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Abstract

In recent times, Multi-Access Edge Computing (MEC) is showing much promise as the preferred

application service provisioning model to facilitate convenient access to services for mobile users.

The central idea of MEC is to have service providers deploy application services as containers

on MEC servers located near mobile base stations. User service invocations are typically routed

to, and served from nearby MEC servers on their route as they move around, with improved

latency and turnaround times. This provisioning model is increasingly being acknowledged

as a near-user low latency convenient alternative to traditional cloud computing. Driven by

new innovations in MEC, the number of application services (e.g. Object recognition, obstacle

identification, navigation, maps, games, e-commerce etc.) hosted at edge servers to be used

by mobile users (e.g. autonomous vehicles, drones, users on the move) is also growing at a

considerable pace.

A typical MEC deployment involves the orchestration of a number of policies for several tasks

like service allocation, service placement, service migration, service replication, user manage-

ment and resource scheduling. These policies coordinate as a whole to ensure low latency access

and continued availability to end users. Indeed, designing MEC policies taking into considera-

tion different scenarios and optimization metrics is an active area of research in recent times.

However, most design approaches proposed in recent literature either resort to traditional op-

timization techniques to ensure optimality, thereby limiting scalability or resort to learning

based approaches without any formal guarantees on the synthesized policies. The objective of

this thesis is to leverage formal methods for the design and verification of MEC policies to aid

scalability and provide formal guarantees on their performance.

A key challenge in MEC is to devise an efficient service placement policy which determines the

availability of application services on MEC servers. This is a non-trivial challenge, considering

the fact that typical edge servers are not as resource-equipped as their cloud server counterparts

– thus, the trivial deployment of hosting all application services at all edge servers is infeasible.

This necessitates judicious planning and allocation of the service-server-user mapping over time

as different service requests come in from different users. This is aggravated by the fact that

users accessing these application services are typically mobile, moving in and out of the service

zones of different edge servers. This often necessitates service migrations to preserve continuity

of service provisioning and a steady acceptable Quality of Experience (QoE) and user perceived

latency. While a number of researchers have addressed the service placement and allocation

problem, they considered traditional monolithic applications where all services of an application

are deployed as a single container. Microservice based applications, on the other hand, are split

into a set of interacting microservices with each microservice independently deployed. Service



placement and allocation for microservice based applications thus add further intricacies to the

service placement and service allocation landscape. To address this challenge, we design a user

service allocation policy for microservice based applications and demonstrate the benefits of

prefetching microservices to improve user perceived latency.

MEC servers comprise co-located heterogeneous applications each with individual latency re-

quirements. To improve load balancing, a number of application replicas are deployed on MEC

servers, automatically spawned or retracted by an auto-scaling policy. As new service requests

arrive, we have a challenging task of deciding whether to spawn a new thread in an already

existing container with added resource contention and possible application latency violations

or create a new service container instance to reduce contention amongst resources with lower

user perceivable latency. We propose the design of an auto-scaling policy that automatically

determines when to retain/add/remove container instances of an application while at the same

time ensuring that the probability of latency violations is minimized.

State of the art MEC policies work oblivious to the presence of MEC server failures. In the

event of a failure, a fault-recovery policy ensures service continuity by re-initializing application

containers that were deployed on MEC servers prior to failure. Fault Tolerance approaches

in pervasive computing environments typically deal with faults in an adhoc manner with no

application specific distinction, executing recovery decisions with each occurrence of failure. To

cater to the real time MEC ecosystem, we propose a prioritized approach wherein we lever-

age Probabilistic Model Checking to quantify the potential impact of multiple server failures,

application priority and potential resource contention.

While designing MEC policies has been the centrepiece of focus in MEC literature, a much

less explored avenue is verification of policies, that is important for establishing if a given

policy conforms to a desired performance specification. An additional contribution of this the-

sis is a framework for modeling and verification of MEC policies. Traditional approaches to

performance verification either develop analytical models and derive performance bounds math-

ematically on each performance metric under consideration or resort to simulation resulting in

inadequate representation of non-deterministic behaviour. In contrast, in this thesis, we adopt a

formal modeling and verification approach, offering accurate representation of non-determinism

quantifying its impact on all possible executions of the model. Our framework is able to deduce

quantitative guarantees on policy performance under varying request distributions.

We validate our proposed approaches on publicly available benchmark datasets to demonstrate

the effectiveness of our proposals. We believe that our work will open up a lot of new research

directions in different aspects of MEC through the formal methods lens.
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Chapter 1

Introduction

The number of mobile and Internet-of-Things (IoT) devices has exploded in recent years, with

the market estimated to hit 32 billion devices by 2023. As a consequence, the number of

applications offering a wide assortment of features to such devices has skyrocketed dramati-

cally. Features such as object detection, facial recognition, and natural language processing,

are commonplace on such devices and are becoming increasingly computationally intensive. The

computing capacity and battery life of such devices are, however, constrained by their phys-

ical size and resource constraints. Quite evidently, the standalone performance of executing

computationally intensive operations locally on the devices is insufficient to ensure a seamless

Quality-of-Experience (QoE) for mobile and IoT device users.

For the past few years, cloud computing has been used as the main technology to overcome

the limited computational power and battery life of mobile and IoT devices. Cloud computing

offers on-demand availability of computer system resources over the internet from centrally

located data centers. Computationally intensive processes are offloaded to cloud data centers

instead of being executed locally on the devices. However, since offloading to the cloud through

a multi-hop backbone network results in high long-haul latencies, the cloud computing model

often fails to meet the latency requirements of latency-sensitive real-time features. To mitigate

these effects, a new paradigm, Multi-Access Edge Computing (MEC) was envisioned.

Multi-Access Edge Computing was standardized by the European Telecommunications Stan-

dards Institute (ETSI) and is also referred to as Mobile Edge Computing in literature [1]. MEC

is an emerging paradigm in which computing and storage facilities in the form of MEC servers

are placed at multiple locations between the endpoint Internet of Things (IoT) devices and a

traditional centralized cloud data center. Mobile and IoT device end-users connect to MEC

servers in one network hop, via a wireless link. MEC thus provides a distributed computing

1
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environment for application task processing and service hosting. As users move around, applica-

tions being utilized by them on their devices trigger service requests to execute computationally

intensive processes on MEC servers, thereby reducing the backbone network latencies incurred

in offloading tasks to the cloud. MEC is predicted to become the next multi-billion dollar

technology market and an enabler towards a truly distributed Internet-of-Everything (IoE).

Recently, MEC has been deployed in several cities in United States of America with strong

collaboration between traditional cloud providers and telecommunication organizations.

1.1 Challenges in MEC

In the MEC environment, several policies such as computation offloading, service placement,

service allocation, auto-scaling, fault tolerance, each governing different facets, coordinate as a

whole, to ensure low latency access and continued availability. In this thesis, we deal with the

design and verification of MEC policies leveraging formal methods. In particular, we explore

the design of service placement, service allocation, auto-scaling, and fault-recovery policies.

Additionally, we propose a framework for characterizing service allocation policies through the

formal verification lens. In the following discussion, we present a high level overview of some

of the important MEC components that are related to this thesis.

Service Placement and Service Allocation: The objective of a service placement policy is to

determine application service deployments on MEC servers. For a particular application service

request, a service allocation policy determines the binding between the service request and an

MEC server. Thus, service placement and service allocation are intrinsically linked to each other

with a service allocation policy regulating request-server bindings contingent on the deployment

of application services on MEC servers dictated by a service placement policy.

Service Migration: Due to end-user mobility, service placements and service allocations need

to be dynamically reconfigured to maintain end-user low latency access to services. Service

migration refers to such dynamic re-configurations considering factors such as service invocation

and mobility patterns.

Computation / Task Offloading: A computation/task offloading policy determines whether to

execute a task locally or a part thereof on the device itself or to execute the task on an MEC

server. Such a policy has to consider different factors such as current load associated with MEC

servers, network congestion, device battery-life and computational capabilities.

Task Scheduling: Correlated to a computation offloading policy is a task scheduling policy that

indicates the execution order of the tasks on the server. Thus, while a computation offloading



Chapter 1. Introduction 3

policy determines where to execute tasks, a task scheduling policy determines the order of task

execution. MEC complicates task scheduling with the possibility of task execution on both

devices as well as servers.

Auto-Scaling: The number of application instances deployed on MEC servers is automatically

adjusted by an auto-scaling policy to alleviate resource contention and improve load balanc-

ing. With MEC servers not as resource-equipped as their cloud server counterparts, a trivial

deployment of hosting all application services at all edge servers is infeasible. This necessitates

meticulous planning and deployment of application instances in close coordination with service

request traffic patterns.

Fault Tolerance: State of the art service placement, service allocation, service migration, com-

putation offloading, task scheduling and auto-scaling policies operate agnostic to the possibility

of MEC server failures. A fault-recovery policy ensures the continued availability of services in

the event of a failure by re-initializing applications deployed at faulty servers.

MEC for Microservice based Applications: Applications are either monolithic or microservice

based. While a monolithic application is a single unified executable unit, a microservice ar-

chitecture breaks down individual functionality into a collection of smaller independent units.

Monolithic applications are simpler to develop, test, debug and deploy but provide less flexibility

for incorporating changes. Microservice based applications, on the other hand, offer segregated

units, where each unit can be independently developed, managed, scaled, and modified. Individ-

ual microservices typically communicate via Remote Procedure Calls (RPC). Such flexibility

transpires with the added complexity of managing inter-service communication between the

microservices as well as managing individual microservice deployments on MEC servers. The

microservice structure leaves room for improvement in the service placement and migration

model from a latency perspective, considering the fact that the independent constituents of a

given microservice based workflow can be independently hosted and provisioned.

MEC servers, applications, and end-users, thus, form a large scale distributed system, that has

garnered significant research interest in recent times. Indeed, algorithms and architectures for

enabling the MEC paradigm have reached a fair level of sophistication today but are still replete

with several challenges. Our thesis is motivated by some observations on the current context

of MEC deployment as outlined in the following section. We summarize the contributions of

this thesis thereafter.
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1.2 Motivation for this dissertation

In an MEC environment, the design of policies plays a crucial role in determining the end-user

perceivable latencies and Quality-of-Experience. An inefficiently designed policy, if deployed,

can lead to an aggravated Quality-of-Experience for end-users. The primary motivation of

this thesis is to design policies concerning the different dimensions of the MEC environment

to improve end-user latencies over existing designs. In particular, we consider the design of

policies in the following contexts:

� Service placement and service allocation have received a lot of attention in recent years.

Authors have investigated service placement and allocation both in individual [2] as well

as joint contexts [3]. Several authors have investigated the role of static [2] service place-

ment schemes as well as dynamic [4] placement schemes where the service availability

on MEC servers vary over time. Traditional service placement and allocation schemes

consider monolithic applications [5, 6, 7, 8]. Recently, some policies have been proposed

considering microservice based applications [9]. However, these proposals do not consider

the intercommunication dependency structure existing in microservice based applications.

The geospatial distribution of end-users and microservice deployments on MEC can have

a critical role in the overall user-perceived latencies. Additionally, traditional service

placement policies are typically reactive, i.e, deploy services when requested by end-users.

Exploiting the role of the microservice architecture coupled with proactive placement

remains largely unexplored.

� In the MEC environment, multiple heterogeneous service requests are provisioned by MEC

servers simultaneously. Consequently, resource contention becomes a critical issue. An

auto-scaling policy automatically adjusts the number of application replicas deployed on

MEC servers to alleviate the resource contention with enhanced load balancing. Auto-

Scaling policies have been investigated in traditional cloud computing contexts [10, 11, 12].

However, auto-scaling policies in MEC have received less attention. The authors in [13]

studied energy-aware auto-scaling in the context of energy-harvesting devices in MEC.

Traditional auto-scaling policies are either rule-based [10], rely on low overhead learning-

based approaches with no guarantees on the incurred latencies [13] or utilize Probabilistic

Model Checking [11] with formal guarantees but incur a high runtime overhead rendering

them unsuitable for real-time scenarios [14] encountered in the MEC environment. De-

signing reliable learning enabled auto-scaling policies with low runtime overheads is thus

crucial towards ensuring effective load balancing.
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� Owing to the large-scale and distributed nature of the MEC environment, MEC servers

are in fact more susceptible to failures as compared to their cloud counterparts due to their

distributed nature [15]. Fault Tolerance is traditionally handled by application replicas

[15] or by failure prediction [16]. In [15], the authors proposed a method for evaluating

edge server resilience. They studied the trade-off between replica deployment and the

associated cost by utilizing dependency based failure prediction. However, they did not

cater to fault-recovery measures. Recently, the authors in [17] proposed an Edge-based

IoT architecture for IoT-Edge environments that caters to faults by re-allocation. Such

techniques target traditional pervasive computing environments and neither consider the

latency variability in an MEC environment nor the possibility of simultaneous failures.

While designing MEC policies is the centerpiece of focus in MEC literature, a much less explored

avenue is quantitative verification of policies. Quantitative verification aims at establishing

robust guarantees of properties with respect to all possible executions of a model of a system.

Several authors studied modeling and verification in various domains such as sensor networks

[18, 19, 20], cloud computing [10, 21], services computing [22], wireless networks [23, 24, 25],

software usage [26, 27], task allocation [28], power management [29], autonomous vehicles [30],

amongst others. Simulation, which is utilized as the de-facto methodology for analyzing state-of-

the-art policies, can neither provide formal guarantees nor adequately support non-deterministic

behaviour, thereby affecting accuracy [31]. Quantitative verification of policies pertains to

establishing the extent to which a particular policy conforms to a desired specification. As

a concrete example, quantitative verification can help us verify requirements such as for a

given service allocation policy, a user request can always be allocated to some MEC server

within a desired time limit. Quantitative verification has been demonstrated as an effective

technique for analyzing the characteristics of wireless network protocols [31, 32, 33]. In [10],

the authors utilized Probabilistic Model Checking to quantitatively verify auto-scaling policies

in traditional cloud computing environments. However, this line of study has received relatively

less attention in the MEC context. In this thesis, we develop a generic verification framework

for service allocation policies.

1.3 Contributions of this dissertation

The objective of this thesis is to a) design policies for addressing some of the MEC challenges

outlined above with a motivation of optimizing end-user latencies and b) to develop a framework

for verifying the performance characteristics of MEC policies. The contributions of this thesis

are briefly summarized below.



Chapter 1. Introduction 6

1.3.1 Design

We first explore the design of service allocation, service placement, auto-scaling and fault-

recovery policies aimed at reducing end-user latency as summarized below.

� Service Allocation for Microservice based Applications: In the first contributing chapter,

we propose a service allocation policy for microservice based applications. We consider

service allocations with a pre-deployed service placement scheme, where multiple func-

tionally equivalent microservices are available to aid fault tolerance and load balancing.

This induces microservice bundles amidst microservice Application Programming Inter-

face (API) compatibility constraints. We present a novel multi-partite hyper-graph visu-

alization of the allocation problem and analyze its hardness. Utilizing a novel combination

of Integer Linear Programming (ILP) and abstraction refinement as a potential solution,

our approach determines optimal service allocations.

� Proactive Microservice Placement and Allocation: In this work, we design a proactive

microservice placement and allocation policy that automatically adjusts the service place-

ment and allocation configurations depending on the mobility and usage patterns of

end-users. We consider how proactive deployment of microservices can aid in improv-

ing end-user latencies. We model the deployment of microservice based applications

using a Markov Decision Process (MDP). We utilize Dyna-Q Learning, a combination of

model-free and model-based Reinforcement Learning (RL) which utilizes dynamic real-

time interactions with the environment to learn the associated rewards integrated with

simulations on the learnt model [34, 35, 36]. Additionally, we design a heuristic to cater

to server capacity constraints.

� Horizontal Auto-Scaling for Applications: We propose a Safe Reinforcement Learning

based auto-scaling policy that can efficiently adapt to MEC request load variations. We

model the MEC environment using a MDP. We express latency requirements in Linear

Temporal Logic (LTL) [37], which act as a guide to automatically learn auto-scaling

decisions that maximize the probability of satisfying the LTL specification. We introduce

a quantitative reward mechanism based on the LTL formula to tailor service specific

latency requirements. Further, we prove that our reward mechanism ensures convergence

of standard Safe Reinforcement Learning approaches.

� Two-Fold Fault-Recovery: MEC servers are susceptible to various types of failures such

as communication link failures, hardware failures, and so on. We propose a priority

driven two-fold fault recovery policy. We propose a formal methods driven local recovery

policy for high-priority applications. We use Stochastic Multi-Player Games (SMGs)
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as a formal model to characterize the interactions between the different components in

an MEC environment. We use objectives specified in Probabilistic Alternating-Time

Temporal Logic [38] with a verification tool to derive recovery strategies considering all

possible execution scenarios of the model. For lower priority applications, we resort to a

global recovery strategy with a greedy heuristic.

1.3.2 Verification

In addition to the contributions outlined above, we also put forward a framework for quanti-

tative verification of service allocation policies. We propose a trace driven approach to derive

a formal model of allocation policies. The interactions between the MEC environment com-

ponents are modeled as a Stochastic Multi-Player Game utilizing which we define quantitative

properties to produce probabilistic guarantees on performance metrics of allocation policies.

We believe that verifying service allocation policies can aid a policy designer in gaining insights

about how a specific policy performs in different scenarios.

In all the above scenarios, we use real-world benchmark datasets and state-of-the-art policies

to demonstrate the effectiveness of our design and verification framework. The central theme of

this thesis is to develop and use formal methods that allow efficient modeling, characterization

and verification of MEC system descriptions in varying user service invocation scenarios, service

request traffic conditions, and server failures.

MEC

Service Allocation
for Microservices

Proactive
Microservice and

Allocation

Horizontal Auto-
Scaling Fault-Recovery

Policy Modeling
and Verification

Policy Design

Figure 1.1: Overview of Thesis Contributions
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1.4 Organization of the dissertation

This dissertation is organized into 8 chapters. A summary of each chapter is as follows:

Chapter 1: This chapter contains an introduction and a summary of the major contributions

of this work.

Chapter 2: A detailed study of relevant research in MEC and background concepts utilized

in this work are presented here.

Chapter 3: This chapter presents an allocation policy for microservice based applications

given an already existing service placement deployment.

Chapter 4: This chapter describes a proactive service placement and allocation policy for

microservice based applications.

Chapter 5: This chapter presents a horizontal auto-scaling policy which ensures conformance

to pre-specified latency requirements.

Chapter 6: This chapter describes a two-fold fault-recovery strategy for MEC.

Chapter 7: This chapter presents a framework for verification of service allocation policies.

Chapter 8: We summarize with conclusions and future directions on the contributions of

this dissertation.



Chapter 2

Preliminaries and Background Work

In this chapter, we first present a few preliminary concepts related to the MEC architecture

and MEC policies. We then present a discussion of the background techniques utilized in this

thesis. Finally, we discuss about the datasets and benchmark applications utilized in our work.

2.1 MEC Architecture

MEC employs edge sites to allow computation, network, and storage resources to be placed

in proximity of users of mobile and IoT devices, as shown in Figure 2.1, thereby effectively

mitigating the latency experienced in offloading tasks to the cloud [3, 39, 40, 41, 42, 43, 44, 45].

Each edge site is powered by one or many physical machines referred to as edge servers. An

u1
E1 E2

ES1

ES3

ES2

ES4

ES6

ES5

Object
Recognition

Speech
Processing

Social
Network

Media
Streaming

u5

u4

u2

u3

Figure 2.1: Multi-Access Edge Comput-
ing Architecture

Edge Site Edge Server Users
E1 ES1, ES2, ES3 u1, u2, u3

E2 ES4, ES5, ES6 u2, u4, u5

Server Applications
ES1 Object Recognition
ES2 Media Streaming
ES3 Object Recognition
ES4 Social Network, Media Streaming
ES5 Speech Processing
ES6 Object Recognition

Table 2.1: MEC Architecture Con-
figuration

9
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edge site covers a specific geographical area so that mobile users within its coverage can connect

to it via a one-hop wireless access point [3, 13, 46, 47] thereby enabling low latency access. The

coverage areas of adjacent edge sites usually intersect to avoid blank areas not covered by any

edge site. A mobile user located in an intersection area can connect to any one of the associated

edge sites with low latency access. Edge sites communicate with each other via a backbone

network. Users located outside the coverage area of an edge site can thus avail of farther away

edge sites via this backbone network at the cost of additional access latency.

Example 2.1.1. In Figure 2.1, there are two edge sites E1 and E2, where E1 is powered by three

edge servers ES1, ES2 and ES3 while E2 is also powered by three edge servers ES4, ES5 and

ES6. The coverage areas of E1 and E2 are depicted by encompassing circles. User u1 can access

E1 while u2 can access both E1 and E2 with low latency. User u1 can also access E2 via the

backbone network, however, with an additional access latency. �

2.1.1 Application Provisioning Model in MEC

We now discuss the application provisioning model utilized in this thesis. Applications are

broadly categorized into two types: monolithic applications and microservice applications [48].

Traditionally, applications utilize the monolithic architecture where the entire application func-

tionality is encapsulated in a single binary. Recently, there has been a shift from the monolithic

architecture to a microservice architecture where the application is split into a set of interacting

microservices with inter microservice communication dependencies. Microservices are typically

represented as a Directed-Acyclic Graph (DAG) depicting the workflow of the sequence of mi-

croservice based operations. In this thesis, we focus on applications whose workflows are defined

by a linear sequence of microservices. Figure 2.2 depicts the workflow sequence of a represen-

tative MediaStreaming microservice based application. Service providers deploy application

services on edge servers in the form of containers [3, 49]. Traditional monoliths are deployed as

single containers on an MEC server while applications designed using the microservice archi-

tecture deploy each microservice as a separate container on MEC servers.

Example 2.1.2. Table 2.1 lists representative monolithic application services deployed on the

various edge servers shown in Figure 2.1. For edge site E1, two application instances of the

Object Recognition Service are deployed on MEC servers ES1 and ES3. Such a deployment

aids in load balancing and fault tolerance. Figure 2.3 depicts the containerized deployment

of the various microservices corresponding to the MediaStreaming application in Figure 2.2.

At edge site E2, all containers for the MediaStreaming application are deployed on the same

MEC server ES5 while at edge site E1, the containers are distributed amongst ES1 and ES2.
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Figure 2.2: Representative Media Streaming Microservices Application
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Figure 2.3: Representative Media Microservices Application on MEC servers

Note that each edge site in this example has a single application instance. Multiple application

instances can also be deployed similar to monolithic applications. �

2.1.2 Containerized Deployment

In monolithic applications, all services of an application are deployed as a single container,

whereas in microservice based applications, each microservice is deployed as a singleton con-

tainer. When a particular user invokes a service request pertaining to an application that is not

deployed, the corresponding container has to be initialized on an MEC server. Additionally,

the corresponding service registry has to be updated on a container orchestration system to

reflect the deployment state of the services. On the other hand, if the corresponding container

already exists on the edge server, a new task is spawned out of the existing container. Deploying

containers and creating new tasks incur non-negligible latencies. MEC policies operate on top

of the underlying MEC architecture governing the spectrum between users and MEC servers.

In the following section, we discuss the various policies proposed in MEC literature.
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2.2 MEC Policies

2.2.1 Service Placement

A service placement policy determines which application services are to be deployed on which

MEC servers across edge sites. Figures 2.1 and 2.3 depict representative MEC placement con-

figurations for monolithic application services and microservice based applications respectively.

In recent times, several MEC service placement schemes have been proposed incorporating the

static [2, 50] and dynamic [4, 51, 52, 53, 54] service contexts. In [2], the authors derived an ap-

proximation by incorporating rewards that are awarded when user requirements are honoured.

In [4], the authors formulated a polynomial time approximation on a time-slotted model by

jointly optimizing service placement and request scheduling. The works in [5, 55] considered

data transfer and availability for making placement decisions. In [56] and [57], the authors

studied the impact of base stations collaborating with each other. In [53], the authors consid-

ered multi-network scenarios as well to optimize service placement by incorporating network

communication costs. The authors in [54] considered a Virtual-Reality based application and

studied service placement strategies optimizing for the same. They proposed service placement

of a Virtual-Reality application demonstrating gains in an application-specific scenario and

studied service placement strategies optimizing for the same. They demonstrated their effec-

tiveness over generic approaches in an application-specific scenario. Similarly, [52] proposed a

service placement scheme in Software Defined Networks. In [58], a joint approach for network

selection and service placement was considered with multiple network operators.

2.2.2 Service Allocation

Service allocation/routing deals with determining the assignment of service requests from users

to already deployed services on MEC servers [6, 7, 8]. As a result, a service allocation approach

presumes a service placement deployment.

Example 2.2.1. Consider the scenario in Figure 2.4, where user u5 invokes the Object Detection

application. A service allocation policy determines whether the service request is assigned to

server ES1, ES3 or ES6. �

A number of allocation policies have been proposed in recent literature considering various

optimization metrics such as the number of users allocated, QoE/QoS maximization, energy

optimization, optimizing the number of re-allocations as users move about, and so on. Au-

thors in [59] proposed optimal and approximate approaches for the network resource allocation



Chapter 2. Preliminaries and Background Work 13

u1
E1

E2

ES1

ES3

ES2

ES4

ES6

ES5

Object
Recognition

Speech
Processing

Social
Network

Media
Streaming

u5

u4

u2

u3

Figure 2.4: Service Allocation Policy

problem in MEC. In [60], the authors formulated a game-theoretic approach for the service

allocation problem. In [8], the authors presented an Integer Linear Programming based ap-

proach for maximizing the average number of users allocated to MEC servers while minimizing

the number of MEC servers on which a service provider would have to deploy the applications.

They formulated the problem as a bin packing problem. In [7], instead of static QoS values,

the authors considered dynamic QoS parameters. In [6], the authors studied dynamic scenarios

where edge devices are mobile and re-allocations are possible between MEC servers. In [9], the

authors demonstrated the benefits of a learning-based allocation strategy. In [61], the authors

studied the trade-off between accuracy and processing times in Augmented Reality applica-

tions. In [47] the authors utilized a game-theoretic approach for user allocation. In [50], the

authors proposed Linear Programming approaches to provide a fast approximation for solving

the service placement problem.

2.2.3 Service Migration

Though service placement entails deciding which servers to use to deploy services, MEC adds to

the complexity with user mobility. As users move between locations, static service placements

can no longer provide QoS benefits. Service relocation is a method of dynamically moving

resources to accommodate end-user mobility. An allocation policy also incorporates a migration

component. In the context of service allocation, migration refers to state transfer (user-specific

runtime data utilization) due to change in the request-server binding, i.e., movement of an

already allocated service request to a different server as opposed to migrating services placed

on a server [62].
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Figure 2.5: Service Migration Policy

Example 2.2.2. Consider the scenario in Figure 2.5, where the Object Detection application is

migrated from server ES6 of edge site E2 to server ES2 of site E1. Such a scenario could be

triggered when the number of service invocations of the Object Detection service is higher in the

vicinity of E1. Additionally, consider the scenario in Figure 2.6a where the Object Recognition

service request from u1 has been allocated to ES1 at time t = 0s. Consider the timepoint

t = 50s during the course of the trajectory followed by u1 indicated by the dotted line. The

migration component of an allocation policy performs a state-aware migration of the Object

Recognition task executing at ES1 to server ES6 as depicted in Figure 2.6b. �
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Figure 2.6: Service Migration in the context of Service Allocation
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The authors in [63] formulated service placement and migration using the MDP model and de-

veloped heuristics for multi-user and multi-service models. However, they assumed a monolithic

service being used throughout the entire duration of the users’ invocation which is not neces-

sarily true for a microservice architecture. In [6], a mobility-aware monolithic service migration

strategy was proposed taking a direction vector approach. In [64] the authors studied the ben-

efits of deep reinforcement learning approaches for service migration, but only for single-user

migrations. In [9] a microservice reinforcement learning-based approach was considered.

2.2.4 Computation Offloading and Task Scheduling
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Figure 2.7: Computation Offloading Policy

A computation offloading policy determines whether a particular task should be performed

locally on the devices or offloaded to an MEC server for execution. A computation offloading

policy operates in conjunction with a task scheduling policy which determines the order of

execution of tasks. While classical task scheduling policies target individual devices/servers,

MEC complicates such scenarios by partitioning task execution between devices and servers.

Example 2.2.3. Consider the scenario in Figure 2.7, where user u5 invokes the speech processing

application. A particular offloading policy in such a circumstance would decide whether to

execute the speech processing task on u5 itself or to offload the processing task to ES5 since

the Speech Recognition application service is deployed on the server ES5. �

Offloading in Mobile Cloud Computing [65, 66, 67] and Multi-Access Edge Computing [68,

69, 70, 71, 72, 73] have both been extensively studied concerning what/when/how to offload

workloads from handheld devices to the cloud or edge [55]. A number of different approaches
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to offloading have been proposed. In [74], the authors focused on the energy efficiency of edge

devices. Wang et al. [75] considered minimizing each MEC server’s energy consumption while

satisfying QoS requirements. In [76], the authors dealt with vehicular networks to propose

domain-specific algorithms for offloading, involving data centers in vehicular services. In [67],

the authors considered the objective of minimizing cost. Authors in [70] introduced a unique

perspective on energy consumption with simultaneous harvesting considering devices utilizing

battery resources while harvesting other energy sources. In [77] the authors considered joint

offloading and service placement where dependencies exist between tasks. Several approaches

to task scheduling have been proposed both in traditional contexts (in the absence of offloading

schemes) [78, 79, 80, 81, 82] as well as in the MEC context [83, 84, 85, 86]. In [78] the

authors studied the impact of temperature on reliability and proposed a task partitioning

scheme for embedded systems. In [87], the authors proposed a model checking based approach

for temperature and energy consumption aware scheduling for multi-tasking systems. In [83,

84, 86] joint offloading and task scheduling approaches were considered. In [85], a minimum

energy consumption based task scheduling was proposed.

2.2.5 Auto-Scaling
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Figure 2.8: Auto-Scaling Policy

While service placement, service allocation, and computation offloading deal with optimizing

latency and other parameters, fine-grained latency control is easier said than done, since the

actual latencies incurred by the users not only depend on the network characteristics but also

on various other variable aspects at the edge server, some of the factors being the server’s

computational capability, current resource contention, current service workload, service request

payloads, requesting traffic density, and so forth. Thus, it is quite difficult to optimize to a fixed

latency for best response/performance by analytically modeling each such aspect [88]. Auto-

scaling policies are effective tools to characterize such dynamic aspects [12, 13] by observing
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the runtime latencies and adjusting container instances accordingly at a coarser level than

tuning latencies back and forth depending on the variabilities mentioned above. An auto-scaling

policy adapts to traffic changes dynamically by automatically provisioning and de-provisioning

resources [10]. A vertical auto-scaling policy mandates the dynamic addition or removal of

resources such as CPU or memory to a container. A horizontal auto-scaling policy, on the

other hand, dynamically provisions/de-provisions container instances of an application. Since

edge servers are relatively more resource-constrained as compared to traditional data-center

servers, vertical auto-scaling is not well suited to an MEC environment [6]. A horizontal auto-

scaling policy thus serves as a viable mechanism to alleviate resource contention with enhanced

load balancing with newly spawned container instances [13].

Example 2.2.4. Consider the scenario in Figure 2.8 where the Object Recognition application is

deployed on several MEC servers. In Figure 2.8, for edge site E2, initially 1 Object Recognition

instance is deployed on server ES6. Depending on user traffic variation and the incurred

latencies within the edge site, the policy increases the number of container instances to 2 with

an additional application instance deployed at ES5. The auto-scaling policies for other edge

sites work similarly. �

Traditionally, Rule-Based auto-scaling policies have been used by major cloud service providers.

However, such policies result in over or under-provisioning of resources and can lead to inefficient

resource utilization [10]. Additionally, traditional rule based auto-scaling policies incorporate

a static set of rules governing the provisioning/de-provisioning of resources. Thus, rule-based

policies also require a designer to manually enumerate a complex set of rules to consider system

characteristics. Designing a set of rules exhaustively covering all such scenarios is practically

infeasible. To avert such scenarios, Reinforcement Learning based dynamic solutions have

been proposed [12]. However, such approaches do not provide any guarantees to ensure la-

tency requirements are adhered to [89]. Probabilistic Model Checking is utilized to synthesize

auto-scaling policies to ensure such latency requirements [11]. However, such an approach is

not suitable for MEC environments where the computational overhead of Probabilistic Model

Checking renders it unsuitable for real-time applications [14]. The authors in [13] considered

joint offloading and auto-scaling in MEC where an additional energy harvesting mechanism is

available. However, they neither considered application-specific latency threshold requirements

nor considered access latencies between MEC servers. The authors in [12] designed an RL-based

horizontal auto-scaling strategy for traditional cloud computing environments, but did not take

into account the variable intercommunication latencies between MEC servers.
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2.2.6 Fault Tolerance

A fault tolerance policy addresses the resilience mechanism of an MEC environment to faults.

Typically, fault tolerance is implemented by replicating application container instances across

multiple MEC servers such that in the event of a failure, other servers ensure continued avail-

ability. An integral component of a fault tolerance policy is a fault recovery policy which

determines the MEC servers to be utilized to re-initialize containers which were deployed prior

to the occurrence of a failure.
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Figure 2.9: Fault Recovery Policy

Example 2.2.5. In Figure 2.9, multiple application instances of the Object Detection application

are deployed on servers ES1, ES3 and ES6 to cater to fault tolerance. When server ES4 fails,

the Social Network and the Media Streaming containers have to be re-initialized. �

The issue of fault tolerance has received relatively less attention in the context of MEC. Prior

work on fault tolerance in pervasive computing environments either considered replication tech-

niques in which identical applications are deployed at multiple servers [15] or considered failure

avoidance by forecasting the occurrences of failures [16]. All the above techniques targeted tradi-

tional pervasive computing environments. They neither considered the impact of geographical

locations of MEC servers nor the impact of deploying multiple applications contending for

shared resources at such servers. Several works have investigated the issue of fault prediction

[15, 90, 91, 92] in both traditional cloud and edge computing environments. However, such

studies considered the issue of when faults occur. Fault-Recovery, on the other hand, which

deals with how to handle faults, has been relatively less examined. Recently, the authors in [17]

proposed an Edge-based IoT architecture catering to fault tolerance in IoT-Edge environments.
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They incorporated on-the-fly fault handling by re-allocation. However, the authors only exam-

ined singleton failures and ignored the possibility that multiple points of failure can co-exist in

an edge computing distributed heterogeneous environment.

In this thesis, we first propose service placement and service allocation policies for microser-

vice based applications by exploiting the intricacies arising from the dependency structure of

microservices. Secondly, we design an auto-scaling policy to ensure adherence to application

specific latency requirements. Thirdly, we propose a fault recovery policy by proactively con-

sidering the possibility of multiple simultaneous failures. Finally, we present a framework for

modeling and verification of service allocation policies.

In the following section, we present some of the background formalisms, specifications and algo-

rithms that serve as the foundation for our work. We first discuss Probabilistic Model Checking

(PMC) and then present an overview of formal representations of specifications utilized in PMC.

2.3 Probabilistic Model Checking

A formal technique for automated verification and quantitative analysis of probabilistic systems

is probabilistic model checking. A probabilistic model checking algorithm’s goal is to determine

whether a probabilistic model of a system satisfies a probabilistic temporal logic property or,

depending on the type of property, to which numerical value (probability or reward) the property

evaluates. We first discuss about probabilistic models of systems.

2.3.1 Discrete-Time Markov Chain (DTMC)

Definition 2.1 [DTMC:]

A DTMC is a tuple D = (S, P, A, L, s0) where:

� S is a finite set of discrete states where s0 is the initial state.

� P : S × S → [0, 1] denotes the probability distribution on transitions such that for all

states s :
∑

s′∈S P (s, s′) = 1.

� AP is a set of Boolean Atomic Propositions (AP).

� L : S → 2AP is an AP labelling function, labelling states with the APs true in that state.
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Figure 2.10: Example DTMC

This definition implicitly assumes that D is time-homogeneous [93], i.e., P and L do not vary

over time. The transition probability D is solely dependent on the past through the present

state, which is known as the Markov Property. At the outset, the DTMC is in the initial state

s0 ∈ S. At each point of time, the successor state of the current state is chosen according to

the probability distribution P.

Example 2.3.1. Figure 2.10 shows a DTMC with 5 states. The set of outgoing transitions from

each state form a probability distribution. The labelling L associated with each state is denoted

at the right-hand bottom corner of each state. L is a mapping from the set of states S to the

set AP = {a,b,c}. �

2.3.2 Markov Decision Processes (MDPs)

While DTMCs incorporate variations induced by probability distributions over discrete time-

steps, MDPs allow incorporation of non-deterministic choices.

Action 1 Action 2

a b

a

a,b

c

5 15 40

3025

Figure 2.11: Example MDP
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Definition 2.2 [MDP:]

An MDP is a tuple M = (S, Λ, P, AP, L, R, s0) where

� S is a finite set of states.

� Λ is a set of actions.

� P : S × Λ × S → [0, 1] is the transition probability function such that for all states s ∈
S and actions λ ∈ Λ:

∑
s∈S P (s, λ, s′) = 1.

� AP is a set of Boolean Atomic Propositions.

� L : S → 2AP is an AP labelling function, labelling states with the APs true in that state.

� R : S → R is the reward associated with each state s ∈ S.

� s0 is the initial state.

Example 2.3.2. Figure 2.11 shows an MDP similar to the DTMC depicted in Figure 2.10 with

5 states. In State s2, there are two Actions, Action 1 and Action 2, each characterized by

an individual probability distribution. The labelling function is identically represented like a

DTMC with the set of AP = {a, b, c}. The left hand bottom corner of each state depicts the

reward associated with each state. �

When modeling complex systems, it is more favorable to use a number of MDPs to capture the

behaviours of different system components instead of adopting a monolithic approach. MDP

composition can then be used to merge those models after defining the synchronization rules

among them. In our work, we utilize parallel composition of two MDPs defined as follows:

Definition 2.3 [Composition of MDP:]

Let M1 = (S1, Λ1, P1, AP1, L1, R1, s1
0) and M2 = (S2, Λ2, P2, AP2, L2, R2, s2

0) be two

MDPs where s1
0 and s2

0 denote the initial states. The parallel composition of the MDPs is

defined as: M1 || M2 = (S
1
× S

2
, Λ1 ∪ Λ2, AP1 ∪ AP2, LM1 || M2 , RM1 || M2 , P, (s1

0, s
2
0)).

Consider two states (sa, sb) ∈ S1 × S2, (sc, sd) ∈ S1 × S2. A probabilistic transition with value

P1(sa, sc) × P2(sb, sd) exists from (sa, sb) to (sc, sd) iff there exists a probabilistic transition

from sa to sc with probability P 1(sa, sc) in S1 and a probabilistic transition from sb to sd with

probability P 2(sb, sd) in S2.

The composition of multiple MDPs is carried out by composing two MDPs at a time. Intuitively,

MDPs are composed by synchronizing on common actions (the probability function is then the

product of distributions for P1 and P2) and interleaving otherwise. More about MDP semantics

and composition can be found in [37].
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2.3.3 Probabilistic Computation Tree Logic (PCTL)

Properties of a probabilistic model are specified using an extension of temporal logic called

PCTL [37]. We first formally define a PCTL formula as follows:

Definition 2.4 [PCTL:]

The syntax of PCTL is:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼p[φ]

φ ::= XΦ | Φ U6k Φ

where a is an atomic proposition, the operator ∼ ∈ {<,6,>, >}, p ∈ [0, 1] and k ∈ N ∪ {∞},
where N is the set of natural numbers.

Using the above syntax of a PCTL formula, additional operators can be defined. One such

operator is the “eventually” operator denoted as F Φ = true U Φ. We now discuss model

checking algorithms for verifying properties expressed in PCTL.

2.3.4 Model Checking PCTL properties on DTMCs and MDPs

We first define the Satisfaction relation on DTMCs using which the model checking algorithm

computes the probability of satisfaction of a particular PCTL property.

Definition 2.5 [DTMC Path:]

Let D be a labelled DTMC. A path of D is defined as a sequence of states s0, s1, . . . such that

∀si, si+1, P (si, si + 1) > 0. We utilize ω(i) to denote the i-th state of the path ω , ∀i ≥ 0. We

denote by PathD(s) the set of all paths of D from state s. For any state s ∈ S, the satisfaction

relation |= is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s 6|= Φ

s |= Φ ∧Ψ ⇔ s |= Φ ∧ s |= Ψ

s |= P∼p[φ] ⇔ PD(s, φ) ∼ p ∼ ∈ {<,6,>, >}
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where: PD(s, φ)
def
= Ps

{
ω ∈ PathD(s) | ω |= φ

}
and for any path ω ∈ PathD(s) :

ω |= XΦ⇔ ω(1) |= Φ

ω |= Φ U6kΨ⇔ ∃i ∈ N(i 6 k ∧ ω(i) |= Ψ ∧ ∀j < i.(ω(j) |= Φ)).

Intuitively, PCTL formulae are interpreted on the Atomic Propositions associated with the

states of paths of a DTMC or MDP as depicted in Figure 2.12. The operator Next (X) is

utilized to describe the AP labelling the immediate subsequent state of a path. Similarly, the

Until (U) operator characterizes a subpath. Figure 2.12 illustrates the satisfaction relation of

PCTL operators: the singleton AP, the next operator (X) and the until operator (U). Note

that the next operator considers the AP in the immediate next state ω(1) of the start state on

a path while the until operator considers a fragment of the path with APs a and b.

Theorem 2.1. The Model Checking Algorithm with inputs as a DTMC D and a PCTL formula

Φ is sound and complete. �

The model checking algorithms for PCTL are well-established and detailed in [37, 94, 95]. We

reproduce here from [93] a summary of the model checking algorithms for the until operator

since this is used in our contributory chapters. Note that the model checking of the eventually

(F ) operator follows since the eventually operator can be written in terms of the until operator.

The inputs to the algorithm are a labelled DTMC D and a PCTL formula Φ. The output is the

set of states Sat(Φ) = {s ∈ S, s |= Φ}, defined as the set of states of the model which satisfy

Φ. The algorithm proceeds by checking whether each state in S satisfies the formula.

Model Checking P∼p[Φ U6k Ψ]: For such formulae we need to determine the probabilities

ProbD(s,Φ U6k Ψ) for all states s where k ∈ N ∪ {∞}, where k = ∞ is utilized for infinite

path lengths.

a

a

a a b

AP a

X a

a U b

Figure 2.12: PCTL Properties with respect to the Atomic Proposition Set {a, b}
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We denote by πDs,k (s′) the transient probability in D of being in state s′ after k steps when

starting in s, that is:

πDs,k (s′) = Prs
{
ω ∈ Path D(s) | ω(k) = s′

}
.

