifier to classify the test image. We evaluate
our algorithm on the ICPR 2012, ICIP 2013 and SNP competition data sets. The
results have been compared with other state-of-the-art algorithms. We also evaluated
our algorithms performance on another classification problem, detection of diabetic
retionpathy by classification of fundus images.

The remaining part of the article has been arranged in the following
sections. Section 2 reviews the major dictionary learning algorithm as well as different
approaches to classify HEp-2 cells. Section 3 discusses in depth about our proposed
algorithm. The next section 4 discuses about the performance of our proposed al-
gorithm and compares it with other state of the art algorithm on HEp-2 data-sets
and diabetic retinopathy data-sets. Finally Section 5 summarizes the algorithm and
discusses the future scope of work.



Chapter 2

Brief Literature Review

2.1 Dictionary Learning
“Dictionary Learning” algorithms try to learn “features” from the training

data-set, such that, any new signal generated from the same distribution as that of
the training signal source, can be expressed as a linear combination of a few “learned
features”. The collection of “learned features” is called the “Dictionary”. Feature
vectors contained in the dictionary are also called “atoms”. In the current literature
we use the words “features” and “atoms” interchangeably.

Let Y be d dimensional signal, Y ∈ Rd . D be the dictionary
with K features and each feature has dimension of d (same as that of the signal),
D ∈ Rd×K . Here, we try to express the signal Y to be linear combination of the atoms
from dictionary,

Y = DX (2.1)

where X is coefficient matrix, X ∈ RK . X contents the information about which of the
features (from K features in the dictionary) are used for a particular signal represen-
tation. In figure 2.1, the red cells in the sparse representation vector, X, represents
the index of features in the dictionary which are used for reconstruction of the signal.
Dictionary learning wants the signal to be represented as linear combination of fewest
features possible. Hence during the training the X vector is modelled to be, as sparse
as possible.

“Sparse Representation” system of a signal, has shown strong relationship
or similarity to human vision system. The human vision system is highly selective to
some specific common features like shape, color etc. Similarly the sparse systems try
to represent each signal as a linear combination of a few dictionary features. In [34]
[35], it is suggested that sparse visual structures has close similarity with working of
V1 sector of primary visual cortex. This similarity and applications based on it, has
inspired many researchers in recent years in this field. Sparse representation based
Dictionary learning algorithms have reported competitive results in signal restoration

8



2.1. Dictionary Learning 9

Figure 2.1: Signal representation as a linear combination of features from dictionary

[10],image compression [6], image super resolution [51], object recognition [52] etc.

To induce sparsity in signal representation, “Dictionary Learning” algo-
rithm uses an over-complete dictionary. Over-complete-ness suggests that there should
be more dictionary atoms than number of dimensions in the signal. In reference to
figure 2.1 above, we have for and over-complete systems K > d. However to represent
a d dimensional signal by using more than d dimension will have redundancy and the
equation Y = DX will have infinite number of possible combination of atoms to
represent a signal. In other words for a known D and known Y there will be infinite
number of possible X matrix and we select that X which is sparsest or has least
number of non-zero elements.
The objective function can be formulated as:

< D,X >= argmin
D,X

‖X‖0such that Y = DX (2.2)

or in constrained form and specified sparsity limit:

< D,X >= argmin
D,X

‖Y −DX‖2F + λ‖X‖0 (2.3)

The l0 norm induces sparsity and is defined as number of non zero coefficients in the
argument vector or matrix. The frobenius Norm is basically square root of sum of
square of the elements of the matrix
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‖AM×N‖2F =
M∑
i=1

N∑
j=1

√
‖aij‖2 (2.4)

Figure 2.2: Schematic diagram for training dictionary on N number of signals.
Training signals are stacked one after another, to form the signal matrix

However, finding the optimal solution to Y = DX while finding the sparsest
X matrix is exponential of computational cost. It can be solved using greedy approach.
Also some convex relaxation approaches exists. In 2009, Wright et. al. [50] had shown
that, if the solution is sufficiently sparse then l0 norm can be approximated by l1 norm.

Figure 2.3: Different orders of norm

So the objective function is replaced as:

< D,X >= argmin
D,X

‖Y −DX‖2F + λ‖X‖1 (2.5)
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2.2 Review of Relevant Dictionary Learning Algo-

rithms

2.2.1 K-SVD Algorithm

K-SVD proposed by Aharon et.al. [1] in 2006, is one of the most popular
algorithms for dictionary learning. In the K-SVD algorithm, for a given signal, the
dictionary (D) is first initialized and the best coefficient matrix X is found. After
finding X, the algorithm searches for a better dictionary D. This completes one
iteration. This process is repeated several times until threshold number of iteration
achieved or the desired accuracy is reached.

However, finding the whole dictionary, at once requires complex analysis.
So one atom of the dictionary (D) updated, at a time, while keeping X fixed. The
kth atom is updated by making it as perfect as possible by reducing the error caused
by that atom. Singular Value Decomposition is used to solve the equation. The
algorithm is named K-SVD to mimic it’s similarity to K-Means algorithm. K-Means
tries to cluster around K centers. Similarly, K-SVD considers dictionary atoms as
cluster heads in d dimensional space and tries to cluster around those dictionary
atoms.

Finding the truly optimal X, is of exponential complexity. However, the
authors used approximation pursuit method. Any pursuit algorithm such as, the Or-
thogonal Matching Pursuit (OMP) [7] can be used for the calculation of the sparse
coefficient matrix X. Next, we formally state the Orthogonal Matching Pursuit al-
gorithm and the complete K-SVD algorithm pseudo-code. We have stated K-SVD
algorithm in detail, because it has been used in in our proposed algorithm.

Algorithm 1 Orthogonal Matching Pursuit Algorithm

Input: Dictionary D and the input signal Y
Output: Sparse representation X
t← 1
Rt ← Y
while t≤MAX ITER do

find atom dj which has maximum inner product |〈Rt, dj〉|
Xj ← 〈Rt,dj〉

‖dj‖
Rt+1 ← Rt −Xjdj
t← t+ 1

end

Here Xj denote the jth row of the sparsity matrix (X) and dj denotes the
jth atom of the dictionary(D).



12 2. Brief Literature Review

The complete K-SVD algorithm incorporating the dictionary update stage and the
sparse coding stage given as:

Algorithm 2 The KSVD Algorithm

Input: Sparse representation X and the input signal Y
Output: Dictionary D
Set the initial dictionary matrix D with l2 normalized columns or atoms
while convergence not reached do

Sparse Coding stage: use any pursuit algorithm (In our case it is OMP) to get
the coefficient matrix Xi for each signal Yi

Dictionary Update Stage:
for k in range number Of Atoms
Define the group of signals that use this atom ωk = (i|X i

k 6= 0)
Compute the overall reconstruction error matrix Ek = Y −

∑
j 6=k djX

T
j

Restrict Ek by choosing columns of EK corresponding to ωk and obtain ER
K

Apply SVD decomposition to get ER
K = U∆V T The updated Kth atom d̃k is

first
column of U and XR

k is ∆[1, 1] times first column of V
end

2.2.2 Other relevant algorithms

The major problem with K SVD was, it was not suitable for classifi-
cation purpose. All the classes were using same dictionary or same set of features.
However since K-SVD was proposed, many researchers have come up with many
solutions to image classification using dictionary learning. Most of them try to re-
model the dictionary and considered one sub-dictionary for each class, to capture
class-specific features. In 2010, Ramirez et. al. [42] utilised the idea of class specific
sub-dictionary and proposed class Dictionary Learning With Structured Incoherence
(DLSI). They considered the objective function as class specific reconstruction error.
The objective function is:

〈Di, Xi〉 = argmin
Di,Xi

C∑
i=1

(
‖Yi −DiXi‖2F + λ1

C∑
j=1,j 6=i

∥∥DT
i Dj

∥∥2
F

+ λ2‖Xi‖1

)
(2.6)

The reconstruction error is used for classification of test signal. The classification
scheme can be formulated as

ĉ = argmin
i∈(1,2,3 ... C)

(
‖Yi −DXi‖2F + λ1

C∑
j=1,j 6=i

∥∥DT
i Dj

∥∥2
F

+ λ2‖Xi‖1

))
(2.7)
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where, D = [D1 D2 ... DC] is the dictionary, Di ∈ Rd×Ki is the sub dictionary of
ith class and Ki is number of atom is ith class specific dictionary. Yi is the set of
signals with label of ith class. C is total number of class in the training data and Xi is
the sparse representation of the ith class specific signal Yi corresponding to complete
dictionary D.

However soon after the success of the DLSI, Kong and Wang [19] proposed
Dictionary Learning With Commonality and Particularity (DL-COPAR). As a major
improvement to previous approaches, they considered another separate sub-dictionary
to store features common to all the classes. The relevant dictionary is called the
commonality dictionary (D0). The objective function as reported,

〈Di, Xi〉 = argmin
Di,Xi

C∑
i=1

(
‖Yi −DXi‖2F + λ1‖Yi −DiXi −D0X0‖2F

+λ2

C∑
j=1,j 6=i

∥∥DT
i Dj

∥∥2
F

+ λ3‖Xi‖1

) (2.8)

the term
∑C

j=1,j 6=i

∥∥DT
i Dj

∥∥2
F

is added to make the sub dictionaries more
disriminative. For classification they used similar reconstruction based classifier as in
DLSI [42].

After DL-COPAR reported competitive results Yang et al. [53] proposed
Fisher’s Discriminative Dictionary Learning (FDDL) Algorithm which further im-
posed some restrictions on the sparse coefficient matrix, X. They expect for all the
signals, with same class label, their sparse representation, must cluster as close as
possible. Similarly sparse representation for signals from different classes should be
as further clustered as possible. This follows from the intuition that signals from
same class uses similar group of atoms, for reconstruction. For all signals Yi in a class
i let Xi be the corresponding sparse representation. The authors define the mean
operation of matrix asM : AP×Q → BP×Q . The mean is taken over all the columns
and one single column is prepared. However, to preserve the dimensions, that column
vector is repeated and stacked Q times to get a single matrix of same dimension of
input matrix. We have the mean of the ith sparse coefficient matrix Xi is given as
Mi =M(Xi) and M =M(M〉) The corresponding objective function is:

〈Di〉 = argmin
Di,Xi

C∑
i=1

(
‖Yi −DXi‖2F +λ1

C∑
j=1,j 6=i

(
‖DiXj‖2F +λ3‖Xi‖1 +R(Xi)

))
(2.9)

Where R(Xi) is the main contribution of their algorithm and is given as

R(Xi) = ‖Xi −Mi‖2F − ‖Mi −M‖2F + ‖X‖2F (2.10)
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Here, the term ‖X‖2F is added for convex relaxation of the R(Xi).