The probabilities ProbD(s,Φ U6k Ψ) can then be expressed as the transient probabilities of a

DTMC utilizing a PCTL driven transformation of the DTMC defined as follows:

Definition 2.6 [PCTL driven DTMC Transformation:]

For any DTMC D and PCTL formula Φ, let D[Φ] denote the transformed DTMC where, if

s 6|= Φ, then P[Φ] (s, s′) = P (s, s′) for all s′ ∈ S, and if s |= Φ, then P[Φ](s, s) = 1 and

P[Φ] (s, s′) = 0 for all s′ 6= s Using the transient probabilities and this transformation we define

the vector ProbD(s,Φ U 6k Ψ) as follows:

ProbD
(
s,ΦU6kΨ

)
=
∑
s′|=Ψ

π
D[¬Φ∨Ψ]
s,k (s′)

These probabilities can now be computed using the following matrix and vector multiplications

from the original probability transitions of the DTMC D:

ProbD
(
Φ U6k Ψ

)
= (P [¬Φ ∨Ψ])k ·Ψ

where Ψ is a column vector such that:

Ψ =

1, if s ∈ Sat(Ψ)

0, otherwise

This product is computed in an iterative fashion as follows:

P [¬Φ ∨Ψ] · (· · · (P [¬Φ ∨Ψ] ·Ψ) · · · )

Case when k ∈ N: For s ∈ S and k ∈ N : the probabilistic satisfaction of PD(s,Φ U6k Ψ) is

defined as:

PD(s,Φ U6k Ψ) =


1 ; if s ∈ Sat(Ψ)

0 ; if k = 0 or s ∈ Sat(¬Φ ∧ ¬Ψ)∑
s′∈S P (s, s′) · ProbD

(
s′,Φ U6k−1 Ψ

)
; otherwise.
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Figure 2.13: Embedded DTMC of MDP

Case when k =∞: The probabilities ProbD(s,Φ U Ψ) can be computed as the solution of the

linear equation system using least squares where ProbD(s,Φ U Ψ) is defined as:

ProbD(s,Φ U Ψ) =


1 if s ∈ Sat(Ψ)

0 if s ∈ Sat(¬Φ ∧ ¬Ψ)∑
s′∈S

P (s, s′) · ProbD (s′,Φ U Ψ) otherwise.

The solutions of this system of equations determine the satisfaction probabilities of the operator

until when k =∞ [93]. Model Checking of the F operator is computed using the algorithm for

the until operator. For an MDP M, the resolution of non-deterministic choices at each state pro-

duces an embedded DTMC D. Figure 2.13 depicts an embedded DTMC for the MDP depicted

in Figure 2.11. In this case, in state s2, the non-deterministic choice is resolved by selecting

Action 2. Thus, from state s2, the outgoing transitions now form a probability distribution

over s3 and s4. The Model Checking algorithms for MDPs consider all such embedded DTMCs

to calculate the satisfaction relation of each PCTL formula using the DTMC satisfaction set

construction outlined earlier.

2.3.5 Stochastic Multi-Player Games (SMGs)

The DTMC and MDP formulations characterize individual systems. However, they do not

capture the dynamic interactions between the different entities of a large system. A Stochastic

Multi-Player Game (SMG) is a generalization of an MDP which allows each state of the MDP to

be controlled by entities called players, allowing effective formal characterization of the outcome

of actions of a player on the other players. We first formally define a SMG as follows:
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Definition 2.7 [SMG:]

A SMG is defined as a tuple G = (Y,Γ, Act, P ) where:

� Y is a finite set of players.

� Γ is a finite set of states, partitioned into disjoint sets of states Γv, where v ∈ Y .

� Act is a finite set of actions.

� P : Γ× Act× Γ→ [0, 1] is a partial transition function.

A state γ ∈ Γv is controlled by player v, if the actions from γ ∈ Γv are controlled by v. SMGs

are thus a generalization of MDPs where each state is controlled by a particular player [38].

2.3.6 Probabilistic Alternating-Time Temporal Logic with Rewards

(rPATL)

Although PCTL can be used to design properties characterizing DTMCs and MDPs, it does not

generalize to SMGs where properties quantifying behaviours of individual players are involved.

To express properties for SMGs we use rPATL - Probabilistic Alternating-Time Temporal logic

with Rewards [38]. Properties in rPATL are specified identically to PCTL with the additional

annotation of explicitly specifying a player for whom the property is to be evaluated.

Definition 2.8 [rPATL:]

The syntax of rPATL is given by the grammar:

φ ::= true|a|¬φ|φ ∧ φ|〈〈C〉〉P./q[ψ] | 〈〈C〉〉Rr
./x [ F?φ]

ψ ::= Xφ
∣∣φU≤kφ

∣∣φUφ

where a ∈ AP,C ⊆ Y, ./ ∈ {<,≤,≥, >}, q ∈ Q ∩ [0, 1], x ∈ Q≥0, r is a reward structure,

? ∈ {0,∞, c} and c, k ∈ N, Q represents the set of rational numbers, N represents the set of

natural numbers and [0, 1] represents the closed interval comprising all rational numbers in the

closed interval [0, 1] (both inclusive).

In a rPATL property, 〈〈C〉〉 specifies that we are interested in analyzing the rewards associated

with the PCTL formula φ for the player C.
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2.3.7 Model Checking rPATL Properties on SMGs

The model checking algorithm for rPATL verification on SMGs proceeds in a manner similar

to the model checking algorithm for a PCTL property by exploring the satisfaction relation of

states with respect to the property with respect to a player v. It then utilizes a value iteration

approach to compute the associated reward values. Value iteration proceeds by repeatedly

solving the set of equations while considering the difference in values in between iterations until

the values obtained between successive iterations are within a specific bound. We reproduce

from [38] the following theorem that asserts the generation of a unique solution of a given SMG

for a given rPATL property using model checking.

Theorem 2.2. The Model Checking Algorithms [38] with inputs as a SMG G and the rPATL

formula Φ = 〈〈v〉〉R∼r[Fφ] produces the unique solution to the game G. �

In our following chapters, we use these model checking algorithms as verification procedures.

In the following section, we briefly discuss about Reinforcement Learning where MDP models

are utilized, however, the probability distributions and reward functions are unknown.

2.4 Reinforcement Learning

Figure 2.14: Overview of Reinforcement Learning

Reinforcement learning (RL) [34] is a branch of machine learning that studies how intelligent

agents can operate in a given environment to maximize the reward accumulated by repeat-

edly interacting with the environment. RL differs from supervised learning in that it does not

need the presentation of labelled input/output pairings or the explicit correction of sub-optimal
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behaviours. Instead, achieving a balance between exploration (of unexplored region) and ex-

ploitation (of information accumulated) is the priority of RL based approaches. The goal of

reinforcement learning is for the agent to discover an optimal (or nearly optimal) strategy that

maximizes the “reward function” or other user-provided reinforcement signals that accumulate

from the immediate rewards. In RL, an agent interacts with the environment by executing

decisions and adjusting the decision making over time in accordance with the reward signal.

RL algorithms are either model-based or model-free. Model-free algorithms rely on direct inter-

actions with the environment while a model-based algorithm makes use of previous interactions

with the environment to predict rewards and next states. As demonstrated in Figure 2.14, the

agent A at timepoint t in state St, executes an action At, as a result of which it transitions to

a state St+1 and receives a reward Rt+1. Such actions correspond to real time interactions with

the environment in model-free algorithms. A model-based algorithm utilizes these interactions

to build a model of the environment.

2.4.1 Q-Learning

Q-Learning is a model-free RL algorithm. It is utilized to learn the reward of an action in a

particular environment state by continuous interaction in the form of exploration-exploitation.

Q-learning finds an optimal policy for any finite MDP by maximising the expected value of the

total reward across consecutive steps, commencing from the current state.

Algorithm 1: Q-Learning

1 Initialize Q(S,Λ), ∀s ∈ S,∀λ ∈ Λ
2 s← initialize state
3 while true do
4 λ← ε-greedy(s,Q)
5 Observe the next state s′ and the reward obtained
6 Q(s, λ)← Q(s, λ) + ζ [r + γ argmaxλ[Q(s′, λ)]−Q(s, λ)]
7 s← s′

Q-learning essentially estimates the optimal Q-function, Q, by its sample averages. A simple

ε-greedy action selection method is utilized where at any decision step i, with probability ε,

Q-learning chooses a random action to improve its knowledge of the application, whereas, with

probability 1−ε, it chooses the action greedily by exploiting its knowledge about the application,

i.e., λ = argmaxλ Q(s, λ). Most of the time, the ε-greedy policy selects the best known action

for a particular state, while it favors the exploration of sub-optimal actions with low probability.
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At the end of each time slot i, Q(s, λ) is updated as follows:

Q(s, λ)← Q(s, λ) + ζ [r + γ argmaxλ[Q(s′, λ)]−Q(s, λ)] (2.1)

where ζ is the learning rate assigned to the agent. The equation updates the Q-value of state

s by determining the action corresponding to the highest Q-value among all successor states

(argmaxλQ(s′, λ)), which is discounted by γ and updated according to the reward r observed

from the environment. The Q-Learning algorithm is summarized in Algorithm 1.

2.4.2 Dyna-Q Algorithm

Algorithm 2: Dyna-Q

1 Initialize Q(S,Λ) and Model(S,Λ), ∀s ∈ S,∀λ ∈ Λ
2 while true do
3 s← observe the application state
4 λ← ε-greedy(s, q)
5 Observe the next state s′ and the reward obtained
6 Q(s, λ)← Q(s, λ) + ζ [r + γ argmaxλ[Q(s′, λ)]−Q(s, λ)]
7 Model (s, λ)← r, s′

8 for i = 0 . . . n do
9 s← random state previously observed

10 λ← random action previously taken in s
11 r, s′ ← Model(s, λ)
12 Q(s, λ)← Q(s, λ) + ζ [r + γ argmaxλ[Q(s′, λ)]−Q(s, λ)]

The Dyna-Q [34] RL algorithm is a model-free RL paradigm that consists of a combination of

the model-based and Q-learning paradigms. The Dyna-Q Algorithm is summarized in Algo-

rithm 2. Unlike Q-learning, Dyna-Q aims to speed up the learning process by simulating the

system interaction with the environment. At run-time, Dyna-Q observes the application state

and selects an adaptation action using the estimates of Q(s, λ), as Q-learning does. At the

end of the time step i, DynaQ exploits a sampled model of the system, Model(S,Λ), where

Model(S,Λ) refers to the MDP model of the environment with the updated reward values in

each iteration of the Q-Learning algorithm, to simulate the interaction between the application

and the environment (lines 8 - 12). Dyna-Q updates Model(S,Λ) at runtime, by storing the

next state s′ and reward r for the explored state-action pair (s, λ) at line 7. Dyna-Q updates

the Q-function akin to Q-learning using Equation 2.1 and resorting to the state-action pairs

previously observed and proceeds to simulate updation using previous interactions.
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mdp

const double P_SLEEP = 0.15;

const double P_WAKE = 0.85;

const double P_FAIL = 0.3;

...

module device

state: [0..1];

//0 implies wake state

//1 implies sleep state

pkt : [0..3];

//0 implies no packet to send

//1 implies packet to send

//2 implies failed to send packet

//3 implies successfully sent packet

[] state = 0 & pkt = 0 -> P_SLEEP : (state’=1) + (P_WAKE) : (state’=0);

[send] state=0 & pkt = 1 -> (P_FAIL) : (pkt’ = 2) + (1-P_FAIL) : (pkt’ = 3);

[wait] state=0 & pkt = 1 -> true;

endmodule

...

Listing 2.1: Module of a Mobile Device

2.5 PRISM Model Checker

PRISM [93] is a Probabilistic Model Checker offering a high level programming language for

describing probabilistic systems. For description of probabilistic models, PRISM employs an

input language developed from Reactive Modules, a language for process-algebraic expression

[93]. Models are defined in PRISM as the parallel composition of a number of modules, each

of which has a set of instructions that define transitions. Each module comprises variables

describing the possible states of the module. Modules comprise commands (or actions) de-

scribing transitions between the various states. Each command consists of an optional action

name conditionally executed on arithmetic expressions of variables and constants. The result of

execution of each command is a probability distribution over successor states of the variables.
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Additionally, in PRISM, each state of an MDP can be associated with a reward value. Thus,

a PRISM reward definition for an MDP M is a mapping from each state of the MDP to a real

number formally defined as: R : Ψ → R. More about PRISM is detailed in [93]. We utilize

PRISM as the probabilistic model checker in this thesis.

Example 2.5.1. Listing 2.1 depicts a sample PRISM specification of a mobile device modeled

as an MDP. It comprises three constants, the first two constants define the probability of the

device going into sleep mode and remaining awake respectively while the third constant defines

the probability of successfully sending a packet over the network. In this example, we define a

single module for the device. The module comprises two variables, state and pkt representing

the sleep/wake status of the device and the status of the packet to be sent respectively. The

module comprises three actions. The first action characterizes the probability distribution of

going into the sleep mode when there is no packet to send (pkt = 0). The next two actions

characterize non-deterministic choices of whether to send a packet immediately or to wait before

sending the packet. �

PRISM offers labelled synchronization specifications between modules defined with respect to

labels associated with each transition.

State 1 State 2

State 3

[sync1]

[sync2]

(a) MDP M1

State 1 State 2

State 3

[sync1]

[sync2]
variable update

(b) MDP M2

Figure 2.15: PRISM Module Synchronization

Example 2.5.2. Consider the two MDPs in Figures 2.15a and 2.15b. Each MDP can be rep-

resented by a PRISM module. Each MDP comprises three states. In MDP M1, whenever the

transition from State 1 to State 2 is executed identified by the label [sync1], the transition

in M2 identified by the same label [sync1] is also executed. Similarly, consider the transition

in M1 from State 1 to State 3 labelled by [sync2]. Whenever the transition is executed, the

corresponding transition in M2 labelled by [sync2] is also executed. Additionally, note that in

M2, the [sync2] transition is further augmented with variable update. Such statements denote

updation of the specified PRISM variable on execution of the transition. �

In the following section, we discuss some of the datasets and benchmark applications utilized

in our contributory chapters.
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2.6 Dataset and Benchmark Desciption

We provide below a brief description of each of the datasets and the application benchmark

suite utilized in our work.

2.6.1 WS-DREAM dataset

The WS-DREAM [96] dataset comprises real-world QoS measurements, including both response

time and throughput values. We utilize this dataset to generate representative latency values

for multiple instances of microservice containers in accordance with the QoS values.

2.6.2 San Francisco Taxi Dataset and Tower Locations
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MEC Server Locations and Sample User Trajectory

Figure 2.16: San Francisco Taxi and Tower Locations

We utilize real-world mobility traces of taxis in San Francisco [97], available publicly, collected

over different time points during the day where different numbers of taxis operate at different

times of the day. For edge site locations, we use the ‘Existing Commercial Wireless Telecom-

munication Services Facilities in the San Francisco’ dataset [98], which is also available publicly,

as MEC server locations. The coverage area of each MEC server is randomly generated (while

ensuring full coverage of the city area under study) as in [6, 7]. However, this dataset only

comprises locations of towers confined mostly to a large segment of the San Francisco area.

The San Francisco taxi dataset, however, comprises taxi trajectories distributed over the entire

city of San Francisco. Hence, we consider only a portion of the main San Francisco city area

with 81 facility locations as edge sites within the dataset since only a portion of the dataset

comprises information about Wireless Telecommunication Facilities located in close vicinity

of each other that can be utilized to represent adjacent edge sites. From the dataset, we
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extract for each taxi, the coordinates confined to the region of MEC server locations. The

coverage area of each edge site is randomly generated (while ensuring full coverage of the city

area under study) as in [6, 7]. In Figure 2.16, we use red stars to depict edge site locations

and blue circles to show the trajectory of a sample taxi for the area of the city utilized in

our contributory chapters.

2.6.3 DeathStarBench Benchmark Suite

The DeathStarBench benchmark suite [48] presents microservice based applications from do-

mains such as social media and movie streaming. This has been used in a range of studies

such as hardware and networking implications of microservices and performance debugging of

cloud microservices [99] and predicting QoS values in cloud based services [88]. Application

services of the DeathStarBench benchmark suite are deployed in containers. Each applica-

tion is deployed as a web server which caters to incoming service requests. The Social Net-

work application includes a workload generator wrk where the workload can be controlled by

means of different parameters. We utilize two such parameters, the workload duration and

the number of service requests per second since these are representative of low latency MEC

environments [6]. The Media Microservices application caters to users searching and browsing

for information about movies, including their plot, photos, videos, cast, and review informa-

tion. The Media Microservices application also includes a workload generator similar to the

Social Network application.

2.6.4 YOLO Application

You Only Look Once (YOLO) is a state-of-the-art, real-time object detection system [100].

YOLO applies a single neural network to an entire image where the network divides the image

into regions and predicts the bounding boxes of objects for predicting objects in images. We

use the standard pre-trained weights for the object recognition task. YOLO utilizes both CPU

and GPU for object detection [100].

2.6.5 PlanetLab Dataset

We use the PlanetLab dataset [101], used in prior work in Fault-Tolerance [15], to simulate

server failures. The datasets comprise availability information of various servers each identified

by a unique ID. Each edge server in our setup is randomly assigned one of the unique IDs
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available in the datasets and assigned the corresponding probability of failure from the dataset.

Additionally, the PlanetLab dataset also comprises latency measurements between the different

machines on the PlanetLab network thereby serving as an indicator of inter-machine commu-

nication latency.

2.6.6 Telefonica Mobile Phone Usage Dataset

The Telefonica Dataset [102] contains detailed logs of mobile phone usage of 342 people over

the course of 4 weeks. The Telefonica dataset provides logs of invocation of the Google Maps

service along with the GPS coordinates of the device at that timepoint. Service requests of the

Google Maps application are then used for experimental purposes.

To the best of our knowledge, there are no real-world MEC implementation workload traces

that are publicly available and sufficiently representative of the problems we consider in our

contributory chapters. Therefore, depending on the problem context, we generate synthetic

workloads using some the above real-world datasets.

In contrast to state-of-the-art MEC literature, this thesis makes some unique contributions. A

central objective of this thesis is to design and verify MEC policies. In the subsequent chapters,

we present in detail our design and verification approaches. We design a microservice based

user allocation policy considering the correlation between microservice inter-communication and

microservice deployments on MEC servers. We further demonstrate the benefits of proactively

prefetching microservices. Additionally, we design an auto-scaling policy that ensures adherence

to latency requirements. In the event of failures, we synthesize recovery strategies taking

into account the possibility of multiple failures. Finally, we develop a trace-driven verification

framework to evaluate service allocation policies. We believe that this work presents some

unique approaches to MEC policy design and verification that distinguishes our contributions

from state of the art MEC literature.
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Service Allocation for Microservice

based Applications

3.1 Introduction

State of the art service allocation policies in MEC literature are geared towards monolithic appli-

cations [6, 7, 8]. To the best of our knowledge, allocation policies for microservice based applica-

tions have been less relatively explored. Recently, authors in [9] proposed an allocation policy for

microservice based applications. However, they did not consider the dependencies arising from

a DAG workflow structure and the implications in MEC allocations. In order to enhance fault

tolerance and load balancing, identical container instances of a microservice are deployed on

several MEC servers. Each such container can have different access and task execution latencies

depending on the edge site where the container is deployed as well as the current load associated

with the server. In this chapter, we propose an allocation policy for microservice based appli-

cations considering the correlations arising from the geo-spatial deployment of microservices on

MEC servers with respect to a given microservice workflow structure. We consider two types of

correlations among service containers in this work. The first type of correlation arises between

This work is based on:

� Kaustabha Ray, Ansuman Banerjee and Swarup Kumar Mohalik, “Service Selection with Package
Bundles and Compatibility Constraints”, In IEEE Transactions on Services Computing, 2021, doi:
10.1109/TSC.2021.3075030.

35
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microservice containers deployed on the same server. We term these as microservice bundles

that enjoy negligible data transfer latencies between containers. Additionally, we also consider

compatibility constraints between containers arising from the diverse platform and library con-

figurations on MEC servers as the second type of correlation. Our objective here is to work

on the minimum latency microservice allocation problem in the presence of compatibility con-

straints and microservice bundles induced by multiple containers hosted for each microservice.

For a given microservice based application workflow, our problem deals with selecting a set of

containers such that each microservice of a workflow can be realized by at least one deployed con-

tainer, honoring compatibility constraints, and the resulting latency incurred in executing the

workflow is minimized. For simplicity of illustration and ease of explanation in this chapter, we

focus on applications with workflows defined by a linear sequence of microservices. We consider

scenarios with an existing service placement configuration and known locations of users similar

to the approaches utilized in [7, 8].

In this work, we take an abstract view of the MEC context and provide a novel hyper graph

model, which lends itself to an efficient allocation modality. The key insight behind our ap-

proach is an innovative solution strategy that builds on a unique combination of Integer Linear

Programming (ILP) [103] and Abstraction Refinement (AR) [104]. In particular, we explore

how latency correlations and compatibility constraints can influence microservice allocation.

We present a formal proof of hardness for the user allocation problem in our model, and formu-

late an Integer Linear Programming (ILP) - based approach for solving the same. Additionally,

we use Abstraction Refinement as an enabler to expedite the ILP by systematically creating

abstract microservices as part of the abstraction process on top of which we use the baseline

ILP to generate optimal solutions. Further, we iteratively refine any artifacts which may have

been introduced as a result of the abstraction process. We demonstrate that such an approach

eventually terminates generating an optimal solution.

To validate the proposed method, we experiment on synthetically generated representative

latency values from real-world datasets, scaling the number of microservices, microservice de-

ployments, microservice bundles and compatibility constraints. Experimental results show that

our solution performs well with large workflows, even in large scale scenarios.

The rest of this chapter is organized as follows. Section 3.2 presents an illustrative example.

Section 3.3 outlines the problem. Section 3.4 presents a baseline solution using ILP to solve

the problem. Section 3.5 presents our ILP + Abstraction Refinement combination approach.

Section 3.6 details our results while the next section concludes the chapter.
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3.2 A Motivating Example

We first describe the access latencies associated with the container based microservice provi-

sioning model discussed in Chapter 2. Microservice DAG workflows comprise vertices denoting

individual microservices and edges representing microservice inter-communication. Edges de-

pict the data-flow between consecutive microservices i.e., an edge from a microservice Mi to

microservice Mj denotes that the output of Mi is utilized as the input of Mj. Each microservice

of the workflow is deployed as a set of multiple functionally equivalent containers on different

MEC servers to enhance load balancing and fault tolerance. As users invoke these applications,

the objective of a service allocation policy is to determine for a particular user for each microser-

vice in his/her workflow, the server container instance where the request will be provisioned.

Once the microservice-container-server binding has been determined, a new task is created at

the server pertaining to each microservice in the workflow to be provisioned.

Accessing microservice containers deployed at MEC servers is associated with an access latency

depending on the geographical area where the MEC server is located, a computation latency

incurred in executing the service request on the container with the user specific inputs, and

a data transfer latency incurred due to transferring of data between the microservices of the

workflow. The latencies incurred due to transferring the output data of Mi to Mj could vary de-

pending on the MEC servers on which the containers corresponding to Mi and Mj are deployed.

For example, if Mi and Mj are deployed on the same MEC server, no data transfer latency is

incurred. We refer to such co-located microservice containers as microservice-bundles.

Additionally, there often exists compatibility constraints between the microservice container

deployments that need to be honored. Compatibility constraints arise from the diverse platform

configurations on MEC servers. An an example, MEC servers can run Windows or Linux

operating systems, however, intercommunicating microservices often require the same platform

and technology stack (Application Programming Interface (API), dynamically linked libraries

and development packages) to operate correctly. In our service allocation method, we also

consider such compatibility constraints arising from microservice container deployments.

Consider the scenario in Figure 3.1. There are three edge sites E1, E2, and E3 where each

edge site is powered by a single edge server. We consider a linear workflow comprising three

microservices M1,M2, and M3, as shown in the figure. User u1 can access the containers

deployed on the MEC servers associated with E1 with low latency since it is located in the

coverage area of E1. User u1 can also access the containers deployed on MEC servers at other

edge sites via the backbone network, however, with an additional backbone network access

latency. A set of containers corresponding to each microservice is deployed on the servers as
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Figure 3.1: Example Microservice Deployment Scenario

listed in Table 3.1. Table 3.1 also lists the total latencies defined as the sum of the access latency,

the computation latency and the data transfer latency (applicable for all microservices 6= M1)

associated with u1 for availing the services of the respective containers. In this work, we assume

that an apriori latency estimate is available for each user for the above latencies. In addition

to individual containers, Table 3.1 also comprises two microservice-bundles induced by the

deployment configuration of the containers. Since S12 and S21 are both deployed on server ES3,

data transfer latency is not incurred. Similarly, S13, S22 and S21 form a bundle. Such bundles are

depicted by the purple and blue highlighted rectangles in Figure 3.1. Note that in Table 3.1, we

represent singleton containers as bundles as well. We utilize such a representation throughout

this chapter. We identify each bundle as qi. Additionally, there exists a compatibility constraint

between S21 and S31 as shown by the dotted rectangle in Figure 3.1. Such a compatibility

constraint stems from both containers S21 and S31 corresponding to AddRating and AddReview

having identical (e.g. Python 3.6) library dependencies. The compatibility constraint occurs

for the AddReview microservice utilizing the output of the AddRating microservice to update

the database with the ratings and reviews together, utilizing the same database format. Other

containers are mutually compatible with each other.

The minimum latency microservice allocation problem is to identify a set of bundles such that

at least one service container Sij is chosen for each microservice Mi in the user workflow,

compatibility constraints are honored, and the overall latency is minimized. The latency for a
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Containers Bundle Identifier
Latency
(in ms)

S11 q0 50
S12 q1 50
S13 q2 60
S21 q3 50
S22 q4 60
S31 q5 60

S12, S21 q6 95
S13, S22, S31 q7 150

Table 3.1: Container Deployment on MEC Servers

set of bundles is defined as the sum of the individual latencies of each bundle in the set. In

this example, the minimum latency solution for u1 is 150ms which pertains to the bundle q7.

In terms of service containers, these map to S13, S22, and S31. Note that these containers are

all mutually compatible with each other.

Evidently, the size of the solution space for the allocation problem is exponential in the number

of bundles, and some of the solutions are invalid as well. For a particular microservice, more

than one container can serve the required purpose as well. The naive approach of examining all

the solutions, removing the invalid ones, and extracting the minimum is a compute intensive

task. Our contribution here is a novel method to systematically navigate the solution space of

the allocation problem.

3.3 Problem Formulation

Consider a workflow W comprising a set M = {M1,M2, . . .} of microservices and a service

container repository S, where each s ∈ S has a core functionality cf(s). We have a set of bundles

Q = {q1, . . . , qr}, where each qi has an associated latency denoted as latency(qi). Containers

in a bundle have disjoint core functionalities i.e., for all si, sj ∈ qk, i 6= j, cf(si) 6= cf(sj). We

represent individual container latencies as singleton bundles.

Definition 3.1 [Container choices for Mi microservice:]

Given a user specified workflow W as a linear acyclic workflow of microservices M where each

microservice Mi is annotated with a core functionality CFi, the container choices available for

the microservice Mi is defined as Si = {s | cf(s) = CFi}, with the individual constituents of

the set denoted as Si1, Si2, Si3, ...Sini, where, ni = |Si|.



Chapter 3. Service Allocation for Microservice based Applications 40

Notation Description
S service repository
s any service in service repository S
si i-th service in service repository S

cf(si) core functionality of i-th service
W workflow comprising several tasks
Ti i-th task of workflow W
Si set of candidate services for Task Ti
Sij j-th candidate service of task Ti
ni number of candidate services of task Ti
Q set of service bundles
q any service bundle in repository S
qk k-th service bundle in repository S

latency(hi) latency of i-th service bundle in repository S
r total number of bundles in repository S
P set of compatibility constraints
pk k-th compatibility constraint
Z set of elements used in the set cover problem
C subset of Z used in the set cover problem
hk 0/1 indicator variable for qk
Hi set of indicator variables for bundles in Ti
Hk
i set of indicator variables for antecedents of pk
S̃ task level partition of S
σij j-th partition of i-th task
[s] partition subset of service s
[q] partition subset of bundle q

Ŝ abstract service repository

Q̂ abstract set of service bundles

Ŵ abstract workflow comprising abstract tasks

P̂ abstract set of compatibility constraints

T̂i i-th abstract task
ˆTSij abstract task corresponding to Sij
T̂ ′i i-th refined compatible abstract task

T̂ ′′i i-th refined non-compatible abstract task
q̂k k-th abstract bundle

q̂′k k-th refined abstract bundle
ρk value of k-th service parameter
ωk weight assigned to k-th service parameter

Table 3.2: Table of Notations
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Figure 3.2: Service Provider Repository

Definition 3.2 [Compatibility Constraint:]

A compatibility constraint between microservices Mi and Mi+1 denoted by pi is of the form

Sij → {S(i+1)m , S(i+1)n , . . .}. This mandates that if Sij is utilized for Mi, at least one among

S(i+1)m, S(i+1)n . . . has to be selected for Mi+1.

We are given a set P = {p1, p2, . . . pk} of compatibility constraints across consecutive containers.

Further, for a container Sij in Mi that does not have any explicit compatibility constraint with

any S(i+1)j in Mi+1, we assume an implicit compatibility Sij →
⋃|Si+1|
m=1 S(i+1)m, which denotes Sij

is compatibile with all containers of Mi+1. We do not further explicitly mention these implicit

constraints in the following discussion.

Intuitively, we can visualize the problem space as a multi-partite hyper-graph [105], as in

Figure 3.2, with latencies on hyper-edges and constraints on edge-pairs, where each hyper-edge

corresponds to a bundle. The container hypergraph is formally defined as follows:

Definition 3.3 [Container Hypergraph:]

A container hypergraph H is a pair (Hv,He) where Hv(= S) represents the set of all containers

for the different microservices and He ⊂ 2Hv where 2Hv represents the powerset of Hv, i.e., all

possible microservice bundles.

We do not consider the empty set within 2(Hv). We utilize the example container repository in

Figure 3.2 to explain our solution methodology. Table 3.3 lists the bundles and the respective
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Bundle Name containers Total Latency (ms)
q1 S11 90
q2 S12 60
q3 S13 90
q4 S14 70
q5 S21 90
q6 S22 90
q7 S23 70
q8 S24 70
q9 S31 80
q10 S32 90
q11 S33 80
q12 S34 80
q13 S41 20
q14 S42 30
q15 S43 10
q16 S51 20
q17 S52 30
q18 S53 10
q19 S11S21 50
q20 S22S32 50
q21 S41S51 35
q22 S43S53 15
q23 S13S24S33 150
q24 S14S24S34 160

Table 3.3: Package Bundles and their Latencies

latencies for the container repository in Figure 3.2. Latencies are specified on singleton bundles

as well, as in case of rows 2-19 of Table 3.3.

We now formally define the problem of Minimum Latency Container Bundle Allocation with

Compatibility Constraints (MLCBACC).

Definition 3.4 [MLCBACC:]

MLCBACC problem takes in a tuple 〈S,Q,W, P 〉 with the objective of selecting a subset Q′ ⊆ Q

such that

� Q′ is a realizing solution i.e. for each Mi ∈ M , there is at least one Sij ∈
⋃
Q′ with

matching core functionality cf .

� Q′ meets all compatibility constraints, i.e., for every constraint pk ∈ P of the form

Sij → {S(i+1)m , S(i+1)n , . . .}, if Sij ∈
⋃

Q′, then at least one among the set

S(i+1)m, S(i+1)n, . . . ∈ ⋃Q′.

� Total latency of Q′ is minimum over all realizing constraint satisfying subsets of Q.
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Observation 3.3.1. We first note a simple fact about the latencies of the bundles in Q: if there

is a bundle q ∈ Q that can be realized by a set of smaller bundles, say q1, . . . , qk i.e. q =
⋃k
i=1 qi,

then it must be the case that latency(q) <
∑k

i=1 latency(qi); or else, any solution can identify

containers from the constituent bundles, making q redundant. �

We now prove the NP-Completeness of MLCBACC.

Lemma 3.1. MLCBACC is NP-complete.

Proof: Given a workflow W and an arbitrary subset Q′ of Q, we can validate in polynomial

time if Q′ realizes the entire workflow honoring all compatibility constraints, and also check

that the latency is less than a given bound. Thus the decision version of MLCBACC is in NP.

Consider a MLCBACC problem 〈S,Q,W, P 〉. The lower bound is proved by a reduction from

the set covering problem [106] to the decision version of MCSBSCC by setting P to be empty in

〈S,Q,W, P 〉. We are given a collection C = {c1, . . . , cn} of n subsets of a given set of elements

Z = {z1, . . . , zp}, and are required to determine whether for a given integer k < n, there exists

k subsets in C whose union gives Z. Obviously, each element of Z is contained in one or more

subset of C, otherwise a solution does not exist. Given the set Z = {z1, . . . , zp}, we define a

workflow comprising a set of microservices M = {M1, . . . ,Mp}. Each microservice has only a

single container Si1. Intuitively, we associate microservice Mi with the element zi of Z. Also we

associate each subset ci, for 1 ≤ i ≤ n− 1, with a distinct combination bundle, i.e. hyper-edge

qi. We associate a latency of 1 with each hyper-edge thus created. From the construction, it

now follows that a set of k hyper-edges is the minimum latency bundle selection iff the corre-

sponding subsets in C cover all the elements of Z. We thus conclude from this reduction that

MLCBACC is NP-Complete in general. �

In the light of the lower bound proof, it is evident that any solution to MLCBACC has high com-

plexity in the worst case. However, for real-life problem instances, one may still find solutions

that perform fairly well. We present two solution strategies in the following and corroborate

the efficiency through experimental results on publicly available service benchmarks.

3.4 A Baseline Solution Methodology

We first present an ILP approach for solving the problem. We propose a baseline ILP since state-

of-the-art algorithms for bundled service selection deal with only bundles ignoring compatibility

constraints [107]. We associate a binary (0 / 1) indicator variable hi for each qi ∈ Q to indicate
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if the bundle qi is present or not in the minimum latency bundle. Thus, we have as many

indicator variables as there are elements in Q, including the singleton bundles. We formally

define the indicator variable hi as follows:

hi =

1, if qi ∈ Q̂
0, otherwise

Thus, the indicator variable hi has a value of 1 for those bundles included in the solution

MLCBACC, Q̂ and a value of 0 for those bundles not included in the solution. In addition,

we have the constraint that at least one container is included for each Mi. As earlier, let Si

= {Si1, Si2, Si3, ...Sini} denote the set of containers for microservice Mi. For each Sij, we can

associate it to one or more qk ∈ Q. For each Mi, let Hi denote the set of indicator variables hp

that correspond to bundles which include some member Sij of Si for microservice Mi. Evidently,

this information can be derived from the bundle information. Our constraint is to ensure at

least one member of Hi for each Mi is included in our minimum latency solution.

Further, we need to enforce the compatibility constraints between service containers. Consider

pk: Sij → {S(i+1)m, S(i+1)n, . . .} as earlier. Let Ĥk
a denote the set of indicator variables that

correspond to bundles which include the antecedent of pk, i.e. Sij, where k denotes the cardi-

nality of the set {S(i+1)m, S(i+1)n, . . .}. Let Ĥ(i+1)m denote the set of indicator variables that

correspond to bundles which include S(i+1)m, let Ĥ(i+1)n denote the set of indicator variables

that correspond to bundles which include S(i+1)n and so forth. Let Ĥk
c be the union of the

indicator variable sets for the consequents of pk, i.e. S(i+1)m, S(i+1)n, . . .. If Sij is included, at

least one among S(i+1)m, S(i+1)n . . . has to be taken. Thus, if one of the indicator variables in

Ĥk
a is set to 1, at least one in Ĥk

c will also have to be set to 1. Let r denote the total number of

bundles in the repository including singleton bundles. Combining the above, we have the ILP:

Minimize :
r∑
i=1

hi ∗ latency(hi)

Subject to :
∑
hp∈Hi

hp ≥ 1 , ∀ Hi (1)

Additionally, for each compatibility constraint pk ∈ P , following the discussion as above, for

each hx in Ĥk
a , we have:

hx ≤
∑
hq∈Hk

c

hq
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The above can be combined as follows:

∑
hx∈Hk

a

hx ≤

|Hk
a | ×

∑
hq∈Hk

c

hq

 , ∀ pk ∈ P (2)

Constraint 1 ensures at least one container is included for each microservice Mi. Constraint 2

generates the compatibility constraints. |Hk
a | denotes the number of elements in the set Hk

a .

The above set of equations are then fed into an ILP solver. The solution generated by the ILP

solver represents the solution to MLCBACC. As the number of microservices and containers

grows, the number of possible bundle offerings and compatibility constraints grows as well and

we have a large number of indicator variables. The solution space that the ILP solver has

to handle grows as well, and more often than not, the ILP solver faces hurdles to scale to

larger problem instances. However, if the ILP solver is able to generate a solution, it is always

guaranteed to produce the optimal one. In this paper, we present another optimal solution

approach on top of ILP to scale it further.

3.5 Using Abstraction Refinement on ILP

In this discussion, we present an abstraction refinement based solution strategy that applies

the ILP on a smaller problem space, and generates the same optimal solution. Our procedure

comprises 3 main steps, as below.

� Abstraction: For each microservice Mi, we create an abstract microservice M̂i. We create

a set of abstract bundles and assign their latencies. Further, we introduce compatibility

constraints between the abstract microservices.

� Solution Generation and Validation: We use the baseline ILP as described in Section 3.4

on the set of abstract bundles to generate the optimal selection solution. In the following

discussion, we refer to such a solution as an abstract solution. We then check if the abstract

solution mapped back to the original repository meets the compatibility constraints. If it

does, i.e, we find a corresponding solution in the original repository, then a valid solution

(which is optimal as well as we prove later) has been obtained from the abstraction and

thus we terminate. We term the corresponding solution in the original repository as a

concrete solution. However, if it violates any constraint, we remove the spurious solution

by refining the abstraction.
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� Refinement: Refinement is carried out by splitting the abstract microservices in case of

spurious solutions.

We first formalize the notion of abstraction and then describe the detailed methodology of our

ILP + Abstraction Refinement Framework.

Definition 3.5 [Concrete Bundle:]

Given an MLCBACC problem L, we refer to each q ∈ Q as a concrete bundle of Q.

Example 3.5.1. Each bundle summarized in Table 3.3 is a concrete bundle for the container

repository in Figure 3.2. �

Definition 3.6 [Microservice Level Partition:]

Let Si denote the set of containers for microservice Mi. A microservice level partition of S,

denoted S̃, is one in which each Si is partitioned into subsets σi1, . . . σik, collectively referred to

as σi. For any element s ∈ σi corresponding to all partitions of Si, [s] denotes the subset σij

such that s ∈ σij, i.e, [s] denotes the subset to which s belongs.

Example 3.5.2. Table 3.4 summarizes a microservice level partition for the repository in Figure

3.2. Each microservice comprises two partitions, one partition comprising the minimum latency

container, while the other partition comprises the remaining containers. Thus, for the container

S12, [S12] = σ11 and for S13, [S13] = σ12. �

Definition 3.7 [Abstract MLCBACC Problem:]

Given an MLCBACC problem L = 〈S,Q,W, P 〉, and a microservice level partition S̃, we define

the abstract MLCBACC problem L̂ = 〈Ŝ, Q̂,W, P̂ 〉:

� Ŝ = S̃, Q̂ = {[q] | q ∈ Q} with [q] = {[s] | s ∈ q}.

� latency([q]) = min{latency(q′) | [q′] = [q]}, where each [q] ∈ Q̂ is called an abstract

bundle. We retain the minimum latency bundle in L̂.

� for each Mi, we define an abstract microservice M̂i =
⋃

[s], ∀[s] ∈Mi.

Microservice Partition and Constituents
M1 σ11 = {S12} σ12 = {S11, S13, S14}
M2 σ21 = {S24} σ22 = {S21, S22, S23}
M3 σ31 = {S31} σ32 = {S32, S33, S34}
M4 σ41 = {S43} σ42 = {S41, S42}
M5 σ51 = {S53} σ52 = {S51, S52}

Table 3.4: Task Level Partition of the Repository shown in Figure 3.2
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Definition 3.8 [Abstract Compatibility Constraint:]

For every constraint Sij → {S(i+1)1, . . . , S(i+1)k} in P , consider the abstract

microservice corresponding to [Sij] as M̂Sij and the abstract microservice corresponding to the

(i+ 1)th microservice as M̂i+1. M̂Sij =⇒ ˆMi+1 is an abstract compatibility constraint in P̂ .

Note that in the above definition, we need to consider only M̂i+1, since we consider compatibility

constraints between adjacent microservices only and S(i+1)1, S(i+1)2. . .S(i+1)k are all containers

of microservice Mi+1. In the following subsection, we explain the detailed construction of the

Abstract MLCBACC problem and the subsequent refinements as and when necessary.

3.5.1 Initial Abstraction Generation

We create a microservice level partition for each Mi, such that one partition comprises the

container with minimum latency and the other partition comprises the remaining containers.

For each microservice Mi, we create an abstract microservice M̂i. We include only the partition

comprising the minimum latency container in the abstract microservice since other containers

can be part of a realizing MLCBACC solution only if it is offered as a bundle as noted in

Observation 3.3.1. Thus, such containers are represented as abstract bundles. We create the

set of abstract bundles Q̂ on the abstract microservice set for each M̂i. Further, for each M̂i, we

create a singleton bundle q̂i and assign it the minimum singleton bundle latency among elements

in Si. Lines 3-11 of Algorithm 3, which summarize the initial abstraction generation approach,

perform this assignment. We examine the other concrete bundles to create further abstract

bundles. For each concrete bundle qi, we have the containers included, and can therefore,

extract the microservices involved in them. For each 2-element bundle qp, we proceed as follows.

Let Mi, Mj be the microservices involved in qp. We create an abstract bundle q̂ij, involving the

microservices M̂i and M̂j. We assign the latency of q̂ij as the minimum among all 2-element

bundles that involve Mi, Mj. We repeat the same with all 2-element concrete bundles and

create the corresponding abstract bundles involving 2 abstract microservices. We now examine

each 3-element concrete bundle, extract the set of microservices Mi, Mj, Mk involved, create

an abstract bundle q̂ijk, look for other bundles involving the same triplet, and assign q̂ijk the

minimum among the 3-element bundle latencies involving Mi, Mj, Mk. We process all concrete

bundles similarly. Lines 12-21 generate these bundles, and these are stored in a hash table. The

hash table is a mapping from an abstract bundle to the latency associated with that bundle.

Thus, initially, the hash table comprises an entry corresponding to each bundle generated in

the abstraction process and the latency assigned to the bundle.
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Let us consider two consecutive microservices Mi and Mi+1. If any Sij in Mi has at least

one compatibility constraint with containers in Mi+1, we introduce a compatibility constraint

between M̂i and ˆMi+1. Lines 22-25 generate all such constraints. Concrete compatibility con-

straints between containers are thus abstracted out to create constraints between the abstract

microservices. This gives us the complete abstract microservice set with the abstract bundles

and latencies, and we proceed to the next step.

S11 S21 S31, 80

S12, 60 S22 S32 S42, 30 S52, 30

S13

S43, 10 S53, 10

S14, 70

S24, 70 S33

CF1, S1 CF2, S2 CF3, S3 CF4, S4 CF5, S5

M̂1 M̂2 M̂3 M̂4 M̂5

50− S11, S21

50− S22, S32

15− S43, S53

150− S13, S24, S33

(a) Initial Abstraction
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50− S22, S32
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150− S13, S24, S33

(b) Initial Abstraction Solution

Figure 3.3: Initial Abstraction

Example 3.5.3. For the repository in Figure 3.2, we create 5 abstract microservices M̂1, M̂2,

M̂3, M̂4 and M̂5. We assign q̂1 the latency of S12 since this is the minimum latency singleton

bundle among all singleton bundles for containers of M1. The process is repeated for all other

microservices. We now consider the other bundles. There is only one bundle involving containers

from microservices M1 and M2, the bundle between S11 and S21 whose latency is 50ms. Thus we

add a bundle q̂12 involving (M̂1, M̂2). As another example, consider the three element bundles

involving containers for M1, M2 and M3. There are two bundles involving these, namely,

{S13, S24, S33} with latency 150ms and {S14, S24, S34} whose latency is 160ms. We take the

minimum latency bundle among them {S13, S24, S34} and assign this latency to the abstract

bundle q̂123. Further, there are two explicit compatibility constraints involving M3 and M4:

one between S32 and S41 and another between S32 and S42. In addition, there are implicit

constraints. We introduce an explicit compatibility constraint between M̂3 and M̂4. Figure

3.3a shows the corresponding abstract microservice set with the representative containers whose

latencies are chosen, the bundles and the explicit compatibility constraints. �

3.5.2 Solution Generation

We now solve for the minimum latency solution on the generated space of abstract microservices

using the baseline ILP as earlier in Section 3.4. The objective now is to identify a set of



Chapter 3. Service Allocation for Microservice based Applications 49

Algorithm 3: Initial Abstraction Generation

Input : L = 〈S,Q,W, P 〉 . Original MLCBACC
Output: L̂ = 〈Ŝ, Q̂,W, P̂ 〉 . Abstract MLCBACC

1 M̂ ← NULL
2 . Generate Singletons
3 foreach Mi ∈ W.M do
4 . W.M implies microservices in Workflow W
5 minindex← 1
6 minlatency ← NULL
7 for j from (minindex+ 1) to |Mi| do
8 if Sij < minlatency then
9 minindex← j

10 minlatency = latency(Sij)

11 Q̂i ← Si{minindex} , Q̂i.latency ← minlatency

12 M̂i ← Q̂i

13 . Generate Bundles
14 absedges← NULL
15 . absedges is a hash from q̂i to ([q], latency) for each i-element bundle, ∀1 ≤ i ≤ n
16 foreach bundle q ∈ Q do
17 q̂i ← set of microservices ∈M corresponding to q
18 if q̂i 6∈ absedges then
19 absedges[q̂i] ← [q], latency
20 else
21 if absedges[q̂i].latency > q.latency then
22 absedges[q̂i] ← [q], latency

23 . Generate Compatibility Constraints
24 foreach p ∈ P do

25 (M̂ind)← set of indices in M̂ corresponding to p

26 add compatibility constraint between abstract microservices corresponding to (M̂ind)

abstract bundles from the set Q̂ such that the latency is minimum, each abstract microservice

is chosen, and compatibility constraints between the abstract microservices are honored. Once

we obtain an abstract solution, we reproduce the same on the concrete containers, by mapping

back the abstract q̂is chosen to the concrete microservices, and then choosing the containers

corresponding to the concrete containers for each such microservice. This is necessary since the

solution has to be generated from the concrete container space and not the abstract container

space and such a solution must also conform to concrete compatibility constraints.

We choose the minimum latency singleton bundles for each abstract microservice, and also the

minimum latency among composite bundles comprising multiple microservices. It is therefore

guaranteed that the minimum latency solution obtained from the abstract space is indeed

the minimum latency solution in the concrete space, as formally stated later. If the solution
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meets all the compatibility constraints as well, we terminate claiming this is the minimum

latency solution possible. However, it may as well so happen that we have a compatibility

constraint violation in the corresponding concrete solution. Such a solution can exist because

we introduce a compatibility constraint between abstract microservices M̂i, M̂i+1 whenever

there exists a compatibility constraint between some member in Si with some members in

Si+1 of the microservices. When the abstract microservice M̂i is mapped back to Mi and

the container corresponding to its minimum latency singleton is chosen (call it Sim) and the

abstract microservice M̂i+1 is mapped back to Mi+1 and the container corresponding to its

minimum latency singleton is chosen (call it S(i+1)n), it may happen that Sim is not compatible

with S(i+1)n, but with some other member S(i+1)q, q 6= n. The actual compatibility constraints

have been abstracted away by our abstraction and this leads to a violation. We need to refine

the abstraction in such cases. Algorithm 4 summarizes the solution generation and refinement

process.

Example 3.5.4. In Figure 3.3a, the compatibility constraints between S32 and {S41, S42} in the

original repository are no longer present as S41 and S42 are not part of the abstraction. Their

compatibility constraint has been replaced by a constraint between M̂3 and M̂4. �

3.5.3 Solution Validation

Let us consider a solution ψ obtained using the ILP on the abstraction (Line 3). This solution

comprises at least one container for each microservice Mi in the workflow. To ensure that ψ

is a valid solution, we need to ensure that the compatibility constraints are satisfied. We first

define a compatibility constraint violation.

Definition 3.9 [Compatibility Constraint Violation:]

For a constraint pk ∈ P of the form Sij → {S(i+1)m , S(i+1)n , . . .}, if Sij ∈
⋃

Q′, then a

compatibility constraint violation occurs if none among the set S(i+1)m, S(i+1)n, . . . 6∈ ⋃Q′.

We iterate through each compatibility constraint Sij → {S(i+1)m, S(i+1)n . . .} in the concrete

space and check for satisfaction. If Sij is present in ψ we check whether at least one among

S(i+1)m, S(i+1)n . . . is also present in ψ or not. If not, a violation is detected, necessitating a

refinement. However, if all constraints are indeed satisfied, we terminate returning the valid

solution. Lines 4-15 perform this validation and return ψ if a valid solution is indeed obtained.

Example 3.5.5. Figure 3.3b shows the solution generated on the initial abstraction. The contain-

ers involved in the bundles are shown with filled dashed rectangles. The solution corresponds to

{q̂12, q̂23, q̂45} as highlighted in Table 3.5. The identified containers are S11 for microservice M1,

S21 and S22 for microservice M2, S32 for microservice M3, S43 for microservice M4 and S53 for
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microservice M5. This solution has a minimum latency of 115ms. However, the compatibility

constraint for S32 is violated since it can work only with S41 or S42 neither of which is identified

in ψ. This solution was generated because we introduced a compatibility constraint between

M̂3 and M̂4 in lieu of the compatibility constraint between S32 and {S41, S42}. �

Algorithm 4: Solution Generation and Refinement

Input : L̂ = 〈Ŝ, Q̂,W, P̂ 〉 . Abstract MLCBACC
Output: Minimum latency Solution for M̂

1 valid = false
2 while valid == false do

3 ψ ← solve M̂ using baseline ILP
4 msol← NULL

5 foreach q̂ ∈ M̂opt do
6 msol[q̂]← concrete q corresponding to q̂
7 sat← true
8 foreach Mi ∈ W do
9 Sim ← concrete s in msol for Mi

10 S(i+1)n ← concrete s in msol for Mi+1

11 foreach s compatible with Sim do
12 if at least one of s is not present in ψ then
13 sat← false

14 if sat == true then
15 valid = true . Valid Solution
16 else
17 foreach compatibility constraint Sij → S(i+1)m that is violated do

18 M̂i, ˆMi+1 ← abstract microservices corresponding to violating s

19 split ˆMi+1 into ˆM ′
i+1, ˆM ′′

i+1

20 ˆM ′
i+1 ← containers compatible with Sij

21 ˆM ′′
i+1 ← containers not compatible with Sij

22 q̂ ← q̂ ∪ [s] corresponding to ˆM ′
i+1

23 foreach ˆM ′
i+1 where constraints are violated do

24 q̂ ← q̂ ∪ [s] corresponding to bundles for ˆM ′
i+1 or ˆM ′′

i+1 . Expose Bundles

25 return ψ

3.5.4 Refining The Abstraction

Consider a solution ψ obtained on the abstraction. Additionally, consider the compatibility

constraint Sij → {S(i+1)m, S(i+1)n, . . .} for which a violation occurred in ψ. The abstract mi-

croservices corresponding to Sij and {S(i+1)m, S(i+1)n, . . .} are M̂i and M̂i+1 respectively. We

split M̂i+1 into
ˆ̂

M ′
i+1 and

ˆ̂
M ′′

i+1.
ˆ̂

M ′
i+1 includes all containers in Mi+1 which are compatible
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Figure 3.4: Refined Abstraction

with Sij, and
ˆ̂

M ′′
i+1 includes the rest of the containers in Mi+1. Splitting the microservices

results in a new microservice level partition of the container repository, for those microservices

where a compatibility constraint violation occurred. The abstract bundles for this refinement

are constructed as earlier. We create a singleton bundle corresponding to
ˆ̂

M ′
i+1, assign it the

minimum singleton bundle latency among the containers inside, and we do the same for
ˆ̂

M ′′
i+1

as well. Further, new concrete bundles are exposed as a result of this refinement between the

containers in the other abstract microservices and these two, and we create them as earlier.

Also, compatibility constraints are marked between the abstract microservices as earlier. Lines

17 - 24 refine the abstraction updating bundles q̂ and the constraints. Lines 23-24 consider

all violating constraints and update q considering the new abstract microservices created as a

result of the refinement process to expose further bundles.

Example 3.5.6. To cater to the violation S32 → {S41, S42}, we split M̂4 into
ˆ̂
M ′

4 and
ˆ̂
M ′′

4 , as

in Figure 3.4a. In this case, there are no more bundles to reconsider. The new abstraction

generated after refinement is depicted in Figure 3.4a. �

We proceed to solve the minimum latency bundle ILP for this abstract set of microservices with

the compatibility constraints thus obtained. Once a solution is obtained, we validate whether

it meets all concrete compatibility constraints. If it does, we declare it as the desired solution.

However, if it violates any constraint, we refine as earlier. This process is repeated until we

find a solution that is valid (i.e., when all the compatibility constraints are satisfied), or no

solution is obtained, in which case we conclude that there is no solution satisfying the concrete

compatibility constraints.

Example 3.5.7. The new minimum latency solution on the refined abstraction is shown in Figure

3.4b. The identified containers are highlighted with filled dashed rectangles. This solution

corresponds to { ˆ̂q5, ˆ̂q12, ˆ̂q23,
ˆ̂
q′4} and is highlighted in Table 3.5. The latency of the solution
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Figure 3.5: Final Abstraction

Initial Abstraction
q̂1 S12, 60ms
q̂2 S24, 70ms
q̂3 S31, 80ms
q̂4 S43, 10ms
q̂5 S53, 10ms
q̂12 S11, S21, 50ms
q̂23 S22, S32, 50ms
q̂45 S43, S53, 15ms
ˆq123 S13, S24, S33, 150ms

Refined Abstraction
ˆ̂q1 S12, 60ms
ˆ̂q2 S24, 70ms
ˆ̂q3 S31, 80ms
ˆ̂q4 S43, 10ms
ˆ̂q5 S53, 10ms
ˆ̂q12 S11, S21, 50ms
ˆ̂q23 S22, S32, 50ms
ˆ̂q45 S43, S53, 15ms
ˆ̂q123 S13, S24, S33, 150ms

ˆ̂
q′4 S41, 20ms

Final Abstraction
ˆ̂
q̂1 S12, 60ms
ˆ̂
q̂2 S24, 70ms
ˆ̂
q̂3 S31, 80ms
ˆ̂
q̂4 S43, 10ms
ˆ̂
q̂5 S53, 10ms
ˆ̂
q̂12 S11, S21, 50ms
ˆ̂
q̂23 S22, S32, 50ms
ˆ̂
q̂45 S43, S53, 15ms
ˆ̂
ˆq123 S13, S24, S33, 150ms

ˆ̂
q̂′4 S41, 20ms
ˆ̂
q̂′5 S51, 20ms
ˆ̂
q̂′45 S41, S51, 35ms

Table 3.5: Bundles in the Stages of the Abstraction Refinement Process

is 130ms. This solution now violates the compatibility constraint between S41 and S51. We

refine the abstraction again, and introduce
ˆ̂
M̂ ′

5 and
ˆ̂
M̂ ′′

5 and assign latencies and constraints

accordingly. We now reconsider the bundles between
ˆ̂
M ′

4 and
ˆ̂
M̂ ′′

5 and retain the minimum

latency bundle which corresponds to the bundle between S41 and S51 having a latency of 35ms.

The resulting abstraction is shown in Figure 3.5a. The solution on this abstraction is shown

in Figure 3.5b which corresponds to { ˆ̂
q̂12,

ˆ̂
q̂23,

ˆ̂
q̂′45}, as in Table 7, with latency 135ms which

satisfies all compatibility constraints. We terminate with this solution. �



Chapter 3. Service Allocation for Microservice based Applications 54

We continue iterating until we obtain a valid solution. The worst case arises when a realizing

solution is not obtained on an abstraction of the container repository. In such a scenario, all the

containers of the repository are involved in computing the realizing solution. As a consequence,

our approach incurs additional running time in such scenarios leading to a performance worse

than the baseline ILP. However, we fare much better on an average as show in Section 3.6.

3.5.5 Proof of Correctness

We now discuss the proof of correctness and termination of our framework.

Lemma 3.2. Given an MLCBACC problem L = 〈S,Q,W, P 〉, and a microservice level partition

S̃, let L̂ be the abstract MLCBACC problem 〈Ŝ, Q̂,W, P̂ 〉 with respect to S̃. If there is a

compatible solution Q′ in L, there is also a realizing, compatible solution Q̂′ ∈ L̂. Further,

latency(Q̂′) ≤ latency(Q′).

Proof: Given a realizing and compatible solution Q′ ⊆ Q for L, define Q̂′ = {[q] | q ∈ Q′},
where [q] = {[s] | s ∈ q}. Since Q′ is a realizing solution in L, for every Mi, there is a si ∈ Si
and a bundle q ∈ Q′ such that si ∈ q. By construction, [si] ∈ Ŝi, and [q] ∈ Q̂′. Therefore, Q̂′

is realizing in L̂. Now, suppose there is a constraint M̂[s] =⇒ M̂k in P̂ , the set of abstract

compatibility constraints, and assume [s] ∈ ⋃ Q̂′, where M̂[s] is the abstract microservice corre-

sponding to [s]. Let Sij ∈ [s] be a container that is in
⋃
Q. By construction of the constraints,

there is a microservice Mk such that Sij → {S(i+1)1, . . . , S(i+1)k} is a constraint in P . Since Sij

is in the concrete solution that must be compatible with P , Mk ∈
⋃
Q′. This proves that

⋃
Q̂′

is compatible with P̂ . Lastly, by construction, latency([q]) ≤ latency(q′) for all q′ ∈ [q], since

the latency of [q] is assigned to the minimum latency bundle qm such that [q] = [qm]. Therefore,

latency(Q̂′) ≤ latency(Q′). �

An immediate corollary of the previous lemma is as follows.

Corollary 3.3. If there exists a minimum latency solution Q′ for MLCBACC, then the mini-

mum latency solution for any microservice-level abstraction of the problem has latency less than

that of Q′. �

Lemma 3.4. The abstraction refinement algorithm terminates and outputs a realizing, com-

patible and minimum latency solution of the MLCBACC problem if one exists, and terminates

with no solution if none exists.
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Proof: Starting from the initial abstraction, at each abstraction level, we attempt to solve

the abstract MLCBACC problem. If there is no solution, we terminate with the assertion that

no solution exists for the concrete MLCBACC problem as well, as discussed in Lemma 3.2. If

there is a solution for the abstract problem, we check if the concrete witness is also a solution

for the concrete MLCBACC problem. If yes, then by Corollary 3.3, the concrete witness is the

minimum latency concrete solution. Therefore, we terminate with the concrete witness as the

final solution. If the concrete witness is spurious, then the abstract problem is refined. Note

that the refinement is strict i.e. the number of partitions in at least one task strictly increases.

The new abstract problem is subjected to the above steps. Therefore, either we find a result

(positive or negative) at an abstraction level or eventually end up in the concrete MLCBACC

problem where we terminate with the result (positive or negative). �

3.6 Results and Discussion

We carry out experiments on latency values generated from the WS-DREAM dataset. We

perform a number of experiments to demonstrate the impact of variance in number of mi-

croservices, number of containers per microservice, the degree of bundles in the repository, the

composition of each bundle and the number of compatibility constraints in the repository. In

order to demonstrate the impact on scalability, we gradually increase the value of the different

parameters such as the number of microservices, containers, etc. and study the comparative

performance of different algorithms. All experiments are carried out with Python 3.7 using

Gurobi [108] as the ILP solver on an Intel Core i5 Processor with 16GB of RAM. We set

the maximum memory limit for Python to 4GB. We use Gurobi since it has a warm start

feature which allows an already computed solution for an ILP to be used for any subsequent

modifications to the model in terms of variables or constraints [108].

3.6.1 Experimental Setup

For each experiment, we allocate QoS values to the containers randomly from the WS-DREAM

dataset. Then, for each container, we assign latencies to containers by normalizing all allotted

QoS values to containers between 0 and 1. We then assign a latency in the range of 30ms to

100ms with lower latencies being assigned to containers having high QoS values. Using this

technique, a container with a high QoS value has a low latency. In all the experiments, we gen-

erate the workflows as explained later in individual experiments. To evaluate the effectiveness

of the approach, we perform two sets of experiments:
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1. keeping number of containers, bundles, constraints, microservices small to simulate small

scale scenarios

2. simulation of large scale scenarios by incorporating a large number of microservices com-

prising a large number of containers, bundles and constraints.

We explain each scenario in the following subsections.

3.6.2 Comparison With Existing Selection Models

In this section, we compare the effectiveness of our framework with the model most similar to our

work in literature. The Correlation-Aware Service Pruning (CASP) [107] algorithm deals with

service selection similar to service allocation but with pairwise bundles and no compatibility

constraints. To compare with our framework, we set all bundles in the following scenarios to

pairwise, i.e, between two containers with no compatibility constraints.

Impact of Percentage of Bundles: To evaluate the impact of percentage of bundles, we set the

number of microservices to 10 as has been done in [107]. We set the number of containers for

each microservice to 50. We assign to each such container a latency value as mentioned in the

above discussion. We consider the total number of service containers in the repository and create

random bundles involving 10 percent of such service containers. The bundle percentage is then

varied as 20, 30, . . . , 80. As can be inferred from Figure 3.6a, as the percentage of bundles is

increased, there is a general increase in the running time of the algorithms. This is because with

an increase in the number of bundles, the number of indicator variables corresponding to both

singletons and bundles increases for both the baseline ILP and the Abstraction Refinement +

ILP framework. However, the Abstraction Refinement + ILP framework effectively prunes the

bundles by retaining only the minimum cost n-bundle as explained in Section 3.5 for the tasks

corresponding to each n-bundle. Thus it fares better than the baseline ILP and CASP, both of

which explore the search space microservice wise retaining the best bundled pairs explored in

each iteration leading to a far greater exploration of the search space.

Impact of Number of Containers: We now set the value of the bundle containers percentage

to 30 with respect to the total number of containers. The values of the other parameters

are set as in the above experiment. We vary the number of containers for each microservice

as {100, 200, . . . , 500}. The results are shown in Figure 3.6b. There is a general increase in

the running time of both the algorithms when the number of containers per microservice is

increased. With an increase in the number of containers per microservice, the exploration

search space increases, thereby leading to an overall increase in running time. Even when the
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number of containers is increased, our framework performs much better than CASP and the

naive baseline ILP while offering maximum speed-up when the number of containers is high.

Impact of Constant Number of Bundles: In this case, we vary the number of containers but

keep a fixed number of bundles. We set the number of bundles fixed at 100. The values of the

other parameters are set as in the above experiment. We vary the number of containers for each

task as {100, 200, . . . , 500}. Figure 3.6c shows the results obtained. It is interesting to note

that Abstraction-Refinement + ILP obtains a significant speed-up over CASP and the baseline

ILP in such scenarios. Additionally, with an increase in number of containers, the time taken

by our framework does not increase as much as the time incurred by CASP and the baseline

ILP. This is because our framework effectively prunes the search space retaining only the best

bundles. With only an increase in containers which do not participate in bundles, the pruning

becomes even more effective amongst singleton containers.

Impact of Number of Microservices: In order to evaluate the impact of the number of microser-

vices in the workflow on the algorithm, we vary the number of microservices as 10, 20, . . . , 50

while keeping the bundle percentage at 30 with each microservice comprising 50 containers. As

the number of microservices increases, there is a general increase in running times as observed

in Figure 3.6d. Varying the number of microservices implies an overall variance in the number

of containers. With an increase in the number of microservices, there is a general increase in the

running time of the algorithms. This is in concordance with the previous experimental scenario

as well where we varied the number of containers per microservice. Our framework provides a

speed-up in these scenarios as well.

Large Scale Scenarios: In order to demonstrate the scalability of our framework, we perform

similar experiments as described above: i) we keep the number of microservices fixed at 100

with 200 containers per microservice with the percentage of bundles varied as {30, 40 . . . 70}
ii) we vary the number of containers per microservice as {100, 200, . . . 500} while keeping the

number of microservices fixed at 100 and percentage of bundles at 30 iii) we vary the number of

microservices as {1000, 2000, 3000} to simulate large scale scientific workflows. Figures 3.7a and

3.7b demonstrate the results of varying the percentage of bundles and containers respectively.

Table 3.7 lists the impact of a large number of microservices. In this case, our framework

performs much better than the baseline ILP in comparison to the experiments carried out

on the small scale scenarios. When the number of microservices is varied in the large scale

scenario, both CASP and the baseline ILP run out of memory once the number of microservices

is increased to 2000. Our framework is able to generate results even in such scenarios since the

Abstraction Refinement + ILP approach effectively retains only a partial view of the container

repository, refining as and when required.
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Figure 3.6: Performance Comparison for Small Scale Scenarios
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Figure 3.6: Performance Comparison for Small Scale Scenarios

3.6.3 Effectiveness of our ILP + Abstraction Refinement Framework

In this section, we evaluate the effectiveness of the proposed model with compatibility con-

straints and generic bundles (not necessarily pairwise).

Impact of Percentage of Bundles, Number of Containers, Constant Number of Bundles and

Number of Microservices: Retaining all the other parameters as above, we repeat the same

experiments but with bundles incorporating multiple containers, i.e, more than 2 containers

per bundle, with compatibility constraints fixed at 30%. The results in Figure 3.6e, 3.6f, 3.6g,

3.6h show that there is no significant difference in all of the scenarios described for small

scale scenarios in comparison with existing selection models. Thus, the presence of bundles
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%Bundles Refinements
30 4
40 11
50 7
60 8
70 15

(a) Figure 3.6e

Containers Refinements
100 17
200 22
300 15
400 19
500 28

(b) Figure 3.6f

Containers Refinements
100 8
200 11
300 7
400 11
500 14

(c) Figure 3.6g
Microservices Refinements

10 8
20 14
30 28
40 24
50 31

(d) Figure 3.6h

% Constraints Refinements
10 8
20 10
30 5
40 5
50 7

(e) Figure 3.6i

Table 3.6: Number of Refinements for corresponding Small Scale Scenarios in Figure 3.6

which span across multiple microservices instead of just pairwise bundles, does not affect the

performance of our proposed framework.

We now discuss the effect of varying some parameters which are unique to the bundle model

incorporating multiple containers and compatibility constraints.

Impact of Composition of Bundles: We set the number of microservices as 200 with each

microservice having 200 containers. Additionally, we set the percentage of bundles to 30 and

percentage of constraints to 30 both with respect to the total number of service containers.

We then vary the length of bundles, i.e, the number of containers involved in bundles, as

{3, 5, . . . 11} as shown in Figure 3.7c. There is no definite pattern (increasing / decreasing) as

the length of the bundles are varied. This is because there is no definite correlation between

the length of the bundles and the optimal solutions to an instance of MLCBACC which rather

depends on how these bundles are distributed amongst the microservices and the degree of their

compatibility.

Impact of Compatibility Constraints: To demonstrate the impact of compatibility constraints,

the percentage of total number of containers in the repository which include compatibility con-

straints is varied as {10, 20, 30, . . . , 50}. It is interesting to note that when we vary the number

of compatibility constraints, there is no direct correlation observed between the percentage of

compatibility constraints and the running times of the algorithms as is observed in Figure 3.6i.

Such a scenario occurs because spurious compatibility constraints between abstract microser-

vices are generated only when they are not part of the minimum latency bundle retained in the

initial abstraction. If the minimum latency bundle is indeed compatible with the corresponding

subsequent bundles in the workflow, spurious solutions can be avoided hence resulting in lower

running times. As noted in Figure 3.6i, when the percentage of compatibility constraints is

increased from 30 to 40, there is a decrease in the running time of the Abstraction Refinement
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Figure 3.7: Performance Comparison for Large Scale Scenarios

+ ILP approach. However, when the percentage is further increased to 50, there is an increase

in the running time. This shows that the distribution of bundles along with the corresponding

compatibility constraints play a crucial role in determining the running times of the algorithms.

The same holds for the baseline ILP. Additionally, we vary the percentage of compatibility con-

straints in {10, 20, 30} for large scale scenarios as listed in Table 3.8. The baseline ILP incurs

a memory out error in all the large scale scenarios due to the large number of microservices,

containers and percentage of containers involved in bundles and compatibility constraints. On

the other hand, our framework is able to generate results even for such scenarios.

Number of Refinements Required: Table 3.6 summarizes the number of refinements required for

the different small scale scenarios demonstrated in Figure 3.6 while Table 3.9 lists the number
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Running Time (in Hours)
Microservices AbsRef + ILP CASP ILP

1000 0.40 2.15 3.40
2000 1.58 MemoryOut MemoryOut
3000 3.35 MemoryOut MemoryOut

Table 3.7: Performance Comparison for Varying Microservices

Running Time (in Hours)
Constraints % AbsRef + ILP ILP

10 1.55 MemoryOut
20 4.40 MemoryOut
30 3.58 MemoryOut

Table 3.8: Performance Comparison for Varying Constraints

Bundles Constraints Microservices
Bundles Rounds %Constraints Rounds %Tasks Rounds

3 12 10 19 1000 42
5 18 20 38 2000 31
7 15 30 32 3000 38

Table 3.9: Number of Refinements

of refinements required for large scale scenarios. As can be inferred from Table 3.9, there

is no direct correlation between the various parameters and the number of refinements since

there is no definite pattern observed. Such a scenario occurs since the number of refinements

depends on the correlation between the minimum latency bundles which are used to construct

the initial abstraction and their compatibility with the containers retained in the abstraction

for the subsequent microservices. Since refinements only occur for incompatibilities, the nature

of distribution of bundles and their association plays the determining role in deciding how

many refinements are needed. However, note that when we vary the number of compatibility

constraints while keeping other parameters constant, there is a direct correlation between the

running time and the number of refinements. With an increase in the number of refinements,

the running time increases. This is expected since more bundles are added to successive refined

abstractions. In scenarios where we set compatibility constraints to empty, no refinements are

required since a refinement only occurs upon violation of such constraints and hence are not

summarized in the tables.
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3.7 Conclusion

In this chapter, we present an abstraction refinement approach to expedite the minimum latency

container service selection problem. We provide a hardness proof, and follow it up with an ILP

based approach for solving the same. Finally, we present a proposal to expedite the ILP

with abstraction refinement to improve performance. We consider static scenarios, wherein we

cater to the minimum latency container bundle selection problem where containers are pre-

deployed on MEC servers and the locations of users are known apriori. In the next chapter, we

consider a dynamic allocation policy where the service placement configuration as well as the

user allocations adapt to user mobility.





Chapter 4

Proactive Microservice Placement and

Allocation

4.1 Introduction

In the previous chapter, we designed a microservice allocation policy for scenarios with a pre-

defined service placement configuration and known user locations. To overcome the limitations

of such a static approach, in this chapter, we consider the impact of user mobility and design a

dynamic, joint microservice placement and allocation policy. In recent years, several dynamic

placement and allocation policies for monolithic applications considering different scenarios and

optimization metrics for application service provisioning in the MEC context have been pro-

posed in literature [3, 4, 51, 97]. However, most of these solutions need to be re-examined

today through a different lens, considering the recent paradigm shift in the application provi-

sioning model, from a monolithic service architecture to the micro-service deployment model,

that is being increasingly adopted across the service industry by service providers like Amazon,

Netflix [48]. The problem of service placement and allocation in the microservice context in

MEC is much more complex than the one for their monolithic counterparts, considering the

This work is published as:

� Kaustabha Ray, Ansuman Banerjee, and Nanjangud C. Narendra. “Proactive Microservice Placement
and Migration for Mobile Edge Computing”, In Proceedings of IEEE/ACM Symposium on Edge Com-
puting, pp. 28-41, 2020.
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inter-dependencies that need to be accounted for, while deploying a solution. Additionally, for

mobility-aware service placement and allocation, state migration also needs to be considered.

Indeed, in recent literature, only a small handful of proposals [109, 110, 111], to the best of

our knowledge, have focused on the microservice model in the MEC context. However, these

approaches neither take into consideration the non-trivial latencies involved with microservice

containers nor do they take into account user mobility patterns. We consider both in this chap-

ter in addition to the factors considered by those existing methods. This is the main context

in MEC that we attempt to address in this chapter.

Traditional placement and allocation policies focus on reactive placement, i.e., microservice

placement after a service invocation request originates. Our main proposal in this chapter

is a proactive microservice placement and migration approach by prefetching microservices

considering the workflow dependency structure in the application microservice workflow. This

aids to abate service deployment latencies. Proactively prefetching microservices is a complex

task due to: i) the large configuration space of the mobility of devices coupled with microservice

interdependencies; ii) the unpredictability of edge servers as an operating environment due to

the dynamic and on demand nature; and iii) the stochasticity of user service requests while

having a myriad of mobility and service invocation patterns.

In this chapter as well, for simplicity and ease of explanation, we focus on applications with

workflows defined by a linear sequence of microservices. To the best of our knowledge, this is the

first work that exploits the microservice dependency task structure to prefetch and pre-provision

microservices to better meet latency requirements in MEC. We use a Markov Decision Process

(MDP) with rewards to model proactive microservice placement and migration. Further, since

the rewards corresponding to each state of the MDP are unknown, we use Reinforcement

Learning (RL) to demonstrate how to learn the unknown rewards to effectively deploy and

migrate services. In particular, to make effective use of the MDP, we use the Dyna-Q [34]

algorithm, which is a combination of model free and model based RL. Additionally, to cater

to different service request traffic patterns, we design a heuristic to adapt to varying traffic

loads. We present experimental results of our algorithm in practical scenarios driven by real-

world mobility traces of taxis in San Francisco [97] and timing characteristics obtained from

the DeathStarBench microservice benchmark suite [48]. Our analysis reveals an average 28%

improvement in latency obtained using our proactive approach over the traditional reactive one,

for some state-of-the-art MEC microservice benchmark models.

The rest of this chapter is organized as follows. Section 4.2 presents an example to be used in

the rest of this chapter. Section 4.3 describes the problem formulation. Section 4.4 describes

the formal model. Section 4.5 describes our RL-based approach. Section 4.6 describes our

implementation along with experimental details. Section 4.7 concludes the chapter.
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4.2 Motivating Example
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7000ms

50ms

100ms
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v
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5000ms

7500ms

ES1
ES2

Figure 4.1: Microservice Invocations by Vehicular Users

init movieStreaming addRating addReview

exit / minimize exit / minimize exit / minimize

Figure 4.2: Movie Streaming Application Microservice

In this section, we present a motivating example to explain the problem context addressed in

this chapter. Consider two vehicles u and v following the trajectories shown in Figure 4.1. The

passengers of the vehicles access several applications using their smartphones, with each appli-

cation modeled as an almost linear microservice workflow (with special exit / minimise nodes

but no branching in control flow). We select a movie streaming application as a representative

use case. A user can either access the microservices in the linear sequence or choose to exit /

minimise the application. In the minimized state, microservice containers corresponding to the

application are retained on the server while a container is removed if it has no active users. The

workflow of the application, depicted in terms of its constituent interdependent microservices,

is shown in Figure 4.2. The microservices hosted as service containers are deployed by service

providers on edge servers with service areas associated with them, as depicted by circles around

servers E1 and E2 in Figure 4.1.

We now explain in detail the latencies associated with the microservice containers assumed in

this chapter based on the provisioning model discussed in Chapter 2. When a user invokes a



Chapter 4. Proactive Microservice Placement and Allocation 68

Time t User Action Server-Service State
0ms No Services Deployed
50ms u→ movieStreaming initialize movieStreaming
75ms ES1 → movieStreaming
100ms v → movieStreaming ES1 → movieStreaming

initialize new task for v
110ms ES1 → movieStreaming, vtask
3000ms v exits movieStreaming ES1 → movieStreaming
5000ms u→ addRating initialize addRating
5025ms ES1 → addRating
7000ms u minimizes addRating ES1 → addRating
8000ms u→ addReview initialize addReview
8025ms ES2 → addReview

Table 4.1: On-demand Placement of Microservices

microservice, the container corresponding to the microservice has to be deployed on an edge

server if the container is not already present. Additionally, the corresponding service registry

has to be updated on a container orchestration system to reflect the deployment state of the

microservices. On the other hand, if the container corresponding to the microservice already

exists on the edge server, a new task is spawned out of the existing container. The tasks of

deploying containers and creating new tasks incur non-negligible latencies. Prefetched microser-

vices, if not used, have no state migration cost. On the other hand, a state-aware migration

has to be performed when an user actively using a microservice moves out of the service area of

the server where it is hosted and the local computation state has to be sent to the server from

where he is served next. For the sake of simplicity, in the following discussion, we assume it

takes 25ms to initialize a container, 10ms to create a new task in an already existing container

and 30ms to perform a state-aware migration of a container from one server to another. It may

be noted that the timing values used here are just representative ones used for illustrating our

problem context. We work with real world microservice timings in our experiments (Section

4.6). In accordance to our objective of proactively placing microservices, we explain in the fol-

lowing subsections how prefetching and proactive deployment can help mitigate some of these

latencies, compared to an on-demand service placement scheme wherein service containers are

provisioned only after the corresponding microservice is invoked and the container deployed for

the first time.
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4.2.1 On-Demand Microservice Placement

In an on-demand placement scheme, the microservices are deployed only when a user invokes the

service. Microservice invocations are depicted by black rectangles and shaded circles on the tra-

jectories of u and v respectively in Figure 4.1. At time t = 50ms, u invokes the “movieStream-

ing” service. Since ES1, the nearest server, does not yet host the “movieStreaming” service,

the corresponding container is deployed (maybe downloaded from the cloud or nearby servers),

initialized and the registry is updated. The process takes a total time of 25ms. At t = 100ms, v

invokes the “movieStreaming” service. Since the corresponding container is already deployed on

ES1, only a new task is created incurring an initialization time of 10ms. At time t = 5000ms,

u invokes the “addRating” service and incurs an assumed initialization time of 25ms. At

t = 7000ms, u minimizes the application on his mobile. Let us assume the “addRating” service

is not utilized henceforth. At t = 8000ms, the user relaunches the application but instead uses

the “addReview” service which requires an initialization latency of 25ms at ES2. Thus, the

total initialization latency incurred in an on-demand scheme is 25 + 25 + 25 = 75ms, which

adds to the overall latency experienced. Table 4.1 shows the sequence of events.

4.2.2 Proactive Microservice Prefetching and Migration

To mitigate the latencies incurred when deploying services, we propose to proactively prefetch

the services, considering the microservice dependency structure. Such an approach allows

microservices expected to be utilized in the near future to be prefetched and deployed on

the MEC server while simultaneously catering to the previously invoked service. To cater

to mobility, proactively migrating already deployed services also needs to be examined as we

explain later.

Proactively Prefetching Microservices

Consider the following deployment strategy. Initially, when u invokes the “movieStreaming”

service, both “addRating” and “addReview” are prefetched to server ES1. Thus, at t = 135ms,

all three service containers have been initialized on ES1. At t = 5000ms, when u invokes the

“addRating” service, it no longer incurs the initialization latency of 25ms. At t = 8000ms, u

invokes the “addReview” service, however, it is no longer in the coverage area of ES1. Thus,

“addReview” which was initialized at ES1, needs to be migrated to ES2. However, since

“addReview” was not used, it can either be re-initialized (if it was not already deployed at

ES1) or a new task created (if it was already deployed at ES2) incurring a total latency of
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Time t User Action Server-Service State
0s No Services Deployed

50ms u→ movieStreaming initialize movieStreaming
75ms ES1 → movieStreaming
100ms ES1 → movieStreaming,

addRating
100ms v → movieStreaming ES1 → movieStreaming, addRating

initialize new task for v
110ms ES1 → movieStreaming,

addRating, addReview, vtask
135ms ES1 → movieStreaming,

addRating, addReview, vtask
3000ms v exits movieStreaming ES1 → movieStreaming,

addRating, addReview
5000ms u→ addRating ES1 → addRating, addReview
7000ms u minimizes addRating ES1 → addRating, addReview
8000ms u→ addReview state-aware migrate addReview
8025ms ES2 → addReview

Table 4.2: Proactive Placement of Microservices

25 + 25 = 50ms. Interleaving service prefetching and execution thus leads to a reduction in

initialization latencies. However, the additional latency of 25ms incurred while re-initializing

the “addReview” service was due to the mobility of u from ES1’s service zone to that of ES2.

As such, a service placement scheme has to be revisited owing to user mobility. Table 4.2

summarizes the timeline of events using prefetching.

Proactive Prefetching and Migration

Let us assume that at t = 7000ms, instead of minimizing the application, u continues utilizing

the “addRating” service till t = 8000ms. Since u traverses service zones while utilizing a

service, the service has to be re-deployed once u is in E2’s service area. In such scenarios,

for the “addRating” service, a state-aware migration has to be performed from ES1 to ES2.

Additionally, since the “addReview” service had been proactively deployed on ES1, it has to be

migrated as well. Let us assume the state-aware migration is initialized at t = 7500ms depicted

by the light blue diamond on u’s trajectory. The migration is completed at t = 7555ms since

it takes 30ms to migrate the “addRating” service and 25ms to re-initialize “addReview”. The

events are summarized in Table 4.3. The total initialization latency experienced by u in this case

is 25ms. However, additional interleaved migration latencies for “addReview” and “addRating”

are incurred which are not perceived by the user. Note that, since the migration is performed
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Time t User Action Server-Service State
0s No Services Deployed

50ms u→ movieStreaming initialize movieStreaming
75ms ES1 → movieStreaming
100ms ES1 → movieStreaming,

addRating
100ms v → movieStreaming ES1 → movieStreaming, addRating

initialize new task for v
110ms ES1 → movieStreaming,

addRating, addReview, vtask
135ms ES1 → movieStreaming,

addRating, addReview, vtask
3000ms v exits movieStreaming ES1 → movieStreaming,

addRating, addReview
5000ms u→ addRating ES1 → addRating, addReview
7500ms u→ addRating migrate addRating, addReview
7555ms u→ addRating ES2 → addRating, addReview
8000ms u→ addReview ES2 → addReview

Table 4.3: Proactive Placement + Migration of Microservices

proactively, at t = 8000ms, u did not have to wait to use the “addReview” microservice.

The total speed-up obtained over the on-Demand placement scheme is thus 66%. For real

benchmarks, depending on the sizes of the containers corresponding to the microservices and

their deployment times, container initialization times can often be in the order of seconds or

more, unlike milliseconds as assumed here in the representative use case. For such cases, the

speed-up achieved by us can significantly impact user-perceived latencies.

The example above shows the trade-off in latency overhead using proactive prefetching ver-

sus reactive on-demand provisioning with migration of the microservices. The challenge is in

determining for a given microservice, how many successor microservices to deploy proactively,

and more importantly, the target edge servers to deploy them as the user moves and accesses

these enroute. An overtly conservative strategy may always proactively prefetch the containers

of all successor microservices, whenever any microservice is deployed. However, this may at

times turn out to be wasteful in terms of resources needlessly blocked on the edge server by

the prefetched containers, if these microservices are actually not invoked at that location. On

the other extreme, a fully reactive policy does not help as well since such a policy would lead

to initialization latency overheads for each microservice invocation. The challenge is in being

able to predict the user service invocation pattern as a function of a user’s mobility so that

better prefetching can be carried out. Our objective here is to learn and synthesize the optimal

proactive prefetch, deployment and migration schedule, given a microservice workflow.
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4.3 Formal Model

In this section, we formally describe the proactive placement and migration problem and for-

mulate an MDP model.

4.3.1 Problem Definition

The MEC system comprises a set of edge sites E = {E1, E2, ..., Es}. In this work, we assume

each edge site is associated with a single edge server. For each edge site, the respective edge

servers are denoted as ES = {ES1, ES2, ..., ESp}, where each ESi is associated with a service ra-

dius ri. We have a set of users U = {u1, u2, . . . uq} and a set of applications A = {A1, A2, . . . Ar}.
An application a ∈ A comprises a linear workflow of microservices M = {M1,M2, ...,Mn} with

special exit nodes. The order denotes the order of invocation of microservices for a given appli-

cation workflow. We use a model similar to [112] where we do not consider a back-end cloud,

instead consider only a set of edge servers. A location is defined as the latitude and longitude

coordinates of the entity under consideration. Servers have fixed locations while users are free

to move and their coordinates vary over time. We consider a discrete time model, as in [97].

Let us consider a user u ∈ U where u(t) denotes the user’s current location at time slot t. We

denote the set of active microservices associated with u(t) as h(t) and the corresponding location

as l(t). We assume that the set h(t) can only be co-located at a single l(t), i.e., all microservices

in h(t) will be placed by our scheme on a single edge server, as discussed later. We also assume

that all latencies for deploying containers, instantiating tasks and migrating containers are

strictly additive. As discussed later, the policy agent designed by our RL approach governs the

placement and migration of microservices on the edge servers. At each time-slot, it observes

u(t), h(t) and l(t), and decides on placing/migrating the relevant services h(t+ 1), so that the

user experiences the best latency values. At the beginning of each time slot, our policy agent

can choose from one of the following options:

� Proactively Placing Microservices: At any location u(t), when u invokes a microser-

vice Mi ∈ S whose successor microservices are {Mi+1,Mi+2, ...,Mn}, the agent selects

the nearest server ESi ∈ E to deploy si along with j successor microservices, i.e.,

{Mi+1,Mi+2, ...,Mi+j}, where 0 ≤ j ≤ n − i, and updates h(t + 1) = h(t) ∪ si ∪Mi+1 ∪
Mi+2 ∪ ... ∪Mi+j. It incurs a deployment cost c(r), where c is a non-decreasing function

of r, the resource requirement of the microservices to be deployed. We relate c(r) with

the MDP reward function as explained in Section 4.5.
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� Microservice Migration: When u moves away from the service zone of the server on

which h(t) was deployed, the agent re-deploys the microservice if not already deployed

at the edge server nearest to the user’s new location and additionally performs a state-

aware migration to transfer the user data associated with the microservice currently in

use. Other microservices which are not currently in use are re-initialized. In this case,

h(t) = h(t+1), but l(t) 6= l(t+1). Performing such a migration for active services incurs a

cost m(r), where m is a non-decreasing function of r whereas re-initialization incurs cost

c(r). We assume stateful migration of microservices where relocating containers between

servers incurs data movement latencies.

Our objective is to determine for each time slot t, the actions of the policy agent for each u ∈ U
such that the latency incurred due to container deployment and task creation is minimized. For

the sake of simplicity and ease of illustration, we first present the problem model for a single

user accessing a single application. We relax these requirements later in Section 4.5 where

we build on this to cater to multiple users accessing multiple services simultaneously. In the

following, we use an MDP to formally model prefetching and migration.