Kong et al [20] proposed an extension of K-SVD [1] algorithm for specific
application of HEp 2 cell classification. It also considers sub dictionary for each class.
For each atom in the dictionary, they tried to maximize it’s reconstruction power for
that particular class in which the atom is in. For the rest of the classes, it tries to
decrease it’s reconstruction power. This leads to highly discriminative dictionaries.
Thus, overall the objective function is (let us update the kth atom and let it’s class
label be ck and all other remaining classes be denoted by ck)

〈dk〉 = argmin
dk

∥∥∥∥∥∥Yck −
∑

f(dj)=ck

dj(x
T
j )ck − dk(xTk )ck

∥∥∥∥∥∥
2

F

−

∥∥∥∥∥∥Yck −
∑

f(dj)=ck

dj(x
T
j )ck − dk(xTk )ck

∥∥∥∥∥∥
2

F
(2.11)

where, f(dk) = ck i.e. f function extracts the labelled class for each atom
in the dictionary and ck.They solved the optimization using the same Singular Value
Decomposition method, as proposed in the original K-SVD literature [1]. The two
terms in the objective function were solved separately. Since they oppose each other,
the authors suggested to the final solution should be along the first solution and
orthogonal to the second solution vector.

Recently, Low Rank Shared Dictionary Learning[47] was proposed by Monga
et. al. Their framework closely follows the work done in FDDL [53] and they further
proposed that the commonality dictionary part should necessarily have low rank. If
commonality dictionary D0 does not have low rank, then during the training the it
may even absorb some class specific features. So in the objective function they used
another term, nuclear norm of D0. Nuclear norm is evaluated as sum of singular
values of the argument matrix. The objective function is given as:

〈Di, Xi〉 = argmin
Di,Xi

C∑
i=1

(
‖Yi −DXi‖2F + λ1‖Yi −DiXi −D0X0‖2F + λ2

C∑
j=1,j 6=i

‖DiDj‖2F

+λ3‖D0‖∗ + λ4‖Xi‖1 + ‖Xi −Mi‖2F − ‖Mi −M‖2F + ‖X‖2F

)
(2.12)

where ‖D0‖∗ is the nuclear norm of the commonality dictionary D0

2.3 Relevant works on HEp-2 cell

In this section, we briefly review relevant algorithms on computer aided classification
of HEp-2 cell. Roughly, we divide the existing methods into three categories, “clas-
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sification using texture ”,“classification using shape” and “classification using both
texture and shape”.

• The “Texture-Based classification” approach majorly includes the Local Bi-
nary Patterns(LBP) based approaches [31],[32] and it’s variants [2],[55],[38],[36].
LBPs are the widely used approaches to capture texture feature. Among lo-
cal binary pattern-based algorithms reported in recent years, Co-occurrence
of Adjacent Local Binary Pattern (CoALBP) [29], [30], Gradient-oriented Co-
Occurrence of Local Binary Pattern (GoC-LBPs) [45], and Pairwise Rotation-
Invariant Co-Occurrence of Local Binary Pattern (PRICoLBP) [39] were the
three most successful algorithms. In [29], Nosaka and Fukui proposed to use
CoALBP for the HEp-2 cell classification and performed the best in the contest
for HEp-2 cell classication, which was held with the International Conference
on Pattern Recognition (ICPR) 2012. In this approach, each image was filtered
by a Gaussian function to remove noise and manually rotated with nine orienta-
tions (to improve the robustness to rotation), CoALBP features were extracted
for all images (both the original images and the manually rotated images), and
a linear support vector machine (SVM) was adopted for classication. In addi-
tion to the methods mentioned above, the original LBP [33], completed LBP
[16], and other well-known texture features, e.g., maximum response filter banks
(e.g., MR8) [46], gray-level co-occurrence matrices [17], and Wavelet [15], have
also been used in the HEp-2 cell classication.

• In “Shape-Based Classification” approaches, researchers have tried to classify
the images based on shapes of cells. They however extensively used the sell
segmentation masks provided by the organizers of different competition. In
[37], Ponomarev et al. exploited shape feature by counting the distribution of
the number of objects of interest,(post segmentation) area of those segmented
objects amongst other important features. However, though provided high clas-
sification accuracy due to its high sensitivity to mild noise in shape features, it
is not widely used in practice. In [21], Larsen et al. introduced a novel second-
order donut-like shape index histogram descriptor and was closely third winner
of the HEp-2 cell classication contest held at the International Conference on
Image Processing (ICIP) in 2013.

• We now briefly summarize the approaches in “Classification using Both Texture
and Shape”. In [18], Kong et al. adopted Varma’s MR8 method [46] to extract
the texture features. For extracting the shape based features, they used Bag
of Words approach for creating a vocabulary of shape based features. Finally,
pyramid of Histogram of Oriented Gradients (HoG) [5] twas also used during
the classification step. The texture and shape histogram were weighted and
concatenated to create the final signal vector. In [41], Shen et al. proposed
to combine PRICoLBP [39] and Bag of Words, with SIFT feature [24] for the
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HEp-2 cell classication. The two sources of features were stacked one after an-
other using a linear kernel support vector machine. In [27], Manivannan et. al.
proposed a method based on combination of four different features and reported
best accuracy in ICPR 2014 competition. In their method, each image response
was taken in four orientations, multi-scale patches were sampled densely, four
types of features were extracted. In total, sixteen histograms were obtained to
train sixteen support vector machines with linear kernel. In addition, Theodor-
akopoulos et. al. also investigated the combination of different features, e.g.,
combining GoC-LBPs [45] and a multivariate distribution of SIFT features [44],
combining the morphological features and a bundle of local gradient descriptors.



Chapter 3

Discriminative Dictionary Learning
by Exploiting Inter-class
Dependencies

3.1 Objective Function

One major difficulty for effective classification of HEp-2 cell lies in it’s
high inter-class similarity and high intra-class variability. The existing algorithms
had specific measures to make the class specific dictionaries discriminative. However
existing algorithms tend to make the sub-dictionaries discriminative. In other words
they tend to reduce the overlap between the sub-space spanned by the atoms of
the class specific dictionaries. However the inter-class similarity indicates that there
is some overlapping region between sub-spaces spanned by different class specific
dictionaries. So the existing dictionary learning based algorithms were not suitable
for HEp-2 cell image classification.

So to address this issue, we proposed to modify the objective function to
better capture the features common between the classes. The commonality dictionary
can only captures the features which are common amongst all the classes such as the
background etc. However there may be some features which are common between
two or three classes and those features can not be captured by the commonality
dictionary. While existing models which try to make the class specific dictionary
excessive discriminative, they simply lose those between class features. So to better
discover inter class features, we add clustering between class specific dictionaries and
term it as “Family Specific Sub-dictionary”. Each family comprises of a few classes.
The resulting dictionary that we have considered is

D =

[
D0 D1 D2 D3 ... DC+i ... DC︸ ︷︷ ︸

class specific dictionary

DC+1 DC+2 ... DC+f ...DC+F︸ ︷︷ ︸
family specific dictionary

]

17
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where C is the number of classes in the data-set and F is number of families in the
data set. A more detailed discussion each section of the dictionaries are as follows

1. Class specific dictionary : Each class has a specific dictionary and it explores
and stores the features specific to the that particular class. The ith class specific
dictionary is given as

Di ∈ Rd×Ki i = 1, 2, ... C

where Ki is the number of atoms allowed to the ith class. So the class specific
dictionary component is

Dclass specific =

[
D1 D2 D3 ... DC+i ... DC

]
2. Family Specific Dictionary : A brief description of the classes of HEp-2 cell are

as follows. This description in the following section from the website of the ICPR
2012 competition https://mivia.unisa.it/datasets/biomedical-image-datasets/

hep2-image-dataset/

(a) Homogeneous: diffuse staining of the inter-phase nuclei and staining of the
chromatin of mitotic cells;

(b) Fine speckled: fine granular nuclear staining of inter-phase cell nuclei;

(c) Coarse speckled: coarse granular nuclear staining of inter-phase cell nuclei;

(d) Nucleolar: large coarse speckled staining within the nucleus, less than six
in number per cell;

(e) Cytoplasmatic: fine fluorescent fibres running the length of the cell;

(f) Centromere: several discrete speckles ( 40-60) distributed throughout the
inter-phase nuclei and characteristically found in the condensed nuclear
chromatin.

From the above description one can note the fact that both “fine speck-
led” and “coarse speckled” are having granular nuclear staining of inter-phase
cell nuclei. Similarly “homogeneous” is also having staining of inter-phase nu-
cleus though the staining pattern is different. “Centromere” and “homoge-
neous” both uses staining of nuclear chromatin. Hence there is some inter-class
similarity between classes. So we use family specific dictionaries where each
family is a cluster of few classes. The “Family Specific” dictionary contains
those features which are common between some classes but not common to all
classes. We assume there are F number of families or class-clusters. f th family
specific dictionary is given as

DC+f ∈ Rd×KC+f f = 1, 2, ... F

https://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-image-dataset/
https://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-image-dataset/
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where KC+f is the number of atoms allowed to the f th Family. So the family
specific dictionary is given as

Dfamily specific =

[
DC+1 DC+2 ... DC+f ...DC+F

]
3. Commonality Dictionary : The images of HEp-2 cells are all captured in fluo-

rescent base. All the images are being cell images, they have lot of similarity
among them. So we use a commonality dictionary D0, D0 ∈ Rd×K0 , which
stores the common features between all the class specific signals. where K0 is
the number of atoms in commonality dictionary.

Figure 3.1: Visualizing the dictionary structure

Figure 3.2: Corresponding Y Matrix

D =

[
D0 D1 D2 D3 ... DC+i ... DC DC+1 DC+2 ... DC+f ...DC+F

]
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where C is the number of classes and F is the number of family.