4.4 Formal Model

Formally, we define our policy agent for proactive placement and migration as an MDP below.

Definition 4.1 [Proactive Microservice Placement and Migration MDP:]

The proactive placement and migration MDP is a 7-tupleM = (S, Λ, P, AP, L, R, init) where

� S is a finite set of states, each state being represented by a vector 〈service, distance〉.

� Λ is a set of actions representing all possibilities of proactively prefetching microservices.

� P : S × Λ × S → [0, 1] is the transition probability function such that for all states

s ∈ S and actions λ ∈ Λ:
∑

s∈S P (s, λ, s′) = 1.

� AP is a set of Atomic Propositions corresponding to microservices prefetched and distance

(as elaborated in the following discussion).

� L : S → 2AP is an AP labelling function, labelling states with the APs.

� R : S → R is the reward associated with each state s ∈ S.

� init is the initial state.
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In the following subsections, we discuss the state representation and transition representation

of the MDP in detail.

4.4.1 State Representation of MDP

init

M1, 0 M1, 1 M1, 2 M1, 3

M2, 0 M2, 1 M2, 2 M2, 3

M3, 0 M3, 1 M3, 2 M3, 3

M1M2, 0 M1M2, 1 M1M2, 2 M1M2, 3

M2M3, 0 M2M3, 1 M2M3, 2 M2M3, 3

M1M2M3, 0 M1M2M3, 1 M1M2M3, 2 M1M2M3, 3

Block i = 0

Block i = 1

Block i = 2

Figure 4.3: Proactive Service Placement and Migration MDP

Each state of the MDP for a user u is represented by a vector 〈service, distance〉. In each state,

service represents h(t), while distance represents the distance between the location u(t) of u

and the location of h(t), i.e., l(t). We represent the distance as an abstract measure similar
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to [97]. In the MDP, distance is a mapping from a concrete measure such as the Euclidean or

Manhattan distance to the abstract measure. The server ESi corresponding to l(t) is associated

with a maximum service area depicted by the radius ri from its location. Hence, there is an

upper bound on the distance representation in the MDP. The upper bound denotes the distance

between the location of the server and a coordinate located on the circumference induced by

the service radius ri of the server ESi. Further, since each server can have a different service

radius, the upper bound distance is normalized in the range [0, k] where k is a user defined

parameter. However, since such an interval is continuous, the interval [0, k] is discretized at

intervals of 1. Hence, all possible values of distances are 0, 1, . . . , k. The concrete distance

from u(t) to l(t) is thus mapped to the discretized interval distance set as follows: distance

measures between u(t) and l(t) in the continuous interval [0, 1) are mapped to k = 0, distances

in the continuous interval [1, 2) are mapped to k = 1 and so forth, where [0, 1) denotes the

continuous interval inclusive of the lower bound 0 and exclusive of 1. As such, distance = k

denotes the scenarios when the distance between u(t) and l(t) exceeds k. The 〈service, distance〉
vector thus, uniquely identifies the microservices which have been proactively prefetched and

the distance between a user u and the server ESi ∈ ES where the prefetched microservices

are hosted. The MDP structure embodies all possibilities for prefetching discussed earlier,

considering a given microservice workflow. In the following, we use our example application

with 3 main constituent microservices to illustrate the MDP construction for user u.

Example 4.4.1. Figure 4.3 depicts the MDP for the Movie Streaming Application accessed by

user u in Section 4.2. The application comprises 3 microservices “movieStreaming”, “addRat-

ing” and “addReview”, represented as M1,M2 and M3 respectively. The state space of the MDP

represents all possible scenarios of microservice deployments and the corresponding location of

the user u within an edge site. The transitions represent all possible control flows between con-

secutive microservices as well as all subsequent prefetching possibilities. The “movieStreaming”

microservice is initialized on server ES1 ∈ E upon invocation of the application by u. We con-

sider the Euclidean distance measure as an illustration. The MDP assumes k = 3. Let us

suppose the Euclidean distance between the location of u and ES1 evaluates to a value between

0 and 1. The state 〈M1, 0〉 denotes such a scenario. Thus, the distance identifier of a state

vector abstractly represents a concrete distance interval. Similarly, 〈M1, 1〉 is the scenario when

the distance between u and ES1 is between 1 and 2. Since k = 3, the state 〈M1, 3〉 denotes the

scenario when u moves to a location when the distance between u and ES1 exceeds 3. Such

states correspond to only a single service being deployed at a discrete time-point. The state

〈(M1,M2,M3), 0〉, on the other hand, exhibits all three microservices being deployed on a server

at a distance between 0 and 1 from u with M2 and M3 being prefetched in addition to M1. �
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4.4.2 Proactively Prefetching Microservices

The MDP can be viewed as comprising several blocks. Each block corresponds to prefetching

i (0 ≤ i < n) services corresponding to the linear workflow, where n is the number of mi-

croservices in the application. The case i = 0 corresponds to reactive deployment, where only

upon invocation, the respective service is initialized. The case i = n − 1, on the other hand,

corresponds to an overly conservative strategy where all services comprising the workflow are

pre-fetched upon application initialization. When the value of i ranges between 1 and n− 1, i

consecutive services are prefetched.

Example 4.4.2. The MDP constructed in Figure 4.3 comprises 3 blocks, each depicted with a

dashed rectangle. The first block corresponds to reactive microservice deployment while the

remaining blocks represent prefetched deployment. The state 〈(M1,M2), 0〉, within the block

i = 1 denotes the scenario where microservices M1 and M2 are prefetched while the state

〈(M1,M2,M3), 0〉 within the block i = 2 denotes the scenario where the microservices M1 , M2

and M3 are prefetched. �

4.4.3 Transition Representation of MDP

Transitions from the init state denote the number of microservices to initially prefetch with

one transition to each block.

Example 4.4.3. The init state has outgoing transitions to the states 〈M1, 0〉, 〈(M1,M2), 0〉 and

〈(M1,M2,M3), 0〉. Each such state denotes the number of microservices proactively prefetched.

When the application is invoked using M1, a transition from init to 〈M1, 0〉 denotes the scenario

where only the microservice M1 is deployed on the server with no additional pre-fetching.

Similary, the transition to 〈(M1,M2), 0〉 denotes the scenario where M2 is pre-fetched on the

server along with M1. �

Other transitions occur when the state of u changes and can be broadly classified into two

types: transitions within a block and transitions between blocks.

Intra-Block Transitions: Transitions within a block occur only when a user moves from one lo-

cation to another or when there is a transfer of control from one microservice to its subsequent

microservice in the application workflow.

Example 4.4.4. Let us suppose the initial Euclidean distance between u and ES1 was between 0

and 1. Such a scenario is denoted in the MDP by the state 〈M1, 0〉. Along the course of u’s path,
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let us suppose the Euclidean distance measure at some time-point exceeds 1. This change in u’s

location is represented by the transition to 〈M1, 0〉. Continuing along its trajectory, as long as

the Euclidean distance between u and ES1 lies between 0 and 1, it remains in the state 〈M1, 0〉
denoted by the self transition. The transition from 〈M1, 0〉 to 〈M2, 0〉 denotes the transfer of

flow of control in the microservices workflow from M1 to M2 while the distance between u and

the server where M2 is deployed remains within 1. Note that however, transitions denoting

changes to both distance and service invocation trajectory can not happen. For example, there

is no transition from 〈M1, 0〉 to 〈M2, 1〉. This is because prefetching services is carried out with

respect to the current relative locations of the server and the user. A simultaneous change in

both is only accounted for by first updating the location followed by the service invocation. �

Inter-Block Transitions: Transitions between blocks represent the possibility of proactively

prefetching variable number of microservices. Consider a state S of the MDP where the service

component of the state vector comprises (Mm, . . . ,Mn). In the event of the transfer of flow

of control of microservices from Mm to Mm+1, outgoing transitions from S portray choices

of the number of proactively prefetched microservices by transitions to all states in the MDP

whose identifier begins with Mm+1. Such transitions are represented in Figure 4.3 by red curved

dashed lines.

Example 4.4.5. The outgoing transition from state 〈M1, 0〉 to state 〈(M2,M3), 0〉 of block i = 1

denotes the situation when u experiences a flow of control transfer from M1 to M2, and both M2

and its successor M3 are prefetched to the server. Note that the other choice of deploying M2

only is already covered in block i = 0. Thus, the transition from M1,M2 in block i = 1 to M2

block i = 0 depicts the scenario when u experiences the same flow of control from M1 to M2, but

the agent decides not to proactively fetch any other service. However, note that transitions such

as those from 〈M1, 0〉 to 〈(M1,M2,M3), 0〉 are not possible since the latter depicts prefetching

all three services upon invocation of M1 while the former denotes M1’s deployment with no

other service prefetched. Also note that transitions such as those from 〈(M2,M3), 0〉 to 〈M3, 0〉
are not possible. In state 〈(M2,M3), 0〉, both M2 and M3 have already been prefetched. Such

a transition would only depict a flow of control from M2 to M3 which does not necessitate a

further prefetching decision. �

4.4.4 Migration of Microservices

Migrations occur when u moves from one service zone to another. In such a scenario, if the

new service zone has only one server associated with it, the microservices are migrated to that

server. Otherwise, if multiple choices of servers are available, the nearest server is selected. We
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consider server capacity constraints as explained later in Section 4.5.2. When u crosses the

boundaries of service zones, a migration is triggered. Such migrations are represented in the

MDP by transitions from states whose distance vector component is k to states whose distance

vector component is {0, 1, . . . , k − 1}. We assume that the MEC servers are distributed such

that each area is in the coverage of at least one MEC server, hence a target server always exists.

Example 4.4.6. Let us assume that along u’s trajectory, at some time-point, the Euclidean

distance between u and ES1 is between 2 and 3 denoted by the state 〈M1, 2〉. When u moves

further away from the server, exceeding ES1’s service radius, the state of the MDP is updated to

〈M1, 3〉. M1 is then migrated to the nearest server, say ES2. In such a scenario, the Euclidean

distance between ES2 and u is re-calculated and the corresponding new abstract distance is

represented in the MDP by blue dashed transitions to 〈M1, 0〉, 〈M1, 1〉, 〈M1, 2〉 according to the

re-calculated distance and mapped appropriately using the abstract distance representation. �

Additionally, since users can exit the application at any stage, we add an extra state, exit to

the MDP demarcating that the user has exited the application. From all states excluding the

init state, transitions are drawn to this state signifying the event of an application closure.

The exit state and the corresponding transitions are not shown in Figure 4.3 for brevity. Fur-

ther, we do not require any explicit encoding to denote the minimized state of an application

since prefetched services are retained on MEC servers while minimized and evicted only upon

application exit.

The MDP built above embodies the underlying solution space for our problem context, ac-

counting for all prefetch and deployment possibilities. While on one hand, the states represent

the different service user deployments, the transitions represent the corresponding possibilities,

induced by user movement and possible service invocations. Once the MDP is built, we now

proceed to determine the rewards associated with our MDP, based on the movement and service

invocation patterns of users. This is helpful for deciding the proactive prefetching strategy, i.e.

for which microservice, how many successors to prefetch at which location and deploy on which

edge server. We formulate this problem as a Reinforcement Learning (RL) problem where the

agent explores interactions with the environment to learn the rewards for the best strategy.

4.5 Reinforcement Learning Solution

We use the Dyna-Q [34] RL algorithm, a combination of model based RL and Q-Learning.

The Dyna-Q Algorithm is summarized in Algorithm 5 and explained in detail in Chapter 2.

Q-learning essentially estimates the optimal Q-function, Q, by its sample averages. The Q-

Table is initialized with the state space of the MDP described earlier and the possible proactive
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deployment choices. In this chapter, we consider the standard simple ε-greedy action selection

method: at any decision step i, with probability ε, Q-learning chooses a random action to

improve its knowledge of the application, whereas, with probability 1− ε, it chooses the action

greedily by exploiting its knowledge about the application, i.e., λ = argmaxλ Q(s, λ). Such

actions correspond to the different choices of proactive microservice deployment. Dyna-Q then

proceeds by simulating the real-time experiences of proactively deploying microservices where

ζ is the learning rate.

Algorithm 5: Dyna-Q

1 Initialize Q(S,Λ) and Model(S,Λ), ∀s ∈ S,∀λ ∈ Λ
2 while true do
3 s← observe the application state
4 λ← ε-greedy(s, q)
5 Observe the next state s′ and the reward obtained
6 Q(s, λ)← Q(s, λ) + ζ [r + γ argmaxλ[Q(s′, λ)]−Q(s, λ)]
7 Model (s, λ)← r, s′

8 for i = 0 . . . n do
9 s← random state previously observed

10 λ← random action previously taken in s
11 r, s′ ← Model(s, λ)
12 Q(s, λ)← Q(s, λ) + ζ [r + γ argmaxλ[Q(s′, λ)]−Q(s, λ)]

In our context, in a real-world scenario, multiple users access multiple applications simultane-

ously. Each application Ai is thus associated with its own MDPMi as described in Section 4.4.1.

EachMi has a corresponding reward ri whose initial value is set to 0. When a user uj invokes

an application Ai, the corresponding MDP Mi is assigned to the user. This is used with uj

and Mi to execute the required prefetching / migration actions. When the agent executes an

action, it receives rewards from the environment. Thus, rewards are assigned whenever there

exists a transition to denote state change. The reward function denoted by R is a weighted

combination of resources consumed by prefetched microservices actually utilized and prefetched

microservices not invoked by the user.

R =
∑

µ∈µused

[µ ∗ c(µresources)]−
∑

µ∈µunused

[µ ∗ c(µresources)] (4.1)

µused and µunused are sets of indicator variables representing the set of prefetched services which

have been invoked and not invoked respectively while c(µresources) represents the resource costs

of microservice µ according to a cost function c(r). This reward is calculated whenever the user

invokes a microservice in the application workflow following which the Q-values are updated.

Additionally, the Dyna-Q algorithm simulates previous real-world interactions (Lines 8-12). A

positive reward is assigned for services which are prefetched and utilized by the user while a
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negative reward is assigned to unused services. Such a reward function embodies migration

decisions as well. Negative rewards signal the agent to lean towards prefetching a lower number

of services thereby reducing migration costs while advocating a reduction in the number of

unnecessary migrations. As such, for rewards corresponding to migrations, the same reward

function is used, with the migration cost function m(r) instead of c(r).

The formulation allows us to characterize user service invocation patterns as a function of

mobility using a distance based MDP which is space efficient as well. However, it neither

effectively quantifies the prefetch policy influenced by the network load characteristics nor does

it cater to capacity constraints of servers. To characterize traffic load distribution and capacity

constraints, we propose a heuristic in the following discussion.

4.5.1 Catering to traffic variation

The number of users invoking different applications may actually vary over time. In such

a scenario, the number of users can play a crucial role in determining how the RL agent is

trained. If an agent receives a high reward for an action in a low service request traffic load

environment, i.e., when the number of application users is low, it may end up receiving a low

reward for the same action in a high service request traffic environment since a single application

proactively prefetching multiple microservices can lead to clogging of resources for other users

depending on the arrival of microservice invocations. Such variance in rewards can confuse the

RL agent [113]. To overcome this difficulty, instead of assigning a single MDP Mi to Ai, we

associate three MDPs Mi
low, Mmed

i and Mhigh
i to each Ai denoting low, medium and high

traffic loads respectively. When uj invokes Ai, depending on the current load distribution in

the k-hop neighbourhood of uj, the corresponding MDP is assigned to uj. Such a mechanism

described in Algorithm 6 allows us to separately characterize traffic workloads and enables the

RL agents to effectively use the exploitation phases to learn traffic-aware policies. Note that

we utilize a centralized controller where the MDP and DynaQ-Tabulation can be stored on disk

and instantiated upon the invocation of an application corresponding to a user.

4.5.2 Catering to Capacity Constraints

The MDP discussed in Section 4.4.1, only comprises information pertaining to the location of

users and services currently in operation. We do not encode information pertaining to capacity

of servers or request-server bindings in the MDP. In a realistic setting, MEC servers do not

possess infinite storage or computing capabilities, and therefore, capacity constraints need to
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Algorithm 6: Proactive Prefetching and Migration

Input : low,medium, l, servers
1 Initialize K-D Tree with servers
2 foreach timepoint t do
3 foreach user u do
4 currloc ← updated location of u
5 serverl ← location of server assigned to u
6 d← distance between serverl and currloc
7 if d ≥ serverl.coverage then
8 newserver ← query K-D tree for location of nearest server to u
9 serverl ← newserver

10 nd← distance between newserver and u
11 update MDP state according to nd and migrate microservices greedily

12 else
13 nd← new distance between serverl and u
14 update MDP state according to nd

15 if current application/service status is different from previous time-slot then
16 if u has invoked Ai then
17 ld← load in l-hop neighbourhood of u
18 if ld ≤ low then
19 u.M←Mlow

i

20 else if ld ≤ med then
21 u.M←Mmed

i

22 else

23 u.M←Mhigh
i

24 λ← action selected with Dyna-Q for u
25 if λ exceeds server capacities then
26 Mi,Mj, . . .Mn ← prefetched services
27 foreach M ∈Mi,Mj, . . .Mn in order do
28 allocate M
29 if allocate M is NULL then
30 Mi,Mj, . . .Mk ← services allocated successfully

31 set MDP to state corresponding to Mi,Mj, . . .Mk successfully allocated
32 update Q with reward for action λ using Equation 2 for u’s associated MDP
33 upon application exit, update corresponding MDP for Ai with highest rewards
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be adhered to. We address such capacity constraints heuristically without the requirement

of having to encode any additional information in the MDP states. Initially, the MDP agent

selects an action corresponding to deploying M1,M2, . . .Mn microservices. If all such services

can be deployed without violating capacity constraints, the agent proceeds to deploying all the

microservicesM1,M2, . . .Mn. On the other hand, with capacity constraints not withholding, the

algorithm greedily deploys the containers pertaining to the prefetched services. This deployment

is carried out in sequence of the prefetched microservices of the workflow until the capacity

constraints are exhausted resulting in a subset of the prefetched microservices being deployed.

It then updates the MDP state corresponding to the services deployed greedily. Allocation

upon migration is carried out in a similar manner.

Algorithm 6 initializes a K-D Tree [114] with the location of the MEC servers (Line 1). This

allows efficient queries to locate the nearest server for users. It proceeds to update the locations

of the users in the current slot (Line 4) and identifies users which have moved out of the

service zones of the servers to which they were assigned. For users which have indeed moved

out, the nearest server in the current location is identified by querying into the K-D tree

(Line 8). Accordingly, the MDP is updated to the value of the normalized distance from the

currently assigned server and the updated location of the user (Lines 7-14). It proceeds to check

the service usage status of the users in the current time slot (Line 15) and calls the Dyna-Q

algorithm. Depending on the action selected by the Dyna-Q algorithm and the subsequent

greedy placement (Lines 25-30), the state of the MDP and the Q-values are updated with the

generated rewards (Line 31-32). In the scenarios that the prefetched microservices can not

be accommodated on the server, the algorithm greedily selects the set of microservices that

can be accommodated in the workflow sequence of the application, as explained above. Once

it exhausts the server capacities (Line 29), it proceeds to set the MDP state to reflect the

microservices successfully allocated greedily (Line 31). Once a user exits the application, the

MDP is updated accordingly (Line 32).

4.6 Experimental Evaluation

We perform extensive experiments to show the efficacy of our approach, and compare its perfor-

mance against a) on-demand placement, and b) MCAPP-IM [109], an algorithm for placement

of applications with multiple components. In the following, we describe our experimental setup

and the results.
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4.6.1 Experimental Setup

In the following, we describe how we generate the problem instances for our simulation experi-

ments and describe the experimental setup.

4.6.1.1 MEC Server Locations and User Trajectories

We consider a discrete time slotted system in which the locations of users in the network may

change from one time slot to another. We use the San Francisco taxi dataset and the ’Existing

Commercial Wireless Telecommunication Services Facilities in the San Francisco’ dataset with

the setup described in Section 2.6.2. We assume k as 3 for our experiments as well unless

specified otherwise. The generated coverage areas of all servers are normalized in [0, 3] when

translated to the MDP representation.

4.6.1.2 Service Invocations

We use microservices from the ‘Media Microservices’ application of the ‘DeathStarBench’ bench-

mark suite [48]. We use the size of the container of each microservice as its representative

resource requirement. We fetch the corresponding containers from Docker Hub [49] initially.

We then note the starting times of each containerized microservice by invoking a fresh docker

container start after stopping all running containers. We use these times as the deployment

times of containers on MEC servers. Further, we generate running times in the range (1/3 ×
starting-time ± λ) to simulate representative times of creating tasks from already existing con-

tainers. We use these values as representative times since the DeathStarBench benchmark uses

a composition driven approach where multiple microservices are used to execute a task. In

the DeathStarBench benchmark, each task comprises a composite workflow unlike our model

where we assume a single container being associated with a task. 1/3 is chosen since creation

of tasks involves lower computation times as compared to deploying dedicated containers and

λ is assigned a random value between 0 and 0.05 to simulate random runtime deviations. To

simulate migration times, we add these task creation times to the container deployment time.

These values are used as c(r) and m(r) for the reward function. To each taxi trajectory ob-

tained from the dataset, we assign such service invocations randomly at different discrete time

slots. We assign the invocations considering the distance between the location of the taxi in

the previous time slot and the current time slot. If the distance exceeds a threshold value, we

treat such a slot as a fresh invocation of an application, since we assume that the applications

exit when the user leaves the area or closes the application. Additionally, while extracting the
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trajectories from the original taxi dataset, we only use a portion of the San Francisco area.

As a consequence, there are several time slots, where the location of the taxis incur abrupt

changes in latitude and longitude coordinates. We treat such changes in coordinates also as

fresh invocations of an application. In the event that the distance does not exceed this threshold

city area, we randomly generate invocation/minimization decisions along the linear workflow

structure of the application. Upon invocation of the last microservice in the workflow, a fresh

invocation of a random application is considered.

4.6.2 Results and Discussion

We compare the performance of our approach with that of on-demand reactive service provision-

ing to demonstrate the impact of proactively prefetching services on user experienced latency.

Additionally, we compare with the MCAPP-IM algorithm [109]. The MCAPP-IM algorithm

formulates the problem as an online bipartite matching problem supplemented with a greedy

local search technique between application components and edge servers. However, they do

not consider proactively deploying any of the application components. MCAPP-IM runs at

each time slot and the result of the matching thus obtained is the service-server binding. The

MCAPP-IM algorithm does not consider coverage area zones of MEC servers. All experiments

are performed in Python 3.7 with the K-D tree implementation of the SciPy library on an Intel

Core i5 8250U processor and 16 GB of RAM. We set the value of the exploration parameter ε

of Dyna-Q to 0.2.

Varying the Number of Users

We vary the total number of users from 50 to 300 at an interval of 50. For each scenario, we

additionally vary the learning rate ζ as {0.1, 0.2, 0.3, 0.4}. In Figure 4.4, we plot the average

reward of the policy agent against the number of iterations where each iteration refers to one

discrete time-slot where the average reward value is normalized between 0 and 1. As can be

inferred from the figure, different learning rates produce a variation in the rewards accumulated

by our agent. With a higher learning rate, a wider variation in reward accumulation is observed

in general, since a higher learning rate corresponds to a greater weightage in Q-value updation

in each iteration. It is however interesting to note that for a high number of users, specifically

in Figure 4.4f, the deviations obtained are rather minor as compared to others. This is due to

the fact that during high request traffic environment, the MEC servers are resource constrained

and hence lean towards more reactive deployments, justifying our design objective.
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(a) Number of Users = 50
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(b) Number of Users = 100
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(c) Number of Users = 150
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(d) Number of Users = 200
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(e) Number of Users = 250
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(f) Number of Users = 300

Figure 4.4: Average Reward Accumulation with Variable Number of Users
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(a) n = 4
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(b) n = 8
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(c) n = 12

Figure 4.5: Average User Latency with Varying Number of Application Microservices

Varying the Number of Microservices

In Figure 4.5, we plot the average user latencies as we vary the number of microservices in the

application workflows. We consider representative applications involving 4, 8 and 12 microser-

vices (denoted as n in the figure), from the ’DeathStarBench’ benchmark suite [48]. We measure

the performance of the algorithms as we vary applications with the aforementioned number of

microservices. There is no definite increase/decrease pattern with latencies as the number of

users are increased. This is expected since with adequate availability of server resources, a

higher number of users does not necessarily lead to greater contention. Proactively deploying

microservices leads to an overall benefit of the latency perceived by the user in all scenarios as

observed. Since MCAPP-IM does not involve server coverage areas, it incurs a lower latency
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(a) Server Resources = 130%
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(b) Server Resources = 100%
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(c) Server Resources = 65%

Figure 4.6: Average User latencies for Varying Request Traffic Distributions

as compared to the On-Demand scheme. However, our RL based algorithm being specifically

catered to proactive deployment, is able to outperform MCAPP-IM in terms of average latency

experienced by users.

Varying Server Resource Availability

We next analyze the effect of the service request traffic load on the performance of the various

algorithms. We vary the number of available MEC servers while keeping the number of users

fixed to simulate availability of server resources. We consider scenarios where we fix the total

server resources at 130%, 100% and 65% of the required total resource consumption of the users.

A server resource percentage of 100% denotes the scenario in which the resource availability of
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(a) Varying k for n = 4
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(b) Varying k for n = 8
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(c) Memory Usage for Varying k

Figure 4.7: Effect of Varying k on Latency and Memory Usage

the server can cater to exactly the number of users fixed. In Figure 4.6, we plot the average

latencies of the three algorithms in each scenario. With high availability of server resources,

our algorithm obtains lower average user latencies as compared to MCAPP-IM. The average

improvement over MCAPP-IM is around 44%. However, as the resource availability of servers

is decreased, with high traffic loads, the benefits of proactive deployment are far lower, at an

average of 11%, as observed in Figures 4.6a, 4.6b and 4.6c. This is because in such a resource

constrained environment, the agent favors lesser proactive prefetching of microservices. Such

a scenario, for an application which comprises 3 microservices, as in the example in Section

4.2, would correspond to the MDP in Section 4.4.1 executing most of the transitions in Block

i = 0 prefetching a small number of microservices. This supports our intuition and justifies our

design objectives as well.
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Varying the Parameter k

We now analyze the effect of k on the performance of our RL approach. k is a user defined

parameter which specifies the discretization constant for coverage areas of each server. We

experiment with values of k = {3, 6, 9}. As the value of k is increased, the size of the MDP

increases. As a result, the memory consumption increases which is validated in Figure 4.7c.

Additionally, we vary k in the same range for another application which comprises 8 microser-

vices instead of 4. Figure 4.7b depicts that there is no definite increase/decrease pattern with

respect to varying n and the number of users as observed previously when we study the impact

of n on latencies. It is however interesting to note that, as the value of k is increased, there is

an improvement in latency for several scenarios in Figures 4.7a and 4.7b. Increasing the value

of k, allows us to represent the discretized coverage areas of servers more precisely and hence,

the agent can make decisions more accurately. Thus, varying k can have an impact on the

overall latency incurred. However, larger values of k incur a greater cost of representation in

memory thus presenting a trade-off. Further, in Figure 4.7a, only a marginal improvement is

observed when k is varied for the scenario with 200 users. Such scenarios can indeed happen

if the dataset does not incorporate the entire action space of the agent thereby rendering some

actions unexplored.

4.7 Conclusion

In this chapter, we propose a learning based mechanism for proactive deployment of microser-

vices on edge servers considering microservice application structures. For the sake of simplicity,

we consider a linear workflow microservice, examples of which are abundant in practice. Even

for such simple workflow structures, the proactive placement strategy and its benefits have not

been addressed in literature, to the best of our knowledge. The linear structure helps us contain

the possibilities we need to examine in the solution space, and helps us build the foundation of

our learning based solution framework. Experimental results on real datasets are encouraging,

and demonstrate the latency improvements that our scheme leads to. In the next chapter, we

propose an auto-scaling policy for MEC to aid load balancing and fault tolerance in scenarios

where each edge site is associated with multiple edge servers.





Chapter 5

Horizontal Auto-Scaling for

Applications

5.1 Introduction

In an MEC system, application services are associated with thresholds on maximum latency,

which if exceeded, results in aggravated Quality-of-Experience (QoE) to end-users [3, 13]. As

users move about, multiple service requests from such users provisioned by a single edge server

can lead to high resource contention culminating in latency threshold violations. To mitigate

these effects, dynamic auto-scaling policies are advocated which seamlessly adapt to request load

variations by automatically provisioning and de-provisioning resources [10, 12, 13]. As discussed

earlier, when a service invocation request is triggered, the service request can either be allocated

by spawning a new thread in an already existing container or provisioned by spawning a new

container instance on a different edge server. Spawning a new thread in an already existing

container can lead to added resource contention subsequently resulting in latency threshold

violations. Spawning a new container instance at another server, on the other hand, can reduce

contention amongst resources but is accompanied with the cost of utilizing additional resources

This work is published as:

� Kaustabha Ray and Ansuman Banerjee, “Horizontal Auto-Scaling for Multi-Access Edge Computing
Using Safe Reinforcement Learning”, In ACM Transactions on Embedded Computing Systems 20, no. 6
(2021): 1-33.
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such as memory and CPU there. Deciding when to spawn a new container instance is therefore a

challenging task. Additionally, multiple heterogeneous applications running simultaneously on

an edge server can further add to the complication where some applications are predominantly

CPU affine while some other applications make heavy use of the GPU. Our main objective

is thus to design a horizontal auto-scaling policy in the MEC context which automatically

determines when to retain/add/remove container instances of an application to ensure that the

probability of adherence to application latency requirements is maximized or equivalently, the

probability of users incurring latency violations is minimized.

Since we deal with the problem of minimizing the probability of incurring latency violations

specified by application specific latency thresholds, conventional optimization techniques do not

apply directly. Additionally, the latencies incurred by the users vary at runtime depending on

several aspects such as the heterogeneous nature of applications deployed on the same server,

concurrent service invocations, resource contention and so forth. As a consequence, analyti-

cally modeling such uncertain characteristics is a difficult task [88]. Conventional optimization

approaches are either static wherein they rely on such detailed analytical models or incorpo-

rate uncertainty by assuming some distributions of the parameters involved. Learning based

auto-scaling policies, on the other hand, overcome this difficulty without the requirement of

modeling individual system characteristics and automatically adjusting to dynamic variability

in latencies as a function of both the network latency and system characteristics [12]. Re-

cently, Reinforcement Learning (RL) based auto-scaling policies have been demonstrated as an

effective tool to automatically adjust containers in Cloud Computing environments [12].

RL based auto-scaling policies explore the choices of adding, removing or retaining container

instances with respect to service request invocation variations. Such a strategy is effective in

automatically learning which auto-scaling decision to execute with respect to the service request

invocation variability. However, unrestrained exploration of RL based policies [89] often leads

to violations in user-perceived latencies. To circumvent latency violations, our main proposal

in this chapter is to develop a Safe-RL based auto-scaling policy which automatically learns

when to execute the appropriate auto-scaling decisions while ensuring that the probability of

latency violations is minimized. A Safe-RL policy [89, 115, 116] employs latency specifications

in Temporal Logic to tailor the training process. Whenever the RL agent executes a decision

leading to a latency violation, the reward function in conjunction with the specification ensures

that in subsequent exploration cycles, such decisions are executed with low probability. The

main highlights of this chapter are as follows:

� We use a Markov Decision Process (MDP) to model the MEC environment.

� We demonstrate how latency requirements can be formally specified in LTL.
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� We develop a quantitative reward formulation to characterize user incurred latencies.

� We prove the convergence of our proposed approach.

� We use the Q-Learning algorithm to learn the rewards associated with the MDP.

� We present experimental results of our algorithm in practical scenarios driven on a test-

bed setup with multiple heterogeneous real-world benchmark applications.

The rest of this chapter is organized as follows. Section 5.2 discusses the modeling and gen-

eration of safe auto-scaling strategies. Section 5.3 details the obtained results. Section 5.4

concludes the chapter.

5.2 Detailed Methodology

In an MEC environment, users invoke service requests simultaneously for a myriad of different

application types. Since multiple applications are deployed on each MEC server, the resulting

contention arising from accessing shared resources can have a critical impact on the user-

perceived latency. Horizontal auto-scaling serves as a viable mechanism to alleviate resource

contention by automatically provisioning/de-provisioning application container instances to en-

hance load balancing. The horizontal auto-scaling policy governs when to add/remove/retain

container instances of an application at a particular edge-site. For multiple applications, the

challenge is in determining the required number of container instances to ensure adherence to

pre-specified application specific latency requirements as a function of the service invocation

traffic and the resulting latencies arising out of shared resource contention. For a particular

application, an overtly aggressive strategy can spawn a large number of container instances

leading to blockage of resources which could have proved beneficial if allocated to other appli-

cations. On the other hand, a restrained strategy may lean towards spawning lower number of

containers leading to higher latencies, ultimately culminating in latency threshold violations.

Additionally, in the MEC environment, users located within a particular edge site can also

access edge servers associated with other edge sites with an additional access latency. In cer-

tain scenarios, such as for non-safety critical applications, provisioning service requests at other

edge sites where container instances of the application are already deployed can also prove to

be beneficial instead of deploying a new container instance. In such scenarios, the challenge is

in determining whether to spawn a new container instance locally or determine whether con-

tainer instances already deployed at other distant edge sites can ensure latency conformance.

We propose a Safe RL based approach to generate horizontal auto-scaling policies to maximize
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the probability of adherence to latency requirements. Our Safe RL based framework has the

following salient features:

� We use a distributed approach where each edge site is associated with an auto-scaling

agent for each application.

� We use an MDP to model the MEC environment and the latency experienced by users

in the MEC environment while concurrently representing non-deterministic auto-scaling

decision making.

� We demonstrate the composition of LTL based latency specifications with the MDP model

of the MEC environment, resulting in another MDP with two types of states, safe and

unsafe, with safe states defined in accordance with the LTL specification.

� We quantitatively characterize each safe state in the composed MDP to design a reward

function which acts as a guide, tailoring the training process of the RL agent to ensure

adherence to the LTL specifications.

� We use Safe-Q-Learning [89] to automatically synthesize the horizontal auto-scaling policy.

� We prove that the composed state space with the quantitative characterization of safe

states preserves all properties of standard Safe-RL methodologies ensuring convergence.

We first formally define the horizontal auto-scaling strategy synthesis problem and then discuss

each of these aspects in detail in the following sub-sections.

5.2.1 Problem Formulation and Assumptions

We consider the following setup in this work:

� An MEC system comprising n MEC service provider sites, E = {E1, E2, . . . En}, where

each site is represented by its latitude and longitude coordinates.

� Each site Ej has an associated service zone radius Er
j .

� Each site Ej ∈ E has a set of associated servers ESj = {ESj1, ESj2, . . . ESjm} distributed

over its service zone.

� We assume edge sites do not share edge servers, i.e., ESx ∩ ESy is empty, where 1 ≤
x, y ≤ n, x 6= y.
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Notation Description
E set of edge sites
ESj set of edge servers associated with edge site Ej where ESj = {ESj1, ESj2, . . . ESjm}
ESjp pth server of site Ej where 1 ≤ p ≤ m
Er
j service zone radius of edge site Ej

Eχ
j edge sites within χ-hop neighbourhood of Ej
A set of application services where ak ∈ A
ak an application ∈ A
U set of all users associated with E
t length of discrete time slot
cakt number of containers of ak in slot t
Uak
t set of users accessing ak in slot t
lakt average latency of Uak

t in slot t
Linterval latency discretization interval
Lakmax maximum threshold latency of ak

Λ set of auto-scaling decisions : {retain, upscale, downscale}
λ a particular auto-scaling decision ∈ AS
M MDP of auto-scaling policy
φ LTL formula
Aφ LDBA for an LTL formula
M ′ composition of MDP M and LDBA Aφ

R′B(s′) reward for state s′

Γ′B(s′) discount factor for state s′

ρ path of an MDP
Rett(ρ) return of path ρ

Table 5.1: Table of Notations

� Application services A = {A1, A2, . . . Ap} are deployed across MEC sites E. We assume all

microservices of a particular application are deployed together at an edge server. Hence-

forth in this chapter, we refer to an application container as the set of all microservices

associated with the application.

� An application ak ∈ A is deemed as deployed at an MEC site Ej ∈ E only if an application

instance of ak is deployed on at least one of the servers associated with Ej, i.e, ESjp ∈
{ESj1, ESj2, . . . ESjm} where 1 ≤ p ≤ m.

� A server ESjp ∈ ESj, 1 ≤ p ≤ m can deploy at most a single container instance of an

application.

� A set of users U = {u1, u2, . . . , uq} access application services with each user’s location

specified by the latitude and longitude coordinates used to determine which users are

located within which edge site’s coverage zones.

� A user uj ∈ U can access an application service ak ∈ A deployed on Ej ∈ E only if uj is

located inside Er
j .
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� We assume a discrete time model as in [63] where time is discretized into slots of duration

t units.

� All user requests routed to an application container instance of ak deployed on a partic-

ular edge server ESjp are assumed to be homogeneous. By homogeneous computation

demands, we mean that the user requests comprise tasks with homogeneous resource re-

quirements, for example, object recognition tasks with identical image and resolution.

However, our framework caters to multiple applications simultaneously deployed on an

edge server as well with homogeneity assumed only within an application. For example,

an edge server can host both image and video processing applications simultaneously.

� We assume availability of broadcast messages between edge sites to update the status of

container deployments and assume reliable delivery with negligible delivery time.

Let cakt denote the number of container instances of ak ∈ A deployed at an edge site Ej in

time slot t. Note that 1 ≤ cakt ≤ |ESj| since each server can deploy at most a single container

instance of ak. At Ej ∈ E, Uak
t ⊆ U denotes the set of users accessing an application ak ∈ A

in a particular time slot t. Let lakt denote the average latency experienced by Uak
t while Lakmax

denotes the maximum threshold latency requirement of ak ∈ A. We now define latency below.

Definition 5.1 [Latency:]

For each user u ∈ Uak
t , we define latency as the turn-around time from the time point at which

the service request is initiated to the time point at which the output of the service invocation is

available to the user. We consider this latency as the sum of access and computation latencies

as in Chapter 3.

A horizontal auto-scaling policy for an application ak executes one of the following three actions

in each time step t:

� retain the number of container instances cakt .

� increase cakt by 1.

� decrease cakt by 1.

We now define the horizontal auto-scaling policy synthesis problem formally:

Definition 5.2 [Horizontal Auto-Scaling Synthesis Problem:]

At each discrete time-step t, the horizontal auto-scaling policy synthesis problem determines

which of the three auto-scaling decisions to execute such that the probability of users incurring

latency violations, i.e., lakt > Lakmax is minimized.
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In the following sub-section, we describe our auto-scaling management architecture.

5.2.2 Horizontal Auto-Scaling Management Architecture

We use a distributed approach where each edge site is associated with an auto-scaling agent

for each application. The auto-scaling agent stores the number of container instances of the

application currently deployed in the edge site. Further, the auto-scaling agent also stores the

number of container instances of the application deployed at other edge sites within a χ-hop

neighbourhood defined as in the following.

Definition 5.3 [χ-hop Neighbourhood:]

Two edge sites Ei and Ej are defined as 1-hop neighbours if their coverage areas intersect. For

an edge site Ej, E
1
j denotes the set of edge sites which are 1-hop neighbours of Ej. E

2
j denotes

the set of edge sites which are 2-hop neighbours of Ej defined as: E2
j = {∀Ei ∈ E where Ei /∈

E1
j and Ei 6= Ej,∃ Ek ∈ E1

j |Ek and Ei are 1-hop neighbours} Thus, Eχ
j is defined inductively

as the χ-hop neighbourhood.

Horizontal Auto-Scaling Agent

Application Containers

Edge Site E1

MEC
Environment

Users Service
Requests

Horizontal Auto-Scaling Agent

Application Containers

Edge Site Eχ
1

Eχ
1 Edge Sites

Update
Instance

Service Requests

Update Instances

Average
Latency

Add / Remove /

Retain
Average
Latency

Add / Remove /

Retain

Figure 5.1: System Architecture for edge site E1, the same setup is replicated for E2, . . . En

The auto-scaling agent monitors the latencies experienced by the users located within the edge

site for the duration of a discrete time slot. It then decides whether to add/remove/retain

container instances within that edge site. Upon deciding on the number of container instances,

the auto-scaling agent for the edge site broadcasts the newly updated number of container

instances across all χ-hop neighbouring edge sites. Such a setup is replicated across all edge

sites. Each auto-scaling agent updates the number of container instances only within the edge

site and upon updation, a broadcast message is sent to all χ-hop neighbourhood edge sites.

Therefore no additional synchronization is required between the auto-scaling agents. Figure 5.1

summarizes the details of our proposed auto-scaling management architecture. The diagram

depicts the overall data flow for the edge site E1. Eχ
1 denotes the set of edge sites which are

within χ-hop distance of E1. Once the agent decides on the number of container instances, it
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sends a broadcast message to all Eχ
1 edge sites to update the deployment status. The setup is

replicated across all edge sites E1, E2, . . . En. In the next section, we discuss our formal model

of the auto-scaling policy at each edge site.

5.2.3 Formal MDP Model of an Auto-Scaling Policy

In this section, we first explain the philosophy behind our MDP. Figure 5.2 represents the MDP

representation for an application ak at an edge site Ej.

Definition 5.4 [Auto-Scaling MDP:]

The auto-scaling MDP M is a 6-tuple (S, Λ, P, AP, L, R) defined as:

� S is a finite set of states. Vector 〈noOfContainers, neighbourhoodCount, averageLatency〉
represents each state s ∈ S.

� Λ is the set of auto-scaling actions, i.e., retain the number of container instances / in-

crease the number of container instances by one / decrease the number of container in-

stances by one.

� P is a finite set of probabilistic transitions where each transition takes M from one state

s1 ∈ S to another s2 ∈ S on an action λ ∈ Λ.

� AP is a set of Atomic Propositions corresponding to noOfContainers, neighbourhoodCount,

averageLatency.

� A labelling function L : S → 2AP defines the labels associated with each state

〈noOfContainers, neighbourhoodCount, averageLatency〉.

� R is a reward function. The MDP in a state s1 ∈ S, on action λ ∈ Λ transitions to a

state s2 ∈ S and generates a reward defined by R(s1, λ, s2).