The total number of atoms is given as

K = K0 +
C∑
i=1

Ki +
F∑
j=1

KC+j (3.1)

In our case the objective function is

C∑
i=1

(
‖Yi −DXi‖2F + λ1

∥∥∥Yi −DiX
i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

+λ2

{
‖Xi −Mi‖2F − ‖Mi −M0‖

}
+ λ3

C+F∑
j=0, j 6=i

∥∥DT
i Dj

∥∥2
F

)
+ λ4‖X‖1

(3.2)

number of signal in ith class is given by Ni and the total umber of signals
is given by

N =
C∑
i=1

Ni (3.3)

ith class specific signal given by Yi ∈ Rd×Ki . Similarly X denotes the overall sparse
representation of the signal with respect to the complete dictionary,D. X ∈ RK×N.
The symbol Xi denotes the sparse coefficient of of the signals belonging to class i
(Yi) with respect to the complete dictionary(D), Xi ∈ RK×Ni . Similarly the sparse
representation of the signal of class i , Yi over the dictionary Dj us given as Xj

i ∈
RKj×Ni

In a detailed description about the objective function, the first term of
the objective function ‖Yi −DXi‖2F signifies that for all class specific signal it must
be well approximated by the complete dictionary. In other words, all the signals
irrespective of which class it comes from, it must lie in the space spanned by the
complete dictionary.

The next term,
∥∥∥Yi −DiX

i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

comprises of the the

three main components of dictionary. If we assume cth class depends on the f th

family then we assume that the following approximation holds

Yc ≈ D0X
0
c +DcX

c
c +DC+fX

C+f
c

The term ‖X‖1 is the conventional term to add sparsity in the training process. The
discriminative fidelity term

C+F∑
j=0, j 6=i

∥∥DT
i Dj

∥∥2
F
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is added to reduce the similarity between the different sub-dictionaries. This term
has been earlier used by FDDL [52] and other algorithms [50].

The term that remains to be discussed is

(
‖Xi −Mi‖2F − ‖Mi −M0‖

)
.

This term follows from LRSDL [19] implementation. We define the mean operation

Ψ : RM×N → RM×N

as ψ(A) = Ã where Ψ first takes mean of each row for the A Matrix, and thus we
obtain a single column vector ∈ RM . The mean vector is stacked N times to form
the output matrix as same dimension of input matrix. We define Mi = Ψ(Xi) and
M0 = Ψ(Mi)

3.2 Optimizing the Objective Function

There are many updates to be done. We list them

1. Update the class specific dictionary for each class

2. Update the family specific dictionary for each family

3. Update the commonality dictionary

4. Update the family assignment to each class

5. Update the sparse coefficient with respect to class specific dictionaries

6. Update the sparse coefficient with respect to family specific dictionaries

7. Update the sparse coefficient with respect to commonality dictionaries

3.2.1 Update class specific dictionary

In this section we derive the equations needed to update each class’s dictionary
Di i = 1, 2, ... C. For updating each class specific dictionary we start by keep-
ing all other sub-dictionaries fixed. The updates are done with respect to one atom
at a time. To solve the optimum dictionary matrix partial derivative needs to be per-
formed. Since matrix differentiation with respect to matrix requires tensor calculus
of higher order, we avoid complete dictionary update at a time and use atom by atom
update, instead. Within the class-specific dictionary of the “class of interest” we set
all the atoms, other than the atom of interest as constant. Let the ith class dictionary
be given as

Di =

[
di1 di2 di3 ... dil ... d

i
Ki

]
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where Ki is the number of atoms in the ith class. However to extract the lth atom of
the ith class dictionary we need to define proper linear transformer matrix. We define
matrix transformation T where Ti ∈ RKi×K as

Ti =

[
ti1, ... t

i
j ... t

i
Ki

]
where Ti ∈ RKi×K

tij =

[
0, , ..., 0︸ ︷︷ ︸∑i−1

p=0Km

,

j−1︷ ︸︸ ︷
0, ... , 0,

j

↑
1,

Ki−j︷ ︸︸ ︷
0, ... , 0︸ ︷︷ ︸

Ki

, , 0, ..., , 0︸ ︷︷ ︸∑C+F
m=i+1Km

]

we also define another matrix transformer T where Ti ∈ RK×K as

Ti =

[
T0 T1 ...Ti−1 0Ki×K Ti+1 ... TC+F

]
Now using this linear transformer matrix we can rewrite X i

i = TiXi and
Di = DT Ti . Now using this basic simplifications we can rewrite our objective function
as follows,

The update equation for class specific dictionaries can be rewritten as fol-
lowing (excluding all class’s dictionaries other than the dictionary under considera-
tion)

J(Dc) = argmin
Dc

C∑
i=1

(
‖Yi −DXi‖2F

)
+ λ1

∥∥Yc −DcX
c
c −DC+fX

C+f
c −D0X

0
c

∥∥2
F

+λ3

C+F∑
j=0,j 6=c

∥∥DT
c Dj

∥∥2
F

(3.4)

However we can only update one atom of the cth class specific dictionary.
The dictionary Dc can be spilt in it’s atoms as

Dc =

[
dc1 dc2 dc3 ... dcl ... d

c
Kc

]
We consider the generalised update equation for updating the lth atom i.e. dcl The
objective functions can be rewritten as [by ignoring those components which only
depends on atoms other than dcl ]

J(dcl ) = argmin
dcl

C∑
i=1

∥∥∥∥∥∥Yi −DTcTTcXi︸ ︷︷ ︸
term 1

− g̃cTcXi︸ ︷︷ ︸
term 2

− dclhclTcXi︸ ︷︷ ︸
term 3

∥∥∥∥∥∥
2

F

+
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λ1

∥∥∥∥∥∥Yc − g̃cTcXc︸ ︷︷ ︸
term 4

− dclhclTcXc︸ ︷︷ ︸
term 5

−DC+fX
C+f
c −D0X

0
c

∥∥∥∥∥∥
2

F

+ λ3

∥∥∥∥∥
(
dcl

)T
DT̃ Tc

∥∥∥∥∥
2

F

term 1: Contribution from other dictionary other thane Dc. DTc
T

extracts all other
dictionary other than the cth class dictionary. The term TcXi includes contribution
of all other dictionaries other than the ith class’s dictionary and their corresponding
sparse representation is extracted.
term 2: Contribution from all atoms of cth class other than lth atom
term 3: Contribution from dcl
term 4: Contribution from all other atoms of Dc other than dcl
term 5: Contribution from dcl

Here all the signals that atoms of the Dc other than dcl is created as

g̃c =
Kc∑

m=1,m 6=c

dcmh
c
m

where hcm is an one dimensional row vector of which mth element is set to 1 and all
other element is set to 0. Also g̃c ∈ Rd×Kc and hcm ∈ RKc×1. However to apply all
the formulae and shortcuts derived on frobenius Norm we must convert the objective
function to some standard form where we can directly apply the formulae derived in
previous section

Pi = hclTcXi i ∈ {1, 2, , ...C} (3.5)

Qi = Yi −DTc
T
TcXi − g̃cTcXi i ∈ {1, 2, , ...C} (3.6)

Ri = DTi
T

i ∈ {1, 2, , ...C} (3.7)

Sc = Yc −D(T
T

C+f T̃C+f + T
T

0 T 0)Xc − g̃cTcXc (3.8)

using those substitutions we have

J(dcl ) = argmin
dcl

C∑
i=1

(
‖Qi − dclPi‖

2
F

)
+ λ1‖Sc − dclPc‖

2
F + λ3

∥∥∥(dil)
T
Rc

∥∥∥2
F
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Now we apply the equation results from partial derivative of “frobenius
Norm” from equation A.4 and equation A.6 in all the terms

∂
∑C

i=1

(
‖Qi − dclPi‖

2
F

)
∂dcl

= −2
C∑
i=1

QiP
T
i + 2dcl

C∑
i=1

PiP
T
i

∂‖Sc − dclPc‖
2
F

∂dcl
= −2ScP

T
c + 2dclPcP

T
c

∂
∥∥∥(dil)

T
Rc

∥∥∥2
F

∂dcl
= RcR

T
c

Putting all the terms together and rearranging a bit we get

dcl = (A+ λ1PcP
T
c + λ3RcR

T
c )−1 (B + λ1ScP

T
c ) (3.9)

where A =
∑C

i=1,i 6=c PiP
T
i and B =

∑C
i=1,i 6=cQiP

T
i

3.2.2 Update family specific dictionary

Next we derive the update equation family specific dictionariesDC+f for f ∈ [1, 2, ... F].
Let us rewrite the main objective function from equation 3.21 in terms of DC+f

J(DC+f ) = argmin
DC+f

( C∑
i=1

‖Yi −DXi‖2F
)

+λ1

( C∑
i′∈sub−cluster(f)

∥∥∥Yi′ −Di′X
i′

i′ −DC+fX
C+f
i′ −D0X

0
i′

∥∥∥2
F

+λ3

C+F∑
j=1,j 6=C+f

∥∥DT
0Dj

∥∥2
F

The dictionary DC+f can be spilt in it’s atoms as

DC+f =

[
dC+f1 dC+f2 dC+f3 ... dC+fl ... dC+fKC+f

]
We consider the generalised update equation for updating the lth atom i.e. dC+fl The
objective functions can be rewritten as [by ignoring those components which only
depends on atoms other than dC+fl ]

J(dC+fl ) = argmin
dC+f
l

C∑
i=1

∥∥∥Yi −DTC+f
T
TC+fXi − g̃C+fTC+fXi − dC+fl hC+f

l TC+fXi

∥∥∥2
F

+
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λ1

C∑
i′∈sub−cluster(f)

∥∥∥Y ′i −Di′X
i′

i′ −−D0X
0
i′ − ˜gC+fTC+fXi′ − dC+fl hC+f

l T C+fXi′

∥∥∥2
F

+

λ3

∥∥∥∥∥
(
d
(C+f)
l

)T
DT

T

C+f

∥∥∥∥∥
2

F

Here the i′ ∈ sub − cluster(f) signifies that the sum is only taken over
those indices or those classes which uses the family under consideration. where gC+f =∑KC+f

m=1,m6=l d
C+f
m hC+f

m Again we need some minor substitutions to reshape this objective
function to our known form where we can directly apply the derivative of the frobenius
Norm, using results from equation A.1 and equation A.2 The substitutions are

Pi = hC+f
l TC+fXi ∈ R1×Ni (3.10)

Qi = Yi −DT
T

C+fT C+fXi − g̃iXi (3.11)

RC+f = DT
T

C+f (3.12)

Si′ = Yi′ −D(T
T

i′T i′ + T
T

C+FT C+F)− g̃li
′
TC+fXi′ (3.13)

Using this substitution the objective function can be modified as in much
simpler form:

J(dC+fl ) = argmin
dC+f
l

C∑
i=1

(∥∥∥Qi − dC+fl Pi

∥∥∥2
F

)
+λ1

C∑
i′∈subcluster(f)