We utilize a model-free approach where the probabilities are not used for our approach. Hence

all such transitions are either deterministic or non-deterministic. Transitions can broadly be

classified into three types: transitions depicting the non-deterministic nature of latencies, non-

deterministic choices of auto-scaling decisions and deterministic transitions representing upda-

tion of the number of container instances in the χ-hop neighbourhood. We now explain each

component of the MDP M in detail below.
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Figure 5.2: MDP Representation of Auto-Scaling Policy. All transitions have not been
depicted for brevity.
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5.2.3.1 State Representation of the MDP

We follow a state representation similar to [12], whilst incorporating inter-edge site commu-

nication. In each state, noOfContainers represents cakt , the number of servers on which the

application ak is deployed at Ej, neighbourhoodCount represents the number of edge sites in

the χ-hop neighbourhood where container instances of ak are deployed while averageLatency

represents lakt , the average latency of all users accessing application ak in time slot t. The

rationale behind representing only the aggregated count of the number of edge sites where

container instances of ak are deployed is to keep the state space small, and not encounter

state space explosion, since representing them individually may take more space. The latency

representation is discretized into equal sized sub-intervals in the closed interval [0, Lakmax]. Addi-

tionally, the state 〈noOfContainers, neighbourhoodCount, Lakmax′〉 depicts the scenario where

the average latency of Uak
t exceeds the threshold Lakmax. Latency is thus represented as a dis-

cretized measure [63] where the size of each discretized interval is denoted by Linterval. The

concrete continuous valued latencies are mapped to the discretized interval latency set as fol-

lows: latencies between 0 and Linterval in the continuous interval [0, Linterval) are mapped to the

state where the averageLatency component is 1×Linterval, latencies in the continuous interval

[Linterval, 2× Linterval) are mapped to 2× Linterval and so forth, where [0, Linterval) denotes the

continuous interval inclusive of the lower bound 0 and exclusive of Linterval. Latencies which

exceed the threshold Lakmax are mapped to Lakmax
′.

Example 5.2.1. In Figure 5.2, we consider the representation of an auto-scaling policy for an

application where Lakmax = 30ms with sub-intervals Linterval as 10ms with number of edge servers

m = 3 at the edge site. Each dotted rectangular block corresponds to the number of edge sites

within the χ-hop neighbourhood where ak is deployed. The state 〈1, 1, 10〉 denotes the scenario

when the average latencies of users accessing the application service ak at Ej evaluates to a

value in the interval [0, 10)ms, when the application service is deployed on a single server and

the number of edge sites in the χ-hop neighbourhood where the application is deployed is also

1. Thus, the latency identifier of a state vector is a discrete intervalized representation of

continuous latency values. Our work builds on a similar discretized interval representation as

in [12, 63]. Similarly, 〈1, 1, 20〉 is the scenario when the average latency is between [10, 20)ms.

The state 〈1, 1, 30′〉 denotes the scenario when the average latency exceeds 30ms. Such states

correspond to the application deployed only on a single server. The state 〈2, 1, 10〉, on the other

hand, exhibits the application being deployed on two servers within the edge site. The MDP

captures all possible container deployment scenarios along with all discretized intervals. �
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〈1, 10〉 〈1, 20〉 〈1, 30〉 〈1, 30′〉

Figure 5.3: Latency Transitions

〈1, 10〉 〈2, 10〉

〈1, 20〉 〈2, 10〉

〈3, 10〉

〈3, 20〉

Figure 5.4: Auto-Scaling Transitions

5.2.3.2 Transition Representation of MDP

Transitions can broadly be classified into three types: transitions representing updation of the

number of container instances in the χ-hop neighbourhood, transitions representing the non-

deterministic nature of latencies incurred by users and transitions representing the

non-deterministic choices of auto-scaling decisions. Each transition occurs only at each dis-

crete time step.

Update Neighbourhood Count Transitions: At each discrete time step, an edge site receives

broadcast messages from all edge sites in the χ-hop neighbourhood. The state of the MDP is

then updated to reflect the aggregated count of the number of edge sites in the χ-hop neigh-

bourhood where the application ak is deployed. Such transitions are represented by “Update

χ-hop Container Count” in Figure 5.2 but not explicitly depicted in the figure for brevity.

Example 5.2.2. Update χ-hop Container Count transitions exist between all states between the

blocks represented by dotted rectangles in Figure 5.2. A transition between 〈1, 1, 10〉 to 〈1, 2, 10〉
denotes the scenario when the number of edge sites where the container instances are deployed

in the χ-hop neighbourhood has changed from 1 to 2 while the number of container instances

deployed within the edge site remains 1 and there is no change in averageLatency. Similarly, a

transition from 〈1, 1, 10〉 to 〈2, 2, 10〉 depicts changes in container counts both within the edge

site as well as the neighbourhood. �

Note that our model enables the representation of scenarios where communication between edge

sites is not permitted. In such scenarios, the neighbourhoodCount Atomic Proposition is set to

NULL. In the subsequent discussions, for ease of explanation, we elucidate our methodology

in scenarios where neighbourhoodCount is set to NULL. We use the shorthand representation

〈noOfContainers, averageLatency〉 to denote such scenarios. We use this shorthand notation

henceforth. We explain later how our methodology generalizes to scenarios where communica-

tion within a χ-hop neighbourhood is also taken into consideration.
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Latency Transitions: Latency transitions represent the non-deterministic nature of servers

where average latencies vary over time. Latency transitions are depicted by Black Solid

Curves in Figure 5.2. Since we use a discrete time model, the average latencies are cal-

culated at each discrete time step and the state in the MDP updated correspondingly. In

each state, the noOfContainers component denotes a particular container deployment con-

figuration. For a particular container deployment configuration, latency transitions are in-

cluded to all other states for the same container deployment configuration, i.e, for two states

s1 : 〈s1 noOfContainers, s1 averageLatency〉, s2 : 〈s2 noOfContainers, s2 averageLatency〉,
latency transitions are included when s1 noOfContainers = s2 noOfContainers.

Example 5.2.3. Figure 5.3 depicts all possible latency transitions for noOfContainers = 1.

From state 〈1, 10〉, the transitions to states 〈1, 10〉, 〈1, 20〉, 〈1, 30〉 and 〈1, 30′〉 represent changes

in average latencies experienced by users during a discrete time step. The self-transition at

〈1, 10〉 denotes no change in average Latency. Such transitions are included at all states where

noOfContainers = 1, since latency transitions only depict changes in average latencies while

retaining the same container deployment. Note that no latency transition is included from

〈1, 10〉 to 〈2, 10〉 since such a transition depicts a change in the container deployment con-

figuration while the averageLatency component is unaffected. We depict only some of the

latency transitions for noOfContainers = 2 and 3 in Figure 5.2. Other latency transitions are

implicitly present but omitted in Figure 5.2 for brevity. �

Latency transitions effectively characterize fluctuations in average latencies over time due to

variations in service invocation and the resulting contention to access resources. Such transitions

thus aid in executing auto-scaling transitions as a function of average latency. We discuss auto-

scaling transitions next.

Auto-Scaling Transitions: In each state, auto-scaling transitions correspond to the three possi-

ble choices of auto-scaling decisions, denoted by Λ, at each discrete time step:

� retain the same number of container instances deployed.

� increase the number of container instances by 1.

� decrease the number of container instances by 1.

Auto-scaling transitions are depicted by blue dotted curves in Figure 5.2. Such transitions are

identical for all the states apart from the ones labelled with noOfContainers component as 1

since in such states container instances cannot be removed. Such states have only two possible

auto-scaling choices, i.e., to retain or add a container instance. Additionally, for states labelled

with noOfContainers as the maximum number of edge servers, i.e. |ESj|, only retain and
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remove container decisions are present. For states in which the latency component is Lakmax, the

remove container action is not represented since a latency violation trivially implies increasing

container instances. As a result of executing an upscaling decision where the number of contain-

ers is increased by 1, the average latency experienced by users may decrease. Such scenarios are

depicted by changes to both the elements of the 〈noOfContainers, averageLatency〉 vector.

Example 5.2.4. Figure 5.4 depicts auto-scaling decisions on a fragment of the MDP in Figure

5.2 for averageLatency = 10 and averageLatency = 20. The transition from 〈1, 10〉 to itself

depicts the decision to retain the number of container instances same in successive time steps

while there is no change in average latency. Such transitions are depicted by magenta self-loops

in states. The transition from 〈1, 10〉 to 〈2, 10〉 similarly depicts the scenario where the number

of container instances is increased by 1. A decrement in the number of container instances

is depicted by the transition from 〈2, 10〉 to 〈1, 10〉. Note that in such scenarios there is no

change in average latency. Such transitions are depicted by blue dotted curves. Note that

only one container instance is added/removed at any discrete time step and hence transitions

such as 〈1, 10〉 to 〈3, 10〉 are absent. The transition from 〈1, 20〉 to 〈2, 10〉 depicts the scenario

where the number of containers is increased by 1 and as a consequence, the average latency

has decreased from the interval [10, 20) to [0, 10). Changes in both components are depicted

by red dashed lines. �

5.2.3.3 Updation Semantics

At a particular state s1 : 〈s1 noOfContainers, s1 averageLatency〉, one of the three possi-

ble choices of auto-scaling decisions, λ ∈ Λ is executed. The average latency lakt is then

observed for the duration of a discrete time-step. The state of the MDP is updated to

s2 : 〈s2 noOfContainers, s2 averageLatency〉, where s2 noOfContainers denotes the number

of containers as a result of executing the auto-scaling decision and s2 averageLatency denotes

the subsequently observed average latency in the next discrete time-step. On transition from

s1 to s2, a reward is generated according to a reward function R which is utilized by RL agents

to automatically learn which auto-scaling decisions to execute in each state of the MDP. We

discuss the role of the reward function in the RL strategy synthesis process in Section 5.2.4.

The MDP built above encompasses the underlying solution space for our problem context,

accounting for all non-deterministic auto-scaling decisions and the resulting non-deterministic

average latencies from execution of the auto-scaling actions. Note that although the MDP

encompasses the entire solution space, the rewards for executing the auto-scaling decisions

from the various MDP states are initially unknown. In order to determine these unknown

rewards characterizing the effectiveness of the auto-scaling decisions in each MDP state, we
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formulate an RL problem where the RL agent learns the rewards by utilizing the MDP as the

state space.

5.2.4 Safe-RL Strategy Synthesis

Standard RL approaches using the MDP solution space as described above do not provide any

guarantees on the auto-scaling policy synthesized with respect to latency requirement thresholds

[89]. In a latency driven MEC environment, adherence to critical latency requirements is of

utmost importance. To ensure adherence to such pre-defined latency measures, we use Safe-

RL which ensures conformance of the synthesized strategy to latency threshold specifications

defined in LTL. The LTL specification is translated to a Limit Deterministic Büchi Automata

(LDBA) [89] which acts as a guide to the learning process. The reward function is then defined

on the composition of the MDP encompassing the solution space and the LDBA corresponding

to the LTL specification. Standard Safe-RL strategies, however, define rewards distinguishing

only between safe and unsafe states. Such a distinction, however, does not fully characterize the

latency-driven MEC environment. We define a reward function quantitatively distinguishing

each safe state using the averageLatency component of the state. We discuss our approach in

detail in the following sub-sections.

5.2.4.1 Representation of Latency Specifications in LTL

We utilize the discretization of latency characteristics as described in the MDP construction to

specify latency requirements in LTL. We first formally define LTL formulae and the satisfaction

relation of an LTL formula on an MDP:

Definition 5.5 [Linear Temporal Logic:]

LTL formulae [37] over a given set of atomic propositions AP are syntactically defined as:

φ : true | ψ | φ1 ∧ φ2 | ¬φ |Xφ | φ1 Uφ2

where ψ ∈ AP , and the operators X and U are called next and until, respectively. Using the

until operator we define two further temporal modalities: (1) eventually, Fφ = true U φ; and

(2) always, Gφ = ¬F¬φ.

Definition 5.6 [MDP Path:]

A path of an MDP M : (S, Λ, P, AP, L, R) is an infinite sequence of states σ = s0s1s2 . . .

with si ∈ S such that for all i ≥ 0, there exists λ ∈ Λ where a transition from state si to si + 1
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〈1, 10〉 〈1, 20〉 〈1, 30〉

Figure 5.5: Fragment of MDP illustrat-
ing LTL satisfaction

q0 q1 q2

[0, 20) [0, 30]

[20, 30)

[0, 20)

[20, 30)

Figure 5.6: LDBA for G(latency =
30 => X(latency = 20))

due to action λ is present. We use σ[i] to denote the state si, as well as σ[: i] and σ[i+ 1 :] to

denote the prefix s0s1 . . . si and the suffix si+1si+2 . . . of the path, respectively.

Definition 5.7 [LTL Satisfaction on MDP:]

The satisfaction of an LTL formula φ for a path ρ of an MDP denoted by ρ |= φ is thus defined

as: if the first state s0 of ρ is labelled with ψ, i.e., ψ ∈ L(s0), then ρ |= φ; a path ρ satisfies Xφ

if ρ[1 :] satisfies the formula φ; and finally,

ρ |= φ1Uφ2, if ∃i, ρ[i] |= φ2 and ∀j < i, ρ[j] |= φ1 (5.1)

Thus, satisfaction of an LTL formula on an MDP is based on the paths of an MDP.

Satisfaction of an LTL formula on an MDP path aids in synthesizing policies which conform to

the LTL specification.

The G operator specifies a particular condition to be true in all states of all paths of an MDP.

Hence the G operator is utilized to specify safety constraints. We specify latency requirements

using the G operator to ensure all states of the MDP satisfy the latency requirement. Consider

the latency characteristics of ak specified in LTL in Equation 5.2 using the always (G) operator.

G( averageLatency = [w, x) => X(averageLatency = [y, z) ) (5.2)

The specification states that at any discrete time step if the MDP is in a state where the average

latency lies in the interval [w, x), in the next time step, the auto-scaling policy should ensure that

the MDP is in a state where the average latency lies in the interval [y, z). Such specifications

dictate proactively undertaking auto-scaling decisions to ensure that latency thresholds are

not violated. Note that such a specification is representative of a single latency requirement

specification. However, any latency characteristic expressed in LTL can be utilized. In order

to incorporate LTL specifications as a guide in the RL process, the LTL formula is converted

to a corresponding LDBA [89].
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Example 5.2.5. Consider the MDP in Figure 5.2 where the latency threshold Lakmax = 30ms and

k = 10ms. The LTL specification G ( averageLatency = [20, 30) => X(averageLatency =

[0, 20) ) indicates that if the average latency experienced by the users of ak lies in the interval

[20, 30) at any discrete time step, in the next time step, the average latency must remain

in the interval [0, 20). Consider a fragment of the MDP M as shown in Figure 5.5. Let us

consider a path comprising the sequence of states ρ = 〈1, 10〉, 〈1, 20〉, 〈1, 10〉, 〈1, 30〉 starting

from the state 〈1, 10〉. Such a path satisfies the LTL formula φ : X averageLatency = [10, 20),

i.e., ρ |= X averageLatency = [10, 20), since the second state in the path is labelled with the

Atomic Proposition corresponding to averageLatency = [10, 20). Additionally, let us consider

the path ρ = 〈1, 10〉, 〈1, 10〉, 〈1, 10〉, 〈1, 20〉. Such a path starting from the state 〈1, 10〉 satisfies

the LTL formula φ : averageLatency = [0, 10) U averageLatency = [10, 20) since all states are

labelled with averageLatency = [0, 10) until a state labelled with averageLatency = [10, 20) is

encountered. �

5.2.4.2 LTL to Limit-Deterministic Büchi Automaton (LDBA)

Each LTL specification can be represented by an equivalent LDBA. Satisfaction of an LTL

formula can then be evaluated on the paths of an LDBA derived from the corresponding LTL

formula [89]. We first formally define an LDBA below.

Definition 5.8 [Limit Deterministic Büchi Automaton:]

An LDBA is a 5-tuple A = (Q,Σ, δ, q0, B), where Q is a finite set of states, Σ is a finite alphabet,

δ : Q×(Σ∪ε)→ 2Q is a (partial) transition function, q0 ∈ Q is an initial state, and B is a set of

accepting states, such that (i) δ is total except for the ε-moves, i.e., |δ(q, v)| = 1, ∀q ∈ Q, v ∈ Σ;

and (ii) the set of states Q can be divided into two partitions, QI and QA such that QI∪QA = Q,

which satisfies:

� ε transitions are not allowed within QA, i.e, δ(q, ε) = Φ,∀q ∈ QA, where Φ denotes the

empty set.

� the outgoing transitions from QA stay within QA, i.e., ∀q ∈ QA, v ∈ Σ, δ(q, v) ⊆ QA.

� the Büchi accepting states are in QA, i.e., B ⊆ QA.

An infinite path ρ is accepted by the LDBA if it satisfies the Büchi acceptance condition, i.e.,

inf(ρ)∩B 6= Φ, where inf(ρ) denotes the set of states visited by ρ infinitely many times. Thus,

an infinite path is accepted if it visits a Büchi accepting state infinitely often.
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Example 5.2.6. Figure 5.6 depicts the LDBA corresponding to the LTL latency specification

G ( averageLatency = [20, 30) => X(averageLatency = [0, 20) ). The LDBA comprises

three states q0, q1 and q2 with state q0 as an accepting state defined by the Büchi accepting

condition. The self transition at q0 depicts the scenario that the average latency is in the

interval [0, 20)ms while the transition from q0 to q1 is executed when the average latency lies

in the interval [20, 30)ms. There are two outgoing transitions from q1, one to q0 and another

to q2. The transition from q1 to q0 is executed when the average latency incurred is in the

interval [0, 20)ms while the transition from q1 to q2 is executed when the average latency

incurred is in the interval [20, 30)ms. The state q2 is a trap state, from which there is only one

self-transition. State q2 corresponds to a violation in the LTL latency specification where two

successive discrete time steps incur average latencies in the interval [20, 30). The transition from

q1 to q0, on the other hand, signifies an adherence to the LTL specification and hence results

in a transition to a Büchi accepting state. Any path which visits the state q0 infinitely many

times, such as {q0, q1, q0, q1, q0, q1, q0 . . .} with q0 being visited repeatedly henceforth satisfies

the Büchi acceptance criterion. In this case inf(ρ) = q0, q1 and since {q0, q1} ∩ B = q0, the

path is accepting. An infinite path such as {q0, q1, q2, q2, q2, q2, . . .} with q2 henceforth is not

accepted as an infinitely accepting criterion. �

The state of the LDBA is updated in each discrete time slot according to the averageLatency

observed in the duration of the time slot. The sequence of such states denote the path traced

out by the MEC system. If the path visits the Büchi accepting states infinitely often, the MEC

system is deemed to be safe. Thus, the LDBA serves as an effective safe representation of the

behaviour of an MEC system with respect to the LTL property. In order to incorporate the LTL

specification as a guide to the RL policy synthesis, we utilize the composition (also referred to

as product) of the LDBA corresponding to the LTL specification and the MDP corresponding

to the auto-scaling policy. This is discussed in the following.

5.2.4.3 Composition of LTL and MDP

The composition of the LDBA and the MDP results in another MDP which serves as a global

view of the environment augmented with the LTL property of interest. We now define the

composition of MDP and LDBA formally below.

Definition 5.9 [Composition of MDP and LDBA:]

Given an LTL formula φ representing a latency specification, and an MDP M , the composed

(or product) MDP is constructed with an LDBA Aφ derived from the LTL formula φ [89]. A

product MDP of an MDP M = (S,Λ, T, AP, L,R) and an LDBA Aφ = (Q,Σ, δ, q0, B) is defined

as M ′ = (S ′, T ′, AP ′, L′, R′, B′) where, S ′ = S×Q is the set of states where × is the Cartesian
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product operator, B′ = {〈s, q〉 ∈ S ′ | q ∈ B} is the set of accepting states and T is the transition

function represented as:

T ′(〈s1, q1〉, λ, 〈s2, q2〉) =

T (s1, s2) if q2 = δ(q1, L(s1))

absent otherwise
(5.3)

A path ρ of the product MDP M ′ satisfies the Büchi condition φB if inf(ρ) ∩ B′ 6= Φ, i.e., the

path ρ visits the set of accepting states of the LDBA B infinitely often.

For the sake of simplicity and ease of explanation, we illustrate the product construction on

a subset of the MDP described in Figure 5.2. Figure 5.8 depicts the composition on a subset

of the MDP M and the LDBA corresponding to the LTL formula G ( latency = [20, 30) =>

X(latency = [0, 20) ). Table 5.2 denotes the transitions δ for the LDBA according to which the

corresponding transitions are computed using Equation 5.3. The transitions are computed in

accordance with the latency APs only. The product yields a global synchronized representation

of both the MDP and the LDBA. Transitions in M ′ are executed whenever the agent executes

one of the three auto-scaling decisions. Additionally, in M ′, the state of the LDBA is also

simultaneously updated. Thus, when an auto-scaling action is executed, the next MDP state

is determined by the transitions in M while the LDBA simultaneously makes a transition by

consuming the label of the current MDP state. We now discuss each component of the product

MDP in detail.

Product MDP Semantics: The product MDP can be viewed as comprising several blocks. Each

block represents a particular container deployment configuration. The number of blocks corre-

sponds to the number of edge servers associated with an edge site, i.e.,

the number of blocks = |ESj|.
Example 5.2.7. The MDP in Figure 5.7 depicts two blocks denoted by dotted rectangles corre-

sponding to deployments where the number of containers are 1 and 2 respectively. �

Product MDP Transitions: The transitions in M ′ can be categorized into two types: transi-

tions within a block and transitions between blocks. Within each block, transitions represent

the behaviour of the LDBA in accordance with latency characteristics when the auto-scaling

policy retains the container deployment configuration. Transitions across blocks represent the

behaviour of the LDBA in accordance with latency characteristics when the auto-scaling policy

executes an up-scaling or down-scaling decision. We discuss each type of transition below.
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〈1, 10〉 q0 〈1, 10〉 q1 〈1, 10〉 q2

〈2, 10〉 q0 〈2, 10〉 q1 〈2, 10〉 q2

〈1, 20〉 q0 〈1, 20〉 q1 〈1, 20〉 q2

〈2, 20〉 q0 〈2, 20〉 q1 〈2, 20〉 q2

〈1, 30〉 q0 〈1, 30〉 q1 〈1, 30〉 q2

〈2, 30〉 q0 〈2, 30〉 q1 〈2, 30〉 q2
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Figure 5.7: Composition of MDP and LDBA. All Inter-Block Transitions are not depicted

δ(State, AP ) State
δ(q0, 10) q0

δ(q0, 20) q0

δ(q0, 30) q1

δ(q1, 10) q0

δ(q1, 20) q0

δ(q1, 30) q2

δ(q2, 10) q2

δ(q2, 20) q2

δ(q2, 30) q2

Table 5.2: LDBA
Transitions in accor-
dance with Atomic

Propositions

q0 q1 q2

[0, 20) [0, 30]

[20, 30)

[0, 20)

[20, 30)

〈1, 10〉 〈1, 20〉 〈1, 30〉

〈2, 10〉 〈2, 20〉 〈2, 30〉

Figure 5.8: LDBA Used To Compute Composition and MDP
Fragment Used To Demonstrate Composition
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Intra-Block Transitions: Transitions within a block depict the scenarios when the auto-scaling

agent decides to retain the container deployment configuration. Thus, such transitions cor-

respond to non-deterministic latency transitions as explained in Section 5.2.3. Within each

block, the states can be divided into two types, Büchi accepting and Büchi non-accepting. The

Büchi accepting states correspond to states which have the LDBA component in the product

as an LDBA accepting state, i.e., for any state s : {〈noOfContainers, averageLatency〉, qi}, s
is accepting if qi ∈ B. All MDP paths within a block thus represent whether the decision to

retain the container deployment configuration adheres to or violates the LTL specification.

Example 5.2.8. There are two blocks in Figure 5.7, one corresponding to noOfContainers =

1 and another corresponding to noOfContainers = 2. The block which corresponds to

noOfContainers = 1 comprises 9 states since there are three different latency valued states

in the MDP M while the LDBA also comprises three states. Intra-Block transitions are

depicted by black curved arrows in Figure 5.7. The transition from state {〈1, 10〉, q0} to

{〈1, 20〉, q0} denotes the scenario where the MDP M makes a transition from state 〈1, 10〉
to 〈1, 10〉 while the LDBA Aφ remains in state q0. Such a transition is possible since the

LDBA Aφ in state q0 upon encountering 10 as the latency atomic proposition remains in state

q0. However, in state {〈1, 30〉, q0}, note that all outgoing transitions correspond to states

where the LDBA aφ makes a transition to q1. Such transitions correspond to the LDBA’s

transitions from state q0 to q1 upon encountering the latency atomic proposition 30. All

such transitions are computed according to Table 3 which outlines how the LDBA executes

transitions in accordance with latency atomic propositions as encountered in the MDP M .

Since q0 is the Büchi acceptance state in the LDBA Aφ, all states in the product comprising of

q0, are deemed as Büchi accepting states. �

Inter-Block Transitions: Transitions between blocks depict the scenarios when the auto-scaling

agent decides to change the container configuration, i.e, add or remove a container instance

and the resulting non-deterministic latency changes as a result. Thus, such transitions cor-

respond to the auto-scaling decision transitions as explained in Section 5.2.3. Additionally,

since such transitions are also constructed in accordance with the δ transition function of the

LDBA, all paths of the MDP involving inter-block transitions represent whether the decision

to upscale/downscale the container deployment adheres to or violates the LTL specification.

Example 5.2.9. Inter-block transitions are depicted by blue dashed curved arrows in Figure 5.7

which indicate changes in container deployment configurations. All such transitions are also

computed according to Table 5.2 since the LDBA Aφ represents the required latency spec-

ifications without any reference to a particular container deployment configuration. Similar

to the intra-block transitions, transitions from LDBA state q0 to q1 are executed upon en-

countering the latency atomic proposition 30. The transitions from the LDBA state q1 to



Chapter 5. Horizontal Auto-Scaling for Applications 111

q2 are executed upon encountering two successive MDP states with latency atomic propo-

sition 30. Thus, states which include q2, indicate a violation in the LTL specification and

hence all outgoing transitions from states with the LDBA component as q2, remain within such

non-accepting Büchi states. �

Updation Semantics: The states of the product MDP M ′ are updated in a manner similar to

the auto-scaling policy MDP. At a state {s1 : 〈s1 noOfContainers, s1 averageLatency〉 s1 qx},
one of the three possible choices of auto-scaling decisions is executed. The average latency lakt

is then observed for the duration of a discrete time-step. The state of the MDP is updated to

{s2 : 〈s2 noOfContainers, s2 averageLatency〉 s2 qy}, where s2 noOfContainers denotes the

number of containers as a result of executing the auto-scaling decision and s2 averageLatency

denotes the subsequently observed average latency in the discrete time-step. Additionally, in

M ′, the LDBA state is also updated according to the observed latency. The new state qy of the

LDBA is determined by δ(qx, s2 averageLatency).

Example 5.2.10. The transition from {〈1, 10〉 q0} to {〈1, 20〉 q0} depicts the scenario where the

number of containers is retained as 1 but the averageLatency component has changed to the

interval [10, 20). Since the LDBA component was in state q0, the LDBA transition is computed

according to δ(q0, [10, 20)) = q0. �

A path ρ = s′1, s
′
2, s
′
3 . . . of M ′ thus denotes a sequence of states depicting the auto-scaling deci-

sions, the resulting average latency as a consequence and the corresponding LDBA transition.

Each state of the path is of the form {〈noOfContainers, averageLatency〉 qx}. The path ρ

satisfies the Büchi acceptance condition only if the sequence of LDBA states qx in ρ satisfies

the Büchi acceptance condition.

Example 5.2.11. Consider the path ρ = {〈1, 10〉 q0}, {〈1, 20〉 q0}, {〈1, 10〉 q0} in Figure 5.7.

The path satisfies the Büchi acceptance condition since the accepting state q0 is visited in-

finitely often. Additionally, let us take into consideration another path in Figure 5.7 ρ =

{〈1, 20〉 q0}, {〈1, 30〉 q0}, {〈1, 20〉 q1}, {〈1, 20〉 q0}, {〈1, 20〉 q1} . . . with the path remaining in

state {〈1, 20〉 q1} henceforth. Such a path also satisfies the Büchi acceptance condition since

the accepting state q0 is visited infinitely often on this path. However, consider the path

ρ = {〈1, 20〉 q0}, {〈1, 30〉 q0}, {〈1, 30〉 q1}, {〈1, 20〉 q2}, {〈1, 20〉 q2} . . . with the path remaining

in state {〈1, 20〉 q2} henceforth. Such a path does not satisfy the Büchi accepting state since

only q2 is visited infinitely often which is not a Büchi acceptance state. �

The paths of M ′ are thus determined by the transition on the original MDP M simultaneously

with the LDBA Aφ. The product MDP comprises the entire space of resulting latencies in-

cluding both safe and unsafe latencies. A sequence of auto-scaling decisions is thus represented

by paths of M ′. During the learning process, there is a possibility that the MDP can enter
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an unsafe state from which it can not return to a safe state. In the subsequent RL episode,

the MDP and LDBA states are reset. As a consequence, the MDP once again starts off in a

safe state. The MDP obtained by the composition of M and Aφ thus encompasses all auto-

scaling decisions, the corresponding latency observations and the corresponding compliance

with the LTL specification. Note that the transitions of the product MDP are computed in

accordance with the averageLatency atomic proposition AP of the LDBA. The AP correspond-

ing to neighbourhoodCount is not present in the LDBA. As a consequence, in the generalized

scenario when we also consider the active container deployments in the χ-hop neighbourhood as

with the MDP in Section 5.2.3, the only difference is in the number of total states in the prod-

uct MDP and the resulting transitions among those states. The methodology outlined above

is utilized to compute the transitions on the generalized product MDP. Variations in latencies

occurring as a result of the varying number of container deployments within the χ-hop neigh-

bourhood is encoded via the extra states in the generalized product MDP. This composition is

used as the solution space of the RL strategy synthesis method which we describe next.

5.2.4.4 Synthesizing Safe Policies

In RL, an agent automatically learns when and which auto-scaling decisions to execute via trial-

and-error interactions with the MEC environment. The agent and the environment interact

in discrete time steps. At the beginning of each step t, the agent observes the state of the

environment represented by s′t ∈ S ′ in MDP M ′, and out of the three possible choices of auto-

scaling decisions Λ, executes an auto-scaling decision, λ ∈ Λ. The state of M ′ is then updated

to s′t+1 in accordance with the updation semantics discussed in Section 5.2.4.3. A reward

rt+1 = R(s′t, λ, s
′
t+1) is returned to the agent, which servers as an indicator of the effectiveness

of the agent’s auto-scaling decision λ in state s′t. The return for a particular state s′, is the

cumulative future discounted reward R =
∑∞

t=0 γ
trt, where rt is the immediate reward at time

step t, and γ ∈ [0, 1] is the discount factor that controls the influence of future rewards. A

policy π for an MDP M is a function π : S ′ → Λ. Thus, a policy is a mapping from each state

of the MDP to one of the three auto-scaling decisions. The objective of the agent is to learn

an optimal policy π∗ that maximizes the return for all states s′ ∈ S ′. The reward accumulated

is used by the agent to learn the optimal policy π∗.

In this paper, we use Q-Learning [34] to synthesize auto-scaling policies. Q-learning utilizes a Q-

matrix initialized with the state space S ′ of the product MDP M ′. Each state is associated with

three Q-values, representing the three auto-scaling decisions Λ. We consider the simple ε-greedy

action selection method: at any decision step t, with probability ε, Q-learning chooses a random

auto-scaling decision to improve its knowledge of the application, whereas, with probability 1−ε,
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it selects the auto-scaling decision with the highest Q-value, i.e., λ = argmaxΛ Q(s′t,Λ). Most

of the time, the ε-greedy policy selects the best known auto-scaling decision for a particular

state, while it favors the exploration of other auto-scaling decisions with low probability. After

executing the auto-scaling decisions, at the end of the time step, the environment returns a

reward to the RL agent. The standard Q-Learning algorithm when used with the solution

space M ′ as the Q-matrix does not differentiate between Büchi and non-Büchi states. In order

to synthesize policies which adhere to the LTL specification, the discount factor and the reward

function need to be re-formulated.

Note that M ′ comprises two broad categories of paths: paths which adhere to application

latency requirements and visit only safe (Büchi) states and paths which includes unsafe (non-

Büchi) states that exceed the threshold latency requirements. Standard RL based policies

do not provide any guarantees on whether auto-scaling decisions result in paths which visit

only safe (Büchi) states [89, 117]. A Safe-RL policy characterizes the return of each path to

ensure that the probability of visiting safe (Büchi) states is maximized. As a consequence,

Safe-RL policies ensure that the policies generated adhering to the LTL specifications minimize

the probability of latency violations [89, 117]. Additionally, the return of a Safe-RL policy

ensures that the policy generates auto-scaling decisions even when the latency requirements

cannot be adhered to (maybe due to lack of resources). Note that traditional RL policies

when incorporated with constraints corresponding to latency requirements do not consider

such scenarios. Traditional RL based auto-scaling policies deal with minimizing overall latency

as opposed to our proposed Safe-RL approach which aims at minimizing latency violations.

We now formally define the return of paths in our Safe-RL based approach. A model free RL

algorithm such as Q-Learning always generates a policy πφ that maximizes the probability of

satisfaction of an LTL specification φ on M ′ if the return of a path is defined in a specific way,

as summarized below [89].

Theorem 5.1. For a given MDP M ′ with B′ ⊆ S ′ the value function vπ for policy π and

discount factor 0 < γ < 1 satisfies limγ→1− v
π(s′) = Prπ(s′ |= GF (B′)) for all states s′ ∈ S ′, if

the return of a path is defined as

Rett(ρ) =
∞∑
i=0

R′B′(ρ[t+ i])
i−1∏
j=0

ΓB′(ρ[t+ j]) (5.4)

where
∏−1

j=0 = 1, R′B′ : S ′ → [0, 1) and ΓB′ : S ′ → (0, 1) are the reward and discount functions

defined as:

R′B′(s
′) =

1− γB′ s′ ∈ B′

0 s′ /∈ B′
,ΓB′(s

′) =

γB′ s′ ∈ B′

γ s′ /∈ B′
(5.5)
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and γB′ = γB′(γ) is a function of γ such that limγ→1−
1−γ

1−γB′ (γ)
= 0. �

The proof [89] that the MDP M ′ satisfies the LTL specification φ is reproduced in the sup-

plementary Appendix A. The reward function R′B′(s
′) and the discount factor γB′ embody the

characterization of the states of the product MDP M ′ to account for Büchi and non-Büchi

accepting states. However, such a reward function and discount factor formulation provide no

distinct categorization within the Büchi accepting states. In order to account for the scenario

where certain Büchi accepting states are differentially prioritized, i.e, some Büchi states attract

more rewards as compared to others, we define a class of functions which allows quantitative

characterization of the Büchi states.

Theorem 5.2. The class of functions γB′(γ) = 1 − c(1 − γ)α where c ∈ [0, 1], 0 < γ < 1 and

0 < α < 1 satisfies the condition limγ→1−
1−γ

1−γB′ (γ)
= 0

Proof: By substituting 1− γ = t and 1− γB′(γ) = g(t) it is possible to re-write the condition

limγ→1−
1−γ

1−γB′ (γ)
= 0 as limt→0+

t
g(t)

= 0, since as γ → 1−, t→ 0+ for 1− γ = t. Thus, the class

of functions g(t) which satisfies limγ→0+
t
g(t)

= 0 also satisfies limγ→1−
1−γ

1−γB′ (γ)
= 0.

Let us consider the class of functions g(t) = ctα where 0 < α < 1 and c is a constant in the

closed interval [0, 1]. For such g(t), limt→0+
t
g(t)

= limt→0+
t
ctα

= 1
c

limt→0+ t
1−α. Since 0 < α < 1,

the condition 0 < 1− α < 1 also holds. Thus, 1
c

limt→0+ t
1−α = 0. Hence the class of functions

g(t) = ctα satisfies both the above conditions. By re-substitution of 1 − g(t) = γB′(γ) and

1− γ = t, we obtain: 1− ctα = γB′(γ) =⇒ 1− c(1− γ)α = γB′(γ). �

Theorem 5.1 implies that c ∈ [0, 1] can be utilized as a quantitative measure of the Büchi accept-

ing states of the LTL property under consideration, thereby allowing effective steering of the

agent’s training process. Additionally, since such a class of functions satisfies the above limiting

conditions, Theorem 5.1 also implies preservation of all properties of the framework outlined

in [89]. We define the function c : B′ → [0, 1] in Equation 5.6 to characterize Büchi states

where wlatency and wcost are the weights assigned to latency and cost of deploying containers

respectively on edge servers.

c(B′) = wlatency ∗ 1/(averageLatency) + wcost ∗ 1/(noOfContainers) (5.6)

We now prove that our quantitative reward function definition ensures convergence of the

model-free algorithm. We first define some properties of the function to establish convergence.

Lemma 5.3. The class of functions 1−c(1−γ)α satisfies the condition limγ→1− 1−c(1−γ)α = 1

where c ∈ [0, 1], 0 < γ < 1 and α ∈ (0, 1).
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Proof: Note that the class of functions 1 − c(1 − γ)α is always continuous since 0 < γ < 1

and α ∈ (0, 1) is a constant while c is also a constant in the closed interval [0, 1]. Thus, the

limit for this class of functions is the value at its evaluation point, i.e., at γ = 1. Hence,

limγ→1− 1− c(1− γ)α = 1. �

Theorem 5.4. The condition limγ→1− 1− c(1− γ)α = 1 ensures convergence of the model-free

learning algorithm.

Proof: A value of γ < 1 ensures convergence of traditional model-free learning algorithms to

a unique solution as highlighted in [89]. When the value of γ = 1, the model-free algorithm

may not converge [89]. From Lemma 5.3, limγ→1− 1 − c(1 − γ)α = 1. As such, when γ = 1,

γB(γ) = 1. Thus, in such scenarios the quantitative reward function may not converge as well.

However, since 0 < γ < 1 and α ∈ (0, 1) is a constant while c is also a constant in [0, 1], the

range of the function γ′B(γ) always lies in the interval (0, 1) since the reward function defined

in Equation 5.6 ensures that c 6= 0. As a consequence, when γ < 1, the condition γ′B(γ) < 1 is

satisfied ensuring convergence of the algorithm with the quantitative reward function. �

Algorithm 7: Safe Q-Learning

1 Input : LTL formula φ, MDP M
2 Translate LTL into LDBA Aφ
3 Construct the product M ′ of M and Aφ
4 Initialize Q({〈S ′〉Q′}, Λ) on M ′

5 for i = 0, 1, . . . do
6 s(t)′ ← observe the application state
7 λ← ε-greedy(s′, q′)
8 Observe the next state s′(t+ 1) and the reward obtained
9 Update Q(s, λ) using Equation 5.7 with Quantitative Büchi Rewards and Discount

Factor as in Theorem 5.1

The Q-Learning agent synthesizes the auto-scaling policy using the solution space M ′ as the

Q-Matrix with the above reward function and discount function. The agent executes an auto-

scaling decision λ using the ε-greedy policy and updates the Q-value in the Q-Matrix for the

corresponding action according to Equation 5.7 where ζ is the learning rate.

Q(s′t, λ)← Q(s′t, λ) + ζ
[
R′(B′) + Γ(B′) argmaxλ[Q(s′t+1, λ)]−Q(s′t, λ)

]
(5.7)

Example 5.2.12. Each state of the Q-matrix is associated with 3 Q-values corresponding to

the three auto-scaling decisions. Consider the states {〈1, 20〉 q0}, {〈1, 30〉 q0} and {〈1, 30〉 q1}.
We consider Q-values from the initial experimental setup of Virtual Machines in Section 5.3
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where the discretization interval is set to 10ms. The corresponding Q-values for each state

are [1.52, 1.15, 1.19], [2.18, 1.54, 9.46] and [1.17, 9.89, 7.35]. In state {〈1, 20〉 q0}, when the

agent decides to retain the same container configuration and in the next time step, moves

to state {〈1, 30〉 q0}, the Q-value corresponds to the retain configuration instance, i.e, the

first element of [1.52, 1.15, 1.19] is updated as 1.52 + 0.4[0.07 + 0.93 * 9.89 - 1.52] since

γ(B′) = 1 − (0.3 ∗ (1 − 0.95)0.5) = 0.93 where c = 1/30 (corresponding to the averageLatency

component) and the reward is 1 − γ(B′) = 0.07. Note that the high value of γ corresponds

to a safe decision and hence a higher future discounted reward. Similarly, in state {〈1, 30〉 q0}
when the agent decides to retain the same container configuration and in the next time step,

transitions to state {〈1, 30〉 q1}, the value of γ(B′) = 0. This is because the LDBA component

has transitioned to state q1 which is a non-Büchi accepting state resulting in 0 reward in

accordance with Equation 5.5. �

5.3 Results and Discussion

In this section, we discuss our experimental setup and findings. We first evaluate our approach

on a Virtual Machine setup with a single application. In order to demonstrate the effect

of resource contention in the presence of multiple service requests and the benefits of Safe-RL

based auto-scaling, we consider a simplified setup comprising three Virtual Machines, each with

two vCPUs, 4GB of RAM and 40GB of Virtual Hard Disk, representative of a single MEC site

comprising three edge servers. We use the Social-Network application from the DeathStarBench

benchmark suite [48]. Initially, a single container instance of the application is deployed on the

test setup. Service invocations are then generated with the wrk workload generator included

in the benchmark [48]. Figure 5.9 demonstrates the performance of four auto-scaling policies:

no auto-scaling, rule-based [10], Reinforcement Learning (RL) based [12] and Safe-RL based

(our approach). As expected, when no auto-scaling is employed, several latency violations are

encountered. The rule-based auto-scaling policy effectively reduces the overall user latency but

is unable to automatically adjust the number of container instances with variation in service

requests. The RL based policy is able to automatically learn auto-scaling decisions to adjust

the number of container instances in accordance with the service request traffic distribution

but encounters a number of latency threshold violations. The Safe-RL based approach ensures

adherence to latency requirements as well as automatic adjustment in accordance to the request

distribution. We now describe a real-world test-bed based representation of a single edge site

with heterogeneous resources and then demonstrate numerical simulation based large scale

experiments with inter edge site communication.
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(a) Rule Based
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(b) RL Based
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(c) Safe-RL Based
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(d) No Auto Scaling
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(e) Rule Based - Containers
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(f) RL Based - Containers

Figure 5.9: Average User Latencies Incurred and Number of Container Instances for Various
Auto Scaling Policies
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(g) Safe-RL Based - Containers
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(h) No Auto Scaling - Containers

Figure 5.9: Average User Latencies Incurred and Number of Container Instances for Various
Auto Scaling Policies

5.3.1 Real-World Test-Bed based Experimentation

5.3.1.1 Applications

We use applications from the DeathStarBench benchmark suite [48], the Social Network appli-

cation and the Media Microservices application, as shown in Table 5.3. The Social-Networking

application is a CPU intensive application. YOLO utilizes both CPU and GPU for object

detection [100]. The Media Microservices application is representative of both being CPU in-

tensive as well as graphics oriented. As a consequence, multiple such applications deployed

simultaneously can lead to high resource contention. For each application, we randomly gener-

ate service invocation requests in the intervals as specified in Table 5.3. The number of service

requests is initially increased in the specified interval. Subsequently, the number of service

requests follows a decreasing pattern in the specified interval. Each such increasing and de-

creasing pattern of service request invocation is considered as an episode for the RL agent.