(∥∥∥Si′ − dC+fl Pi′
∥∥∥2
F

)
+λ3

∥∥∥(dC+fl )
T
RC+f

∥∥∥2
F

Now we apply the result for deriving the partial derivative of frobenius
Norm from equation A.4 and equation A.6

∂
∑C

i=1

(∥∥∥Qi − dC+fl Pi

∥∥∥2
F

)
∂dC+fl

= −2
C∑
i=1

QiP
T
i + 2dcl

C∑
i=1

PiP
T
i

∂
∑C

i′∈subcluster(f)

(∥∥∥Si′ − dC+fl Pi′
∥∥∥2
F

)
∂dC+fl

= −2
C∑

i′∈subcluster(f)

Si′P
T
i′ + 2dC+fl

C∑
i′∈subcluster(f)

Pi′P
T
i′
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∂
∥∥∥(dC+fl )

T
RC+f

∥∥∥2
F

∂dC+fl

= RC+fR
T
C+f

Putting all the terms together and rearranging a bit we get

dC+fl = (A+ λ1C + λ3RC+fR
T
C+f )

−1 (λ1B + E) (3.14)

where A =
∑C

i=1,i 6=c PiP
T
i and C =

∑C
i′∈subcluster(f) Pi′P

T
i′ B =

∑C
i′∈subcluster(f) Si′P

T
i′

E =
∑C

i=1QiP
T
i

3.2.3 Update commonality dictionary

The update equation of the commonality dictionary is comparatively simpler than
the previous versions. We have

D0 =

[
d01 d02 ... d0l ... d

K0
l

]
as usual we ignore all other terms other than those contains D0 in that term and also
we do have the modified objective function as

J(D0) = argmin
D0

C∑
i=1

‖Yi −DXi‖2F+λ1

C∑
i=1

∥∥Yc −DcX
c
c −DC+fX

C+f
c −D0X

0
c

∥∥2
F

+λ3

C+F∑
j=1

∥∥DT
0Dj

∥∥2
F

we define

g̃0 =

K0∑
m=1,m 6=l

d0me
0
m

Now considering atom by atom we have

J(d0l ) = argmin
d0l

C∑
i=1

∥∥∥Yi −DT T0 T 0Xi − g̃0T0Xi − d0l h0l T0Xi

∥∥∥2
F

+

C∑
i=1

λ1
∥∥Yc −DcX

c
c −DC+fX

C+f
c − g̃0T0Xi − d0l h0l T0Xi

∥∥2
F

+

λ3

∥∥∥∥∥
(
d0l

)T
DT̃ T0

∥∥∥∥∥
2

F
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Now We need to differentiate this with respect to

Pi = h0l T0Xi (3.15)

Qi = Yi −DT
T

0 T 0Xi − g̃iT0Xi (3.16)

R0 = DT
T

0 (3.17)

Si = Yi −D(T Ti Ti + T TC+fTC+f )Xi − g̃iT0Xi (3.18)

using those substitutions as shown above we have the following simplified
equations as

J(d0l ) = argmin
d0l

C∑
i=1

(∥∥Si − d0lPi∥∥2F
)

+ λ1

∥∥∥(d0l )
T
R0

∥∥∥2
F

+
C∑
i=1

(Qi − d0lPi)

Now using the results derived in equation A.1 and equation A.2 we have the following
results

∂
∑C

i=1

(
‖Si − d0lPi‖

2
F

)
∂d0l

= −2
C∑
i=1

SiP
T
i + 2d0l

C∑
i=1

PiP
T
i

∂
∑C

i=1

(
Qi − d0lPi

)
∂d0l

= −2
C∑
i=1

QiP
T
i + 2d0l

C∑
i=1

PiP
T
i

∂

∥∥∥∥∥
(
d0l

)T
R0

∥∥∥∥∥
2

F

∂d0l
= R0R

T
0

Equating the partial derivatives to zero and rearranging a bit we get

d0l =

(
(1 + λ1)A+ λ3R0R

T
0

)−1
(λ1B + C) (3.19)

where A =
∑C

i=1 PiP
T
i B =

∑C
i=1QiP

T
i C =

∑C
i=1 SiP

T
i
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3.2.4 Update Family assignment for each class

For each class we need to assign it to a single agglomeration of cluster. There may
be many a way to perform that assignment. In this literature we assign each class
to, one by one, to all the families and calculate the resulting reconstruction error.
Then we sort families according to reconstruction error generated. The family with
the least reconstruction error is selected to be the family of the class. For cth class
the family is given as fc and we obtain fc as

fc = argmin
f

∥∥Yc −DcX
c
c −DC+fX

C+f
c −D0X

0
c

∥∥2
F

(3.20)

where f ∈ [1, 2, 3, ... F]

3.2.5 Update sparse representation with respect to class spe-
cific dictionary

Their are four occurrences of sparse coefficient with respect to class
specific dictionary in equation 3.21. We write the relevant equation as

C∑
i=1

(
‖Yi −DXi‖2F︸ ︷︷ ︸

term 1

+λ1

∥∥∥Yi −DiX
i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F︸ ︷︷ ︸

term 2

+λ2

(
‖Xi −Mi‖2F − ‖Mi −M0‖

)
︸ ︷︷ ︸

term 3

)
+ λ4 ‖X‖1︸ ︷︷ ︸

term 4

(3.21)

Now we have for term 1 we apply differentiation rule for frobenius norm from equation
A.1 and A.2. We obtain

∂

(
‖Yi −DXi‖2F

)
∂Xi

= −2DTYi +DTDXi (3.22)

similarly for partial derivative of term 2, we can use the expression derived
in linear transformer matrix, X i

i = TiXi. Thus we have

∥∥∥Yi −DiX
i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

=
∥∥∥Yi −DiTiXi −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

= ‖Vi −DiTiXi‖2F

where Vi = Yi −DC+fX
C+f
i −D0X

0
i

∂‖Vi −DiTiXi‖2F
∂Xi

= −2T Ti D
T
i Vi + 2T Ti TiXi (3.23)
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For the third term, We have to express the mean operation as a linear
transformation to perform the partial derivative.Let Eq

p be a matrix ∈ Rp×q. Thus we
obtain

Mi = 1
Ni
ENi
K Xi since, Xi ∈ RK×Ni

Xi −Mi = Xi −
1

Ni

ENi
K Xi = Xi(I −

1

Ni

ENi
K )

∂‖Xi −Mi‖2F
∂Xi

=
∂

∂Xi

[
Xi

(
(I − 1

Ni

ENi
K

)
XT
i

(
I − 1

Ni

ENi
K

)]

= 2Xi

(
I − 1

Ni

ENi
K

)(
I − 1

Ni

ENi
K

)T
= 2Xi

(
I − 1

Ni

ENi
K

)
= 2Xi − 2Mi

So we have
∂‖Xi −Mi‖2F

∂Xi

= 2Xi − 2Mi (3.24)

We also have

Mi −M =
1

Ni

XiE
Ni
K −

1

Ni

MiE
Ni
K

thus we get

∂‖Mi −M‖2F
∂Xi

=
1

Ni

∂Xi

∂Xi

ENi
K −

1

Ni

∂Mi

∂Xi

ENi
K

=
1

Ni

ENi
K −

1

Ni

(
2Xi − 2Mi

)
ENi
K

=
1

Ni

ENi
K −

(
2Mi − 2M

)
So we have,

∂‖Mi −M‖2F
∂Xi

=
1

Ni

ENi
K −

(
2Mi − 2M

)
(3.25)
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For term 4 we have X i
i = TiXi and Xi = T

T

i T iX. So we express Xi as a
linear transformed product of X we have Xi = TiX. This implies, X = ΨiX

i
i , where

Ψi =

(
Ti
T
Ti

)−1
. So we can rewrite the fourth term as

‖X‖1 =

∥∥∥∥Ψi

(
Xi

)∥∥∥∥
1

Now to differentiate the l1 norm their issue as l1 norm is not differentiable at zero. So
we use the Iterative Shrinckage Thresholding Algorithm(ISTA) [4]. Which uses for
each dimension j in the argument vector the result of partial derivative is +1 if value
is > 0 else negative. An if the gradient changes sign then it indicates the terminal
case of no differentiability at 0 and we clamp the gradient to zero.

∂‖X‖1
∂Xi

=

∂

(
‖ΨiXi‖

1

)
∂Xi

= ‖Ψi‖1 ∗
∂

(
‖Xi‖

1

)
∂Xi

= ‖Ψi‖1 ∗


+1, if Xj

i > 0

−1, if Xj
i < 0

0, if Xj
i = 0

(3.26)

where j varies from 0 to number of dimensions in argument Xi. For simplicity of

symbols we denote the opration defined in equation 3.26, as
∂‖X‖1
∂Xi

= ISTA(Xi)

Thus combining partial derivative from equations 3.22, 3.23, 3.24 and 3.26
we obtain the final update equation for Xi as

−2DTYi+2DTDXi+λ1

(
−2T Ti D

T
i Vi+2T Ti TiXi

)
+λ2

[
(2Xi−2Mi)+

1

Ni

ENi
K −

(
2Mi−2M

)]
+λ3‖Ψi‖1 ∗ ISTA(Xi) = 0

=⇒ −2DTYi + 2DTDXi +λ1

(
−2T Ti D

T
i Vi + 2T Ti TiXi

)
+λ2

[
(2Xi−2M) +

1

Ni

ENi
K

]
+λ3‖Ψi‖1 ∗ ISTA(Xi) = 0

rearranging a bit we obtain

Xi =

(
2DTD + λ12T

T
i Ti + 2λ2I

)(−1)
(

2DTYi + 2λ1T
T
i D

T
i Vi

λ2

(
2M +

1

Ni

ENi
K

)
+ λ3‖Ψi‖1 ∗ ISTA(Xi)

) (3.27)
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3.2.6 Update Sparse representation for each family specific
dictionary

Similar to the discussion above we have, The relevant objective function is

J(XC+f
i ) =

∥∥∥Yi −DiX
i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

We do some minor substitution to transform this to a more convenient form where
we can directly apply the formulae of differentiating the frobenius Norm Let VC+f =

Yi−DiX
i
i −DC+fX

C+f
i −D0X

0
i Now using that substitution we do have substitution

we get

J(X i
c) =

∥∥∥VC+f −DC+fX
C+f
i

∥∥∥2
F

Now using the results about derivative of frobenius Norm from equation A.1 and
equation A.2 we get