Such patterns effectively characterize service variability workloads [10, 11, 12]. We measure the

latency of the Social Network and Media Microservices application using the provided workload

generator and measure the latency of YOLO as the time taken for the object recognition task

to be completed. We compare our Safe-RL based approach with the Rule-Based approach [10]

Application Service Request Range Rule-Based Scaling LTL Specification
Social Network [1000, 50000] averageLatency > 500 : add instance G([400, 500) =⇒ X[300, 400))

Media Streaming [1000, 50000] averageLatency > 500 : add instance G([400, 500) =⇒ X[300, 400))
Object Detection [1, 6] averageLatency > 200 : add instance G([150, 200) =⇒ X[150, 100))

Table 5.3: Applications, Number of Service Requests and Corresponding Rules
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and a standard RL based approach [12]. The rule-based auto-scaling policies operate on the

principle of observing the latency encountered by users and adjusting the number of container

instances according to the observed latency [10]. Such mechanisms are thus quite generic and

can also be used in MEC. For the Rule-Based approach we consider the rules as summarized

in Table 5.3 for each application. We utilize a value of 500ms for the social networking and

media applications (non safety-critical) while we utilize a value of 200ms for the safety-critical

object-detection application. We initially deploy the applications in a single edge server to

simulate contention. The three auto-scaling policies run in the background, monitoring the

average latencies, triggering auto-scaling actions as and when necessary.

5.3.1.2 Edge Site Deployment and Configuration:

We use an Edge Site with three servers with the following heterogeneous resource configurations:

i) an Intel Xeon E5-1650 processor with 128GB of RAM and an NVIDIA Quadro P4000 GPU

accelerator, ii) an Intel Xeon E5-1650 processor with 64GB of RAM and an NVIDIA Quadro

P4000 GPU accelerator and iii) an Intel Xeon E2 processor with 8GB of RAM. All three

machines comprise Standard Magnetic Hard-Disk Drives. We use such configurations to account

for the heterogeneous MEC environments and to determine the resulting implications. The third

machine does not incorporate a GPU accelerator and is used for deploying both the Social

Network and Media Microservices application containers while the two other machines include

GPU accelerators and are utilized for all three applications. Since our auto-scaling approach is

distributed, such a setup is representative of auto-scaling policies running at each edge site. For

this particular set of experiments, we consider a single edge site with communication between

edge sites, i.e, service requests invoked within this particular edge site can only be provisioned

by servers within the edge site. Such a setup conforms to our MDP model in Section 5.2.3 when

neighbourhoodCount is NULL. As a consequence, there is no additional access latency via the

backbone network.

5.3.1.3 Training the RL agent

Since we make use of a discrete time slotted model, the training process of the RL agent is crafted

to restrict decision making, state changes and reward observations at discrete time intervals.

Safe Q-Learning Algorithm 7 initializes the state space of the MDP agent with the composition

of the original Auto-Scaling MDP and the LDBA corresponding to the LTL formula. The

initial state is set to noOfContainers = 1, since, initially, we consider only a single container

instance while the corresponding LDBA component is initialized to the start state of the LDBA,
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i.e, q0. In our experiments, we set the discrete time slot duration to 2 seconds. We consider

a slot duration of 2 seconds to consider the evolving MEC environment where service request

traffic invocations can vary rapidly. The Q-values are all initialized to 0. At the start of each

discrete time step, the RL agent executes one of the three auto-scaling decisions. The container

deployment configuration is updated to reflect the decision of the agent. Then, a random

number of service requests are invoked for a duration of 2 seconds, the duration of the discrete

time slot. The average latency of the service requests invoked is calculated. The workload

generator of the Social Network and Media Microservices applications return average latencies

of the service requests invoked in the time interval as specified by the duration parameter. For

YOLO, we calculate the average latency with respect to the number of object recognition tasks

invoked and the respective observed latencies. After the duration of the discrete time step,

the reward for the decision undertaken by the RL agent is calculated based on the new state

thus obtained and the Q-values updated. We use ζ = 0.4 as the learning rate, γ = 0.95 as

the discount factor, α = 0.5 for the discount function γB′ and wlatency = wcost = 0.5 as the

parameters for the training process. The discretization interval is set to 100ms for the Social

Network and Media Streaming applications and 50ms for the Object Detection application.

5.3.1.4 Experimental Results and Analysis

Figures 5.10, 5.11 and 5.12 show the performance of the three auto-scaling policies for the Social

Network, Media Streaming and YOLO Object Detection applications respectively. Similar

to the results obtained in the Virtual Machine based experimental setup in Section 5.1, the

standard RL based auto-scaling policy incurs several latency violations in case of the Social

Network application as shown in Figure 5.10b. The standard RL based auto-scaling policy

mostly incurs such violations when the number of service invocations is on the higher side. The

Safe-RL based policy avoids such pitfalls. Both the RL based and Safe-RL based policy are able

to automatically adjust to service request invocation variability unlike the Rule-based autoscaler

as inferred from Figures 5.10e and 5.10f. The rule based policy is unable to dynamically adapt

as depicted in Figure 5.10d. It is however interesting to note that unlike the case of the single

application scenario with Virtual Machines, the number of container instances spawned by

both RL policies are not correlated with the number of service request invocations for the

Social Network application. Such a scenario occurs since resource contention from service

request invocations of other applications impact the overall average latency when considering

multiple applications. The RL agents which trigger auto-scaling decisions in accordance with the

observed average latency of the applications, are able to adapt automatically to such variations.
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(a) Rule Based Policy
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(b) RL Policy
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(c) Safe-RL Policy
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(d) Rule Based Policy
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(e) RL Policy
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(f) Safe-RL Policy

Figure 5.10: Average Latencies and Number of Containers for Social Network Application
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(a) Rule Based Policy
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(b) RL Policy
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(c) Safe-RL Policy
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(d) Rule Based Policy
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(e) RL Policy
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(f) Safe-RL Policy

Figure 5.11: Average Latencies and Number of Containers for Media Services Application
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(a) Rule Based Policy
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(b) RL Policy
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(c) Safe-RL Policy
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(d) Rule Based Policy
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(e) RL Policy
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(f) Safe-RL Policy

Figure 5.12: Average Latencies and Number of Containers for YOLO Object Detection
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Figures 5.10b and 5.10c demonstrate the comparative average latencies incurred with the Stan-

dard RL based approach and the Safe-RL based approach. Note that the average latencies

incurred when utilizing the Safe-RL based approach is higher in several instances even with

much lower number of service requests as compared to the Standard RL based approach. How-

ever, in all such instances, the average latency is within the 500ms threshold for the Safe-RL

approach. Such scenarios confirm concordance with our objective of deriving auto-scaling poli-

cies ensuring adherence to latency specifications as opposed to overall latency minimization.

Additionally, consider the observed latencies as a result of the Safe-RL policy as depicted in

Figure 5.11c for the Media Streaming application. In Figure 5.11c, the Safe-RL auto-scaling

policy incurs two latency violations when the average latency incurred is above the threshold

requirement of 500ms. Such a scenario occurs only when the maximum number of permissible

containers (3 in this case), have already been provisioned. As such, the auto-scaling agent could

not have provisioned additional resources to circumvent the violation. Figure 5.12 demonstrates

the average latency and the number of containers provisioned for the Object Recognition appli-

cation. Safe-RL provisions a higher number of container instances in this case, however achieves

a lower overall average latency amongst the service requests.

5.3.1.5 Utilizing Maximum Latency Values

In the experimental setup for the social network application with virtual machines, we utilized

the average latency of users to execute auto-scaling decisions. Table 5.4 lists a comparison

between the number of container instances utilizing average latency and maximum latency of

end users from the virtual machine setup replicated. The nature of the latency plots incurred

when considering maximum latency are similar to the plots depicted with average latency and

are omitted due to brevity. However, the number of container instances spawned by each

RL based algorithm is higher when considering the maximum incurred latency as highlighted

in Table 5.4. More notably, the Safe-RL based approach spawns an even higher number of

container instances, however incurs lowest latency threshold violations. Thus, utilizing the

maximum latencies associated with service requests in general results in a higher number of

provisioned container instances.
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RL Based Safe RL Based
Latency Value Utilized

Requests Avg Max Avg Max
No. Of Containers

222 1 2 2 3
444 1 2 2 3
666 1 3 2 3
888 1 3 2 3
1110 1 3 2 3
1332 2 3 3 3

Table 5.4: Effect of Max Latency

% of
Violations

Average No.
of Containers

at each edge site

Auto-Scaling
Decision

Running Time
(in miliseconds)

Rule-Based 15.77 3.48 0.0059
RL Set 1 29.21 2.66 0.2911

Safe RL Set 1 14.54 3.09 0.3340
RL Set 2 26.11 2.88 0.2813

Safe RL Set 2 12.21 3.37 0.3088

Table 5.5: Large Scale Simulation Based Experimental Setup

5.3.2 Large Scale Numerical Simulation Experiments

5.3.2.1 Experimental Setup

We use numerical experiments to simulate large-scale scenarios. We use locations from the

“Existing Commercial Wireless Telecommunication Services Facilities in San Francisco” [98]

dataset as MEC edge site locations. Each edge site is associated with 4 edge servers. For each

edge site, we consider χ = 2, i.e, we consider inter edge site communication within 2 hops.

For each inter-edge communication, we assign a random additional access latency between 0 to

50ms for edge sites within a 1-hop access and between 0 to 100ms for edge sites within a 2-hop

access. We generate service request invocations within each edge site randomly. We consider

the same three applications we utilized for the real-world test-bed setup. We utilize the latency

values generated from a single server on the test-bed application setup in Section 5.3.1 with

the three applications being accessed simultaneously. We utilize the actually measured value of

averageLatency from the test-bed in scenarios when the auto-scaling policy results in a single

server. We utilize the value of averageLatency/2 for scenarios where the auto-scaling policy

results in two servers and a value of averageLatency/numberOfServers in general to simulate
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multiple MEC servers within an edge site. The other parameters are set identical to Section

5.3.1. We perform two sets of experiments, Set 1 with wlatency = 0.5 and wcost = 0.5 and Set 2

with wlatency = 0.7 and wcost = 0.3 to demonstrate the impact of the reward mechanism. The

results are summarized in Table 5.5.

5.3.2.2 Results and Analysis

As can be inferred from Table 5.5, the percentage of violations incurred by the Safe-RL ap-

proach is lowest demonstrating the effectiveness of our approach. The Rule-Based approach

incurs lower violations as compared to the Standard-RL based approach but it spawns a much

higher number of containers on an average. Note that the percentage of violations for the

Safe-RL based approach is lower for Set 2 experimental scenarios as compared to Set 1 experi-

ments. Such a scenario occurs since the wlatency is assigned a value of 0.7 in Set 2 experiments

specifying a higher weightage towards the latency value obtained. However, in Set 2 experi-

ments, a higher average number of container instances are spawned by the Safe-RL approach.

Such scenarios depict the trade-off involved in the weighted reward mechanism for latency and

cost associated with the number of container instances spawned. The same scenario occurs

with the Standard-RL based approach since we utilize the same rewarding mechanism with

the Standard-RL approach, however, with the reduced state space without incorporating the

LDBA based composed MDP and the Safe-RL discount function. Note that the Rule-Based ap-

proach does not include such a rewarding mechanism and hence only one set of results is listed.

The Rule-Based approach incurs the lowest running time while the Safe-RL based approach

incurs the highest. Such scenarios occur since a Rule-Based approach takes a simple decision

making approach after observing the incurred latencies. The Standard-RL and Safe-RL based

approaches incur higher running time since they perform additional lookup operations on the

state space table to execute the auto-scaling decisions.

5.4 Conclusion

In this chapter, we propose a Safe-RL based horizontal auto-scaling policy that maximizes the

probability of adherence to application specific latency requirements. We model the MEC en-

vironment and auto-scaling decision making using an MDP. We represent latency requirements

in LTL and introduce a quantitative reward mechanism to characterize the MDP composed

with the LTL specification and demonstrate the convergence properties of the mechanism. We

utilize a test-bed setup with benchmark applications to demonstrate how such an approach

outperforms traditional RL based approaches to alleviate resource contention arising out of
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multiple applications accessing shared resources simultaneously. The service allocation, ser-

vice placement and auto-scaling policies we have explored so far work agnostic to the possi-

bility of failures in the MEC ecosystem. In the next chapter, we study the implications of

MEC server failures.





Chapter 6

Fault Recovery in MEC

6.1 Introduction

MEC servers are more susceptible to failures than their cloud counterparts due to their large

scale and distributed nature [15]. In the event of an MEC server failure, the containers which

are allocated to the faulty server have to be re-initialized at other MEC servers. A fault-recovery

procedure determines the MEC servers to be utilized to re-initialize these containers. Indeed, we

have a number of possibilities for this design, considering the different factors (e.g. reliability,

latency, resource contention etc.). To the best of our knowledge, the issue of fault-tolerance and

in particular, fault-recovery strategies in containerized MEC environments has been relatively

less studied. Designing fault-recovery strategies in MEC is a complex task due to: i) the

distributed nature of MEC servers with each server catering to specific geographical areas with

varying access latencies; ii) the possibility of further admissible failures at the servers where the

containers are to be re-initialized; iii) the large number of recovery possibilities for re-initializing

containers and iv) a myriad of real-time and non real-time application containers competing

for shared resources. In this chapter, we derive fault-recovery strategies by considering all the

above scenarios.

In this chapter, we propose a two-fold fault-recovery strategy, namely, local recovery and global

recovery. We use the local recovery procedure for real-time applications with high priority

within a small geographical area while the global recovery procedure is used for non-critical

applications within larger geographical areas or in scenarios when the local recovery strategy

cannot be used to determine any guarantees on the recovery process. We use formal methods for

the synthesis of local recovery strategies to derive probabilistic guarantees. We model the fault-

recovery procedure using a Markov Decision Process. We also model the failure scenarios of

129
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MEC servers as another MDP. MDPs allow effective characterization of the non-deterministic

choices of server availability for designing the fault recovery strategy while also allowing us

to characterize the stochastic nature of server failures. We capture the complex interactions

between the MEC servers and the fault recovery procedure as a Turn-Based Stochastic Multi-

Player Game [38]. We formalize the fault-recovery strategy synthesis objectives as expressions

in Probabilistic Alternating Temporal Logic [37] and use a probabilistic model checker [38] to

synthesize recovery strategies while additionally considering the possibilities of multiple subse-

quent failures. Further, we design a heuristic based global recovery strategy considering server

failure probabilities where local recovery is infeasible. Large-scale simulations with real-world

datasets demonstrate the effectiveness of our approach. In summary, the main contributions of

this chapter are:

� We model the MEC environment as a composition of several MDPs and represent the

interaction between these MDPs as a Stochastic Multiplayer Game.

� We demonstrate how the latencies resulting out of resource contention amongst multiple

applications can be modeled with the reward formulation of the SMG.

� We demonstrate how recovery objectives capturing user-perceived latencies can be speci-

fied in Probabilistic Temporal Logic and utilize these formal specifications to synthesize

fault-recovery strategies.

� We design a two-fold recovery strategy: local recovery to synthesize strategies with prob-

abilistic guarantees characterizing small geographical areas and a heuristic based global

recovery over larger geographical areas.

� We experimentally demonstrate the effectiveness of our approach on benchmark datasets.

The rest of this chapter is organized as follows. Section 6.2 presents a motivating example.

Section 6.3 discusses the modeling framework. Section 6.4 descibes the generation of fault-

recovery strategies. Section 6.5 details the obtained results. Section 6.6 concludes the chapter.

6.2 A Motivating Example

In this section, we present a motivating example to explain the problem context addressed in

this chapter. We consider the MEC scenario depicted in Figure 6.1 as an example to explain

our problem context. Each edge server is associated with a failure probability depicted along
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Figure 6.1: Multi-Access Edge Comput-
ing Scenario

Edge Site Edge Server Users
E1 ES1, ES2 u1, u2, u3

E2 ES3, ES4, ES5 u2, u4, u5

Server Applications
ES1 Object Recognition
ES2 Hotel Reservation
ES3 Object Recognition
ES4 Social Network, Media Streaming
ES5 Hotel Reservation

Table 6.1: MEC Scenario Configu-
ration

with the server. For example, ES4 has a probability of failure 0.6. In this chapter, and in the

previous chapter, we assume that all microservices associated with an application instance are

deployed on the same edge server. We assume that initially, application service containers are

deployed on MEC servers randomly. The example scenario in Figure 6.1 depicts a snapshot of

such a scenario in which some application containers have been deployed on the MEC servers

with several users connected to these servers and utilizing the services hosted therein. Services

deployed on a server are assigned priority levels with real-time services assigned the highest

priority. Whenever a failure occurs at an MEC server, the containers deployed therein have

to be re-initialized at other MEC servers to ensure continuity of service. We explain in the

following subsections how our recovery strategy can help mitigate some of the latencies prevalent

in traditional fault tolerant strategies.

6.2.1 Failure Aware Strategy

Let us assume server ES4 fails as depicted in Figure 6.2. The containers allocated to ES4 must

now be re-initialized at a different server. A traditional failure-aware Fault-Tolerant strategy

[16] selects the most reliable server to re-initialize the container. In this scenario, since ES5

is the highest reliable server (with the lowest failure probability value 0.10) associated with

the edge site E2, the failure-aware strategy selects ES5 as the server for the containers to be

re-initialized. However, as a result of re-initializing both containers at ES5, users may incur

an added overall latency arising out of resource contention with both the Social Network and

Hotel Reservation services co-located at ES5.
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Figure 6.2: Failure Aware Fault-Recovery

6.2.2 Performance Aware Strategy

A performance-aware strategy employing load-balancing [118] initializes one of the containers at

ES3 and another container at ES5, thereby effectively mitigating the shared resource contention.

However, such a strategy is oblivious to the possibility of server failures. Consider the scenario

in Figure 6.3 arising out of executing the performance-aware load balancing recovery strategy.

Server ES3 has a high probability of failure, i.e., 0.55. Thus, in the event of a failure, the

container would need to be re-initialized once again at a different server leading to additional

latency overheads.
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Figure 6.3: Performance Aware Fault Recovery
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Figure 6.4: Stochastic Game Fault Recovery with Low Reliable Servers

6.2.3 Stochastic Multi-Player Game Based Failure and Performance

Aware Strategy: Our proposal

To overcome the limitations of the above strategies, we propose a Stochastic Game based

Fault-Recovery Strategy, discussed in detail in Section 6.3. When server ES4 fails, our strategy

re-initializes one container at ES5 and the other container at ES2 considering both the relative

performance impact of running both containers at a single server versus the possibility of

further failures at other servers. Additionally, unlike both the failure-aware and performance-

aware strategies which are agnostic to the nature of services, our strategy re-initializes the

Media Streaming Service before the Social Network Service considering the fact that Media

Streaming is a real-time service and attributes more immediate attention to its deployment.

This is formalized later in our discussion in Section 6.3.1. Note that our strategy allocates

one of the containers to ES2 which is not associated with edge site E2. Even though such a

strategy implies communication between the re-initialized container at ES2 with its users via

the backbone communication network, it successfully mitigates the higher latencies encountered

in the event of a failure of ES3 whose reliability is lower.

Additionally, consider a similar scenario in Figure 6.5 where ES3 is instead a highly reliable

node with the probability of failure being 0.15. In such a scenario, our Stochastic Game based

strategy re-initializes one container at ES5 and the other container at ES3, since the probability

that ES3 fails is lower. While for the simple system at hand, we have a limited number of

possibilities to consider to address the failure, this is not the case for a system at scale, for

which deriving the recovery strategy is a non-trivial task. In a realistic scenario, in addition to

possibilities of multiple failures, resource contention, and differentially prioritized services, each
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Figure 6.5: Stochastic Game Fault Recovery with High Reliable Server

application container is associated with a memory requirement whilst each server has a fixed

memory capacity which determines whether a container can indeed be initialized at a particular

server [119]. Designing a fault-recovery strategy encompassing all such scenarios is a complex

task. We thus use MDPs to model the stochastic nature of failures, the choices of failure-

recovery strategies using non-determinism, and the entire space of container-server allocation

bindings taking into consideration memory characteristics of servers and application containers.

We capture their interactions as a Stochastic Multi-Player Game. The SMG characterizes local

recovery within an edge site for highly prioritized services. In scenarios where local recovery is

infeasible, we design a heuristic based global recovery characterizing multiple edge sites within a

χ-hop neighbourhood. In the following sections, we describe in detail our modeling and strategy

synthesis approach.

6.3 Formal Model of Fault-Recovery

In this section, we first formally define the fault-recovery strategy synthesis problem. We then

describe our model of turn-based stochastic multiplayer games using which we derive the fault-

recovery strategy.

6.3.1 Problem Formulation and Assumptions

The MEC system follows a discrete time-slotted model as in our earlier chapters. The location

of the users and services deployed at edge servers are updated at the beginning of each discrete



Chapter 6. Two-Fold Fault Recovery 135

time slot of µ seconds. The failure status of each server is updated at the beginning of each

discrete time slot of ν seconds. Our discrete time slotted model is illustrated in Figure 6.6.

ν ν ν

ν ν ν

µ

Update User Location and Applications Update Failure Status

ν ν ν

ν ν ν

µ

Slot t

Figure 6.6: Discrete Time Slotted Model with Failure Updation

We consider the following in this chapter.

� An MEC system comprising n MEC edge sites, E = {E1, E2, . . . En}, where each site is

represented by its latitude and longitude coordinates and associated with a set of servers

ESj = {ES1, ES2, . . . , ESm} as considered earlier.

� We assume edge sites do not share edge servers, i.e., ESx ∩ ESy is empty, where 1 ≤
x, y ≤ n, x 6= y.

� Each server ESx ∈ ESj is associated with a probability of failure ESΠ
x and fixed memory

capacity ESmemcapcaityx .

� For each Ej, we consider k-fault tolerance where at most k < m servers can fail simulta-

neously at any discrete time slot t.

� Similar to the previous chapter, we assume all microservices of a particular application

are deployed together at an edge server. Henceforth in this chapter as well, we refer to

an application container as the set of all microservices associated with the application.

� Each server ESx ∈ ESj, is associated with a set of application containers Ct
ESx

=

{c1, c2, . . . cq} at any discrete time instant t with each container having a memory re-

quirement mem(ci).

� We represents by ci all the application containers associated with the i-th application.

� Each application container ci ∈ Ct
s requires an initialization time cinittimei .
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� Each container ci ∈ Ct
ESx

is associated with a set of users U t
ci

availing of its services.

� Each container ci ∈ Ct
ESx

is associated with a priority ωi according to the nature of

the application, i.e., real-time applications are assigned higher priority values while non

real-time applications are assigned lower priorities.

� Prior studies [120, 121, 122] dealing with container-based applications have established

that it is possible to determine apriori which applications when deployed on the same

server lead to high resource contention. In our work, we assume such an apriori charac-

terization is available.

A server ESx ∈ ESj is defined as faulty at any discrete time step t if the computational facilities

of the server is unavailable to any of the users. At any discrete time slot t, upon failure of

ESx ∈ ESj, the objective of the fault-recovery strategy is to re-initialize the containers Ct
ESx

allocated to ESx within τ discrete time steps, such that the additional latency incurred by the

users U t
ci

is minimized. To consider the relative criticality of the applications while re-initializing

containers, for a faulty server ESx, we consider the top κ real-time application services with

highest priorities which need to be re-initialized before the other application services. We thus

resort to the following two-fold strategy:

� Local Recovery: generates fault recovery strategies with probabilistic guarantees from an

MDP model within an edge site involving the κ highest priority real-time services when

recovery is indeed possible within τ discrete steps.

� Global Recovery: a heuristic, used for lower priority services and scenarios where local

recovery is infeasible within τ steps for the κ real-time services.

We model the local recovery strategy synthesis problem as a composition of several MDPs. For

each edge site Ej, we consider the following MDPs:

� the MDP model of stochastic server failures depicting {1, 2, . . . k} further admissible fail-

ure scenarios.

� the MDP model of the fault-recovery procedure which incorporates non-deterministic

choices of servers for container re-initialization.

� the MDP model of the faulty server within an edge site, i.e., the server from which

containers are to be re-initialized.
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� the MDP models of servers which are live, i.e., servers at which the containers

can be re-initialized.

� the MDP model of a container representing the required time for initialization.

� the MDP model of the timer representing each container’s initialization time.

� the controller MDP which orchestrates the turn-based game between the server and the

fault recovery procedure.

Whenever a failure occurs at an edge site, all the above MDP models are initialized correspond-

ing to that particular edge site. The initial state of the MDP model of stochastic server failures

reflects the state of the faulty server along with all possible further k-admissible stochastic fail-

ures. The MDP model of the faulty server is initialized with the containers to be re-initialized

in order of their priority. The MDP models of the live servers are initialized with their remain-

ing memory capacity. The timer MDP denotes the number of discrete time steps within which

all the containers are to be re-initialized. During the recovery process, the MDP model of the

fault-recovery procedure non-deterministically selects the servers where each container is to be

re-initialized. The controller MDP orchestrates a turn-based game between the MDP model of

the fault-recovery procedure and the MDP model of stochastic server failures. We explain each

model in the following sub-sections and then integrate these models using MDP composition.

6.3.2 Stochastic Model of Server Failures

For each edge site Ej, we construct an MDP to represent all possible further admissible k-server

failures once a particular server has failed. We use a representation similar to [22] of all possible

server failure combinations. The states of the MDP represent the failure status of each server

associated with Ej. Faulty servers are indicated with circles around their identifiers.

Example 6.3.1. Figure 6.7 depicts all further admissible k-server failures for an edge site

with 4 servers ES1, ES2, ES3 and ES4 when the server ES1 has initially failed. The state

ES1 , ES2, ES3, ES4 , the initial state, represents ES1 having failed while ES2, ES3 and ES4

are all active. We assume k = 3, i.e. at most 3 servers can fail in this example. The state

ES1 , ES2 , ES3, ES4 represents the scenario with ES1 and ES2 having failed while ES3

and ES4 are active. �

Transition Representation: There are two types of transitions describing stochastic failures:
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Figure 6.7: Stochastic Model of Server Failures

� Transitions representing no further admissible failures: From a particular state, such tran-

sitions represent scenarios when no other server fails. Such transitions are thus represented

by self-loops in each state.

� Transitions representing further admissible failures: Such transitions depict scenarios

where additional server failures occur leading to a change in the state of the MDP.

For each state, we define a probability distribution over all outgoing transitions from the state,

representing the probabilities of server failures.

Example 6.3.2. The self-transition in state ES1 , ES2, ES3, ES4 denotes the situation that

ES1 has failed in the current state, and in the subsequent discrete time step, no other server

failure occurs. The transition from ES1 , ES2, ES3, ES4 to ES1 , ES2, ES3 , ES4 denotes

that server ES1 has failed in the current state and subsequently ES3 has also failed in the

subsequent discrete time step. Note that a direct transition from ES1 , ES2, ES3, ES4 to

ES1 , ES2 , ES3 , ES4 is not possible as we consider a discrete time slotted model with

only one failure allowed in each time step. From state ES1 , ES2, ES3, ES4 , failure scenarios

represent probability distributions where p1 + p2 + p3 + p4 = 1. �



Chapter 6. Two-Fold Fault Recovery 139

Each transition representing further admissible failures is associated with a synchronization

label [failserverids]. Whenever such a transition is executed in the MDP model for stochastic

server failures, a corresponding transition with the same synchronization label is executed in

the Fault-Recovery procedure MDP which we discuss in detail next.

6.3.3 Model of the Fault-Recovery Procedure

S1 S2 S3 S4 move to S2 move to S3 move to S4

success
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Figure 6.8: Model of Fault-Recovery Procedure for each edge site Ej

The Fault-Recovery procedure MDP incorporates non-deterministic choices of servers where

containers can be re-initialized. The MDP models all the k-failure scenarios and the respec-

tive non-deterministic choices in each failure scenario. The Fault-Recovery procedure can be

viewed as comprising several blocks: blocks representing a single faulty server and blocks repre-

senting further admissible faulty servers. Additionally, each block comprises the corresponding

recovery options. Transitions between such blocks are synchronized with transitions labelled

by [failserverids] of the MDP model for stochastic server failures. Figure 6.8 outlines the MDP

model of the Fault-Recovery procedure.

Blocks Representing Singleton Faults: Such blocks correspond to scenarios where a single server

has failed and all other servers are available for recovery. Once a failure has been detected, the
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containers allocated to the faulty server need to be re-initialized on other live servers associated

with the edge site Ej. The containers which are to be re-initialized are modeled by the MDP in

Figure 6.9 and the remaining memory capacity of the servers where such containers are to be

re-initialized are modeled by the MDP in Figure 6.10. Additionally, the initialization time of

the containers is modeled by the MDP in Figure 6.11. The transitions within each block of the

fault-recovery procedure are synchronized with these MDPs. These models and the transition

synchronizations are explained in detail later.

Intuitively, the recovery strategy begins by non-deterministically selecting a live server on which

the container is to be re-initialized. Such a non-deterministic choice is contingent on the avail-

ability of the required memory for initializing the containers. The recovery procedure then

begins initializing the container on the selected server. Upon initialization of the container,

the memory capacity of the selected server is decremented by the container’s memory require-

ments. Additionally, the state of the MDP model corresponding to the faulty server is updated

to reflect the next container to be re-initialized. The process is repeated until all the containers

have been re-initialized in which case the MDP transitions to state 10 or there is no capacity

available at any of the servers associated with Ej to re-initialize the containers. If the mem-

ory capacity of all the available servers within the edge site is exhausted, we employ a global

recovery procedure, detailed in Section 6.4.2, where other edge sites are utilized at the cost of

additional latencies incurred due to access via the backbone network [3].

Example 6.3.3. State 1 of Figure 6.8 depicts the scenario where server ES1 has failed while

servers ES2, ES3 and ES4 are live. In such a scenario, all containers which were assigned to

ES1 have to be re-distributed amongst ES2, ES3, and ES4. Since ES1 has failed, the MDP

model of a faulty server in Figure 6.9 is initialized for ES1 with containers that were running

there. Additionally, three MDP models are initialized with the remaining memory capacity of

ES2, ES3 and ES4 corresponding to the MDP model of live servers as in Figure 6.10. States

2 - 4 denote the recovery procedure for such a scenario. The states 2 , 3

and 4 represent non-deterministic choices of servers ES2, ES3 and ES4 respectively. Each

non-deterministic choice is contingent upon available memory to initialize the container under

consideration. The condition mem(ES2)−mem(ci) ≥ 0 is used to check whether ES2 has the

requisite memory capacity to initialize container ci. Similar check conditions are utilized for

the other servers. The self-loops at these states indicate a container initialization in progress.

Upon successful initialization of a container, the MDP returns to state 1 . The remaining

containers are processed identically. When all containers which were allocated to ES1 have
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been re-initialized at either ES2, ES3 or ES4, the MDP transitions to state 10 . �

Further Admissible Failures: Consider the scenario where a single server ESx ∈ ESj has failed,

as a result of which the recovery procedure is initialized. Let us assume that at a certain point of

time when the recovery procedure is active, ESy 6= ESx fails as well. Such scenarios are modeled

by [failserverids] transitions in the MDP model of server failures. Whenever such a transition is

executed in the MDP model of server failures, the corresponding inter-block transition labelled

as [failserverids] is also executed in the MDP model of the fault-recovery procedure. We do not

depict all such possible transitions in the MDP in Figure 6.8 for brevity. Additionally, the MDP

models of the servers are re-initialized to reflect the new state of the servers and the recovery

process begins afresh. The re-initialization is executed upon the synchronized action [init].

Example 6.3.4. The transition from Block 1 to Block 2 is synchronized with the transition

[fail13]. Thus, whenever the MDP model of server failures executes the transition [fail13], the

fault-recovery MDP also executes the inter-block transition [fail13]. From Block 1, [fail12]

and [fail14] are also present which transition to blocks representing the recovery procedures for

scenarios where servers ES1 and ES2 have both failed and where servers ES1 and ES4 have

failed respectively. Such blocks are not depicted in detail in Figure 6.8. �

Blocks Representing Multiple Faults: Recovery from multiple faults is handled identically,

however, with a different set of non-deterministic choices for re-initialization as compared to

singleton fault recovery. The set of non-deterministic choices for re-initialization corresponds

to the non-faulty servers.

Example 6.3.5. From state 5 of Figure 6.8, which corresponds to multiple failures of servers

ES1 and ES3, the choices of servers to cater to re-initialization are ES2 and ES4. Thus,

the recovery process has two non-deterministic choices for re-initialization at state 5 as

compared to state 1 , where there are three choices. �

In addition to the transitions and blocks depicted in Figure 6.8, transitions and blocks corre-

sponding to all possible failure scenarios as outlined in the MDP model of server failures are

also present. For example, the transition [fail12], corresponding to the scenario where both

servers ES1 and ES2 have failed and the block representing the corresponding recovery choices

in such a scenario are also present. Such blocks and transitions are omitted for brevity in Figure

6.8. We next describe in detail the MDP models of faulty and live servers and the MDP model

of containers on which the fault-recovery MDP synchronizes.
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Figure 6.9: Models of Faulty Servers

6.3.4 Model of Faulty and Live Servers

Each server ESj is associated with two models, “ESj fail” and “ESj live” depending on its

failure status. Figure 6.9 depicts the MDP model for a faulty server while Figure 6.10 depicts

the MDP model of a live server. We describe each below.

Faulty Server: The Faulty Server model is initialized with the κ top-priority real-time appli-

cation containers. There are two types of states associated with such servers: i) states denoting

the κ containers associated with the server prior to failure and ii) a recovery state which de-

notes all such containers have been re-initialized at alternative servers. The κ containers are

en-queued in order of their descending priorities. All transitions for the faulty server model are

labelled with four different types of synchronization labels. When the fault-recovery module

non-deterministically selects one of the available servers, it transitions to the state depicting

the server on which it has invoked the container re-initialization. During the initialization pro-

cess, the transitions labelled by [cloading] denote the scenario when the container initialization

has not yet been completed. A successful initialization is denoted by the transitions labelled

by [mv]. Note that in the model of the faulty server, each state representing a container has

two such transitions, the self-transitions labelled with [cloading] and the transition to the subse-

quent lower or equal priority container labelled with [mv]. Note that similar transitions exist

in the fault-recovery controller. The [init] action synchronizes re-initialization in the event of

further admissible failures. The [success] action synchronizes with the fault-recovery controller

when all κ containers have been re-initialized. The fault-recovery controller, in such a scenario,

transitions to the success state.

Example 6.3.6. Figure 6.9 depicts the model of the faulty server ES1. States 1 - 5

denote 5 real-time application containers which were hosted at ES1 prior to failure. State

6 denotes the scenario that all 5 containers have been successfully re-initialized on different

servers. In this example, we assume 5 containers were allocated to ES1. In other circumstances,

the number of states in the chain will indicate the current number of allocated containers. The
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Figure 6.10: Model of Live Servers

self-transition in state 1 indicates container initialization progress synchronized with the

fault-recovery model. The transition from 1 to 2 is synchronized with the [mv] action

which denotes that c1 which was associated with ES1 has been re-initialized at a different

server. The transition from 5 to 6 denotes all containers which were allocated to ES1

have been re-initialized. Whenever a subsequent failure occurs, the transitions labelled with

[init] are executed to reset the chain of containers and the recovery process is re-initialized. �

Servers which are live: For live servers, we only initialize the capacities associated with

them, since containers already allocated to these do not form a part of the recovery proce-

dure. Each live server is thus represented by the MDP comprising a single state initialized

with the remaining capacity upon failure detection. It comprises two transitions synchro-

nized with the labels [init] and [mv]. The [init] action synchronizes with the fault recovery

procedure on detection of subsequent failures. Whenever a subsequent failure is detected,

the server model is re-initialized with its remaining memory capacity. The [mv] action simi-

larly synchronizes on successful initialization of a container at the server under consideration.

The [mv] action decrements the memory requirements of the container from the available mem-

ory upon initialization.

Example 6.3.7. Figure 6.10 depicts the MDP structure of servers ES2, ES3 and ES4 when

there is no failure associated. Note that each MDP is identical, with the exception of the

memory capacity of the server. The MDP comprises a single state initialized with the remaining

capacity upon failure detection. In the MDP model of server failures, whenever the transition

from ES1 , ES2, ES3, ES4 to ES1 , ES2, ES3 , ES4 is executed, the [init] transition is

executed at ES2 and ES4 since these are the two remaining live servers. When a container

initialization has been completed at a particular live server, the [mv] transition updates the

remaining memory capacity as ESmemj = ESmemj −mem(ci). �

The server MDPs are synchronized with the model of containers to consider their

initialization timing characteristics.



Chapter 6. Two-Fold Fault Recovery 144

container c
[cloading]c

time = ctime − 1
[mv]ctime = cinittime

i

Figure 6.11: Model of Containers

6.3.5 Model of Container

Each container is represented by a MDP comprising a single state with the required number

of discrete time steps for initialization. Figure 6.11 depicts the MDP model of containers

corresponding to an application service. It comprises two transitions synchronized with the

labels [cloading] and [mv]. The [cloading] action synchronizes with the fault recovery procedure

as well as the MDP model of the servers to indicate a container initialization in progress. The

[mv] action similarly synchronizes upon successful initialization of a container. The [mv] action

additionally resets the value of ctime with the initialization time of the subsequent container to

be initialized from the faulty server.

6.3.6 Model of Timer

Timer τ τ > 0 ? τ = τ − 1

Figure 6.12: Model of Timer

The timer MDP also comprises a single state as depicted in Figure 6.12. Upon detection of fault,

the timer MDP is initialized with the value τ representing the number of discrete time steps

within which the fault-recovery procedure should be completed successfully. In each discrete

step, the value of the timer is decremented by 1 until it reaches the value 0. If the MDP model

of the fault-recovery procedure reaches the state success when the value of τ is greater than

or equal to 0, the fault-recovery procedure is deemed to have successfully completed. However,

there is a possibility that the success state cannot be reached with τ discrete time steps. In

such scenarios, we utilize the global recovery procedure outlined in Section 6.4.2.
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global c1ds2 : bool init false;

global c2ds2 : bool init false;

global c3ds2 : bool init false;

....

global c1ds3 : bool init false;

global c2ds3 : bool init false;

global c3ds3 : bool init false;

....

Figure 6.13: PRISM Boolean Variables Representing Container Deployments on Servers

6.3.7 Modeling Container Deployments and Users

The MDP model of the Fault-Recovery procedure non-deterministically selects where to deploy

the containers from the faulty server. However, it does not contain information pertaining to

where the individual containers are deployed. In order to incorporate the information rep-

resenting the servers on which individual containers are deployed, we use Boolean variables

represented by PRISM global variables as depicted in Figure 6.13. For each container, we

include a Boolean variable for each server to indicate the deployment of the container on the

server. Whenever the fault-recovery MDP completes the initialization of a container at a par-

ticular server, the corresponding Boolean variable is set to true. Thus, the set of Boolean

variables indicate all possible choices of container-server bindings.

Additionally, prior to failure, each container is associated with a set of users availing its ser-

vices. We model such users using the PRISM reward formulation. Upon server failure, when

the model is initialized, the number of users associated with each container at the faulty server

is represented by an integer constant as depicted in Figure 6.14. The container-server bind-

ings determine which containers are re-initialized on which MEC servers. The PRISM reward

formulation ”allocation” is used to model resource contention amongst application containers.

The reward formulation utilizes the Boolean container deployment indicator variables in or-

der to assign a low reward value to strategies where competing containers are co-located on

the same MEC server while assigning a high reward value to strategies where such resource

competing containers are deployed on different servers. The reward formulation is depicted in

Figure 6.14. In order to incorporate the impact of users accessing the services of the container-

ized applications in the synthesized strategies where competing containers are not deployed on

the same server, we weigh the reward value by the number of users accessing the containers.
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//number of users associated with each container

const int c1u;

const int c2u;

const int c3u;

rewards “allocation”

c1ds2! = true & c2ds2! = true : c1u+ c2u+ c3u;

c1ds3! = true & c2ds3! = true : c1u+ c2u+ c3u;

c1ds4! = true & c2ds4! = true : c1u+ c2u+ c3u;

....

c1ds2 == true & c2ds2 == true : 0;

c1ds3 == true & c2ds3 == true : 0;

c1ds4 == true & c2ds4 == true : 0;

....

endrewards

Figure 6.14: PRISM Reward Function Definition

Such a reward function, thus, effectively characterizes both the impact of container deployment

as well as the impact of the number of users accessing the container.

Example 6.3.8. We utilize the abbreviation c1ds2 to denote that Container1 is deployed on

Server ES2. All other Boolean variables are defined analogously. We utilize the abbreviation

c1u to denote the number of users availing of the services of Container1. In the Reward

Formulation in Figure 6.14, there are three containers that are to be re-initialized. Container1

and Container2 are competing containers and thus deploying them on the same server leads

to high resource contention. Thus, in scenarios when containers 1 and 2 are not assigned to

the same server, a positive reward value equal to the total number of users availing of the

services of containers 1 and 2 prior to failure is assigned. On the other hand, in scenarios where

the recovery procedure re-initializes both containers at the same server, the reward value of

0 is assigned to such strategies. All such scenarios are characterized by the Boolean variables

indicating where the containers are deployed. �

The interactions between all the MDP models is characterized by their composition which we

describe in detail next.
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server-failures recovery-process

turn = recovery-process

turn = server-failure

Figure 6.15: Turn-Based Game Controller

6.3.8 Composition of MDP models

The aforementioned models systematically abstract the behaviour of the various entities of the

MEC system. Note that, all the transitions associated with the aforementioned models and

their respective failure probabilities are not shown explicitly for brevity. The overall model is

obtained by parallel composition of these MDPs along with the Turn-Based Controller as in

Figure 6.15 and is denoted as:

GMEC = Mserver−failures||Mfault−recovery||Mservers||Mcontainer||Mgame||Mtimer

In our model of the Stochastic Game, there are two players: the MDP model of server failures

and the MDP model of the Fault-Recovery Controller. The MDP model of server failures

probabilistically induces failures according to the probability distribution of server failures into

the MEC system while the MDP model of the Fault-Recovery Controller non-deterministically

selects servers where to re-initialize containers to avert such failures. Transitions of the MDP

model of server failures are executed only when the Turn-Based Controller is in state server−
failure, while the transitions associated with the MDP model of the Fault-Recovery controller

are executed only when the Turn-Based Controller is in state recovery − process. Thus, the

MDP Turn-Based Controller indicates which model is allowed to execute transitions while

alternating between the two MDPs. As the fault-recovery procedure is triggered after a server

has failed, the game is initialized with turn = recover − process, i.e, the Fault-Recovery

MDP progresses first. Then, the control goes to the MDP model of server failures, which

probabilistically selects server failures. The game proceeds, alternating between these two

entities. We use this model to derive local fault-recovery strategies with probabilistic guarantees

as described next.
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6.4 Fault-Recovery Strategy Synthesis

We use the Turn-Based SMG GMEC to synthesize local fault-recovery strategies satisfying the

following probabilistic specification:

Given the SMG GMEC find the recovery actions for Mfault−recovery

which maximizes the probability that Mfault−recovery

reaches the success state within time τ .

The “success” state of Mfault−recovery is reached only when all κ containers associated with the

faulty server have been re-initialized at alternative servers. Thus, our objective specifies the

reachability probability associated with the “success” state of the MDP Mfault−recovery. We use

temporal logic to formally specify the above objective. Specifically, to express properties for

SMGs we use the logic rPATL - Probabilistic Alternating-time Temporal logic with Rewards.