∂
∥∥∥VC+f −DC+fX

C+f
i

∥∥∥2
F

∂Xc
c

= 0

XC+f
i = (DT

C+fDC+f )
−1

(DT
C+fVC+f ) (3.28)

For each class c we calculate this XC+f
i for i ∈ [1, 2 ... C] and stack all such XC+f

i to
get final XC+f

3.2.7 Update Sparse representation for commonality dictio-
nary

Similar to the discussion above we have, The relevant objective function is

J(X0
i ) =

∥∥∥Yi −DiX
i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

We do some minor substitution to transform this to a more convenient form where
we can directly apply the formulae of differentiating the frobenius Norm Let V0 =
Yi −DiX

i
i −DC+fX

C+f
i Now using that substitution we get

J(X0
i ) =

∥∥V0 −D0X
0
i

∥∥2
F

Now using the results about derivative of frobenius Norm from equation A.1 and
equation A.2 we get

∂‖V0 −D0X
0
i ‖

2
F

∂X0
i

= 0

X0
i = (DT

0D0)
−1

(DT
0 V0) (3.29)

For each class c we calculate this X0
i for i ∈ [1, 2 ... C] and stack all such X0

i to get
final X0



32 3. Discriminative Dictionary Learning by Exploiting Inter-class Dependencies

3.3 Pre-processing

We tried with different approaches in pre-processing during develope-
ment of our algorithm. “Dictionary Learning” algorithm considers signals in one
dimensional vector form. So we have to linearize the two dimensional image. Sim-
plest way to perform that was to stack columns in the images one after another to
form a single column vector of signal. However this was not a successful idea. The
reason being, by stacking one column after another column together we were sim-
ply losing all the information about the neighbourhood property. Thus important
features in the image were lost.

However to get better result we started with patch based image processing.
We resorted to fully overlapping patches. The patches had 50 % overlap in horizontal
direction as well as 50% overlap in vertical direction. The fully overlapping patch
based approach was good at capturing information. However, use of fully overlapping
patches, resulted increased number of dimension of final signal vector. This lead to
a proportionate increase in in computational cost of the algorithm. As already dis-
cussed, dictionary learning systems are designed to be over-complete. In other words,
the number of dimension of the signal should be less than the number of atoms in
the dictionary. However in worst case, if we consider the number of dimension to be
equal to number of atoms, still the overall algorithm is proportional to dimension,
raised to the power of 5. Hence increasing the number of dimensions has negative
effect on computational cost. Using fully overlapping patches provided higher classi-
fication accuracy, but computational cost still was not acceptable in comparison to
other state-of-the-art algorithms.

Next we tried not to use the raw images as input to the algorithm. Instead
we used texture extractor filters, MR-8. MR-8 filter consists of 38 different filters.
It incorporates a Gaussian and a Laplacian of Gaussian(LoG) both at scale σ = 10
pixels. They are an-isotropic filters. Then we have a bar filter and an edge filter
both at 3 scales and 6 directions.The scales are (σx, σy)={(1,3),(2,6),(4,12)}. The
six degrees of orientations are 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ For the two an-isotropic
filter their response is taken. For bar and edge filter both, for each of the scale, we
take maximum along that scale of all six direction . We have two responses for three
scales for bar and edge filter. Altogether we have 8 total responses in the final output.

However, this effort did not give good results. Next we tried to use the local
feature extractors like Sift Invariant Feature Transform (SIFT) [24] and the SURF
[3]. By using these feature extractors, we tried to address two major drawbacks of
the previous approaches. The first drawback was, when we are using patch based
processing we were giving equal importance to all the patches. All the patches did
not contain necessary information. Secondly the dimension of the image, as we have
discussed, is causing negative effect in computational time. In our implementation,
SURF was faster than SIFT, so we use SURF. Since local feature extractors like SURF
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or SIFT does not gives equal importance to all the patches, only relevant patch area
used. So, this removes the first drawback. We intentionally have taken the top 10
features in each image. To select the top ten features we have adaptively changed the
Hessian threshold in the SURF detector. For each feature, it’s corresponding feature
descriptor in SURF can be 64 dimensional or 128 dimensional. We have taken the 64
dimensional feature descriptor.

IN MIVIA HEp-2 cell database we used the masks provided. The masks
were prepared by human expert to segment cell image. We used those masks in our
algorithm. And again the HEp-2 images, though had 3 channels-RGB, but very little
information was contained in the Red and Blue channel. Thus all the image processing
tasks in our algorithm were done on the single channel image(Green channel).

3.4 Initialization

Proper initialization schemes are instrumental to obtaining high accuracy of the al-
gorithms. Different literature has suggested different initialization schemes for their
dictionary initialization. Complete random dictionary initialization is computation-
ally inexpensive way to initialize the dictionary. But in our case we have different
sub-dictionaries for different purposes. Using the same random initialization for all
the sub-dictionaries of the dictionary did not prove to provide good results and pro-
vide quick saturation of accuracy and loss.

The authors like [51], [50], [7] used an initialization where for cth class they
have used the signals with cth class label and randomly used some of those signals as
initial value of dictionary atoms. However in recent years, LRSDL reported by Monga
et.al. [47] uses Online Dictionary Learning [26] algorithm for initializing all it’s class
specific as well as well as commonality dictionary. A few iterations of ODL was
computationally expensive but it provided really good accuarcy. We being inspired
by these ideas, tried with different algorithms to initialize our proposed dictionary,
simultaneously keeping the computational complexity as low as possible. We have
used K-SVD [1] for class specific as well as other sub-dictionary initialization. For
each class specific dictionary we run a few iterations of K-SVD only on those class
specific signals. The output dictionary of the K-SVD is used as initial dictionary
for our algorithm. For commonality dictionary initialization we run K-SVD on the
whole signal set. For family specific dictionary initialization, we used a number of
approaches like using spectral clustering. None of them provided good result. We
randomly assigned few classes to each family and executed K-SVD on those classes
of signals to initialize the family specific dictionary.
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3.5 Classification Stage

We have tried different approaches in classification. We first tried with most popular
classification scheme based on the reconstruction error. Once we have learned the
class specific dictionary, we one by one assume the test signal to belong to each class
and evaluate the reconstruction error for that class. During train we have preserved
the information that each class belongs to some specific family.

However it could not provide good accuracy. The major problem with
biomedical data-set is we don’t have equal number of patients from all the data
class. Some classes of ailments are quite common and some classes are very rare.
So the reconstruction error based classification was obviously biased towards the
strongest representative class. Classes with many examples will have a well trained
dictionaries and may have very low variation in reconstruction error. However the
weak representation class’s signals do have few examples to train and have very high
reconstruction error for even signals belonging to their class also. So we didn’t use
the reconstruction error based classification concept.

Signals belonging to a particular class will use mainly the dictionary atoms
from the sub-dictionary for that particular class. This is the central idea behind our
proposed classification scheme. So if we use a separating hyper-plane on the spanning
space of the dictionary atoms, we can classify each test signal better. However the
commonality and family specific atoms are excluded from classifier training. So once
the training is done we extract the relevant columns of the sparse coefficient matrix
X, only with respect to sub-dictionaries corresponding to the dictionaries of the class
specific dictionaries. Then we train a SVM on the the reduced XR matrix, we use
that trained SVM to classify any new test signal.
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3.6 Algorithm

The training algorithms flowchart can be written as

Algorithm 3 DDLICD training

Input: Training signal Y
Output: Dictionary D Sparse representation X
Initialization: Initialize the dictionary by executing the K-SVD algorithm

/* comments on code */

while iteration<= IterationMAX do
for class<= C do

update Dc using equation 3.9
update Xc using equation 3.27
update class vs family assignment using equation 3.20

end
for family<= F do

update DC+family using equation 3.14
update XC+family using equation 3.28

end
update commonality dictionary D0 using equation 3.19
update sparse representation with respect to commonality dictionary X0 using
equation 3.29
reshape sparse coefficient matrix X to obtain Xreduced

train the SVM for classification
end

3.7 Complexity Analysis

In this section we analyse our algorithm’s computation cost. We have assumed that,
for a n row matrix we calculate it’s inverse in O(n3) complexity. Also though their are
strassens algorithm which performs matrix multiplication in optimized complexity, we
in our case assume that for Am×n × Bn×q form of matrix multiplication we have the
computational cost as O(mnp). Since dictionary learning algorithms explicitly make
the dictionary over-complete. So we can assume that K ≈ d, where d is the dimension
of the signala nd K is the number of atoms in the dictionary. Also we safely assume
number of atoms in the sub-dictionaries in our algorithm is constant fractions of total
number of atoms in the complete dictionary. Thus for ith sub-dictionary, it’s number
of atoms, ki = 1

cki
K where cki is a non zero positive integer. Similarly we assume

number of signals with ith class label, Ni = 1
cni
N where cni

is again a non zero positive

integer and N is the total number of signals.
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We first evaluate the computational complexity of the class specific dictio-
nary update equation.We evaluate the complexity of equations 3.5, 3.6, 3.7, 3.8

Pi︸︷︷︸
1×Ni

= hil︸︷︷︸
1×Ki

Ti︸︷︷︸
Ki×K

Xc︸︷︷︸
K×Nc

∈ R1×Ni

Qi = Yi︸︷︷︸
d×Ni

− D︸︷︷︸
d×K

Ti
T︸︷︷︸

K×K

Ti︸︷︷︸
K×K

Xi︸︷︷︸
K×Ni

− g̃i︸︷︷︸
d×Ki

Ti︸︷︷︸
Ki×K

Xi︸︷︷︸
K×Ni

Ri = D︸︷︷︸
d×K

Ti
T︸︷︷︸

K×K

Sc = Yc︸︷︷︸
d×Nc

− D︸︷︷︸
d×K

(T
T

C+f︸ ︷︷ ︸
K×K

T C+f︸ ︷︷ ︸
K×K

+ T
T

0︸︷︷︸
K×K

T 0︸︷︷︸
K×K

) Xc︸︷︷︸
K×Nc

− g̃c︸︷︷︸
d×Kc

Tc︸︷︷︸
Kc×K

Xc︸︷︷︸
K×Nc

For obtaining Pi we multiply hlc with dimension [1 × Ki] with Ti with dimension
[Ki×K] andXi with dimension [K×Ni]. This leads to overall computation complexity
of O(KiKNi + KiNi). However using the result Ki = 1

cki
K and KiKNi � KiNi,

we simplify the result as O(K2N). Similarly we can get computational cost for
calculating Qi as O(K2Ni +K2Ni + dKNi) However using K ≈ d we have O(K2N).
Similarly Ri evaluation we have O(dK2) ≈ O(K3). Finally, we have for Sc calculation
we have O(K3 + K2N) . So overall we have complete complexity is O(K3 + K2N).
Next we evaluate the complexity of the following two operation, evaluating A and B
and finally evaluating dcl from equation 3.9

dcl = (A+ λ1PcP
T
c + λ3RcR

T
c )−1 (B + λ1ScP

T
c )

where A =
∑C

i=1,i 6=c PiP
T
i and B =

∑C
i=1,i 6=cQiP

T
i . Calculation of matrix A involves

the transpose of a matrix Pi and summation over number of classes C. Transpose of
matrix P is O(N2) (Since P matrix’s dimension is is 1 × Ni) and multiplication of
P and P T also have same complexity of O(N2). So the computational complexity
for calculating A is evaluated is O(CN2 + CK2N). Similarly the complete cost for
evaluation of B is O(CK3 +CK2N). Also we have, multiplication of PcP

T
c calculation

has O(N2) cost and cost for calculating RcR
T
c is also same as O(K3). The complexity

of evaluation of the first inverse matrix of the expression of dcl is evaluated as O(K3).
So the overall complexity is for each atom of each class specific dictionary is dictionary
update is O(CK3 + CK2N + CN2). However this is update equation of a single atom
of a single class specific dictionary. For all the atoms of all the class specific atoms we
have to multiply the whole computation C times K. This updates the cost expression
as O(C2K4 + C2K3N + C2KN2). However, for biomedical image processing like HEp
2 cell classification or diabetic retinopathy as in our case ,the number of class is really
small. So we can neglect the dependency on number of class or number of family.
Hence this step complexity simplifies to

O(K4 +K3N +KN2)
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Same form of update equations are used for the family specific dictionary update and
commonality dictionary update. So the overall computational complexity remains
invariant due to their contributions. Family assignment for each class is computa-
tionally cheap operation. So we ignore its computational cost.

Analysing computational cost for updation of sparse representation for dif-
ferent dictionaries is relatively simpler than previous analysis. Equation 3.27 has the
final update equation for sparse representation update for class specific dictionaries.
To evaluate DTD cost is O(K3). Next for T Ti Ti the cost is O(k3) too. Similarly we
have the cost for 2DTYi the cost is O(K2N). Mi and M are obtained in in same
dimension of reading the X matrix. So, their cost is O(KN). So overall we have com-
plexity of Xc update is as O(K2N +KN +K3). This when added to computational
cost the overall cost remains same. So the overall cost is

O(K4 +K3N +KN2)



Chapter 4

Results and Discussion

We have tested our algorithm on three widely accepted benchmark data-set of HEp-2
cell. The data set published in ICPR 2012 [13], data-set of ICIP 2013 [∗] an SNP
dataset. All the experiments were conducted partly on a Intel Core(TM) i5 (3.40
GHz) PC with 8 GB of RAM and Windows 10 operating system and some parts of
the results are executed on Intel Xenon Sever E7-8890 (2.5 GHz) with 32 core CPU.
On each data-set we compare our algorithm with two groups of algorithms. The first
group of algorithms contains relevant dictionary learning algorithms. The second
group comprises of respective winners and best performer in those competitions. In
dictionary learning algorithm comparison we compare these four major algorithms
published in recent years, DL-COPAR [19], FDDL [53], D-KSVD [20], LRSDL [47].
The details of these algorithms have been discussed in the literature review section
of this paper.

4.1 Comparison with respect to ICPR 2012 data-

set

HEp-2 cell data-set from ICPR 2012 was published in two formats. The first data-set
contains 1457 individual cell images with corresponding class labels. The cell level
data-set is split into two sets by the competition organizers, a train set with 723
images and a test set containing 734 images. The 6 classes of interest are, “cen-
tromere”, “coarse-speckeled”, “cytoplasmatic”, “fine speckled”, “homogeneous” and
“nucleolar”. Each individual image is annotated and segmented manually by experts.
Images from this database, are acquired by means of a fluorescence microscope (40-
fold magnification) coupled with a 50-W mercury vapor lamp and a digital camera
utilizing a CCD with square pixel of 6.45 m. Resolution of the images is, 1,388×1,038
pixels and it has 24 bits of color depth. Also, for each image, a fluorescent intensity

∗https://mivia-web.diem.unisa.it/contest-icip-2013/

38
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tag, i.e., “positive intensity” or “intermediate intensity”, is assigned, however those
intensity tags are not of practical use to our algorithm.

Figure 4.1: ICPR 2012 data-set images of different classes viz-homogeneous, fine
speckled,coarse speckled, cytoplasmatic,centromer,neucleolar in clockwise direction

from top left corner, respectively

The distribution of test and train images of in different classes is shown in
table 4.1

Cell Level classification data
Train Test

centromere 208 149
coarse-speckeleds 109 101

cytoplasmatic 60 51
fine speckled 94 114
homogeneous 150 180

nucleolar 102 139
total 723 734

Table 4.1: Cell level data for ICPR 2012

The confusion matrix of our algorithm is as shown

Prediction

Ground Truth

homogeneous coarse-speckeled fine speckled nucleolar centromere cytoplasmatic
homogeneous 80.6 1.7 12.5 1.8 3.3 0.1

coarse-speckeled 4.1 65.2 6.8 1.0 21.9 1.0
fine-speckled 22.6 17.9 36.4 0.5 20.4 1.8

nucleolar 6.5 4.3 0.1 69.5 16.5 3.1
centromere 0.5 1.3 0.2 9.4 88.1 0.5

cytoplasmatic 3.3 3.0 2.8 3.6 6.2 80.1

Table 4.2: Cell level confusion matrix for ICPR 2012
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The average accuracy is evaluated by calculating average of all the class’s accuracy.
The average accuracy obtained by our algorithm on cell level classification data on
ICPR 2012 data set is 70.02%. Table 4.6 evidently shows that for fine-speckeled class
identification algorithm gets frequently confused with other classes like homogeneous
and centromere. However, even though cytoplasmatic is the class with least number
of cells in training set still our algorithm is able to classify it with high accuracy.
Hence this justifies the success of our SVM based spatial decomposition classification
scheme which was specially designed to avoid unncessary bias due to class imbalance.
Also coarse speckled gets high miss-classification error from the class centromere.
This follows from the fact that their is high amount of between class similarity in
HEp2 cell classes.

We compare our algorithms performance with other state-
of-the-art dictionary learning algorithms. These dictionary learning algorithms have
been studied in details in section 2.

Cell Level Accuracy
Algorithm accuracy

DL-COPAR [19] 57.34
FDDL [53] 61.1

D-KSVD [20] 64.98
LRSDL [47] 67.7

Our Algorithm 70.02

Table 4.3: Comparison with other dictionary learning algorithms

As already discussed in section 3, the major difficulty in effective classifica-
tion of HEp-2 cell is its inter-class similarity and intra-class variations. The existing
dictionary learning algorithms try to make class-specific dictionaries highly discrimi-
native. Hence they easily lose inter-class features. However LRSDL [47] has dedicated
commonality dictionary and hence achieved closely second rank in search of best ac-
curacy. Table 4.3 justifies the effectiveness of our proposed family specific dictionary
structure or the inter-class clustering concept. The accuracy vs epoch plot for differ-
ent dictionary learning algorithms are shown in figure 4.2

Next, we compare with other state-of-the-art algorithms including the winners of
ICPR 2012.
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Figure 4.2: Convergence plot for dictionary learning algorithm

Cell Level Accuracy
Methods accuracy (%)

Li et al. [23] 64.2
Nokasa et al.[29] 68.7
GoC-LBPs [45] 69.2

SIFT (VLAD) [18] 70.2
Shape Index Histograms [21] 74.5

PRICoLBP [41] 79.6
RootSIFT [40] 75.4

Our Algorithm 70.02

We observe from Table 4.1 the folllowing. The PRICoLGBP[41], RootSIFT[40],
Shape Index Histograms [21] and our algorithm, report higher accuracy on this data-
set. These algorithms outperform the winner of the ICPR 2012 contest, Nokasa
et al.[29]. However PRICoLBP and RootSIFT, as discussed in section 3.2, is com-
putationally complex algorithm, Shape index Histogram is another codebook based
algorithm and is marginally poor performance than our algorithm. In this context,
is worth mentioning that, the task is even challenging for the human expert. Human
accuracy is of 73.3% achieved when no other information is given, like neighbourhood
cell labels. From this perspective, an accurate HEp-2 cell classification system is very
valuable.

The second set of images from MIVIA ICPR 2012 contains
the image level data where the complete slide as obtained for a patient, is supplied.
The image level data-set is given along with relevant segmentation masks for each
slide. Some sample images are shown in Figure ?? and 4.5.
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Figure 4.3: Image Figure 4.4: Mask

It should be noted that. the class labels corresponding to each image slide,
is assigned to strongest representative class. The organisers proposed to test on
the slides using a leave-one-out protocol. In other words train on 27 slides and the
classifier is tested on the 28th slide. The slide IDs and corresponding class labels are
given as

ID class-label number of cells ID class-label number of cells

#1 homogeneous 61 #15 fine-speckled 63
#2 fine-speckled 48 #16 Centromere 38
#3 Centromere 89 #17 coarse-speckeled 19
#4 nucleolar 66 #18 homogeneous 42
#5 homogeneous 47 #19 Centromere 65
#6 coarse-speckeled 68 #20 nucleolar 46
#7 Centromere 56 #21 homogeneous 61
#8 nucleolar 56 #22 homogeneous 119
#9 fine-speckled 46 #23 fine-speckled 51
#10 coarse-speckeled 33 #24 nucleolar 73
#11 coarse-speckeled 41 #25 cytoplasmatic 24
#12 coarse-speckeled 49 #26 cytoplasmatic 36
#13 Centromere 46 #27 cytoplasmatic 38
#14 Centromere 63 #28 cytoplasmatic 13

Total 1457

Table 4.4: ICPR 2012 data-set

The confusion matrix of our proposed algorithm on image level data set of
ICPR 2012 is given in table 4.5
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Prediction

Ground Truth

Ccentromere coarse-speckeled fine speckled homogeneous nucleolar cytoplasmatic
centromere 81.4 0.3 0.5 2.7 14.6 0.5

coarse-speckeled 0.2 81.2 14.8 0.6 1.8 0.4
fine speckled 2.6 0.9 65.3 0.0 31.2 0.0
homogeneous 3.2 2.7 11.9 80.6 0.0 1.7

nucleolar 1.1 1.8 0.0 6.4 90.7 0.0
cytoplasmatic 0.0 3.1 0.0 0.8 0.0 96.1

Table 4.5: Image level confusion matrix for ICPR 2012

On image level data-set we could achieve an accuracy of 82.55%. Evidently it achieved
higher accuracy achieved than that of cell level image for the same data-set. The re-
sults on image level utilizes that in a slide the reported class has always the maximum
representation. Hence even if a few cell is mis-classified still the overall class label
can be accurately achieved unless the miss-classified cells do not become majority
in a slide. All the results reported in the paper are evaluated for 10 independent
execution and then averaged and reported. Comparison report to other dictionary
learning algorithms, is tabulated as follows

Image Level Accuracy
Algorithm accuracy

DL-COPAR [19] 72.1
FDDL [53] 75.8

D-KSVD [20] 78.9
LRSDL [47] 80.7

Our Algorithm 82.55

Similarly we compare with other state-of-the art algorithms.