The above objective can be formally expressed with the rPATL query as follows:

Φ1 =〈〈recovery − process〉〉P{max=?}[F (success)]

In this specific scenario, we are interested in the event F (success) where F is the temporal

operator eventually [37]. The event denotes that eventually, the fault-recovery strategy reaches

the success state as depicted in the Fault-Recovery MDP in Figure 6.8. Pmax=? is the PRISM

operator which calculates the maximum probability of the event specified in brackets. Thus, our

rPATL objective encodes the maximum probability of reaching the success state. The player

for which the maximum probability value is sought is specified as 〈〈recovery−process〉〉. Hence,

the synthesis problem for an SMG aims to find the optimal strategy π which resolves the non-

deterministic choices for the recovery-process player. Formally the synthesis problem for GMEC

is defined as below.

Definition 6.1 [SMG Strategy:]

Given the SMG GMEC, a strategy π is a set of rules to resolve all non-deterministic choices

of a player recovery-process such that for all opponent strategies σ, where the opponent is

server-failures, the resolution of the non-deterministic choices satisfies the property F . The

set of rules is a mapping from each container to the server where it is to be re-initialized, i.e.,

π : ci → sx.
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Gπ,σ
MEC |= F, ∀ server-failures σ

We use PRISM-Games [38] to implement GMEC along with the specification F . PRISM-Games

utilizes Probabilistic Model Checking to determine whether GMEC satisfies F or not. For our

rPATL property, it utilizes Probabilistic Model Checking to determine the numerical value of

the probability with which F can be satisfied. Thus, it returns a value in the closed interval

[0, 1]. Model checking systematically explores all states and transitions in the model to check

whether it satisfies the given property. PRISM-Games synthesizes a strategy for the player

recovery − process, in terms of maximizing the probability of reaching the “success” state,

for all possible strategies that the player server − failures may choose. Thus, PRISM-Games

systematically explores the search space generated by GMEC considering all possible interactions

between the two players and their respective choices of actions.

Note that the MDP models of GMEC are initialized to reflect the state of the servers within the

edge site where the failure occurred. Thus, GMEC characterizes Local Recovery. Additionally,

GMEC only considers the probability associated with the reachability of the success state and

hence does not characterize resource contention modeled in terms of rewards. In order to

consider the effect of resource contention when re-initializing containers, we use a reward based

property using a two-fold local and global recovery described in the following sub-sections.

6.4.1 Local Recovery

The specification F when used in conjunction with the SMGGMEC in PRISM-Games, calculates

the maximum probability of satisfying the Temporal Logic Property F (success). When the

probability of satisfaction is 1, the fault recovery procedure can generate strategies to ensure

successful re-initialization of all the containers which were allocated to the faulty server within

τ discrete time-steps. The strategy generated by PRISM-Games with the property Φ1 only

generates strategies that maximize the value of the probability of satisfaction of Φ1. The

property Φ1, however, does not take into consideration the cumulative reward obtained by such

strategies. Since in our formulation, we model the container-server bindings along with the

users availing of the services of the containers by utilizing the rewards associated with each

state, we use a second property Φ2 to generate strategies that maximize the cumulative reward

obtained from such strategies. The property Φ2 in rPATL is specified below.

Φ2 = 〈〈recovery − process〉〉R{max=?}[F (success)]
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Initialize MDPs
Initialize Recovery Time Steps τ

ctime = ctime - 1

if ctime == 0

update Container Deployments

ctime = next container initialization time

τ = τ − 1

update server failures with failure probability

if newfailure == true

ctime = time-steps required for container

update server failures

No

Yes

Yes, Re-initialize

No

Yes, Re-initialize

On Detection of Initial Failure

if
morecontainers ==

true

Mfault−recovery = success

No

Yes

τ = τ − 1

if newfailure == true
No

Yes

Figure 6.16: Flowchart for Local Recovery Process

The property Φ2 is identical to property Φ1 with the exception of the PRISM Reward operator

R being utilized in place of the P operator. When the resulting value of property Φ1 is 1, the

strategy generated with property Φ2 is utilized to re-initialize the containers within the edge site.

However, when the probability of satisfaction lies in the Real interval [0, 1), denoting inclusive

of 0 but exclusive of 1, there is a probability that all containers cannot be re-initialized within

the desired recovery time τ , either due to possibility of server failures or inadequate memory

availability. In such scenarios, we use the global recovery procedure which we discuss next.

6.4.2 Global Recovery

We design a heuristic approach to drive the global recovery strategy owing to its large scale

nature. The global recovery procedure first determines the containers which are to be re-

initialized, depending on the outcome of the local recovery procedure. If the local recovery
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Algorithm 8: Fault-Recovery Strategy Synthesis

1 Initialize GMEC for Ej
2 Calculate Φ1 = 〈〈recovery − process〉〉P{max=?}[F (success)]
3 if Pr(Φ1) == 1 then
4 Derive Strategy with Φ2 = 〈〈recovery − process〉〉R{max=?}[F (success)]
5 Execute Recovery Strategy derived with Φ2 . Local Recovery

6 else
7 Crecover ← Set of Containers to be recovered from the Faulty Server
8 Srecover ← Set of Edge Servers in χ-hop neighbourhood of Ej . Global Recovery
9 cid ← [1...|Crecover|] . cid can take values in range 1 to |Crecover|

10 sid ← [1...|Srecover|] . sid can take values in range 1 to |Srecover|
11 sort Srecover in ascending order of Probability of Failures
12 while containers left to be recovered do
13 re-initialize cid at sid . re-initialize with prioritized failure probability
14 cid ← (cid + 1)
15 sid ← (sid + 1) % |Srecover|

procedure determines it can successfully re-initialize the κ top-priority containers, only the

remaining containers are involved in the global recovery process. On the other hand, if the local

recovery process ascertains that the probability of a successful recovery within τ for the κ top-

priority applications is less than 1, all containers associated with the faulty servers including

the κ top-priority containers are involved in the global recovery. Algorithm 8 describes the

global recovery process. The global recovery procedure determines all available servers within

a χ-hop neighbourhood of the faulty MEC server (Line 8) and sorts them in ascending order of

probability of failure (Line 11). A server identifier variable, sid, indicates which server is to be

utilized to re-initialize the current container (cid). Upon successful initialization of the current

container, sid is incremented by 1 to denote the next server where the next container is to be

re-initialized. Thus, re-initialization is carried out in a round-robin manner to evenly distribute

the load amongst the various servers (Lines 12 - 16).

Lemma 6.1. Algorithm 8 requires O(|Srecover|log|Srecover|) time to sort the χ-hop neighbourhood

edge servers in their ascending order of failure probability. Further, it iterates over all containers

in O(|Crecover|) time to re-allocate them to Srecover. �

Note that the global recovery strategy spans multiple edge sites. As a consequence, at any

discrete time step, there is a possibility of simultaneous failures at different edge sites. In such

scenarios, triggering the global recovery algorithm simultaneously can lead to inconsistencies.

To ensure synchronization, the global recovery algorithm proceeds if and only if no other global

recovery procedure is active within the χ-hop neighbourhood. If another recovery is in progress,

the global recovery algorithm waits until the earlier recovery process has been completed. Note
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that such a mechanism is not required for the local recovery procedure since it acts only within

an edge site and we assume edge sites do not have common servers.

6.5 Results and Discussion

We perform extensive simulated experiments on large-scale scenarios to show the efficacy of

our approach, and compare its performance against a) failure-aware approach [16] and b)

performance-aware approach [118]. All experiments are conducted on a machine with an In-

tel Xeon E5-1650 Processor with 128GB of RAM. In the following, we describe in detail our

experimental setup and the results obtained.

6.5.1 Experimental Setup

We use the ‘Existing Commercial Wireless Telecommunication Services Facilities in the San

Francisco’ dataset [98] as earlier. Within each edge site, we randomly generate the number

of edge servers between 1 and 4. We assign access latencies between edge sites via the back-

bone network randomly in proportion to the distance between the edge sites. The ‘Existing

Commercial Wireless Telecommunication Services Facilities in San Francisco’ dataset does not

contain any availability information to denote the associated probability of failures. We use the

PlanetLab dataset as described in Section 2.6.5 to simulate server failures. The value of ν is

set to 1 second duration, simulated with these probabilities. We perform simulation with San

Francisco taxi dataset. We consider 12 representative applications in our setup to character-

ize the impact of number of applications. Each taxi is associated with a randomly generated

application number out of the 12 available applications. Each new coordinate update of taxis

from the dataset is treated as the discrete time-step simulated as µ in intervals of 1 minute.

We consider a recovery time of τ = 60 discrete time-steps corresponding to 60 ν discrete time-

steps. We set the timeout for local recovery procedure to 10 seconds. For each application, we

consider container memory usage and initialization times from the DeathStarBench benchmark

suite by randomly selecting a container. We consider discretized memory usage in intervals of

50MB. We fetch the corresponding containers from Docker Hub [49] initially. We then note

the starting times of each containerized microservice by invoking a fresh Docker container start

after stopping all running containers. We use these times as the deployment time of containers.

To simulate the effect of resource contention, we select 4 random applications out of the 12. We

then assign to each of the 4 applications a different application which when deployed together

leads to high resource contention.
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Servers
κ

Containers
States

Time for
Model

Construction
(in seconds)

Time for
Property F
(in seconds)

Time for
Property H
(in seconds)

3 2 413 0.057 0.025 0.062
3 1 127 0.034 0.016 0.008
3 4 253 0.046 0.019 0.034
3 5 529 0.086 0.026 0.052
4 1 15400 0.565 0.277 0.385
4 3 19816 0.647 0.299 2.051
4 4 19816 0.641 0.363 2.152
4 5 17206 0.396 0.259 0.632
4 6 60867 1.901 1.550 5.026
4 7 NA Timeout Timeout Timeout

Table 6.2: Model Sizes, Construction Time and Verification Times in PRISM-Games

6.5.2 Model Analysis

A PRISM model generated at runtime on the event of a failure is specified in Appendix B. We

study the impact of various parameters such as the number of prioritized real-time application

containers κ and the number of edge servers in the edge site on the probability of reaching

the “success” state. Figure 6.17 depicts the probabilities when κ is varied from 1 and 5 with

the number of servers taken as four. As can be inferred from the figure, a lower number of

containers corresponds to a higher probability of success. It is interesting to note that for

all scenarios considered in Figure 6.17, the probability of reaching the “success” state reaches

near 1 when τ = 50s. This suggests the existence of a threshold value of τ beyond which for

a given container and server configuration, successful local recovery will always be possible.

Additionally, we vary the other parameters, i.e., memory requirements of the containers, their

respective initialization times, and available server capacities to characterize their impact on

the recovery process. Figure 6.18 depicts four scenarios where κ is fixed at four, whilst server

resources, as well as their probabilities of failures are varied. The probability of successful

recovery varies in each such scenario. Thus, each parameter in our model uniquely characterizes

the probability of the local recovery procedure entering the “success” state.

Table 6.2 lists PRISM-Games model characteristics of some of the randomly generated scenarios

from our experimental setup. With an increase in the number of servers, the number of states

increases. Even with a large number of states, PRISM-Games is able to both construct the

model and synthesize strategies quickly for use in an online on-demand manner. However, while

the local recovery strategy can ensure probabilistic guarantees, we found via our experiments

that it can only generate such results in an online on-demand manner when κ <= 6, beyond

which PRISM-Games incurs a timeout thereby justifying our two-fold strategy. We thus use a

value of κ = 6 for our experiments. Note that when the number of containers is fixed at 4 but the
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Figure 6.17: Probability of Successful Recovery by Varying Number of Containers κ

Figure 6.18: Probability of Successful Recovery by Varying Container Memory Require-
ments and initialization Times

number of containers to be recovered are 3 and 4 respectively, the number of states is identical.

Such scenarios occur since the model is also characterized by the number of available servers

and their respective capacities. Thus each parameter in our model uniquely characterizes the

number of states.

6.5.3 Simulation Results and Discussion

We vary the total number of users as 150, 250, and 350 while keeping the number of servers

associated with each edge site and their memory capacities constant. We analyze the results

considering the average latencies within a particular edge site since our approach is distributed

and replicated within each edge site. In Figure 6.19, we plot the additional latency incurred by

users due to the Failure Aware Strategy, the Performance Aware Strategy, and our Stochastic

Game based formulation. With an increase in the number of faults, the additional latency

incurred by all three strategies increases. Such scenarios occur since an increase in the number of
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Figure 6.19: Additional Latency Incurred with Variable Number of Users and Containers
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faults results in higher resource contention among the deployed containers at non-faulty servers.

However, with an increase in the number of users, there is no strict increasing/decreasing pattern

as observed in Figures 6.19a - 6.19c. Such scenarios conform to our analytical model analysis

in Section 6.5.2, wherein we vary the different parameters associated with our model depicted

in Figure 6.18. Further, in order to investigate the impact of the number of containers on the

recovery process, we vary the number of containers as 3, 4 and 5, while keeping the number of

users fixed at 250 and the number of servers associated with each edge site and their memory

capacities also constant. Figures 6.19d - 6.19f depict the additional latencies incurred in such

scenarios. With an increase in the number of containers, the additional latency increases in all

such scenarios in conformance with our analytical model analysis wherein we vary the number

of containers as depicted in Figure 6.17. Our Stochastic Game based formulation incurs lower

latencies in all such scenarios depicting the effectiveness of our approach. It is interesting to

note that the Performance Aware Strategy being agnostic of failures re-initializes containers to

enhance load balancing and thereby incurs the highest latencies when subsequent failures do

indeed occur. Re-initialization of containers as a result of faults thus has a much more critical

impact on additional user perceivable latencies.

6.6 Conclusion

In this chapter, we use formal methods to derive a distributed fault-recovery synthesis strategy

for MEC. We model the fault-recovery strategy synthesis problem using a Stochastic Multiplayer

Game as a composition of MDPs. Further, we demonstrate how to encode failure recovery

objectives in rPATL. We use a combination of local recovery with probabilistic guarantees aided

by a heuristic global recovery to drive the failure-recovery process. Experiments on benchmarks

demonstrate the effectiveness of our approach. In this chapter and the preceding three chapters,

we study the design of MEC policies. In the next chapter, we propose a verification framework

to quantitatively characterize the performance of an MEC policy.



Chapter 7

Modeling and Verification of Service

Allocation Policies

7.1 Introduction

While the earlier chapters deal with policy design, the main subject of this chapter is policy

modeling and verification. In recent years, several service allocation policies taking into con-

sideration different scenarios and optimization metrics have been proposed by several authors

in literature. A key issue with service allocation policies is that they do not inherently ensure

any quantitative guarantees on the performance metrics, e.g. service request waiting times to

be always within desired requirements. Additionally, the consideration of MEC server failures

has received much less attention in performance analysis of such allocation policies. Providing

performance guarantees is a complex task due to: i) the large configuration space of the user-

request-server bindings that a policy can adhere to; ii) the stochasticity of user mobility and

This work is published as:

� Kaustabha Ray and Ansuman Banerjee. “Modeling and Verification of Service Allocation Policies for
Multi-Access Edge Computing Using Probabilistic Model Checking”, In IEEE Transactions on Network
and Service Management 18, no. 3 (2021): 3400-3414.

� Kaustabha Ray and Ansuman Banerjee. “Trace-driven Modeling and Verification of a Mobility-Aware
Service Allocation and Migration Policy for Mobile Edge Computing”, In Proceedings of IEEE Interna-
tional Conference on Web Services, pp. 310-317, 2020.
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service invocation request patterns; iii) the stochasticity of MEC server failures; and iv) the un-

predictability of latencies incurred by tasks executed on edge servers. Traditional performance

based modeling strategies either develop analytical models to derive performance bounds [123]

and mathematically derive analytical bounds on each performance metric characteristic under

consideration or resort to simulation resulting in inadequate representation of non-deterministic

behaviour. In contrast, the motivation of this work is to design a formal framework to auto-

matically analyze service allocation policies quantitatively without the requirement of analyzing

and deriving bounds on each performance characteristic analytically.

To address quantitative verification of allocation policies, we develop a framework to gener-

ate probabilistic models of MEC policies. We use a trace-driven approach to generate models

where the detailed implementation of the policy is unknown. We learn probabilistic models from

MEC system logs where only the sequence of events denoting user service invocations, their

allocations to MEC servers, request time-outs, MEC server availability status and so forth are

recorded. A trace-driven modeling allows characterization of allocation policies without requir-

ing detailed analytical modeling of the design of each policy. Additionally, to analyze the impact

of MEC server failures, we model the interactions between the different MEC components as a

Turn-Based Stochastic Multiplayer Game also constructed from MEC system logs. Further, to

quantitatively analyze allocation policies against performance requirements, we use Probabilis-

tic Model Checking to derive quantitative guarantees on systems with probabilistic behaviour.

We encode performance properties as quantitative statements in derivatives of temporal logic,

and a probabilistic model checker is employed to verify the same on the model. Property

analysis using Probabilistic Model Checking systematically explores all possible executions of

the model to derive quantitative bounds on the constructed model without the requirement of

having to manually derive individual analytical bounds on each property [38, 93].

We demonstrate how DTMCs can be utilized to characterize classical allocation policies which

do not adaptively change by interacting with the environment. Unlike their classical coun-

terparts, Reinforcement Learning based policies involve interactions with the environment in

the form of a reward signal characterizing the effect of service request allocations generated by

the policy. As opposed to classical allocation policies, the task of analyzing these RL based

policies involves characterizing each decision taken by the policy, quantifying each decision’s

effectiveness. In this chapter, we demonstrate how a trace-driven approach can be used to

characterize such policies. Additionally, to characterize the impact of MEC server failures on

service allocation policies, we propose a novel trace driven game model to derive insights into

the workings of such policies. The main highlights of this chapter are:
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� We formally define and model classical allocation and Reinforcement Learning based

allocation policies.

� We model the components of the MEC environment and represent the interaction between

these components as a Stochastic Multi-Player Game.

� We describe several performance metrics and specify how scenarios can be encoded into

formal properties to quantitatively verify such metrics.

� We present experiments on some popular allocation policies of recent MEC literature on

benchmark datasets.

The rest of this chapter is organized as follows. Section 7.2 presents a motivating example.

Section 7.3 discusses the formal modeling of policies and methods for verifying properties on

such models. Section 7.4 details the obtained results. Section 7.5 concludes the chapter.

7.2 Motivating Example

E1

m1 (xm1, ym1)

m2 (xm2, ym2)

m3 (xm3, ym3)
m4 (xm4, ym4)

rE1

rE2

rE3

zone1

zone2

zone3

zone23

zone12

E2 E3ES1

ES2
ES3

Figure 7.1: Representative MEC Server Allocation Scenario

We illustrate the problem context on a representative mobility-aware allocation policy with a

simple example for ease of explanation. Consider an MEC system comprising three edge sites

E1, E2, and E3 associated with edge servers ES1, ES2, and ES3 respectively as shown in Figure

7.1. Unlike in the previous chapters, for sake of simplicity of illustration, we consider that

each edge site is associated with a single edge server as considered in recent allocation policies

[6, 7, 8, 47, 124]. Each edge site is represented by its latitude and longitude coordinates. For

example, the coordinate of edge site E1 is (xE1 , yE1). Further, the edge sites E1, E2, and E3

are associated with service radii rE1 , rE2 and rE3 respectively representing their coverage area
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as considered earlier. A gaming service provider deploys its services identically across all such

MEC servers. Each MEC server has a capacity associated with it, denoting the number of user

service requests it can provide. An implicit assumption to such a capacity model is that the

gaming service provider can estimate the resource requirements for an invocation of its gaming

service. Hence each service request can be assumed to require identical resource requirements

with minor runtime deviations [6]. Each edge site caters to service requests from devices within

a specific radius termed as the service zone of the server. Service zones can be overlapping, i.e.

within such zones, a service request from a particular user can be allocated to one of the servers

covering that particular service zone. In Figure 7.1, zone1 denotes the area under the coverage

area of server ES1 alone. Similarly, zone12 denotes the area under the overlapping coverage

area of servers ES1 and ES2. The service requests from devices present in the overlapping

service zones of ES1 and ES2, i.e., zone12 can be allocated to either ES1 or ES2. Consider

the scenario shown in Figure 7.1. Device m1 can only be allocated to server ES1, m2 can be

allocated to either server ES1 or ES2 while m3 and m4 can be allocated to servers ES2 and

ES3 respectively.

Let us assume each server has a capacity of simultaneously serving 3 gaming service invocations.

Additionally, service requests from devices in overlapping zones allocated to one of the applicable

servers can be migrated to other applicable servers in the same overlapping zones. The example

in Figure 7.1 comprises 4 mobile devices, m1, m2, m3 and m4. Assume m1 follows a trajectory

as indicated by the dashed curved arrow in Figure 7.1 while m2 and m3 remain static. The

representative policy, being mobility-aware, assigns the requests from m1 to server ES1 and

requests from m2 and m3 to ES2. Service requests from m1 can only be allocated to ES1 when

m1 is in zone1. However, once m1 moves into the zone12, the request can be allocated to either

server. The request from m1 which was allocated to ES1 is migrated to ES2 considering the

trajectory of m1’s movement towards the zone serviced exclusively by ES2. In such a scenario,

the requests from m1, m2 and m3 are allocated to server ES2. In such a system state, consider

a device m4, following a trajectory indicated by the solid curved arrow in Figure 7.1, invokes

the gaming service after reaching the zone zone2 exclusively served by ES2. The invocation

request from m4 can no longer be accepted immediately since server ES2 has already reached

its capacity. However, had m1 been continued to be served from ES1, the request from m4

could have been onboarded. It may be noted that for a different arrival pattern and a different

representative policy, this may not have served the intended purpose as well.

Given an allocation policy, determining its suitability for an unknown mobility pattern and

requesting distribution and verifying whether it meets the desired performance metrics is the

problem we attempt to address in this work. While for the simple scenario at hand in Figure

7.1, the request-server binding configurations are limited, in a realistic scenario, there exists
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a myriad of service request invocation patterns and bindings. Additionally, server failures

can have a critical impact on such bindings. Thus, to systematically model such policies,

we formulate a trace-driven framework to model and analyze its conformance to performance

metrics. In the following, we discuss in detail the formal modeling of policies and quantitative

verification of performance metrics.

7.3 Modeling and Verification of Allocation Policies

In this section, we present our formal model of allocation policies and representative met-

rics of performance characteristics. Before we present the formalism, we discuss the con-

text of an allocation policy. As earlier, in a particular area, there are m MEC servers,

ES = {ES1, ES2, . . . ESm}. Each MEC server sj is represented by its latitude and longi-

tude coordinates and has a service radius rj associated with it. Cj denotes the maximum

number of service invocations the j-th MEC server can simultaneously cater to. At any point

of time t, U(t) = {u1, u2, u3, . . .} specifies the list of users who invoke the service in the area.

The location of each user ui ∈ U(t) is specified by its latitude and longitude coordinates at

timepoint t. A user ui ∈ U(t) can only avail of the services of a server ESj ∈ ES if it is located

within the area spanned by the service radius of the server. The set of servers and the set of

users form the environment. We now formally define an allocation policy:

Definition 7.1 [Allocation Policy:]

An allocation policy at any point of time, t, is a mapping π(t) : U(t)→ ES.

The policy can be considered as an agent that starts from an initial configuration, and at

each point of time t, accumulates requests from individual devices. Based on the proximity of

servers and the direction of movement, the agent produces the allocation π(t). In the following

subsections, we discuss two modeling strategies depending on the nature of a policy’s interaction

with the environment. Subsequently, we formally model the impact of MEC server failures on

such policies.

7.3.1 Classical Allocation Policies

We refer to classical allocation policies as those in which the agent’s interaction with the envi-

ronment is limited to receiving user requests and executing user-server allocation bindings. In

this section, we model such classical policies as a DTMC, described in the following discussion.
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Representation of Policy DTMC: Consider an MEC system comprising a set of devices and

a set of MEC servers. Since the locations of the servers remain fixed, these can be specified

in terms of a set of fixed discrete coordinates. We discretize the set of possible locations of

a device into several zones as follows: we create a new zone for each area where requests are

provisioned by a single MEC server, additionally, we create a new zone for each area where

requests can be provisioned by multiple MEC servers.

Example 7.3.1. We create 5 zones for the example in Figure 7.1. Henceforth, we use the

abbreviation z1 to denote zone1 and so forth. z1 refers to the area under the service control of

server ES1 alone, z12 refers to the area under the service control of both servers ES1 and ES2

and z2 refers to the area under the service control of ES2 alone. Similarly, z3 and z23 are under

control of servers ES3 and ES2, ES3 respectively. �
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Figure 7.2: Representation of Policy DTMC

State Representation of DTMC: Each state of the DTMC represents the states of the devices and

the representative zones of the devices where they are located as represented by the policy. The

states are represented as bit vectors where the bits correspond to Boolean Atomic Propositions

representing the states of the devices as users move and invoke service requests, and the policy

agent as it executes user-server bindings.

Transition Representation of DTMC: Transitions occur when the state of a device changes and

are represented with probabilities from one state to another. Such a state change for a device

can occur when a device invokes a service request or when a request is bound to a server or when

a request times out. From a particular state, the policy can reach multiple successor states.

Figure 7.2 depicts scenarios involving multiple successor states. From state s0, representing all

current idle devices, successor states would denote all possible service request enumerations.

Idle devices and service requests are denoted by i and r respectively. Similarly, from state

s1, where both devices m1 and m2 invoke service requests, successor states denote all possible

user-server bindings. For a request-server binding, there are multiple possibilities in zones

which are under the control area of multiple servers. For example, in s2, m1 and m2’s requests
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have been allocated to server ES1 represented by gES1 while in s4, m1 and m2’s bindings are

(ES1, ES2) respectively denoted by gES1 and gES2 respectively. Transitions represent probability

distributions, hence, the sum of outgoing probabilities from one state to all successor states is

always 1. Thus, for each state,
∑n

i=1 pi = 1. The labelling function is a mapping from the bits to

the state of the device which each bit represents. The transition probabilities are thus utilized to

model both mobility of users across service zones as well as service request invocations and their

resulting user-server bindings. Note that the transition probabilities in different service zones

can follow different distributions.
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Figure 7.3: DTMC Model of a Representative Policy

Example 7.3.2. We use a trace driven approach to learn the DTMC from logs captured from

policy simulations. Figure 7.3 shows a representative example construction on the example in

Figure 7.1. Evidently, the total configuration space comprises more states than what is captured

by the trace driven DTMC. The rationale behind a reduced design is that only the situations

which occur in the logs are captured in the DTMC while scenarios which do not occur in the

simulation of the policy are absent. State s0 represents the initial configuration of the system.

Initially, m1, m2, m3 and m4 are in zones z1, z12, z2 and z3 respectively. Additionally, all the

devices are idle with none of them having invoked any service request. This is represented by

i in Figure 7.3. Thus, in each state, all true APs are shown in the DTMC while all false APs

have been excluded for brevity which are nonetheless present. For example, in state s0, all
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Algorithm 9: Generate DTMC Representation

Input : Log File of Device Induced Configurations
Output: Device Induced Policy DTMC Model

1 C ← Time-annotated Configurations in Log File
2 UC ← Unique Configurations ∈ C . UC is a vector where NULL represents the

configurations are not Unique
3 S ← [1 ... Number of Unique Configurations C]
4 D ← NULL . List of Vectors of Each State

5 d← |⋃|C|i=1 UC[i]| . Number of bits for each state
6 map← NULL . Map of All Bits to Device State
7 k ← 0
8 . Compute State Vectors
9 foreach u ∈ UC do

10 foreach b ∈ u do
11 if b 6∈ map then
12 map[b]← k
13 k = k + 1

14 foreach s ∈ S do
15 v ← initialize a vector of d bits set to 0
16 foreach b ∈ UC[s] do
17 Set map[b] bit to 1 in v
18 D.append(v)

19 . Compute Transition Probabilities
20 foreach c ∈ C do
21 ind← indices of all occurrences of c in C
22 indsuccessor ← indices of successor states of ind
23 nsuccessor ← |indsuccessor|
24 foreach s ∈ indsuccessor do
25 if transition from c to s is not defined then
26 nevent← |occurrences of c to s|
27 p← nevent/nsuccessor
28 add transition from c to s with probability p

false APs corresponding to states s1 to s12 are also present. In s0, m1 invokes a service while

the other devices remain idle, as depicted by the transition from s0 to s1. The only change in

the APs for s1 is from i to r for m1 representing an invocation. Such a request is bound to

server ES1 represented by state s2. Note that there are no other choices since m1 is located

in the zone exclusively served by ES1. Additionally, consider a scenario in the log files where

m2 and m3 both make service requests simultaneously with the request from m1 still active,

denoted by state s3. Request-Server bindings for such invocations are depicted subsequently

by s4 and s9. In s9, the policy, taking the trajectory of m1 into account, migrates m1’s service

binding from server ES1 to server ES2 depicted by state s12. In such a state, an invocation
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from m4 in z2 keeps waiting since the capacity of ES2 has already been reached, denoted by

the self transition to state s12. The request eventually times out, denoted by s11. The device

re-initiates the service request denoted by the immediate transitions to s10 and eventually to

s12 in the next two discrete time steps. It may be noted that self transitions are absent in such

cases. The transition probabilities are thus probability distributions over each state’s successor

states as observed from the traces. All other scenarios occur with probability 0 in the DTMC

model since they do not occur in the simulation logs and are not shown explicitly. For example,

in s3, the simultaneous requests from m2 and m3 were not granted simultaneously by any server

and is absent in the log files. Hence a transition from s3 to s9 which would have depicted such

a state transition has probability 0. �

Algorithm 9 outlines the DTMC construction process. Lines 9-18 of the algorithm calculate the

bit vector representation of each state. The algorithm computes the number of bits necessary

by finding the unique configurations from the trace and uses a Hash Table to produce the

vector by setting appropriate bits to 1. Lines 20-28 compute the transition probabilities for

each state by calculating frequency distributions of the respective successor states. The DTMC

constructed is device induced since the states of the DTMC evolve according to the behaviour

of the policy as captured in the simulation logs.

7.3.2 Reinforcement Learning Based Allocation Policies

Building on our formal model of classical service allocation policies, we now describe in the

following a trace-driven modeling of RL based allocation policies. In RL based allocation

policies, the agent, after observing the state of the environment, produces π(t), corresponding

to which it receives a reward. Reward signals quantify the agent’s choice of decisions to produce

the request-server bindings. We model RL based policies as Markov Decision Processes (MDPs)

which allow effective representation of the non-deterministic choices of actions that the policy

can undertake in each state, namely, allocating user requests and migration of already allocated

requests. Formally, RL based policies are thus modeled as MDPs described as below.

State Representation of MDP: We use the notion of zones as discussed in Section 7.3.1 to rep-

resent the locations of users and servers. States of the MDP are represented identically as bit

vectors similar to the state representation of the DTMC as discussed in Section 7.3.1. For each

state s ∈ S, NA denotes the number of allocated requests, NT denotes the number of timed-out

requests and NR denotes the number of total service requests. For example, in state s2, NA = 2,

NT = 0 and NR = 2. We utilize NA, NT and NR in our reward formulation as explained later.
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Figure 7.4: Representation of Policy MDP

Transition Representation of MDP: Transitions occur when either the state of a device changes

or the policy agent decides to allocate a pending request to a server or migrates an already

assigned request to a different server. Figure 7.4 depicts the state space involved in such a

representation. For a particular state, successor states include all possible scenarios consti-

tuting changes in the states of devices as well as all possible scenarios constituting the policy

agent’s actions pertaining to allocation and migration. From state s0, successor states deter-

mine all possible service request enumerations similar to the DTMC representation in Section

7.3.1. However, actions corresponding to the policy agent, i.e., allocation and migration are

represented non-deterministically as shown in state s6. Successor states from s6 denote all

possible allocation and migration actions of the policy in such a scenario. The successor states

corresponding to each action in a state form a probability distribution. Thus, for a particular
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state and for a particular action, the sum of outgoing probabilities is always 1. All possible

outgoing transitions for a particular state corresponding to allocation and migration actions are

represented by transitions enclosed by quarter circles in Figure 7.4. For example, from s6, the

quarter circle corresponding to migration includes transitions to s8 and s9 with probabilities

p7 and p8 respectively with sum as 1. Similarly, p9 and p10 correspond to the allocation action

represented by the quarter circle. This is unlike the DTMC representation where all outgoing

transitions from each state jointly represent a probability distribution. However, all outgoing

transitions from a state which represent state changes of devices form a single probability dis-

tribution. Thus, such transitions and their corresponding probability distributions are identical

to the DTMC representation. For example, the outgoing transitions from s1 represent device

state changes and thus a single probability distribution is represented with outgoing transitions

to s2 and s3 with p1 + p2 = 1.

Reward Representation of MDP: Each state si is additionally augmented with a reward Ri. The

policy agent is a sequential decision making entity, the results of which lead the environment

to states as represented in the MDP. Reward Ri thus serves as an indicator to the decisions

taken by the policy agent leading to the corresponding environment representation of si. The

labelling function is retained as in the DTMC representation.

Calculation of Rewards: All states are assigned a reward in the closed interval [−1, 1]. Addi-

tionally, only those states which are successor states representing the decisions taken by the

policy agent are assigned non-zero rewards. Reward for each state is computed as follows:

Rs =
NA −NT

NR

;∀s ∈ S,where NR > 0

Example 7.3.3. Figure 7.5 outlines a representative trace-driven MDP construction of an RL

based policy using the motivating example outlined in Figure 7.1. State s0 represents the

initial configuration of the system in which all the devices are idle. m1’s service invocation

is represented by the change in the bit vector from i to r from s0 to s1. This is identical to

the DTMC representation since only m1’s state change is involved. Since the request from m1

can only be allocated to A, only one successor state from s1 corresponding to the allocation

action is present with probability 1. However, when m2 and m3 simultaneously make service

requests, there are multiple servers which can provision m2’s service request. In the example,

we assume there were scenarios where the policy agent allocated m2’s request to server ES1 in

some scenarios and server ES2 in certain other scenarios. Note that such choices depend on

the policy under consideration. Our model incorporates a general framework to allow all such
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Algorithm 10: Generate MDP Representation

Input : Log File of Device Induced Configurations
Output: Device Induced Policy MDP Model

1 C ← Time-annotated Configurations in Log File
2 UC ← Unique Configurations ∈ C . UC is a vector where NULL represents the

configurations are not Unique
3 S ← [1 ... Number of Unique Configurations C]
4 D ← NULL . List of Vectors of Each State

5 d← |⋃|C|i=1 UC[i]| . Number of Bits for Each State
6 map← NULL . Map of All Bits to Device State
7 k ← 0
8 . Compute State Vectors
9 foreach u ∈ UC do

10 foreach b ∈ u do
11 if b 6∈ map then
12 map[b]← k
13 k = k + 1

14 foreach s ∈ S do
15 v ← initialize a vector of d bits set to 0
16 foreach b ∈ UC[s] do
17 Set map[b] bit to 1 in v
18 D.append(v)

19 . Compute Action Transition Probabilities
20 foreach c ∈ C do
21 ind← indices of all occurrences of c in C
22 Salloc ← successor states with allocation action
23 Smig ← successor states with migration action
24 Sdevice ← successor states with device action
25 . calculate probability distribution for alloc, mig and device actions according to

transition probability computation from Algorithm 9
26 foreach action ∈ alloc,mig, device do
27 fchoice ← frequencies of choices in Saction
28 add transitions with the probability distributions fchoice/|Saction| from c to

s ∈ Saction

possible representations. The allocation action from s3 is thus a probability distribution over

the choices of request-server bindings which are part of the logs. The probability distribution

is represented by the quarter circle corresponding to the allocation action representation in

Figure 7.4. In this specific instance, the transitions to s4 and s10 represent this probability

distribution. In the event that m1’s request which had already been bound to server ES1,

is migrated to server ES2 owing to m1’s trajectory, the outgoing transitions from s10 which

indicate migration action, form a probability distribution over the decision over whether to



Chapter 7. Modeling and Verification of Service Allocation Policies 169

m1, z1, i
m2, z12, i
m3, z2, i
m4, z3, i

m1, z1, r
m2, z12, i
m3, z2, i
m4, z3, i

m1, z1, gES1

m2, z12, i
m3, z2, i
m4, z3, i

m1, z1, gES1

m2, z12, r
m3, z2, r
m4, z3, i

s0 s1 s2 s3

0.25

0.75 1

0.5

0.5

al
lo
ca
ti
o
n

m1, z12, gES1

m2, z12, gES2

m3, z2, gES2

m4, z3, i

s10

0.75
allocation

m1, z12, gES2

m2, z12, gES2

m3, z2, gES2

m4, z3, i

s17

m1, z12, gES1

m2, z12, gES2

m3, z2, gES2

m4, z3, r

s9

m1, z12, gES2

m2, z12, gES2

m3, z2, gES2

m4, z3, gES3

s8

migration

m1, z12, gES1

m2, z12, gES2

m3, z2, gES2

m4, z3, gES3

s16

m1, z12, gES2

m2, z12, gES2

m3, z2, i
m4, zC , gES3

s15

m1, z12, gES2

m2, z12, gES2

m3, z2, i
m4, z23, i

s14

m1, z12, gES2

m2, z12, gES2

m3, z2, i
m4, z3, i

s7

allocation

1

0.6

0.3

0.25

0.75

0.65

0.350.2 0.80

0.40.25

0.65

0.6

0.750.35 0.6 0.3

0.8

0 0 1 0

1

1

0

1

10

00

m1, z12, gES1

m2, z12, gES1

m3, z2, gES2

m4, z3, i

s4 1

m2, z12, gES2

m3, z2, i
m4, z3, i

s5

m1, z12, gES1

0

m2, z12, i
m3, z2, i
m4, z3, i

s6

m1, z12, i

0

0.75

0.7

0.3

0.25

migration

0.25

m1, z12, gES2

m2, z12, gES2

m3, z2, gES2

m4, z2, r

s18
0.5

0.2
m2, z12, gES2

m3, z2, gES2

m4, z2, t

s19

m1, z12, gES2

0.25

m2, z12, gES2

m3, z2, gES2

m4, z2, i

s20

m1, z12, gES2

0

0.2 1

m1, z12, i
m2, z12, i
m3, z2, i
m4, z2, i

s13 0

0.150.6

0.85

m1, z12, i
m2, z12, gB
m3, z2, gB
m4, z2, r

s11 0

m1, z12, i
m2, z12, gES2

m3, z2, gES2

m4, z2, gES2

s12
1

0.2

1 1

al
lo
ca
ti
o
n

0.85

Figure 7.5: MDP Model of a Representative Policy

migrate the service request or to retain the original request-server binding. Thus, for migration

actions, self-loops denote decisions corresponding to migrations not being undertaken in that

state. Additionally, consider state s9, where m1, m2 and m3’s requests have been acknowledged

and m4 has additionally initiated a service request. In such a scenario, both migration and

allocation decisions are applicable. Successor states for the migration action correspond to the

probability distribution over outgoing transitions to s8 and s9. Similarly, successor states for the

allocation action correspond to the probability distribution to s8 and s16. All other scenarios

which do not occur in the logs, occur with probability 0 similar to the DTMC representation

and are not represented explicitly, thereby allowing a space efficient MDP. States s0 and s1

depict changes in states of the devices and hence are assigned a 0 reward value. In order to

calculate the rewards assigned to states resulting from the agent’s actions, consider s2 which

represents the resulting system state occurring out of the allocation action taken from s1. Since

there is only one device in s2 whose request has been successfully allocated by the agent, we

assign a reward of 1. Additionally, consider s19, where the request from m4 times out. A reward

of 0.5 is assigned to such a state accounting for the time out since NA = 3, NT = 1 and NR = 4.

Each reward value thus corresponds to Rs. �

Algorithm 10 outlines the MDP construction process. Lines 9-18 of the algorithm calculate

the bit vector representation of each state similar to the DTMC construction. Lines 20-28
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compute the transition probabilities for each state by calculating frequency distributions of

each of the actions. The actions are categorized into three sets Salloc, Smig and Sdevice corre-

sponding to allocation, migration and device actions respectively over which the probability

distributions are calculated and assigned. The MDP constructed is device induced similar to

the DTMC, however, each action of the policy is represented uniquely in the MDP allowing

for their individual characterization.

7.3.3 Modeling MEC Environment Interactions and Server Failures

The DTMC and MDP formulations characterize how an allocation policy behaves with respect

to user service requests and the corresponding server bindings. However, they do not incorporate

any information with respect to server failures or how the allocation policy performs in failure

scenarios. We model server failures and capture the interactions between the different entities

in the MEC environment as a Stochastic Multi-Player Game (SMG) as in Chapter 6. An SMG,

unlike DTMCs and MDPs, allows quantitative characterization of each player which can be

used to yield insights into allocation policy behaviour as we demonstrate in our experiments.

server-failure service-request server-latency
player 1 player 2 player 3

Figure 7.6: SMG Model of MEC environment

We model the MEC environment as an SMG comprising three players: server-failure, service-

request and server-latency as depicted in Figure 7.6. The game begins with the player server-

failure generating the number of active servers according to the probability distribution of

failures that can occur. It is then the turn of the player service-request to generate user service

request invocations. Finally, the control is transferred to player server-latency which generates

the latencies associated with the service requests generated by the player service-request in the

previous turn. The control is then transferred back to the player server-failure and the entire

cycle is repeated.

7.3.3.1 State Representation of SMG

The state space of the SMG G represents all possible resource-allocation scenarios which can

occur in an MEC scenario. Figure 7.7 depicts the representation of each state of the SMG

G. Each state is defined as a tuple 〈T , C,U ,L〉 representing Atomic Propositions (APs) corre-

sponding to player turn, a counter representing the number of non-faulty servers, user service



Chapter 7. Modeling and Verification of Service Allocation Policies 171

Turn
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1 2 3Counter
AP 4 m

Servers

1 2 3Users
AP 4 k Users
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AP 4 ltmax

Latency

Figure 7.7: State Space of SMG

request invocations and latency respectively. Unlike the earlier DTMC and MDP models, where

we considered Boolean APs, for SMGs, we do not consider Boolean APs for the SMG G. The

combination of each AP’s value represents a particular state’s identity. Such identities are de-

picted with a dark shaded box for each AP as shown in Figure 7.7. The APs we utilize in our

model comprise the following:

� TurnAP: Represents which player’s turn it is.

� Counter AP: Represents number of non-faulty servers.

� Users AP: Represents number of mobile device users’ service request invocations.

� Latency AP: Represents the average latency incurred as a result of the service allocation.

In the state diagram in Figure 7.7, for each player, we depict only a few APs for brevity.

For example, for player server-failure, we depict 4 integer valued APs and assume there are

a total of m possibilities denoted by the three dots within the Counter AP green rectangle

representation. This is identically represented for the other players and the corresponding APs.

While the Turn APs and the Counter APs represent integer turn and preference values, we

utilize a discretized interval representation, similar to Chapters 4 and 5, for Users APs and

Latency APs. We use interval to represent the value of the discretization interval. The actual
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values of APs are mapped to the discretized representation as follows: when the value of the

APs is in the interval [0 and interval), inclusive of 0 but exclusive of intervals, the value of

the AP is set to 1; when the value of the APs is between [interval, 2× interval), the value of

the AP is set to 2 and so forth. When the values of the APs exceed m × interval, the AP is

set to m. We use such a discretization approach to circumvent individual AP representation

which can lead to state space explosion.

7.3.3.2 Models for each SMG player

We model each player of the SMG as an MDP. Each MDP model is then composed to a singleton

unit representing the full state and transition space of the SMG.