Cell Level Accuracy
Methods accuracy (%)

Li et al. [23] 78.4
Nokasa et al.[29] 81.7
GoC-LBPs [45] 80..2

SIFT (VLAD) [18] 78.1
Shape Index Histograms [21] 80.5

PRICoLBP [41] 90.2
RootSIFT [40] 88.6
Our Algorithm 82.55

4.2 Comparison on ICIP 2013 data-set

The ICIP 2013 data-set used 419 patients positive serum with screening dilution 1:80.
The specimens were automatically captured using a cooled microscope with high dy-
namic range(monochromatic). In total, there are 68,429 extracted cell images. The
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whole cell image sets were divided into two sets, according to the experimental pro-
tocol. First 13,596 cell images constitute training samples and second set of 54,833
cell images are testing samples. The organizer did not publish the test set for re-
searchers. Hence only train set images are used for both training and testing. A
ground-truth mask image is also provided along with each cell image. Images of
cells were categorized into six classes: “homogeneous”, “speckled”, “nucleolar”, “cen-
tromere”, “nuclear membrane”, and “golgi”. The data-set includes two patterns less
frequent occurring in the practical clinic, which are “nuclear membrane” pattern and
“golgi” pattern. Thus, it offers a more realistic evaluation on the automatic classifica-
tion algorithms than the earlier data set. Since only the train image set is available,
We partitioned the training image set of 13,596 images into a training set consisting
of “6,842” cell images from 42 slides and a test set consisting of “6,754” cell images
from 41 slides.

Figure 4.5: Images from ICIP 2013

In ICIP 2013 data-set the class lables are diffeent from ICPR 2012 data-set. Infor-
mation for the training data of ICIP 2013 contest is shown in Table 4.2.
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ICIP 2013 data-set
class No. of images

Homogeneous 2494
Speckled 2831

Neucleolar 2598
Centomere 2741

Nuclear Membrane 2208
Golgi 724
Total 13596

The test train split in our case is as follows(42 slides in train and 41 slides in test)

ICIP 2013 data-set
class Test image train image

Homogeneous 1347 1147
Speckled 1391 1440

Neucleolar 1273 1325
Centomere 1462 1279

Nuclear Membrane 1190 1018
Golgi 362 362
Total 6842 6754

The confusion matrix of our algorithm is

Prediction

Ground Truth

homogeneous speckeled nucleolar Centromere nuclear membrane golgi
homogeneous 78.6 10.2 0.2 2.7 4.2 4.1

speckeled 12.0 81.2 0.5 0.5 1.2 3.6
nucleolar 1.9 1.7 51.3 1.5 34.2 9.4

Centromere 2.2 6.7 18.8 70.6 0.0 1.7
nuclear membrane 10.1 8.1 0.7 12.4 68.7 0.2

golgi 0.0 3.9 2.6 8.4 4.7 80.4

Table 4.6: Cell level confusion matrix for ICIP 2013

We again compare other dictionary learning algorithms with our algorithm
on ICIP 2013 dataset. As in the previous data-sets, here also we keep the pre-
processing stage same for all the dictionary learning algorithm. We can see in this
data-set also our algorithm is reporting the best accuracy achieved for any dictionary
learning algorithm.
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Cell Level Accuracy
Algorithm accuracy

DL-COPAR [19] 60.1
FDDL [53] 62.8

D-KSVD [20] 68.9
LRSDL [47] 70.7

Our Algorithm 74.1

Before concluding results on ICIP 2013 we compare our algorithm on some
other standard algorithms published in recent years.

Cell Level Accuracy
Methods accuracy

(%)
Fisher tensors-based BOW with region co-variance descriptor [11] 70.2
Nokasa et al.[29] 68.8
GoC-LBPs [45] 75.1
BoW with gradient orientation histogram and intensity based his-
togram pooling [43]

74.4

BoW with DCT features and spatial decomposition around cell
boundary [48]

67.4

Our Algorithm 74.1

Amongst the compared algorithms, methods by Nokasa et al.[29] and GoC-
LBPs [45]were top two performers of ICPR 2012 competition also. In this datset also
our algorithm reported competitive results. The top 3 algorithms are GoC-LBPs [45]
and BoW with gradient orientation histogram and intensity based histogram pool-
ing [43] and our algorithm. ”BoW with gradient orientation histogram and intensity
based histogram pooling” is also a codebook learning algorithm, similar to our pro-
posed algorithm. However, it has much higher computational complexity compared
to our algorithm.

4.3 Comparison on SNP data-set

The SNP data-set[49] is another widely accepted data-set for HEp2 cell classification.
The data-set was obtained bfrom patients at the “Sullivan Nicolaides Pathology”
laboratory, Australia. The data-set has five classes to be classified: “centromere”,
“coarse speckled”, “fine speckled”, “homogeneous” and “nucleolar”. In total there
are 1488 images. The total images are split into two groups 909 and 979 cell images
extracted for training and testing respectively. The details of the data-set are as
follows
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SNP data-set
class Test image train image

Homogeneous 172 188
Coarse Speckled 166 187
Fine Speckled 188 191

Nucleolar 194 188
Centromere 149 183

We compare all the dictionary learning algorithm on SNP datset results in
the following table.

Cell Level Accuracy
Algorithm accuracy

DL-COPAR [19] 54.1
FDDL [53] 56.2

D-KSVD [20] 59.8
LRSDL [47] 60.9

Our Algorithm 62.1

From above table, evidently, our algorithm is the best performer amongst dictionary
learning algorithms. However other computationally expensive algorithms have re-
ported good results too. To name a few, William et.al. [48] reported an accuracy of
82.5% and Yang et. al. [54] reported an accuracy of 80.6% on the SNP data-set.

4.4 Diabetic Retinopathy

Diabetic Retinopathy (DR) is an ailment associated with damages of
retinal vascular cells occurring due to long standing diabetes mellitus in patients
[25]. (Retinopathy is any damage to the retina of the eyes, which may cause vision
impairment. Retinopathy often refers to retinal vascular disease, or damage to the
retina caused by abnormal blood flow). In [12] researchers have reported that, Di-
abetic Retinopathy in recent years has caused blindness and vision impairment in
large number of patients, worldwide. They justified their report with figures that, in
the year 2016, 0.4 million patients reported to have blindness and 2.6 million other
patients are reported to have severe vision impairment due to Diabetic Retinopathy.
However, a timely detection of Diabetic Retinopathy helps in early avoidance of the
visual impairment and blindness caused by it. However, it is difficult for most pa-
tients to get an early treatment as symptoms are not always very strong. Diagnosis of
DR is done by close examination of the Fundus image of eye. (Fundus photography
involves photographing the rear of an eye; also known as the fundus. Specialized fun-
dus cameras consisting of an intricate microscope attached to a flash enabled camera
are used in fundus photograph) But this approach has several drawbacks. The first of
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which is that the procedure is time-consuming even for experienced experts. Hence
there is a great interest in research community in recent years to effectively design a
computer-aided automated diagnosis approache to accurately detect DR efficiently.
Many researchers around the world have come up with different approach for efficient
detection of diabetic retinopathy in last few years. Doctors (A lesion is any damage
or abnormal change in the tissue of an organism, usually caused by disease) try to
detect the diabetic retinopathy systems by detect presence of some typical lesions
such “hemorrhages”, “hard exudates” and “microaneurysms”. This idea has been
used by many researchers for detection of diabetic retinopathy in fundus images.

4.4.1 Details of The data-set

The data-set used in current article, is re-used from the data-set provided in diabetic
retinopathy competition, hosted the website of Kaggle [9]. The data set is originally
supplied by EyePACS. It contains 35,126 high resolution fundus photographs taken
under different imaging environment. Human experts have labelled fundus images
on a scale of 0 to 4 based on the severity of diabetic retinopathy. Table 4.4.1 shows
representations of different classes of diabetic retinopathy in the final data-set. The
International Clinical Diabetic Retinopathy Scale [22], is defines Referable Diabetic
Retinopathy or RDR as the presence of moderate and worse diabetic retinopathy
and/or referable diabetic macular edema. Thus, images with labels of 0 and 1 are
classified as “without RDR” and relabelled with 0, images with labels of 2, 3 and
4 are classified as “with RDR”’ and relabelled with 1. The relabelled data set is
reported in Table 4.4.1. However, as in the case of HEp-2 cell, (and other bio medical
imaging data-sets), the diabetic retinopathy data-set also suffers from class imbalance.
However, the organizers have tried to circumvent this issue. They have paired the
data-set in four groups: both eyes are with RDR, both eyes are without RDR, only
the left eye is with RDR and only the right eye is with RDR. Then 80% images in
each bunch are stored into the training set jointly while the remaining 20% of each
bunch will be used as test set, which ensures the proportion of images with different
labels is same in both training set and test set. These photographs are captured by
different types of cameras in different environment. Due to this reason and many
other reasons, unfortunately, there is some noise in the images and labels, which
cannot be avoided.

Label class number representation

0 No diabetic retinopathy 25810 73.5%
1 Mild 2443 6.9%
2 Moderate 5292 15.1%
3 severe 873 2.5%
4 Proliferative DR 708 2.0%
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Figure 4.6: No DR Figure 4.7: Mild Figure 4.8: Moderate

Figure 4.9: Severe Figure 4.10: Proliferative DR

Label class number representation

0 No RDR 28253 80.4%
1 RDR 6873 19.6%

Figure 4.6 to 4.10 are images for left eye. Corresponding images are avail-
able for right eye also.