Model of Server Failures

We utilize an MDP to model all possible server failures as a probability distribution. The player

server-failure is indicated by the value of the Turn AP T as 0. Server Failures are represented

by the Counter AP whose value ranges from 1 to m, where m is the maximum number of

MEC servers under consideration. The Counter AP denotes the number of non-faulty servers

at any timepoint t. Figure 7.8 depicts the MDP representation of server failure choices. The

probabilities p1, p2, . . . pm represent a probability distribution over the stochastic server failures

where p1 represents the probability that only one server is active while the remaining have

failed, p2 represents the probability that two servers are active while the remaining have failed

while pm represents the probability that there are no faulty servers. Note that p1, p2, . . . pm

represents a probability distribution. The value of the Counter AP C is updated according to

the probability distribution formally defined as follows:

m∑
i=1

pi = 1 (7.1)

The value of the Turn AP is set to 1 to indicate it is next the turn of the player service-request.

Model of User Service Request Invocations

The player service-request is indicated by the value of the Turn AP T as 1. Service invocations

from users of mobile devices are modeled identically to server failures. We utilize an MDP to

model all possible service request invocations of users as a probability distribution. However,
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Figure 7.8: MDP Model of Server Fail-
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we utilize the discrete intervalized representation for service requests instead of representing

each user individually. We use Uinterval to represent the value of the discretization interval of

users. The probabilities ps1, ps2, . . . psk represent a probability distribution over the number of

users where ps1 represents the probability that the number of users is between [0 and Uinterval),

ps2 represents the probability that the number of users is between [Uinterval and 2 × Uinterval)
while psk represents the probability that the number of users exceeds m× Uinterval. The value

of the User AP U is updated according to the probability distribution defined as follows:

k∑
i=1

psi = 1 (7.2)

where ps0, ps1, . . . psm represents the probabilities of all possible Service Request APs SR.

Figure 7.9 depicts the MDP model of the player service-request. The value of the Turn AP is

set to 2 to indicate it is next the turn of the player server-latency.

Model of MEC Server

The player server-latency is indicated by the value of the Turn AP T as 2. The MDP can

be viewed as comprising several blocks each guarded conditionally by the values of C and U
generated by the players server-failure and service-request in the previous turns. For each

unique value of C,U , we define a probability distribution plt1, plt2, . . . , pltmax over all possible

latency APs, i.e. L, defined as follows:

ltmax∑
i=0

plti = 1,∀ C,U (7.3)

Each action thus generates latencies based on a probability distribution over latency distribu-

tions for each possible value of P and SR. The probability distributions are thus conditionally

defined on the values of P and SR. Figure 7.10 depicts the MDP Model of User Service Invo-

cations for C = 1 and U = 1. Similarly, Figure 7.11 depicts the MDP Model of User Service

Invocations for C = 2 and U = 1. We utilize a probability distribution of latencies generated

to analyze the average-case behaviour of allocation policies [37]. The value of the Turn AP is

set to 0 to indicate the next round of the game.
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Figure 7.10: MDP Model of MEC Server for C = 1 and U = 1
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7.3.3.3 Model of Rewards

The probability distributions for each module described above is calculated from the logs avail-

able for the allocation policy. Thus, the above modules capture the characteristics of the laten-

cies generated with respect to user service request invocation patterns along with the failure

probabilities of the MEC servers. In order to quantitatively characterize how the policy behaves

in such scenarios, we associate with each state a reward value depending on the latency observed.

The reward values can be set independently according to the Latency AP to associate each la-

tency value with its own reward. The reward values are utilized to characterize the performance

of allocation policies in accordance with the distributions of failures, the service invocations

and the generated latencies.

7.3.4 Verification of Allocation Policies

In the following, we discuss some characterization of allocation policies and their representations

in PCTL and rPATL.

7.3.4.1 Request Waiting Time

When a user issues a service request, the request may be assigned to one of the servers right

away, or the device may have to wait until one of the servers has the resources needed for service

request allocation. Thus, a formula specifying a request waiting for a timeperiod T before being

allocated to a server can be represented in terms of the bounded until operator UT [37].

P≥0.8[(m1 ∧ r) U<=T (m1 ∧ gES1)]

The formula checks whether the probability that m1 remains in the waiting state (denoted by

the atomic proposition r) for the next T discrete time steps once it has invoked the service, is

greater than 0.8. The Until operator (U≤T ) is used to check for service request being granted

by the edge server ES1 within the T discrete steps.

7.3.4.2 Migration Policies

A migration-aware policy may choose to migrate a provisioned device’s request to another

server in the vicinity when a service request has been assigned to a server in a region that is

serviced by multiple MEC servers. The number of potential (request, allocation) pairs in such
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a scenario is exponential. Thus migrations can play a crucial role in determining the number

of user service requests which can be allocated to MEC servers. We can encode (user, server)

bindings migrating between servers by the following PCTL formula:

P≥0.8[(m1 ∧ z12 ∧ gES1) U<=T (m1 ∧ z12 ∧ gES2)]

The formula describes the scenario where m1’s request which had already been provisioned by

server ES1, is migrated to server ES2 due to its trajectory. The formula checks the probability

being greater than 0.8 within timeperiod T .

7.3.4.3 Properties of Rewards

In case of RL policies, each state is associated with a reward value. Thus, we encode properties

governing the behaviour of the policy with respect to reward evolution over discrete time steps.

R≥10[F≤12 gX ]

The formula makes use of the eventually F operator, which denotes that along all execution

paths, the specified condition is satisfied at some point of time in the execution. In this specific

example, the formula checks along all executions, the accumulated reward is greater than 10

within 12 time steps in states considering the grant atomic proposition (gX) where X refers to

any edge server.

7.3.4.4 Properties of SMG

For the SMG, we consider properties for the player service-request since we are interested in

analyzing the characterization of service request latencies for a service request distribution in

the presence of multiple failures. We utilize the rewards operator since the generated latency

is represented in the PRISM-Games rewards module.

〈〈service− request〉〉R≥10[F latency = ltmax]

The formula makes use of the eventually F operator, which checks if the cumulative value of

rewards for all states comprising a path is greater than 10. This is checked on all execution paths.

As discussed above, we encode the desirable performance requirements as PCTL properties

and check if a given model indeed honours them. In the following section, we discuss our

experimental findings.
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7.4 Results and Discussion

In this section, we first discuss our experimental setup and then analyze the results obtained.

7.4.1 Experiment Design

In this chapter as well, we use the ‘Existing Commercial Wireless Telecommunication Services

Facilities in the San Francisco’ dataset as edge site locations. Each edge site is associated with

a single edge server as considered in the policies we evaluate. We use the PlanetLab availability

dataset [101] to simulate server failures as described in Section 2.6.5. We perform simulation

with the San Francisco taxi dataset. Each new coordinate update of taxis from the dataset is

treated as a discrete time-step. Further, we use real world mobility and service request traces

from the Telefonica dataset [102] to simulate human movement. We normalize the coordinates

of the traces in the Telefonica dataset to conform to the server locations considered in the

experiment. For each user, the timepoints of invocation of the Google Maps service is treated

as a service request. We vary the number of users as 256, 512, 768 and 1024 [6]. We use

the Planet Lab dataset to allocate generated latencies to service requests [125]. From the

latency dataset, we assign a unique ID to the servers under consideration similar to the failure

simulation setup. The latencies for each user to each server is considered as this uniquely

assigned latency. The total latency is thus calculated as the weighted latency where the weight

considered is the number of users connected to the server. The allocation policy is always

running in the background, determining the request server binding and migrating users to other

servers as required, while taking into account user mobility. To analyze the impact of failures,

we consider a particular MEC server along with all the servers in its neighbourhood having

overlapping service zones. Such a setup allows effective characterization of both the impact

of neighbourhood server failures as well as service requests generated in overlapping service

zones. For a particular neighbourhood comprising m servers, we consider λ-Fault-Tolerance,

where λ < m. λ-Fault-Tolerance implies at most λ number of servers can fail simultaneously.

All experiments are carried out on a machine with an Intel Core i7 Processor with 16GB

RAM using Python 3.7 and PRISM as the Model Checking tool. PRISM models for the

Turn-Based SMG are presented in Appendix C. PRISM additionally supports calculating the

probability of a particular property as opposed to checking probability bounds which we utilize

in our experiments.
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7.4.2 Analysis and Discussion

We use two classical allocation policies, MobMig [6] and Greedy [7] on the experimental setup.

MobMig is a mobility aware allocation and migration strategy based on direction vectors. It

produces allocations based on a ranking based fitness function taking into consideration the

direction of movement and distance of users from MEC servers. Additionally, it uses migration

to reallocate requests away from overloaded servers. The greedy algorithm assigns requests to

the servers having the maximum resource availability. Further, we use two RL based policies,

Migration-Aware [62] and Delay-Aware [9] on the experimental setup to demonstrate that our

model can be used to compare performance metrics of service allocation policies in MEC systems

quantitatively. The Migration-Aware strategy is based on the model-free approach where the

reward function is based on the distance between the location of the user and the allocated

MEC server binding along with the migration cost of reallocating requests to different servers.

The Delay-Aware strategy is also a model-free approach where the reward function additionally

takes into account the computational cost associated with a task and the communication delay

between users and MEC servers. It also incorporates allocating service requests by MEC servers

to users which are not located within the vicinity of the coverage area by making use of a

backbone communication network. Additionally, it makes use of the backend network to connect

a cloud server to accommodate requests which could not be catered by MEC servers. As such,

for each granted service request, we normalize the estimated reward value from the logs between

0 and 1 to represent the distance between the nearest MEC server and the server where the

request is provisioned. Without such a normalization, each granted request would be assigned

a reward value 1 as in case of the previously examined policies. We consider the highest latency

from the PlanetLab dataset as the latency for accessing the backend cloud.

Figure 7.12 depicts the probability that a request from a user is not allocated to a server within

T timesteps as specified by the property in Section 7.3.4.1. As the number of users increase,

there is greater contention for access to server resources, thus the probability of the property

being satisfied decreases. Hence, as depicted by the model checking algorithm, the probabilities

decrease with the number of users. With increase in T , the probability values increase as there

are more requests being invoked with fixed number of servers. There is a greater variation in

probabilities with the greedy algorithm as compared to MobMig. Such a variation depicts the

algorithm’s sensitivity to increase in number of users when there is greater contention from

a high number of users. With the Delay-Aware algorithm, it is interesting to note that for

N = 512, the waiting time probabilities are higher than those for N = 768. Such a scenario

depicts the dependence of latencies with respect to user service request distribution patterns.
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(a) MobMig (b) Greedy

(c) Migration-RL (d) Delay-RL

Figure 7.12: Probabilities of Request Waiting Time

Figures 7.13 and 7.14 consider scenarios involving migration of service requests and depicts prob-

ability plots for the categories of properties outlined in Section 7.3.4.2. Differences between the

two request traffic patterns account for the behaviour of the policies with the different mobility

patterns. With increase in T , the probability of a migration increases. In case of vehicular

mobility patterns, MobMig experiences a sharper increase in probability of migrations while

eventually reaching a steady state value. The same is observed by varying the number of users

where the probability of service migrations remains high. However, with pedestrian mobility

patterns, the probability of service migrations does not increase as sharply. The fitness function

of MobMig, being based on direction vectors between the moving direction and the server loca-

tion can thus have an adverse affect on service migrations considering mobility patterns. This

is because vehicular traffic which accounts for rapid changes in directions on the basis of road

networks causes rapid fluctuations in fitness values involving direction vectors. A similar trend

is observed with the greedy algorithm. This motivates the design of fitness functions which

learn from and adapt to changing mobility and service invocation patterns. It is interesting

to note that the probabilities decrease initially after which there is an increase, as opposed to
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(a) MobMig (b) Greedy

(c) Migration-RL (d) Delay-RL

Figure 7.13: Probabilities of Migration for Vehicular Traffic Patterns

classical strategies where the probabilities remain nearly steady initially. Such a characteristic

depicts the adaptive nature of RL policies towards learning request-server bindings according

to the varied distributions of patterns in the service traffic dataset.

Figure 7.15 plots the reward values as discussed in Sections 7.3.4.3 and 7.3.4.4. With increasing

number of users, the reward witnesses a general increasing pattern since more requests are

invoked over time leading to a steady accumulation of reward values as inferred from Figure

7.15a. The Delay-Aware RL performs better than the Migration-Aware RL in all the scenarios

under consideration since the fitness function takes into consideration the computation cost as

well. We now analyze the impact of failures on the policies. Figure 7.15b depicts the obtained

rewards for the different policies with varying number of users. The reward values are lower

for MobMig and the greedy policy as compared to the two RL policies depicting their adaptive

nature even in the presence of failures. For certain scenarios the reward obtained for MobMig

is higher as compared to the greedy policy while for certain other scenarios the converse is true.

This occurs since the fitness function of MobMig only considers the direction of movement of
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(a) MobMig (b) Greedy

(c) Migration-RL (d) Delay-RL

Figure 7.14: Probabilities of Migration Properties for Pedestrian Traffic Patterns

users while ignoring the current availability status of servers. In scenarios when the server is

available, MobMig fares quite well, outperforming the greedy strategy.

Figure 7.15c depicts the rewards obtained for the different policies varying the number of

simultaneous failures. The rewards obtained for the RL based policies are significantly higher

as compared to MobMig and the greedy policy especially when the number of failures is 1, 2

or 3. The Delay-Aware RL performs the best among all the four policies. However, when the

number of failures is 4, the Delay-Aware RL performs similar to the Migration-Aware RL. The

rewards obtained for the RL based policies depict the robustness and the adaptive nature of

such policies to learn server allocations with an MEC fault distribution. However, an interesting

note is that when the number of failures changes from 3 to 4, the robust performance of the

RL based policies significantly drops off. This signifies a threshold, beyond which the RL based

policies suffer significantly in terms of latency due to the non-availability of resources.
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(c) Rewards for Multiple Failures in SMG

Figure 7.15: Reward Properties

7.5 Conclusion

In this chapter, we propose a novel trace driven learning framework to model MEC service allo-

cation policies. Such an approach allows us to characterize and derive performance guarantees

for properties of interest. As opposed to earlier work in modeling and characterization, we do

not individually model policies, rather propose a generalized model which can be generated

from execution logs of MEC allocation policies. Further, we use the logs to model interac-

tions between MEC system components which are utilized to analyze how allocation policies

behave in a failure sensitive MEC setup. We use real world traces to experimentally validate

our approach and demonstrate the working on several allocation policies. We believe that our

framework can guide an edge site designer in benchmarking and selecting the allocation policy

to deploy in an MEC environment.
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Conclusion and Future Work

This thesis mainly focuses on the design and verification of policies for MEC. We propose

several improvements in design of policies over traditional approaches. Additionally, we propose

a verification framework to model and quantitatively verify performance metrics of policies.

Further, we conduct extensive simulation experiments on real-world datasets to validate our

approaches. In conclusion, the following issues have been addressed here:

� In our first work, we consider service allocation for microservice based applications. We

consider scenarios where the correlation between the microservice workflow structure and

the geo-spatial distribution of microservice container deployments, can have a critical

impact on service allocation. We propose an abstraction refinement approach to provide

speed-ups over a naive ILP approach. We consider scenarios where the locations of users

are known and a latency estimate associated with each microservice is available.

� In our second work, we demonstrate the benefits of proactively prefetching microservices

considering the workflow structure of microservice based applications. We utilize an MDP

to model all possible proactive deployments induced by user-mobility and leverage Dyna-

Q learning to determine the rewards associated with each prefetching action. Further, we

design a heuristic to cater to resource constraints associated with each MEC server. In

this work, we consider applications with linear workflows.

� In our third work, we propose a Safe Reinforcement Learning based auto-scaling policy

agent that ensures load-balancing. We model the MEC environment using a Markov

Decision Process and encode application service specific latency requirements in LTL.

We leverage Safe Q-learning to determine the rewards associated with each auto-scaling

action to maximize the probability of satisfying the latency requirements.
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� In our fourth work, we consider the issue of fault tolerance. We propose a formal methods

driven local recovery policy for high-priority applications. We use Stochastic Multi-Player

Games as a formal model and specify objectives in temporal logic for verification with a

Probabilistic Model Checker. For lower priority applications, we resort to a global recovery

strategy by designing a greedy heuristic considering each server’s failure probability.

� In our final work, we develop a framework for verification of service allocation policies. We

propose a trace driven approach to derive a formal model of allocation policies and perform

quantitative verification to produce probabilistic guarantees on performance metrics. We

encode performance metrics of service allocation policies in temporal logic. Our framework

allows characterization of service allocation policies without the necessity of modeling

individual characteristics of service allocation policies.

In our work, we leverage on formal methods for the design and verification of MEC policies.

The use of formal techniques enables a unique standpoint of the MEC problems and allows

us to design and characterize policies with formal guarantees. The problems we study in this

thesis are state of the art in the MEC context. We believe that our methods and standpoint

will open up a lot of interesting avenues in MEC research going ahead. Some future directions

building on our work are outlined below.

� When designing service allocation policies we assume full-observability, i.e, the locations

of users and latency estimates are available apriori. In certain scenarios, full information

about the state of the MEC system may not be available, for example, the current resource

availability of all servers under consideration may not be available. In such scenarios, a

possible future direction is to formally model the MEC system using a Partially Observable

Markov Decision Process (POMDP) and utilize the model to synthesize allocation policies.

� While we demonstrate the benefits of proactively prefetching microservices to reduce user-

perceivable latencies, we only cater to applications restricted to linear workflows. We plan

to extend our approach to applications with graph based workflows while simultaneously

incorporating server capacity constraints into our formal model.

� Our auto-scaling formulation assumes that the data required for each application such

as models for machine learning, are co-located with the application at run-time and the

number of data instances are identically scaled with the applications. As future work, we

propose to design auto-scaling policies with segregated application and data instances in

scenarios where application and data instances are not necessarily co-located.
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� Finally, we plan to extend our trace-driven verification framework to analyze MEC re-

source allocation and computation offloading policies.

We believe that our work has immense potential in the MEC context especially in design and

performance characterization through the formal lens. We also believe that our research will

make inroads into large scale MEC policy design and analysis and pave the way for much wider

MEC deployments going forward.
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Proofs of Theorems

We now reproduce the proof of Theorem 5.1 for which we need the following definitions:

A.1 Memoryless Policy, Induced Markov Chain , Bot-

tom Strongly Connected Component and Expected

Return of a Path

Definition A.1 [MDP Policy:]

A policy π for an MDP M is a function π : S+ → Λ. A policy is memoryless if it only

depends on the current state, i.e. π(σ[: n]) = π(σ[n]) for any σ, and thus can be defined as

π : S → Λ. A Markov chain (MC) of an MDP M induced by a memoryless policy π is a

tuple Mπ = (S, Tπ, AP, L) where Tπ (s, s′) = T (s, π(s), s′) for all s, s′ ∈ S. A bottom strongly

connected component (BSCC) of an MC is a strongly connected component with no outgoing

transitions.
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Let R : S → R be a reward function of the MDP M . Then, for a discount factor γ ∈ (0, 1), the

K-step return (K ∈ N or K =∞) of a path σ from time t ∈ N is

Rett:K(σ) =
K∑
i=0

γiR(σ[t+ i]), Rett(σ) = lim
K→∞

Rett:K(σ)

Under a policy π, the value of a state s is defined as the expected return of a path − i.e.,

vπ(s) = Eπ [Rett(σ) | σ[t] = s]

for any fixed t ∈ N.

A.2 Proof of LTL satisfaction on an MDP

Henceforth, for simplicity, the product MDP M ′ is denoted by M = (S, T,AP, L,R,B) and the

superscript ′ is omitted for simplicity. Theorem 5.1 is restated as below.

Theorem A.2.1. For a given MDP M with B ⊆ S, the value function vπ for policy π and

discount factor 0 < γ < 1 satisfies limγ→1− v
π(s) = Prπ(s |= GF (B)) for all states s ∈ S, if

the return of a path is defined as

Rett(ρ) =
∞∑
i=0

RB(ρ[t+ i])
i−1∏
j=0

ΓB(ρ[t+ j]) (A.1)

where
∏−1

j=0 = 1, RB : S → [0, 1) and ΓB : S → (0, 1) are the reward and discount functions

defined as:

RB(s) =


1− γB′ s ∈ B

0 s′ /∈ B
,ΓB(s) =


γB s ∈ B

γ s /∈ B
(A.2)

and γB = γB(γ) is a function of γ such that limγ→1−
1−γ

1−γB(γ)
= 0 �
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Before proving Theorem A.2.1 some bounds are developed on Rett(σ).

Lemma A.2.1. For all paths and Rett(σ) from Equation A.2 it holds that

0 ≤ γRett+1(σ) ≤ Rett(σ) ≤ 1− γB + γBRett+1(σ) ≤ 1

Proof: Since there is no negative reward, Rett ≥ 0 holds. By the return definition, replacing

γ with 1 yields a larger or equal return, which constitutes the following upper bound on the

return: Rett(σ) ≤ 1− γbB ≤ 1, where b is the number of B states visited. Return Rett(σ) from

A.1 satisfies

Rett(σ) =

 1 + γB (Rett+1(σ)− 1) σ[t] ∈ B

γRett+1(σ) σ[t] /∈ B
(A.3)

From Rett(σ) ≤ 1 it follows that 1 + γB (Rett+1(σ)− 1) ≥ γRett+1(σ), which with (A.3) proves

the other inequalities. �

Lemma A.2.1 implies that replacing a prefix of a path with states belonging to B never decreases

the return of a path and similarly replacing with states that do not belong to B never increases

the return. The result is particularly useful for establishing the upper and lower bounds on the

value of a state.

The next lemma shows that under a policy, the values of states in the accepting BSCCs of the

induced Markov chain approach 1 in the limit; thus, is the key to proving Theorem A.2.1.

Lemma A.2.2. Let BSCC (Mπ) denote the set of all BSCCs of an induced Markov chain Mπ

and let Bπ denote the set of B states that belong to a BSCC of Mπ− i.e.

Bπ := {s | s ∈ B, s ∈ T, T ∈ BSCC (Mπ)}

Then, for any state s ∈ Bπ

lim
γ→1−

vγπ(s) = 1
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Proof. For any fixed t ∈ N, let Nt be the stopping time of first returning to the state s ∈ S

after leaving it at t

Nt = min{τ | σ[t+ τ ] = s, τ > 0}

Since under a policy π, the value of a state s is defined as the expected return of a path, i.e.,

vπ(s) = E[Rett(σ)|σ(t) = s], the following holds:

vγπ(s) = 1− γB + γBEπ [Rett+1(σ) | σ[t] = s]

= 1− γB + γBEπ [Rett+1:t+Nt−1(σ)

+

(
Nt−1∏
i=1

Γ(σ[t+ i])

)
·Rett+Nt(σ) | σ[t] = s

]

Since once a state s ∈ Bπ is visited, almost surely it is visited again. Using Rett(σ) ≥

γRett+1(σ), we obtain

vγπ(s) ≥ 1− γB + γBEπ
[
γNt−1Rett+Nt(σ) | σ[t] = s

]
≥ 1− γB + γBEπ

[
γNt−1 | σ[t] = s

]
vπ(s) (By Markov Property [126])

≥ 1− γB + γBγ
Eπ [Nt−1|σ[t]=s]vπ(s) (By Jensen Inequality [126])

≥ 1− γB + γBγ
nvπ(s)

where n ≥ 1 is a constant.

Now, since vγπ(s) ≥ 1− γB + γBγ
nvπ(s) as proved above, substituting:

vγπ(s) ≥ 1− γB
1− γBγn

≥ 1− γB
1− γB(1− n(1− γ))

=
1

1 + n 1−γ
1−γB

− n(1− γ)
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where the second ” ≥ ” holds by (1 − (1 − γ))n ≥ 1 − n(1 − γ) for γ ∈ (0, 1). Finally, since

vγπ(s) ≤ 1 by Lemma A.2.1 letting γ, γB → 1− under the condition limγ→1−
1−γ

1−γB(γ)
= 0 results

in limγ→1− v
γ
π(s) = 1 �

The proof of Theorem A.2.1 is now outlined below.

Proof of Theorem A.2.1. The expected return of a random path σ from a state s ∈ S is

determined by whether it visits the states B ⊆ S infinitely often:

vγπ(s) = Eπ[Rett(σ)|σ[t] = s, σ |= GF (B)]Prπ(s |= GF (B))

+ Eπ[Rett(σ)|σ[t] = s, σ 6|= GF (B)]Prπ(s |= GF (B))

(A.4)

for some fixed t ∈ N. let Mt be the stopping time of first reaching a state in Bπ after leaving s

at t

Mt = min {τ | σ[t+ τ ] ∈ Bπ, τ > 0}

where Bπ is defined as in Lemma A.2.2. Then, it holds that

Eπ[Rett(σ)|σ[t] = s, σ |= GF (B)] = Eπ[Rett(σ)|σ[t] = s, σ |= FBπ]

≥ Eπ[γMtRett+Mt |σ[t] = s, σ |= GF (B)]

≥ Eπ[γMt |σ[t] = s, σ |= GF (B)] vγπ,min(Bπ)

≥ γEπ [Mt|σ[t]=s,σ|=GF (B)] vγπ,min(Bπ)

(above inequalities hold due to Lemma A.2.1,

Markov property and Jensen’s inequality)

= γmvγπ,min(Bπ)

where vγπ,min (Bπ) = mins∈Bπ v
γ
π(s) and m is a constant. Here, the first equality holds because a

path σ |= GF (B) almost surely eventually enters an accepting BSCC, it eventually reaches a

state s ∈ Bπ almost surely. From Equation A.4:
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vγπ(s) ≥ γmvπ (Bπ) Prπ(s |= GF (B)) (A.5)

Similarly, let M ′
t be the stopping time of first reaching a rejecting BSCC of Mπ after leaving s

at t. Then

M ′
π = min{τ | σ[t+ τ ] ∈ T, T ∩B = ∅

T ∈ BSCC (Mπ) , τ > 0}

denoting the number of time steps before a rejecting BSCC is reached. Thus, from Lemma 2

and the Markov property

Eπ[Rett(σ)|σ[t] = s, σ 6|= GF (B)] ≤ Eπ[1− γM ′πB |σ[t] = s, σ 6|= GF (B)]

≤ 1− γEπ [M ′π |σ[t]=s,σ|=GF (B)]
B

= 1− γm′B

where m′ is also constant. From this upper bound and Equation A.4,

vγπ(s) ≤ Prπ(s |= GF (B)) + 1− γm′B Prπ(s |= GF (B)) (A.6)

Both the above upper bounds in Equation A.6 and the lower bound from Equation A.5 approach

the probability of satisfying the formula as the limit γ approaches 1 from below, thus concluding

the proof. �
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PRISM Models for Fault Recovery

This appendix details a PRISM implementation of the fault recovery SMG.

smg

//recovery time maximum number of steps

const int TM = 50;

//number of containers to recover

const int T = 5;

//goal boolean

global goal : bool init false;

//where the containers are deployed

global container1deploys2 : bool init false;

global container2deploys2 : bool init false;

global container3deploys2 : bool init false;
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global container4deploys2 : bool init false;

global container5deploys2 : bool init false;

global container1deploys3 : bool init false;

global container2deploys3 : bool init false;

global container3deploys3 : bool init false;

global container4deploys3 : bool init false;

global container5deploys3 : bool init false;

global container1deploys4 : bool init false;

global container2deploys4 : bool init false;

global container3deploys4 : bool init false;

global container4deploys4 : bool init false;

global container5deploys4 : bool init false;

//memory requirement of each container

const int memcontainer1 = 3;

const int memcontainer2 = 4;

const int memcontainer3 = 4;

const int memcontainer4 = 3;

const int memcontainer5 = 2;

//users associated with each container

const int c1u = 56;

const int c2u = 12;

const int c3u = 5;

const int c4u = 68;

const int c5u = 70;
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//maximum deployment time of a container

const int TMAX = 5;

//deployment time of each container

const int container1deploytime = 4;

const int container2deploytime = 3;

const int container3deploytime = 5;

const int container4deploytime = 2;

const int container5deploytime = 2;

//turn encodes the game turn based nature

global turn : [1..2] init 2;

//tick indicates the total recovery time

global tick : [-1..TM] init TM;

//trigger will be true

global timercontainer : [0..TMAX] init container1deploytime;

//server1 initialized with container

global requests1 : [1..T] init 1;

//server 2 initialized with capacity

global s2capacity : [0..20] init 20;

//server 3 initialized with capacity

global s3capacity : [0..20] init 20;

//server 3 initialized with capacity
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global s4capacity : [0..20] init 20;

//player for servers failure

player p1 env endplayer

//player for error recovery protocol

player p2 erp, [ndchoice2], [ndchoice3], [ndchoice4] endplayer

//module of server failures

// 1 only S1 has failed

// 2 - 1 and 2 have failed

// 3 - 1 and 3 have failed

module env

counter : [1..7] init 1;

changetrigger : bool init false;

//s1 error

[f1]turn = 1 & counter = 1 -> 0.85 :(counter’ = 1) & (turn’ = 2) +

0.05: (counter’ = 2) & (turn’ = 2) + 0.05 :(counter’ = 3) & (turn’ = 2) +

0.05 : (counter’ = 4) & (turn’ = 2);

//s1 and s2 error, choice remaining is only s3

[f2]turn = 1 & counter = 2 & changetrigger = false -> (counter’ = 2) & (turn’

= 2)

& (requests1’ = 1) & (changetrigger’ = true) & (s3capacity’ = 20)

& (container1deploys2’ = false) & (container2deploys2’ = false) &

(container3deploys2’ = false) & (container4deploys2’ = false) &

(container5deploys2’ = false)
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& (container1deploys3’ = false) & (container2deploys3’ = false) &

(container3deploys3’ = false) & (container4deploys3’ = false) &

(container5deploys3’ = false);

//s1 and s3 error, choice remaining is only s2

[f3]turn = 1 & counter = 3 & changetrigger = false -> (counter’ = 3) & (turn’

= 2)

& (requests1’ = 1) & (changetrigger’ = true) & (s2capacity’ = 20)

& (container1deploys2’ = false) & (container2deploys2’ = false) &

(container3deploys2’ = false) & (container4deploys2’ = false) &

(container5deploys2’ = false)

& (container1deploys3’ = false) & (container2deploys3’ = false) &

(container3deploys3’ = false) & (container4deploys3’ = false) &

(container5deploys3’ = false);

//s1 and s2 error, choice remaining is only s3

[f2]turn = 1 & counter = 2 & changetrigger = true -> (counter’ = 2) & (turn’ =

2);

//s1 and s3 error, choice remaining is only s4

[f3]turn = 1 & counter = 3 & changetrigger = true -> (counter’ = 3) & (turn’ =

2);

endmodule

module erp

//trigger : bool init true;

//when container has not yet been initialized, decrement counter value
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[]turn = 2 & timercontainer > 0 & requests1 != T -> (turn’ = 1) &

(timercontainer’ = timercontainer - 1) & (tick’ = tick - 1);

[]turn = 2 & requests1 = T & tick > -1 -> (goal’= true);

//erp turn and choice is 2, move from request to 2 when counter = 0 (trigger)

//for counter = 1 : following choices when s1 has failed and s2 and s3 are

active

//for container 1

[ndchoice2]turn = 2 & requests1 < T & (s2capacity - memcontainer1) > 0 &

(s3capacity - memcontainer1) > 0 & (s4capacity - memcontainer1) > 0 &

counter = 1 & requests1 = 1 & timercontainer = 0 ->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer1) &

(turn’ = 1) & (tick’ = tick - 1)

& (container1deploys2’ = true) & (timercontainer’ =

container2deploytime);

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer1) > 0 &

(s3capacity - memcontainer1) > 0 & (s4capacity - memcontainer1) > 0 &

counter = 1 & requests1 = 1 & timercontainer = 0 ->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer1) &

(turn’ = 1) & (tick’ = tick - 1)

& (container1deploys3’ = true) & (timercontainer’ =

container2deploytime);

[ndchoice4]turn = 2 & requests1 < T & (s2capacity - memcontainer1) > 0 &

(s3capacity - memcontainer1) > 0 & (s4capacity - memcontainer1) > 0 &

counter = 1 & requests1 = 1 & timercontainer = 0 ->
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(requests1’ = requests1 + 1) & (s4capacity’ = s4capacity - memcontainer1) &

(turn’ = 1) & (tick’ = tick - 1)

& (container1deploys4’ = true) & (timercontainer’ =

container2deploytime);

//for container 2

[ndchoice2]turn = 2 & requests1 < T & (s2capacity - memcontainer2) > 0 &

(s3capacity - memcontainer2) > 0 & (s4capacity - memcontainer2) > 0 &

counter = 1 & requests1 = 2 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer2) &

(turn’ = 1) & (tick’ = tick - 1)

& (container2deploys2’ = true) & (timercontainer’ =

container3deploytime);

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer2) > 0 &

(s3capacity - memcontainer2) > 0 & (s4capacity - memcontainer2) > 0 &

counter = 1 & requests1 = 2 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer2) &

(turn’ = 1) & (tick’ = tick - 1)

& (container2deploys3’ = true) & (timercontainer’ =

container3deploytime);

[ndchoice4]turn = 2 & requests1 < T & (s2capacity - memcontainer2) > 0 &

(s3capacity - memcontainer2) > 0 & (s4capacity - memcontainer2) > 0 &

counter = 1 & requests1 = 2 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s4capacity’ = s4capacity - memcontainer2) &

(turn’ = 1) & (tick’ = tick - 1)

& (container2deploys4’ = true) & (timercontainer’ =

container3deploytime);
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//for container 3

[ndchoice2]turn = 2 & requests1 < T & (s2capacity - memcontainer3) > 0 &

(s3capacity - memcontainer3) > 0 & (s4capacity - memcontainer3) > 0 &

counter = 1 & requests1 = 3 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer3) &

(turn’ = 1) & (tick’ = tick - 1)

& (container3deploys2’ = true) & (timercontainer’ =

container4deploytime);

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer3) > 0 &

(s3capacity - memcontainer3) > 0 & (s4capacity - memcontainer3) > 0 &

counter = 1 & requests1 = 3 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer3) &

(turn’ = 1) & (tick’ = tick - 1)

& (container3deploys3’ = true) & (timercontainer’ =

container4deploytime);

[ndchoice4]turn = 2 & requests1 < T & (s2capacity - memcontainer3) > 0 &

(s3capacity - memcontainer3) > 0 & (s4capacity - memcontainer3) > 0 &

counter = 1 & requests1 = 3 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s4capacity’ = s4capacity - memcontainer3) &

(turn’ = 1) & (tick’ = tick - 1)

& (container3deploys4’ = true) & (timercontainer’ =

container4deploytime);
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//for container 4

[ndchoice2]turn = 2 & requests1 < T & (s2capacity - memcontainer4) > 0 &

(s3capacity - memcontainer4) > 0 & (s4capacity - memcontainer4) > 0 &

counter = 1 & requests1 = 4 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer4) &

(turn’ = 1) & (tick’ = tick - 1)

& (container4deploys2’ = true) & (timercontainer’ =

container5deploytime);

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer4) > 0 &

(s3capacity - memcontainer4) > 0 & (s4capacity - memcontainer4) > 0 &

counter = 1 & requests1 = 4 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer4) &

(turn’ = 1) & (tick’ = tick - 1)

& (container4deploys3’ = true) & (timercontainer’ =

container5deploytime);

[ndchoice4]turn = 2 & requests1 < T & (s2capacity - memcontainer4) > 0 &

(s3capacity - memcontainer4) > 0 & (s4capacity - memcontainer4) > 0 &

counter = 1 & requests1 = 4 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s4capacity’ = s4capacity - memcontainer4) &

(turn’ = 1) & (tick’ = tick - 1)

& (container4deploys4’ = true) & (timercontainer’ =

container5deploytime);

//for container 5

[ndchoice2]turn = 2 & requests1 < T & (s2capacity - memcontainer5) > 0 &
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(s3capacity - memcontainer5) > 0 & (s4capacity - memcontainer4) > 0 &

counter = 1 & requests1 = 5 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer5) &

(turn’ = 1) & (tick’ = tick - 1)

& (container5deploys2’ = true);

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer5) > 0 &

(s3capacity - memcontainer5) > 0 & (s4capacity - memcontainer5) > 0 &

counter = 1 & requests1 = 5 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer5) &

(turn’ = 1) & (tick’ = tick - 1)

& (container5deploys3’ = true);

[ndchoice4]turn = 2 & requests1 < T & (s2capacity - memcontainer5) > 0 &

(s3capacity - memcontainer5) > 0 & (s4capacity - memcontainer5) > 0 &

counter = 1 & requests1 = 5 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer5) &

(turn’ = 1) & (tick’ = tick - 1)

& (container5deploys4’ = true);

//-------------------------------------------------------------------------------

//for counter = 2 : following choices when s1 and s2 have failed and s3 is

active

//for container 1

[ndchoice3]turn = 2 & requests1 < T & (s3capacity - memcontainer1) > 0 &

counter = 2 & requests1 = 1 & timercontainer = 0 ->
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(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer1) &

(turn’ = 1) & (tick’ = tick - 1)

& (container1deploys3’ = true) & (timercontainer’ =

container2deploytime);

//for container 2

[ndchoice3]turn = 2 & requests1 < T & (s3capacity - memcontainer2) > 0 &

counter = 2 & requests1 = 2 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer2) &

(turn’ = 1) & (tick’ = tick - 1)

& (container2deploys3’ = true) & (timercontainer’ =

container3deploytime);

//for container 3

[ndchoice3]turn = 2 & requests1 < T & (s3capacity - memcontainer3) > 0 &

counter = 2 & requests1 = 3 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer3) &

(turn’ = 1) & (tick’ = tick - 1)

& (container3deploys3’ = true) & (timercontainer’ =

container4deploytime);

//for container 4

[ndchoice3]turn = 2 & requests1 < T & (s3capacity - memcontainer4) > 0 &

counter = 2 & requests1 = 4 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer4) &

(turn’ = 1) & (tick’ = tick - 1)

& (container4deploys3’ = true) & (timercontainer’ =

container5deploytime);

//for container 5
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[ndchoice3]turn = 2 & requests1 < T & (s3capacity - memcontainer5) > 0 &

counter = 2 & requests1 = 5 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s3capacity’ = s3capacity - memcontainer5) &

(turn’ = 1) & (tick’ = tick - 1)

& (container5deploys3’ = true);

//-------------------------------------------------------------------------------

//for counter = 3 : following choices when s1 and s3 have failed and s2 is

active

//for container 1

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer1) > 0 &

counter = 3 & requests1 = 1 & timercontainer = 0 ->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer1) &

(turn’ = 1) & (tick’ = tick - 1)

& (container1deploys3’ = true) & (timercontainer’ =

container2deploytime);

//for container 2

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer2) > 0 &

counter = 3 & requests1 = 2 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer2) &

(turn’ = 1) & (tick’ = tick - 1)

& (container2deploys3’ = true) & (timercontainer’ =

container3deploytime);

//for container 3

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer3) > 0 &

counter = 3 & requests1 = 3 & timercontainer = 0->
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(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer3) &

(turn’ = 1) & (tick’ = tick - 1)

& (container3deploys3’ = true) & (timercontainer’ =

container4deploytime);

//for container 4

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer4) > 0 &

counter = 3 & requests1 = 4 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer4) &

(turn’ = 1) & (tick’ = tick - 1)

& (container4deploys3’ = true) & (timercontainer’ =

container5deploytime);

//for container 5

[ndchoice3]turn = 2 & requests1 < T & (s2capacity - memcontainer5) > 0 &

counter = 3 & requests1 = 5 & timercontainer = 0->

(requests1’ = requests1 + 1) & (s2capacity’ = s2capacity - memcontainer5) &

(turn’ = 1) & (tick’ = tick - 1)

& (container5deploys3’ = true);

endmodule

rewards "value"

//resource contention amongst competing containers

//deployed on the same server

container1deploys2 = true & container3deploys2 = true : 0;

container1deploys3 = true & container3deploys3 = true : 0;

container1deploys4 = true & container3deploys4 = true : 0;

//not deployed on the same server
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container1deploys2 != true & container3deploys2 != true : c1u + c2u + c3u + c4u

+ c5u;

container1deploys3 != true & container3deploys3 != true : c1u + c2u + c3u + c4u

+ c5u;

container1deploys4 != true & container3deploys4 != true : c1u + c2u + c3u + c4u

+ c5u;

endrewards



Appendix C

PRISM Models for Verification of

Service Allocation Policies

This appendix details a PRISM implementation of the SMG model for service allocation poli-

cies. The counter utilized for the number of game rounds is not depicted explicitly for brevity.

//turn based game

global turn : [0..2] init 0;

//define reward constants : as many as latency discretized intervals

const double rwd1;

const double rwd2;

const double rwd3;

const double rwdmax;

module failures

counter : [1..m] init m;
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//generate failures with number of servers active

[genfailures] turn = 0 ->

p1 : (counter’ = 1) & (turn’ = 1)

+ p2 : (counter’ = 2) & (turn’ = 1)

+ p3 : (counter’ = 3) & (turn’ = 1)

+ p4 : (counter’ = 4) & (turn’ = 1)

+ p5 : (counter’ = 5) & (turn’ = 1)

...

...

+ pm : (counter’ = m) & (turn’ = 1);

endmodule

module servicerequests

users : [1..k] init k;

//generate stochastic service requests

[genrequests] turn = 1 ->

ps1 : (users’ = 1) & (turn’ = 2)

+ ps2 : (users’ = 2) & (turn’ = 2)

+ ps3 : (users’ = 3) & (turn’ = 2)

+ ps4 : (users’ = 4) & (turn’ = 2)

+ ps5 : (users’ = 5) & (turn’ = 2)

...

...

+ psk : (users’ = k) & (turn’ = 2);

endmodule

module serverlatency
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latency : [1..ltmax] init ltmax;

//generate latencies in accordance with number of active servers and service

requests generated in the previous turns

//pc1lt1 ... pc1ltmax forms a probability distribution over latency generated

[c1] turn = 2 & counter = 1 & users = 1 ->

pc1lt1 : (latency’ = 0) & (turn’ = 0)

+ pc1lt2 : (latency’ = 1) & (turn’ = 0)

+ pc1lt3 : (latency’ = 2) & (turn’ = 0)

+ pc1lt4 : (latency’ = 3) & (turn’ = 0)

...

...

+ pc1ltmax : (latency’ = 4) & (turn’ = 0);

[c2] turn = 2 & counter = 1 & users = 2 ->

pc2lt1 : (latency’ = 0) & (turn’ = 0)

+ pc2lt2 : (latency’ = 1) & (turn’ = 0)

+ pc2lt3 : (latency’ = 2) & (turn’ = 0)

+ pc2lt4 : (latency’ = 3) & (turn’ = 0)

...

...

+ pc2ltmax : (latency’ = 4) & (turn’ = 0);

...

...

...

[cX] turn = 2 & counter = 6 & users = 6 ->

pcXlt1 : (latency’ = 0) & (turn’ = 0)
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+ pcXlt2 : (latency’ = 1) & (turn’ = 0)

+ pcXlt3 : (latency’ = 2) & (turn’ = 0)

+ pcXlt4 : (latency’ = 3) & (turn’ = 0)

...

...

+ pcXltmax : (latency’ = 4) & (turn’ = 0);

endmodule

//assign each latency value a specific reward

rewards "users"

latency = ltmax : rwdmax;

...

...

latency = 3 : rwd3;

latency = 2 : rwd2;

latency = 1 : rwd1;

endrewards
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