4.4.2 Results

We compare the results of diabetic retinopathy detection using dictionary learning
algorithms. We keep the same SURF based preprocessing step for all the compared
algorithms as before.

Fundus image classification
Algorithm accuracy

DL-COPAR [19] 52.1
FDDL [53] 51.8

D-KSVD [20] 58.2
LRSDL [47] 58.4

Our Algorithm 62.1
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Evidently in this case also our algorithm has reported best results among
other dictionary learning algorithm. LRSDL closely follows our algorithm in its accu-
racy. However other dictionary learning algorithms did not report good accuracy in
this case. This can be justified that as said in the previous description, the diabetic
retinopathy image set considered noises due to camera environment change, image
orientations, etc. Also there is noise in the label set. So in general dictionary learning
algorithms are not effective in classifying noisy data-sets. However our algorithm has
reported good accuracy by improved noise handling.

4.5 Parameter Tuning

We used a few parameters in the algorithm. In this section we shall discuss about the
values of the parameters and justification for using those values. In the pre-processing
step, SURF is used to extract The features from the images. We have shown in section
that overall complexity varies with number of atoms raised to the power five. How-
ever in dictionary learning algorithm uses an over-complete dictionary, hence number
of atoms in dictionary is ≥ signal dimension. Hence we can say the overall complexity
of the algorithm varies with dimension of signal raised to the power of five. Hence
to reduce the computational time, we used 64 dimensional feature descriptor. We
used 10 strongest features/key-points by adaptive changing the Hessian Threshold.
So we get 640 dimensional signal vector.

In a over-complete systems the number of atoms must be greater than or
equal to number of signals. So we take the class-specific dictionary and family specific
as well as commonality dictionary atoms all at 720 per class or family as the case
may be. Regarding the classifier we have used the SVM as already mentioned. Since
we have 720 atoms per class/family. The number of possible output classes is also
quite large. So we use linear kernel for the SVM.

For the SVM used in classification step, we used the open source libsvm
implementation [8]. For set of L instance label pair points (xi, yi), where yi denotes
label and xi denotes instance. We have the following implementation for the SVM,

min
w,ξ,b

1

2
wTw + C

L∑
i=1

ξi

subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0

We try with different values of parameters and applied between RBF kernel and linear
kernel.
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• Linear kernel K(Xi, Xj) = XiX
T
j

• RBF Kernel K(Xi, Xj) = exp(−γ‖Xi −Xj‖2)

So, as evident from the above description for RBF Kernel we had two pa-
rameters (C, γ) and for linear kernel we had only one parameter C. We performed
extensive grid search to find the optimum parameter set. We observed that the algo-
rithm obtains highest accuracy with linear kernel. This may be justified as number
of attribute (dictionary atoms) is too large for this set. Also for the linear kernel
the highest accuracy was obtained for C=4.55 value. The number of possible output
classes are six or five depending on the data-set.(For example the ICIP Hep 2 data-
set has 6 classes and ICPR 2012 has 5 classes of interest). The number of family or
inter-class cluster is dependent on the data-set to be used. We used 3 families all the
different data-sets, for ICPR 2012 data-set, for ICIP 2013 data-set, SNP data-set and
Diabetic Retinopathy data-set. For ICPR 2012 data-set we have adaptively changed
the family number and observed the following graph representation in figure 4.11.
The optimum value being obtained by using three families.

Figure 4.11: Change of accuracy with varying number of family

Similar patterns were observed with other data-sets also. Regarding the
initialization of the algorithm using K-SVD we have used 30 iterations of it. We
have from equation 3.21 λ1 is the penalization constant corresponding to the term∥∥∥Yi −DiX

i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

. To observe how strong is the influence or utility

is of this penalization term, we vary λ1 from zero to 1.5 and note down the corre-
sponding accuracy. We obtain a graph as in the following diagram, figure 4.12.

The optimum value for λ1 is obtained for λ1 = 1.1 However the λ1 = 0 has

very low accuarcy. This shows that the term
∥∥∥Yi −DiX

i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

has good contribution towards the classification problem. Also a relatively flat curve

shows that
∥∥∥Yi −DiX

i
i −DC+fX

C+f
i −D0X

0
i

∥∥∥2
F

penalization term is a relatively dom-

inant term which is not changed by minor fluctuations. Similarly we have penalization



52 4. Results and Discussion

Figure 4.12: Change of accuracy with
variation of λ1

Figure 4.13: Change of accuracy with
variation of λ2

Figure 4.14: Change of accuracy with
variation of λ3

Figure 4.15: Change of accuracy with
variation of λ4
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constant λ2, λ3, and λ4. In equation 3.21, λ2 is the penalization constant correspond-

ing to the term
{
‖Xi −Mi‖2F−‖Mi −M0‖

}
. The variation in accuracy with variation

in λ2 is shown in figure 4.13. Evidently threre is increase in accuarcy as λ2 is increased
beyond zero, which justifies the use of this term in our objective function.

Also the optimum accuracy is obtained for λ2 = 0.8. Similarly we plot the
accuracy versus variation of λ3 in ??. . λ3 is the penalization corresponding to the

term
∑C+F

j=0, j 6=i

∥∥DT
i Dj

∥∥2
F

. This term makes the dictionary more discriminative, and
loses the between class features. So it results in a drop of accuarcy, as there are many
inter-class similarity based features in our data-set.

λ4 is the penalization corresponding to ‖X‖1. We obtain similar graph as
shown in figure 4.15. A high value in λ4 leads to high sparsity penalization. So we
obtain very low non zero significant values in X matrix. So, increasing λ4 increases
sparsity unnecessarily and results in decrease in accuarcy.



Chapter 5

Conclusion and scope of future
work

Bio-medical image processing and pattern recognition majorly suffers from high in-
class variation and low inter-class variation, both of which is undesired for effective
classification. We tried to circumvent these issues with a modification to dictionary
learning approach. Medical imaging data-set also suffers from class imbalance. we
tried to avoid the bias due to data imbalance by using a SVM classifier on a novel
setup. Results showed that our algorithm is superior to other dictionary algorithm
methods and competitive to winners of different competitions.

However we considered one class can only belong to one family at a time for
computational simplicity. However it is a topic of further research to check whether
considering one class belonging to multiple classes helps in obtaining better result.
Also we only used dependencies between classes and that has been considered as
family. But in future extension of this work we may consider dependencies between
families. In more generalised case a graph based structure can be considered where
each node in the graph is a sub-dictionary. In such a graph based configuration we
can better model the dependencies between the sub-dictionaries. Moreover we have
only considered discriminative relationship between family specific dictionaries. But
threre may be cooperative relationship between some family specific dictionaries and
discriminative relationship between some family specific dictionaries. The existing
structure does not allow such dependencies to be considered. However it may be a
research to design a structure that may incorporate such dependencies.
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Appendix A

Deriving relevant matrix calculus
formulae

To get the optimal values of different dictionaries we have to solve the objective
function. We will be using several matrix calculus results. I briefly derive them in
the following section. The derivative of a scalar f with respect to a matrix A ∈ RM×N

can be written as 
∂f
∂A11

∂f
∂A12

... ∂f
∂AN1

∂f
∂A21

∂f
∂X22

... ∂f
∂AN1

... ... ...
∂f

∂AM1

∂f
∂AM2

... ∂f
∂AMN


WE decompose matrix multiplication to index-based scalar multiplication, [AB]ik =∑

j AijBjk and similarly the matrix product and the matrix product ABCT has ele-
ments:

[ABCT ]il =
∑
j

Aij[BC
T ]jl =

∑
j

Aij
∑
k

BjkClk =
∑
j

∑
k

AijBjkClk

Next using this indexing concepts we derive some first order derivatives. Let

f = trace[ANB]

Using index notations as shown above we can write as

f =
∑
i

[ANB]ii =
∑
i

∑
j

Aij[NB]ji =
∑
i

∑
j

Aij
∑
k

NjkBki =
∑
i

∑
j

∑
k

AijNjkBkl

Now taking the partial derivative with respect to Njk we do have

∂f

∂Njk

=
∑
i

AijBki = [BA]kj
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Now we express this index based notation to matrix multiplication form again

∂ trace[ANB]

∂N
= ATBT (A.1)

Similarly, we have:

f = trace[ANTB] =
∑
i

∑
j

∑
k

AijNkjBkl

so that the derivative is:

∂f

∂Nkj

=
∑
i

AijBki = [BA]kj

Thus, we have:
∂ trace[ANTB]

∂N
= BA (A.2)

Multiple order of matrix derivatives can also be derived as follows

f = trace[ANBNCT ] =
∑
i

∑
j

∑
k

∑
l

∑
m

AijNjkBklNlmCim

The derivative has contributions from both appearances of N In index notation:

∂f

∂Njk

=
∑
i

∑
l

∑
m

AijBklNlmCim = [BNCTA]kj

∂f

∂Nlm

=
∑
i

∑
j

∑
k

AijNjkBklClm = [CTAXB]ml

Transposing appropriately and summing the terms together, we have:

∂ trace[ANBNCT ]

∂N
=
∂ trace[ANP ]

∂N
+
∂ trace[QNCT ]

∂N
= ATP T +QTC

where P = BNCT and Q = ANB So we separately evaluated the matrix derivative
for each appearance of N assuming that everything else constant (including other
N’s). We utilize the results derived above to evaluate partial derivative of frobenius
Norm

f = ‖N −WH‖2F = trace

[(
N−WH

)(
N −WH

)T]
=
∑
i

∑
k

(
Nik −

∑
j

WijHjk

)2
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We can work with the expression in index notation, but it’s easier to work
directly with matrices and apply the results derived earlier. Suppose we want to find
the derivative with respect to W. Expanding the matrix outer product, we have:

f = trace[NNT ]− trace[NHTW T ]− trace[WHNT ] + trace[WHHTW T ]

Applying equation A.1 and equation A.2 we easily deduce that

∂ trace

[
(N −WH)(N −WH)T

]
∂W

= −2NHT + 2WHHT (A.3)

this can be restated as

∂ ‖N −WH‖2F
∂W

= −2NHT + 2WHHT (A.4)

similarly we have

∂ trace

[
(N −WH)(N −WH)T

]
∂H

= −2W TN + 2WW TH (A.5)

this equation can also be restated as

∂ ‖N −WH‖2F
∂H

= −2W TN + 2WW TH (A.6)
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